Science.gov

Sample records for geomagnetic storm variations

  1. Solar energetic particle cutoff variations during the 29-31 October 2003 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Kress, B. T.; Mertens, C. J.; Wiltberger, M.

    2010-05-01

    At low latitudes to midlatitudes the Earth's magnetic field usually shields the upper atmosphere and spacecraft in low Earth orbit from solar energetic particles (SEPs). During severe geomagnetic storms, distortion of the Earth's field suppresses geomagnetic shielding, allowing SEPs access to the midlatitudes. A case study of the 26-31 October 2003 solar-geomagnetic event is used to examine how a severe geomagnetic storm affects SEP access to the Earth. Geomagnetic cutoffs are numerically determined in model geomagnetic fields using code developed by the Center for Integrated Space Weather Modeling (CISM) at Dartmouth College. The CISM-Dartmouth geomagnetic cutoff model is being used in conjunction with the High Energy and Charge Transport code (HZETRN) at the NASA Langley Research Center to develop a real-time data-driven prediction of radiation exposure at commercial airline altitudes. In this work, cutoff rigidities are computed on global grids and along several high-latitude flight routes before and during the geomagnetic storm. It is found that significant variations in SEP access to the midlatitudes and high latitudes can occur on time scales of an hour or less in response to changes in the solar wind dynamic pressure and interplanetary magnetic field. The maximum suppression of the cutoff is ˜1 GV occurring in the midlatitudes during the main phase of the storm. The cutoff is also significantly suppressed by the arrival of an interplanetary shock. The maximum suppression of the cutoff due to the shock is approximately one half of the maximum suppression during the main phase of the storm.

  2. Analysis of the Solar Diameter Variations at July, 1986 and the Geomagnetic Storm of March, 1989

    NASA Astrophysics Data System (ADS)

    Humberto Andrei, Alexandre; Garcia, Marcos A.; Papa, Andres R. R.; Calderari Boscardin, Sergio; Lousada Penna, Jucira; Sigismondi, Costantino

    2015-08-01

    In this work, we have a well-known event in scientific literature used to illustrate our investigation on the viability of the solar diameter variation be a precursor for the occurrence of sets of coronal mass ejections, and thus, for geomagnetic storms, as noted in previous works of our group, but now, in a time scale of a few days. The selected event was that of March 13, 1989, a strong geomagnetic storm that made the Hydro-Quebec power grid fall down by 9 hours, damaging the local economy in millions of dollars. At the same time we have investigated a time interval belonging to a solar minimum period, on July 1986, prior to the rising phase and solar maximum of Solar Cycle 22, to compare with the geomagnetic pattern, as well as with the solar diameter behavior along these periods of low solar and geomagnetic activity. We used the time series of the CERGA’s astrolabe (because its dataset is long enough as to comprise both time periods of the analysis), the geomagnetic index AP and the H geomagnetic component from the Tatuoca Magnetic Observatory (because it is near to the geomagnetic equator and with the extra aim of checking the sensitivity of its magnetometers to global events).

  3. PAMELA's measurements of geomagnetic cutoff variations during the 14 December 2006 storm

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; Nolfo, G. A.; De Santis, C.; De Simone, N.; Di Felice, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2016-03-01

    Data from the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) satellite experiment were used to measure the geomagnetic cutoff for high-energy (≳ 80MeV) protons during the 14 December 2006 geomagnetic storm. The variations of the cutoff latitude as a function of rigidity were studied on relatively short timescales, corresponding to spacecraft orbital periods (˜94 min). Estimated cutoff values were compared with those obtained by means of a trajectory-tracing approach based on a dynamical empirical modeling of the Earth's magnetosphere. We found significant variations in the cutoff latitude, with a maximum suppression of ˜7° at lowest rigidities during the main phase of the storm. The observed reduction in the geomagnetic shielding and its temporal evolution were related to the changes in the magnetospheric configuration, investigating the role of interplanetary magnetic field, solar wind, and geomagnetic parameters. PAMELA's results represent the first direct measurement of geomagnetic cutoffs for protons with kinetic energies in the sub-GeV and GeV region.

  4. Extreme Geomagnetic Storms - 1868 - 2010

    NASA Astrophysics Data System (ADS)

    Vennerstrom, S.; Lefevre, L.; Dumbović, M.; Crosby, N.; Malandraki, O.; Patsou, I.; Clette, F.; Veronig, A.; Vršnak, B.; Leer, K.; Moretto, T.

    2016-05-01

    We present the first large statistical study of extreme geomagnetic storms based on historical data from the time period 1868 - 2010. This article is the first of two companion papers. Here we describe how the storms were selected and focus on their near-Earth characteristics. The second article presents our investigation of the corresponding solar events and their characteristics. The storms were selected based on their intensity in the aa index, which constitutes the longest existing continuous series of geomagnetic activity. They are analyzed statistically in the context of more well-known geomagnetic indices, such as the Kp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensive geomagnetic measure of the extreme storms. We rank the storms by including long series of single magnetic observatory data. The top storms on the rank list are the New York Railroad storm occurring in May 1921 and the Quebec storm from March 1989. We identify key characteristics of the storms by combining several different available data sources, lists of storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks, solar wind in-situ measurements, neutron monitor data, and associated identifications of Forbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms are very strongly correlated with the occurrence of interplanetary shocks (91 - 100 %), Forbush decreases (100 %), and energetic solar proton events (70 %). A quantitative comparison of these associations relative to less intense storms is also presented. Most notably, we find that most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar wind disturbances and that they frequently occur when the geomagnetic activity is already elevated. We also investigate the semiannual variation in storm occurrence

  5. Global distributions of storm-time ionospheric currents as seen in geomagnetic field variations

    NASA Astrophysics Data System (ADS)

    Shinbori, A.; Hori, T.; Tanaka, Y.; Koyama, Y.; Kikuchi, T.; Nagatsuma, T.

    2013-12-01

    In order to investigate temporary and spatial evolutions of global geomagnetic field variations from high-latitude to the geomagnetic equator during geomagnetic storms, we analyzed 1-min geomagnetic field data, which are obtained from the CARISMA, GIMA, IMAGE, MACCS, and NSWM networks, and provided by WDC geomagnetism in Kyoto University. During the main phase of geomagnetic storms, the daytime ionospheric equivalent currents showed that two-cell type of ionospheric currents driven by the enhanced region-1 field-aligned currents (R1 FACs) are intensified significantly and expanded to the low-latitude region of ~30 degrees (GMLAT). The centers of the two-cell type of ionospheric currents were located around 70 and 65 degrees in the morning and afternoon, respectively. Corresponding to the intensification of the R1 FACs, an enhancement of the eastward/westward equatorial electrojet occurred at the daytime/nighttime dip equator. This signature suggests that the enhanced convection electric field penetrates to both the daytime and nighttime equator. During the recovery phase, the daytime equivalent current showed that the two new pairs of twin-vortices, which are different from two-cell type of ionospheric currents driven by the R1 FACs, appear in the polar cap and middle latitude. The former led to the enhanced NBZ FACs driven by the lobe reconnection tailward of the cusps due to the northward IMF, while the latter was generated by the enhanced R2 FACs. Associated with these magnetic field variations in the middle latitudes and polar cap, the equatorial magnetic field variation showed a strongly negative signature produced by the westward equatorial electrojet current due to the dusk-to-dawn electric field.

  6. Hazards of geomagnetic storms

    USGS Publications Warehouse

    Herzog, D.C.

    1992-01-01

    Geomagnetic storms are large and sometimes rapid fluctuations in the Earth's magnetic field that are related to disturbances on the Sun's surface. Although it is not widely recognized, these transient magnetic disturbances can be a significant hazard to people and property. Many of us know that the intensity of the auroral lights increases during magnetic storms, but few people realize that these storms can also cause massive power outages, interrupt radio communications and satellite operations, increase corrosion in oil and gas pipelines, and lead to spuriously high rejection rates in the manufacture of sensitive electronic equipment. 

  7. On extreme geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Cid, Consuelo; Palacios, Judith; Saiz, Elena; Guerrero, Antonio; Cerrato, Yolanda

    2014-10-01

    Extreme geomagnetic storms are considered as one of the major natural hazards for technology-dependent society. Geomagnetic field disturbances can disrupt the operation of critical infrastructures relying on space-based assets, and can also result in terrestrial effects, such as the Quebec electrical disruption in 1989. Forecasting potential hazards is a matter of high priority, but considering large flares as the only criterion for early-warning systems has demonstrated to release a large amount of false alarms and misses. Moreover, the quantification of the severity of the geomagnetic disturbance at the terrestrial surface using indices as Dst cannot be considered as the best approach to give account of the damage in utilities. High temporal resolution local indices come out as a possible solution to this issue, as disturbances recorded at the terrestrial surface differ largely both in latitude and longitude. The recovery phase of extreme storms presents also some peculiar features which make it different from other less intense storms. This paper goes through all these issues related to extreme storms by analysing a few events, highlighting the March 1989 storm, related to the Quebec blackout, and the October 2003 event, when several transformers burnt out in South Africa.

  8. On the mechanisms responsible for high-latitude thermospheric composition variations during the recovery phase of a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Burns, A. G.; Killeen, T. L.; Crowley, G.; Emery, B. A.; Roble, R. G.

    1989-01-01

    The causal mechanisms for the recovery of the perturbed high-latitude thermospheric composition to the unperturbed state in the period following a geomagnetic storm are investigated. Model runs of the NCAR thermosphere/ionosphere GCM (TIGCM) and thermosphere GCM are used to calculate the averaged mass mixing ratio variations and the forcing terms responsible for these variations during the recovery phase of a geomagnetic storm. High latitude compositional recovery is found to occur in the NCAR TIGCM on a time scale of about 12 hr to 1 day. This time scale is in agreement with previously observed time scales for typical poststorm F region electron density recoveries. Neither molecular diffusion nor large-scale horizontal advection is the dominant process in determining the compositional state during the recovery period. Thermospheric compositional recovery at high geomagnetic latitudes is driven primarily by vertical advection.

  9. Energy dependence of relativistic electron flux variations in the outer radiation belt during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Xie, Lun; Li, Jinxing; Fu, Suiyan; Pu, Zuyin; Chen, Lunjin; Ni, Binbin; Li, Wen

    2015-04-01

    Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt, depending on the delicate competition between electron energization and loss processes. Despite the well-known "energy independent" prototype in which electron fluxes enhance after geomagnetic storms at all energies, we present observations of "energy dependent" events, i.e., post-storm electron fluxes at lower energies (0.3-2.5 MeV, measured by MEPED/POES) recover or even exceed the pre-storm level, while electron fluxes at higher energies (2.5-14 MeV, measured by PET/SAMPEX) do not restore. The statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies while flux enhancements are more common at lower energies: ~ 82% (3%) storm events produce increased (decreased) flux for 0.3-2.5 MeV electrons, while ~ 37% (45%) storms lead to enhancements (reductions) of 2.5-14 MeV electron flux. Superposed epoch analysis suggests that "energy dependent" events preferentially occur during periods of high solar wind density along with high dynamic pressure. Previous statistical studies have shown that this kind of solar wind conditions account for significant enhancements of EMIC waves, which cause efficient precipitation of > 2 MeV electrons into atmosphere via pitch angle scattering. Two cases of "energy dependent" events are investigated in detail with evident observations of EMIC waves that can resonate effectively with >2 MeV electrons. Besides, we do not capture much differences in the chorus wave activity between those "energy dependent" and "energy independent" events. Therefore, our results strongly suggest that EMIC waves play a crucial role in the occurrences of those "energy dependent" events in the outer zone during geomagnetic storms.

  10. Monitoring the ionospheric total electron content variations over the Korean Peninsula using a GPS network during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Kyu; Lee, Sang-Jeong; Park, Jong-Uk

    2011-06-01

    We have established a regional ionospheric model (RIM) for investigating changes in the total electron content (TEC) over South Korea using 38 Korean GPS reference stations. The inverse distance weighted (IDW) interpolation method was applied to create a two-dimensional ionospheric map of vertical TEC units (TECU) based on a grid. To examine the diurnal patterns of ionospheric TEC over South Korea, we first processed the GPS data from a geomagnetically quiet period of 10 days. In a second step, we compared the estimated GPS-TEC variations with the changes in geomagnetic activity indices (the K p and D st indices) and the auroral electrojet index (AE) as a function of universal time (UT) on 4 and 20 November, 2003. The GPS-TEC responses for those storm events were proportional to the geomagnetic activity at this mid-latitude location. The sudden increases in ionospheric TEC (SITEC) caused by the geomagnetic storms were detected. The variations in GPS-TEC may help reveal the processes of ionospheric disturbances caused by geomagnetic storms.

  11. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<−100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3–6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  12. Variations in the thermosphere and ionosphere response to the 17-20 April 2002 geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Fang, Hanxian; Weng, Libin; Sheng, Zheng

    2012-05-01

    The responses of the thermospheric density and ionospheric foF2 to the intense magnetic storms event on 17-20 April were analyzed by using data from CHAMP/STAR and ionosonde stations respectively, and NRLMSISE-00 and IRI-2007 models were used to simulate. The models can capture the tendency of changes, especially under quiet or moderate geomagnetic conditions, but are less accurate under geomagnetic storms. The thermospheric density is sensitive to the EUV emission and geomagnetic activity, and double-peak structure appeared in the dayside. On 19 April dayside, TADs traveled toward the equator with phase speeds of the order of 300-750 m/s, interfered near the equator to produce a total density perturbation of 25%, and then passed through each other and into the opposite hemisphere. For ionospheric foF2, there are non-symmetric hemispheres' features during the intense geomagnetic activities. In details, middle latitudes in the north and high latitudes in both hemispheres are negative ionospheric storms, and the maximum amplitudes of δfoF2 is about 60%, but the amplitudes decrease from the higher to lower latitudes in the Southern Hemisphere. Meanwhile, the equatorial station shows positive phase, and the maximum value is about 100%. Finally, the mechanisms for these features will be discussed in this study.

  13. Latitudinal variation of 732.0 nm dayglow emission under geomagnetic storm conditions

    NASA Astrophysics Data System (ADS)

    Singh, Vir; Dharwan, Maneesha

    2016-07-01

    A comprehensive model is developed to study 732.0 nm dayglow emission. The Solar2000 EUV (extreme ultraviolet) flux model, neutral atmosphere model (NRLMSISE-00), latest transition probabilities and updated reaction rate coefficients are incorporated in the present model. The modeled volume emission rates (VER) are compared with the measurements as provided by Atmosphere Explorer-C satellite, Dynamics Explorer-2 spacecraft and WINDII measurements. The model is found in very good agreement with the measurements. This model is used to study the effects of geomagnetic storm on the 732.0 nm dayglow emission at various latitudes in northern hemisphere. It is found that the VER decreases as the latitude increases. The decrease in VER from low to mid latitudes is due to the decrease in atomic oxygen number density with latitude. The zenith intensity at the maximum geomagnetic activity is about 15% higher than the zenith intensity before the start of the geomagnetic storm in equatorial region. However, no appreciable change in the zenith intensity is found at higher latitudes (above 50° N). Further a negative correlation is found between the volume emission rate and DST index at all latitudes.

  14. Bracing for the geomagnetic storms

    SciTech Connect

    Kappenman, J.G. ); Albertson, V.D. )

    1990-03-01

    The authors discuss the impact of geomagnetic storms on utility transmission networks. The effects of a recent storm on the Hydro-Quebec transmission system are described in detail. Research into geomagnetic disturbance prediction is discussed. In coming months, geomagnetic field activity will be high as it builds toward a peak, the 22nd since reliable records of the phenomenon began in the mid-1700s. The peaks come in roughly 11-year cycles, and the next is expected later this year or early in 1991. The solar activity has so far risen at one of the fastest rates ever recorded, and solar forecasters expect cycle 22 to have unusually high activity levels.

  15. TEC variations along an East Euro-African chain during 5th April 2010 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Shimeis, A.; Borries, C.; Amory-Mazaudier, C.; Fleury, R.; Mahrous, A. M.; Hassan, A. F.; Nawar, S.

    2015-05-01

    In this paper, we analyzed the variations of TEC along a latitudinal East Euro-African chain, during the storm of April 5, 2010. We observed a large asymmetry between the two hemispheres. We detected the presence of a TID in the Northern hemisphere on April 5. The propagation time of the TID from high to low latitudes and the speed of the TID was determined. On April 5, 6 and 7, we observed a decrease of the TEC and changes of the NO+ in the Northern hemisphere. This depletion is caused by the large-scale thermospheric wind disturbances due to Joule heating dissipation in the auroral zone.

  16. Automated detection of geomagnetic storms with heightened risk of GIC

    NASA Astrophysics Data System (ADS)

    Bailey, Rachel L.; Leonhardt, Roman

    2016-06-01

    Automated detection of geomagnetic storms is of growing importance to operators of technical infrastructure (e.g., power grids, satellites), which is susceptible to damage caused by the consequences of geomagnetic storms. In this study, we compare three methods for automated geomagnetic storm detection: a method analyzing the first derivative of the geomagnetic variations, another looking at the Akaike information criterion, and a third using multi-resolution analysis of the maximal overlap discrete wavelet transform of the variations. These detection methods are used in combination with an algorithm for the detection of coronal mass ejection shock fronts in ACE solar wind data prior to the storm arrival on Earth as an additional constraint for possible storm detection. The maximal overlap discrete wavelet transform is found to be the most accurate of the detection methods. The final storm detection software, implementing analysis of both satellite solar wind and geomagnetic ground data, detects 14 of 15 more powerful geomagnetic storms over a period of 2 years.

  17. On the watch for geomagnetic storms

    USGS Publications Warehouse

    Green, Arthur W.; Brown, William M.

    1997-01-01

    Geomagnetic storms, induced by solar activity, pose significant hazards to satellites, electrical power distribution systems, radio communications, navigation, and geophysical surveys. Strong storms can expose astronauts and crews of high-flying aircraft to dangerous levels of radiation. Economic losses from recent geomagnetic storms have run into hundreds of millions of dollars. With the U.S. Geological Survey (USGS) as the lead agency, an international network of geomagnetic observatories monitors the onset of solar-induced storms and gives warnings that help diminish losses to military and commercial operations and facilities.

  18. Large Geomagnetic Storms: Introduction to Special Section

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2010-01-01

    Solar cycle 23 witnessed the accumulation of rich data sets that reveal various aspects of geomagnetic storms in unprecedented detail both at the Sun where the storm causing disturbances originate and in geospace where the effects of the storms are directly felt. During two recent coordinated data analysis workshops (CDAWs) the large geomagnetic storms (Dst < or = -100 nT) of solar cycle 23 were studied in order to understand their solar, interplanetary, and geospace connections. This special section grew out of these CDAWs with additional contributions relevant to these storms. Here I provide a brief summary of the results presented in the special section.

  19. Storm-time variation of the horizontal and vertical components of the geomagnetic fields and rate of induction at different latitudes

    NASA Astrophysics Data System (ADS)

    Falayi, E. O.; Oyebanjo, O. A.; Omotosho, T. V.; Okusanya, A. A.

    2016-10-01

    The paper presents the hourly mean variation of horizontal (H) and vertical (Z) components of the geomagnetic field and the rate of induction ΔH/ΔZ at different latitudes during magnetic storm of 20 March 2001 and 1 October 2001. The results of the analysis revealed that at high latitude stations greater than 60°, the reduction in ΔH component was noticed after the noon time while other stations less than 60° experienced reduction of H in the morning time during the geomagnetic storm. Large amplitude of ΔH and ΔZ were exhibited during the daytime over the equatorial zone, the amplitude decreases from mid latitudes to the dip equator during the nighttime. The daytime enhancement of ΔH at AAE, BAN and MBO suggest the presence of a strong eastward directed current which comes under the influence of electrojet. There were strong positive and negative correlations between ring current (DR) and horizontal component of the magnetic field ΔH. The effect of rate of induction is more significant at high latitudes than lower latitudes, during the geomagnetic storm. More enhancement in rate of induction occurred at nighttime than daytime. This result may be from other sources other than the ionosphere that is magnetospheric process significantly contributes toward the variation of induction.

  20. The latitudinal distribution of the baseline geomagnetic field during the March 17, 2015 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Alberti, Tommaso; Piersanti, Mirko; Lepreti, Fabio; Vecchio, Antonio; De Michelis, Paola; Villante, Umberto; Carbone, Vincenzo

    2016-04-01

    Geomagnetic storms (GS) are global geomagnetic disturbances that result from the interaction between magnetized plasma that propagates from the Sun and plasma and magnetic fields in the near-Earth space plasma environment. The Dst (Disturbance Storm Time) global Ring Current index is still taken to be the definitive representation for geomagnetic storm and is used widely by researcher. Recent in situ measurements by satellites passing through the ring-current region (i.e. Van Allen probes) and computations with magnetospheric field models showed that there are many other field contributions on the geomagnetic storming time variations at middle and low latitudes. Appling the Empirical Mode Decomposition [Huang et al., 1998] to magnetospheric and ground observations, we detect the different magnetic field contributions during a GS and introduce the concepts of modulated baseline and fluctuations of the geomagnetic field. In this work, we apply this method to study the latitudinal distribution of the baseline geomagnetic field during the St. Patrick's Day Geomagnetic Storm 2015 in order to detect physical informations concerning the differences between high-latitude and equatorial ground measurements.

  1. Variation of Plasmaspheric (90-4000 km) Field-aligned Electron Density and Ion Composition as a Function of Geomagnetic Storm Activity

    NASA Astrophysics Data System (ADS)

    Reddy, A.; Sonwalkar, V. S.

    2015-12-01

    Whistler mode (WM) radio sounding from IMAGE has led to the first measurements of plasmaspheric field-aligned electron density and ion composition as a function of geomagnetic storm activity during Aug-Sep 2005, a period that included several successive geomagnetic storms of varying strength. The plasmapause was located at L~2.4 during the onset and main phases of the storms. On the dayside, as a function of storm activity we found in general the following results: (1) The electron density, relative ion concentrations, and O+/H+ transition height had different temporal behavior. (2) Electron density in the first 1-2 days of the storm increased followed by a decrease in the recovery phase. (3) αH+ decreased during the onset, main and early recovery phase, and then it increased; αO+ increased in the early recovery phase, and then it decreased; αHe+ in general increased in the onset or main phase and decreased in the recovery phase. (4) O+/H+ transition height increased by ~200-300 km during the onset, main and early recovery phase. (5) When successive storms occurred in less than a day's span, the latter storms had little or no effect on the electron density and ion composition. On the nightside, WM sounding data was sparse. In the case of one moderate storm, we found that 3 days after the storm, electron density at F2 peak and relative ion concentrations (at all altitudes) were comparable to those before the storm, whereas electron density above O+/H+ transition height decreased. WM sounding results for the dayside and nightside were in agreement with measurements from CHAMP (350 km) and DMSP (850 km). WM sounding measurements coupled with physics-based models (e.g. SAMI2) will allow: (a) investigation of the role of thermospheric winds, dynamo and storm time electric fields in causing the variations in electron and ion densities, and (b) testing of current theories and validating physics-based models of the thermosphere-ionosphere-magnetosphere coupling.

  2. The Causes of Geomagnetic Storms During Solar Maximum

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Gonzalez, W. D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine (1852).

  3. Principles of major geomagnetic storms forecasting

    NASA Astrophysics Data System (ADS)

    Zagnetko, Alexander; Applbaum, David; Dorman, Lev; Pustil'Nik, Lev; Sternlieb, Abraham; Zukerman, Igor

    According to NOAA Space Weather Scales, geomagnetic storms of scales G5 (3-hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) are dangerous for people technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). To prevent these serious damages will be very important to forecast dangerous geomagnetic storms. In many papers it was shown that in principle for this forecasting can be used data on CR intensity and CR anisotropy changing before SC of major geomagnetic storms accompanied by sufficient Forbush-decreases (e.g., Dorman et al., 1995, 1999). In this paper we consider all types of observed precursor effects in CR what can be used for forecasting of great geomagnetic storms and possible mechanisms of these precursor effects origin. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting features for big Forbush-decreases". Nuclear Physics B, 49A, 136-144 (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their pre-diction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, 6, 476-479 (1999).

  4. Multiscale Features of Large Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    De Michelis, P.; Consolini, G.

    2011-12-01

    The present study is focused on the analysis of the multiscale features of four large geomagnetic storms that occurred from 2000 to 2003. In particular, we analyse the fluctuations of these extreme events as recorded along the horizontal component of the geomagnetic field in seven different canadian geomagnetic observatories, by decomposing the signal via the Hilbert-Huang transform (HHT). This empirical method, that is alternative to traditional data-analysis methods, consists in an empirical mode decomposition (EMD) and in the Hilbert spectral analysis, and it is designed specifically for analyzing nonlinear and nonstationary data. The features of the intrinsic mode functions (IMFs) are studied as a function of the magnetic latitude.

  5. Effects of magnetic fields produced by simulated and real geomagnetic storms on rats

    NASA Astrophysics Data System (ADS)

    Martínez-Bretón, J. L.; Mendoza, B.

    2016-03-01

    In this paper we report experiments of arterial pressure (AP) measurements of ten Wistar rats subjected to geomagnetic field changes and to artificially stimulated magnetic field variations. Environmental electromagnetic effects were screened using a semianechoic chamber, which allowed us to discern the effects associated with geomagnetic storms. We stimulated the subjects with a linear magnetic profile constructed from the average changes of sudden storm commencement (SSC) and principal phases of geomagnetic storms measured between 1996 and 2008 with Dst ⩽ -100 nT. Although we found no statistically significant AP variations, statistically significant AP changes were found when a geomagnetic storm occurred during the experimental period. Using the observed geomagnetic storm variations to construct a geomagnetic profile to stimulate the rats, we found that the geomagnetic field variations associated to the SSC day were capable of increasing the subjects AP between 7% and 9% from the reference value. Under this magnetic variation, the subjects presented a notably restless behavior not seen under other conditions. We conclude that even very small changes in the geomagnetic field associated with a geomagnetic storm can produce a measurable and reproducible physiological response.

  6. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A.; André, M.; Maes, L.; Baddeley, L.; Barakat, A.; Chappell, R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R.; Welling, D.

    2015-12-01

    Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.

  7. Schizophrenia and season of birth: relationship to geomagnetic storms.

    PubMed

    Kay, Ronald W

    2004-01-01

    An excess pattern of winter and spring birth, of those later diagnosed as schizophrenic, has been clearly identified in most Northern Hemisphere samples with none or lesser variation in Equatorial or Southern Hemisphere samples. Pregnancy and birth complications, seasonal variations in light, weather, temperature, nutrition, toxins, body chemistry and gene expression have all been hypothesized as possible causes. In this study, the hypothesis was tested that seasonal variation in the geomagnetic field of the earth primarily as a result of geomagnetic storms (GMS) at crucial periods in intrauterine brain development, during months 2 to 7 of gestation could affect the later rate of development of schizophrenia. The biological plausibility of this hypothesis is also briefly reviewed. A sample of eight representative published studies of schizophrenic monthly birth variation were compared with averaged geomagnetic disturbance using two global indices (AA*) and (aa). Three samples showed a significant negative correlation to both geomagnetic indices, a further three a significant negative correlation to one of the geomagnetic indices, one showed no significant correlation to either index and one showed a significant positive correlation to one index. It is suggested that these findings are all consistent with the hypothesis and that geomagnetic disturbance or factors associated with this disturbance should be further investigated in birth seasonality studies. PMID:14693348

  8. Study of simultaneous presence of DD and PP electric fields during the geomagnetic storm of November 7-8, 2004 and resultant TEC variation over the Indian Region

    NASA Astrophysics Data System (ADS)

    Galav, P.; Sharma, Shweta; Rao, S. S.; Veenadhari, B.; Nagatsuma, T.; Pandey, R.

    2014-04-01

    During very intense geomagnetic storm of November 7-8, 2004 simultaneous presence of storm time disturbance dynamo and eastward and westward directed prompt penetration electric fields inferred from the ground based magnetometer data in the 75∘ E sector is presented. Magnetometer observations show that, on the whole, average Δ H variation on 8 November remains below the night time level compared to its quiet day variation. A number of upward and downward excursions have been observed between 0130 UT and 0800 UT in the Δ H variation on 8 November. These excursions in Δ H have been attributed to the episodes of eastward and westward prompt penetrating electric fields. Ionospheric response in the equatorial ionization anomaly region along 75∘ E has also been studied using the total electron content data recorded at five GPS stations, namely Udaipur, Bengaluru (IISC), Hyderabad (HYDE), Maldives (MALD) and Diego Garcia (DGAR). Observation of markedly suppressed EIA, in conjunction with Δ H variation which was m negative during the daytime on 8 November, indicates the presence of an external field of opposite polarity (the disturbance dynamo electric field) that either undermined, or overshadowed the daytime ambient (eastward) electric field to the extent that the equatorial plasma fountain could not become effective.

  9. Comments on the paper "TEC variations during geomagnetic storm/substorm with PC5/PI2 pulsation signature" by A.M. Hamada, A.M. Mahrous, I. Fathy, E. Ghamry, K. Groves, K. Yumoto

    NASA Astrophysics Data System (ADS)

    Bolaji, O. S.

    2016-02-01

    Hamada, Mahrous, Fathy, Ghamry, Groves, Yumoto (2015) have described the TEC variations during geomagnetic storm/substorm with PC5/P12 pulsation signature over Egypt. Some reports made by the authors are not correct according to my view. Hence, I would like to clarify these points here.

  10. Geomagnetically Induced Currents, a space weather hazard. Case study - Europe under intense geomagnetic storms of the solar cycle 23

    NASA Astrophysics Data System (ADS)

    Dobrica, V.; Demetrescu, Cr.; Stefan, C.; Greculeasa, R.

    2016-05-01

    The interaction of the solar wind and heliospheric magnetic field with the magnetosphere and ionosphere results in variations of the geomagnetic field that induce hazardous electric currents in grounded technological systems (electric power and hydrocarbon transportation networks), the so-called geomagnetically induced currents (GICs). In order to evaluate the hazard induced on the European continent, we present a study of the surface electric field induced by 16 intense (Dst < -150 nT) geomagnetic storms, based on the analysis of the geomagnetic records from the European network of observatories, study that tend to solve the geophysical part of the problem. The evolution during storm development and the sources of the disturbance field are explored in case of the largest geomagnetic storm in the cycle 23 (Dst = -422 nT, November 20-21, 2003), and the geographical distribution of the maximum induced surface geoelectric field over Europe by the 16 storms considered in the study is presented. As source proxies, the Dst geomagnetic index, showing the disturbed field produced by the magnetospheric ring current at the geomagnetic equator, the AL geomagnetic index, showing the disturbed field produced by the ionospheric electrojet at auroral latitude, and the PC geomagnetic index, showing the disturbed field produced by the polar cap current, were examined.

  11. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  12. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A. I.; Andre, M.; Maes, L.; Baddeley, L. J.; Barakat, A. R.; Chappell, C. R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R. W.; Welling, D. T.

    2015-12-01

    Low energy ions of ionospheric origin provide a significant contributon to the magnetospheric plasmapopulation. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise arise if continuous longtime observations such as the during a geomagnetic storms are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near Earth region during gemagnetic storms.

  13. Total electron content behavior over Japan during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Watanabe, Shigeto; Otsuka, Yoichi; Saito, Akinori

    2005-01-01

    The total electron content (TEC) obtained from GPS signals is used to study ionospheric dynamics over Japan during geomagnetically disturbed conditions. The numerous TEC measurements are averaged in cells with a size 1.5° × 1.5° geographic scale and formatted as time series within the years 2000-2002. To extract the storm time changes of TEC, the diurnal and 27-day periodicities are subsequently removed. Diurnal variations are removed by replacing absolute TEC values in each cell with their relative deviations (RTEC) from medians. The hourly RTEC values from all cells within the central 4°-wide band over Japan area are then approximated by a plane surface. This surface is represented by two parameters: its value at the center (rt) and the slope (b) along the main axis, taken as constants of the linear regression. The 27-day periodicity was approximated by Fourier waves with main period of 640 hours and two harmonics separately for rt and b and subtracted from them. The analysis of rt and b behavior during a number of geomagnetic storms allowed us to reveal several repeatable features of average TEC behavior. It was found that TEC behavior during the storms is similar to that of foF2 at the F region and was local time-dependent. A marked poleward expansion of the equatorial ionosphere (crest region) at the end of recovery phase is persistently observed feature, produced probably by intensified eastward zonal winds. Such an expansion of equatorial ionosphere is observed also during isolated substorms, outside main geomagnetic storms. An oscillation-like change of positive and negative disturbances with period of 24 hours is observed during a 4-day period, following a moderate storm. In the absence of geomagnetic activity driver that effect is probably caused by the alternative expansion and contraction of equatorial ionosphere.

  14. Correlative comparison of geomagnetic storms and auroral substorms using geomagnetic indeces. Master's thesis

    SciTech Connect

    Cade, W.B.

    1993-06-01

    Partial contents include the following: (1) Geomagnetic storm and substorm processes; (2) Magnetospheric structure; (3) Substorm processes; (4) Data description; (5) Geomagnetic indices; and (6) Data period and data sets.

  15. Surface electric fields for North America during historical geomagnetic storms

    USGS Publications Warehouse

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  16. Surface electric fields for North America during historical geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Wei, Lisa H.; Homeier, Nicole; Gannon, Jennifer L.

    2013-08-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 "Quebec" storm and the 2003 "Halloween" storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  17. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  18. Solar Wind Charge Exchange During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.

    2012-01-01

    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  19. A comprehensive analysis of the geomagnetic storms occurred dur

    NASA Astrophysics Data System (ADS)

    Ghamry, Essam; Lethy, Ahmed; Arafa-Hamed, Tareq; Abd Elaal, Esmat

    2016-06-01

    The Geomagnetic storms are considered as one of the major natural hazards. Egyptian geomagnetic observatories observed multiple geomagnetic storms during 18 February to 2 March 2014. During this period, four interplanetary shocks successively hit the Earth's magnetosphere, leading to four geomagnetic storms. The storm onsets occurred on 18, 20, 23 and 27 February. A non-substorm Pi2 pulsation was observed on 26 February. This Pi2 pulsation was detected in Egyptian observatories (Misallat and Abu Simbel), Kakioka station in Japan and Carson City station in US with nearly identical waveforms. Van Allen Probe missions observed non-compressional Pc4 pulsations on the recovery phase of the third storm. This Pc4 event is may be likely attributed to the decay of the ring current in the recovery phase.

  20. Acceleration and loss of relativistic electrons during small geomagnetic storms

    SciTech Connect

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  1. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGESBeta

    Anderson, Brett R.; Millan, R. M.; Reeves, Geoffrey D.; Friedel, Reinhard Hans W.

    2015-12-02

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > –50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletionmore » than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. As a result, small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  2. Acceleration and loss of relativistic electrons during small geomagnetic storms

    SciTech Connect

    Anderson, Brett R.; Millan, R. M.; Reeves, Geoffrey D.; Friedel, Reinhard Hans W.

    2015-12-02

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > –50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. As a result, small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  3. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGESBeta

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result inmore » flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  4. Geomagnetic storms: Potential economic impacts on electric utilities

    SciTech Connect

    Barnes, P.R.; Van Dyke, J.W.

    1991-03-20

    Geomagnetic storms associated with sunspot and solar flare activity can disturb communications and disrupt electric power. A very severe geomagnetic storm could cause a major blackout with an economic impact of several billion dollars. The vulnerability of electric power systems in the northeast United States will likely increase during the 1990s because of the trend of transmitting large amounts of power over long distance to meet the electricity demands of this region. A comprehensive research program and a warning satellite to monitor the solar wind are needed to enhance the reliability of electric power systems under the influence of geomagnetic storms. 7 refs., 2 figs., 1 tab.

  5. Do Coronal Holes Cause 27 Day Recurring Geomagnetic Storms?

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tang, Frances; Park, Dan; Okada, Masaki; Arballo, John

    1994-01-01

    We examine 3 years of interplanetary data and geomagnetic activity indices (1973-1975) to determine the causes of geomagnetic storms and substorms during the descending phase of the solar cycle. In this paper, we specifically studied the year 1974 where two long lasting coronating streams existed.

  6. Electron Radiation Belt Dropouts in the Absence of Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Morley, S.; Henderson, M. G.; Steinberg, J. T.; Turner, D. L.; Li, W.

    2015-12-01

    Most observational studies of electron radiation belt dropouts have presented losses occurring during geomagnetic storms. Some statistical analyses of flux dropouts have included non-storm time events, but examples of non-storm time dropouts are still rarities in the literature. A small, but growing, body of work has led to the current understanding that radiation belt dynamics are not always coupled with geomagnetic storms, and that a number of key features are associated with dropouts: solar wind dynamic pressure tends to be high; the interplanetary magnetic field tends to be southward. We present three case studies of dropouts that occurred under quiet geomagnetic conditions and examine the dynamics of the electron phase spece density, and flux, over a wide range of L using Van Allen Probes and other satellites. The solar wind driving each dropout is shown to have a different categorization, and we investigate the role of substorms in non-storm time radiation belt dynamics.

  7. The responses of the thermosphere due to a geomagnetic storm: A MHD model

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Chang, S.

    1972-01-01

    A magnetohydrodynamics theory was used to study the dynamic response of the neutral atmosphere to a geomagnetic storm. A full set of magnetohydrodynamic equations appropriate for the present problem is derived and their various orders of approximation are discussed in some detail. In order to demonstrate the usefulness of this theoretical model, the May 1967 geomagnetic storm data were used in the resulting set of nonlinear, time dependent, partial differential magnetohydrodynamic equations to calculate variations of the thermosphere due to the storm. The numerical results are presented for wind speeds, electric field strength, and amount of joule heating at a constant altitude for the data recorded. Data show that the strongest thermospheric responses are at the polar region becoming weaker in the equatorial region. This may lead to the speculation that a thermospheric wave is generated in the polar region due to the geomagnetic storm which propagates towards the equator.

  8. Response of the thermosphere and ionosphere to geomagnetic storms

    SciTech Connect

    Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S.

    1994-03-01

    Four numerical simulations have been performed, at equinox, using a coupled thermosphere-ionosphere model, to illustrate the response of the upper atmosphere to geomagnetic storms. The storms are characterized by an increase in magnetospheric energy input at high latitude for a 12-hour period; each storm commences at a different universal time (UT). The initial response at high latitude is that Joule heating raises the temperature of the upper thermosphere and ion drag drives high-velocity neutral winds. The heat source drives a global wind surge, from both polar regions, which propagates to low latitudes and into the opposite hemisphere. The surge has the character of a large-scale gravity wave with a phase speed of about 600 m s{sup {minus}1}. Behind the surge a global circulation of magnitude 100 m s{sup {minus}1} is established at middle latitudes, indicating that the wave and the onset of global circulation are manifestations of the same phenomena. A dominant feature of the response is the penetration of the surge into the opposite hemisphere where it drives poleward winds for a few hours. The global wind surge has a preference for the night sector and for the longitude of the magnetic pole and therefore depends on the UT start time of the storm. A second phase of the meridional circulation develops after the wave interaction but is also restricted, in this case by the buildup of zonal winds via the Coriolis interaction. Conservation of angular momentum may limit the buildup of zonal wind in extreme cases. The divergent wind field drives upwelling and composition change on both height and pressure surfaces. The composition bulge responds to both the background and the storm-induced horizontal winds; it does not simply rotate with Earth. During the storm the disturbance wind modulates the location of the bulge; during the recovery the background winds induce a diurnal variation in its position. 39 refs., 15 figs.

  9. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  10. SuperDARN backscatter during intense geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Currie, J. L.; Waters, C. L.; Menk, F. W.; Sciffer, M. D.; Bristow, W. A.

    2016-06-01

    It is often stated that high-frequency radars experience a loss of backscatter during geomagnetic storm events. The occurrence of backscatter during 25 intense geomagnetic storms was examined using data from the Bruny Island and Kodiak radars and a superposed epoch analysis. It was found that while a reduction of backscatter occurred in the middle to far ranges, there was an increase in the amount of backscatter from close range following storm onset. Ray tracing showed that an enhanced charge density in the E region can reduce the chance of F region and increase the chance of E region backscatter. It was also shown that reduction in backscatter cannot be explained by D region absorption. Using a normalized SYM-H value, percentage time through recovery phase can be estimated during storm progression which allows a prediction of backscatter return in real time that accounts for varying storm recovery phase duration.

  11. The causes of recurrent geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Lepping, R. P.

    1976-01-01

    The causes of recurrent geomagnetic activity were studied by analyzing interplanetary magnetic field and plasma data from earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval included the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was due to two factors: (1) the ordered, mesoscale pattern of the stream itself, and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense, and it occurred during the passage of the interaction region at the front of a stream. These large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream.

  12. Infrared response of the thermosphere-ionosphere system to geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Thayer, J. P.; Mlynczak, M. G.; Hunt, L. A.; Russell, J. M., III

    2015-12-01

    For 14 years the SABER instrument on the NASA TIMED satellite has been observing the radiative cooling of the thermosphere-ionosphere system associated with infrared emission by nitric oxide (NO) and carbon dioxide (CO2). From these observations a very clear picture of fundamental processes that control the thermal structure above 100 km has emerged. The radiative cooling is modulated by variations in solar UV irradiance and geomagnetic effects. A pronounced solar cycle variation in both NO and CO2 cooling is observed, and CO2 cooling dominates during solar minimum. Radiative cooling in the current maximum peaked in December 2014, nine months after the sunspot peak. On average, solar ultraviolet irradiance provides about 70% of the energy that results in cooling by NO and the remaining 30% arises from geomagnetic processes. The relative roles of irradiance and geomagnetism vary strongly over a solar cycle. Of particular interest are the large, short-term increases in radiative cooling associated with intense geomagnetic storms. The large energy deposition heats the atmosphere and the infrared cooling increases non-linearly, helping the atmosphere to shed the storm energy and rapidly return to pre-storm conditions. This "natural thermostat" effect of infrared radiation will be shown in detail in this talk, as a function of latitude and altitude for a number of different geomagnetic storms. The relative roles of radiative cooling by NO and CO2 will also be investigated, to see if there is any storm-dependent preference. Finally, the sensitivity of the NO cooling to geomagnetic processes suggests that near real time observations of NO emission may serve as a forecasting tool for space weather. Increases in NO infrared emissions are associated with energy deposition and heating of the atmosphere. Observations of NO emission may then identify regions in which atmospheric drag is increasing, and thus may be a tool for now casting of drag for space operations.

  13. New insights on geomagnetic storms from observations and modeling

    SciTech Connect

    Jordanova, Vania K

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzgeomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We show examples of ring current simulations during two geomagnetic storms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  14. Geomagnetic Variations of Near-polar Regions and Human Health

    NASA Astrophysics Data System (ADS)

    Tchistova, Z. B.; Kutinov, Y. G.

    In polar region geomagnetic variations play active role to non-linear tectonic processes. This analysis is based on spatial-time spectral representation of geomagnetic variation and wave migration transformation. Many perturbations in electromagnetic fields may because by external factors (e.g. magnetic storms, ionosphere anomalies and other phenomena related to solar activity) "trigging" tectonic processes but having no direct relation to the processes of their preparation. Geophysical processes are responsible for perturbations in Earth's rotation and orientation on wide range of time-scale, from less than a day of millions of years. The geological structure of some sites of Earth's crust promotes occurrence of wave guides a number of geophysical fields (acoustic, seismic, electromagnetic), usually of transportation of acoustic, seismic, electromagnetic energy in Earth's crust are coincide spatially. During last 250 mln years Arctic Segment has been developing as an autonomous region with circumpolar zonality of geomagnetic fields, and mass - and-energy transfer in its bowlers as well as shitting of lithospheric plates and expansion of ocean are caused by rotation forces under of expanding planet. The dynamic structure of the geomagnetic variations may be characteriz ed by the variations of the order-chaos state. The order manifest itself in the rhythmic change of the medium state. Analysis of amplitude and phase of geomagnetic variations can be information on ecological state of regions. Geomagnetic variations is intrincically a multiscale process in time and space. One of the most important features of geomagnetic variations is multicyclic character, whish predetermined both extent and character of geomagnetic show, and specific features. Recently, there are collected many facts, show dependence between the processes in the Earth's biosphere, the elements of it, gelio- geo- physical and meteorological factors. The recent experimental data gives us opportunity

  15. Geomagnetic Storms and Acute Myocardial Infarctions Morbidity in Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.; Babayev, E. S.; Mustafa, F. R.; Stoilova, I.; Taseva, T.; Georgieva, K.

    2009-12-01

    Results of collaborative studies on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and pre-hospital acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data from Bulgaria and Azerbaijan. Bulgarian data, covering the period from 01.12.1995 to 31.12.2004, concerned daily distribution of number of patients with AMI diagnose (in total 1192 cases) from Sofia Region on the day of admission at the hospital. Azerbaijani data contained 4479 pre-hospital AMI incidence cases for the period 01.01.2003-31.12.2005 and were collected from 21 emergency and first medical aid stations in Grand Baku Area (including Absheron Economical Region with several millions of inhabitants). Data were "cleaned" as much as possible from social and other factors and were subjected to medical and mathematical/statistical analysis. Medical analysis showed reliability of the used data. Method of ANalysis Of VAriance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms - those caused by magnetic clouds (MC) and by high speed solar wind streams (HSSWS) - on AMI incidences. Relevant correlation coefficients were calculated. Results were outlined for both considered data. Results obtained for the Sofia data showed statistically significant positive correlation between considered GMA indices and AMI occurrence. ANOVA revealed that AMI incidence number was significantly increased from the day before till the day after geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day for the period 1995-2004. Results obtained for the Baku data revealed trends similar to those obtained for Sofia data. AMI morbidity increment was observed on the days with higher GMA intensity and after these days

  16. Signatures of strong geomagnetic storms in the equatorial latitude

    NASA Astrophysics Data System (ADS)

    Olawepo, A. O.; Adeniyi, J. O.

    2014-04-01

    Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height - electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to -12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers.

  17. Ionospheric Response During Four Intense Geomagnetic Storms: Similarities and Differences

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Tsurutani, B. T.; Crowley, G.; Verkhoglyadova, O. P.

    2007-05-01

    Large magnitude and hemispheric-scale increases in ionospheric plasma content are observed for daytime local times during intense geomagnetic storms. Ionospheric increases during the main phase of geomagnetic storms were identified many years ago and categorized as the "positive phase" ionospheric response. This talk will explore what we can learn using satellite data and distributed ground-based measurements, to understand the geoeffective processes at work in creating the positive phase for intense storms. The importance of electric fields penetrating to low latitudes on the dayside has received a great deal of attention recently, and is leading to revised theoretical and modeling constructs to account for the observations in a quantitative manner. We will present ground and space-based Global Positioning System (GPS) electron content data for four storms and analyze the data in light of the upstream conditions with a common epoch analysis. Modeling studies of the storm-time ionospheric behavior will be shown, using the ASPEN-TIMEGCM fully-coupled thermosphere- ionosphere (T-I) model with low-latitude electrodynamics. The ASPEN-TIMEGCM model contains storm-time effects such as winds and the resulting dynamo electric fields, but penetration E-fields including shielding are not currently included. The model runs are driven by carefully reconstructed high latitude time-dependent drivers based in part on the AMIE high latitude electrodynamics model. The time history of a modeled storm will be compared with observations. We will highlight outstanding science questions that are revealed in this study.

  18. A case study of the thermospheric neutral wind response to geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Jiang, Guoying; Zhang, Shunrong; Wang, Wenbin; Yuan, Wei; Wu, Qian; Xu, Jiyao

    A minor geomagnetic storm (Kp=5) occurred on March 27-28, 2012. The response of the thermospheric neutral wind at ~ 250 km to this storm was investigated by the 630.0 nm nightglow measurements of Fabry-Perot interferometers (FPIs) over Xinglong (geographic location: 40.2N, 117.4E; geomagnetic location: 29.8N, 193.2E) and Millstone Hill (geographic location: 42.6N, 71.5W; geomagnetic location: 53.1N, 65.1W). Our results show that the minor storm on March 27-28, 2012 obviously effected on the thermospheric neutral winds over Xinglong and Millstone Hill, especially Millstone Hill had larger response because of its higher geomagnetic latitude. Another interesting result is that a small variation in geomagnetic activity (Kp=2.7) could enough introduce a clear disturbance in the nighttime thermospheric neutral wind over Millstone hill. NCAR-TIME-GCM (National Center for Atmospheric Research-Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model) was employed to study the evolution and mechanism of the thermospheric neutral wind response.

  19. Multiscale and cross entropy analysis of auroral and polar cap indices during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Gopinath, Sumesh; Prince, P. R.

    2016-01-01

    In order to improve general monoscale information entropy methods like permutation and sample entropy in characterizing the irregularity of complex magnetospheric system, it is necessary to extend these entropy metrics to a multiscale paradigm. We propose novel multiscale and cross entropy method for the analysis of magnetospheric proxies such as auroral and polar cap indices during geomagnetic disturbance times. Such modified entropy metrics are certainly advantageous in classifying subsystems such as individual contributions of auroral electrojets and field aligned currents to high latitude magnetic perturbations during magnetic storm and polar substorm periods. We show that the multiscale entropy/cross entropy of geomagnetic indices vary with scale factor. These variations can be attributed to changes in multiscale dynamical complexity of non-equilibrium states present in the magnetospheric system. These types of features arise due to imbalance in injection and dissipation rates of energy with variations in magnetospheric response to solar wind. We also show that the multiscale entropy values of time series decrease during geomagnetic storm times which reveals an increase in temporal correlations as the system gradually shifts to a more orderly state. Such variations in entropy values can be interpreted as the signature of dynamical phase transitions which arise at the periods of geomagnetic storms and substorms that confirms several previously found results regarding emergence of cooperative dynamics, self-organization and non-Markovian nature of magnetosphere during disturbed periods.

  20. Geomagnetic storms: association with incidence of depression as measured by hospital admission.

    PubMed

    Kay, R W

    1994-03-01

    The hypothesis that geomagnetic storms may partly account for the seasonal variation in the incidence of depression, by acting as a precipitant of depressive illness in susceptible individuals, is supported by a statistically significant 36.2% increase in male hospital admissions with a diagnosis of depressed phase, manic-depressive illness in the second week following such storms compared with geomagnetically quiet control periods. There is a smaller but not statistically significant increase in female psychotic depression and non-psychotic depression admissions following storms. There was no correlation between geomagnetic storm levels and number of male admissions with psychotic depression, which is consistent with a threshold event affecting predisposed individuals. Phase advance in pineal circadian rhythms of melatonin synthesis may be a possible mechanism of causation or be present as a consequence of 5-hydroxytryptamine and adrenergic system dysfunction associated with geomagnetic disturbance. Effects on cell membrane permeability, calcium channel activity and retinal magneto-receptors are suggested as possible underlying biochemical mechanisms. PMID:8199794

  1. Great Lakes Region Morphology and Impacts of March 17, 2015 SED Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Heine, T.; Moldwin, M.; Zou, S.

    2015-12-01

    Under quiet geomagnetic conditions, the mid-latitude ionosphere is relatively uniform with little spatial variation in electron density. However, during intense geomagnetic storms, density gradients associated with Storm Enhanced Density (SED) plumes and Sub-auroral Polarization Streams (SAPS) can move across the dayside mid-latitude ionosphere producing small spatial scale density structure that may be connected to ionospheric scintillation. The evolution of the SED plume during the March 17, 2015 "St. Patrick's Day Storm" is investigated using aggregated data from high resolution GPS receivers at the University of Michigan and throughout the Great Lakes region. Structural density features in the SED gradient can be observed and compared to GPS scintillation measurements—providing insight into the physical mechanisms behind ionospheric scintillation.

  2. Comparison of Ionospheric TEC Derived from GPS and IRI 2012 Model during Geomagnetic Storms at Indonesia

    NASA Astrophysics Data System (ADS)

    Marlia, Dessi; Wu, Falin

    2016-07-01

    This paper investigates the variations of vertical Total Electron Content (VTEC) at Manado, Indonesia (geographic coordinates : lat 1.34 ° S and long 124.82 ° E) for period 2013. The GPS measured TEC is compared with the TEC derived from the IRI (International Reference Ionosphere) 2012 model. Vertical TEC measurements obtained from dual frequency GPS receiver that is GISTM (GPS Ionospheric Scintillations and TEC monitor). Variation of TEC validate to IRI 2012 model at Manado station has been compared with the model for three different topside of electron density namely NeQuick, IRI-01-Corr and IRI2001.There is a need to investigation on diurnal, seasonal variations, solar activity dependence of TEC and including effects of space weather related events to TEC and modeling of TEC. In this paper, diurnal and seasonal variations of VTEC and the effect of VTEC due to space weather events like Geomagnetic storms are analyzed. The result show that the TEC prediction using IRI-2001 model overestimated the GPS TEC measurements, while IRI-NeQuick and IRI-01-corr show a tendency to underestimates the observed TEC during the day time particularly in low latitude region in the maximum solar activity period (2013). The variations of VTEC during 17th March, 2013, 29th June, 2013 storms are analyzed. During 17th March,2013 storm enhancement in VTEC with Kp value 6 and Disturbance storm index (DST) -132 nT. During 29th June, 2013 storm VTEC depletion with value 7 and DST -98 nT. Significant deviations in VTEC during the main phase of the storms are observed. It is found that the response of ionospheric TEC consist of effects of both enhancement and depletions in ionospheric structures (positive and negative storm). Keywords: TEC ionosphere, GPS, GISTM, IRI 2012 model, solar activity, geomagnetic storm

  3. Geomagnetic Storms and EMIC waves: Van Allen Probe observations

    NASA Astrophysics Data System (ADS)

    Wang, D.; Yuan, Z.; Yu, X.; Deng, X.; Zhou, M.; Huang, S.; Li, H.

    2015-12-01

    EMIC waves are believed to play an important role in the dynamics of ring current ions and radiation belt electrons, especially during geomagnetic storms. But, in which phase of the storm do the EMIC waves occur more is still under debate. Ground and some low altitude satellite observations demonstrate that EMIC waves are observed more frequently during the recovery phase, rather than during the main phase. Halford et al. 2010 looked at the occurrences of EMIC waves during 119 storms occurring throughout the CRRES mission. They found that 49 of the 119 (41%) storms observed EMIC waves and the majority, 56.25%, of storm time EMIC waves occurring during the main phase, while 35.57% in the recovery phase. One shortcoming of the CRRES mission is that the apogee of it did not covered the dawn to noon sector during its life time. Therefore, some dayside EMIC waves caused by the compression of magnetosphere may not be included in Halford et al 2010, as they mentioned. The apogee of Van Allen Probes covered all the MLT sectors from their launch to April 2014. Utilizing the data from magnetometer instrument on board the Van Allen Probe A, Wang et al. 2015 studied the occurrence rate of H-band and He-band EMIC waves in different MLT sectors, and Yu et al 2015 reported the O-band EMIC wave observations. In this work, we analysis the occurrence of EMIC waves during storms. According to the criteria of storm in Halford et al. 2010, we find 76 storms in our interested period, 8 September 2012 to 30 April 2014, when the apogee of Van Allen Probe A covered all the MLT sectors. To identify the onset of geomagnetic storm more accurately, we corrected the Sym-H index referred to Zhao and Zong (2011), which is helpful to demonstrate the activity of ring current. 50 of the 76 storms (66%) observed 124 EMIC wave events, in which 80 (64.5%) EMIC wave events are found in the recovery phase, more than the EMIC wave events in the main phase (35, 28.2%). The remaining 9 (7.3%) EMIC wave

  4. Secular trends in storm-level geomagnetic activity

    USGS Publications Warehouse

    Love, J.J.

    2011-01-01

    Analysis is made of K-index data from groups of ground-based geomagnetic observatories in Germany, Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. Methods include nonparametric measures of trends and statistical significance used by the hydrological and climatological research communities. Among the three observatory groups, German K data systematically record the highest disturbance levels, followed by the British and, then, the Australian data. Signals consistently seen in K data from all three observatory groups can be reasonably interpreted as physically meaninginful: (1) geomagnetic activity has generally increased over the past 141 years. However, the detailed secular evolution of geomagnetic activity is not well characterized by either a linear trend nor, even, a monotonic trend. Therefore, simple, phenomenological extrapolations of past trends in solar and geomagnetic activity levels are unlikely to be useful for making quantitative predictions of future trends lasting longer than a solar cycle or so. (2) The well-known tendency for magnetic storms to occur during the declining phase of a sunspot-solar cycles is clearly seen for cycles 14-23; it is not, however, clearly seen for cycles 11-13. Therefore, in addition to an increase in geomagnetic activity, the nature of solar-terrestrial interaction has also apparently changed over the past 141 years. ?? Author(s) 2011.

  5. Solar-Terrestrial Relations and Geomagnetic Variations

    NASA Astrophysics Data System (ADS)

    Ogunade, S. O.

    1995-01-01

    An overview of the solar environment and terrestrial magnetism is presented. The interactions of the solar environment and terrestrial magnetism are then discussed as they result in the creation of the magnetosphere and ionosphere with their corresponding current systems. Geomagnetic variations resulting from these current systems are discussed with regards to the observations made on the Earth's surface. Some useful and disruptive effects of the geomagnetic variations on navigation, shortwave radio communication, space satellite orbits and other technological systems are discussed.

  6. Comparison of storm-time changes of geomagnetic field at ground and MAGSAT altitudes

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Kane, R. P.; Trivedi, N. B.

    1982-01-01

    The MAGSAT data for the period Nov. 2-20, 1979 were studied. From the observed H, the HMD predicted by model was subtracted. The residue delta H = H-HMD shows storm-time variations similar to geomagnetic Dst, at least qualitatively. Delta H sub 0, i.e., equatorial values of delta H were studied separately for dusk and dawn and show some differences.

  7. Comparison of Dst Forecast Models for Intense Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Ji, Eun-Young; Moon, Y.-J.; Gopalswamy, N.; Lee, D.-H.

    2012-01-01

    We have compared six disturbance storm time (Dst) forecast models using 63 intense geomagnetic storms (Dst <=100 nT) that occurred from 1998 to 2006. For comparison, we estimated linear correlation coefficients and RMS errors between the observed Dst data and the predicted Dst during the geomagnetic storm period as well as the difference of the value of minimum Dst (Delta Dst(sub min)) and the difference in the absolute value of Dst minimum time (Delta t(sub Dst)) between the observed and the predicted. As a result, we found that the model by Temerin and Li gives the best prediction for all parameters when all 63 events are considered. The model gives the average values: the linear correlation coefficient of 0.94, the RMS error of 14.8 nT, the Delta Dst(sub min) of 7.7 nT, and the absolute value of Delta t(sub Dst) of 1.5 hour. For further comparison, we classified the storm events into two groups according to the magnitude of Dst. We found that the model of Temerin and Lee is better than the other models for the events having 100 <= Dst < 200 nT, and three recent models (the model of Wang et al., the model of Temerin and Li, and the model of Boynton et al.) are better than the other three models for the events having Dst <= 200 nT.

  8. Forecasting Geomagnetic Storm with the Energetic Proton Accompanying CME

    NASA Astrophysics Data System (ADS)

    Xue, B. X.

    Solar flares are popular events on the solar disk while most of them being non-geo-effective The key factors that they could become geo-effective are weather they have CMEs accompanying them and the features of CME as well But among the hundreds of CMEs only few of them could cause significant geomagnetic disturbances which mainly depended on whether they headed the earth Several works have proved that CMEs could accelerate ionized particle in the shock wave in front of them that the amount of accelerated particles were the largest on the direction of CMEs moving The face that most of the SPEs would be followed by geomagnetic storms was a good example As the CMEs that moved toward the earth could accelerate particles the enhancement of energetic particle flux could be an omen for the geomagnetic storm caused by CMEs In this work the relationship between the geomagnetic disturbance and the energetic proton flux ACE-EPAM data together with the parameter of the solar flares that related to the CME was carefully investigated The preliminary result is that more than 90 of the enhancement in of the particle flux followed by shock that could be measured by ACE But the correlation between scale of the particle and that of the geomagnetic disturbance was not much significant Other factors that related to the characters of the CMEs had also to be taken into consideration The position of the flare which may affect the direction of the CMEs the flare scale which may decide the velocity and the duration which could relate to the magnetic

  9. Quantitative Evaluation of Ionosphere Models for Reproducing Regional TEC During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Shim, J. S.; Kuznetsova, M.; Rastaetter, L.; Bilitza, D.; Codrescu, M.; Coster, A. J.; Emery, B.; Foster, B.; Fuller-Rowell, T. J.; Goncharenko, L. P.; Huba, J.; Mitchell, C. N.; Ridley, A. J.; Fedrizzi, M.; Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Zhu, L.

    2015-12-01

    TEC (Total Electron Content) is one of the key parameters in description of the ionospheric variability that has influence on the accuracy of navigation and communication systems. To assess current TEC modeling capability of ionospheric models during geomagnetic storms and to establish a baseline against which future improvement can be compared, we quantified the ionospheric models' performance by comparing modeled vertical TEC values with ground-based GPS TEC measurements and Multi-Instrument Data Analysis System (MIDAS) TEC. The comparison focused on North America and Europe sectors during selected two storm events: 2006 AGU storm (14-15 Dec. 2006) and 2013 March storm (17-19 Mar. 2013). The ionospheric models used for this study range from empirical to physics-based, and physics-based data assimilation models. We investigated spatial and temporal variations of TEC during the storms. In addition, we considered several parameters to quantify storm impacts on TEC: TEC changes compared to quiet time, rate of TEC change, and maximum increase/decrease during the storms. In this presentation, we focus on preliminary results of the comparison of the models performance in reproducing the storm-time TEC variations using the parameters and skill scores. This study has been supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) for the space science communities to use.

  10. Geomagnetic storms link to the mortality rate in the Smolyan region for the period 1988--2009

    NASA Astrophysics Data System (ADS)

    Simeonova, Siyka G. 1; Georgieva, Radostina C. 2; Dimitrova, Boryana H. 2; Slavcheva, Radka G. 2; Kerimova, Bojena P. 2; Georgiev, Tsvetan B. 34

    We present correlations and trends of 10 parameters of annual mortality rate (1 to common mortality rate, 5 to cardiovascular reasons and 4 to "accidental" reasons (car accidents, suicides, infections)) with respect to 6 parameters of annual solar and geomagnetic activity (Wolf index, number of geomagnetic storms, duration of the storms, amplitude of the storms). During the period of observation, characterized by a 3-4-fold decrease of the mean geomagnetic activity (in terms of the number and the duration of the storms) and with a strong variations of the amplitude of the storms (about an almost constant mean values for the period), there is a 1.3-fold decrease in the urban population, a 1.5-fold increase of the common mortality rate, a 1.8-fold increase of the cardiovascular mortality rate and a 1.1-fold decrease of the "accidental" mortality rates. During the years 2003-2005 we observe about 2-fold temporary increase in the storm amplitudes. During the years 2007-2008, characterized by extremely low geomagnetic activity, we observe a surprising temporary increase of the common and the cardiovascular mortality rates 1.1 and 1.3-fold, respectively (Figures 1-4). We point out 3 main results. (1) The available data shows notable increase in the mortality rates while there is generally a decrease of the solar or geomagnetic activity during the studied period (Figures 5-9). We explain this anti-correlation with the domination of the increasing mortality rates as an effect of the advance in the mean age of the population (due to immigration of young people and decrease of new-borns), hiding an eventual display of the solar and geomagnetic influence on the mortality rates. Using this data we can not reveal influence of the long-time (10-20 years) change of the average solar and geomagnetic activity on the mortality rate. (2) Excluding the unusual years 2007 and 2008, we establish that with respect to the years with low geomagnetic activity (1993, 1995, 1996, 1999), in

  11. Modelling total electron content during geomagnetic storm conditions using empirical orthogonal functions and neural networks

    NASA Astrophysics Data System (ADS)

    Uwamahoro, Jean Claude; Habarulema, John Bosco

    2015-12-01

    It has been shown in ionospheric research that modelling total electron content (TEC) during storm conditions is a big challenge. In this study, TEC modelling was performed over Sutherland (32.38°S, 20.81°E, 41.09°S geomagnetic), South Africa, during storm conditions, using a combination of empirical orthogonal function (EOF) and regression analyses techniques. The neural network (NN) technique was also applied to the same TEC data set, and its output was compared with TEC modeled using the EOF model. TEC was derived from GPS observations, and a geomagnetic storm was defined for Dst≤-50 nT. The hour of the day and the day number of the year, F10.7p and A indices, were chosen as inputs for the modeling techniques to take into account diurnal and seasonal variation of TEC, solar, and geomagnetic activities, respectively. Both EOF and NN models were developed using GPS TEC data for storm days counted from 1999 to 2013 and tested on different storms. For interpolation, the EOF and NN models were validated on storms that occurred during high and low solar activity periods (storms of 2000 and 2006), while for extrapolation the validation was done for the storms of 2014 and 2015, identified based on the provisional Dst index data. A comparison of the modeled TEC with the observed TEC showed that both EOF and NN models perform well for storms with nonsignificant ionospheric TEC response and storms that occurred during period of low solar activity. For storms with significant TEC response, TEC magnitude is well captured during the nighttime and early morning, but short-term features, TEC enhancement, and depression are not sufficiently captured by the models. Statistically, the NN model performs 12.79% better than the EOF model on average, over all storm periods considered. Furthermore, it has been shown that the EOF and NN models developed for a specific station can be used to estimate TEC over other locations within a latitudinal and longitudinal coverage of 8.7

  12. Effects of geomagnetic storm on low latitude ionospheric total electron content: A case study from Indian sector

    NASA Astrophysics Data System (ADS)

    Chakraborty, Monti; Kumar, Sanjay; De, Barin Kumar; Guha, Anirban

    2015-07-01

    The effect of geomagnetic storms on low latitude ionosphere has been investigated with the help of Global Positioning System Total Electron Content (GPS-TEC) data. The investigation has been done with the aid of TEC data from the Indian equatorial region, Port Blair (PBR) and equatorial ionization anomaly region, Agartala (AGR). During the geomagnetic storms on 24th April and 15th July 2012, significant enhancement up to 150% and depression up to 72% in VTEC is observed in comparison to the normal day variation. The variations in VTEC observed from equatorial to EIA latitudes during the storm period have been explained with the help of electro-dynamic effects (prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF)) as well as mechanical effects (storm-induced equatorward neutral wind effect and thermospheric composition changes). The current study points to the fact that the electro-dynamic effect of geomagnetic storms around EIA region is more effective than at the lower latitude region. Drastic difference has been observed over equatorial region (positive storm impact) and EIA region (negative storm impact) around same longitude sector, during storm period on 24th April. This drastic change as observed in GPS-TEC on 24th April has been further confirmed by using the O/N2 ratio data from GUVI (Global Ultraviolet Imager) as well as VTEC map constructed from IGS data. The results presented in the paper are important for the application of satellite-based communication and navigational system.

  13. Statistical signatures of geomagnetic storms with reference to delay distribution

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Gwal, Ashok Kumar

    2016-07-01

    This paper presents a statistical study on the nature and association of time delay (between IMF Bz and Dst) with various solar wind parameters and Inter planetary Magnetic field components. The study integrally covers all (634 storms) the geomagnetic storms observed during 1996 to 2011. We have calculated the time delay (∆T) between the peak values of IMF Bz and minimum Dst for each event and statistically investigated its relation with various solar wind parameters and IMF. For this analysis we have taken Solar wind parameters; Velocity, Density, Plasma beta and Temperature as well as IMF Bz, into consideration. We have categorized the storms into three categories based on the Dst Index as weak (-30nT ≤ Dst ≤ -50nT), moderate (-50nT ≤ Dst ≤ -100nT) and intense (Dst ≤ -100nT) storms. The relation of delay with solar wind parameters and IMF components were studied separately for different classes of storms and for different delays viz. 0,1,2,3,4 (hours). From our analysis we are able to draw some interesting inferences. The fact, that the characteristic feature describing the geoeffectiveness of the IMF is its z-component; Bz, and the electric field component -V× Bz, stands true for all delay classes of the storms. The time delay (∆T) between peak values of IMF Bz and minimum Dst can vary in a wide range and mostly varies from 0-10 hours. However, it was found that a major percentage (~80 %) of the storms have a 0 - 4 hour delay. Meanwhile Temperature, density and plasma beta seems to have no significant association with the storm intensity.

  14. Empirical Model of Subauroral Polarization Streams (SAPS) During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Landry, R. G.

    2015-12-01

    Subauroral Polarization Streams (SAPS) are important electromagnetic phenomena associated with geomagnetic storms that affect the inner magnetosphere and ionosphere. They are characterized by strong sunward plasma flows caused by poleward-directed electric fields in the region of the ionosphere equatorword of the auroral zone. To examine the effects subauroral electric fields have on ITM coupling and magnetospheric-ionospheric convection we are developing an empirical model of SAPS using data acquired by the Defense Meteorological Satellite Program (DMSP) spacecraft which have made decades of in-situ measurements of ionospheric ion drifts, composition, and precipitating auroral particles. These measurements are used to characterize the subauroral electric fields relative to the location of the auroral boundary at varying magnetic local times and magnetic activity levels. As a critical component of this model, we have developed a model of the nightside zero energy electron precipitation boundary equatorward of the auroral oval parameterized by AE and MLT, using boundary identifications derived from DMSP data. We will use this model to create a global subauroral potential model and perform a superposed epoch study of SAPS fields in relationship to the auroral boundary during selected geomagnetic storms as a function of storm phase. A global empirical model of SAPS electric fields of this kind is required to realistically model thermosphere-ionosphere coupling and inner-magnetospheric convection.

  15. Ionospheric response to great geomagnetic storms during solar cycle 23

    NASA Astrophysics Data System (ADS)

    Merline Matamba, Tshimangadzo; Bosco Habarulema, John

    2016-07-01

    The analyses of ionospheric responses due to great geomagnetic storms i.e. Dst index < 350 nT that occurred during solar cycle 23 are presented. The GPS Total Electron Content (TEC) and ionosonde data over Southern and Northern Hemisphere mid-latitudes were used to study the ionospheric responses. A geomagnetic latitude region of ±30° to ±46° within a longitude sector of 15° to 40° was considered. Using a criteria of Dst < -350 nT, there were only four great storm periods (29 March - 02 April 2001, 27 - 31 October 2003, 18 - 23 November 2003 and 06 - 11 November 2004) in solar cycle 23. Analysis has shown that ionospheric dynamics during these disturbed conditions could be due to a number of dynamic and electrodynamics processes in both Hemispheres. In some instances the ionosphere responds differently to the same storm condition in both Hemispheres. Physical mechanisms related to (but not limited to) composition changes and electric fields will be discussed.

  16. Global ionospheric dynamics and electrodynamics during geomagnetic storms (Invited)

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Tsurutani, B.; Verkhoglyadova, O. P.; Komjathy, A.; Butala, M. D.

    2013-12-01

    Globally distributed total electron content (TEC) data has become an important tool for exploring the consequences of storm-time electrodynamics. Magnetosphere-ionosphere coupling during the main phase is responsible for the largest ionospheric effects observed during geomagnetic storms, mediated by global scale electrodynamics. Recent research using case studies reveals a complex picture of M-I coupling and its relationship to interplanetary drivers such as the solar wind electric field. Periods of direct coupling exist where the solar wind electric field is strongly correlated with prompt penetration electric fields, observed as enhanced vertical plasma drifts or an enhanced electrojet in the daytime equatorial ionosphere. Periods of decoupling between low latitude electric fields and the solar wind electric field are also observed, but the factors distinguishing these two types of response have not been clearly identified. Recent studies during superstorms suggest a role for the transverse (y-component) of the interplanetary magnetic field, which affects magnetospheric current systems and therefore may affect M-I coupling, with significant ionospheric consequences. Observations of the global ionospheric response to a range of geomagnetic storm intensities are presented. Scientific understanding of the different factors that affect electrodynamic aspects of M-I coupling are discussed.

  17. Artificial reproduction of magnetic fields produced by a natural geomagnetic storm increases systolic blood pressure in rats

    NASA Astrophysics Data System (ADS)

    Martínez-Bretón, J. L.; Mendoza, B.; Miranda-Anaya, M.; Durán, P.; Flores-Chávez, P. L.

    2016-04-01

    The incidence of geomagnetic storms may be associated with changes in circulatory physiology. The way in which the natural variations of the geomagnetic field due to solar activity affects the blood pressure are poorly understood and require further study in controlled experimental designs in animal models. In the present study, we tested whether the systolic arterial pressure (AP) in adult rats is affected by simulated magnetic fields resembling the natural changes of a geomagnetic storm. We exposed adult rats to a linear magnetic profile that simulates the average changes associated to some well-known geomagnetic storm phases: the sudden commencement and principal phase. Magnetic stimulus was provided by a coil inductor and regulated by a microcontroller. The experiments were conducted in the electromagnetically isolated environment of a semi-anechoic chamber. After exposure, AP was determined with a non-invasive method through the pulse on the rat's tail. Animals were used as their own control. Our results indicate that there was no statistically significant effect in AP when the artificial profile was applied, neither in the sudden commencement nor in the principal phases. However, during the experimental period, a natural geomagnetic storm occurred, and we did observe statistically significant AP increase during the sudden commencement phase. Furthermore, when this storm phase was artificially replicated with a non-linear profile, we noticed a 7 to 9 % increase of the rats' AP in relation to a reference value. We suggested that the changes in the geomagnetic field associated with a geomagnetic storm in its first day could produce a measurable and reproducible physiological response in AP.

  18. Study of Ring Current Dynamics During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Jordanova, Vania K.

    2000-01-01

    This research program considered modeling the dynamical evolution of the ring current during several geomagnetic storms. The first year (6/01/1997-5/31/1998) of this successful collaborative research between the University of New Hampshire (UNH) and the University of California Los Angeles (UCLA) was supported by NASA grant NAG5-4680. The second and third years (6/01/1998-5/31/2000) were funded at UNH under NASA grant NAG5-7368. Research work at UNH concentrated on further development of a kinetic model to treat all of the important physical processes that affect the ring current ion population during storm conditions. This model was applied to simulate ring current development during several International Solar-Terrestrial Physics (ISTP) events, and the results were directly compared to satellite observations. A brief description of our major accomplishments and a list of the publications and presentations resulting from this effort are given.

  19. The disturbances of ionospheric Total Electron Content during great geomagnetic storm above Iraq

    NASA Astrophysics Data System (ADS)

    Al-Ubaidi, Najat

    2016-07-01

    Several efforts have been made to study the behavior of Total Electron Content (TEC) with many types of geomagnetic storms; the purpose of this research is to study the disturbances of the ionosphere through the TEC parameter during great geomagnetic storm. TEC data selected for year 2003 (descending solar cycle 23), as available from (www.ngdc.noaa.gov/stp/IONO/USTEC/) for Iraq region (longitude 27-54 degree East, latitude 27-42 degree North) during great geomagnetic storm for 28-30 October 2003. To find out the type of geomagnetic storms the Disturbance storm time (Dst) index was selected for the days selected from Kyoto/Japan website. From data analysis, it is found that in general, there is a good proportionality between disturbance storm time index (Dst) and the total electron contents, the values of TEC in daytime greater than night time, but there is anomaly when the storm continued for several hours from the day.

  20. Global structure of ionospheric TEC anomalies driven by geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Pancheva, D.; Mukhtarov, P.; Andonov, B.

    2016-07-01

    This study examines the structure and variability of the ionospheric TEC anomalies driven by geomagnetic storms. For this purpose the CODE global ionospheric TEC data from four geomagnetically disturbed periods (29 October-1 November 2003, 7-10 November 2004, 14-15 December 2006, and 5-6 August 2011) have been considered. By applying the tidal analysis to the geomagnetically forced TEC anomalies we made an attempt to identify the tidal or stationary planetary wave (SPW) signatures that may contribute to the generation of these anomalies. It has been found that three types of positive anomalies with different origin and different latitudinal appearance are observed. These are: (i) anomalies located near latitudes of ±40° and related to the enhancement and poleward moving of the equatorial ionization anomaly (EIA) crests; (ii) anomalies located near latitudes of ±60° and seen predominantly in the night-side ionosphere, and (iii) very high latitude anomalies having mainly zonally symmetric structure and related to the auroral heating and thermospheric expansion. The decomposition analysis revealed that these anomalies can be reconstructed as a result of superposition of the following components: zonal mean (ZM), diurnal migrating (DW1), zonally symmetric diurnal (D0), and stationary planetary wave 1 (SPW1).

  1. Global geomagnetic field mapping - from secular variation to geomagnetic excursions

    NASA Astrophysics Data System (ADS)

    Panovska, Sanja; Constable, Catherine

    2015-04-01

    declination and paleointensity variation without prior calibration. The procedure is sensitive to the starting model for the inversion and it is, therefore, important to use absolute observations to initialize the calibration factors. Global geomagnetic field evolution is investigated in terms of changes in the field morphology at the core-mantle boundary, with particular interest in following the location of reconstructed flux lobes, determining need for any longitudinal structure and hemispheric asymmetry. The Laschamp excursion behavior suggests a time-transgressive process, either a true geomagnetic field feature or a result of age inconsistencies in the underlying data. An extreme axial dipole low is associated with the Laschamp excursion, but other reported excursions during the past 100 ka do not exhibit such pronounced dipole lows. Existing field studies extending back 10 thousand years show greater geomagnetic variability in the southern hemisphere than in the north, and lower average field strength. Modeling results are used to test whether hemispheric asymmetry in secular variation and the time-averaged field persist on this time scale, whether there are detectable differences in growth versus decay rates for the axial dipole.

  2. Weakening of the mid-latitude summer nighttime anomaly during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Liu, Huixin; Yamamoto, Mamoru

    2011-04-01

    This brief report presents geomagnetic storm effects on the formation and characteristics of the midlatitude summer nighttime anomaly (MSNA). This anomaly is a phenomenon where the diurnal variation of the plasma density maximizes at night instead of day. Under disturbed geomagnetic conditions, the MSNA is found to have smaller spatial coverage, lower magnitude of the reversed diurnal cycle, and shorter duration of the nighttime enhancement. All these features demonstrate a weakening of the MSNA. In addition, the nighttime maximum tends to occur at earlier local time. These effects can be reasonably understood in the frame of storm-induced equatorward wind and the molecular-rich air it carries along with. For instance, the shrink of the spatial coverage is essentially a dominant effect of the molecular-rich air, which tends to deplete the plasma significantly on the poleward edge of the MSNA region. On the other hand, the smaller magnitude and the shorter duration seem to be mainly caused by the storm-induced equatorward wind. Storm effects presented here add further evidence to the pivot role of effective neutral wind in the formation of MSNA.

  3. Active experiments in the ionosphere and geomagnetic field variations

    NASA Astrophysics Data System (ADS)

    Sivokon, V. P.; Cherneva, N. V.; Khomutov, S. Y.; Serovetnikov, A. S.

    2014-11-01

    Variations of ionospheric-magnetospheric relation energy, as one of the possible outer climatology factors, may be traced on the basis of analysis of natural geophysical phenomena such as ionosphere artificial radio radiation and magnetic storms. Experiments on active impact on the ionosphere have been carried out for quite a long time in Russia as well. The most modern heating stand is located in Alaska; it has been used within the HAARP Program. The possibility of this stand to affect geophysical fields, in particular, the geomagnetic field is of interest.

  4. Moderate Geomagnetic Storms: Interplanetary Origins and Coupling Functions (ISEE3 Data)

    NASA Technical Reports Server (NTRS)

    Mendes, Odim, Jr.; Gonzalez, W. D.; Gonzalez, A. L. C.; Pinto, O., Jr.; Tsurutani, B. T.

    1996-01-01

    Geomagnetic storms are related to the ring current intensification, which is driven by energy injection primarily during energetic solar wind-magnetosphere coupling due to reconnection at the magnetopause. This work identified the interplanetary origins of moderate geomagnetic storms (-100nT is less or equal to Dst(sub peak) is less than or equal to -50 nT) and analyzed the coupling processes during the storm main phase at solar maximum (1978-1979).

  5. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  6. DE 2 observations of disturbances in the upper atmosphere during a geomagnetic storm

    SciTech Connect

    Miller, N.J.; Brace, L.H.; Spencer, N.W. ); Carignan, G.R. )

    1990-12-01

    Data taken in the dusk sector of the mid-latitude thermosphere at 275-450 km by instruments on board Dynamics Explorer 2 in polar orbit are used to examine the response of the ionosphere- thermosphere system during a geomagnetic storm. The results represent the first comparison of nearly simultaneous measurements of storm disturbances in dc electric fields, zonal ion convection, zonal winds, gas composition and temperature, and electron density and temperature, at different seasons in a common local time sector. The storm commenced on November 24, 1982, during the interaction of a solar wind disturbance with the geomagnetic field while the north-south component of the interplanetary magnetic field, B{sub z}, was northward. The storm main phase began while B{sub z} was turning southward. Storm-induced variations in meridional de electric fields, neutral composition, and N{sub e} were stronger and spread farther equatorward in the winter hemisphere. Westward ion convection was intense enough to produce westward winds of 600 m s{sup {minus} 1} via ion drag in the winter hemisphere. Frictional heating was sufficient to elevate ion temperatures above electron temperatures in both seasons and to produce large chemical losses of O{sup +} by increasing the rate of O{sup +} loss via ion-atom interchange. Part of the chemical loss of O{sup +} was compensated by upward flow of O{sup +} as the ion scale height adjusted to the increasing ion temperatures. In this storm, frictional heating was an important subauroral heat source equatorward to at least 53{degree} invariant latitude.

  7. Driving Plasmaspheric Electron Density Simulations During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    De Pascuale, S.; Kletzing, C.; Jordanova, V.; Goldstein, J.; Wygant, J. R.; Thaller, S. A.

    2015-12-01

    We test global convection electric field models driving plasmaspheric electron density simulations (RAM-CPL) during geomagnetic storms with in situ measurements provided by the Van Allen Probes (RBSP). RAM-CPL is the cold plasma component of the ring-current atmosphere interactions suite (RAM-SCB) and describes the evolution of plasma density in the magnetic equatorial plane near Earth. Geomagnetic events observed by the RBSP satellites in different magnetic local time (MLT) sectors enable a comparison of local asymmetries in the input electric field and output densities of these simulations. Using a fluid MHD approach, RAM-CPL reproduces core plasmaspheric densities (L<4) to less than 1 order of magnitude difference. Approximately 80% of plasmapause crossings, defined by a low-density threshold, are reproduced to within a mean radial difference of 0.6 L. RAM-CPL, in conjunction with a best-fit driver, can be used in other studies as an asset to predict density conditions in locations distant from RBSP orbits of interest.

  8. Study of the Relationship Between Forbush Decrease and Geomagnetic Storm Events Using Dst Index.

    NASA Astrophysics Data System (ADS)

    Dominic, Obiegbuna; Okeke, Fransisca; Okpala, Kingsley

    Abstract A study of the relationship between Forbush decreases (FD) and geomagnetic storms have been carried out using the Dst index. Most important space weather effects including FDs are associated with geomagnetic disturbances (storms). The rigidity cut off of cosmic rays, is related to the latitude of measurement and are affected by geomagnetic disturbances. Four (4) stations hosted by the Bartol research institute, University of Delaware provided continuous CR counts for this study. Clear signatures of Forbush decreases associated with storms happening on days of Kp >7 from 1980-1989 were examined to deduce the level of modulation of CR counts during geomagnetic storms. Enhancement of the count rates are observed during simultaneous Forbush decreases associated with large storms. FD correlated well with Dst for all of the stations with no significant difference observed with regards to rigidity. The anomalous enhancement during the simultaneous FD showed stronger association depending on rigidity and the implications of these results

  9. Responses of equatorial F region to different geomagnetic storms observed by GPS in the African sector

    NASA Astrophysics Data System (ADS)

    Adewale, A. O.; Oyeyemi, E. O.; Adeloye, A. B.; Ngwira, C. M.; Athieno, R.

    2011-12-01

    This article presents the first results regarding the investigation of the response of the equatorial ionospheric F region in the African sector during geomagnetic storm periods between April 2000 and November 2007 using GPS-derived vertical total electron content observed at Libreville, Gabon (0.35°N, 9.67°E, dip latitude -8.05°S). We performed a superposed epoch analysis of the storms by defining the start time of the epoch as the storm onset time. During geomagnetic storms, the altered electric fields contribute significantly to the occurrence of negative and positive ionospheric storm effects. Our results showed that the positive storm effects are more prevalent than the negative storm effects and generally last longer irrespective of storm onset times. Also, the positive storm effects are most pronounced in the daytime than in the premidnight and postmidnight periods.

  10. The F region and topside ionosphere response to a strong geomagnetic storm at Arecibo

    NASA Astrophysics Data System (ADS)

    Gong, Yun; Zhou, Qihou; Zhang, Shao Dong; Aponte, NéStor; Sulzer, Michael; GonzáLez, Sixto A.

    2013-08-01

    analyze the data derived from the Arecibo incoherent scatter radar measurements to investigate the response of the F region and topside ionosphere to a strong geomagnetic storm that occurred during the period of 5-6 August 2011. The meridional wind was extremely enhanced at the early stage of the storm. The peak velocity reached approximately 300 m/s at an altitude of 340 km, which is seldom seen at the Arecibo latitude. During the storm, the vertical ion drift caused by the meridional wind was positively correlated with that caused by the electric field, which is opposite to the quiet time relationship. The disturbed vertical ion drifts resulted in large ionospheric perturbations in the F and topside regions. Several collapses were observed in hmF2 during the storm night. NmF2 rapidly increased after the storm and then decreased around midnight. At an altitude of 610 km, the concentration of H+ and O+, and the ratio of H+ over electron density all exhibited large variations. The ratio of H+ over electron density changed from less than 10% to more than 80% in a matter of 2 hours in the morning of 6 August. One explanation for such a behavior is that vertical transport dominates over charge exchange late at night due to the lower concentration of O+.

  11. Geomagnetic sudden impulses and storm sudden commencements - A note on terminology

    SciTech Connect

    Joselyn, J.A.; Tsurutani, B.T. JPL, Pasadena, CA )

    1990-11-01

    The definitions of and distinctions between storm sudden commencements (SSCs) and geomagnetic sudden impulses (SIs) are examined and present definitions of SIs and SSCs are modernized. Quantitative definitions of the two terms are recommended. 45 refs.

  12. Substorms observations over Apatity during geomagnetic storms in the period 2012 - 2016

    NASA Astrophysics Data System (ADS)

    Guineva, Veneta; Werner, Rolf; Despirak, Irina; Kozelov, Boris

    2016-07-01

    In this work we studied substorms, generated during enhanced geomagnetic activity in the period 2012 - 2016. Observations of the Multiscale Aurora Imaging Network (MAIN) in Apatity have been used. Solar wind and interplanetary magnetic field parameters were judged by the 1-min sampled OMNI data base. Substorm onset and further development were verified by the 10-s sampled data of IMAGE magnetometers and by data of the all-sky camera at Apatity. Subject of the study were substorms occurred during geomagnetic storms. The so-called "St. Patrick's day 2015 event" (17-21 March 2015), the events on 17-18 March 2013 and 7-17 March 2012 (a chain of events generated four consecutive storms) which were among the events of strongest geomagnetic activity during the current solar cycle 24, were part of the storms under consideration. The behavior of the substorms developed during different phases of the geomagnetic storms was discussed.

  13. Accurate and Timely Forecasting of CME-Driven Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Chen, J.; Kunkel, V.; Skov, T. M.

    2015-12-01

    Wide-spread and severe geomagnetic storms are primarily caused by theejecta of coronal mass ejections (CMEs) that impose long durations ofstrong southward interplanetary magnetic field (IMF) on themagnetosphere, the duration and magnitude of the southward IMF (Bs)being the main determinants of geoeffectiveness. Another importantquantity to forecast is the arrival time of the expected geoeffectiveCME ejecta. In order to accurately forecast these quantities in atimely manner (say, 24--48 hours of advance warning time), it isnecessary to calculate the evolving CME ejecta---its structure andmagnetic field vector in three dimensions---using remote sensing solardata alone. We discuss a method based on the validated erupting fluxrope (EFR) model of CME dynamics. It has been shown using STEREO datathat the model can calculate the correct size, magnetic field, and theplasma parameters of a CME ejecta detected at 1 AU, using the observedCME position-time data alone as input (Kunkel and Chen 2010). Onedisparity is in the arrival time, which is attributed to thesimplified geometry of circular toroidal axis of the CME flux rope.Accordingly, the model has been extended to self-consistently includethe transverse expansion of the flux rope (Kunkel 2012; Kunkel andChen 2015). We show that the extended formulation provides a betterprediction of arrival time even if the CME apex does not propagatedirectly toward the earth. We apply the new method to a number of CMEevents and compare predicted flux ropes at 1 AU to the observed ejectastructures inferred from in situ magnetic and plasma data. The EFRmodel also predicts the asymptotic ambient solar wind speed (Vsw) foreach event, which has not been validated yet. The predicted Vswvalues are tested using the ENLIL model. We discuss the minimum andsufficient required input data for an operational forecasting systemfor predicting the drivers of large geomagnetic storms.Kunkel, V., and Chen, J., ApJ Lett, 715, L80, 2010. Kunkel, V., Ph

  14. Statistical analysis of extreme values for geomagnetic and geoelectric field variations for Canada

    NASA Astrophysics Data System (ADS)

    Nikitina, Lidia; Trichtchenko, Larisa; Boteler, David

    2016-04-01

    Disturbances of the geomagnetic field produced by space weather events cause variable geoelectric fields at Earth's surface which drive electric currents in power systems, resulting in hazardous impacts on electric power transmission. In extreme cases, as during the magnetic storm in March 13, 1989, this can result in burnt-out transformers and power blackouts. To make assessment of geomagnetic and geoelectric activity in Canada during extreme space weather events, extreme value statistical analysis has been applied to more than 40 years of magnetic data from the Canadian geomagnetic observatories network. This network has archived digital data recordings for observatories located in sub-auroral, auroral, and polar zones. Extreme value analysis was applied to hourly ranges of geomagnetic variations as an index of geomagnetic activity and to hourly maximum of rate-of-change of geomagnetic field. To estimate extreme geoelectric fields, the minute geomagnetic data were used together with Earth conductivity models for different Canadian locations to calculate geoelectric fields. The extreme value statistical analysis was applied to hourly maximum values of the horizontal geoelectric field. This assessment provided extreme values of geomagnetic and geoelectric activity which are expected to happen once per 50 years and once per 100 years. The results of this analysis are designed to be used to assess the geomagnetic hazard to power systems and help the power industry mitigate risks from extreme space weather events.

  15. Statistical analysis of geomagnetic storms, coronal mass ejections and solar energetic particle events in the framework of the COMESEP project

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga

    2013-04-01

    Geomagnetic storms and Solar Energetic Particle (SEP) radiation storms are hazards in space. It is important to mitigate the effects space weather phenomena may have on technology and human life. The aim of the EU FP7 COMESEP (Coronal Mass Ejections and Solar Energetic Particles) project is to develop forecasting tools both for geomagnetic and SEP storms, and relies on both models and data. This includes a statistical analysis of geomagnetic storms and SEP events during the SOHO era. The goal is to connect the impact of these phenomena with the associated Coronal Mass Ejection (CME) and/or solar flare characteristics. Results of these analyses are being implemented into the COMESEP space weather alert system that is being built based on the produced tools. For the analysis of geomagnetic storms, a representative subset of CMEs from the LASCO/SOHO catalog is selected, and includes associations with Dst index values. The main objective is to determine the probability distributions of Dst and other relationships depending on the CME and flare characteristics. The effect of multiple CME occurrences on the probability of large Dst index values and the treatment of semiannual variations of storms are also evaluated. The analysis of SEP events focuses on the quantification of SEP occurrence probabilities and on the identification of correlations between SEPs and solar events. Both quantities depend on the flare heliographic location, soft X-ray intensity, the CME speed and width. The SEP parameters studied include peak fluxes, fluences, spectral fit parameters and enhancements in heavy ion fluxes. A preliminary estimation of false alarms for our system based on the statistical analysis used is under progress to asses the validity of the alerts. This work has received funding from the European Commission FP7 Project COMESEP (263252).

  16. Solar and Interplanetary Disturbances Causing Moderate Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Pratap Yadav, Mahendra; Kumar, Santosh

    2003-07-01

    The effect of solar and interplanetary disturbances on geomagnetospheric conditions leading to one hundred twenty one moderate geomagnetic storms (MGSs) with planetary index, Ap ≥ 20 and horizontal component of earth's magnetic field, H ≤ 250γ have been investigated using solar geophysical data (SGD), solar wind plasma (SWP) and interplanetary magnetic field (IMF) data during the period 1978-99. It is observed statistically that 64%, 36%, MGSs have occurred during maximum and minimum phase of solar cycle 21st and 22nd respectively. Further, it is observed that Hα, X-ray solar flares and active prominences and disapp earing filaments (APDFs) have occurred within lower helio latitude region associated with larger number of MGSs. No significant correlation between the intensity of GMSs and importance of Hα, X-ray solar flares have been observed. Maximum number of MGSs are associated with solar flares of lower importance of solar flare faint (SF). The lower importance in association with some specific characteristics i.e. location, region, duration of occurrence of event may also cause MGSs. The correlation coefficient between MGSs and sunspot numbers (SSNs) using Karl Pearson method, has been obtained 0.37 during 1978-99.

  17. Investigation of cosmic ray cutoff rigidity changes caused by the disturbed geomagnetic field of the storm in March 2012

    NASA Astrophysics Data System (ADS)

    Vernova, Elena; Tyasto, Marta; Danilova, Olga; Sdobnov, Valerii

    2016-04-01

    One of important factors determining the space weather are cosmic rays the cutoff rigidities of which vary appreciably under the influence of disturbances in the interplanetary space and the Earth's magnetosphere. This report is concerned with changes in the geomagnetic cutoff rigidities (thresholds) of cosmic rays computed for the period of a strong geomagnetic storm of March 2012. This disturbed period was characterized by the solar wind speed of more than 700 km/s and Dst-index at the minimum Dst-variation equal to -143 nT. The theoretical vertical effective geomagnetic cutoff rigidities were calculated for a number of stations by using the Tsyganenko TS01 model and trajectory tracing method in a magnetic field of a disturbed magnetosphere. The theoretical cutoff rigidities were compared with the experimental ones obtained by the global spectrographic survey method on base of the data from the worldwide neutron monitor network. The correlation coefficients between the theoretical and experimental thresholds for different stations were 0.5 - 0.7. Combined analysis of temporal variations in the theoretical and experimental geomagnetic thresholds and their relations with the solar wind and IMF parameters showed that the change in the theoretical geomagnetic thresholds correlated well with the Dst and Bz variations at all the stations under study. The correlation of the experimental geomagnetic thresholds with the Dst-variation and Bz was much lower. At the same time, the correlation of the solar wind velocity V with the changes in the experimental thresholds was better than with the theoretical thresholds. A similar situation was observed for the storms of November 2004 and September 2005.

  18. Some properties of trans-equatorial ion whistlers observed by Isis satellites during geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Watanabe, S.; Ondoh, T.

    1986-01-01

    Several ion whistlers were observed by the polar orbiting satellites, Isis, during geomagnetic storms associated with large solar flares in 1982. It seems that the proton density ratio to the total ions deduced from the crossover frequency of the transequatorial ion whistlers observed at geomagnetic low latitudes during the main phase of the geomagnetic storm on July 14, 1982 was lower than the usual density ratio. An anomalous pattern seen on the time-compressed dynamic spectra of the ion whistlers on September 6, 1982 may suggest the existence of effects by the component He(3+) in a quite small amount.

  19. Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 - 2010

    NASA Astrophysics Data System (ADS)

    Lefèvre, Laure; Vennerstrøm, Susanne; Dumbović, Mateja; Vršnak, Bojan; Sudar, Davor; Arlt, Rainer; Clette, Frédéric; Crosby, Norma

    2016-05-01

    An analysis of historical Sun-Earth connection events in the context of the most extreme space weather events of the last ˜150 years is presented. To identify the key factors leading to these extreme events, a sample of the most important geomagnetic storms was selected based mainly on the well-known aa index and on geomagnetic parameters described in the accompanying paper (Vennerstrøm et al., Solar Phys. in this issue, 2016, hereafter Paper I). This part of the analysis focuses on associating and characterizing the active regions (sunspot groups) that are most likely linked to these major geomagnetic storms.

  20. Do geomagnetic storms change the behaviour of the stingless bee guiruçu ( Schwarziana quadripunctata)?

    NASA Astrophysics Data System (ADS)

    Esquivel, Darci M. S.; Wajnberg, E.; Do Nascimento, F. S.; Pinho, M. B.; de Barros, H. G. P. Lins; Eizemberg, R.

    2007-02-01

    Six behavioural experiments were carried out to investigate the magnetic field effects on the nest-exiting flight directions of the honeybee Schwarziana quadripunctata ( Meliponini). No significant differences resulted during six experiment days under varying geomagnetic field and the applied static inhomogeneous field (about ten times the geomagnetic field) conditions. A surprising statistically significant response was obtained on a unique magnetic storm day. The magnetic nanoparticles in these bees, revealed by ferromagnetic resonance, could be involved in the observed effect of the geomagnetic storm.

  1. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by the interaction of the high voltage US solar arrays with the F2-region ionospheric plasma environment. We are working to fully understand the charging behavior of the ISS solar arrays and determine how well future charging behavior can be predicted from in-situ measurements of plasma density and temperature. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that may be encountered at ISS orbital altitudes (approximately 400 km), the latitudes over which they occur, and the time periods for which the disturbances persist. We will present preliminary results from a study of ionospheric disturbances in the "mid-latitude" region defined as the approximately 30 - 60 degree extra-equatorial magnetic latitudes sampled by ISS. The study is focused on geomagnetic storm periods because they are well known drivers for disturbances in the high-latitude and mid-latitude ionospheric plasma. Changes in the F2 peak electron density obtained from ground based ionosonde records are compared to in-situ electron density and temperature measurements from the CHAMP and ISS spacecraft at altitudes near, or above, the F2 peak. Results from a number of geomagnetic storms will be presented and their potential impact on ISS charging will be discussed.

  2. Comparison of outliers and novelty detection to identify ionospheric TEC irregularities during geomagnetic storm and substorm

    NASA Astrophysics Data System (ADS)

    Pattisahusiwa, Asis; Houw Liong, The; Purqon, Acep

    2016-08-01

    In this study, we compare two learning mechanisms: outliers and novelty detection in order to detect ionospheric TEC disturbance by November 2004 geomagnetic storm and January 2005 substorm. The mechanisms are applied by using v-SVR learning algorithm which is a regression version of SVM. Our results show that both mechanisms are quiet accurate in learning TEC data. However, novelty detection is more accurate than outliers detection in extracting anomalies related to geomagnetic events. The detected anomalies by outliers detection are mostly related to trend of data, while novelty detection are associated to geomagnetic events. Novelty detection also shows evidence of LSTID during geomagnetic events.

  3. Major Geomagnetic Storms (Dst less than or equal to -100 nT) Generated by Corotating Interaction Regions

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Webb, D. F.; Zhang, J.; Berdichevsky, B. D.; Biesecker, D. A.; Kasper, J. C.; Kataoka, R.; Steinberg, J. T.; Thompson, B. J.; Wu, C.-C.; Zhukov, A. N.

    2006-01-01

    Seventy-nine major geomagnetic storms (minimum Dst less than or equal to -100 nT) observed in 1996 to 2004 were the focus of a Living with a Star Coordinated Data-Analysis Workshop (CDAW) in March, 2005. In 9 cases, the storm driver appears to have been purely a corotating interaction region (CIR) without any contribution from coronal mass ejection-related material (interplanetary coronal mass ejections, ICMEs). These storms were generated by structures within CIRs located both before and/or after the stream interface that included persistently southward magnetic fields for intervals of several hours. We compare their geomagnetic effects with those of 159 CIRs observed during 1996 - 2005. The major storms form the extreme tail of a continuous distribution of CIR geoeffectiveness which peaks at Dst approx. -40 nT but is subject to a prominent seasonal variation of - 40 nT which is ordered by the spring and fall equinoxes and the solar wind magnetic field direction towards or away from the Sun. The O'Brien and McPherron [2000] equations, which estimate Dst by integrating the incident solar wind electric field and incorporating a ring current loss term, largely account for the variation in storm size. They tend to underestimate the size of the larger CIR-associated storms by Dst approx. 20 nT. This suggests that injection into the ring current may be more efficient than expected in such storms. Four of the nine major storms in 1996 - 2004 occurred during a period of less than three solar rotations in September - November, 2002, also the time of maximum mean IMF and solar magnetic field intensity during the current solar cycle. The maximum CIR-storm strength found in our sample of events, plus additional 23 probable CIR-associated Dst less than or equal to -100 nT storms in 1972 - 1995, is (Dst = -161 nT). This is consistent with the maximum storm strength (Dst approx. -180 nT) expected from the O'Brien and McPherron equations for the typical range of solar wind

  4. Ionospheric Behavior During the First Few Hours of Intense Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Crowley, Geoff; Tsurutani, Bruce; Fuller-Rowell, Tim

    2006-01-01

    The behavior of the ionosphere during the first few hours of intense geomagnetic storms is presented. The topics include: 1) TEC Modification; 2) JASON TEC (1336 km altitude); 3) Multiple Storms; 4) CHAMP (greater than 400 km) November 20, 2003; 5) November 20, 1PM LT, Ground; 6) Role of Modeling; and 7) Composition-related increase.

  5. A case study of Ionospheric storm effects during long-lasting southward IMF Bz driven geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Liu, J., Sr.

    2014-12-01

    Multiple instrumental observations including GPS TEC, foF2 and hmF2 from ionosondes, vertical ion drift measurements from C/NOFS, magnetometer data and far-ultraviolet airglow measured by TIMED/GUVI are used to investigate the profound ionospheric disturbances at mid- and low-latitudes during the 14-17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 hours below -10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the Equatorial Ionospheric Anomaly (EIA) crest regions, which were caused by the combined effects of disturbance dynamo electric fields (DDEF) and equatorward neutral winds. In the recovery phase, strong inhibition of EIA occurred and the summer crest of EIA disappeared on 16 July due to the combined effects of intrusion of neutral composition disturbance zone as shown by the TIME/GUVI O/N2 measurements and long-lasting daytime westward DDEF inferred from the equatorial electric electrojet (EEJ) observations. The transit time of DDEF over the dip equator from westward to eastward is around 2200 LT. In the American longitude, the salient ionospheric disturbances in the summer hemisphere were characterized by daytime periodical intrusion of negative phase for three consecutive days in the recovery phase, preceded by storm enhanced density (SED) plume in the initial phase. In addition, multiple short-lived prompt penetration electric fields (PPEF) appeared during stable southward IMF Bz in the recovery phase and were responsible for enhanced the EIA and equatorial ionospheric uplift around sunset.

  6. A study on precursors leading to geomagnetic storms using artificial neural network

    NASA Astrophysics Data System (ADS)

    Singh, Gaurav; Singh, A. K.

    2016-07-01

    Space weather prediction involves advance forecasting of the magnitude and onset time of major geomagnetic storms on Earth. In this paper, we discuss the development of an artificial neural network-based model to study the precursor leading to intense and moderate geomagnetic storms, following halo coronal mass ejection (CME) and related interplanetary (IP) events. IP inputs were considered within a 5-day time window after the commencement of storm. The artificial neural network (ANN) model training, testing and validation datasets were constructed based on 110 halo CMEs (both full and partial halo and their properties) observed during the ascending phase of the 24th solar cycle between 2009 and 2014. The geomagnetic storm occurrence rate from halo CMEs is estimated at a probability of 79%, by this model.

  7. Auroral LSTIDs and SAR Arc Occurrences in Northern California During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.

    2015-12-01

    A 630nm allsky imager has been operated for two years in northern California at the Hat Creek Radio Observatory. F-region airglow data captured by the imager ranges from approximately L=1.7 -2.7. Since installation of the imager several geomagnetic storms have occurred with varying intensities. Two main manifestations of the geomagnetic storms are observed in the 630 nm airglow data: large-scale traveling ionospheric disturbances that are launched from the auroral zone and Stable Auroral Red (SAR) arcs during more intense geomagnetic storms. We will present a statistical analysis of these storm-time phenomena in northern California for the past eighteen months. This imager is part of a larger all-sky imaging network across the continental United States, termed MANGO (Midlatitude All-sky-imaging Network for Geophysical Observations). Where available, we will add data from networked imagers located at similar L-shell in other states as well.

  8. Are stress responses to geomagnetic storms mediated by the cryptochrome compass system?

    PubMed Central

    Close, James

    2012-01-01

    A controversial body of literature demonstrates associations of geomagnetic storms (GMS) with numerous cardiovascular, psychiatric and behavioural outcomes. Various melatonin hypotheses of GMS have suggested that temporal variation in the geomagnetic field (GMF) may be acting as an additional zeitgeber (a temporal synchronizer) for circadian rhythms, with GMS somehow interfering with the hypothesized system. The cryptochrome genes are known primarily as key components of the circadian pacemaker, ultimately involved in controlling the expression of the hormone melatonin. Cryptochrome is identified as a clear candidate for mediating the effect of GMS on humans, demonstrating the prior existence of several crucial pieces of evidence. A distinct scientific literature demonstrates the widespread use of geomagnetic information for navigation across a range of taxa. One mechanism of magnetoreception is thought to involve a light-dependent retinal molecular system mediated by cryptochrome, acting in a distinct functionality to its established role as a circadian oscillator. There is evidence suggesting that such a magnetosense—or at least the vestiges of it—may exist in humans. This paper argues that cryptochrome is not acting as secondary geomagnetic zeitgeber to influence melatonin synthesis. Instead, it is hypothesized that the cryptochrome compass system is mediating stress responses more broadly across the hypothalamic–pituitary–adrenal (HPA) axis (including alterations to circadian behaviour) in response to changes in the GMF. Two conceptual models are outlined for the existence of such responses—the first as a generalized migrational/dispersal strategy, the second as a stress response to unexpected signals to the magnetosense. It is therefore proposed that GMS lead to disorientation of hormonal systems in animals and humans, thus explaining the effects of GMS on human health and behaviour. PMID:22418257

  9. Comparison of CME and CIR driven geomagnetic storms using the artificial neural network model

    NASA Astrophysics Data System (ADS)

    Revallo, Milos; Valach, Fridrich; Hejda, Pavel; Bochnicek, Josef

    2016-04-01

    A model of geomagnetic storms based on the method of artificial neural networks (ANN) combined with an analytical approach is presented in the paper. Unlike our previous studies, here we focus on medium and weak geomagnetic storms caused by coronal mass ejections (CMEs) and those caused by corotating interaction regions (CIRs). As the model input, the hourly solar wind parameters measured by the ACE satellite at the libration point L1 are used. The time series of the Dst index is obtained as the model output. The simulated Dst index series is compared with the corresponding observatory data. The resulting Dst index series are inspected and typical features of CME and CIR driven storms are isolated. The model reliabilty is assessed using the skill scores, namely the correlation coefficient CC and the prediction efficiency PE. The general observation is that in the case of medium and weak geomagnetic storms the model performance is worse than in the case of intense geomagnetic storms studied in our previous paper. Due to more complex Dst index record, the model response for CIR driven storms is worse than in the case of CME driven storms.

  10. Reduction of the field-aligned potential drop in the polar cap during large geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kitamura, N.; Seki, K.; Nishimura, Y.; Hori, T.; Terada, N.; Ono, T.; Strangeway, R. J.

    2013-12-01

    We have studied photoelectron flows and the inferred field-aligned potential drop in the polar cap during 5 large geomagnetic storms that occurred in the periods when the photoelectron observations in the polar cap were available near the apogee of the FAST satellite (~4000 km) at solar maximum, and the footprint of the satellite paths in the polar cap was under sunlit conditions most of the time. In contrast to the ~20 V potential drop during geomagnetically quiet periods at solar maximum identified by Kitamura et al. [JGR, 2012], the field-aligned potential drop frequently became smaller than ~5 V during the main and early recovery phases of the large geomagnetic storms. Because the potential acts to inhibit photoelectron escape, this result indicates that the corresponding acceleration of ions by the field-aligned potential drop in the polar cap and the lobe region is smaller during the main and early recovery phases of large geomagnetic storms compared to during geomagnetically quiet periods. Under small field-aligned current conditions, the number flux of outflowing ions should be nearly equal to the net escaping electron number flux. Since ions with large flux originating from the cusp/cleft ionosphere convect into the polar cap during geomagnetic storms [e.g., Kitamura et al., JGR, 2010], the net escaping electron number flux should increase to balance the enhanced ion outflows. The magnitude of the field-aligned potential drop would be reduced to let a larger fraction of photoelectrons escape.

  11. Possible Cosmic Ray Using for Forecasting of Major Geomagnetic Storms, Accompanied by Forbush-Effects

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Belov, A. V.; Eroshenko, E. A.; Pustil'Nik, L. A.; Sternlieb, A.; Yanke, V. G.; Zukerman, I. G.

    2003-07-01

    We present developing of methods for forecasting on the basis of NM hourly on-line data geomagnetic storms accompanied by Forbush-effects. These geomagnetic storms are dangerous for technology (influence on power systems, on spacecraft operations, on HF radio-communications and others) and people health. We show that for esp ecially dangerous geomagnetic storms can be used global-sp ectrographic method if on-line will be available 35-40 NM of world-wide net. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of geomagnetic storms can be used as important factor for forecast. The second factor is specifically behavior of CR density for about 30-15 hours before SC (pre-increase effect, caused mainly by galactic CR particles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre-decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of ma jor geomagnetic storms. This research is partly supported by the EU INTAS grant 00-0810.

  12. Positive and negative ionospheric storms occurring during the 15 May 2005 geomagnetic superstorm

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2015-09-01

    This study focuses on the 15 May 2005 geomagnetic superstorm and aims to investigate the global variation of positive and negative storm phases and their development. Observations are provided by a series of global total electron content maps and multi-instrument line plots. Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe) simulations are also employed. Results reveal some sunward streaming plumes of storm-enhanced density (SED) over Asia and a well-developed midlatitude trough over North America forming isolated positive and negative storms, respectively. The simultaneous development of positive and negative storms over North America is also shown. Then, some enhanced auroral ionizations maintained by strong equatorward neutral winds appeared in the depleted nighttime ionosphere. Meanwhile, the northern nighttime polar region became significantly depleted as the SED plume plasma could not progress further than the dayside cusp. Oppositely, a polar tongue of ionization (TOI) developed in the daytime southern polar region. According to CTIP simulations, solar heating locally maximized (minimized) over the southern (northern) magnetic pole. Furthermore, strong upward surges of molecular-rich air created O/N2 decreases both in the auroral zone and in the trough region, while some SED-related downward surges produced O/N2 increases. From these results we conclude for the time period studied that (1) composition changes contributed to the formation of positive and negative storms, (2) strengthening polar convection and increasing solar heating of the polar cap supported polar TOI development, and (3) a weaker polar convection and minimized solar heating of the polar cap aided the depletion of polar plasma.

  13. Tests of Convection Electric Field Models For The January 10, 1997, Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Boonsiriseth, A.; Thorne, R.; Dotan, Y.

    The January 10-11, 1997, geomagnetic storm was caused by the passage at Earth of a magnetic cloud with a negative to positive Bz variation extending for 1 day. The ge- omagnetic indices had values of minimum Dst=-83 nT and maximum Kp=6 during the period of southward IMF within the cloud. We simulate ring current development during this storm using our kinetic drift-loss model and compare the results inferred from Volland-Stern type, Weimer, and AMIE convection electric field models. A pen- etration electric field is added to the AMIE model [Boonsiriseth et al., 2001] in order to improve the agreement with measurements from the electric field instrument on Po- lar spacecraft. The ionospheric electric potentials are mapped to the equatorial plane using the Tsyganenko 1996 magnetic field model and the resulting equatorial poten- tial models are coupled with our ring current model. While the temporal evolution of the large-scale features is similar in all three convection models, detailed comparison indicates that AMIE model shows highly variable small-scale features not present in the Volland-Stern or Weimer convection models. Results from our kinetic ring current model are compared with energetic particle data from the HYDRA, TIMAS, IPS, and CAMMICE instruments on Polar to test the applicability of the convection electric field models for this storm period.

  14. Study on geomagnetic storms driving motion of 0.1-2 MeV radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxia; Li, Xinqiao

    2016-08-01

    accelerating processes responsible for spectral index variations in different L regions during geomagnetic storms.

  15. An experimental study of the biological effects of geomagnetic disturbances: The impact of a typical geomagnetic storm and its constituents on plants and animals

    NASA Astrophysics Data System (ADS)

    Krylov, Viacheslav V.; Zotov, Oleg D.; Klain, Boris I.; Ushakova, Natalia V.; Kantserova, Nadezhda P.; Znobisheva, Anna V.; Izyumov, Yuri G.; Kuz'mina, Victoria V.; Morozov, Alexey A.; Lysenko, Liudmila A.; Nemova, Nina N.; Osipova, Elena A.

    2014-04-01

    Naturally occurring geomagnetic storms have been shown to correlate with changes in organisms' biological processes. Changes in the geomagnetic field during a geomagnetic storm are complex and contain both slow changes of the geomagnetic field with frequencies of up to 0.001 Hz, and various geomagnetic pulsations observed in general to be within the range of 0.001-5 Hz. Little is known about what frequency constituent of geomagnetic storms has the strongest effect on living organisms. This paper uses an experimental approach to demonstrate that organisms from different taxa principally respond to slow changes of the geomagnetic field corresponding with the main phase and the initial period of the recovery phase of a geomagnetic storm. Pc1 type pulsations, which are commonly regarded as biologically effective elements of geomagnetic disturbances, did not affect controlled parameters in our experiments. This paper may serve as a starting point for a thorough inquiry into the influence of slow fluctuations of the geomagnetic field on organisms.

  16. The response of local power grid at low-latitude to geomagnetic storm: An application of the Hilbert Huang transform

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Wang, Chuan-Bing; Liu, Lu; Sun, Wei-Huai

    2016-04-01

    The Hilbert-Huang transform (HHT) is an adaptive data analysis method that can accommodate the variety of data generated by nonlinear and nonstationary processes in nature. In this paper, we focus on the small geomagnetically induced current (GIC) at the local substations in low-latitude power grid of China, responding to a moderate storm on 14-18 July 2012. The HHT is applied to analyze the neutral point currents (NPCs) of transformers measured at different substations, and the GIC indices converted from local geomagnetic field measurements. The original data are decomposed into intrinsic mode functions (IMFs) using the ensemble empirical mode decomposition. After removal of the quasi-diurnal components related with the solar quiet variation, the IMFs representing storm disturbances are transformed into Hilbert energy spectra. The results show that some transformers have more or less responses to the moderate storm in the form of Hilbert energy spectra with the frequency around 2-3 mHz. A comparison on the amplitude changes of the spectra total energy of NPCs' perturbation during storm time intervals at different sites suggests that a shell type of three-phase single transformer group seems to be more vulnerable in the storm. Although the low-latitude power grids usually show very small GIC, these can be used to investigate the potential risk of space weather to the system.

  17. Ionospheric response to geomagnetic storm on July 14-17, 2012 in East Asia

    NASA Astrophysics Data System (ADS)

    Romanova, Elena; Zherebtsov, Gelii; Wang, Guojun; Zolotukhina, Nina; Polekh, Nelya; Wang, Xiao; Shi, Jiankui

    We study manifestation of intense geomagnetic storm on July 14-17, 2012 in the ionosphere high, middle and low latitudes. The peculiarity of the storm is that for nearly 30 hours the IMF Bz had southward direction (-20 ÷ -10 nT). We use data from the chains of stations located near the meridians 90E, 110E and 150E. The critical frequency (foF2) variation analysis showed that during the storm main phase the ionosphere response depends strongly on the local time of the sudden storm commencement so the negative perturbations were observed near the meridian 90E and positive perturbations were observed near the meridian 150E. At the end of the storm main phase the traveling ionospheric disturbances (TIDs) were observed at all stations. The critical frequencies were extremely low during the storm recovery phase on July 16, 2012 at all stations and this phase lasted nearly three days. At the low-latitude station Hainan (19.5N, 109E) on July 16, 2012 the day foF2 values were the same as the night values. This intense and prolonged negative perturbation is a very rare event at low latitudes. Since prolonged negative disturbance is usually associated with a decrease in the ratio of concentration of atomic oxygen to that of molecular nitrogen [O]/[N2] which is transported by the disturbed thermospheric wind from auroral latitudes to middle and low, then we analyzed measuring [O]/[N2] (Global Ultraviolet Imager, http://guvi.jhuapl.edu/site/gallery/guvi-galleryl3on2.shtml). It found out that feature of the studied storm is very low values of [O]/[N2] which were observed on July 16 in the longitudinal sector 60 - 150E from high latitude almost to the equator. Modeling results of the ionospheric response to this storm are also presented. At low-latitudes the extreme low values of [O]/[N2] also can be one of the reasons of the prolonged negative disturbance. The work was supported by the Russian Foundation for Basic Research (grant 13-05-91159) and RF President Grant of Public

  18. Energy Dependent Responses of Relativistic Electron Fluxes in the Outer Radiation Belt to Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Xie, L.

    2015-12-01

    Geomagnetic storms can either increase 4 or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies while flux enhancements are more common at lower energies. In about 87% of the storms, 0.3-2.5 MeV electrons fluxes show increase, whereas 2.5-14 MeV electron fluxes increase in only 35% of the storms. Superposed epoch analyses suggest that such 'energy dependent' behavior of electrons preferably occurs during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves and these 'energy dependent' events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux drop-outs during storm main phases do not correlate well with the flux build-up during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provide a viable candidate for the energy dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

  19. Numerical Simulations of the Ring Current During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Lemon, C.; Guild, T. B.; Schulz, M.; Roeder, J. L.; Lui, A.; Keesee, A. M.; Goldstein, J.; Le, G.; Rodriguez, J. V.

    2012-12-01

    Recent progress in ring current modeling has shown the importance of a self-consistent treatment of particle transport along with magnetic and electric fields in the inner magnetosphere. The ring current intensity and spatial distribution are significantly affected by variations in the plasma sheet (the major source to the ring current), the cross polar cap potential, and compressions and expansions of the magnetosphere. We simulate the ion and electron ring current and plasma sheet by using the magnetically and electrically self-consistent Rice Convection Model-Equilibrium [Lemon et al., JGR, 2004] with a time-varying magnetopause driven by upstream solar wind and interplanetary magnetic (IMF) conditions and with time-varying plasma sheet distributions as boundary conditions. Examples of detailed comparisons of simulated storm events with in-situ magnetic intensities (e. g., GOES, Polar/MPA, or THEMIS) and proton flux spectra (e. g., LANL/MPA and SOPA, Polar/CAMMICE, or THEMIS) and energetic neutral atom (ENA) fluxes (e. g., TWINS) will be shown. We will also present comparisons of observed electron flux spectra with simulations based on a few simple electron loss models. These data-model comparisons test the ability of our model to characterize the ring current environment and the storm-time inner magnetospheric magnetic field.

  20. Identification of possible intense historical geomagnetic storms using combined sunspot and auroral observations from East Asia

    NASA Astrophysics Data System (ADS)

    Willis, D. M.; Armstrong, G. M.; Ault, C. E.; Stephenson, F. R.

    2005-03-01

    Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic) solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma. European telescopic

  1. Ionspheric and thermospheric response to the 27-28 February 2014 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Khalifa, Malki; Benkhaldoun, Zouhair; Vilmer, Nicole; Bounhir, Aziza; Makela, Jonathan J.; Kaab, Mohamed; Lagheryeb, Amine

    2015-08-01

    The present work explores the ionospheric and thermospheric responses to the 27-28 February 2014 geomagnetic storm. This storm was consecutive to CME associated flares that occurred on 25 February. A Fabry Perrot interferometer provides measurements of the neutral winds and temperature based on the observations of the 630 nm redline emission and of a wide angle imaging system which records images of the 630 nm emission.The effects of this geomagnetic storm on the thermosphere are evident from the clear departure of the winds and the temperature from their seasonal behavior. The effects on the ionosphere were also evident through the change observed in the background electric field as shown from the plasma bubbles drifts direction reversal. Attention was paid to the the interplanetary medium ; solar wind, interplanetary magnetic field, shock waves and geomagnetic indices. We also explore RHESSI data of the flare.

  2. Geomagnetic Storm Main Phase effect on the Equatorial Ionosphere as measured from GPS observations at Ile-Ife

    NASA Astrophysics Data System (ADS)

    Olabode, Ayomide; Ariyibi, Emmanuel

    2016-07-01

    The effect of the main phase of two intense geomagnetic storm events which occurred on August 5-6 and September 26-27, 2011 on the equatorial ionosphere have been investigated using Global Positioning System (GPS) data obtained from an Ile-Ife station (geomagnetic lat. 9.84°N, long. 77.25°E). The WinTEC-P and GPS-TEC analysis software programs were used to process the GPS data to obtain Total Electron Content (TEC) and Scintillation Index (S4). TEC profiles during the main phase of the two geomagnetically disturbed days were compared with quiet time average profiles to examine the response of the equatorial ionosphere. International Reference Ionosphere (IRI) 2012 TEC model was also obtained from Virtual Ionosphere, Thermosphere, Mesosphere Observatory (VITMO) and the extents of deviation from measured GPS-derived TEC were examined for the main phase of the storm events. The results showed that the intensity of both storm events during the main phase which occurred at night-time correlated well with a strong southward direction of the z-component of the Interplanetary Magnetic Field (IMF-Bz) and Solar Wind Speed (Vsw), with the Disturbance storm time (Dst) profile showing multiple step development. TEC depletion was observed during the main phase of the August 5-6, 2011 storm event with TEC recording a maximum value of 9.31 TECU. A maximum TEC value of 55.8 TECU was recorded during the main phase of the September 26-27, 2011 storm event depicting TEC enhancement. Significant scintillation index value of 0.57 was observed when the main phase started on August 5-6, 2011 followed by a prolonged suppression while there was less significant scintillation impact on September 26-27, 2011 with a maximum value of 0.33. The study concluded that the intensification of the ring current during the main phase of geomagnetic storm events was responsible for the intensity of the storm events causing large variations in TEC and significant scintillation phenomenon.

  3. Radio signal anomalies detected with MEXART in 2012 during the recovery phase of geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Carrillo-Vargas, Armando; Pérez-Enríquez, Román; López-Montes, Rebeca; Rodríguez-Martínez, Mario; Ugalde-Calvillo, Luis Gerardo

    2016-11-01

    In this work we present MEXART observations in 2012 from 17 radio sources in which we detected anomalies in the radio signal of these sources occurring during the recovery phase of some geomagnetic storms. We performed FFT and wavelet analysis of the radio signals during these periods and found that rather than IPS the anomalies seem to originate in the ionosphere, especially because of the frequencies at which they are observed. We discuss this results under the view that the source of the geomagnetic storm is no longer in the interplanetary medium.

  4. Hemispheric differences in the response of the upper atmosphere to the August 2011 geomagnetic storm: A simulation study

    NASA Astrophysics Data System (ADS)

    Yiğit, Erdal; Frey, Harald U.; Moldwin, Mark B.; Immel, Thomas J.; Ridley, Aaron J.

    2016-04-01

    Using a three-dimensional nonhydrostatic general circulation model, we investigate the response of the thermosphere-ionosphere system to the 5-6 August 2011 major geomagnetic storm. The model is driven by measured storm-time input data of the Interplanetary Magnetic Field (IMF), solar activity, and auroral activity. Simulations for quiet steady conditions over the same period are performed as well in order to assess the response of the neutral and plasma parameters to the storm. During the storm, the high-latitude mean ion flows are enhanced by up to 150-180%. Largest ion flows are found in the main phase of the storm. Overall, the global mean neutral temperature increases by up to 15%, while the maximum thermal response is higher in the winter Southern Hemisphere at high-latitudes than the summer Northern Hemisphere: 40% vs. 20% increase in high-latitude mean temperature, respectively. The global mean Joule heating increases by more than a factor of three. There are distinct hemispheric differences in the magnitude and morphology of the horizontal ion flows and thermospheric flows during the different phases of the storm. The largest hemispheric difference in the thermospheric circulation is found during the main and recovery phases of the storm, demonstrating appreciable geographical variations. The advective forcing is found to contribute to the modeled hemispheric differences.

  5. Large Scale Ionospheric Response During March 17, 2013 Geomagnetic Storm: Reanalysis Based on Multiple Satellites Observations and TIEGCM Simulations

    NASA Astrophysics Data System (ADS)

    Yue, X.; Wang, W.; Schreiner, W. S.; Kuo, Y. H.; Lei, J.; Liu, J.; Burns, A. G.; Zhang, Y.; Zhang, S.

    2015-12-01

    Based on slant total electron content (TEC) observations made by ~10 satellites and ~450 ground IGS GNSS stations, we constructed a 4-D ionospheric electron density reanalysis during the March 17, 2013 geomagnetic storm. Four main large-scale ionospheric disturbances are identified from reanalysis: (1) The positive storm during the initial phase; (2) The SED (storm enhanced density) structure in both northern and southern hemisphere; (3) The large positive storm in main phase; (4) The significant negative storm in middle and low latitude during recovery phase. We then run the NCAR-TIEGCM model with Heelis electric potential empirical model as polar input. The TIEGCM can reproduce 3 of 4 large-scale structures (except SED) very well. We then further analyzed the altitudinal variations of these large-scale disturbances and found several interesting things, such as the altitude variation of SED, the rotation of positive/negative storm phase with local time. Those structures could not be identified clearly by traditional used data sources, which either has no gloval coverage or no vertical resolution. The drivers such as neutral wind/density and electric field from TIEGCM simulations are also analyzed to self-consistantly explain the identified disturbance features.

  6. DE 2 observations of disturbances in the upper atmosphere during a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Brace, L. H.; Spencer, N. W.; Carignan, G. R.

    1990-01-01

    Results are presented of physical interpretations of a sequence of in situ measurements taken in the midlatitude dusk sector during the geomagnetic storm of November 24, 1982 by instruments on board the DE-2 spacecraft in polar orbit. The results represent the first comparison of nearly simultaneous measurements, obtained at different seasons in a common local time sector, of storm disturbances in dc electric fields, zonal ion convection, zonal winds, gas composition and temperature, and electron density and temperature.

  7. Climatological response of Indian low-latitude ionosphere to geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Suresh, Sunanda; Dashora, N.

    2016-05-01

    A climatological response of low-latitude ionosphere to geomagnetic storms is presented using long-term global ionospheric maps data from June 1998 to June 2015 covering two solar cycles 23 and 24. The results are presented for daytime forenoon and afternoon sectors under minor, moderate, and major ionospheric storm categories based on minimum Dst index criterion. For the first time the effectiveness of storms is identified using monthly standard deviation as an indicator of the day to day variability in equatorial and low-latitude ionosphere. Thus, results on climatology are definitive and form a database that would be comparable to statistical results from any other longitude and time. Seasonal statistics for total storms, effective positive and negative storms, and amplitude of mean seasonal perturbation in total electron content are obtained. Total and effective storms are found to be higher in solar cycle 23 than in 24 and only a couple of effective storms occurred during low solar activity 2007-2009 that too in minor category. Afternoon sector is found to be favorable for occurrence of maximum number of effective positive storms. A latitudinal preference is found for a given storm to be effective in either time sectors. Equinoctial asymmetry in ionospheric response both in terms of occurrence and perturbation amplitude is found. September equinoxes are found to bear maximum total, effective positive and negative storms. Winters are found more prone to negative storms, whereas summers have recorded minimum number of either of storms and minimum perturbation amplitudes.

  8. Global and Meso-scale Thermospheric Neutral Wind Response to Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Lu, G.; Conde, M.; Doornbos, E.

    2015-12-01

    This paper presents a case study of thermospheric response to the 5 April 2010 geomagnetic storm. The NCAR Thermosphere-Ionosphere-Mesosphere Electrodynamic General Circulation Model (TIMEGCM) is used to investigate thermospheric neutral wind variations during the storm, and the model results are validated through comparison with ground and space based observations. More specifically, we conduct detailed inter-comparison of the winds observed by scanning Doppler imagers (SDI) in Alaska with those derived from the TIMEGCM simulations in order to assess model's ability in reproducing the observed meso-scale wind field. The thermospheric winds obtained from the accelerometers on board the GOCE satellite are also used to validate the simulation results on a global scale. While globally the wind velocity tends to be smaller than ion drift velocity, locally the winds can exceed ion drifts and also blow in the different direction than the ions. We will discuss how the thermospheric winds affect the energetic coupling of the magnetosphere-ionosphere-thermosphere system in terms of Joule heating and field-aligned currents.

  9. Plasmaspheric dynamics resulting from the Hallowe'en 2003 geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kale, Z. C.; Mann, I. R.; Waters, C. L.; Vellante, M.; Zhang, T. L.; Honary, F.

    2009-08-01

    Cross-phase-derived plasma mass density trends during the Hallowe'en 2003 geomagnetic storms are presented for 38° $\\lesssim$ magnetic latitude $\\lesssim$ 63° (1.61 ≤ L ≤ 5.10), using data from the SAMNET (Subauroral Magnetometer Network), BGS (British Geological Survey), and SEGMA (South European Geomagnetic Array), ground-based magnetometer arrays in Europe. At all latitudes monitored, a rapid increase of total mass density is observed immediately following the initial storm sudden commencement at 0611 UT on 29 October, believed to be due to rapid ionospheric O+ outflow. Plasmaspheric density depletion to at least 50° magnetic latitude (L ˜ 2.4) took place over the next 3 days. Poststorm refilling began on 2 November. Following the sudden commencement of another storm on 4 November, a density enhancement was monitored at 2.79 ≤ L ≤ 3.84, with subsequent plasmaspheric depletion occurring by 6 November. Plasma mass density values are compared to empirical plasmapause location model predictions, with reasonable agreement for most days, but density depletion and refilling were monitored 1 day after they are predicted. During poststorm plasmaspheric refilling, some extremely low early morning resonance frequencies are monitored and appear be due to quarter mode standing waves. This study also highlights that care must be taken in the choice of assumed geomagnetic field geometry when deriving plasma mass densities from observed field line resonances during severe geomagnetic storms.

  10. Plasmaspheric hiss intensity variations during magnetic storms

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Frandsen, A. M. A.; Tsurutani, B. T.; Thorne, R. M.; Chan, K. W.

    1974-01-01

    The storm time intensity variations of ELF electromagnetic emissions have been studied by using the Ogo 6 search coil magnetometer. Low-latitude signals exhibit a sharp low-frequency cutoff and are identified as plasmaspheric hiss. Such waves show pronounced intensification during the recovery phase of magnetic storms but remain close to background levels during the storm main phase. This behavior is consistent with cyclotron resonant generation within the plasmasphere as the latter expands into the intensified belt of outer zone electrons during the storm recovery.

  11. First observations of poleward large-scale traveling ionospheric disturbances over the African sector during geomagnetic storm conditions

    NASA Astrophysics Data System (ADS)

    Habarulema, John Bosco; Katamzi, Zama Thobeka; Yizengaw, Endawoke

    2015-08-01

    This paper presents first observations of poleward traveling ionospheric disturbances (TIDs) during strong geomagnetic conditions over the African sector. By analyzing different data sets we have observed both positive and negative ionospheric responses during the storm period of 08-10 March 2012. Considering the African region as a whole, three longitudinal sectors were strategically selected to establish the entire regional response. On both sides of the geomagnetic equator, results show poleward shift in peak total electron content (TEC) enhancements/depletions at different times which are associated to large-scale TIDs. The observed phenomena are linked to the global ionospheric response and electrodynamics. The understanding has been established using data from International GNSS Service receiver network, radio occultation electron density profiles, derived E×B drift measurements from magnetometer observations and regional ground-based and satellite data. Contrary to other related studies, generated regional TEC perturbation maps were not enough to show obvious directions of the large-scale TIDs due to insufficient data over the northern hemispheric part of the African sector. There appears to be a switch between positive and negative storm phases during the same storm period especially in the Southern Hemisphere part of the African region where "enough" data were available. However, a detailed analysis revealed that the positive storm phase corresponded to the expansion of the equatorial ionization anomaly (EIA) toward some parts of midlatitude regions (and possibly with the contribution from low-latitude electrodynamics associated to equatorial electrojet), while the other part recorded a negative storm phase due to storm-induced changes from the auroral origin. We have observed a simultaneous occurrence of both poleward and equatorward propagating TIDs over the African sector during the same geomagnetic storm period. Our results show that short-lived large

  12. Effects on the geomagnetic tail at 60 earth radii of the geomagnetic storm of April 9, 1971.

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Rich, F. J.; Reasoner, D. L.; Colburn, D. S.; Goldstein, B. E.

    1973-01-01

    A geomagnetic storm beginning with an sc occurred on Apr. 9, 1971. During the storm the charged particle lunar environment experiment at the Apollo 14 site, the solar wind spectrometer experiment at the Apollo 12 site, and the Ames magnetometers on Explorer 35 took data in the magnetosheath, at the magnetopause, in the plasma sheet, and in the high-latitude geomagnetic tail. The MIT Faraday cup and Ames magnetometers on board Explorer 33 monitored the solar wind. The data show that the storm was caused by a corotating tangential discontinuity in the solar wind, the magnetopause position is strongly dependent on the attack angle of the solar wind, and the tail field strength was indirectly measured to increase from 10 to 14 gamma after the sc. During the main phase the field strength in the tail was observed to increase to between 28 and 34 gamma. This increase is consistent with a thermal and magnetic compression of the tail radius from about 26 to about 16 earth radii.

  13. Forecasting Geomagnetic Storms and Solar Energetic Particle Events: the COMESEP Project

    NASA Astrophysics Data System (ADS)

    Crosby, N.; Veronig, A.; Robbrecht, E.; Vrsnak, B.; Vennerstrøm, S.; Malandraki, O.; Dalla, S.; Srivastava, N.; Hesse, M.; Odstrcil, D.

    2012-04-01

    COMESEP (COronal Mass Ejections and Solar Energetic Particles), funded by the European Union Framework 7 programme, is a three-year collaborative project that has been running for one year. Tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms are being developed under the project. By analysis of historical data, complemented by the extensive data coverage of solar cycle 23, the key ingredients that lead to magnetic storms and SEP events and the factors that are responsible for false alarms are being identified. To enhance our understanding of the 3D kinematics and interplanetary propagation of coronal mass ejections (CMEs), the structure, propagation and evolution of CMEs are being investigated. In parallel, the sources and propagation of SEPs are being examined and modeled. Based on the insights gained, and making use of algorithms for the automated detection of CMEs, forecasting tools for geomagnetic and SEP radiation storms are being developed and optimised. Validation and implementation of the produced tools into an operational Space Weather Alert system will be performed. Geomagnetic and SEP radiation storm alerts will be based on the COMESEP definition of risk. COMESEP is a unique cross-collaboration effort and bridges the gap between the SEP and CME scientific communities. For more information about the project, see the COMESEP website http://www.comesep.eu/ . This work has received funding from the European Commission FP7 Project COMESEP (263252).

  14. Investigation of Ionospheric response to Geomagnetic Storms over a Low Latitude Station, Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Jimoh, Oluwaseyi E.; Yesufu, Thomas K.; Ariyibi, Emmanuel A.

    2016-05-01

    Due to several complexities associated with the equatorial ionosphere, and the significant role which the total electron content (TEC) variability plays in GPS signal transmission, there is the need to monitor irregularities in TEC during storm events. The GPS SCINDA receiver data at Ile-Ife, Nigeria, was analysed with a view to characterizing the ionospheric response to geomagnetic storms on 9 March and 1 October 2012. Presently, positive storm effects, peaks in TEC which were associated with prompt penetration of electric fields and changes in neutral gas composition were observed for the storms. The maximum percentage deviation in TEC of about 120 and 45% were observed for 9 March and 1 October 2012, respectively. An obvious negative percentage TEC deviation subsequent to sudden storm commencement (SSC) was observed and besides a geomagnetic storm does not necessarily suggest a high scintillation intensity (S4) index. The present results show that magnetic storm events at low latitude regions may have an adverse effect on navigation and communication systems.

  15. Energetic Electron Populations in the Magnetosphere During Geomagnetic Storms and Substorms

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This report summarizes the scientific work performed by the Aerospace Corporation under NASA Grant NAG5-10278, 'Energetic Electron Populations in the Magnetosphere during Geomagnetic Storms and Subsisting.' The period of performance for the Grant was March 1, 2001 to February 28, 2002. The following is a summary of the Statement of Work for this Grant. Use data from the PIXIE instrument on the Polar spacecraft from September 1998 onward to derive the statistical relationship between particle precipitation patterns and various geomagnetic activity indices. We are particularly interested in the occurrence of substorms during storm main phase and the efficacy of storms and substorms in injecting ring-current particles. We will compare stormtime simulations of the diffuse aurora using the models of Chen and Schulz with stormtime PIXIE measurements.

  16. Global inospheric effects of the October 1989 geomagnetic storm

    SciTech Connect

    Yeh, K.C.; Lin, K.H.; Ma, S.Y.

    1994-04-01

    Based on a large data base from 40 ionosonde stations distributed worldwide and 12 total electron content stations, a case study is made on the global behavior of ionospheric responses to the great magnetic storm of October 1989. The magnetic storm was triggered by a solar flare with the largest class of X13/4B and started with a sudden storm commencement (ssc) at 0917 UT on October 20. After the initial phase the storm underwent two periods of maximum activities in the following 2 days. Low-latitude auroras were sighted and reported in widely separated areas in both northern and southern hemispheres. In response to these magnetic and auroral activities the ionosphere showed remarkable effects. Depending on the local time of ssc occurrence, the ionospheric response differed appreciably. Impressive changes were long-lasting, large-scale effects, such as the severe depressions of foF2 at higher latitudes, the temporary suppression of the equatorial anomaly and large horizontal gradients at certain latitudes. Also observed were positive storm effects of short duration during the post-sunset period in response to the onset of both ssc and main phase of the magnetic storm. These two positive storm effects showed different patterns suggesting different casual mechanisms. In addition, global propagation of large-scale traveling ionospheric disturbances (TIDs) was seen during 2 nights, identified by dramatic rises of h{prime}F with periodic fluctuations. The equatorward propagation velocities of the TIDs varied between 330 m/s and 680 m/s for the east Asia region. 33 refs., 16 figs., 1 tab.

  17. Geomagnetic disturbance intensity dependence on the universal timing of the storm peak

    NASA Astrophysics Data System (ADS)

    Katus, R. M.; Liemohn, M. W.; Keesee, A. M.; Immel, T. J.; Ilie, R.; Welling, D. T.; Ganushkina, N. Yu.; Perlongo, N. J.; Ridley, A. J.

    2016-08-01

    The role of universal time (UT) dependence on storm time development has remained an unresolved question in geospace research. This study presents new insight into storm progression in terms of the UT of the storm peak. We present a superposed epoch analysis of solar wind drivers and geomagnetic index responses during magnetic storms, categorized as a function of UT of the storm peak, to investigate the dependency of storm intensity on UT. Storms with Dst minimum less than -100 nT were identified in the 1970-2012 era (305 events), covering four solar cycles. The storms were classified into six groups based on the UT of the minimum Dst (40 to 61 events per bin) then each grouping was superposed on a timeline that aligns the time of the minimum Dst. Fifteen different quantities were considered: seven solar wind parameters and eight activity indices derived from ground-based magnetometer data. Statistical analyses of the superposed means against each other (between the different UT groupings) were conducted to determine the mathematical significance of similarities and differences in the time series plots. It was found that the solar wind parameters have no significant difference between the UT groupings, as expected. The geomagnetic activity indices, however, all show statistically significant differences with UT during the main phase and/or early recovery phase. Specifically, the 02:00 UT groupings are stronger storms than those in the other UT bins. That is, storms are stronger when the Asian sector is on the nightside (American sector on the dayside) during the main phase.

  18. Impacts of Geomagnetic Storms on the Terrestrial H-Exosphere Using Twins-Lyman Stereo Data

    NASA Astrophysics Data System (ADS)

    Nass, U.; Zoennchen, J.; Fahr, H. J.; Goldstein, J.

    2015-12-01

    Based on continuously monitored Lyman-alpha data registered by the TWINS1/2-LAD instruments we have studied the impact of a weaker and a stronger geomagnetic storm on the exospheric H-density distribution between heights of 3--8 Earth-radii. As is well known, solar Lyman-alpha radiation is resonantly backscattered from geocoronal neutral hydrogen (H). The resulting resonance glow intensity in the optically thin regime is proportional to H column density along the line of sight (LOS). Here we present the terrestrial exospheric response to geomagnetic storms. We quantify the reaction to geomagnetic activity in form of amplitude and temporal response of the H-density, sampled at different geocentric distances. We find that even in case of a weak storm, the exospheric H-density in regions above the exobase reacts with a suprisingly large increase in a remarkably short time period of less than half a day. Careful analysis of this geomagnetic density effect indicates that it is an expansion in the radial scale height of the exospheric H-density, developing from exobasic heights.

  19. Variability of equatorial ionospheric anomaly at two stations during geomagnetic storms: observations and IRI 2012 predictions

    NASA Astrophysics Data System (ADS)

    Oyeyemi, Elijah; Bolaji, Olusegun; Olajide, Adewale; Akala, Andrew; Olugbon, Busola; Amaechi, Paul

    2016-07-01

    This paper discusses the variations of electron density of ionospheric F2-layer (NmF2) during geomagnetic storm periods using ionosonde observations from two ionospheric stations (Tahiti [geographic coordinates, 17.7oS, 210.1oE, magnetic coordinates, 15.2oS, 284.4oE] and Maui [geographic coordinates, 20.8oN, 203.5oE, magnetic coordinates, 21.2oN, 269.6oE]), in the region of equatorial ionization anomaly. We have used data, based on availability, corresponding to different seasonal and high solar activity periods (1979, 1980, 1989 and 1990) from each station to carry out our investigations. The results obtained from statistical analysis were used to evaluate the accuracy of the International Reference Ionosphere (IRI-2012) model predictions in this region. The results show that, generally, the IRI model predictions have agreement with the observed values in terms of the pattern of variations but there are number of cases where IRI model overestimates and underestimates the observed values. Results from this study will be of help to improving prediction ability of the IRI models. Details of the analysis of the accuracy of the IRI model predictions are presented.

  20. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Neergaard Parker, Linda

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by interaction of the US high voltage solar arrays with the F2-region ionosphere plasma environment. ISS solar array charging is enhanced in a high electron density environment due to the increased thermal electron currents to the edges of the solar cells. High electron temperature environments suppress charging due to formation of barrier potentials on the charged solar cell cover glass that restrict the charging currents to the cell edge [Mandell et al., 2003]. Environments responsible for strong solar array charging are therefore characterized by high electron densities and low electron temperatures. In support of the ISS space environmental effects engineering community, we are working to understand a number of features of solar array charging and to determine how well future charging behavior can be predicted from in-situ plasma density and temperature measurements. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that occur at ISS orbital altitudes (approximately 400 km) over time scales of days, the latitudes over which significant variations occur, and the time periods over which the disturbances persist once they start. This presentation provides examples of mid-latitude electron density and temperature disturbances at altitudes relevant to ISS using data sets and tools developed for our ISS plasma environment study. "Mid-latitude" is defined as the extra-tropical region between approx. 30 degrees to approx. 60 degrees magnetic latitude sampled by ISS over its 51.6 degree inclination orbit. We focus on geomagnetic storm periods because storms are well known drivers for disturbances in the ionospheric plasma environment.

  1. Dynamics of the Solar Wind Electromagnetic Energy Transmission Into Magnetosphere during Large Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery

    Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean

  2. SABER Observations of Geomagnetic Storm Response in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.; Mlynczak, M. G.; Marshall, B. T.; Russell, J. M.

    2012-12-01

    Geoeffective solar storms in 2012 have produced the most significant radiative and chemical changes in the lower thermosphere in eight years as solar cycle 24 ramps up toward solar maximum. Observations of radiative cooling by NO (at 5.3 μm) and CO2 (at 15 μm) made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite show dramatic increases during storm periods. It has been demonstrated that NO, in particular, acts as a natural thermostat, providing a mechanism for solar storm energy to be lost from the atmosphere via infrared emission. We show recent results of the influence of coronal mass ejections and solar high-speed streams from coronal holes on the observed infrared radiative cooling in the thermosphere. In particular, during events this year the NO emission has shown enhancements of more than a factor of 5 from pre-storm conditions and increases in CO2 have been as much as approximately 40%. The emissions from these recent storms rivals those from the strongest storms seen in the last 11 years; the July 2012 event is the sixth strongest emission in that time period. These increases in radiative cooling are due to increases in temperature (which affect CO2 and NO non-linearly) and to increases in the NO concentration. The SABER instrument has a nearly 11-year record of the influence of the Sun on thermosphere. Since January 2002, SABER has been making continuous measurements of the vertical distribution of infrared radiation emitted by various atmospheric gases (ozone, water vapor, nitric oxide, and carbon dioxide) that provide important information about the radiation budget in the upper atmosphere.

  3. Generation of traveling atmospheric disturbances during pulsating geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Gardner, Larry; Schunk, Robert

    Traveling Atmospheric Disturbances (TADs) are effective in transporting momentum and en-ergy deposited at high latitudes to the mid and low latitude regions of the thermosphere. They also act to transport momentum and energy from the lower thermosphere into the upper ther-mosphere. Previously, model studies have been conducted to determine the characteristics of isolated, single-pulse TADs, but the generation of multiple TADs excited during pulsating storms have not been considered before. Here, a high-resolution global thermosphere-ionosphere model was used to study the basic characteristic of multiple TADs excited during pulsating storms, including idealized weak and strong pulsating storms, and an approximation of the May 4, 1998 pulsating storm. For all three pulsating storm simulations, multiple TADs were excited that propagated away form the auroral oval both toward the poles and toward the equator at all longitudes, with the maximum amplitudes between midnight and dawn. The TAD amplitudes were a maximum near the poles, diminished towards the equator and were larger on the nightside than on the dayside. The TADs propagated at a slight upward angle to the horizontal, with the result that the lower boundary of the TADs increased with decreas-ing latitude. The TADs crossed the equator and propagated to mid-latitudes in the opposite hemisphere, where wave interference occurred for the strong pulsating storm cases. The TAD wavelengths vary from 2500-3000 km and the phase speeds from 800-1000 m/s. The maximum TAD perturbations are 20% for the mass density 14% for the neutral temperature and 100 m/s for the winds.

  4. Generation of traveling atmospheric disturbances during pulsating geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Gardner, L. C.; Schunk, R. W.

    2010-08-01

    Traveling atmospheric disturbances (TADs) are effective in transporting momentum and energy deposited at high latitudes to the midlatitude and low-latitude regions of the thermosphere. They also act to transport momentum and energy from the lower thermosphere into the upper thermosphere. Previously, model studies have been conducted to determine the characteristics of isolated, single-pulse TADs, but the generation of multiple TADs excited during pulsating storms have not been considered before. Here a high-resolution global thermosphere-ionosphere model was used to study the basic characteristics of multiple TADs excited during pulsating storms, including idealized weak and strong pulsating storms, and an approximation of the 4 May 1998 pulsating storm. For all three pulsating storm simulations, multiple TADs that propagated away from the auroral oval toward both the poles and the equator at all longitudes, with the maximum amplitudes between midnight and dawn, were excited. The TAD amplitudes were at maximum near the poles and diminished toward the equator and were larger on the nightside than on the dayside. The TADs propagated at a slightly upward angle to the horizontal, with the result that the lower boundary of the TADs increased with decreasing latitude. The TADs crossed the equator and propagated to midlatitudes in the opposite hemisphere, where wave interference occurred for the strong pulsating storm cases. The TAD wavelengths vary from 2500 to 3000 km and the phase speeds vary from 800 to 1000 m/s. The maximum TAD perturbations are 20% for the mass density, 14% for the neutral temperature, and 100 m/s for the winds.

  5. The response of African equatorial GPS-TEC to intense geomagnetic storms during the ascending phase of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Akala, A. O.; Rabiu, A. B.; Somoye, E. O.; Oyeyemi, E. O.; Adeloye, A. B.

    2013-06-01

    This study presents the response of African equatorial GPS-TEC to intense geomagnetic storms that occurred during the ascending phase (2011-2012) of solar cycle 24. Specifically, four intense geomagnetic storms were considered: September 26-27, 2011 storm (Dst: -103 nT), October 25, 2011 (Dst: -137 nT), March 9, 2012 storm (Dst: -133 nT), and July 15, 2012 storm (Dst: -126 nT). Furthermore, the responses of GPS-TEC data from three African equatorial stations: Addis Ababa (9.04°N, 38.77°E, 0.18°N magnetic latitude) [Ethiopia]; Lagos (6.52°N, 3.4°E, 3.04°S magnetic latitude) [Nigeria]; and Malindi (3.00°S, 40.20°E, 10.98°S magnetic latitude) [Kenya] to the geomagnetic storms under investigation were also studied. We also examine the causative roles of interplanetary (IP) structures in the formation of the intense geomagnetic storms. All the intense storms were found to be associated with CME-induced transients, and their drivers were sheath fields behind the shocks. At the African equatorial zone, TEC exhibits positive response to intense geomagnetic storms, with enhancements in the order of 6-25 TECU around 1300-1500 UT.

  6. Modeling of CME and CIR driven geomagnetic storms by means of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Revallo, Miloš; Valach, Fridrich; Hejda, Pavel; Bochníček, Josef

    2015-03-01

    A model of geomagnetic storms based on the method of artificial neural networks (ANN) combined with an analytical approach is presented in the paper. Two classes of geomagnetic storms, caused by coronal mass ejections (CMEs) and those caused by corotating interaction regions (CIRs), of medium and week intensity are subject to study. As the model input, the hourly solar wind parameters measured by the ACE satellite at the libration point L1 are used. The time series of the Dst index is obtained as the model output. The simulated Dst index series is compared with the corresponding observatory data. The model reliabilty is assessed using the skill scores, namely the correlation coefficient CC and the prediction efficiency PE. The results show that the model performance is better for the CME driven storms than for the CIR driven storms. At the same time, it appears that in the case of medium and weak storms the model performance is worse than in the case of intense storms

  7. The effect of variations of geomagnetic activity changing rate on trunk objects

    NASA Astrophysics Data System (ADS)

    Kozlov, V. I.; Mullayarov, V. A.; Grigor'ev, Yu. M.

    2015-11-01

    The frequency of occurrence of a certain level of the rate of change of geomagnetic activity can be expressed as a power law with an exponent of the order -1.7, and the probability of exceedance of a given level can be expressed by the law lg(P) = -0.0517 (dB / dt) - 0.1946. The largest high-frequency variations are noted during the recovery phase of magnetic bay and correspond to geomagnetic pulsations of the Pc5 range (a period of variations of 200-300 s). On a pipeline on these pulsations other high-frequency variations are imposed and they start earlier - from a maximum of bay of disturbance. It is noted the need of monitoring and forecasting of magnetic storms and recommendations on the allocation of periods, during which one cannot disable protection for preventive works.

  8. The Dynamics of Thermospheric Composition and Ionospheric Total Electron Content During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Sigwarth, John B.; Foster, John C.

    2005-01-01

    The geomagnetic storms of April 17-21,2002 and May 29-30,2003 caused large decreases in the O/N2 column density ratio in the thermosphere. For these storms, O/N2 column density decreases of greater than 50% were observed to extend to mid-to-low latitudes with the FUV sensitive Earth Camera of the Visible Imaging System (VIS) on the Polar spacecraft. Simultaneously in these same regions, the ground-based GPS network observed approximately 80% reductions in the Total Electron Content (TEC) of the ionosphere. The reduction in the O/N2 column density ratio is due mainly to increases in the molecular species that have welled-up into the thermosphere from the lower levels of the atmosphere due to auroral heating. The geomagnetic-storm driven increase in molecular densities at typical ionospheric heights rapidly charge exchange with the ambient ionized atoms and subsequently dissociatively recombine with the ionospheric electrons leading to a reduction in the total charge density. The transition boundaries between high and low regions of O/N2 as well as TEC can be tracked in the images and the thermospheric winds may be inferred from the motion of the boundaries. The motion of these boundaries during the development of the geomagnetic storm will be discussed.

  9. An empirical model of the quiet daily geomagnetic field variation

    USGS Publications Warehouse

    Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; Nagatsuma, T.; Nikiforov, V.M.; Otadoy, R.E.; Ruhimat, M.; Shevtsov, B.M.; Shiokawa, K.; Abe, S.; Uozumi, T.; Yoshikawa, A.

    2011-01-01

    An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ??? 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity. Copyright 2011 by the American Geophysical Union.

  10. The strength and hemispheric asymmetry of Equatorial Ionization Anomaly during two geomagnetic storms in 2013 from Global Ionosphere Map and SAMI2

    NASA Astrophysics Data System (ADS)

    Luo, Weihua; Zhu, Zhengping; Lan, Jiaping

    2016-08-01

    The variations of the strength and the hemispheric asymmetry of EIA were studied by Global Ionosphere Map (GIM) and SAMI2 during two geomagnetic storm periods in March and June 2013. Compared with the 30-days median TEC, the TEC at the two crests of EIA had small variations while the TEC at the trough had a more remarkable variation for the two storms after the SSC. The TEC difference between the two EIA peaks had an increase or decrease several hours after the SSC, the asymmetry between the two crests of EIA represented by the defined asymmetry index has no obvious variations except several hours after the SSC, and EIA strength represented by the Crest-to-Trough Ratio (CTR) had a remarkable increase one day after the SSC day for March storm and decrease several hours after the SSC for June storm. The variations last several hours, with more than 40% variations compared with the value during the quiet period. The EIA peaks were also found to move toward the equator after the SSC during the two storms. The simulation from SAMI2 and HWM07 also shows that EIA crests would move toward the equator during storm time and EIA strength would decrease, which suggests that the disturbed neutral wind and disturbed electric field may be important factors affecting the EIA during the storm periods.

  11. Probing geomagnetic storm-driven magnetosphere-ionosphere dynamics in D-region via propagation characteristics of very low frequency radio signals

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip K.; Ogunmodimu, Olugbenga

    2016-07-01

    The amplitude and phase of VLF/LF radio signals are sensitive to changes in electrical conductivity of the lower ionosphere which imprints its signature on the Earth-ionosphere waveguide. This characteristic makes it useful in studying sudden ionospheric disturbances, especially those related to prompt X-ray flux output from solar flares and gamma ray bursts (GRBs). However, strong geomagnetic disturbance and storm conditions are known to produce large and global ionospheric disturbances, which can significantly affect VLF radio propagation in the D region of the ionosphere. In this paper, using the data of three propagation paths at mid-latitudes (40-54°), we analyse the trend in variation of aspects of VLF diurnal signal under varying solar and geomagnetic space environmental conditions in order to identify possible geomagnetic footprints on the D region characteristics. We found that the trend of variations generally reflected the prevailing space weather conditions in various time scales. In particular, the 'dipping' of mid-day signal amplitude peak (MDP) occurs after significant geomagnetic perturbed or storm conditions in the time scale of 1-2 days. The mean signal amplitude before sunrise (MBSR) and mean signal amplitude after sunset (MASS) also exhibit storm-induced dipping, but they appear to be influenced by event's exact occurrence time and the highly variable conditions of dusk-to-dawn ionosphere. We also observed few cases of the signals rise (e.g., MDP, MBSR or MASS) following a significant geomagnetic event. This effect may be related to storms associated phenomena or effects arising from sources other than solar origin. The magnitude of induced dipping (or rise) significantly depends on the intensity and duration of event(s), as well as the propagation path of the signal. The post-storm day signal (following a main event, with lesser or significantly reduced geomagnetic activity) exhibited a tendency of recovery to pre-storm day level. In the

  12. Geomagnetic storms during the last decade: Cluster and Double Star observations (Invited)

    NASA Astrophysics Data System (ADS)

    Escoubet, C.; Taylor, M. G.; Masson, A.; Laakso, H. E.; Liu, Z.; Goldstein, M. L.

    2013-12-01

    The launch of the Cluster spacecraft almost coincided with one of the largest geomagnetic storm of the last decade, well known as the "Bastille Day" storm, on 14-15 July 2000. Planned on 15 July, the launch was aborted a few minutes before due to a thunderstorm that had hit the Baikonour cosmodrome and made a disruption in the communication lines with the rocket. The launch took place the day after, on 16 July 2000. Our US colleagues had warned us about the storm and recommended not to launch on 15 July. Given the facts that (1) Cluster was built to study the effects of space weather and geomagnetic storms and (2) that the Russian launch authorities were not concerned for the Soyuz rocket, it was decided to go ahead with the launch. The launch was fine and, after a second launch less than a month later, the four Cluster spacecraft were put successfully in their 4x19 RE polar orbit. Since then, Cluster has observed many geomagnetic storms and could observe, for the first time with a constellation of four spacecraft, the dynamics induced in the magnetosphere by coronal mass ejections or interplanetary shocks coming from the Sun. In this talk we will use storms observed by Cluster and Double Star in the last decade to illustrate how the magnetosphere was affected. We have observed large compressions of the magnetosphere, distortions of the polar cusp, acceleration of particles associated with chorus and ULF waves, intensification of the ring current imaged by energetic neutral atom imagers, oxygen outflow from polar regions, and tail current sheet motions.

  13. Modeling of severe geomagnetic storms of solar cycle 23 by means of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Revallo, Milos; Valach, Fridrich; Hejda, Pavel; Bochnicek, Josef

    2015-04-01

    We set up a model for strong geomagnetic storms of solar cycle 23 using the method of artificial neural networks combined with an empirical model of the solar wind magnetosphere interaction. The set of solar wind data obtained from the ACE satellite is considered and the corresponding geomagnetic response is modeled and compared with real data. The discontinuity in magnetic field at the magnetopause is shown to play a key role in this study. The geomagnetic response is evaluated in terms of the Dst index. To assess the model performance, we compute the skill scores, namely the correlation coefficient and the prediction efficiency. We compare the model with previously known similar models based on artificial neural networks.

  14. Relationship Between Human Physiological Parameters And Geomagnetic Variations Of Solar Origin

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    variations of solar origin. The examinations and analyses performed show that space weather prediction may be utilized for the purpose of pharmacological and regime measures to limit the adverse physiological reactions to geomagnetic storms.

  15. A new parameter of geomagnetic storms for the severity of space weather

    NASA Astrophysics Data System (ADS)

    Balan, N.; Batista, I. S.; Tulasi Ram, S.; Rajesh, P. K.

    2016-12-01

    Using the continuous Dst data available since 1957 and H component data for the Carrington space weather event of 1859, the paper shows that the mean value of Dst during the main phase of geomagnetic storms, called mean DstMP, is a unique parameter that can indicate the severity of space weather. All storms having high mean DstMP (≤-250 nT), which corresponds to high amount of energy input in the magnetosphere-ionosphere system in short duration, are found associated with severe space weather events that caused all known electric power outages and telegraph system failures.

  16. Performance evaluation of selected ionospheric delay models during geomagnetic storm conditions in low-latitude region

    NASA Astrophysics Data System (ADS)

    Venkata Ratnam, D.; Sarma, A. D.; Satya Srinivas, V.; Sreelatha, P.

    2011-06-01

    Investigation of space weather effects on GPS satellite navigation systems is very crucial in high-precision positional applications such as aircraft landings and missile guidance, etc. The geomagnetic storms can drastically affect the total electron content (TEC) of the ionosphere even in low latitudes, especially for Indian region as it comes under low-latitude region. Hence, the performance of three prominent ionospheric models is investigated for adverse ionospheric conditions using 17 GPS TEC stations data. The models characterized the ionospheric disturbances due to two magnetic storms well.

  17. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition

    PubMed Central

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515

  18. Perturbations of midlatitude subionospheric VLF signals associated with lower ionospheric disturbances during major geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Peter, W. B.; Chevalier, M. W.; Inan, U. S.

    2006-03-01

    We examine the effects on the midlatitude ionospheric D region of the 7 April 2000 storm and the "Halloween storm" of late October 2003 by means of the associated perturbations of several subionospheric VLF signals propagating in both the northern and southern hemispheres. We use VLF nighttime data from the Holographic Array for Ionospheric/Lightning Research (HAIL), located in the United States (L = 2-3), as well as data from Palmer Station, Antarctica (L = 2.4). On 7 April 2000, a ˜5 dB depression in VLF amplitudes is observed at multiple HAIL stations, with a depression onset that occurs later for VLF signal paths at lower latitudes. On both 7 April 2000 and 31 October 2003, fluctuations in the amplitude of the VLF signals are first observed in the premidnight sector and persist through the end of the data-recording period (dawn). The frequency content of the fluctuations is predominantly in the 0.01 to 0.02 Hz range but extends up to ˜0.03 Hz. Increases in the energetic electron flux in the loss cone as measured by the NOAA-POES satellites are observed on both 7 April 2000 and 31 October 2003. We suggest that both the signal depressions and subsequent fluctuations are associated with variations in the precipitation flux of energetic electrons onto the upper atmosphere. Auroral activity patterns based on data from the NOAA-POES satellites show that the equatorward edge of the auroral oval expanded equatorward to lower L shells (L < 3) during both geomagnetic storms. Using the auoral activity patterns and multiple VLF/LF signal paths, we provide evidence that the fluctuations and the signal depression coincide with the equatorward edge of the auroral oval extending over the perturbed VLF/LF Great Circle Paths. Quantitative modeling of subionospheric VLF wave propagation incorporating energetic electron flux measurements (and the associated altitude profiles of secondary ionization) yields results consistent with the variations in the VLF signal amplitude

  19. A model of geomagnetic secular variation for 1980-1983

    USGS Publications Warehouse

    Peddie, N.W.; Zunde, A.K.

    1987-01-01

    We developed an updated model of the secular variation of the main geomagnetic field during 1980 through 1983 based on annual mean values for that interval from 148 worldwide magnetic observatories. The model consists of a series of 80 spherical harmonics, up to and including those of degree and order 8. We used it to form a proposal for the 1985 revision of the International Geomagnetic Reference Field (IGRF). Comparison of the new model, whose mean epoch is approximately 1982.0, with the Provisional Geomagnetic Reference Field for 1975-1980 (PGRF 1975), indicates that the moment of the centered-dipole part of the geomagnetic field is now decreasing faster than it was 5 years ago. The rate (in field units) indicated by PGRF 1975 was about -25 nT a-1, while for the new model it is -28 nT a-1. ?? 1987.

  20. Geomagnetic storms, the Dst ring-current myth and lognormal distributions

    USGS Publications Warehouse

    Campbell, W.H.

    1996-01-01

    The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with

  1. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    NASA Astrophysics Data System (ADS)

    Namgaladze, A. A.; Förster, M.; Yurik, R. Y.

    2000-04-01

    Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes) above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs). The calculated zonal electric field disturbances also help to create the positive ionospheric disturbances both

  2. Geomagnetic Indices Variations And Human Physiology

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    2007-12-01

    A group of 86 volunteers was examined on each working day in autumn 2001 and in spring 2002. Systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were registered. Pulse pressure (PP) was calculated. Data about subjective psycho-physiological complaints (SPPC) were also gathered. Altogether 2799 recordings were obtained. ANOVA was employed to check the significance of influence of daily amplitude of H-component of local geomagnetic field, daily planetary Ap-index and hourly planetary Dst-index on the physiological parameters examined. Post hoc analysis was performed to elicit the significance of differences in the factors levels. Average values of SBP, DBP, PP and SPPC of the group were found to increase statistically significantly and biologically considerably with the increase of geomagnetic indices.

  3. A case study of ionospheric storm effects in the Chinese sector during the October 2013 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Mao, Tian; Sun, Lingfeng; Hu, Lianhuan; Wang, Yungang; Wang, Zhijun

    2015-11-01

    In this study, we investigate the ionospheric storm effects in the Chinese sector during 2 October 2013 geomagnetic storm. The TEC map over China sector (1° × 1°) and eight ionosondes data along the longitude of 110°E are used to show significant positive ionospheric phases (enhancements in TEC and ionospheric peak electron density NmF2) in the high-middle latitude region and the negative effects at the low latitude and equatorial region during the storm. A wave structure with periods about 1-2 h and horizontal speed about 680 m/s, propagating from the high latitudes to the low latitudes is observed in electron densities within the height region from 200 to 400 km, which is caused by the combined effects of neutral wind and the large-scale traveling disturbances (LSTIDs). In the low latitude regions, compared with those in the quiet day, the ionospheric peak heights of the F2 layer (hmF2) in the storm day obviously increase accompanying a notably decrease in TEC and NmF2, which might be as a result of the eastward prompt penetration electric field (PPEF) evidenced by the two magnetometers and the subsequent westward disturbance dynamo electric fields (DDEF). The storm-time TEC enhancement mainly occurs in the topside ionosphere, as revealed from the topside TEC, bottomside TEC and GPS TEC.

  4. Simultaneous Forbush decreases and associated geomagnetic storms during the last three solar cycles

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley; Okeke, Francisca

    Forbush decrease (FD) are observed reduction in galactic cosmic ray (GCR) intensity as measured by ground neutron monitors. FD is associated with increased activity of the sun as reflected in the size of the interplanetary coronal mass ejections passing around the Earth and the corotating regions in the Heliosphere. Since the interplanetary anisotropy evolves itself during a geomagnetic storm in addition to the reconfiguration of external magnetospheric currents, it is expected that changes in transmissivity of cosmic rays of glactic origin will occur during Geomagnetic storms. In this study we examine over one hundred and fifty (150) FD events and associated geomagnetic storms over the last three solar cycles from 1970 to 2003. The negative peaks of the FDs and the Dst coincided for most of the events ( 70%). There was good correlation (>0.65) between the FDs and Dst. Fresh evidence of the influence of external magnetospheric currents on the count rates of the neutron monitors stations during periods of Forbush decreases (FDs) is provided. This evidence is observed as sudden increases in the count rates during the main phase of simultaneous FD. The magnitude of the sudden rise in the count rates of Neutron monitors and peak dst correlated well (>0.50) both for high latitude and mid latitude stations.

  5. Comparisons of Several Coupling Functions during Moderate Geomagnetic Storms of SC23

    NASA Astrophysics Data System (ADS)

    Maris Muntean, Georgeta; Mierla, Marilena; Besliu-Ionescu, Diana; Talpeanu, Dana Camelia

    2016-07-01

    Understanding the evolution of the interplanetary parameters before a geomagnetic storm and how they relate to its magnitude should improve our perspective towards a better prediction of geo-effectiveness of the solar eruptive events. One important way to understand the evolution of a geomagnetic storm is by computing the quantity of energy that is transferred from the solar wind into the magnetosphere. There are several formulas (coupling functions) to estimate this transfer of energy. We selected moderate geomagnetic storms (-50 nT ≥ Dst ≥ -150 nT) that were produced by interplanetary coronal mass ejections throughout the solar cycle 23. We selected only the events which were clearly associated with a solar event (i.e. a coronal mass ejection) (see Richardson and Cane online catalogue). We will present here a comparative analysis between different coupling functions such as epsilon parameter (Akasofu, 1981) and Ein parameter (Wang et al., 2014). We will discuss how these coupling functions are related to the geoeffective interplanetary electric field Em (see e.g. - Kan and Lee, 1979) that we have computed for the selected events. We will focus on a detailed case study.

  6. A novel approach to the dynamical complexity of the Earth's magnetosphere at geomagnetic storm time-scales based on recurrences

    NASA Astrophysics Data System (ADS)

    Donner, Reik; Balasis, Georgios; Stolbova, Veronika; Wiedermann, Marc; Georgiou, Marina; Kurths, Jürgen

    2016-04-01

    Magnetic storms are the most prominent global manifestations of out-of-equilibrium magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables can provide valuable insights into relevant physical processes as well as temporal scales associated with this phenomenon. In this work, we introduce several innovative data analysis techniques enabling a quantitative analysis of the Dst index non-stationary behavior. Using recurrence quantification analysis (RQA) and recurrence network analysis (RNA), we obtain a variety of complexity measures serving as markers of quiet- and storm-time magnetospheric dynamics. We additionally apply these techniques to the main driver of Dst index variations, the V BSouth coupling function and interplanetary medium parameters Bz and Pdyn in order to discriminate internal processes from the magnetosphere's response directly induced by the external forcing by the solar wind. The derived recurrence-based measures allow us to improve the accuracy with which magnetospheric storms can be classified based on ground-based observations. The new methodology presented here could be of significant interest for the space weather research community working on time series analysis for magnetic storm forecasts.

  7. Geomagnetic storm effects on the thermosphere and the ionosphere revealed by in situ measurements from OGO 6

    NASA Technical Reports Server (NTRS)

    Marubashi, K.; Reber, C. A.; Taylor, H. A., Jr.

    1976-01-01

    The temporal response of the densities of upper-atmospheric ion and neutral constituents to a particular geomagnetic storm is studied using simultaneous ion and neutral-composition data obtained by the OGO 6 satellite during consecutive orbits at altitudes greater than 400 km. The investigated constituents include H(+), O(+), N2, O, He, and H. Derivation of the H density is reviewed, and the main effects of the storm are discussed, particularly temporal and global variations in the densities. It is found that: (1) the H and He densities began to decrease near the time of sudden commencement, with the decrease amounting to more than 40% of the quiet-time densities during the maximum stage at high latitudes; (2) the O and N2 densities exhibited an overall increase which began later than the change in H and He densities; (3) the H(+) density decreased differently in two distinct regions separated near the low-latitude boundary of the light-ion trough; and (4) the O(+) density showed an increase during earlier stages of the storm and decreased only in the Northern Hemisphere during the recovery phase. Certain physical and chemical processes are suggested which play principal roles in the ionospheric response to the storm

  8. Additional stratifications in the equatorial F region at dawn and dusk during geomagnetic storms: Role of electrodynamics

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Balan, N.; Ravindran, Sudha; Pant, Tarun Kumar; Sridharan, R.; Bailey, G. J.

    2009-08-01

    The role of electrodynamics in producing additional stratifications in the equatorial F region (F 3 layer) at dawn and dusk during geomagnetic storms is discussed. Two cases of F 3 layer at dawn (0600-0730 LT on 5 October 2000 and 8 December 2000) and one case of F 3 layer at dusk (1600-1730 LT on 5 October 2000) are observed, for the first time, by the digital ionosonde at the equatorial station Trivandrum (8.5°N 77°E dip ˜ 0.5°N) in India. The unusual F 3 layers occurred during the geomagnetic storms and are associated with southward turning of interplanetary magnetic field B z , suggesting that eastward prompt penetration electric field could be the main cause of the F 3 layers. The dawn F 3 layer on 5 October is modeled using the Sheffield University Plasmasphere-Ionosphere Model by using the E × B drift estimated from the real height variation of the ionospheric peak during the morning period. The model qualitatively reproduces the dawn F 3 layer. While the existing F 2 layer rapidly drifts upward and forms the F 3 layer and topside ledge, a new layer forming at lower heights develops into the normal F 2 layer.

  9. Longitudinal differences observed in the ionospheric F-region during the major geomagnetic storm of March 31, 2001

    NASA Astrophysics Data System (ADS)

    Sahai, Y.; Fagundes, P. R.; Becker-Guedes, F.; Abalde, J. R.; Crowley, G.; Pi, X.; Igarashi, K.; Amarante, G. M.; Pimenta, A. A.; Bittencourt, J. A.

    2003-04-01

    A new ionospheric sounding station using a Canadian Advanced Digital Ionosonde (CADI) was established for routine measurements by the " Universidade do Vale do Paraiba (UNIVAP) " at São Jos&{acute;e} dos Campos (23.2oS, 45.9oW; dip latitude 17.6oS), Brazil, in August 2000. Response of the coupled magnetosphere-ionosphere-thermosphere system during major geomagnetic storms is one of the key issues related to space weather studies. A major geomagnetic storm with gradual commencement at about 0100 UT was observed on 31 March 2001. The storm on 31 March had two main phases, the first with Kp=9- between 0300-0900 UT and | Dst |max =358 nT at 0900 UT and second with Kp=8+ between 1800-2100 UT and | Dst |max =285 nT. In this paper, we present and discuss salient features from the ionospheric sounding measurements carried out at S. J. Campos on the three consecutive UT days 30 March (quiet), 31 March (disturbed) and 01 April (recovery) 2001. During most of the storm period, the foF2 values showed negative phase, whereas during both the main phases large F-region height variations were observed. In order to study the longitudinal differences observed in the F-region during the storm, the simultaneous ionospheric sounding measurements carried out at S. J. Campos, El Arenosillo (37.1oN, 6.7o W; dip latitude 31.2oN), Spain, Okinawa (26.3oN, 127.8oE; dip latitude 21.2oN), Japan and Wakkanai (45.5oN, 141.7oE; dip latitude 41.2oN), Japan, during the period 30 March - 01 April 2001, have been analyzed. In addition, global ionospheric TEC maps from the worldwide network of GPS receivers are presented showing widespread TEC changes during both the main and recovery phases of the storm. The ionospheric sounding measurements are compared with the ASPEN-TIMEGCM model runs appropriate for the storm conditions.

  10. Severe ionosphere disturbances caused by the sudden response of evening subequatorial ionospheres to geomagnetic storms

    SciTech Connect

    Tanaka, T.

    1981-12-01

    By monitoring C band beacon signals from geostationary satellites in Japan, we have observed anomalously strong ionospheric scintillations several times during three years from 1978 to 1980. These severe scinitillations occur associated with geomagnetic storms and accompany sudden and intense ionospheric perturbations in the low-latiude region. Through the analysis of these phenomena we have identified a new type of ionospheric disturbances characterized by intensifications of equatorial anomalies and successive severe ionospheric scintillations that extend to the C band range. The events occur only during a limited local time interval after the sunset, when storm time decreases of midlatitude geomagnetic fields in the same meridan take place during the same time interval. From the viewpoint of ionospheric storms, these disturbances precede the occurrence of midlatitude negative phases and storm time depressions of equatorial anomalies to indicate that the cause of the events is different from distrubed thermospheric circulations. The timing and magnitude of substorms at high-latitudes not always correlate with the events. We have concluded that the phenomena are closely related with penetrations toward low-latitudes of electric fields owing to the partial closure of asymmetrical ring currents.

  11. Ion heating during geomagnetic storms measured using energetic neutral atom imaging

    NASA Astrophysics Data System (ADS)

    Keesee, Amy; Elfritz, Justin; Katus, Roxanne; Scime, Earl

    2015-11-01

    Energy from the solar wind is deposited into the magnetosphere during geomagnetic storms. Much of this energy is deposited into the plasma sheet, driving phenomena that leads to heating. The plasma sheet ions are then injected to the inner magnetosphere, driving the ring current. While ions can undergo adiabatic heating during typical drift motion, collisional and wave-particle interactions can also lead to ion heating. A technique to measure ion temperatures using energetic neutral atom (ENA) data has been developed using ENA data from the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission global maps of ion temperature during the evolution of geomagnetic storms are made. These maps exhibit the location and characteristics of regions of ion heating and during which storm phase they occur. Superposed epoch analyses of such maps have demonstrated typical characteristics of ion heating during storms driven by coronal mass ejections as compared to those driven by high speed solar wind streams. The temperatures have been used to establish boundary conditions for modeling of the inner magnetosphere. We will give an overview of recent studies using TWINS ion temperature maps. Work supported by NNX10AN08A and AGS-1113478.

  12. Development of a CME-associated geomagnetic storm intensity prediction tool

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; DeHart, J. M.

    2015-12-01

    From 1995 to 2012, the Wind spacecraft recorded 168 magnetic cloud (MC) events. Among those events, 79 were found to have upstream shock waves and their source locations on the Sun were identified. Using a recipe of interplanetary magnetic field (IMF) Bz initial turning direction after shock (Wu et al., 1996, GRL), it is found that the north-south polarity of 66 (83.5%) out of the 79 events were accurately predicted. These events were tested and further analyzed, reaffirming that the Bz intial turning direction was accurate. The results also indicate that 37 of the 79 MCs originate from the north (of the Sun) averaged a Dst_min of -119 nT, whereas 42 of the MCs originating from the south (of the Sun) averaged -89 nT. In an effort to provide this research to others, a website was built that incorporated various tools and pictures to predict the intensity of the geomagnetic storms. The tool is capable of predicting geomagnetic storms with different ranges of Dst_min (from no-storm to gigantic storms). This work was supported by Naval Research Lab HBCU/MI Internship program and Chief of Naval Research.

  13. Peculiar features of the low-latitude and midlatitude ionospheric response to the St. Patrick's Day geomagnetic storm of 17 March 2015

    NASA Astrophysics Data System (ADS)

    Nayak, Chinmaya; Tsai, L.-C.; Su, S.-Y.; Galkin, I. A.; Tan, Adrian Teck Keng; Nofri, Ed; Jamjareegulgarn, Punyawi

    2016-08-01

    The current study aims at investigating and identifying the ionospheric effects of the geomagnetic storm that occurred during 17-19 March 2015. Incidentally, with SYM-H hitting a minimum of -232 nT, this was the strongest storm of the current solar cycle 24. The study investigates how the storm has affected the equatorial, low-latitude, and midlatitude ionosphere in the American and the European sectors using available ground-based ionosonde and GPS TEC (total electron content) data. The possible effects of prompt electric field penetration is observed in both sectors during the main phase of the storm. In the American sector, the coexistence of both positive and negative ionospheric storm phases are observed at low latitudes and midlatitudes to high latitudes, respectively. The positive storm phase is mainly due to the prompt penetration electric fields. The negative storm phase in the midlatitude region is a combined effect of disturbance dynamo electric fields, the equatorward shift of the midlatitude density trough, and the equatorward compression of the plasmapause in combination with chemical compositional changes. Strong negative ionospheric storm phase is observed in both ionosonde and TEC observations during the recovery phase which also shows a strong hemispherical asymmetry. Additionally, the variation of equatorial ionization anomaly as seen through the SWARM constellation plasma measurements across different longitudes has been discussed. We, also, take a look at the performance of the IRI Real-Time Assimilative Mapping during this storm as an ionospheric space weather tool.

  14. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    NASA Technical Reports Server (NTRS)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  15. General circulation modeling of the thermosphere-ionosphere during a geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal; Immel, Thomas; Ridley, Aaron; Frey, Harald U.; Moldwin, Mark

    2016-07-01

    Using a three-dimensional general circulation model (GCM) of the upper atmosphere, we investigate the response of the thermosphere-ionosphere system to the August 2011 major geomagnetic storm. The GCM is driven by measured storm-time input data of the Interplanetary Magnetic Field (IMF), solar activity, and auroral activity. Simulations for quiet steady conditions over the same period are performed as well in order to assess the response of the neutral and plasma parameters to the storm. During the storm, the high-latitude mean ion flows are enhanced by up to ~150%. Overall, the global mean neutral temperature increases by up to 15%, while the maximum thermal response is higher in the winter Southern Hemisphere at high-latitudes than the summer Northern Hemisphere: 40% vs. 20% increase in high-latitude mean temperature, respectively. The global mean Joule heating of the neutral atmosphere increases by more than a factor of three. There are distinct hemispheric differences in the magnitude and morphology of the horizontal ion flows and thermospheric circulation during the different phases of the storm. The thermospheric circulation demonstrates the largest amount of hemispheric differences during the later stages of the storm. Dynamical diagnostics show that advective forcing contributes to hemispheric differences.

  16. Equatorial electrojet in the Indian region during the geomagnetic storm of 13-14 November 1998

    NASA Astrophysics Data System (ADS)

    Chandra, H.; Rastogi, R. G.; Choudhary, R. K.; Sharma, Som

    2016-04-01

    The geomagnetic storm of November 1998 is a unique event where IMF-Bz remained southward with values exceeding -15 nT for more than a day. The SYM/H index decreased from about 07 hr on 13 November 1998 reaching a minimum of about -120 nT around midnight of 13-14 November 1998. Features of the equatorial electrojet in the Indian region are studied during the geomagnetic storm event of 13-14 November 1998, based on the geomagnetic data from the chain of observatories in India. Sudden northward turning of IMF-Bz for a very short duration around 08 hr on 13 November 1998 resulted in a small and very short duration counter electrojet. A strong (-50 nT) and a long duration counter electrojet, right from 08 to 13 hr on 14 November 1998 was observed resulting in the absence of equatorial Es at Thumba. Absence of the equatorial ionization anomaly was also observed as seen from the ionograms over Thumba and ionspheric data from Ahmedabad. The delayed effect on 14 November 1998 is due to the disturbance dynamo effect.

  17. An Investigation of Geomagnetic Storms and Associated Cosmic Ray Intensity During Recent Solar Cycle

    NASA Astrophysics Data System (ADS)

    Kaushik, Sonia

    2016-07-01

    Shocks driven by energetic coronal mass ejections (CME's) and other interplanetary (IP) transients are mainly responsible for initiating large and intense geomagnetic storms. Observational results indicate that galactic cosmic rays (CR) coming from deep surface interact with these abnormal solar and IP conditions and suffer modulation effects. The current solar cycle has provided a long list of these highly energetic events influencing the Earth's geomagnetic field up to a great extent. We have selected such intense geo-effective CME's occurred during recent solar cycle and studied their possible influence on cosmic ray intensity as well as on Earth' s geomagnetic field using the hourly values of IMF data obtained from the NSSD Center. Solar wind data obtained from various satellites are used in the studies which are available during the selected events period. The super neutron monitor data obtained from Kiel, Oulu and Huancayo stations, well distributed over different latitudes has been used in the present study. It is found that AP and AE indices show rise before the forward turnings of IMF and both the Dst index and cosmic ray intensity show a classic decrease. The analysis further indicates the significant role of the magnitudes of Bz component of IMF substantiating the earlier results. It is further inferred that the magnitude of these responses depends on BZ component of IMF being well correlated with solar maximum and minimum periods. Transient decrease in cosmic ray intensity with slow recovery is observed during the storm phase duration.

  18. Magnetic Field Measurement on the C/NOFS Satellite: Geomagnetic Storm Effects in the Low Latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Le, Guan; Pfaff, Rob; Kepko, Larry; Rowland, Doug; Bromund, Ken; Freudenreich, Henry; Martin, Steve; Liebrecht, C.; Maus, S.

    2010-01-01

    The Vector Electric Field Investigation (VEFI) suite onboard the Communications/Navigation Outage Forecasting System (C/NOFS) spacecraft includes a sensitive fluxgate magnetometer to measure DC and ULF magnetic fields in the low latitude ionosphere. The instrument includes a DC vector measurement at 1 sample/sec with a range of +/- 45,000 nT whose primary objective is to provide direct measurements of both V x B and E x B that are more accurate than those obtained using a simple magnetic field model. These data can also be used for scientific research to provide information of large-scale ionospheric and magnetospheric current systems, which, when analyzed in conjunction with the C/NOFS DC electric field measurements, promise to advance our understanding of the electrodynamics of the low latitude ionosphere. In this study, we use the magnetic field data to study the temporal and local time variations of the ring currents during geomagnetic storms. We first compare the in situ measurements with the POMME (the POtsdam Magnetic Model of the Earth) model in order to provide an in-flight "calibration" of the data as well as compute magnetic field residuals essential for revealing large scale external current systems. We then compare the magnetic field residuals observed both during quiet times and during geomagnetic storms at the same geographic locations to deduce the magnetic field signatures of the ring current. As will be shown, the low inclination of the C/NOFS satellite provides a unique opportunity to study the evolution of the ring current as a function of local time, which is particularly insightful during periods of magnetic storms. This paper will present the initial results of this study.

  19. The geomagnetic secular variation S parameter: A mathematical artifact

    NASA Astrophysics Data System (ADS)

    Linder, J. M.; Gilder, S. A.

    2011-12-01

    Secular variation, the change in the Earth's magnetic field through time, reflects the energy state of the geodynamo. Secular variation is commonly quantified by the standard deviation of the angular distances of the virtual geomagnetic poles to their mean pole, known as the S value. The S value has long been thought to exhibit latitude dependence [S(λ)] whose origin is widely attributed to a combination of time-varying dipole and non-dipole components. The slope, magnitude and uncertainty of S(λ) are taken as a basis to model the geomagnetic field and understand its evolution. Here we show that variations in S stem from a mathematical aberration of the conversion from directions to poles. A new method to quantify secular variation is proposed.

  20. Comparing Deep Dropouts of Relativistic Electron Fluxes with Geomagnetic Storms and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Webb, D. F.; Brautigam, D. H.

    2005-05-01

    High fluxes of relativistic (> 1 MeV) electrons in the outer radiation belt are a recognized hazard to spacecraft in geosynchronous orbits through mechanisms such as deep dielectric charging. It is also known that the electron flux levels can be highly variable and do not always track geomagnetic activity, such as during large storms (e.g., Reeves et al., 2003). It has been noted that very deep dropouts or decreases down to low magnetic L shells of the population of electrons sometimes occur during intense storms driven by strong magnetic cloud/coronal mass ejections (CMEs). Two nice examples are during the late Oct. and late Nov. storms in 2003. We used daily-averaged flux data from the AFRL CEASE detector onboard the TSX5 satellite in LEO orbit to identify periods of deep dropouts from July 2000 to the present. We searched for uniform dropouts in the E > 1.2 MeV electron channel having fluxes < 0.1 electrons/cm**2 sec sr extending below L = 4. The dropout events were first identified visually on color plots and then by the quantitative criterion that the flux drop by a factor of 10 or more from one day to the next. About 40 events met these criteria and 75% of these occurred during geomagnetic storms with peak Dst < -50nT. Most of these stormtime dropout event-storms were driven by the strong southward solar wind magnetic fields associated with CMEs. We will discuss these results in terms of solar wind drivers of electron flux loss in the radiation belts.

  1. Study about geomagnetic variations from data recorded at Surlari Geomagnetic Observatory

    NASA Astrophysics Data System (ADS)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Sandulescu, Agata Monica; Niculici, Eugen

    2013-04-01

    This paper presents statistical and spectral analysis of data from Surlari Geomagnetic Observatory that contributing to study of geomagnetic variations. Thus were highlighted, for long series of records over several solar cycles, periodicities of 22 years and 11 years. Following the same procedures for medium recording series (multi-annual) have highlighted annual, seasonal and monthly periodicities. For shorter data series, we highlighted diurnal, semidiurnal, 8 hours and even lower periodicities. For very short series with a high sample rate and for few magnetotellurics records, we highlight different types of pulsations (Pc2 - Pc5 and Pi 2). Geomagnetic signals are the convolution product of the atomic stationary signals mono-frequential of different amplitudes associated to phenomena with a very broad band of periodicities and nondeterministic signals associated with geomagnetic disturbances and non-periodic phenomena. Among analysis processes used for discrete series of geomagnetic data with different lengths and sampling rates, can conclude the following: Moving average works as a low pass filter in frequency or high pass in time. By eliminating high frequency components (depending on mobile window size used) can be studied preferential periodicities greater than a given value. Signal linearization (using least squares) provides information on linear trend of the entire series analyzed. Thus, for the very long data series (several decades) we extracted the secular variation slope for each geomagnetic component, separately. The numeric derivative of signal versus time proved to be a very reliable indicator for geomagnetic disturbed periods. Thus, the derivative value may be increased by several orders of magnitude during periods of agitation in comparisons to calm periods. The correlation factor shows significant increases when between two time series a causal relationship exists. Variation of the correlation factor, calculated for a mobile window containing k

  2. Structuring of intermediate scale equatorial spread F irregularities during intense geomagnetic storm of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Kakad, B.; Gurram, P.; Tripura Sundari, P. N. B.; Bhattacharyya, A.

    2016-07-01

    Here we examine the structuring of equatorial plasma bubble (EPB) during intense geomagnetic storm of solar cycle (SC) 24 that occurred on 17 March 2015 using spaced receiver scintillation observations on a 251 MHz radio signal, recorded by a network of stations in Indian region. As yet, this is the strongest geomagnetic storm (Dstmin˜-223nT) that occurred in present SC. Present study reveals that the structuring of equatorial spread F (ESF) irregularities was significantly different on 17 March as compared to quiet days of corresponding month. ESF irregularities of intermediate scale (100 m to few kilometers) are observed at unusually higher altitudes (≥ 800 km) covering wider longitudinal-latitudinal belt over Indian region. A presence of large-scale irregularity structures with stronger ΔN at raised F peak with small-scale irregularities at even higher altitudes is observed. It caused strong focusing effect (S4>1) that prevails throughout premidnight hours at dip equatorial station Tirunelveli. Other observational aspect is that zonal irregularity drifts over low-latitude station Kolhapur exhibited a large deviation of ˜230 m/s from their average quiet time pattern. During this geomagnetic storm, two southward turnings of significant strength (BZ≤-15 nT) occurred at 11.4 IST (Indian standard time) and 17.9 IST. The later southward turning of interplanetary magnetic field (IMF)BZ resulted in a large eastward prompt penetration electric field (PPEF) close to sunset hours in Indian longitude. Estimates of PPEF obtained from real-time ionospheric model are too low to explain the observed large upliftment of F region in the post sunset hours. Possible reason for observed enhanced PPEF-linked effects is discussed.

  3. Cosmic rays flux and geomagnetic field variations at midlatitudes

    NASA Astrophysics Data System (ADS)

    Morozova, Anna; Ribeiro, Paulo; Tragaldabas Collaboration Team

    2014-05-01

    It is well known that the cosmic rays flux is modulated by the solar wind and the Earth's magnetic field. The Earth's magnetic field deflects charged particles in accordance with their momentum and the local field strength and direction. The geomagnetic cutoffs depend both on the internal and the external components of the geomagnetic field, therefore reflecting the geodynamo and the solar activity variations. A new generation, high performance, cosmic ray detector Tragaldabas was recently installed at the University of Santiago de Compostela (Spain). The detector has been acquiring test data since September 2013 with a rate of about 80 events/s over a solid angle of ~5 srad. around the vertical direction. To take full advantage of this new facility for the study of cosmic rays arriving to the Earth, an international collaboration has been organized, of about 20 researchers from 10 laboratories of 5 European countries. The Magnetic Observatory of Coimbra (Portugal) has been measuring the geomagnetic field components for almost 150 years since the first measurements in 1866. It is presently equipped with up-to-date instruments. Here we present a preliminary analysis of the global cosmic ray fluxes acquired by the new Tragaldabas detector in relation to the geomagnetic field variations measured by the Coimbra observatory. We also compare the data from the new cosmic rays detector with results obtained by the Castilla-La Mancha Neutron Monitor (CaLMa, Gadalajara, Spain) that is in operation since October 2011.

  4. Analysis of geomagnetic data and cosmic ray variations in periods of magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Mandrikova, Oksana; Zalyaev, Timur; Solovev, Igor; Shevtsov, Boris

    field and predicting strong magnetic storms. Using the combination of the wavelet transform and neural networks, we have developed a technique of approximating the time variation of cosmic-ray data. This technique allows us to perform detailed analysis of geomagnetic data and detect anomalies in periods of high solar activity. Approximations of large-scale time variation components of cosmic-ray data have been obtained in the following form: [ c_{j,n+1}(t)=\\varphi^3_m Biggl (sum_i omega^3_{mi}\\varphi^2_i biggl (sum_l omega^2_{il}\\varphi^1_lBigl(sum_n omega^1_{ln}c_{j,n}(t)Bigr )biggr ) Biggr ) ] where c_{j,n}=< y, phi_{j,n} > ;phi_{j,n}=2(j/2) phi(2(j(t)-n)) is the scaling function, omega(1_{ln}) are the weights of the neurons of the network input layer l,omega(2_{il}) are the weights of the neurons of the network hidden layer i, omega(3_{mi}) are the weights of the neurons of the network output layer m, varphi(1_l(z)=varphi^2_i(z)=(2)/(1+exp(-2z))-1) ,varphi(3_m(z)) =a*z+b. Coefficients c_{j,n} are the result of transforming of the original function y to the space with the scale j. Analysis of long geomagnetic data from the Paratunka observatory (Kamchatka region, Russia) provided quantitative estimates of the storminess degree of the geomagnetic field before and during magnetic storms. Furthermore, we have managed to identify local weak increases of the field perturbations prior to the main phase of storms. The intensity of field perturbations rises on average 2.5 days before the onset of a storm. Abnormal time periods connected with increased solar activity have been detected in the flow of cosmic rays. Comparison of the results with the geomagnetic data has shown that the anomalies in the cosmic ray variations occur in periods of strong geomagnetic perturbations. The tools and techniques suggested in the present work, together with other methods of data -analysis will help forecast space weather, estimate more accurately the condition of the Earth’s magnetic

  5. Causes of HF Backscatter Loss During Large Geomagnetic Storms: Comparisons between Northern and Southern Hemisphere SuperDARN Radars

    NASA Astrophysics Data System (ADS)

    Currie, J. L.; Waters, C. L.; Menk, F. W.; Sciffer, M. D.

    2015-12-01

    HF communication and surveillance systems are known to experience difficulty during geomagnetic storm conditions. The Super Dual Auroral Radar Network (SuperDARN) comprises over 35, HF (8-12 MHz) over-the-horizon radars used to study ionosphere dynamics and HF propagation. It is well known that SuperDARN radars experience a loss of backscatter during geomagnetic storm events, yet details of the reasons why this occurs are not clear. Loss of HF backscatter during geomagnetic storms is often attributed to D region absorption. However, the data shows that during intense geomagnetic storms, SuperDARN radars return high signal/noise ratio, backscatter from ranges out to ~800 km, inconsistent with loss due to absorption in the D region. Examples of SuperDARN backscatter during large storms will be presented and discussed together with HF ray-tracing, ionosonde and riometer data. Data from Kodiak in the north and Bruny Island in the south hemisphere are compared. These reveal properties of the ionosphere as the storm progresses and show hemisphere similarities and differences. Possible backscatter loss mechanisms will be discussed, given the evidence derived from the experimental data.

  6. Probing geomagnetic storm-driven magnetosphere-ionosphere dynamics in D-region ionosphere using VLF signal propagation characteristics

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Ogunmodimu, Olugbenga

    2016-07-01

    When propagating in the Earth-ionosphere waveguide, the amplitude and phase of VLF/LF radio signals are sensitive to changes in the electrical conductivity of the lower ionosphere. This characteristic makes it useful in studying sudden ionospheric disturbances, especially those related to prompt X-ray flux output from solar flares and gamma ray bursts (GRBs). However, strong geomagnetic disturbances and/or storm conditions are known to produce large and global ionospheric disturbances, which can significantly affect VLF radio propagation in the D region ionosphere. Diurnal VLF signature may also convey other important information, especially those related to geomagnetic disturbance/storm induced ionospheric changes. In this paper, using the data of three propagation paths (at latitudes 40-54º), we analyze in detail the trend of anomalies of VLF diurnal signal under varying solar and geomagnetic space environmental conditions to identify possible geomagnetic footprints on the D region ionosphere.

  7. A time-compressed simulated geomagnetic storm influences the nest-exiting flight angles of the stingless bee Tetragonisca angustula.

    PubMed

    Esquivel, D M S; Corrêa, A A C; Vaillant, O S; de Melo, V Bandeira; Gouvêa, G S; Ferreira, C G; Ferreira, T A; Wajnberg, E

    2014-03-01

    Insects have been used as models for understanding animal orientation. It is well accepted that social insects such as honeybees and ants use different natural cues in their orientation mechanism. A magnetic sensitivity was suggested for the stingless bee Schwarziana quadripunctata, based on the observation of a surprising effect of a geomagnetic storm on the nest-exiting flight angles. Stimulated by this result, in this paper, the effects of a time-compressed simulated geomagnetic storm (TC-SGS) on the nest-exiting flight angles of another stingless bee, Tetragonisca angustula, are presented. Under an applied SGS, either on the horizontal or vertical component of the geomagnetic field, both nest-exiting flight angles, dip and azimuth, are statistically different from those under geomagnetic conditions. The angular dependence of ferromagnetic resonance (FMR) spectra of whole stingless bees shows the presence of organized magnetic nanoparticles in their bodies, which indicates this material as a possible magnetic detector.

  8. A time-compressed simulated geomagnetic storm influences the nest-exiting flight angles of the stingless bee Tetragonisca angustula

    NASA Astrophysics Data System (ADS)

    Esquivel, D. M. S.; Corrêa, A. A. C.; Vaillant, O. S.; de Melo, V. Bandeira; Gouvêa, G. S.; Ferreira, C. G.; Ferreira, T. A.; Wajnberg, E.

    2014-03-01

    Insects have been used as models for understanding animal orientation. It is well accepted that social insects such as honeybees and ants use different natural cues in their orientation mechanism. A magnetic sensitivity was suggested for the stingless bee Schwarziana quadripunctata, based on the observation of a surprising effect of a geomagnetic storm on the nest-exiting flight angles. Stimulated by this result, in this paper, the effects of a time-compressed simulated geomagnetic storm (TC-SGS) on the nest-exiting flight angles of another stingless bee, Tetragonisca angustula, are presented. Under an applied SGS, either on the horizontal or vertical component of the geomagnetic field, both nest-exiting flight angles, dip and azimuth, are statistically different from those under geomagnetic conditions. The angular dependence of ferromagnetic resonance (FMR) spectra of whole stingless bees shows the presence of organized magnetic nanoparticles in their bodies, which indicates this material as a possible magnetic detector.

  9. Geomagnetic variations and middle latitude IMF in periods of magnetic quietness

    NASA Astrophysics Data System (ADS)

    Ivanova, P. K.; Kleimenova, N. G.

    The slight variations of the midlatitude geomagnetic field during quiet and slightly disturbed periods are studied. These variations serve as the background of the powerful nonlinear processes of strong magnetic storms. An analysis is presented of the relationship between the variations of the magnetic field H-component at the Panagyurishte Observatory (phi = 41 deg, lambda = 103 deg) during relatively quiet magnetic periods preceding the sudden commencement of magnetic storms with the variations of the energy entering the magnetosphere and the variations of the solar wind parameters, B(z) and B(y). The quiet diurnal values are obtained from the observed hourly values of the H-component of the field and the rate of variation of the quiet diurnal value is analyzed. A regression analysis is performed of the variability, the hourly variations of delta-B(z) and delta-B(y), and the velocity variations of the energy entering the magnetosphere. Examples are given of the results obtained from these analyses.

  10. Study of geomagnetic disturbances and ring current variability during storm and quiet times using wavelet analysis and ground-based magnetic data from multiple stations

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghua

    The magnetosphere-ionosphere contains a number of current systems. These currents vary on a wide range of spatial and temporal scales and physically couple with each other. To study the complicated behaviors of these coupled current systems, the ground-based magnetometer has been a useful tool, but the recorded magnetometer data are always multi-scaled and intermittent due to the nature of these current systems. To distinguish these geomagnetic effects with multiple temporal and frequency scales, the wavelet analysis technique is especially suitable because of its special abilities of presenting information in both temporal and frequency domains. In this dissertation, the geomagnetic disturbances and the ring current variability during storm and quiet times are studied by using wavelet analysis and ground-based magnetic data from multiple stations. The first part of this dissertation investigates the strengths of applying the wavelet procedure to geomagnetic data for ring current study during storm and quiet periods. The second part of this dissertation characterizes the geomagnetic effects caused by symmetric and asymmetric components of ring currents during storm and quiet times by applying wavelet analysis to geomagnetic data from multiple stations. The third part of this dissertation studies the spatial variability of the symmetric ring current by applying the wavelet analysis technique to multiple components of magnetic data from multiple stations. The results show the unique strengths of the wavelet method allow us to quantitatively distinguish the geomagnetic effects on ring current variations from other M-I current systems. The unique strengths of wavelet method also allow us to separate the magnetic effects of the symmetric ring current from those caused by the asymmetric ring current. Quantitative information of the spatial variability of the ring currents is essential for understanding the dynamics of the ring currents, as well as the magnetic storm

  11. Auroral activities observed by SNPP VIIRS day/night band during a long period geomagnetic storm event on April 29-30, 2014

    NASA Astrophysics Data System (ADS)

    Shao, Xi; Cao, Changyong; Liu, Tung-chang; Zhang, Bin; Wang, Wenhui; Fung, Shing F.

    2015-10-01

    The Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP represents a major advancement in night time imaging capabilities. The DNB senses radiance that can span 7 orders of magnitude in one panchromatic (0.5-0.9 μm) reflective solar band and provides imagery of clouds and other Earth features over illumination levels ranging from full sunlight to quarter moon. When the satellite passes through the day-night terminator, the DNB sensor is affected by stray light due to solar illumination on the instrument. With the implementation of stray light correction, stray light-corrected DNB images enable the observation of aurora occurred in the high latitude regions during geomagnetic storms. In this paper, DNB observations of auroral activities are analyzed during a long period (> 20 hours) of geomagnetic storm event occurred on Apr. 29-30, 2014. The storm event has the Bz component of interplanetary magnetic field (IMF) pointing southward for more than 20 hours. During this event, the geomagnetic storm index Dst reached -67 nT and the geomagnetic auroral electrojet (AE) index increased and reached as high as 1200 nT with large amplitude fluctuations. The event occurred during new moon period and DNB observation has minimum moon light contamination. During this event, auroras are observed by DNB for each orbital pass on the night side (~local time 1:30am) in the southern hemisphere. DNB radiance data are processed to identify regions of aurora during each orbital pass. The evolution of aurora is characterized with time series of the poleward and equatorward boundary of aurora, area, peak radiance and total light emission of the aurora in DNB observation. These characteristic parameters are correlated with solar wind and geomagnetic index parameters. It is found that the evolution of total area-integrated radiance of auroral region over the southern hemisphere correlated well with the ground geomagnetic AE index with correlation

  12. Aurora Activities Observed by SNPP VIIRS Day-Night Band during St. Patrick's Day, 2015 G4 Level Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Liu, T. C.; Shao, X.; Cao, C.; Zhang, B.; Fung, S. F.; Sharma, S.

    2015-12-01

    A G4 level (severe) geomagnetic storm occurred on March 17 (St. Patrick's Day), 2015 and it is among the strongest geomagnetic storms of the current solar cycle (Solar Cycle 24). The storm is identified as due to the Coronal Mass Ejections (CMEs) which erupted on March 15 from Region 2297 of solar surface. During this event, the geomagnetic storm index Dst reached -223 nT and the geomagnetic aurora electrojet (AE) index increased and reached as high as >2200 nT with large amplitude fluctuations. Aurora occurred in both hemispheres. Ground auroral sightings were reported from Michigan to Alaska and as far south as southern Colorado. The Day Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP represents a major advancement in night time imaging capabilities. The DNB senses radiance that can span 7 orders of magnitude in one panchromatic (0.5-0.9 μm) reflective solar band and provides imagery of clouds and other Earth features over illumination levels ranging from full sunlight to quarter moon. In this paper, DNB observations of aurora activities during the St. Patrick's Day geomagnetic storm are analyzed. Aurora are observed to evolve with salient features by DNB for orbital pass on the night side (~local time 1:30am) in both hemispheres. The radiance data from DNB observation are collected at the night sides of southern and northern hemispheres and geo-located onto geomagnetic local time (MLT) coordinates. Regions of aurora during each orbital pass are identified through image processing by contouring radiance values and excluding regions with stray light near day-night terminator. The evolution of aurora are characterized with time series of the poleward and low latitude boundary of aurora, their latitude-span and area, peak radiance and total light emission of the aurora region in DNB observation. These characteristic parameters are correlated with solar wind and geomagnetic index parameters.

  13. Magnetic latitude and local time distributions of ionospheric currents during a geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Tsuji, Yuji; Shinbori, Atsuki; Kikuchi, Takashi; Nagatsuma, Tsutomu

    2012-07-01

    In order to clarify the global distribution of ionospheric currents during a geomagnetic storm, we analyzed ground magnetic disturbances from high latitudes to the magnetic equator for the storm on September 7-8, 2002, with the minimum SYM-H value of -168 nT. In this analysis, we investigated magnetic field deviations in the northward component from the SYM-H, as functions of the dipole magnetic latitude (DMLAT) and the magnetic local time (MLT). During the main phase of the storm, the deviations at the low latitudes (10°-35° in DMLAT) were positive/negative in the dawn/dusk (0-9/11-24 h MLT) sector. On the other hand, the deviations at the dayside middle latitudes (35°-55° in DMLAT) were negative/positive in the morning/afternoon (6-12/13-15 h MLT) sector. The local time distribution at the low latitudes may represent the dawn-dusk asymmetry of the storm time ring current, while that at the dayside middle latitudes coincides with the DP2 currents due to the convection electric field associated with the Region 1 field-aligned currents (R1 FACs). All over the nightside middle latitude, the deviations were positive. This implies the direct effect of the R1 FACs through the Biot-Savart's law. At the geomagnetic equator, the eastward and westward electrojets were intensified on the day and nightside, respectively, being caused by the penetrated dawn-to-dusk convection electric field. We found that the MLT distribution of the magnetic deviations during the recovery phase was in opposite sense to that during the main phase at the dayside middle latitudes. The reversed magnetic disturbances must be due to the overshielding electric field associated with the Region 2 field-aligned currents (R2 FACs). Similarly, the deviations at the dayside and nightside equator were reversed, indicating penetration of the dusk-to-dawn overshielding electric field into the equatorial ionosphere. Based on the above results, we propose a current system including the ionospheric currents

  14. Natural variations in the geomagnetically trapped electron population

    NASA Technical Reports Server (NTRS)

    Vampola, A. L.

    1972-01-01

    Temporal variations in the trapped natural electron flux intensities and energy spectra are discussed and demonstrated using recent satellite data. These data are intended to acquaint the space systems engineer with the types of natural variations that may be encountered during a mission and to augment the models of the electron environment currently being used in space system design and orbit selection. An understanding of the temporal variations which may be encountered should prove helpful. Some of the variations demonstrated here which are not widely known include: (1) addition of very energetic electrons to the outer zone during moderate magnetic storms: (2) addition of energetic electrons to the inner zone during major magnetic storms; (3) inversions in the outer zone electron energy spectrum during the decay phase of a storm injection event and (4) occasional formation of multiple maxima in the flux vs altitude profile of moderately energetic electrons.

  15. Analysis of geomagnetic secular variation during 1980-1985 and 1985- 1990, and geomagnetic models proposed for the 1991 revision of the International Geomagnetic Reference Field

    USGS Publications Warehouse

    Peddie, N.W.

    1992-01-01

    The secular variation of the main geomagnetic field during the periods 1980-1985 and 1985-1990 was analyzed in terms of spherical harmonics up to the eighth degree and order. Data from worldwide magnetic observatories and the Navy's Project MAGNET aerial surveys were used. The resulting pair of secular-variation models was used to update the Definitive Geomagnetic Reference Field (DGRF) model for 1980, resulting in new mainfield models for 1985.0 and 1990.0. These, along with the secular-variation model for 1985-1990, were proposed for the 1991 revision of the International Geomagnetic Reference Field (IGRF). -Author

  16. Analysis of Changes of Cardiological Parameters at Middle Latitude Region in Relation to Geomagnetic Disturbances and Cosmic Ray Variations

    NASA Astrophysics Data System (ADS)

    Papailiou, M.; Dimitrova, S.; Babayev, E. S.; Mavromichalaki, H.

    2010-01-01

    Collaborating scientific groups from Athens (Greece), Baku (Azerbaijan) and Sofia (Bulgaria) have conducted a research work on the possible effects of geomagnetic field disturbances (GMF) and cosmic ray intensity (CRI) variations on human homeostasis, particularly, the cardio-health state. Electrocardiograms (ECGs) of seven functionally healthy persons were digitally registered at the joint Laboratory of Heliobiology located in the Medical Centre INAM, Baku, on working days and Saturdays. Heart rate values, estimated from ECGs, were analysed in relation to daily values of CRI, as measured by the Neutron Monitor of the University of Athens and daily variations of Dst and Ap geomagnetic indices and some significant results had been revealed in previous studies. Researches were continued by study of additional cardiologic parameters estimated from the same ECG data. In this study digital data of RR interval (the time elapsing between two consecutive R waves in the ECG), namely RRminimum, RRmaximum and RRaverage were analyzed taking into consideration different levels of GMF disturbances (estimated through variations of Dst and Ap indices) and cosmic ray activity (through CRI variations). The data refer to the time period 15 July 2006-31 March 2008. Variations of RR intervals show connection to GMF disturbances and CRI variations. The revealed effects are more pronounced for high levels of geomagnetic activity (when geomagnetic storms occur) and large CRI decreases as well as on the days before and after these variations.

  17. Energetic Electron Transport in the Inner Magnetosphere During Geomagnetic Storms and Substorms

    NASA Technical Reports Server (NTRS)

    McKenzie, D. L.; Anderson, P. C.

    2005-01-01

    We propose to examine the relationship of geomagnetic storms and substorms and the transport of energetic particles in the inner magnetosphere using measurements of the auroral X-ray emissions by PIXIE. PIXIE provides a global view of the auroral oval for the extended periods of time required to study stormtime phenomena. Its unique energy response and global view allow separation of stormtime particle transport driven by strong magnetospheric electric fields from substorm particle transport driven by magnetic-field dipolarization and subsequent particle injection. The relative importance of substorms in releasing stored magnetospheric energy during storms and injecting particles into the inner magnetosphere and the ring current is currently hotly debated. The distribution of particles in the inner magnetosphere is often inferred from measurements of the precipitating auroral particles. Thus, the global distributions of the characteristics of energetic precipitating particles during storms and substorms are extremely important inputs to any description or model of the geospace environment and the Sun-Earth connection. We propose to use PIXIE observations and modeling of the transport of energetic electrons to examine the relationship between storms and substorms.

  18. Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere: ISTP coordinated measurements

    SciTech Connect

    Baker, D.N.; Li, X.; Turner, N.; Allen, J.H.; Blake, J.B.; Sheldon, R.B.; Spence, H.E.; Belian, R.D.; Reeves, G.D.; Kanekal, S.G.; Lepping, R.P.; Ogilvie, K.; Mewaldt, R.A.; Onsager, T.; Singer, H.J.

    1997-07-01

    New, coordinated measurements from the International Solar-Terrestrial Physics (ISTP) constellation of spacecraft are presented to show the causes and effects of recurrent geomagnetic activity during recent solar minimum conditions. It is found using WIND and POLAR data that even for modest geomagnetic storms, relativistic electron fluxes are strongly and rapidly enhanced within the outer radiation zone of the Earth{close_quote}s magnetosphere. Solar wind data are utilized to identify the drivers of magnetospheric acceleration processes. Yohkoh solar soft X-ray data are also used to identify the solar coronal holes that produce the high-speed solar wind streams which, in turn, cause the recurrent geomagnetic activity. It is concluded that even during extremely quiet solar conditions (sunspot minimum) there are discernible coronal holes and resultant solar wind streams which can produce intense magnetospheric particle acceleration. As a practical consequence of this Sun-Earth connection, it is noted that a long-lasting E{gt}1MeV electron event in late March 1996 appears to have contributed significantly to a major spacecraft (Anik E1) operational failure.{copyright} 1997 American Geophysical Union

  19. Equatorial All Sky Imager Images from the Seychelles during the March 17th, 2015 geomagnetic storm.

    NASA Astrophysics Data System (ADS)

    Curtis, B.

    2015-12-01

    An all sky imager was installed in the Seychelles earlier this year. The Seychelles islands are located northeast of Madagascar and east of Somalia in the equatorial Indian Ocean. The all sky imager is located on the island of Mahe (4.6667°S, 55.4667°E geographic), (10.55°S, 127.07°E geomagnetic), with filters of 557.7, 620.0, 630.0, 765.0 and 777.4 nm. Images with a 90 second exposure from Seychelles in 777.4nm and 630.0nm from the night before and night of the March 17th geomagnetic storm are discussed in comparison to solar wind measurements at ACE and the disturbance storm time (Dst) index. These images show line-of-sight intensities of photons received dependent on each filters wavelength. A time series of these images sometimes will show the movement of relatively dark areas, or depletions, in each emission. The depletion regions are known to cause scintillation in GPS signals. The direction and speed of movement of these depletions are related to changes observed in the solar wind.

  20. Effects of Geomagnetic Storms and Sudden Stratospheric Warmings on Mesosphere and Lower Thermosphere Winds

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Gablehouse, R. D.; Gell, D. A.; Johnson, R. M.; Kafkalidis, J. F.; Killeen, T. L.; Niciejewski, R. J.; Ortland, D. A.; Skinner, W. R.; Solomon, S. C.

    2003-12-01

    Neutral winds in the MLT region are affected by dynamical influences from above and below. This is particular true at high latitudes, where solar forcing of the migrating tide may be smaller but other forcings play a big role. During geomagnetic storms, MLT neutral winds can be driven by magnetospheric convection through ion-neutral interactions. This is imparted onto the ionosphere as a cross polar cap potential forming an anti-sunward two-cell ion convection pattern which in turn drives the neutral winds in the polar MLT region. The question has always been how deep into the atmosphere the ion drift can affect the neutral wind. Scarcity of high-latitude data has hampered further understanding of the problem. Also, in the winter polar regions, the stratosphere from time to time experiences sudden warming events. While it is generally understood that these warmings are caused by troposphere planetary wave activity, there are still many unknown aspects to their excitation and propagation. There are also changes in the MLT region associated with these warming events. Moreover, this phenomena, although usually confined to the northern hemisphere, occurred in the southern hemisphere in 2002. We will use TIDI data to examine MLT neutral winds during the recent geomagnetic storm events in 2002 and 2003, and present data during the recent 2002 southern hemisphere warming event.

  1. Multipoint Measurements and Global Simulations of the June 23, 2015 Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Buzulukova, Natalia; Fok, Mei-Ching; Moore, Thomas E.; Glocer, Alex; Dorelli, John; Sibeck, David; Angelopoulos, Vassilis; Valek, Phil; McComas, David

    2016-04-01

    On 22-23 June 2015 a severe geomagnetic storm occurred with Dst minimum of approximately -200nT. During this extreme event, multipoint observations of magnetospheric dynamics were obtained by a fleet of Geospace spacecraft including MMS, TWINS, Van-Allen Probes and THEMIS. Extensive data coverage allows us to examine the responses of the ring current, radiation belts, ion composition and wave activity during this unusual event, both for the main phase of the storm as well as for the recovery phase. We present results of analysis of satellite data and simulation from a global coupled MHD-ring current model-radiation belt model (BATSRUS-CIMI) to connect multipoint observations from different parts of the magnetosphere. The output of virtual s/c in the global model is calculated and compared with the observations. The analysis helps to identify different magnetospheric domains from multipoint measurements and various magnetospheric boundary motions. We find the model is able to capture the global structure of the magnetosphere. We also explore how the initial disturbance from the solar wind propagates through the magnetosphere causing energization of plasma in the inner magnetosphere and producing severe geomagnetic activity.

  2. Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Baker, D. N.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Larsen, B. A.; Skoug, R. M.; Funsten, H. O.; Friedel, R. H. W.; Reeves, G. D.; Spence, H. E.; Mitchell, D. G.; Lanzerotti, L. J.

    2016-04-01

    Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. The results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. The ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.

  3. Relevance vector machines as a tool for forecasting geomagnetic storms during years 1996-2007

    NASA Astrophysics Data System (ADS)

    Andriyas, T.; Andriyas, S.

    2015-04-01

    In this paper, we investigate the use of relevance vector machine (RVM) as a learning tool in order to generate 1-h (one hour) ahead forecasts for geomagnetic storms driven by the interaction of the solar wind with the Earth's magnetosphere during the years 1996-2007. This epoch included solar cycle 23 with storms that were both ICME (interplanetary coronal mass ejection) and CIR (corotating interaction region) driven. Merged plasma and magnetic field measurements of the solar wind from the Advanced Composition Explorer (ACE) and WIND satellites located upstream of the Earth's magnetosphere at 1-h cadence were used as inputs to the model. The magnetospheric response to the solar wind driving measured by the disturbance storm time or the Dst index (measured in nT) was used as the output to be forecasted. The model was first tested on previously reported storms in Wu and Lundstedt (1997) and it gave a linear correlation coefficient, ρ, of above 90% and prediction efficiency (PE) above 80%. During 1996-2007, several storms (within each year) were chosen as test cases to analyze the forecasting robustness of the model. The top three forecasts per year were analyzed to assess the generalization ability of the model. These included storms with varying intensities ranging from weak (-53.01 nT) to strong (-422.02 nT) and durations (119-445 h). The top RVM forecast in a given year had ρ above 85% (87.00-96.85%), PE > 73 % (73.59-93.59%), and a root mean square error (RMSE) ranging from 9.31 to 33.45 nT. A qualitative comparison is made with model forecasts previously reported by Ji et al. (2012). We found that the robustness of the model with regards to fast learning and generating forecasts within acceptable error bounds makes it a very good proposition as a prediction tool (given the solar wind parameters) for space weather monitoring.

  4. Response of the ionospheric F-region in the American sector to the intense geomagnetic storm of June 2013

    NASA Astrophysics Data System (ADS)

    De Abreu, Alessandro; Brunini, Claudio; Gende, Mauricio; Fagundes, Paulo Roberto; De Jesus, Rodolfo; Coster, Anthea; Kavutarapu, Venkatesh; Pillat, Valdir Gil

    The critical interaction between the magnetosphere and ionosphere during intense geomagnetic storms continues to be important to space weather studies. In this communication, we present the response of the ionospheric F-region in the equatorial, low- and mid-latitude regions in the American sector during the intense geomagnetic storm on 01-03 June 2013. The geomagnetic storm reached a minimum Dst of -119 nT at 0900 UT on 01 June. For this study, we present vertical total electron content (vTEC) and phase fluctuations (in TECU/min) from a chain of GPS stations and the ionospheric parameters virtual height of the F region (h’F) and critical frequency of the F2-region (foF2) from a chain of digital ionosonde stations, covering from equatorial to mid-latitude regions in the American sector during the entire storm-time period 31 May-03 June 2013. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km are presented. The results obtained are relevant to enlarging our understanding of the electrodynamics and of the physical processes which involve positive and negative ionospheric storm phases due to the prompt penetration of electric fields/disturbance of electric fields, the thermospheric wind circulation changes and traveling ionospheric disturbances on the ionospheric F-region in American sector during disturbed geomagnetically periods.

  5. Solar daily variation at geomagnetic observatories in Pakistan

    NASA Astrophysics Data System (ADS)

    Rahim, Zain; Kumbher, Abdul Salam

    2016-03-01

    A study of solar daily variation is performed using the famous Chapman-Miller method for solar cycles 22 & 23 (1986-2007). The objective is to study the characteristics of Sq variation at Pakistani geomagnetic observatories using solar harmonics and a more traditional five quietest day's method. The data recorded at the Karachi geomagnetic observatory for SC 22 and 23 and data sets from other Pakistani geomagnetic observatories; Sonmiani, Quetta and Islamabad are analyzed for H, D and Z components of the geomagnetic field. Except for the D and Z components at Karachi and Sonmiani and H component at Islamabad, the two solar daily variations correlated well with each other. Also, the synthesized daily variation from the solar harmonics of H, D and Z components explained the equivalent Sq current system reasonably well for all seasons. For H component, the first solar harmonic (s1) obtained from spherical harmonic analysis of the data, appeared as the largest harmonic with no significant changes for the seasonal division of data. However, for D and Z components, amplitudes are comparable, but undergo distinct variations. s1 for H and D components increases with magnetic activity while for Z component it is the largest for the medium phase of magnetic activity. With the sunspot number division of data, the weighted mean of the Wolf ratio of all three components is in good agreement with the previous studies. The synthesized solar daily variation for D component, S(D), at Karachi, Sonmiani, Quetta and Islamabad did not show any signs of winter anomaly for the period studied. However, S(D) variation at Karachi during winter season showed morning minimum followed by a maximum at local noon and another minimum in the afternoon. We suggest this could be the effects of Equatorial Ionospheric Anomaly (EIA) observable at the Karachi observatory only during the winter season. Similarly, much disturbed in equinoctial and summer months, S(Z) illustrated an unwavering daily

  6. Prompt penetration electric fields and the extreme topside ionospheric response to the June 22-23, 2015 geomagnetic storm as seen by the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Astafyeva, Elvira; Zakharenkova, Irina; Alken, Patrick

    2016-09-01

    Using data from the three Swarm satellites, we study the ionospheric response to the intense geomagnetic storm of June 22-23, 2015. With the minimum SYM-H excursion of -207 nT, this storm is so far the second strongest geomagnetic storm in the current 24th solar cycle. A specific configuration of the Swarm satellites allowed investigation of the evolution of the storm-time ionospheric alterations on the day- and the nightside quasi-simultaneously. With the development of the main phase of the storm, a significant dayside increase of the vertical total electron content (VTEC) and electron density Ne was first observed at low latitudes on the dayside. From ~22 UT of 22 June to ~1 UT of 23 June, the dayside experienced a strong negative ionospheric storm, while on the nightside an extreme enhancement of the topside VTEC occurred at mid-latitudes of the northern hemisphere. Our analysis of the equatorial electrojet variations obtained from the magnetic Swarm data indicates that the storm-time penetration electric fields were, most likely, the main driver of the observed ionospheric effects at the initial phase of the storm and at the beginning of the main phase. The dayside ionosphere first responded to the occurrence of the strong eastward equatorial electric fields. Further, penetration of westward electric fields led to gradual but strong decrease of the plasma density on the dayside in the topside ionosphere. At this stage, the disturbance dynamo could have contributed as well. On the nightside, the observed extreme enhancement of the Ne and VTEC in the northern hemisphere (i.e., the summer hemisphere) in the topside ionosphere was most likely due to the combination of the prompt penetration electric fields, disturbance dynamo and the storm-time thermospheric circulation. From ~2.8 UT, the ionospheric measurements from the three Swarm satellites detected the beginning of the second positive storm on the dayside, which was not clearly associated with electrojet

  7. NM-MT network and space dangerous phenomena, 2. Examples of cosmic ray using for forecasting of major geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Belov, A.; Dorman, L.; Eroshenko, E.; Iucci, N.; Parisi, M.; Pustil Nik, L.; Sternlieb, A.; Villoresi, G.; Yanke, V.; Zukerman, I.

    We present developing of methods (e.g., Dorman et al., 1995, 1999) for forecasting on the basis of neutron monitor hourly on-line data (as well as on-line muon telescopes hourly data from different directions) geomagnetic storms of scales G5 (3- hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) (according to NOAA Space Weather Scales). These geomagnetic storms are dangerous for people technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). We show that for especially dangerous geomagnetic storms can be used global-spectrographic method if on-line will be available 35-40 NM and muon telescopes. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of geomagnetic storms G5, G4 or G3 (according to NOAA Space Weather Scales) can be used as important factor for forecast. The second factor what can be used for SC forecast is specifically behavior of CR density (CR intensity) for about 30-15 hours before SC (caused mainly by galactic CR particles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre-decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of major geomagnetic storms. This research is partly supported by the INTAS grant 00-0810. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting features for big Forbush-decreases". Nuclear Physics B, 49A, 136-144 (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their prediction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, 6, 476-479 (1999).

  8. Modelling of ionospheric irregularities during geomagnetic storms over African low latitude region

    NASA Astrophysics Data System (ADS)

    Mungufeni, Patrick

    2016-07-01

    In this study, empirical models of occurrence of ionospheric irregularities over low latitude African region during geomagnetic storms have been developed. The geomagnetic storms considered consisted of Dst ≤ -50 nT. GNSS-derived ionospheric Total Electron Content (TEC) data over Libreville, Gabon (NKLG) (0.35° N, 9.68° E, geographic, 8.05° S, magnetic) and Malindi, Kenya (MAL2) (2.99° S, 40.19° E, geographic, 12.42° S, magnetic) during 2000 - 2014 were used. Ionospheric irregularities at scale- lengths of a few kilometers and ˜400 m were represented with the rate of change of TEC index (ROTI). The inputs for the models are the local time, solar flux index, Auroral Electrojet index, day of the year, and the Dst index, while the output is the median ROTI during these given conditions. To develop the models, the ROTI index values were binned based on the input parameters and cubic B splines were then fitted to the binned data. Developed models using data over NKLG and MAL2 were validated with independent data over stations within 510 km and 680 km radius, respectively. The models captured the enhancements and inhibitions of the occurrence of the ionospheric irregularities during the storm period. The models even emulated these patterns in the various seasons, during medium and high solar activity conditions. The correlation coefficients for the validations were statistically significant and ranged from 0.58 - 0.73, while the percentage of the variance in the observed data explained by the modelled data ranged from 34 - 53.

  9. Localized sudden changes in the geomagnetic secular variation.

    USGS Publications Warehouse

    Alldredge, L.R.

    1987-01-01

    There is much debate as to whether there was a worldwide geomagnetic jerk in 1969 or 1970. It is agreed that there was an unusual sharp change in the secular variation in the east component, Y, in Europe at that time. This note points out how a localized sudden change in the secular variation pattern of one component in Europe can occur without having any large worldwide effects in any of the components. The accompanying changes in the spherical harmonic coefficients for such a localized change are also discussed. -after Author

  10. High-frequency ``Pc1'' during the geomagnetic storm of November 2004

    NASA Astrophysics Data System (ADS)

    Ermakova, Elena; Demekhov, Andrei; Yahnin, Alexander; Kotik, Dmitry; Yahnina, Tatyana

    At 00-04 UT on 10 November 2004 during a strong geomagnetic storm the IMAGE spacecraft observed proton auroras at extremely low latitudes (L=2.4). Conjugated with the auroras the low orbiting NOAA satellites detected localized precipitation of energetic (>30 keV) protons (LPEP). The LPEP are typically associated with EMIC waves or geomagnetic pulsations in the Pc1 range. This means that both EMIC waves and LPEP are the result of ion-cyclotron interaction operating in the equatorial plane in the magnetosphere. Close to the meridian of the low-latitude proton aurora there exist several geomagnetic observatories located at L>3.4, but none of them detected any pulsations in the Pc1 range. Here we present results of observations performed at a mid-latitude site Novaya Zhizn located at L=2.6, that is, close to the observed proton aurora. This site is equipped with a magnetometer which produces pulsation spectra up to 30 Hz. Not surprisingly, we found some emissions correlated with the proton aurora and LPEP at frequencies exceeding first Sсhumann resonance. Oscillations of the horizontal component of the magnetic field were detected at frequencies of about 9.5-11.5 Hz. It worth noting that both modeling and IMAGE EUV and RPI observations show that the plasmasphere was very contracted during the storm and the plasmapause was located at about L=2.5. The precipitation zone was projected onto the plasmapause. The emission frequency corresponds to the band above the equatorial gyrofrequency of He+ ions at the geomagnetic flux tube of the precipitation region and, thus, the signal may be associated with the ion-cyclotron instability of electromagnetic ion-cyclotron (EMIC) waves at the unusually low latitude plasmapause. Further study has revealed three more periods of the detection of such "high frequency" emissions: from 22:30 UT on November 10, 2004 to 03:00 UT on November 11, 2004,from 06-08 UT on November 11, 2004, and 09-12 UT on November 11, 2004. During the period 06

  11. Studying Peculiarities of Ionospheric Response to the 2015 March 17-19 Geomagnetic Storm in East Asia: Observations and Simulation

    NASA Astrophysics Data System (ADS)

    Romanova, Elena; Zherebtsov, Gelii; Polekh, Nelya; Wang, Xiao; Wang, Guojun; Zolotukhina, Nina; Shi, Jiankui

    2016-07-01

    We report results of the research into effects of the strong geomagnetic storm in the ionosphere of high, middle, and low latitudes on March 17-19, 2015. The research relies on measurements made at the network of ionospheric stations located near the 120°E meridian. The analysis of experimental data has revealed that at the beginning of the main storm phase the equatorial wall of the main ionospheric trough (MIT) shifted towards geographic latitudes 58-60°N, which caused negative disturbances in subauroral latitudes and positive disturbances in middle latitudes. Further displacement of the MIT equatorial wall towards a geographic latitude of 52° N led to a decrease in the F2-layer critical frequency (foF2) up to 2 MHz in middle latitudes during evening and night hours, and to the appearance of sporadic layers in these latitudes due to energetic particle precipitation. Such phenomena are largely specific to the subauroral ionosphere. During the recovery storm phase on March 18, 2015 during daylight hours, negative disturbances were recorded at all the stations. Since prolonged negative disturbances are usually associated with a reduction in the ratio of concentrations of atomic oxygen and molecular nitrogen [O]/[N2] which is transported by disturbed thermospheric wind from auroral latitudes to middle and low ones, we analyzed measurements of [O]/[N2], made by GUVI (Global Ultraviolet Imager, http://guvi.jhuapl.edu/site/gallery/guvi-galleryl3on2.shtml), during this storm. The storm appeared to be characterized by very low values of [O]/[N2] which were recorded in the longitude sector 60 - 150°E up to 15°N on March 18. The discovered peculiarities of the ionospheric response to the storm were interpreted using a theoretical model of ionosphere-plasmosphere coupling developed at ISTP SB RAS. The simulation showed that the displacement of MIT equatorial wall resulted in foF2 variations similar to those observed during the main storm phase in subauroral and middle

  12. Observations of high-latitude geomagnetic field fluctuations during St. Patrick's Day storm: Swarm and SuperDARN measurements

    NASA Astrophysics Data System (ADS)

    De Michelis, Paola; Consolini, Giuseppe; Tozzi, Roberta; Marcucci, Maria Federica

    2016-06-01

    The aim of this work is to study the properties of the magnetic field's fluctuations produced by ionospheric and magnetospheric electric currents during the St. Patrick's Day geomagnetic storm (17 March 2015). We analyse the scaling features of the external contribution to the horizontal geomagnetic field recorded simultaneously by the three satellites of the Swarm constellation during a period of 13 days (13-25 March 2015). We examine the different latitudinal structure of the geomagnetic field fluctuations and analyse the dynamical changes in the magnetic field scaling features during the development of the geomagnetic storm. Analysis reveals consistent patterns in the scaling properties of magnetic fluctuations and striking changes between the situation before the storm, during the main phase and recovery phase. We discuss these dynamical changes in relation to those of the overall ionospheric polar convection and potential structures as reconstructed using SuperDARN data. Our findings suggest that distinct turbulent regimes characterised the mesoscale magnetic field's fluctuations and that some factors, which are known to influence large-scale fluctuations, have also an influence on mesoscale fluctuations. The obtained results are an example of the capability of geomagnetic field fluctuations data to provide new insights about ionospheric dynamics and ionosphere-magnetosphere coupling. At the same time, these results could open doors for development of new applications where the dynamical changes in the scaling features of the magnetic fluctuations are used as local indicators of magnetospheric conditions.

  13. Comparison between the effect of two geomagnetic storms with the same seasonal and daily characteristics and different intensity on the European ionosphere.

    NASA Astrophysics Data System (ADS)

    Rodriguez-Bouza, Marta; Herraiz, Miguel; Rodríguez-Caderot, Gracía; Paparini, Claudia; Otero, Xurxo; Radicella, Sandro M.

    2016-04-01

    This work presents an analysis of the ionospheric disturbance caused by two geomagnetic storms occurred on the same day, 17th March, but one in 2013 and other in 2015. The greatest intensity of both storms occurs after sunset when geomagnetic indexes (Dst index, Kp and Ap) reached the peak values. Both geomagnetic storms can be classified as intense according to the Dst index criteria. The storm of March 17, 2015, ("St Patricḱs storm"), can be considered even "severe" because the Dst index dropped off -200nT. The solar origins of both geomagnetic storms were magnetic filament eruptions followed by Coronal Mass Ejections, CME. The ionospheric behavior has been studied through the total electron content, TEC. This parameter is obtained from RINEX files processed using the calibration technique developed by Prof. Luigi Ciraolo. RINEX files from selected GNSS stations on Europe belonging to International GPS Service, IGS, and EUREF Permanent Network, have been used. The calibration technique assumes the ionospheric thin shell model to obtain vertical total electron content (vTEC) from slant total electron content (sTEC) at the Ionospheric Pierce Point. The data were obtained in periods of the geomagnetic storms and during quite days surrounding the storms days, at 1 minute sampling. The behavior of the ionosphere during the two geomagnetic storms was similar. In both cases, a positive ionospheric storm, defined as an increase on the TEC, occurred during the main phase of the geomagnetic storms on 17th of March. These increases were followed by a negative ionospheric storm, a decreasing of TEC, in the recuperation phase. However, in the event of 2015, the positive ionospheric storm of the main phase had more intensity but the same duration than that of 2013 and for the negative ionospheric storm both, intensity and duration, were largest in 2015 than in 2013.

  14. Energetic and dynamic impact on the upper atmosphere during the April 2002 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Lu, G.; Roble, R.; Richmond, A.; Immel, T.; Lummerzheim, D.; Galand, M.

    2003-12-01

    The April 2002 geomagnetic storm has been associated with a wide range of disturbances that occurred on the Sun, including high-speed coronal mass ejections, and several M- and X-class flares. This event therefore offers a unique opportunity to define and unravel the geoeffectiveness of various energy inputs originating from the Sun. This talk focuses on the impact of precipitating particles on the upper atmosphere. Numerical experiments are carried out to study the response of the thermosphere and ionosphere to the different particle inputs, such as the auroral electrons and energetic protons, and the intense high-energy polar rain that was observed during the storm. We also show the generation and propagation of the large-scale traveling atmospheric and ionospheric disturbances (TADs and TIDs) and their relation to the impulsive magnetospheric energy inputs via precipitating particles and Joule heating. Storm-time changes in neutral temperature, neutral winds and composition, as well as electron density will be discussed in light of the model simulations.

  15. Prediction of Geomagnetic Storm Strength from Inner Heliospheric In Situ Observations

    NASA Astrophysics Data System (ADS)

    Kubicka, M.; Moestl, C.; Rollett, T.; Feng, L.; Eastwood, J. P.; Boakes, P. D.

    2015-12-01

    In order to predict the effects of interplanetary coronal mass ejections (ICMEs) on Earth, it is important to know the properties of the interplanetary magnetic field (IMF). Of special interest is the southward component (Bz) of the IMF, acting as a main driver for geomagnetic storms. We are working on a proof-of-concept for predicting the strength of geomagnetic storms caused by ICMEs by using in situ data from spacecraft in the inner heliosphere. Our prediction includes the arrival time and speed of the ICME at Earth, the IMF's Bz component and the resulting disturbance storm time index (Dst), which is a prime indicator of geomagnetic activity. For Dst forecasting, the two well established models Burton et al. (1975) and O'Brien & McPherron (2000) are used. Necessary parameters for those models are the ICME speed and the Bz component of the IMF at 1 AU. We obtain the ICME speed using a drag-based model, and the IMF's Bz component is predicted based on a power law from the in situ data. Additionally, the ENLIL/WSA model provides the solar wind background speed for the drag-based model.An advantage of our method is the use of the in situ spacecraft as a reference point for the drag based-model, leading to a more precise arrival speed of the ICME at Earth, and an improved arrival time. Investigation of an ICME in June 2012 shows already very promising results for the Dst index, as well as for the ICME arrival speed. The main advantage of this method is the prediction lead time of ~21 hours compared to only ~40-60 minutes, using an L1 located spacecraft. Furthermore, the feasibility of this method can be studied with any in situ spacecraft temporarily located between the Sun and Earth, like Helios, Solar Orbiter or Solar Probe Plus, and also works for radial spacecraft alignments. The techniques we develop could be routinely applied to a mission that forms an artificial Lagrange point along the Sun-Earth line, e.g. for a Sunjammer or Heliostorm mission.

  16. The first super geomagnetic storm of solar cycle 24: "The St. Patrick's day event (17 March 2015)"

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun; Liou, Kan; Lepping, Ronald P.; Hutting, Lynn; Plunkett, Simon; Howard, Russ A.; Socker, Dennis

    2016-09-01

    The first super geomagnetic storm (Dst < -200 nT) of solar cycle 24 occurred on "St. Patrick's day" (17 March 2015). Notably, it was a two-step storm. The source of the storm can be traced back to the solar event on 15 March 2015. At ~2:10 UT on that day, SOHO/LASCO C3 recorded a partial halo coronal mass ejection (CME), which was associated with a C9.1/1F flare (S22W25) and a series of type II/IV radio bursts. The initial propagation speed of this CME is estimated to be ~668 km/s. An interplanetary (IP) shock, likely driven by a magnetic cloud (MC), arrived at the Wind spacecraft at 03:59 UT on 17 March and caused a sudden storm commencement. The storm intensified during the Earth's crossing of the ICME/shock sheath and then recovered slightly after the interplanetary magnetic field (IMF) turned northward. The IMF started turning southward again due to a large MC field itself, which caused the second storm intensification, reaching a minimum value (Dst = -223 nT). It is found that the first step is caused by a southward IMF component in the sheath (between the upstream shock and the front of the MC), whereas the second step is associated with the passage of the MC. The CME that erupted on 15 March is the sole solar source of the MC. We also discuss the CME/storm event with detailed data from observations ( Wind and SOHO) and our algorithm for predicting the intensity of a geomagnetic storm (Dstmin) from known IP parameter values. We found that choosing the correct Dstmin estimating formula for predicting the intensity of MC-associated geomagnetic storms is crucial for space weather predictions.

  17. Climate changes associated with high-amplitude Sq geomagnetic variations

    NASA Astrophysics Data System (ADS)

    Rabeh, Taha; Carvalho, Joao; Khalil, Ahmed; El-Aal, Esmat; El-Hemaly, Ibrahim

    2011-10-01

    When the solar irradiance propagates between the outer magnetospheric regions and the ionosphere, dynamic processes of the magnetosphere-ionosphere-thermosphere system are affected at the lower end of their paths by the interaction of radiation with the neutral troposphere. The main target of this work is to investigate the relationship between the diurnal magnetic field variations resulting from solar activities and the variation in the troposphere temperature. Meteorological and geomagnetic data acquired from different observatories located in Egypt, Portugal and Slovakia in a long-term and daily-term scales were analyzed. The long-term results show that there is a close relationship between the diurnal Sq magnetic field variations and the tropospheric temperature. The rate of temperature increase at mid-latitude areas is higher than at high-latitude. During the period of investigation, it is found that the troposphere temperature has increased by about 0.033 °C/year at Helwan, Egypt, 0.03 °C/year at Coimbra, Portugal, and 0.028 °C/year in Hurbanovo/Stará Lesná, Slovakia. The Sq geomagnetic variations depend on the intensity of the electric currents generated by the effect of solar radiation in the ionosphere.

  18. Climate Changes Associated with High Amplitude Sq Geomagnetic Variations

    NASA Astrophysics Data System (ADS)

    Rabeh, Taha; Khalil, Ahmed; Abdel All, Esmat

    2010-05-01

    The Earth's climate has always been changing since the ancient geologic Epochs. When the solar irradiance propagates between the outer magnetospheric regions and the ionosphere, mediate dynamic processes of the magnetosphere-ionosphere-thermosphere system are affected at the lower end of their paths by the interaction of the radiations with the neutral atmosphere. The ionosphere-thermosphere interactions play an important role for explaining the relationship between the magnetic field and the changes in the atmospheric temperature. The main target of this work is to investigate the relationship between the diurnal magnetic field variations resulted from solar activities and the variation in the Earth's temperature. The meteorological and geomagnetic data acquired from different observatories around the globe were analyzed. Three different locations in Egypt, Portugal and Slovakia for long and daily terms were presented. The results show that for long periods, there is a close relationship between the diurnal variations, Sq magnetic field and the atmospheric temperature. The increasing rate of the temperature at mid-latitude areas is higher than at high-latitude areas. During the period of investigation, it is found that the temperature increases at Helwan, Egypt by about 0.033 °C/year, 0.03 °C/year at Coimbra, Portugal and 0.028 °C/year in Hurbanovo/Stará Lesn, Slovakia. The Sq geomagnetic variations depend on the intensity of the electric currents generated by the effect of solar radiations in the Ionosphere.

  19. Homogeneity of geomagnetic variations at the Sodankyla Observatory

    NASA Astrophysics Data System (ADS)

    Kauristie, Kirsti; Ernst, Tomasz; Jankowski, Jerzy; Viljanen, Ari; Kultima, Johannes; Pirjola, Risto; Kataja, Eero

    Geomagnetic variations and the associated electric field were recorded at four temporary stations around the Sodankyla Geophysical Observatory for ten days in August 1988. The distance from each station to the observatory was about 30 km. The main purpose was to study the spatial homogeneity of magnetic variations observed at Sodankyla, i.e., to find out whether there are any local induction effects in the recordings of Sodankyla. Analysis of geomagnetic induction vectors indicates a large-scale induction anomaly but in the 30 km scale the variations are practically homogeneous for periods ranging from 100 to 2500 s. According to magnetotelluric calculations, the conductivity structure at the stations is three-dimensional. The inhomogeneity of the primary source field due to ionospheric currents can be significant in the vicinity of Sodankyla. It causes problems in induction vector and magnetotelluric calculations. Standard deviation between recordings at different stations are calculated using only carefully selected events having a homogenous source field. Theoretical estimates indicate that spatial variations of the primary field may exceed the standard deviations obtained.

  20. Contribution of the topside and bottomside ionosphere to the total electron content during two strong geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Zhu, Qingyu; Lei, Jiuhou; Luan, Xiaoli; Dou, Xiankang

    2016-03-01

    In this study, the ionospheric observations from ionosondes, GPS receivers, and incoherent scatter radars (ISR) at low and middle latitudes were used to investigate the contribution of the bottomside and topside ionosphere to the total electron content (TEC) during the September 2005 and December 2006 geomagnetic storms. It was found that the contribution of the bottomside TEC below F2 peak (BTEC) to the ionosonde ionospheric TEC (ionosonde ITEC), namely, BTEC/ITEC was almost constant during both quiet and storm times, while the ratio of BTEC to GPS TEC (i.e., BTEC/GPS-TEC) underwent obvious diurnal variations at all stations. The BTEC/GPS-TEC during the positive phase was similar to that during quiet time, regardless of the formation mechanisms of the observed positive phases. Moreover, our analysis revealed that the ISR calculated BTEC/ITEC during positive ionospheric phases was comparable to that during quiet time. This suggests that the positive phases in these two events mainly occurred around the F2 peak height. There were large differences between the calculated BTEC/ITEC from the ISR observations and BTEC/GPS-TEC during the negative phase or at night when the plasmasphere possibly contributed significantly to the TEC in the relative sense. Although the absolute changes of the topside TEC were larger than the bottomside TEC at low and middle latitudes associated with the larger topside effective ionospheric thickness, unlike the October 2003 superstorms, the relative changes of the topside TEC to the quiet time reference in these two strong storms were not greater than the changes of the bottomside TEC and peak density NmF2.

  1. Isis 1 observations of the high-latitude ionosphere during a geomagnetic storm.

    NASA Technical Reports Server (NTRS)

    Whitteker, J. H.; Hartz, T. R.; Brace, L. H.; Burrows, J. R.; Heikkila, W. J.; Sagalyn, R. C.; Thomas, D. M.

    1972-01-01

    The Isis 1 satellite has made measurements of several ionospheric and related parameters, and the results of the various measurements have been compared in detail for two north transpolar passes during the geomagnetic storm of February 3, 1969. Simultaneous measurements were made of local electron and ion densities and temperatures, electron density between the satellite and the peak of the F layer, radio noise, and particle fluxes over a wide energy range extending down to 10 eV. Several features of the ionosphere (in particular, enhancements of radio noise, scale height, and plasma temperatures) appear to be due to soft-particle (100 eV to 1 keV) precipitation, which is related to magnetospheric structure as delineated by the observation of more energetic particles. The magnetosheath particles precipitating on the dayside of the polar cap are particularly effective.

  2. Periodic variation in the geomagnetic activity - A study based on the Ap index

    NASA Technical Reports Server (NTRS)

    De Gonzalez, Alicia L. C.; Gonzalez, Walter D.; Dutra, Severino L. G.; Tsurutani, Bruce T.

    1993-01-01

    The monthly and daily samples of the Ap index for the interval from 1932 through 1982 were studied using the power spectrum technique. Results obtained for Bartel's period (about 27 days), the semiannual period, the dual-peak solar cycle distribution of geomagnetic storms, and certain other medium-scale periodicities are examined in detail. In addition, results on the cumulative occurrence number of storms per decade as a function of the Ap and Dst indices for the storm are presented.

  3. MAINSTREAMING SPACE WEATHER: Training Teachers to Understand the Causes and Effects of Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Bowen, W. J.; Bowen, W. J.; Erickson, P. J.; Goncharenko, L. P.

    2001-05-01

    How much does the average person understand about "Aurora"? Most might describe it as a seemingly random natural phenomenon that occurs only in polar regions. Probing the person by asking such questions as; "What causes aurora? Where are they located (altitude)? Can they be predicted?", would, most likely, provide little further information. There is no doubt that the average person has a vague understanding of aurora. As part of a summer internship funded by the National Science Foundation Research Experience for Educators Program we created lesson plans, demonstrations, and laboratory experiences designed to explain how aurora, an indicator of geomagnetic activity, is created. The ultimate intent of the research was to find a way to help educators understand what "Space Weather" is. We chose to begin with "The Earth-Sun System" and a superb video done by The Discover Channel, "The Savage Sun". These lessons include information on the process of fusion, sunspots, coronal holes, and solar wind. Geomagnetism included the topics of "The Dynamic Earth", and the Earth's magnetosphere. A complete comprehension of "The Electromagnetic Spectrum" is essential for understanding. This topic is a part of the Massachusetts Frameworks for the Massachusetts Comprehensive Assessment exams on every grade level, to varying degrees. No lessons are completed without some physics and chemistry to provide the background necessary. Finally, we are able to discuss the Earth's atmosphere and the differences between the neutral layer and the ionosphere, as well as terms like "Electron Density", and "Incoherent Scatter", "D,E,F Layers". The ability of a non-atmospheric scientist to understand the cause and effect of geomagnetic storms relies heavily on their educational level and relative experiences. Our goal was to provide an in-service training program to give an educator enough background information so they will be able to discuss space weather in their classroom in an informed and

  4. Modeling of Coronal Mass Ejections that Caused Particularly Large Geomagnetic Storms Using ENLIL Heliosphere Cone Model

    NASA Technical Reports Server (NTRS)

    Taktakishvili, A.; Pulkkinen, A.; MacNeice, P.; Kuznetsova, M.; Hesse, M.; Odstrcil, D.

    2011-01-01

    In our previous paper we reported the results of modeling of 14 selected well -observed strong halo coronal mass ejection (CME) events using the WSA -ENLIL cone model combination. Cone model input parameters were obtained from white light coronagraph images of the CME events using the analytical method developed by Xie et al. This work verified that coronagraph input gives reasonably good results for the CME arrival time prediction. In contrast to Taktakishvili et al., where we started the analysis by looking for clear CME signatures in the data and then proceeded to model the interplanetary consequences at 1 AU, in the present paper we start by generating a list of observed geomagnetic storm events and then work our way back to remote solar observations and carry out the corresponding CME modeling. The approach used in this study is addressing space weather forecasting and operational needs. We analyzed 36 particularly strong geomagnetic storms, then tried to associate them with particular CMEs using SOHO/LASCO catalogue, and finally modeled these CMEs using WSA-ENLIL cone model. Recently, Pulkkinen et al. developed a novel method for automatic determination of cone model parameters. We employed both analytical and automatic methods to determine cone model input parameters. We examined the CME arrival times and magnitude of impact at 1 AU for both techniques. The results of the simulations are compared with the ACE satellite observations. This comparison demonstrated that WSA -ENLIL model combination with coronagraph input gives reasonably good results for the CME arrival times for this set of 'geoeffective" CME events as well.

  5. Effects of TADs on the F region of the mid-latitude ionosphere during an intense geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Yuan, Zhigang; Ning, Baiqi; Deng, Xiaohua

    2009-11-01

    Based on observations of two ionosondes at Wuhan and Kokubunji, this paper presents effects of TADs on the daytime mid-latitude ionosphere during the intense geomagnetic storm on March 31, 2001. During a positive ionospheric storm, the start of the enhancement of the foF2 (F2 peak plasma frequency) at Wuhan lags that at Kokubunji by 15 min, which corresponds to the time interval of traveling atmospheric disturbances (TADs') propagation from Kokubunji to Wuhan. Associated with the uplifting of the hmF2 (height of F2 peak) caused by TADs, it is observed by the two ionosondes that the F1 cusp becomes better developed. Therefore, during a geomagnetic storm, TADs originating from the auroral oval may have a strong influence on the shape of the electron density profile in the F1 region ionosphere at middle latitudes. It is highly likely that TADs are responsible for the evolution of the F1 cusp.

  6. Effects of TADs on the F region of the mid-latitude ionosphere during geomagnetic storms: A case study

    NASA Astrophysics Data System (ADS)

    Yuan, Zhigang; Ning, Baiqi; Deng, Xiaohua

    Based on observations of two ionosondes at Wuhan and Kokubunji, this paper presents effects of an intense geomagnetic storm on the daytime mid-latitude ionosphere on March 31, 2001. During a positive ionospheric storm, the start of the enhancement of the foF2 (F2 peak plasma frequency) at Wuhan lags that at Kokubunji by 15 min, which corresponds to the time interval of traveling atmospheric disturbances (TADs)' propagation from Kokubunji to Wuhan. Associated with the uplifting of the hmF2 (height of F2 peak), it is observed by the two ionosondes that the F1 cusp becomes better developed. Therefore, during a geomagnetic storm, TADs originating from the auroral oval may have a strong influence on the shape of the electron density profile in the F1 region ionosphere at middle latitudes. It is highly likely that TADs are responsible for the evolution of the F1 cusp.

  7. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Deng, W.; Killeen, T. L.; Burns, A. G.; Roble, R. G.; Slavin, J. A.; Wharton, L. E.

    1993-01-01

    Neutral flywheel effects are investigated in NCAR-TIGCM simulation of geomagnetic storms that occurred in November 23, 1982 and December 7-8, 1982. Theoretical calculations from the latter storm are compared with measurements of currents form instruments on the Dynamics Explorer 2 satellite. It is concluded that neutral flywheel effects can make a contribution to high latitude electrodynamics for a few hours after the main phase of a geomagnetic storm. The Hall currents that are driven by neutral winds during B(Z) northward conditions are generally in the opposite direction to those that occur during B(Z) southward conditions, when they are driven primarily by ion winds. The morphology of the field-aligned current system calculated by the NCAR-TIGCM during southward B(Z) conditions is in general agreement with observations.

  8. Geomagnetic storms and transient depressions in cosmic rays due to coronal mass ejections and corotating interaction regions: A comparative study

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Badruddin, B.

    We study selected geomagnetic storms and transient depressions (Forbush decreases) in cosmic ray intensity. We use ground-based neutron monitors as a measure of cosmic ray intensity. Geomagnetic index Dst is used as a measure of level of geomagnetic activity. We identify coronal mass ejections (CMEs) and high-speed streams from coronal holes on the solar surface and corresponding structures evolved in the interplanetary space e.g. shock/sheath regions, interplanetary counterpart of CMEs (ICMEs) and corotating interaction regions (CIRs), responsible for these phenomenon e.g. geomagnetic storms (GS) and Forbush decrease (FD) in cosmic ray intensity. An ICME or CIR that is strongly geo-effective is not necessarily effective in producing large depressions in cosmic ray intensity. It is therefore, important to study solar wind plasma/field parameters during the passage of such structures and identify the solar/interplanetary parameters of major importance and physical mechanism responsible for GS and FDs. This has been attempted by detailed study of the observed differences in geomagnetic and cosmic-ray response to same solar sources. Space weather implication of this study is also discussed.

  9. OI 630.0 nm Night Airglow Observations during the Geomagnetic Storm on November 20, 2003 at Kolhapur (P43)

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; et al.

    2006-11-01

    sharma_ashokkumar@yahoo.com The ground based photometric observations of OI 630 nm emission line have been carried out from Kolhapur station (Geog. Lat.16.8˚N, Geo. Long 74.2˚E), India during the period of the largest geomagnetic storm of the solar cycle 23 which occurred on 20 November 2003, with minimum Dst index 472 nT occurring around mid-night hours. We observed that on 19 November 2003 which was geomagnetically quiet day, the airglow activity of OI 630 nm emission was subdued and it was decreasing monotonically. However, on the night of November 20, 2003 the enhancement is observed during geomagnetic storm due to the increased electron density at the altitude of the F region which is related to the downward transport of electron from the plasmasphere to the F-region. Airglow intensity at OI 630.0 nm showed increase around midnight on November 21, 2003 but comparatively on a smaller scale. On this night the DST index was about 100 nT. This implies that the effect of the geomagnetic storm persisted on that night also. These observations have been explained by the penetration magnetospheric electric field to the low latitude region and the subsequent modulation of meridional wind during the magnetic disturbance at night.

  10. Empirical evidence for latitude dependence and asymmetry of geomagnetic spatial variation in mainland China

    NASA Astrophysics Data System (ADS)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Liu, Daizhi; Wang, Xiqin

    2016-05-01

    Spatiotemporal geomagnetic variation is a significant research topic of geomagnetism and space physics. Generated by convection and flows within the fluid outer core, latitude dependence and asymmetry, as the inherent spatiotemporal properties of geomagnetic field, have been extensively studied. We apply and modify an extension of existing method, Hidden Markov Model (HMM), which is an efficient tool for modeling the statistical properties of time series. Based on ground magnetic measurement data set in mainland China, first, we find the parameters of HMM can be used as the geomagnetic statistical signature to represent the spatiotemporal geomagnetic variations for each site. The results also support the existence of the geomagnetic latitude dependence more apparently. Furthermore, we provide solid empirical evidence for geomagnetic asymmetry relying on such ground magnetic measurement data set.

  11. On the Possibilities of Predicting Geomagnetic Secular Variation with Geodynamo Modeling

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Tangborn, Andrew; Sabaka, Terrance

    2004-01-01

    We use our MoSST core dynamics model and geomagnetic field at the core-mantle boundary (CMB) continued downward from surface observations to investigate possibilities of geomagnetic data assimilation, so that model results and current geomagnetic observations can be used to predict geomagnetic secular variation in future. As the first attempt, we apply data insertion technique to examine evolution of the model solution that is modified by geomagnetic input. Our study demonstrate that, with a single data insertion, large-scale poloidal magnetic field obtained from subsequent numerical simulation evolves similarly to the observed geomagnetic variation, regardless of the initial choice of the model solution (so long it is a well developed numerical solution). The model solution diverges on the time scales on the order of 60 years, similar to the time scales of the torsional oscillations in the Earth's core. Our numerical test shows that geomagnetic data assimilation is promising with our MoSST model.

  12. Ionospheric E-Region Response to Solar-Geomagnetic Storms Observed by TIMED/SABER and Application to IRI Storm-Model Development

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Mast, Jeffrey C.; Winick, Jeremy R.; Russell, James M., III; Mlynczak, Martin G.; Evans, David S.

    2007-01-01

    The large thermospheric infrared radiance enhancements observed from the TIMED/SABER experiment during recent solar storms provide an exciting opportunity to study the influence of solar-geomagnetic disturbances on the upper atmosphere and ionosphere. In particular, nighttime enhancements of 4.3 um emission, due to vibrational excitation and radiative emission by NO+, provide an excellent proxy to study and analyze the response of the ionospheric E-region to auroral electron dosing and storm-time enhancements to the E-region electron density. In this paper we give a status report of on-going work on model and data analysis methodologies of deriving NO+ 4.3 um volume emission rates, a proxy for the storm-time E-region response, and the approach for deriving an empirical storm-time correction to International Reference Ionosphere (IRI) E-region NO+ and electron densities.

  13. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    PubMed

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345

  14. The Response of Thermospheric Nitric Oxide to the Geomagnetic Storm of April 2002

    NASA Astrophysics Data System (ADS)

    Bailey, S. M.; Crowley, G.; Solomon, S. C.; Baker, D. N.

    2002-12-01

    The presence of nitric oxide in the lower thermosphere is important for several reasons. NO plays a strong role in the thermospheric energy balance as it emits efficiently in the infrared, it is the terminal ion in the lower ionosphere and, if transported to lower altitudes, will catalytically destroy ozone. NO is primarily produced through the reaction of excited atomic nitrogen with molecular oxygen. One of the primary loss mechanisms of NO is photodissociation by solar ultraviolet irradiance. In order to produce the excited atomic nitrogen atom, the strong N2 molecular bond must be broken. It has been shown that at high latitudes, auroral electrons and the energetic secondary electrons provide the source of energy that leads to the large amounts of NO that are observed. The Student Nitric Oxide Explorer (SNOE) satellite has been observing NO in the thermosphere daily since February of 1998. Global observations of the abundance of NO were made throughout the period of the large geomagnetic storm that occurred April 16-20 of 2002. Large increases in NO abundance were observed during the storm. Auroral production of the NO is demonstrated by the distribution with magnetic latitude. Equatorward enhancement of NO was observed and suggests transport by meridional winds. Because the NO molecule has a lifetime of about one day, a high latitude observation of NO provides an indication of the integrated auroral energy deposition over the previous day. In this talk we will present the NO observations during the time period of the storm. We will also compare the observations to results from the ASPEN version of the TIME-GCM model now in use at SWRI.

  15. Multi-satellite observations of energy transport during an intense geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Ma, Yuduan; Duan, Aiying; Dunlop, M. W.

    2016-05-01

    Energy transport during a geomagnetic substorm is a very important process for solar wind-magnetosphere energy coupling and the energy cycle in the magnetotail. In this paper, we use magnetotail data from the five THEMIS probes and two Cluster satellites on the dayside to investigate the energy transport of one intense storm during the period from 08 March to 11 March 2008 at large spatial-temporal scales. Simultaneous observations of the five THEMIS probes indicate that there is a stronger and earlier duskward energy flux density in the near-Earth magnetotail than that in the mid-tail in the initial phase. Low energy particles inject earthward from the dusk flank. Stronger and more variable earthward energy flux density is observed in the mid-tail compared to that near Earth in the main phase; mainly caused by high-speed flow. Tailward energy flux was observed in the near-Earth and mid-tail regions during the recovery phase. Dayside data observed by two Cluster satellites show that the duskward energy flux may be related to stable solar wind input. Tailward energy flux on the dayside should experience some energy conversion process in the magnetotail before it can provide the earthward energy flux in the magnetotail for this intense storm. The strongest energy transport observed by the nightside probes occurs in the main phase. However, the strongest energy measured by the dayside satellites is in the recovery phase without intense activities, two hours later. Different features of the energy transport in the three phases of the storm may be closely related to the different physical processes such as the energy entry, westward drift, particle injection or other potential mechanisms.

  16. Do ambient electromagnetic fields affect behaviour? A demonstration of the relationship between geomagnetic storm activity and suicide.

    PubMed

    Berk, Michael; Dodd, Seetal; Henry, Margaret

    2006-02-01

    The relationship between ambient electromagnetic fields and human mood and behaviour is of great public health interest. The relationship between Ap indices of geomagnetic storm activity and national suicide statistics for Australia from 1968 to 2002 was studied. Ap index data was normalised so as to be globally uniform and gave a measure of storm activity for each day. A geomagnetic storm event was defined as a day in which the Ap index was equal to or exceeded 100 nT. Suicide data was a national tally of daily male and female death figures where suicide had been documented as the cause of death. A total of 51 845 males and 16 327 females were included. The average number of suicides was greatest in spring for males and females, and lowest in autumn for males and summer for females. Suicide amongst females increased significantly in autumn during concurrent periods of geomagnetic storm activity (P = .01). This pattern was not observed in males (P = .16). This suggests that perturbations in ambient electromagnetic field activity impact behaviour in a clinically meaningful manner. The study furthermore raises issues regarding other sources of stray electromagnetic fields and their effect on mental health. PMID:16304696

  17. Large decreases in ionospheric total electron content as a result of thermospheric composition changes during geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Sigwarth, J. B.; Foster, J. C.

    2005-01-01

    The geomagnetic storms of April 17-21,2002 and May 29-30,2003 caused large decreases in the O/N2 column density ratio in the thermosphere. For these storms, ON2 column density decreases of greater than 50% were observed to extend to mid-to-low latitudes with the FUV sensitive Earth Camera of the Visible Imaging System (VIS) on the Polar spacecraft. Simultaneously in these same regions, the ground-based GPS network observed approximately 80% reductions in the Total Electron Content (TEC) of the ionosphere. The reduction in the Om2 column density ratio is due mainly to increases in the molecular species that have welled-up into the thermosphere from the lower levels of the atmosphere due to auroral heating. The geomagnetic-storm driven increase in molecular densities at typical ionospheric heights rapidly charge exchange with the ambient ionized atoms and subsequently dissociatively recombine with the ionospheric electrons leading to a reduction in the total charge density. The transition boundaries between high and low regions of O/N2 as well as TEC can be tracked in the images and the thermospheric winds can be determined from the motion of the boundaries. The motion of these boundaries during the development of the geomagnetic storm will be discussed.

  18. Analysis of the Energy Transferred from the Solar Wind into the Magnetosphere during the April 11, 2001 Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Besliu-Ionescu, D.; Mierla, M.; Maris-Muntean, G.

    2016-05-01

    Coronal mass ejections (CMEs) can have major consequences on Earth's magnetosphere. We investigate here the full halo CME registered by LASCO at 05:30 UT on April 10, 2001. A geomagnetic storm that had a minimum Dst value of 271 nT, on April 11 at 23:00 UT was triggered upon its arrival to Earth. We focus our study on the energy transfer from the solar wind into the magnetosphere during this geomagnetic storm. We estimate the quantity of energy that is deposited into the magnetosphere during this event using two different formulas by Akasofu (1981) and Wang et al. (2014). We note that the transfer of energy thus calculated does not resume to the main phase of the storm, but lasts much longer. We also discuss the implications of other formulas used in the literature to analyse this kind of transfer. The chain of events coronal mass ejections - interplanetary coronal mass ejections - geomagnetic storm was tested from a statistical point of view using a model based on logistic regression. We obtained a 100% probability that the April 10, 2001 CME should be geoeffective.

  19. First results on climatological response of Indian low latitude ionosphere to geomagnetic storms during solar cycle 23 and 24

    NASA Astrophysics Data System (ADS)

    Suresh, Sunanda; Dashora, Nirvikar

    2016-07-01

    For the first time, a climatological response of low latitude ionosphere to geomagnetic storms is presented using long term global ionospheric maps (GIM) data from June 1998 to June 2015 covering two solar cycles 23 and 24. The results are not only the first from Indian region but also the first around the globe to bring latitudinal character of daytime ionospheric storms with use of newly defined criteria. The results are presented for daytime forenoon and afternoon sectors under minor, moderate and major ionospheric storm categories based on minimum Dst index criterion. For the first time the effectiveness of storms is identified using monthly standard deviation as an indicator of the day-to-day variability in equatorial and low latitude ionosphere. Thus results on climatology are definitive and form a data base that would be comparable to statistical results from any other longitude and time. Seasonal statistics for total storms, effective positive and negative storms, and amplitude of mean seasonal perturbation in total electron content are obtained. Total and effective storms are found to be higher in solar cycle 23 than in 24 and only couple of effective storms occurred during low solar activity 2007-2009 that also in minor category. Afternoon sector is found to be favourable for occurrence of maximum number of effective positive storms. A latitudinal preference is found for a given storm to be effective in either time sectors. Equinoctial asymmetry in ionospheric response both in terms of occurrence and perturbation amplitude is found. September equinoxes are found to bear maximum total, effective positive and negative storms. Winters are found more prone to negative storms whereas summers have recorded minimum number of either of storms and minimum perturbation amplitudes.

  20. Development of a numerical scheme to predict geomagnetic storms after intense solar events and geomagnetic activity 27 days in advance. Final report, 6 Aug 86-16 Nov 90

    SciTech Connect

    Akasofu, S.I.; Lee, L.H.

    1991-02-01

    The modern geomagnetic storm prediction scheme should be based on a numerical simulation method, rather than on a statistical result. Furthermore, the scheme should be able to predict the geomagnetic storm indices, such as the Dst and AE indices, as a function of time. By recognizing that geomagnetic storms are powered by the solar wind-magnetosphere generator and that its power is given in terms of the solar wind speed, the interplanetary magnetic field (IMF) magnitude and polar angle, the authors have made a major advance in predicting both flare-induced storms and recurrent storms. Furthermore, it is demonstrated that the prediction scheme can be calibrated using the interplanetary scintillation (IPS) observation, when the solar disturbance advances about half-way to the earth. It is shown, however, that we are still far from a reliable prediction scheme. The prediction of the IMF polar angle requires future advance in understanding characteristics of magnetic clouds.

  1. F-region ionospheric perturbations in the low-latitude ionosphere during the geomagnetic storm of 25-27 August 1987

    NASA Astrophysics Data System (ADS)

    Pavlov, A.; Fukao, S.; Kawamura, S.

    2004-10-01

    We have presented a comparison between the modeled NmF2 and hmF2, and NmF2 and hmF2 which were observed at the equatorial anomaly crest and close to the geomagnetic equator simultaneously by the Akita, Kokubunji, Yamagawa, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper atmosphere (MU) radar (34.85° N, 136.10° E) during the 25-27 August 1987 geomagnetically storm-time period at low solar activity near 201°, geomagnetic longitude. A comparison between the electron and ion temperatures measured by the MU radar and those produced by the model of the ionosphere and plasmasphere is presented. The corrections of the storm-time zonal electric field, EΛ, from 16:30 UT to 21:00 UT on 25 August bring the modeled and measured hmF2 into reasonable agreement. In both hemispheres, the meridional neutral wind, W, taken from the HWW90 wind model and the NRLMSISE-00 neutral temperature, Tn, and densities are corrected so that the model results agree with the ionospheric sounders and MU radar observations. The geomagnetic latitude variations in NmF2 on 26 August differ significantly from those on 25 and 27 August. The equatorial plasma fountain undergoes significant inhibition on 26 August. This suppression of the equatorial anomaly on 26 August is not due to a reduction in the meridional component of the plasma drift perpendicular to the geomagnetic field direction, but is due to the action of storm-time changes in neutral winds and densities on the plasma fountain process. The asymmetry in W determines most of the north-south asymmetry in hmF2 and NmF2 on 25 and 27 August between about 01:00-01:30 UT and about 14:00 UT when the equatorial anomaly exists in the ionosphere, while asymmetries in W, Tn, and neutral densities relative to the geomagnetic equator are responsible for the north-south asymmetry in NmF2 and hmF2 on 26 August. A theory of the primary mechanisms causing the morning and evening peaks in the electron temperature, Te, is

  2. Assessment of extreme values in geomagnetic and geoelectric field variations for Canada

    NASA Astrophysics Data System (ADS)

    Nikitina, L.; Trichtchenko, L.; Boteler, D. H.

    2016-07-01

    Disturbances of the geomagnetic field produced by space weather events can have an impact on power systems and other critical infrastructure. To mitigate these risks it is important to determine the extreme values of geomagnetic activity that can occur. More than 40 years of 1 min magnetic data recorded at 13 Canadian geomagnetic observatories have been analyzed to evaluate extreme levels in geomagnetic and geoelectric activities in different locations of Canada. The hourly ranges of geomagnetic field variations and hourly maximum in rate of change of the magnetic variations have been used as measures of geomagnetic activity. Geoelectric activity is estimated by the hourly peak amplitude of the geoelectric fields calculated with the use of Earth resistivity models specified for different locations in Canada. A generalized extreme value distribution was applied to geomagnetic and geoelectric indices to evaluate extreme geomagnetic and geoelectric disturbances, which could happen once per 50 and once per 100 years with 99% confidence interval. Influence of geomagnetic latitude and Earth resistivity models on the results for the extreme geomagnetic and geoelectric activity is discussed. The extreme values provide criteria for assessing the vulnerability of power systems and other technology to geomagnetic activity for design or mitigation purposes.

  3. Equatorial counterelectrojets during geomagnetic storms and their possible dynamos in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Hashimoto, K. K.; Ebihara, Y.; Tsuji, Y.; Veenadhari, B.; Nishimura, T.; Tanaka, T.; Fujita, S.; Nagatsuma, T.

    2012-12-01

    During the substorm growth phase and storm main phase, the high pressure plasma accumulated in the cusp and mantle regions activates a dynamo for the dawn-to-dusk convection electric field and the Region-1 field-aligned currents (R1 FACs) [Tanaka, 1995]. The electric field and FACs are conveyed by the shear Alfven waves to the polar ionosphere and the electric field extends promptly to low latitude through the Earth-ionosphere waveguide [Kikuchi and Araki, 1979]. The electric field drives the DP2 currents at mid latitudes [Wilson et al., 2001; Tsuji et al., 2012] and intensifies the equatorial electrojet (EEJ) [Kikuchi et al., 1996, 2008]. The convection electric field extends to the inner magnetosphere promptly [Nishimura et al., 2009] and energizes the plasma in the partial ring current region with the help of the gradient and curvature drift [Ebihara and Ejiri, 2000], which in turn works as a dynamo for the dusk-to-dawn electric field and the R2 FACs. The dusk-to-dawn electric field causes the counterelectrojet (CEJ) at the equator when the IMF turns northward [Rastogi, 1975]. The CEJ often appears during substorms [Kobea et al., 2000; Kikuchi et al., 2000]. Both the R1 and R2 FACs are intensified by the substorm expansion, with the R2 FACs strong enough to cause the CEJ [Hashimoto et al., 2011]. The CEJ often occurs during the recovery phase of geomagnetic storms [Kikuchi et al., 2008; Tsuji et al., 2012], while the CEJ also appears during the storm main phase under the relatively stable southward IMF [Fejer et al., 2007; Veenadhari et al., 2010]. In this paper, we analyzed several storm events to identify the dynamo for the stormtime CEJ. The disturbance dynamo is a commonly accepted dynamo for the long lasting stormtime CEJ [Blanc and Richmond, 1980; Fejer and Scherliess 1997]. However, the observed rapid and periodic development of the CEJ should be attributed to the R2 FACs generated in the inner magnetosphere. Based on the magnetometer and radar

  4. Behavior of the ionosphere over Europe during two geomagnetic storms which caused tongues of ionization over North America.

    NASA Astrophysics Data System (ADS)

    Rodriguez-Bouza, Marta; Herraiz, Miguel; Rodriguez-Caderot, Gracia; Radicella, Sandro M.

    2015-04-01

    This work presents the effect of two geomagnetic storms on the ionospheric total electron content (TEC) over Europe. Those geomagnetic storms occurred on July 14th, 2013 and February 19th, 2014 and originated a tongue of ionization over North America. Following the criteria of Gonzalez et al.(1994), the July storm can be classified as a moderate one because the Dst index reached a value of -72nT, whereas the February storm as an intense event considering that Dst index dropped to -112nT. For this study we have used RINEX files obtained from GNSS stations belonging to International GPS Service, IGS, EUREF Permanent Network, and University Navstar Consortium, UNAVCO, networks. The data has been divided into two groups in function of the region: Europe or North America. For each group we have used all the available stations. The RINEX files have been processed using a technique developed by Ciraolo (2012) which assumes the ionospheric thin shell model to obtain the vertical total electron content (vTEC) from the slant total electron content (sTEC) at the Ionospheric Pierce Point, IPP, the point where the line-of-sight between the satellite and the ground receiver intersects the ionosphere. The data were obtained at 1 minute sampling in periods of geomagnetic storms and quiet days close to them. In both storms a tongue of ionization, ToI, appeared over North America from afternoon to dusk (between 19:00 and 3:00 GMT). The behavior of the ionosphere over Europe was very different in eachcase. In July, the TEC decreased respect the quiet days during the ToI time. In the February storm the behavior of the ionosphere over Europe was similar to that of a quiet day but the following day appeared a phenomenom similar to the ToI. Ciraolo, L. (2012). Ionospheric Total Electron Content (TEC) from Global Positioning System. Personal Communication. González, W.D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., Vasyliunas, V. M. (1994). What is a

  5. Uncertainty Response of Physics-Based Atmospheric Models Due to Internal Heating Parameters and Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Linares, R.; Godinez, H. C.; Vittaldev, V.

    2014-12-01

    heated by the sun are not know exactly and therefore this work will look at the effects of these parameters on the uncertainty of the atmospheric model. Finally, geomagnetic storms have been shown to increase the uncertainty and this work will investigate the uncertainty response to geomagnetic storms.

  6. Evaluation of a new paleosecular variation activity index as a diagnostic tool for geomagnetic field variations

    NASA Astrophysics Data System (ADS)

    Panovska, Sanja; Constable, Catherine

    2015-04-01

    Geomagnetic indices like Dst, K and A, have been used since the early twentieth century to characterize activity in the external part of the modern geomagnetic field and as a diagnostic for space weather. These indices reflect regional and global activity and serve as a proxy for associated physical processes. However, no such tools are yet available for the internal geomagnetic field driven by the geodynamo in Earth's liquid outer core. To some extent this reflects limited spatial and temporal sampling for longer timescales associated with paleomagnetic secular variation, but recent efforts in both paleomagnetic data gathering and modeling activity suggest that longer term characterization of the internal geomagnetic weather/climate and its variability would be useful. Specifically, we propose an index for activity in paleosecular variation, useful as both a local and global measure of field stability during so-called normal secular variation and as a means of identifying more extreme behavior associated with geomagnetic excursions and reversals. To date, geomagnetic excursions have been identified by virtual geomagnetic poles (VGPs) deviating more than some conventional limit from the geographic pole (often 45 degrees), and/or by periods of significant intensity drops below some critical value, for example 50% of the present-day field. We seek to establish a quantitative definition of excursions in paleomagnetic records by searching for synchronous directional deviations and lows in relative paleointensity. We combine paleointensity variations with deviations from the expected geocentric axial dipole (GAD) inclination in a single parameter, which we call the paleosecular variation (PSV) activity index. This new diagnostic can be used on any geomagnetic time series (individual data records, model predictions, spherical harmonic coefficients, etc.) to characterize the level of paleosecular variation activity, find excursions, or even study incipient reversals

  7. Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Lin, C. H.; Matsuo, T.; Chen, W. H.; Lee, I. T.; Liu, J. Y.; Lin, J. T.; Hsu, C. T.

    2016-06-01

    The main purpose of this paper is to investigate the effects of rapid assimilation-forecast cycling on the performance of ionospheric data assimilation during geomagnetic storm conditions. An ensemble Kalman filter software developed by the National Center for Atmospheric Research (NCAR), called Data Assimilation Research Testbed, is applied to assimilate ground-based GPS total electron content (TEC) observations into a theoretical numerical model of the thermosphere and ionosphere (NCAR thermosphere-ionosphere-electrodynamics general circulation model) during the 26 September 2011 geomagnetic storm period. Effects of various assimilation-forecast cycle lengths: 60, 30, and 10 min on the ionospheric forecast are examined by using the global root-mean-squared observation-minus-forecast (OmF) TEC residuals. Substantial reduction in the global OmF for the 10 min assimilation-forecast cycling suggests that a rapid cycling ionospheric data assimilation system can greatly improve the quality of the model forecast during geomagnetic storm conditions. Furthermore, updating the thermospheric state variables in the coupled thermosphere-ionosphere forecast model in the assimilation step is an important factor in improving the trajectory of model forecasting. The shorter assimilation-forecast cycling (10 min in this paper) helps to restrain unrealistic model error growth during the forecast step due to the imbalance among model state variables resulting from an inadequate state update, which in turn leads to a greater forecast accuracy.

  8. Hydro-Quebec and geomagnetic storms: measurement techniques, effects on transmission network and preventive actions since 1989.

    NASA Astrophysics Data System (ADS)

    Beland, J.

    In March 1989 the province of Quebec in Canada suffered an almost complete blackout during a severe geomagnetic storm. Millions of Hydro-Québec's customers have been left without electricity for several hours. Fifteen years later, many changes have been implemented to avoid the repetition of such an event. Among them, we now have two measurement systems (one primary and one backup) monitoring ground induced current (GIC) effects on the grid in real time. Those systems are described and examples of data acquired during major storms (as in late October 2003) are given. To be informed in advance of a probable GIC occurrence, HQ now relies on a specialized organization providing geomagnetic activity alert and forecast. Following an alert or the detection of GIC effects on the network exceeding a minimal threshold, special operation rules become in effect with the objective of ensuring maximum stability and safety margin. Another major improvement is the introduction of series capacitors on several 735 kV lines, which increases network stability and also block GIC circulation. In conclusion, HQ now believes that its network can survive to any realistic geomagnetic storm.

  9. Cosmic Ray Monitoring and Space Dangerous Phenomena, 2. Methods of Cosmic Ray Using For Forecasting of Major Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Dorman, L. I.; Eroshenko, E. A.; Iucci, N.; Mavromichalaki, H.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Yanke, V. G.; Zukerman, I. G.

    We present developing of methods (e.g., Dorman et al., 1995, 1999) for forecasting on the basis of neutron monitor hourly on-line data (as well as on-line muon tele- scopes hourly data from different directions) geomagnetic storms of scales G5 (3- hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) (according to NOAA Space Weather Scales). These geomagnetic storms are dangerous for peo- ple technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). We show that for especially dangerous geo- magnetic storms can be used global-spectrographic method if on-line will be avail- able 35-40 NM and muon telescopes. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of ge- omagnetic storms G5, G4 or G3 (according to NOAA Space Weather Scales) can be used as important factor for forecast. The second factor what can be used for SC forecast is specifically behavior of CR density (CR intensity) for about 30-15 hours before SC (caused mainly by galactic CR particles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre- decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of major ge- omagnetic storms. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting fea- tures for big Forbush-decreases". Nuclear Physics B, Vol. 49A, pp. 136-144. (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their prediction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, Vol. 6, p. 476-479, (1999).

  10. Comparative ionospheric impacts and solar origins of nine strong geomagnetic storms in 2010-2015

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Lean, Judith L.; McDonald, Sarah E.; Wang, Yi-Ming

    2016-06-01

    For nine of the strongest geomagnetic storms in solar cycle 24 we characterize, quantify, and compare the impacts on ionospheric total electron content (TEC) and the U.S. Wide Area Augmentation System (WAAS) with the heliospheric morphology and kinematics of the responsible coronal mass ejections (CMEs) and their solar source regions. Regional TEC responses to the events are similar in many respects, especially in the initial positive phase. For the subsequent negative phase, Dst is a better indicator than ap of the magnitude of the TEC decrease. The five events that arrive between 13:00 UT and 21:00 UT (local daytime in the U.S.) produce large WAAS degradations, and the four events that arrive outside this time of day produce lesser or no WAAS degradation. Our sample of geoeffective events includes CMEs with only modestly fast speeds, ones that only provided glancing impacts on Earth by their shock sheaths and ones not associated with any significant flare. While all of the CMEs traveled faster than the solar wind, they nevertheless have a wide range of velocities and produced a range of Bz values; neither speed nor Bz correlates significantly with ionospheric impact. Comparison with the locations of surface activity leads to estimates of deflection for the CMEs, with the average deflection being 19°. At least a few events may have missed Earth entirely in the absence of coronal deflection.

  11. Solar wind - magnetosphere coupling efficiency during ejecta and sheath region driven geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Myllys, Minna; Kilpua, Emilia; Lavraud, Benoit

    2016-04-01

    We have investigated the effect of key solar wind driving parameters on solar wind- magnetosphere coupling efficiency during sheath and magnetic cloud driven storms. The particular focus of the study was on the coupling efficiency dependence with Alfven Mach number (MA). The efficiency has been estimated using the dawn-dusk component of the interplanetary electric field (EY), Newell and Borovsky functions as a proxy for the energy inflow and the polar cap potential (PCN), auroral electrojet (AE) and SYM-H indices as the measure of the energy output. We have also performed a time delay analysis between the input parameters and the geomagnetic indices. We demonstrate that the PCN index distinctively shows both a MA dependent saturation and a MA-independent saturation, pointing to the existence of at least two underlying physical mechanisms for the saturation of the index. By contrast, we show that the AE index saturates, but that the saturation of this index is independent of the solar wind MA. Finally we find that the SYM-H index does not seem to saturate and that the absence of saturation is independent of the MA regime.

  12. Determining the strength of the ring and the magnetopause currents during the initial phase of a geomagnetic storm using cosmic-ray data

    SciTech Connect

    Flueckiger, E.O.; Smart, D.F.; Shea, M.A.

    1990-02-01

    During a geomagnetic storm the strength of the magnetospheric current systems is strongly increased. In the initial phase of most events, however, the magnetic field at the Earth's equator (as characterized by the Dst index) shows only a relatively small perturbation due to the opposite magnetic effects caused by the magnetopause currents compared to the ring current. Analysis of Dst and of the cosmic ray cutoff rigidity changes at about 55 deg geomagnetic latitude offers the unique possibility to estimate the intensity of these two current systems separately. The procedure is illustrated for the geomagnetic storm on December 17, 1971.

  13. Variations of total electron content during geomagnetic disturbances: A model/observation comparison

    NASA Technical Reports Server (NTRS)

    Roble, G. Lu X. Pi A. D. Richmond R. G.

    1997-01-01

    This paper studies the ionospheric response to major geomagnetic storm of October 18-19, 1995, using the thermosphere-ionosphere electrodynamic general circulation model (TIE-GCM) simulations and the global ionospheric maps (GIM) of total electron content (TEC) observations from the Global Positioning System (GPS) worldwide network.

  14. The Effects of Neutral Inertia on Ionospheric Currents in the High-Latitude Thermosphere Following a Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Deng, W.; Killeen, T. L.; Burns, A. G.; Roble, R. G.; Slavin, J. A.; Wharton, L. E.

    1993-01-01

    Results of an experimental and theoretical investigation into the effects of the time dependent neutral wind flywheel on high-latitude ionospheric electrodynamics are presented. The results extend our previous work which used the National Center for Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) to theoretically simulate flywheel effects in the aftermath of a geomagnetic storm. The previous results indicated that the neutral circulation, set up by ion-neutral momentum coupling in the main phase of a geomagnetic storm, is maintained for several hours after the main phase has ended and may dominate height-integrated Hall currents and field-aligned currents for up to 4-5 hours. We extend the work of Deng et al. to include comparisons between the calculated time-dependent ionospheric Hall current system in the storm-time recovery period and that measured by instruments on board the Dynamics Explorer 2 (DE 2) satellite. Also, comparisons are made between calculated field-aligned currents and those derived from DE 2 magnetometer measurements. These calculations also allow us to calculate the power transfer rate (sometimes called the Poynting flux) between the magnetosphere and ionosphere. The following conclusions have been drawn: (1) Neutral winds can contribute significantly to the horizontal ionospheric current system in the period immediately following the main phase of a geomagnetic storm, especially over the magnetic polar cap and in regions of ion drift shear. (2) Neutral winds drive Hall currents that flow in the opposite direction to those driven by ion drifts. (3) The overall morphology of the calculated field-aligned current system agrees with previously published observations for the interplanetary magnetic field (IMF) B(sub Z) southward conditions, although the region I and region 2 currents are smeared by the TI(ICM model grid resolution. (4) Neutral winds can make significant contributions to the field-aligned current

  15. Alfvénic field-aligned currents, ion upflow and electron precipitation during large geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Hatch, Spencer; LaBelle, James; Chaston, Christopher

    2016-04-01

    We present four years of FAST observations of Alfvénic field-aligned currents (FACs) in the Northern Hemisphere coincident with 40 moderate (Dst < -50 nT) to very large geomagnetic storms. Superposed epoch analysis of Alfvénic activity of storm periods demonstrate a sharp increase in the probability of AlfvÉn wave occurrence just after storm commencement, and analysis based on storm phase shows that the probability of Alfvén wave occurrence increases by more than a factor of 5 on both dayside and nightside. Additionally, recently reported Van Allen Probes measurements in the magnetosphere imply a region (˜60-68 degrees invariant latitude) in the nightside ionosphere where Alfvén waves are statistically likely to be observed during storm main phase; we report statistical observations during main phase showing that this region instead corresponds to both intense electron precipitation (>10 mW m-2) and strong upflowing ion number flux (> 108 cm^{-2 s-1), while observed Alfvénic FAC occurrence rates are diminished relative to Van Allen Probes measurements. FAST observations also indicate that the most intense electron precipitation associated with Alfvénic FACs occurs pre-midnight during storm recovery phase.

  16. Development of a geomagnetic storm prediction scheme. Final report, 23 February 1982-23 April 1985 on Phase 1

    SciTech Connect

    Akasofu, S.I.; Fry, C.F.

    1985-06-01

    Since present geomagnetic storm prediction schemes rely entirely on statistical results, so that they can't provide quantitative information on the intensity of a geomagnetic storm caused by a particular solar event, we have been developing a first generation numerical prediction scheme. The scheme consists of two major computer codes which consist of a large number of subroutine codes and of empirical relationships. When a solar flare occurs, six flare parameters are determined as the input data set for the first code which is devised to show the simulated propagation of solar-wind disturbances in the heliosphere to a distance of 2 AU. Thus, one can determine the relative location of the propagating disturbances with the earth's position. The solar-wind speed and the three interplanetary magnetic field (IMF) components are then computed as a function of time at the earth's location or any other desired (space probe) locations. These quantities become the input parameters for the second major code which computes the power of the solar wind-magnetosphere dynamo as a function of time. The power thus obtained and the three IMF components can be used to compute or infer: (1) the predicted geometry of the auroral oval; (2) the cross-polar cap potential; (3) two geomagnetic indices; (4) the total energy injection rate into the polar ionosphere; (5) the atmospheric temperature, etc.

  17. The 1995 revision of the joint US/UK geomagnetic field models - I. Secular variation

    USGS Publications Warehouse

    Macmillan, S.; Barraclough, D.R.; Quinn, J.M.; Coleman, R.J.

    1997-01-01

    We present the methods used to derive mathematical models of global secular variation of the main geomagnetic field for the period 1985 to 2000. These secular-variation models are used in the construction of the candidate US/UK models for the Definitive Geomagnetic Reference Field at 1990, the International Geomagnetic Reference Field for 1995 to 2000, and the World Magnetic Model for 1995 to 2000 (see paper II, Quinn et al., 1997). The main sources of data for the secular-variation models are geomagnetic observatories and repeat stations. Over the areas devoid of these data secular-variation information is extracted from aeromagnetic and satellite data. We describe how secular variation is predicted up to the year 2000 at the observatories and repeat stations, how the aeromagnetic and satellite data are used, and how all the data are combined to produce the required models.

  18. Geomagnetic Storm Effects in the Low- to Middle-Latitude Upper Thermosphere

    NASA Technical Reports Server (NTRS)

    Burns, A. G.; Killeen, T. L.; Deng, W.; Carignan, G. R.; Roble, R. G.

    1995-01-01

    In this paper, we use data from the Dynamics Explorer 2 (DE 2) satellite and a theoretical simulation made by using the National Center for Atmospheric Research thermosphere/ionosphere general circulation model (NCAR-TIGCM) to study storm-induced changes in the structure of the upper thermosphere in the low- to middle-latitude (20 deg-40 deg N) region of the winter hemisphere. Our principal results are as follows: (1) The winds associated with the diurnal tide weaken during geomagnetic storms, causing primarily zonally oriented changes in the evening sector, few changes in the middle of the afternoon, a combination of zonal and meridional changes in the late morning region, and mainly meridional changes early in the morning; (2) Decreases in the magnitudes of the horizontal winds associated with the diurnal tide lead to a net downward tendency in the vertical winds blowing through a constant pressure surface; (3) Because of these changes in the vertical wind, there is an increase in compressional heating (or a decrease in cooling through expansion), and thus temperatures in the low- to middle-latitudes of the winter hemisphere increase; (4) Densities of all neutral species increase on a constant height surface, but the pattern of changes in the O/N2 ratio is not well ordered on these surfaces; (5) The pattern of changes in the O/N2 ratio is better ordered on constant pressure surfaces. The increases in this ratio on constant pressure surfaces in the low- to middle-latitude, winter hemisphere are caused by a more downward tendency in the vertical winds that blow through the constant pressure surfaces. Nitrogen-poor air is then advected downward through the pressure surface, increasing the O/N2 ratio; (6) The daytime geographical distribution of the modeled increases in the O/N2 ratio on a constant pressure surface in the low- to middle-latitudes of the winter hemisphere correspond very closely with those of increases in the modeled electron densities at the F2 peak.

  19. Solar wind-magnetosphere coupling efficiency during ejecta and sheath-driven geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Myllys, M.; Kilpua, E. K. J.; Lavraud, B.; Pulkkinen, T. I.

    2016-05-01

    We have investigated the effect of key solar wind driving parameters on solar wind-magnetosphere coupling efficiency during sheath and magnetic cloud-driven storms. The particular focus of the study was on the coupling efficiency dependence with Alfvén Mach number (MA). The efficiency has been estimated using the dawn-dusk component of the interplanetary electric field (EY), Newell and Borovsky functions as a proxy for the energy inflow and the polar cap potential (PCN), and auroral electrojet (AE) and SYM-H indices as the measure of the energy output. We have also performed a time delay analysis between the input parameters and the geomagnetic indices. The optimal time lag and smoothing window length depend on the coupling function used and on the solar wind driver. For example, turbulent sheaths are more sensitive to the time shift and the averaging interval than smoother magnetic clouds. The results presented in this study show that the solar wind-magnetosphere coupling efficiency depends strongly on the definition used, and it increases with increasing MA. We demonstrate that the PCN index distinctively shows both a Mach number dependent saturation and a Mach number independent saturation, pointing to the existence of at least two underlying physical mechanisms for the saturation of the index. By contrast, we show that the AE index saturates but that the saturation of this index is independent of the solar wind Mach number. Finally, we find that the SYM-H index does not seem to saturate and that the absence of saturation is independent of the Mach number regime. We highlight the difference between the typical MA conditions during sheath regions and magnetic clouds. The lowest MA values are related to the magnetic clouds. As a consequence, sheaths typically have higher solar wind-magnetosphere coupling efficiencies than magnetic clouds.

  20. Dynamical effects of geomagnetic storms and substorms in the middle-latitude ionosphere: An observational campaign

    NASA Astrophysics Data System (ADS)

    Pi, Xiaoqing; Mendillo, Michael; Hughes, W. Jeffrey; Buonsanto, Michael J.; Sipler, Dwight P.; Kelly, John; Zhou, Qihou; Lu, Gang; Hughes, Terrence J.

    2000-04-01

    An observational campaign was conducted in October 1992 for ~36 hours, at three high- to low-latitude sites near 75°W longitude (Sondre Stromfjord, Millstone Hill, and Arecibo). Vector plasma drift velocities are obtained using the incoherent scatter radar technique at each site. Neutral winds were measured using a Fabry-Perot interferometer, and 6300 Å airglow structures were imaged at the midlatitude site. Electric fields and meridional winds for the period were perturbed when magnetic storms and substorms occurred on the day and night of the campaign. The penetration of magnetospheric electric field and the following interplays between ionospheric electrodynamics and thermospheric wind perturbations in the midlatitude ionosphere are assessed using the multidiagnostic measurements. Evidence for traveling atmospheric disturbances (TADs) and large-scale gravity waves induced by auroral heating effects upon the thermosphere is identified. Diffuse aurora and a stable aurora red (SAR) arc were observed from Millstone Hill during the night of the campaign. The SAR arc moved southward when there were westward electric field perturbations, indicating plasmasphere compression in the postmidnight sector under substorm conditions. The SAR arc location was used to infer the motion of the magnetospheric shielding layer past the Millstone Hill site. Ionospheric F region disturbances in hmF2, NmF2, and total electron content were driven by the observed dynamics, exhibiting a complex mix of wind and electric field perturbations. While standard model episodes of penetration and shielding/overshielding occurred during the daytime event, such unambiguous clarifications were far less obvious during the nighttime event. This is perhaps due to the prolonged period of moderate geomagnetic activity that served as the background conditions for the substorms that occurred during the campaign.

  1. Geomagnetic secular variations at the Permo-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Pavlov, Vladimir; Veselovskiy, Roman; Fetisova, Anna; Latyshev, Anton; Fluteau, Frederic

    2014-05-01

    Study of changes in geomagnetic secular variations through geological time is essential to document the Earth's magnetic field evolution and provides an important constraint for geodynamo modeling. Moreover, knowledge of the secular variations value for any specific geological epoch (paleosecular variations - PSV) may give an additional tool to constrain the duration of emplacement and cooling of various magmatic bodies including flows, dykes and sills. In this report we present the result of study of the PSV at the Permo-Triassic boundary (~252 Ma), based on the paleomagnetic data, obtained from numerous (N>100) volcanic flows of the Siberian traps exposed in series of sections located in Norilsk and Maymecha-Kotuy regions in the North-West and North of the Siberian platform. Our data, taken together with similar data from other regions (Sementau, East Kazakhstan; Emeichan, China) indicates that the amplitude of PSV at the Permo-Triassic boundary was about the same or a little lower than in Late Cenozoic during last 5 milllions years. The low (comparing with expected one) value of PSV recorded in several large sills from Angara-Bratsk region (southern Siberian platform) indicates that these sills was formed very fast during the time interval less than, at least, several thousand years. Especially this conclusion is interesting for so called Tolstomyss sill, which, in fact, represents a huge field of associated tuffs, sills, dykes and volcanics, extended over the distance more than 200 km. This result can be considered as a further indication of very fast emplacement of the Siberian traps and their link with the Permo-Triassic catastrophe.

  2. Ionospheric response of equatorial and low latitude F-region during the intense geomagnetic storm on 24-25 August 2005

    NASA Astrophysics Data System (ADS)

    de Jesus, R.; Sahai, Y.; Guarnieri, F. L.; Fagundes, P. R.; de Abreu, A. J.; Bittencourt, J. A.; Nagatsuma, T.; Huang, C.-S.; Lan, H. T.; Pillat, V. G.

    2012-02-01

    In this investigation, we present and discuss the response of the ionospheric F-region in the South American and East Asian sectors during an intense geomagnetic storm in August 2005. The geomagnetic storm studied reached a minimum Dst of -216 nT at 12:00 UT on 24 August. In this work ionospheric sounding data obtained of 24, 25, and 26 August 2005 at Palmas (PAL; 10.2° S, 48.2° W; dip latitude 6.6° S), São José dos Campos (SJC, 23.2° S, 45.9° W; dip latitude 17.6° S), Brazil, Ho Chi Minh City, (HCM; 10.5° N, 106.3° E; dip latitude 2.9° N), Vietnam, Okinawa (OKI; 26.3° N, 127.8° E; dip latitude 21.2° N), Japan, are presented. Also, the GPS observations obtained at different stations in the equatorial and low-latitude regions in the Brazilian sector are presented. On the night of 24-25 August 2005, the h‧F variations show traveling ionospheric disturbances associated with Joule heating in the auroral zone from SJC to PAL. The foF2 variations show a positive storm phase on the night of 24-25 August at PAL and SJC during the recovery phase. Also, the GPS-VTEC observations at several stations in the Brazilian sector show a fairly similar positive storm phase on 24 August. During the fast decrease of Dst (between 10:00 and 11:00 UT) on 24 August, there is a prompt penetration of electric field of magnetospheric origin that result in abrupt increase (˜12:00 UT) in foF2 at PAL, SJC (Brazil) and OKI (Japan) and in VTEC at IMPZ, BOMJ, PARA and SMAR (Brazil). OKI showed strong oscillations of the F-region on the night 24 August resulted to the propagation of traveling atmospheric disturbances (TADs) by Joule heating in the auroral region. These effects result a strong positive observed at OKI station. During the daytime on 25 August, in the recovery phase, the foF2 observations showed positive ionospheric storm at HCM station. Some differences in the latitudinal response of the F-region is also observed in the South American and East Asian sectors.

  3. Daytime geomagnetic disturbances at high latitudes during a strong magnetic storm of June 21-23, 2015: The storm initial phase

    NASA Astrophysics Data System (ADS)

    Gromova, L. I.; Kleimenova, N. G.; Levitin, A. E.; Gromov, S. V.; Dremukhina, L. A.; Zelinskii, N. R.

    2016-05-01

    The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm ( SymH ~-220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50-60 cm-3) at a low solar wind velocity (350-400 km/s) approached the Earth's magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations ( ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to-39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth's surface as bay-like magnetic disturbances.

  4. The effect of cosmic ray intensity variations and geomagnetic disturbances on the physiological state of aviators

    NASA Astrophysics Data System (ADS)

    Papailiou, M.; Mavromichalaki, H.; Kudela, K.; Stetiarova, J.; Dimitrova, S.; Giannaropoulou, E.

    2011-09-01

    Over the last few years various researches have reached the conclusion that cosmic ray variations and geomagnetic disturbances are related to the condition of the human physiological state. In this study medical data regarding 4018 Slovak aviators were analyzed in relation to daily variations of cosmic ray and geomagnetic activity. Specifically daily data concerning mean values of heart rate which were registered during the medical examinations of the Slovak aviators, were related to daily variations of cosmic ray intensity, as measured by the Neutron Monitor Station on Lomnicky Stit (http://neutronmonitor.ta3.sk/realtime.php3) and the high resolution neutron monitor database (http://www.nmdb.eu) and daily variations of Dst and Ap geomagnetic indices. All subjects were men in good health of age 18-60 yrs. This particular study refers to the time period from 1 January 1994 till 31 December 2002. Statistical methods were applied to establish a statistical significance of the effect of geomagnetic activity levels and cosmic ray intensity variations on the aforementioned physiological parameters for the whole group. The Pearson r-coefficients were calculated and the Analysis of Variance (ANOVA) method was applied to establish the statistical significance levels (p-values) of the effect of geomagnetic activity and cosmic ray intensity variations on heart rate up to three days before and three days after the respective events. Results show that there is an underlying effect of geomagnetic activity and cosmic ray intensity variations on the cardiovascular functionality.

  5. Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations

    NASA Technical Reports Server (NTRS)

    Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.

  6. Study of geomagnetic storms, solar flares, and centers of activity in 1976, the year between solar activity cycles 20 and 21

    SciTech Connect

    Hedeman, E.R.; Prince, H.D.

    1980-09-02

    Solar and geophysical circumstances prior to the 34 principal geomagnetic storms in 1976 have been evaluated. In this year of sun spot minima, 21 of the storms were unambiguously classified as sequential. For 7 of the storms prior flares may have played a role. Six of the storms remain as 'problem' situations. The 3 most severe storms in 1976 were associated with the 3 flares in 1976 with Comprehensive Flare Indices > or = 10. Inspection of plots of daily geomagnetic character figures suggest that at least 6 different sequences contributed to the geomagnetic disturbance in 1976. Relationships were sought between inferred coronal holes and the observed locations of significant centers of activity as the possible origins of the sequential storm particles. All of the major recurrent storm sequences in 1976 apparently had at their roots significant centers of activity that could have been near the perimeters of deduced associated coronal holes. The sequential storms occurred as the active regions were dying and continued long after all optical events of the active regions had disappeared.

  7. Relationships of high-latitude geomagnetic variations to interplanetary plasma conditions

    SciTech Connect

    Wolfe, A. AT T Bell Laboratories, Murray Hill, NJ ); Lanzerotti, L.J.; Maclennan, C.G.; Medford, L.V. )

    1987-01-01

    As an extension of the United States program at South Pole Station to study in detail the southern magnetospheric cusp region, the authors have initiated geomagnetic studies at Iqaluit (formerly Frobisher Bay), Baffin Island, Northwest Territories, Canada. This location is approximately geomagnetically conjugate to South Pole Station under quiet geomagnetic conditions. Both sites are just inside the equatorward boundary of the dayside magnetospheric cusps in their respective hemispheres. This research includes studies of the conjugacy of geometric activity at these high latitudes, studies of the conditions under which conjugacy breaks down, and the relationship of geomagnetic variations to energy sources in the interplanetary plasma. In both hemispheres, variations in the magnetic field are measured with fluxgate magnetometers over the range from 0.0 to approximately 0.5 hertz. The field variations are measured in three orthogonal components: Geomagnetic north-south (H-component), geomagnetic east-west (D-component), and vertical (V-component). The magnetic field data are analyzed using a number of statistical techniques, including power spectra analysis. Presented here are the results of a study of hourly power spectra computed for the the H-component magnetic field data acquired at both South Pole and Iqaluit for the 30-day interval 17 July to 15 August 1985. After computing the spectra, the geomagnetic power is calculated over several different bandwidths corresponding, roughly, to frequencies related to hydromagnetic waves in the Earth's magnetosphere.

  8. Superposed epoch analysis and storm statistics from 25 years of the global geomagnetic disturbance index, USGS-Dst

    USGS Publications Warehouse

    Gannon, J.L.

    2012-01-01

    Statistics on geomagnetic storms with minima below -50 nanoTesla are compiled using a 25-year span of the 1-minute resolution disturbance index, U.S. Geological Survey Dst. A sudden commencement, main phase minimum, and time between the two has a magnitude of 35 nanoTesla, -100 nanoTesla, and 12 hours, respectively, at the 50th percentile level. The cumulative distribution functions for each of these features are presented. Correlation between sudden commencement magnitude and main phase magnitude is shown to be low. Small, medium, and large storm templates at the 33rd, 50th, and 90th percentile are presented and compared to real examples. In addition, the relative occurrence of rates of change in Dst are presented.

  9. Polar Electrodynamics During the 14-16 July 2012 Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Merkin, V. G.; Korth, H.; Dyrud, L. P.; Barnes, R. J.; Ruohoniemi, J. M.; Gjerloev, J. W.; Fentzke, J.

    2012-12-01

    We present an analysis of the Birkeland current dynamics observed by AMPERE during the CME-driven geomagnetic storm of 14-16 July, 2012, when the provisional Dst reached -125 nT from 17 to 19 UT on 15 July. The CME magnetic cloud presented a consistently southward IMF lasting over 30 hours, affording an opportunity to examine the system response under sustained, steady forcing. The shock arrived at ACE at 1725 UT on 14 July 2012 when the proton speed increased from 390 to 640 km/s by 1738 UT, while the IMF remained southward and intensified from -4 nT to between -10 and -15 nT. By 1810 UT the Birkeland currents increased in intensity by a factor of 5 to 10 and expanded equatorward to about 60N MLAT. During the sheath passage, the IMF rotated multiple times between southward, duskward, dawnard, or northward and the dayside Birkeland currents displayed considerable variability in both intensity and distribution. An impulsive enhancement in nightside currents occurred near 0150 UT on 15 July followed by a second event near 0330 UT, after which the nightside expanded equatorward to 55 MLAT. At ACE the CME sheath was observed until 0551 UT on 15 July when the IMF magnitude increased from 10 nT to 25 nT by 0554 UT and turned consistently southward, BZ = -13 to -15 nT, and anti-sunward, BX = +18 to +23 nT as the CME magnetic cloud arrived. The cloud passage lasted until 1350 UT on 16 July during which time the IMF decreased nearly linearly in time from 27 nT to 10 nT, had a consistently southward orientation, and the proton speed gradually decreased from 650 km/s to 400 km/s. The IMF BZ remained steadily below -14 nT until 0400 UT on 16 July. The first additional current intensification occurred on the dayside at 0620 UT on 15 July. During the next three hours, the currents expanded equatorward of 50N MLAT, and were generally symmetric between dawn and dusk exhibiting pertburbations exceeding 3000 nT. There were multiple, >2000 nT, nightside impulsive events indicating

  10. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla

    2008-02-01

    A group of 86 healthy volunteers were examined on each working day during periods of high solar activity. Data about systolic and diastolic blood pressure, pulse pressure, heart rate and subjective psycho-physiological complaints were gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters. The factors were as follows: (1) geomagnetic activity estimated by daily amplitude of H-component of the local geomagnetic field, Ap- and Dst-index; (2) gender; and (3) the presence of medication. Average values of systolic, diastolic blood pressure, pulse pressure and subjective complaints of the group were found to increase significantly with geomagnetic activity increment.

  11. Latitudinal and Seasonal Investigations of Storm-Time TEC Variation

    NASA Astrophysics Data System (ADS)

    Adimula, I. A.; Oladipo, O. A.; Adebiyi, S. J.

    2016-07-01

    The ionosphere responds markedly and unpredictably to varying magnetospheric energy inputs caused by solar disturbances on the geospace. Knowledge of the impact of the space weather events on the ionosphere is important to assess the environmental effect on the operations of ground- and space-based technologies. Thus, global positioning system (GPS) measurements from the international GNSS service (IGS) database were used to investigate the ionospheric response to 56 geomagnetic storm events at six different latitudes comprising the northern and southern hemispheres in the Afro-European sector. Statistical distributions of total electron content (TEC) response show that during the main phase of the storms, enhancement of TEC is more pronounced in most of the seasons, regardless of the latitude and hemisphere. However, a strong seasonal dependence appears in the TEC response during the recovery phase. Depletion of TEC is majorly observed at the high latitude stations, and its appearance at lower latitudes is seasonally dependent. In summer hemisphere, the depletion of TEC is more pronounced in nearly all the latitudinal bands. In winter hemisphere, enhancement as well as depletion of TEC is observed over the high latitude, while enhancement is majorly observed over the mid and low latitudes. In equinoxes, the storm-time TEC distribution shows a fairly consistent characteristic with the summer distribution, particularly in the northern hemisphere.

  12. Comparative dynamics of relativistic electron fluxes during two geomagnetic storms on 17-18 March and on 22-23 June 22-23 in 2015

    NASA Astrophysics Data System (ADS)

    Vlasova, Natalia; Kalegaev, Vladimir; Beresneva, Evgeniya; Stanislav, Ganitskiy

    2016-07-01

    The role of solar wind in the outer Earth`s radiation belt dynamics is under consideration during the last decades. Unfortunately, the physical mechanisms that control the loss and acceleration of the magnetospheric relativistic electron fluxes are not evident until now. In this study we compared and contrasted some features of relativistic electron flux dynamics during two largest geomagnetic storms in 2015 (17-18 March and 22-23 June) having the similar Dst-variations profiles and amplitudes (~200 nT). Analysis of experimental data from Van Allen Probes (RBSP), GOES, Electro, POES, Meteor satellites was combined with theoretical investigations on the base of the A2000 model of the magnetospheric magnetic field. Multipoint observations at GEO and LEO show the dramatic changes in the MeV electron populations during the main phase of the magnetic storms. We found the solar wind and IMF variations responsible for large-scale magnetospheric current system changes that reveal themselves in the relativistic electron flux dynamics.

  13. The ISR World-Day Campaign: Review of the April 2002 Geomagnetic Storm With Comparisons to the TIMEGCM/ASPEN Model

    NASA Astrophysics Data System (ADS)

    Vigil, M. N.; Salah, J.; Goncharenko, L.; Zhang, S.; Crowley, G.; van Eyken, A.; Thayer, J.; Shpynev, B.; Taran, V.; Zhou, Q.; Aponte, N.; Chau, J.

    2003-12-01

    In this presentation, the results of the April 2002 world-day campaign are reviewed. Initiated by the Haystack Observatory, this campaign unites the efforts of eight incoherent scatter radars to collect ionospheric data during a major geomagnetic storm beginning on April 17, 2002. The participating ISRs are located along latitudinal and longitudinal sectors making this campaign unique and invaluable for studying spatial and temporal effects of ionospheric storms. Emphasis is given to describing pre-storm electron density depletions, storm-time ionospheric structure, and comparisons between the ISRs and TIMEGCM/ASPEN, a first principle physical model.

  14. Variation of tidal winds in the ionosphere inferred from geomagnetic SQ field

    NASA Technical Reports Server (NTRS)

    Takeda, M.; Araki, T.

    1985-01-01

    The geomagnetic Sq field is mainly generated by the dynamo action of tidal winds in the ionosphere, and therefore some information can be derived from the variation of the Sq field. The geomagnetic Sq field was analyzed during March 1 to 18, 1980, when the geomagnetic activity was exceptionally low, and the equivalent Sq currents calculated every 2 hours by using the spherical harmonics method. Then additional Sq currents were extracted by subtracting the currents averaged through all days in the period from the original currents at each UT. The change of the instantaneous Sq current system by the above-mentioned method is discussed.

  15. Geophysical variables and behavior: XXI. Geomagnetic variation as possible enhancement stimuli for UFO reports preceding earthtremors.

    PubMed

    Persinger, M A

    1985-02-01

    The contribution of geomagnetic variation to the occurrence of UFORs (reports of UFOs) within the New Madrid States during the 6-mo. increments before increases in the numbers of IV-V or less intensity earthquakes within the central USA was determined. Although statistically significant zero-order correlations existed between measures of earthquakes, UFORs and geomagnetic variability, the association between the latter two deteriorated markedly when their shared variance with earthquakes was held constant. These outcomes are compatible with the hypothesis that geomagnetic variability (or phenomena associated with it) may enhance UFORs but only if tectonic stress and strain are increasing within the region. PMID:3982943

  16. Geophysical variables and behavior: XXI. Geomagnetic variation as possible enhancement stimuli for UFO reports preceding earthtremors.

    PubMed

    Persinger, M A

    1985-02-01

    The contribution of geomagnetic variation to the occurrence of UFORs (reports of UFOs) within the New Madrid States during the 6-mo. increments before increases in the numbers of IV-V or less intensity earthquakes within the central USA was determined. Although statistically significant zero-order correlations existed between measures of earthquakes, UFORs and geomagnetic variability, the association between the latter two deteriorated markedly when their shared variance with earthquakes was held constant. These outcomes are compatible with the hypothesis that geomagnetic variability (or phenomena associated with it) may enhance UFORs but only if tectonic stress and strain are increasing within the region.

  17. Using different pseudorange measurements to evaluate the performance of GPS-based navigation systems during Geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Adewale, Adekola; Oyeyemi, Elijah

    2016-07-01

    The space and ground-based Global Positioning System (GPS) are vulnerable to a variety of space weather effects, particularly effects due to geomagnetic storms, and as such, signals from the systems suffer degradation during propagation through the ionosphere. A comparison of GPS positioning 3-D vertical (MRSE) and horizontal (DRMS) root mean square positioning errors obtained from different pseudorange measurements at low and high latitude stations has been done. GPS observation data were processed and analyzed from 6th-12th November, 2004, using different pseudorange measurements i.e., L1 C/A, L1 P, L2 P codes and ionosphere-free combination ((C/A on L1 and P on L2) and (P on L1 and P on L2)). Our results show that geomagnetic storms have impact on navigation at low and high latitude stations. This work also shows that GPS receivers can record significant positioning error during magnetically quiet days and with ionosphere-free pseudorange measurement.

  18. Longitudinal study of the ionospheric response to the geomagnetic storm of 15 May 2005 and manifestation of TADs

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Galav, P.; Dashora, N.; Pandey, R.

    2011-06-01

    Response of low latitude ionosphere to the geomagnetic storm of 15 May 2005 has been studied using total electron content (TEC) data, obtained from three GPS stations namely, Yibal, Udaipur and Kunming situated near the northern crest of equatorial ionization anomaly at different longitudes. Solar wind parameters, north-south component of the interplanetary magnetic field (IMF Bz) and AE index data have been used to infer the strength of the geomagnetic storm. A large value of eastward interplanetary electric field at 06:15 UT, during the time of maximum southward IMF Bz has been used to infer the transmission of an eastward prompt penetration electric field (PPEF) which resulted in a peak in TEC at 07:45 UT due to the local uplift of plasma in the low latitudes near the anomaly crest over a wide range of longitudes. Wave-like modulations superposed over the second enhancement in TEC between 09:15 UT to 10:30 UT have been observed at all the three stations. The second enhancement in TEC along with the modulations of up to 5 TECU have been attributed to the combined effect of super plasma fountain and traveling atmospheric disturbances (TAD). Observed large enhancements in TEC are a cause of concern for satellite based navigation and ground positioning. Increased [O/N2] ratio between 09:15 UT to 10:15 UT when modulations in TEC have been also observed, confirms the presence of TADs over a wide range of longitudes.

  19. Variation of curve number with storm depth

    NASA Astrophysics Data System (ADS)

    Banasik, K.; Hejduk, L.

    2012-04-01

    The NRCS Curve Number (known also as SCS-CN) method is well known as a tool in predicting flood runoff depth from small ungauged catchment. The traditional way of determination the CNs, based on soil characteristics, land use and hydrological conditions, seemed to have tendency to overpredict the floods in some cases. Over 30 year rainfall-runoff data, collected in two small (A=23.4 & 82.4 km2), lowland, agricultural catchments in Center of Poland (Banasik & Woodward 2010), were used to determine runoff Curve Number and to check a tendency of changing. The observed CN declines with increasing storm size, which according recent views of Hawkins (1993) could be classified as a standard response of watershed. The analysis concluded, that using CN value according to the procedure described in USDA-SCS Handbook one receives representative value for estimating storm runoff from high rainfall depths in the analyzes catchments. This has been confirmed by applying "asymptotic approach" for estimating the watershed curve number from the rainfall-runoff data. Furthermore, the analysis indicated that CN, estimated from mean retention parameter S of recorded events with rainfall depth higher than initial abstraction, is also approaching the theoretical CN. The observed CN, ranging from 59.8 to 97.1 and from 52.3 to 95.5, in the smaller and the larger catchment respectively, declines with increasing storm size, which has been classified as a standard response of watershed. The investigation demonstrated also changeability of the CN during a year, with much lower values during the vegetation season. Banasik K. & D.E. Woodward (2010). "Empirical determination of curve number for a small agricultural watrshed in Poland". 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 - July 1, 2010 (http://acwi.gov/sos/pubs/2ndJFIC/Contents/10E_Banasik_ 28_02_10. pdf). Hawkins R. H. (1993). "Asymptotic determination of curve numbers from data". Journal of Irrigation and Drainage

  20. Variations in geomagnetic field and temperature in Spain during the past millennium

    NASA Astrophysics Data System (ADS)

    Nachasova, I. E.; Burakov, K. S.; Pilipenko, O. V.; Markov, G. P.

    2015-07-01

    The archaeomagnetic studies are conducted for the collection of coated ceramic samples from the Albarracin archaeological monument in Spain dated to the 10-20th centuries A.D. The pattern of variations in geomagnetic field intensity during this time interval is identified. The behavior of geomagnetic intensity is dominated by a decreasing trend (from ˜80 to 40 μT). The variation with a characteristic time of a few hundred years is the most striking one. Investigation of the material from this collection by the method of rehydroxylation provided the temperature estimates for this region of Spain for the time interval of pottery production. The temperature variations generally tend to increase, while the main trend in the variations of geomagnetic intensity is decreasing. The time series of temperature and intensity of the main magnetic field contain variations with close characteristic times shifted in time so that the changes in temperature go somewhat ahead of the changes in the geomagnetic field. It was previously suggested to improve the accuracy and resolution of the obtained variations in the past magnetic field using the method of archaeomagnetic dating of the material from archaeological monuments. The method was tested by dating the pottery kiln material from the El Molon monument, Spain, with the use of the virtual geomagnetic pole curve based on the past magnetic field in the East Europe. The method proved to be quite efficient and promising for dating the archaeological material from all over Europe.

  1. Effects of the intense geomagnetic storm of September-October 2012 on the equatorial, low- and mid-latitude F region in the American and African sector during the unusual 24th solar cycle

    NASA Astrophysics Data System (ADS)

    de Jesus, R.; Fagundes, P. R.; Coster, A.; Bolaji, O. S.; Sobral, J. H. A.; Batista, I. S.; de Abreu, A. J.; Venkatesh, K.; Gende, M.; Abalde, J. R.; Sumod, S. G.

    2016-02-01

    The main purpose of this paper is to investigate the response of the ionospheric F layer in the American and African sectors during the intense geomagnetic storm which occurred on 30 September-01 October 2012. In this work, we used observations from a chain of 20 GPS stations in the equatorial, low- and mid-latitude regions in the American and African sectors. Also, in this study ionospheric sounding data obtained during 29th September to 2nd October, 2012 at Jicamarca (JIC), Peru, São Luis (SL), Fortaleza (FZ), Brazil, and Port Stanley (PST), are presented. On the night of 30 September-01 October, in the main and recovery phase, the h´F variations showed an unusual uplifting of the F region at equatorial (JIC, SL and FZ) and mid- (PST) latitude stations related with the propagations of traveling ionospheric disturbances (TIDs) generated by Joule heating at auroral regions. On 30 September, the VTEC variations and foF2 observations at mid-latitude stations (American sector) showed a long-duration positive ionospheric storm (over 6 h of enhancement) associated with large-scale wind circulations and equatorward neutral winds. Also, on 01 October, a long-duration positive ionospheric storm was observed at equatorial, low- and mid- latitude stations in the African sector, related with the large-scale wind circulations and equatorward neutral winds. On 01 and 02 October, positive ionospheric storms were observed at equatorial, low- and mid-latitude stations in the American sector, possibly associated with the TIDs and an equatorward neutral wind. Also, on 01 October negative ionospheric storms were observed at equatorial, low- and mid-latitude regions in the American sector, probably associated with the changes in the O/N2 ratio. On the night of 30 September-01 October, ionospheric plasma bubbles were observed at equatorial, low- and mid- latitude stations in the South American sector, possibly associated with the occurrence of geomagnetic storm.

  2. Observations of the UARS Particle Environment Monitor and computation of ionization rates in the middle and upper atmosphere during a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Frahm, R. A.; Winningham, J. D.; Biard, J. C.; Lummerzheim, D.; Rees, M. H.; Chenette, D. L.; Gaines, E. E.; Nightingale, R. W.; Imhof, W. L.

    1993-01-01

    In this paper we present observations made by the Particle Environment Monitor (PEM) instruments during the geomagnetic storm of 8-9 November, 1991. Ionization and energy deposition rates as functions of altitude in the middle and upper atmosphere by incident electrons and positive ions in the storm interval are computed. The suite of PEM instruments provides a systematic measurement of energetic particles and their associated X-rays over an energy range not fully covered by previous satellite missions.

  3. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations

    PubMed Central

    Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.

    2013-01-01

    Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042

  4. Analysis of Geomagnetic Disturbances and Cosmic Ray Intensity Variations in Relation to Medical Data from Rome

    NASA Astrophysics Data System (ADS)

    Giannaropoulou, E.; Papailiou, M.; Mavromichalaki, H.; Tsipis, A.

    2010-07-01

    Over the last few years many studies have been conducted concerning the possible influence of geomagnetic and solar activity and cosmic ray activity on human physiological state and in particular on human cardio - health state. As it is shown the human organism is sensitive to environmental changes and reacts to them through a series of variations of its physiological parameters such as heart rate, arterial systolic and diastolic blood pressure, etc. In this paper daily mean values of heart rate, as they were registered for a group of 2.028 volunteers during medical examinations in the Polyclinico Tor Vergata, Rome, Italy are analyzed in relation to daily cosmic ray intensity variations, as measured by the Neutron Monitor of the University of Athens and daily variations of the geomagnetic indices Dst, Ap and Kp. The results from this study show that geomagnetic activity changes and cosmic rays intensity variations may regulate the human homeostasis.

  5. Geomagnetic jerks and temporal variation. (Reannouncement with new availability information). Final report

    SciTech Connect

    McLeod, M.G.

    1991-12-31

    Geomagnetic temporal variations, or time variations of the earth`s magnetic field, cover a wide spectrum that extends over more than 20 orders of magnitude in frequency. The spectrum extends from frequencies greater than 1000 Hz to periods of more than 100 million years. Sources of geomagnetic field and its time variations are electric currents located both internal and external to the surface of the earth. The major portion of this article is concerned with periods from 1 year to several hundred years.

  6. Global ionospheric and thermospheric response to the 5 April 2010 geomagnetic storm: An integrated data-model investigation

    NASA Astrophysics Data System (ADS)

    Lu, G.; Hagan, M. E.; Häusler, K.; Doornbos, E.; Bruinsma, S.; Anderson, B. J.; Korth, H.

    2014-12-01

    We present a case study of the 5 April 2010 geomagnetic storm using observations and numerical simulations. The event was driven by a fast-moving coronal mass ejection and despite being a moderate storm with a minimum Dst near -50 nT, the event exhibited elevated thermospheric density and surges of traveling atmospheric disturbances (TADs) more typically seen during major storms. The Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) was used to assess how these features were generated and developed during the storm. The model simulations gave rise to TADs that were highly nonuniform with strong latitude and longitude/local time dependence. The TAD phase speeds ranged from 640 m/s to 780 m/s at 400 km and were ~5% lower at 300 km and approximately 10-15% lower at 200 km. In the lower thermosphere around 100 km, the TAD signatures were nearly unrecognizable due to much stronger influence of upward propagating atmospheric tides. The thermosphere simulation results were compared to observations available from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE), CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites. Comparison with GOCE data shows that the TIMEGCM reproduced the cross-track winds over the polar region very well. The model-data comparison also revealed some differences, specifically, the simulations underestimated neutral mass density in the upper thermosphere above ~300 km and overestimated the storm recovery tome by 6 h. These discrepancies indicate that some heating or circulation dynamics and potentially cooling processes are not fully represented in the simulations, and also that updates to some parameterization schemes in the TIMEGCM are warranted.

  7. The quasi-biennial variation in the geomagnetic field: a global characteristics analysis

    NASA Astrophysics Data System (ADS)

    Ou, Jiaming; Du, Aimin

    2016-04-01

    exhibits distinct anisotropic in the local time distribution. The QBO of the X and Z components are both stronger over LT 00:00-06:00. The results of spherical harmonic analysis indicate that the QBO is mainly contributed by the external sources. The QBO is highly correlated with various parameters of solar activity, solar wind at 1AU, and geomagnetic activity. Reference 1. Sugiura, M. (1976). Quasi-biennial geomagnetic variation caused by the Sun. Geophys. Res. Lett., 3(11), 643-646. 2. Silva, L., Jackson, L., and Mound, J., (2012), Assessing the importance and expression of the 6 year geomagnetic oscillation, J. Geophys. Res.: Solid Earth (1978-2012), 117.

  8. [Seasonal variations in the myocardial infarction incidence and possible effects of geomagnetic micropulsations on the cardiovascular system in humans].

    PubMed

    Kleĭmenova, N G; Kozyreva, O V; Breus, T K; Rapoport, S I

    2007-01-01

    The analysis of the ambulance calls in Moscow, related to myocardial infarction (85.000 events), sudden death (71.700 events), and hypertension crises (165.500 events) over the period of 1979-1981 demonstrated their clear seasonal variations with a profound summer minimum and a winter maximum. The same results were obtained in the analysis of statistical monthly data on sudden death from infarction in Bulgaria over the period of 15 years (1970-1985). However, there are a great number of clinical and statistical studies confirming the rises in the incidence of myocardial infarction, hypertension crise, and sudden death during geomagnetic disturbances, which have maximum occurrence near equinox, not in winter. In order to explain this contradiction, we suggested that one of critical factors that affect the human cardiovascular system is geomagnetic micropulsations Pc1 having the frequency comparable with the frequency of heart rate beatings and winter maximum in their occurrence. The results of a comparative analysis of data of ambulance calls in Moscow related to myocardial infarction and sudden death and the catalog of Pc1 observations at the geophysical observatory "Borok" (Yaroslavl region) are presented. It is shown that in approximately 70% of days with an anomalously large number of ambulance calls related to myocardial infarction, Pc1 micropulsations have been registered. The probability of simultaneous occurrence of myocardial infarction and Pc1 in the winter season was 1.5 times greater than their accidental coincidence. Moreover, it was found that in winter the effects of magnetic storms and Pc1 IM(A) were much higher than in summer. We suggested that one of possible reasons for the seasonal variations in the occurrence of myocardial infarction is an increase in the production of the pineal hormone melatonin in winter which leads to an unstable state of the human organism and an increase in its sensitivity to the effect of geomagnetic pulsations. PMID

  9. Magnetic storms and variations in hormone levels among residents of North Polar area - Svalbard

    NASA Astrophysics Data System (ADS)

    Breus, Tamara; Zenchenko, Tatiana; Boiko, Evgeni

    It was previously shown that magnetic storms lead to an increase in the level of cortisol and noradrenalin in healthy and sick people with cardiovascular diseases [Breus Rapoport. 2003]. However, in the healthy group in the cited study was only 4 people and it seemed that these results need to be checked. In the present work the 4 examinations (January, March, June, October) of large groups of healthy inhabitants of high latitudes (Svalbard, the most northerly in the world year-round inhabited settlements) on the blood levels of adrenal hormones (cortisol) and thyroid hormones (triiodothyronine (T3 ) and thyroxine T4) have been done. The aim was to study the possible sensitivity of these biochemical parameters in three independent groups of people living in this region (men working underground (364 samples), the men working on the ground (274 samples) and women (280 samples)) to variations in external natural factors of high latitudes. For the analysis we used the following parameters of space and terrestrial weather :index of intensity of solar radio emission at a wavelength 10.7sm (RF10.7), planetary geomagnetic activity index - daily Kp index ( Kp) , the daily average Ap index ( Ap) , the maximum per every 3 -hour Kp index ) as well as the daily average indicators of flow rate of galactic cosmic rays neutron component (N), atmospheric pressure ( RATM ) and its rate of change ( the difference between the Ratm today and yesterday ) according to the geophysical station Oulu (Finland , http://cosmicrays.oulu.fi/). The obtained data indicate that the most expressed dependence of the level of studied three hormones is from the level of geomagnetic activity (GMA)-Kp, Ap, Kpmax - 3h. For two of the four seasons (June and October) with increasing levels of GMA a significant (p <0.05) increase in cortisol levels in all three independent groups of people was shown. Amplitude increases in cortisol levels in different groups were about 30% of the observed variation in the

  10. A density-temperature description of the outer electron radiation belt during geomagnetic storms

    SciTech Connect

    Borovsky, Joseph E; Cayton, Thomas E; Denton, Michael H

    2009-01-01

    Electron flux measurements from 7 satellites in geosynchronous orbit from 1990-2007 are fit with relativistic bi-Maxwellians, yielding a number density n and temperature T description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value ofn is 3.7x10-4 cm-3 and the median value ofT is 142 keY. General statistical properties of n, T, and the 1.1-1.5 MeV flux J are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis triggered on storm onset, the evolution of the outer electron radiation belt through high-speed-steam-driven storms is investigated. The number density decay during the calm before the storm is seen, relativistic-electron dropouts and recoveries from dropout are investigated, and the heating of the outer electron radiation belt during storms is examined. Using four different triggers (SSCs, southward-IMF CME sheaths, southward-IMF magnetic clouds, and minimum Dst), CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms an absence of a density decay prior to storm onset is found, the compression of the outer electron radiation belt at time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase is seen, and the increase in density and temperature during storm recovery phase is observed. Differences are found between the density-temperature and the flux descriptions, with more information for analysis being available in the density-temperature description.

  11. Trapped Ring Current Ion Dynamics During the 17-18 March 2015 Geomagnetic Storm Obtained from TWINS ENA Images

    NASA Astrophysics Data System (ADS)

    Perez, J. D.; Goldstein, J.; McComas, D. J.; Valek, P. W.; Fok, M. C. H.; Hwang, K. J.

    2015-12-01

    On 17-18 March 2015, there was a large (minimum SYM/H < -200 nT) geomagnetic storm. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which global distributions of ion flux, energy spectra, and pitch angle distributions are obtained. We will show how the observed ion pressure correlates with SYM/H. Examples of multiple peaks in the ion spatial distribution which may be due to multiple injections and/or energy and pitch angle dependent drift will be illustrated. Energy spectra will be shown to be non-Maxwellian, frequently having two peaks, one in the 10 keV range and another near 40 keV. Pitch angle distributions will be shown to have generally perpendicular anisotropy and that this can be time, space and energy dependent. The results are consistent with Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model simulations.

  12. Satellite observations of energy-banded ions during large geomagnetic storms: Event studies, statistics, and comparisons to source models

    NASA Astrophysics Data System (ADS)

    Colpitts, C. A.; Cattell, C. A.; Kozyra, J. U.; Thomsen, M. F.; Lavraud, B.

    2016-07-01

    Energy-banded ions from tens to ten thousands of eV are observed in the low-latitude auroral and subauroral zones during every large (minimum Dst < -150 nT) geomagnetic storm encountered by the FAST satellite. The banded ions persist for many FAST orbits, lasting up to 12 h, in both the northern and southern hemispheres. The energy-banded ions often have more than six distinct bands, and the O+, He+, and H+ bands are often observed at the same energies. The bands are extensive in latitude (~50-75° on the dayside, often extending to 45°) and magnetic local time, covering all magnetic local time over the data set of storms. The distributions are peaked in the perpendicular direction at the altitudes of the FAST satellite (~350-4175 km), although in some cases the precipitating component dominates for the lowest energy bands. At the same time, for some of the events studied in detail, long-lasting intervals of field-aligned energy dispersed ions from ~100 eV to 40 keV are seen in Los Alamos National Laboratory geosynchronous observations, primarily on the dayside and after magnetosheath encounters (i.e., highly compressed magnetosphere). We present both case and statistical studies of the banded ions. These bands are a new phenomenon associated with all large storms, which are distinctly different from other banded populations, and are not readily interpreted using previous models for particle sources, transport, and loss. The energy-banded ions are an energetically important component of the inner magnetosphere during the most intense magnetic storms.

  13. Investigation of Ring Current Response to CIR-Driven Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Cramer, William Douglas

    The physics of ring current behavior during Coronal Mass Ejection (CME)-driven storms is well understood and can be modeled with moderate accuracy. The effects of Corotating Interaction Region (CIR)-driven storms are less understood and tend to not agree with expected values. Various approaches are employed to examine the differences in ring current behavior during storms driven by these two types of events. Satellite data (Polar CAM-MICE/MICS) are analyzed to determine differences in pitch angle distributions and energy densities, in order to provide insight into how the various ring current enhancement and loss processes differ during the different types of events. A ring current model (the Comprehensive Ring Current Model) is also employed to analyze these differences by modeling ring current behavior during CME and CIR events that fit a typical solar wind profile. No differences in convection were noted in satellite data during CME and CIR-driven storms of similar strength, although oxygen was found to contribute more to the energy density during CIRs. However, model results demonstrated that there is a significant difference in ring current response during storms associated with the different drivers. It was determined that particle convection appears to be the primary ring current energization mechanism for CME-driven events, while other factors seem to influence the induced surface magnetic disturbance during CIR-driven storms; possibly boundary conditions, external currents or fluctuations caused by the associated wave-induced oscillations in the solar wind.

  14. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon.

    PubMed

    Putman, Nathan F; Jenkins, Erica S; Michielsens, Catherine G J; Noakes, David L G

    2014-10-01

    Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. PMID:25056214

  15. Effect of geomagnetic storms upon blood sedimentation dynamics in ischemic heart disease patients

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Youri I.; Voeikov, Vladimir L.; Kondakov, Sergey E.; Demidion, P. Y.; Dmitriev, Andey Y.; Ozerskii, S. Y.

    2000-11-01

    The sedimentation properties of blood of 13 ischemic heart disease patients and 2 healthy volunteers have been analyzed using a special computerized optical device for high temporal resolution tracing of red blood/plasma boundary movement rate (ESR-graphy). The kinetic curves of red blood sedimentation are substantially nonmonotonic and exhibit multiple accelerations, decelerations and even backwards movement of the red blood/plasma boundary. The intensity of blood sedimentation rate oscillations is significantly higher in the blood of patients and voluteers on days of enhanced geomagnetic activity than on quiet days. In healthy donors, blood oscillations were also observed on active geomagnetic days, however, their intensity was lower, the sedimentation rate started to oscillate after a longer time upon pipette installation, and the oscillation frequency was lower than in the patients' blood. Thus, blood is highly responsive to changes in geomagnetic field activity. Possibly oscillatory behavior mechanism of blood sedimentation rate and the diagnostic and prognostic merits of the ESR graphs are discussed.

  16. On the Variations of Electricity, Lightning and Storm Properties

    NASA Astrophysics Data System (ADS)

    Peterson, M. J.; Deierling, W.; Liu, C.; Mach, D. M.; Kalb, C. P.

    2015-12-01

    Electrified clouds -thunderstorms if lightning is detected, and electrified shower clouds otherwise - produce various currents that contribute to the Global Electric Circuit (GEC). This study aims to use observations of storm properties and lightning characteristics, as well as passive microwave estimates of above-cloud electric fields to compare possible current contributions from a wide variety of storms including isolated thunderstorms, Mesoscale Convective Systems, and otherwise similar storms that occur over land or over the ocean. Variations in Lightning Imaging Sensor (LIS) optical flash properties are also considered in the context of how they relate to the properties of the parent storm and why they differ substantially between land and ocean. This study relies on observations from the Tropical Rainfall Measuring Mission (TRMM) satellite that include radar profiles from the Precipitation Radar (PR), passive microwave observations from the TRMM Microwave Imager (TMI), infrared imagery from the Visible and Infrared Scanner (VIRS), and optical lightning observations from LIS. Observations and derived parameters such as rain rates and electric field estimates are integrated into two databases: a Precipitation Feature (PF) database that summarizes the properties of storms defined by near surface rainfall, and an Illuminated Cloud Feature (ICF) database that summarizes the properties of the storm region illuminated by LIS lightning flashes. The ICF database is built to examine factors that are related to how optical energy can be distributed across the flash footprint in different types of clouds and different viewing conditions that will have consequences for the Geostationary Lightning Mapper (GLM) onboard the upcoming GOES-R satellite.

  17. Middle- and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S. M.; Amory-Mazaudier, C.; Fleury, R.

    2016-04-01

    This paper presents a study of the St Patrick's Day storm of 2015, with its ionospheric response at middle and low latitudes. The effects of the storm in each longitudinal sector (Asian, African, American, and Pacific) are characterized using global and regional electron content. At the beginning of the storm, one or two ionospheric positive storm effects are observed depending on the longitudinal zones. After the main phase of the storm, a strong decrease in ionization is observed at all longitudes, lasting several days. The American region exhibits the most remarkable increase in vertical total electron content (vTEC), while in the Asian sector, the largest decrease in vTEC is observed. At low latitudes, using spectral analysis, we were able to separate the effects of the prompt penetration of the magnetospheric convection electric field (PPEF) and of the disturbance dynamo electric field (DDEF) on the basis of ground magnetic data. Concerning the PPEF, Earth's magnetic field oscillations occur simultaneously in the Asian, African, and American sectors, during southward magnetization of the Bz component of the interplanetary magnetic field. Concerning the DDEF, diurnal magnetic oscillations in the horizontal component H of the Earth's magnetic field exhibit a behavior that is opposed to the regular one. These diurnal oscillations are recognized to last several days in all longitudinal sectors. The observational data obtained by all sensors used in the present paper can be interpreted on the basis of existing theoretical models.

  18. GPS phase scintillation at high latitudes during geomagnetic storms of 7-17 March 2012 - Part 2: Interhemispheric comparison

    NASA Astrophysics Data System (ADS)

    Prikryl, P.; Ghoddousi-Fard, R.; Spogli, L.; Mitchell, C. N.; Li, G.; Ning, B.; Cilliers, P. J.; Sreeja, V.; Aquino, M.; Terkildsen, M.; Jayachandran, P. T.; Jiao, Y.; Morton, Y. T.; Ruohoniemi, J. M.; Thomas, E. G.; Zhang, Y.; Weatherwax, A. T.; Alfonsi, L.; De Franceschi, G.; Romano, V.

    2015-06-01

    During the ascending phase of solar cycle 24, a series of interplanetary coronal mass ejections (ICMEs) in the period 7-17 March 2012 caused geomagnetic storms that strongly affected high-latitude ionosphere in the Northern and Southern Hemisphere. GPS phase scintillation was observed at northern and southern high latitudes by arrays of GPS ionospheric scintillation and TEC monitors (GISTMs) and geodetic-quality GPS receivers sampling at 1 Hz. Mapped as a function of magnetic latitude and magnetic local time (MLT), the scintillation was observed in the ionospheric cusp, the tongue of ionization fragmented into patches, sun-aligned arcs in the polar cap, and nightside auroral oval and subauroral latitudes. Complementing a companion paper (Prikryl et al., 2015a) that focuses on the high-latitude ionospheric response to variable solar wind in the North American sector, interhemispheric comparison reveals commonalities as well as differences and asymmetries between the northern and southern high latitudes, as a consequence of the coupling between the solar wind and magnetosphere. The interhemispheric asymmetries are caused by the dawn-dusk component of the interplanetary magnetic field controlling the MLT of the cusp entry of the storm-enhanced density plasma into the polar cap and the orientation relative to the noon-midnight meridian of the tongue of ionization.

  19. Storm-generated variations in nearshore beach topography

    USGS Publications Warehouse

    Lins, H.F.

    1984-01-01

    A series of nearshore beach profile measurements from the Outer Banks of North Carolina spanning a four-month period have been examined for temporal variations in nearshore topography. Principal component analysis of the profile data indicates that most of the variation in nearshore topography occurs in four principal modes, two quasiseasonal and two subseasonal. The first principal component, or eigenvector, corresponds to a bar-berm function. The second, to a terrace function. Combined, the first two vectors explain 76.3% of the total variance. The third and fourth components, representing subseasonal modes, are a ridge and runnel and a storm bar function, respectively. Both occur in direct response to storm wave activity. Although the bar-berm and terrace modes of profile variation have been previously identified using principal component analysis techniques, the subsequent modes have not. The ridge and runnel function accounts for 10.6% of total profile variability and the storm bar function accounts for 5.0%. ?? 1985.

  20. Ionospheric response to the 17-18 March 2015 geomagnetic storm as seen from multiple TEC and NmF2 measurements along 100°E

    NASA Astrophysics Data System (ADS)

    Bhuyan, Pradip; Yokoyama, Tatsuhiro; Kalita, Bitap Raj; Seemala, G. K.; Hazarika, Rumajyoti; Komolmis, Tharadol; Yatini, Clara; Chakrabarty, Dibyendu; Supnithi, Pornchai

    2016-07-01

    The response of the ionosphere along 100°E to the strong geomagnetic storm of 17-18 March 2015 has been investigated combining TEC and NmF2 data from multiple stations spanning low latitudes in the northern and southern hemispheres to the equator. The GPS TEC data measured over Dibrugarh (27.4°N, 95°E), Kohima (25.6°N, 94.1°E) and Ahmedabad (23.0°N, 72.5°E) and NmF2 measured along a chain of ionosonde stations Dibrugarh (27.5°N, 95°E), Chiang Mai (18.76ºN, 98.93ºE), Chumphon (10.72ºN,99.37ºE), Kototabang (0.2ºS,100.32ºE) and Cocos Island (12.2ºS,96.8ºE ) were used to examine the signature of the storm around the low-mid latitude ionosphere in this sector. Nearly similar TEC variation has been observed over Dibrugarh and Kohima located at the northern edge of the EIA. The maximum TEC on 18 March over Dibrugarh and Kohima was reduced by more than ~80 TECU compared to that on the geomagnetically quiet day of 16 March 2015. In contrast to the substantial reduction in TEC over ~100°E TEC from the ~75°E longitude station Ahmedabad showed insignificant variations on the same day. Strong reduction in NmF2 at the crest of the anomaly in both northern and southern hemisphere (Dibrugarh, Ching Mai and Cocos Island) and enhancement near the equator (Cumphon and Kototbang) has been observed. The O/N2 ratio as obtained from the TIMED/GUVI reduced substantially along 100°E on 18 March compared to other longitude sectors. Equatorward meridional winds depleted the ionization at the crest region and enhanced the same near the equator. No L band scintillation was observed in the evening of 17 March at Dibrugarh and Kohima indicating absence of F region irregularity along this longitude while strong scintillations were observed at 75°E. The reversal of the IMF Bz from southward to northward direction in the dusk to evening sector inhibited the growth of the irregularity due to reversal of the PPEF at 100°E while the PPEF favoured generation and growth of Spread F

  1. Long-term variation in the upper atmosphere as seen in the geomagnetic solar quiet daily variation

    NASA Astrophysics Data System (ADS)

    Shinbori, Atsuki; Koyama, Yukinobu; Nose, Masahito; Hori, Tomoaki; Otsuka, Yuichi; Yatagai, Akiyo

    2014-12-01

    Characteristics of long-term variation in the amplitude of solar quiet (Sq) geomagnetic field daily variation have been investigated using 1-h geomagnetic field data obtained from 69 geomagnetic observation stations within the period of 1947 to 2013. The Sq amplitude observed at these geomagnetic stations showed a clear dependence on the 10- to 12-year solar activity cycle and tended to be enhanced during each solar maximum phase. The Sq amplitude was the smallest around the minimum of solar cycle 23/24 in 2008 to 2009. The relationship between the solar F10.7 index and Sq amplitude was approximately linear but about 53% of geomagnetic stations showed a weak nonlinear relation to the solar F10.7 index. In order to remove the effect of solar activity seen in the long-term variation of the Sq amplitude, we calculated a linear or second-order fitting curve between the solar F10.7 index and Sq amplitude during 1947 to 2013 and examined the residual Sq amplitude, which is defined as the deviation from the fitting curve. As a result, the majority of trends in the residual Sq amplitude that passed through a trend test showed negative values over a wide region. This tendency was relatively strong in Europe, India, the eastern part of Canada, and New Zealand. The relationship between the magnetic field intensity at 100-km altitude and residual Sq amplitude showed an anti-correlation for about 71% of the geomagnetic stations. Furthermore, the residual Sq amplitude at the equatorial station (Addis Ababa) was anti-correlated with the absolute value of the magnetic field inclination. This implies movement of the equatorial electrojet due to the secular variation of the ambient magnetic field.

  2. The first super geomagnetic storm of solar cycle 24: "The St. Patrick day (17 March 2015)" event

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Liou, K.; Socker, D. G.; Howard, R.; Jackson, B. V.; Yu, H. S.; Hutting, L.; Plunkett, S. P.

    2015-12-01

    The first super geomagnetic storm of solar cycle 24 occurred on the "St. Patrick's day" (17 March 2015). Notably, it was a two-step storm. The source of the storm can be traced back to the solar event on March 15, 2015. At ~2:10 UT on that day, SOHO/LASCO C3 recorded a partial halo corona mass ejection (CME) which was associated with a C9.1/1F flare (S22W25) and a series of type II/IV radio bursts. The propagation speed of this CME is estimated to be ~668 km/s during 02:10 - 06:20 UT (Figure 1). An interplanetary (IP) shock, likely driven by the CME, arrived at the Wind spacecraft at 03:59 UT on 17 March (Figure 2). The arrival of the IP shock at the Earth may have caused a sudden storm commencement (SSC) at 04:45 UT on March 17. The storm intensified (Dst dropped to -80 nT at ~10:00 UT) during the crossing of the CME sheath. Later, the storm recovered slightly (Dst ~ -50 nT) after the IMF turned northward. At 11:01 UT, IMF started turning southward again due to the large magnetic cloud (MC) field itself and caused the second storm intensification, reaching Dst = - 228 nT on March 18. We conclude that the St. Patrick day event is a two-step storm. The first step is associated with the sheath, whereas the second step is associated with the MC. Here, we employ a numerical simulation using the global, three-dimensional (3D), time-dependent, magnetohydrodynamic (MHD) model (H3DMHD, Wu et al. 2007) to study the CME propagation from the Sun to the Earth. The H3DMHD model has been modified so that it can be driven by (solar wind) data at the inner boundary of the computational domain. In this study, we use time varying, 3D solar wind velocity and density reconstructed from STELab, Japan interplanetary scintillation (IPS) data by the University of California, San Diego, and magnetic field at the IPS inner boundary provided by CSSS model closed-loop propagation (Jackson et a., 2015). The simulation result matches well with the in situ solar wind plasma and field data at

  3. Identification of Possible Intense Historical Solar Storms During the Years 1781-1788 Inferred from Aurorae and Geomagnetic Observations in Rio De Janeiro

    NASA Astrophysics Data System (ADS)

    Vaquero, José M.; Trigo, Ricardo M.

    2006-05-01

    The reconstruction of solar activity during the late 18th century is a puzzle for researchers due to the scarcity of sunspot observations in that epoch. In this work, we analyse some details of the solar activity during the years 1781-1788, inferred from geomagnetic measurements and visual observations of aurorae performed by the Portuguese scientist Bento Sanches Dorta from Rio de Janeiro. We describe in greater detail four large solar storms that induced large changes in daily values of geomagnetic declination and, simultaneously, correspond to visual observations of aurorae described by Sanches Dorta.

  4. Simulation of low latitude ionospheric response to 2015 St. Patrick's Day super geomagnetic storm over Indian longitude sector

    NASA Astrophysics Data System (ADS)

    Mohan Joshi, Lalit; Sripathi, Samireddipelle; Singh, Ram

    2016-07-01

    We present low latitude ionospheric response over Indian longitude to the recent super geomagnetic storm of 17 March 2015, using the SAMI2 model which incorporates ionosonde derived vertical drift impacted by prompt penetration eastward electric field occurring during the evening Prereversal Enhancement (PRE) in the vertical drift. The importance of this storm is that (a) Dst reaches as low as -228 nT and (b) prompt penetration of eastward electric field coincided with evening hours PRE. The daytime vertical EXB drifts in the SAMI2 model are, however, considered based on Scherliess-Fejer model. The simulations indicate a significant enhancement in F layer height and equatorial ionization anomaly (EIA) in the post sunset hours on 17 March 2015 vis-a-vis quiet day. The model simulations during recovery phase, considering disturbance dynamo vertical EXB drift along with equatorward disturbance wind, indicates suppression of the daytime EIA. SAMI2 simulations considering the disturbance wind during the recovery phase suggests that equatorward wind enhances the ionospheric density in the low latitude, however, its role in the formation of the EIA depends on the polarity of the zonal electric field. Comparison of model derived total electron content (TEC) with the TEC from ground GPS receivers indicate that model does reproduce enhancement of the EIA during the main phase and suppression of the EIA during the recovery phase of the super storm. However, peculiarities pertaining to the ionospheric response to prompt penetration electric field in the Indian sector vis-a-vis earlier reports from American sector will be discussed.

  5. Response of the equatorial and low-latitude ionosphere in the Indian sector to the geomagnetic storms of January 2005

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Devasia, C. V.; Ravindran, Sudha; Pant, Tarun Kumar; Sridharan, R.

    2009-06-01

    The equatorial and low-latitude ionospheric response to three moderate geomagnetic storms (17, 18, and 22 January) during the period from 16 to 23 January 2005 is investigated in the context of development/inhibition of the Equatorial Ionization Anomaly (EIA) and the subsequent occurrence/nonoccurrence of Equatorial Spread F (ESF) irregularities on these days. The study is carried out using the Total Electron Content (TEC) measured with the GPS receivers along the ˜80°E longitude sector and the F-layer bottom height obtained from the Ionosonde located over the dip equatorial location of Trivandrum (8.5°N, 77°E, dip latitude ˜0.5°N) in India. It is observed that, for the storms on days 17 and 22, the development of the anomaly was inhibited, probably due to the westward disturbance dynamo electric fields. Subsequently, the post sunset enhancement in the vertical drift of the equatorial F region was also inhibited significantly compared to the quiet day pattern and, as anticipated, no ESF was observed on these days. A large vertical drift of the equatorial F region followed by nearly simultaneous onset of weak ESF was observed on day 18. The late development of the EIA on this day could be due to the eastward prompt penetration electric field associated with the southward turning of the interplanetary magnetic field. Also, strong and distinct F3 layer appeared for a short time in the morning, reappeared later in the noon time, and then quickly ascended to the topside ionosphere during the main phase of the storm on day 18.

  6. Comparison of the Brunhes epoch geomagnetic secular variation recorded in the volcanic and sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Shcherbakov, V. P.; Khokhlov, A. V.; Sycheva, N. K.

    2014-03-01

    The results of numerical modeling of the geomagnetic secular variation by the method of the Giant Gaussian Process (GGP) are presented and compared with the information derived from the presentday databases for paleointensity. The variances of the positions of the virtual geomagnetic pole (VGP) calculated from the synthetic and experimental data (Brunhes epoch, effusive rocks) are nearly similar, which supports the validity of the theoretical model. The average value of the virtual axial geomagnetic dipole (VADM) calculated from the PINT world database on paleointensity and the Sint-2000 model is lower than VADM calculated by the GGP model; at the same time, the estimates based on the archaeomagnetic data give the VADM value slightly above the model prediction. The largest difference is observed in the variances of VADM, which is for all the three databases noticeably higher than the value calculated from the GGP model. Most probably, this is due to the contribution of the neglected measurement errors of VADM.

  7. Multi-instrument observations of plasma features in the Arctic ionosphere during the main phase of a geomagnetic storm in December 2006

    NASA Astrophysics Data System (ADS)

    Wu, Ye-wen; Liu, Rui-yuan; Zhang, Bei-chen; Wu, Zhen-sen; Hu, Hong-qiao; Zhang, Shun-rong; Zhang, Qing-he; Liu, Jun-ming; Honary, F.

    2013-12-01

    Arctic ionospheric variations during the main phase of a magnetic storm on 14-15 December, 2006 were investigated to characterize the high energy particle precipitation caused effects, based on multi-instrument observations. These include electron density observations provided by the Global Positioning System (GPS) total electron content (TEC) measurements, European Incoherent Scatter (EISCAT) radar, the radio occultation (RO) from both the CHAMP satellite and the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellite, as well as the ionospheric absorption of cosmic radio noise measured by the Imaging Riometer for Ionospheric Studies (IRIS) at Kilpisjärvi in the northern Finland (69.05°N, 20.79°E). Significant increases in the electron density for these different observations were found in the Arctic ionosphere during the main phase of the magnetic storm. These increase occurred in Scandinavian, Northwest part of Russia and Svalbard (SNRS) region, primarily at an altitude of about 110 km. These results are first reported for the SNRS region, and our study contributes to a more complete description of this space weather event during 14-15 December, 2006. Our observations also provide direct evidence that the stormtime E-layer electron density enhancement (e.g., the sporadic E) can form a nearly dominant portion in the observed TEC increase. These increases were accompanied by the ionospheric absorption enhancement at the altitude of about 90 km. The Y-component of magnetic field to the south of SNRS decreased, indicating strong upward field aligned electric current in the Arctic ionosphere. These features are interpreted as the effect of the high energy electron precipitation during the magnetic storm, which is caused by the sub-storm reflected on AL index and the measurements of IMAGE (International Monitor for Auroral Geomagnetic Effects) chain. The average energy of the precipitation electrons reached to about 10 keV and the

  8. Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: Some results of Azerbaijani studies

    NASA Astrophysics Data System (ADS)

    Babayev, Elchin S.; Allahverdiyeva, Aysel A.

    There are collaborative and cross-disciplinary space weather studies in the Azerbaijan National Academy of Sciences conducted with purposes of revealing possible effects of solar, geomagnetic and cosmic ray variability on certain technological, biological and ecological systems. This paper describes some results of the experimental studies of influence of the periodical and aperiodical changes of geomagnetic activity upon human brain, human health and psycho-emotional state. It also covers the conclusions of studies on influence of violent solar events and severe geomagnetic storms of the solar cycle 23 on the mentioned systems in middle-latitude location. It is experimentally established that weak and moderate geomagnetic storms do not cause significant changes in the brain's bioelectrical activity and exert only stimulating influence while severe disturbances of geomagnetic conditions cause negative influence, seriously disintegrate brain's functionality, activate braking processes and amplify the negative emotional background of an individual. It is concluded that geomagnetic disturbances affect mainly emotional and vegetative spheres of human beings while characteristics reflecting personality properties do not undergo significant changes.

  9. Investigating the effect of geomagnetic storm and equatorial electrojet on equatorial ionospheric irregularity over East African sector

    NASA Astrophysics Data System (ADS)

    Seba, Ephrem Beshir; Nigussie, Melessew

    2016-11-01

    The variability of the equatorial ionosphere is still a big challenge for ionospheric dependent radio wave technology users. To mitigate the effect of equatorial ionospheric irregularity on trans-ionospheric radio waves considerable efforts are being done to understand and model the equatorial electrodynamics and its connection to the creation of ionospheric irregularity. However, the effect of the East-African ionospheric electrodynamics on ionospheric irregularity is not yet well studied due to lack of multiple ground based instruments. But, as a result of International Heliophysical Year (IHY) initiative, which was launched in 2007, some facilities are being deployed in Africa since then. Therefore, recently deployed instruments, in the Ethiopian sector, such as SCINDA-GPS receiver (2.64°N dip angle) for TEC and amplitude scintillation index (S4) data and two magnetometers, which are deployed on and off the magnetic equator, data collected in the March equinoctial months of the years 2011, 2012, and 2015 have been used for this study in conjunction with geomagnetic storm data obtained from high resolution OMNI WEB data center. We have investigated the triggering and inhibition mechanisms for ionospheric irregularities using, scintillation index (S4), equatorial electrojet (EEJ), interplanetary electric field (IEFy), symH index, AE index and interplanetary magnetic field (IMF) Bz on five selected storm and two storm free days. We have found that when the eastward EEJ fluctuates in magnitude due to storm time induced electric fields at around noontime, the post-sunset scintillation is inhibited. All observed post-sunset scintillations in equinox season are resulted when the daytime EEJ is non fluctuating. The strength of noontime EEJ magnitude has shown direct relation with the strength of the post-sunset scintillations. This indicates that non-fluctuating EEJ stronger than 20 nT, can be precursor for the occurrence of the evening time ionospheric irregularities

  10. Impacts of Geomagnetic storms on the mid-latitude mesosphere and lower thermosphere observed by a Na lidar and TIMED/GUVI

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Zhang, Y.

    2015-12-01

    In this paper, we report our findings on the correlation between the neutral temperature (around the mesopause) and thermospheric column density O/N2 ratio, along with their response to geomagnetic storms above mid-latitude of North America. A temperature/wind Doppler Na lidar, operating at Fort Collins, CO (41°N, 105°W) and later at Logan, UT (42°N and 112°W), observed significant temperature increases (temperature anomaly) above 95 km (as much as 55 K at 105 km altitude) during four geomagnetic storms (April 2002, Nov. 2004, May 2005 and Oct. 2012). Coincident TIMED/GUVI observations indicate significant depletion in the thermospheric O/N2 ratio at the lidar locations. These observations suggest that the local mesopause warming seen by the lidar is due to transport of the high-latitude Joule and particle heated neutrals at the E and F layers to the mid-latitude region.

  11. Spectral characteristics of geomagnetic field variations at low and equatorial latitudes

    USGS Publications Warehouse

    Campbell, W.H.

    1977-01-01

    Geomagnetic field spectra from eight standard observations at geomagnetic latitudes below 30?? were studied to determine the field characteristics unique to the equatorial region. Emphasis was placed upon those variations having periods between 5 min and 4 hr for a selection of magnetically quiet, average, and active days in 1965. The power spectral density at the equator was about ten times that the near 30?? latitude. The initial manifestation of the equatorial electrojet as evidenced by the east-west alignment of the horizontal field or the change in vertical amplitudes occurred below about 20?? latitude. Induced current effects upon the vertical component from which the Earth conductivity might be inferred could best be obtained at times and latitudes unaffected by the electrojet current. Values of about 1.6 ?? 103 mhos/m for an effective skin depth of 500-600 km were determined. The spectral amplitudes increased linearly with geomagnetic activity index, Ap. The spectral slope had a similar behavior at all latitudes. The slope changed systematically with Ap-index and showed a diurnal variation, centered on local noon, that changed form with geomagnetic activity.

  12. Geomagnetic superchrons and time variations in the cooling rate of the core

    NASA Astrophysics Data System (ADS)

    Olson, P.

    2015-12-01

    Polarity reversal systematics from numerical dynamos are used to explore the relationship between geomagnetic reversal frequency, including geomagnetic superchrons, and time variations in the rate of the cooling of the core. We develop a parameterization of the average reversal frequency from numerical dynamos in terms of the core heat flux normalized by the difference between the present-day core heat flux and the core heat flux at geomagnetic superchron onset. A low-order polynomial fit of this parameterization to the 0-300 Ma Geomagnetic Polarity Time Scale (GPTS) reveals that a decrease in core heat flux relative to present-day of approximately 30% can account for the Cretaceous Normal Polarity and Kiaman Reversed Polarity Superchrons, whereas the hyper-reversing periods in the Jurassic GPTS imply a core heat flux approximately 20% higher than at present-day. Low heat flux and slow cooling of the core inferred during the Kiaman Reversed Polarity Superchron is qualitatively consistent with predictions from mantle global circulation models (mantle GCMs) that show a reduction in mantle convective activity during the time of Pangea, whereas these same mantle GCMs and most plate motion reconstructions predict fast core cooling during the Cretaceous Normal Polarity Superchron, suggesting that the cooling rate of the core is not generally in phase with variations in plate motions.

  13. On the latitudinal changes in ionospheric electrodynamics and composition based on observations over the 76-77°E meridian from both hemispheres during a geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Shreedevi, P. R.; Thampi, Smitha V.; Chakrabarty, D.; Choudhary, R. K.; Pant, Tarun Kumar; Bhardwaj, Anil; Mukherjee, S.

    2016-02-01

    The relative contributions of the composition disturbances and the disturbance electric fields in the redistribution of ionospheric plasma is investigated in detail by taking the case of a long-duration positive ionospheric storm that occurred during 18-21 February 2014. GPS total electron content (TEC) data from the Indian Antarctic station, Bharti (69.4°S, 76.2°E geographic), the northern midlatitude station Hanle (32.8°N, 78.9°E geographic), northern low-latitude station lying in the vicinity of the anomaly crest, Ahmedabad (23.04°N, 72.54°E geographic, dip latitude 17°N), and the geomagnetic equatorial station, Trivandrum (8.5°N, 77°E geographic, dip latitude 0.01°S) are used in the study. These are the first simultaneous observations of TEC from Bharti and Hanle during a geomagnetic storm. The impact of the intense geomagnetic storm (Dst˜-130 nT) on the southern hemisphere high-latitude station was a drastic reduction in the TEC (negative ionospheric storm) starting from around 0330 Indian standard time (IST) on 19 February which continued till 21 February, the maximum reduction in TEC at Bharti being ˜35 TEC units on 19 February. In the northern hemisphere midlatitude and equatorial stations, a positive ionospheric storm started on 19 February at around 0900 IST and lasted for 3 days. The maximum enhancement in TEC at Hanle was about ˜25 TECU on 19 February while over Trivandrum it was ˜10 TECU. This long-duration positive ionospheric storm provided an opportunity to assess the relative contributions of disturbance electric fields and composition changes latitudinally. The results indicate that the negative ionospheric storm over Bharti and the positive ionospheric storm over Hanle are the effect of the changes in the global wind system and the storm-induced composition changes. At the equatorial latitudes, the positive ionospheric storm was due to the interplay of prompt penetration electric field and disturbance dynamo electric field.

  14. Comment on Decay of the Dst Field of Geomagnetic Disturbance After Substorm Onset and its Implication to Storm-Substorm Relation

    NASA Technical Reports Server (NTRS)

    Rostoker, G.; Baumjohann, W.; Gonzalez, W.; Kamide, Y.; Kokubun, S.; McPherron, R. L.; Tsurutani, B. T.

    1996-01-01

    Over the past few years, there has been a considerable revival in the study of geomagnetic storms stimulated by an increasing knowledge of the energetic particles which comprise the ring current. It is only in recent years that the composition of the ring current has been thouroughly explored and the important role of the oxygen component of the near Earth plasma sheet has become recognized.

  15. Spatial Variation in Storm Surge in the Strait of Georgia

    NASA Astrophysics Data System (ADS)

    Soontiens, N. K.; Allen, S. E.; Latornell, D.; Le Souef, K.; Machuca, I.

    2014-12-01

    The Strait of Georgia is a strongly stratified, deep body of water located between Vancouver Island and the mainland of British Columbia and is connected to the Pacific Ocean via the Strait of Juan de Fuca to the south and Johnstone Strait to the north. It is on average 220 km in length and 30 km wide and its maximum depth is 420 m. During the winter months, coastal communities in the Strait of Georgia are at risk to flooding caused by storm surges, a natural hazard that occurs when a strong wind storm with low atmospheric pressure coincides with an unusually high tide. This study presents storm surge hindcasts of significant events between 2006 and 2009 using a numerical model of the Straits of Georgia, Juan de Fuca, Johnstone and Puget Sound (together the Salish Sea). The model is based on the Nucleus for European Modelling of the Ocean (NEMO) in a regional configuration. Realistic stratification is produced by including input from the surrounding rivers. A discussion on the sensitivity of modelled surge amplitude to open boundary conditions and atmospheric forcing will be presented. As barotropic models have previously shown, the surge entering the domain from the Pacific Ocean contributes most significantly. Surge amplitudes are found to be greater within the Strait of Georgia than those in the Strait of Juan de Fuca. Local wind patterns cause spatial variations in the strength of the surge in the Strait of Georgia, generally leading to stronger surges on the Mainland side of the Strait.

  16. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.; Kanekal, S. G.; Angelopoulos, V.; Green, J. C.; Goldstein, J.

    2016-06-01

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

  17. Effect of TADs on the F-region of Low midlatitude ionosphere during intense geomagnetic storm.

    NASA Astrophysics Data System (ADS)

    Upadhayaya, Arun Kumar; Joshi, Shivani; Singh Dabas, Raj; Das, Rupesh M.; Yadav, Sneha

    Effect of TAD's on the F region ionosphere of low-mid latitude ionosphere during three intense storms of20 th Nov,2003(-422nT),30 th Oct 2003(-383nT),07Nov,2004(-373nT)respectively are studued using ionosonde data of Delhi(28ø N 77øE).It has been seen that the electon density profile in the F1 region are greatly influenced by the TAD's presence. Further the pre-existing F1 cusp become better devloped during the passage of TAD's.

  18. Asymmetry of geomagnetic field horizontal components variation connected to field aligned currents appeared at early recovery phase in region of plasmospheric bulges

    NASA Astrophysics Data System (ADS)

    Barkhatova, Oksana; Barkhatov, Nikolay; Bespalov, Peter

    2010-05-01

    Studying of ring current dynamics at different phases of geomagnetic storm development assumes consideration of questions connected with its asymmetric part closing. Such closing of asymmetric ring current on ionosphere can be provided with existence of intensive field aligned currents. These currents can arise due to interaction of ring current energetic ions with plasmospheric bulges in day time and evening sectors of magnetosphere. At the same time in regions of plasmospheric bulges develop cyclotron instability. Interaction of ring current energetic ions with cyclotron waves leads to them isotropisation and precipitation in loss-cone therefore intensive field aligned currents are formed. In this work the experimental basis of asymmetric part of geomagnetic field disturbance connection with presence of plasmospheric bulges at early recovery phase of geomagnetic storm is received. Spectrums of geomagnetic field horizontal component on two meridional chains of ground based stations which correspond to location of day time and evening plasmospheric bulges are investigated. Research was carried out for two cases - when the stations chain is in region of plasmospheric bulge and when it is outside of its boundaries. As a result in spectrums of geomagnetic field horizontal component variations at ground magnetic stations the increase of spectral components amplitudes in geomagnetic pulsations range is observed. It is marked at an entrance of stations in regions corresponding to projections of day time and evening plasmospheric bulges. Comparison of geomagnetic field horizontal component variations at the stations which are taking place in region of a day time bulge is carried out. It is founded, that at an entrance of stations in this bulge region, evident depression of horizontal components values is observed. At stations which are located outside a bulge, this depression is less significant. In quiet days, when streams of ring current energetic ions are absent, the

  19. Study on the Geomagnetic Short Period Variations of the Northwestern Yunnan

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Li, Q.; Cai, J.

    2015-12-01

    The Northwestern Yunnan is located in the interaction area between the Eurasian plate and the India plate. This area has been the ideal place for the research of continental dynamics and the prediction for risk region of strong earthquake for its complex tectonic environment and frequent seismic activity. Therefore the study on the geomagnetic short period variations is of great significance in the exploration of deep electrical structure, analysis of the seismic origin and deep geodynamics in the Northwestern Yunnan of China . This paper is based on the geomagnetic data from the magnetometer array with 8 sites built in the northwestern Yunnan to explore the deep electrical structure by the method of geomagnetic depth sounding. Firstly, we selected a total of 183 geomagnetic short period events at the range of 6min to 120min period. And we found a north northwest dividing line, of which two sides has the opposite value in the vertical component variation amplitude, which indicates the obvious conductivity anomaly underground. Secondly, the contour maps of the ratio of vertical component and horizontal component variation amplitude ΔZ/ΔH in different periods reflects the changes of a high conductivity belt's direction and position. In addition, the induction arrows maps within the period of 2 - 256min also shows that on the two sides of the dividing line the induction vectors deviate from each other, and the amplitude and direction of vectors varies with periods regularly. In the light of this, we infer that a high conductivity belt probably exists, which stretches from the deep crust to uppermost mantle and changes with depth constantly with the reference of magnetotelluric sounding. In the end of this paper, the staggered grid finite difference method is used to model the simplified three-dimensional high conductivity anomaly, and the result shows magnetic field distributions are consistent with the observed geomagnetic short period variations characteristics in

  20. Origins of the semiannual variation of geomagnetic activity in 1954 and 1996

    NASA Astrophysics Data System (ADS)

    Cliver, E.; Svalgaard, L.; Ling, A.

    2004-01-01

    . We investigate the cause of the unusually strong semiannual variation of geomagnetic activity observed in the solar minimum years of 1954 and 1996. For 1996 we separate the contributions of the three classical modulation mechanisms (axial, equinoctial, and Russell-McPherron) to the six-month wave in the index and find that all three contribute about equally. This is in contrast to the longer run of geomagnetic activity (1868-1998) over which the equinoctial effect accounts for 70% of the semiannual variation. For both 1954 and 1996, we show that the Russell-McPherron effect was enhanced by the Rosenberg-Coleman effect (an axial polarity effect) which increased the amount of the negative (toward Sun) [positive (away from Sun)] polarity field observed during the first [second] half of the year; such fields yield a southward component in GSM coordinates. Because this favourable condition occurs only for alternate solar cycles, the marked semiannual variation in 1954 and 1996 is a manifestation of the 22-year cycle of geomagnetic activity. The 11-year evolution of the heliospheric current sheet (HCS) also contributes to the strong six-month wave during these years. At solar minimum, the streamer belt at the base of the HCS is located near the solar equator, permitting easier access to high speed streams from polar coronal holes when the Earth is at its highest heliographic latitudes in March and September. Such an axial variation in solar wind speed was observed for 1996 and is inferred for 1954.

  1. Storm time variation of radiative cooling of thermosphere by nitric oxide emission

    NASA Astrophysics Data System (ADS)

    Krishna, M. V. Sunil; Bag, Tikemani; Bharti, Gaurav

    2016-07-01

    The fundamental vibration-rotation band emission (Δν=1, Δ j=0,± 1) by nitric oxide (NO) at 5.3 µm is one of the most important cooling mechanisms in thermosphere. The collisional vibrational excitation of NO(ν=0) by impact with atomic oxygen is the main source of vibrationally excited nitric oxide. The variation of NO density depends on latitude, longitude and season. The present study aims to understand how the radiative flux gets influenced by the severe geomagnetic storm conditions. The variation of Nitric Oxide (NO) radiative flux exiting thermosphere is studied during the superstorm event of 7-12 November, 2004. The observations of TIMED/SABER suggest a strong anti-correlation with the O/N_2 ratio observed by GUVI during the same period. On a global scale the NO radiative flux showed an enhancement during the main phase on 8 November, 2004, whereas maximum depletion in O/N_2 is observed on 10 November, 2004. Both O/N_2 and NO radiative flux were found to propagate equatorward due to the effect of meridional wind resulting from joule and particle heating in polar region. Larger penetrations is observed in western longitude sectors. These observed variations are effectively connected to the variations in neutral densities. In the equatorial sectors, O/N_2 shows enhancement but almost no variation in radiative flux is observed. The possible reasons for the observed variations in NO radiative emission and O/N_2 ratios are discussed in the light of equator ward increase in the densities and prompt penetration.

  2. Nighttime mesospheric hydroxyl enhancements during SEP events and accompanying geomagnetic storms: Ionization rate modeling and Aura satellite observations

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Wissing, J. M.; Wang, S.; Kallenrode, M.-B.; Zank, G. P.

    2016-07-01

    We quantify the effects of combined precipitating solar protons and magnetospheric electrons on nighttime odd hydrogen density enhancements during two solar energetic particle (SEP) events accompanied by strong geomagnetic storms. We perform detailed modeling of ionization rates for 7-17 November 2004 and 20-30 August 2005 intervals with improved version 1.6 of the Atmospheric Ionization Module Osnabrück model. Particle measurements from Geostationary Operational Environmental Satellites and Polar Orbiting Environmental Satellites are sorted and combined in 2 h intervals to create realistic particle precipitation maps that are used as the modeling input. We show that modeled atmospheric ionization rates and estimated peak odd hydrogen (primarily hydroxyl) production from 0.001 hPa to 0.1 hPa atmospheric pressure levels during these intervals are consistent with enhancements in nighttime averaged zonal odd hydrogen densities derived from newly reprocessed and improved data set of Microwave Limb Sounder instrument on board Aura satellite. We show that both precipitating SEPs and magnetospheric electrons contribute to mesospheric ionization and their relative contributions change throughout the intervals. Our event-based modeling results underline the importance of the combined ionization sources for odd hydrogen chemistry in the middle atmosphere.

  3. How Different are the Ring Current Compositions and Strengths of the 20 November, 2003 and the 24 August, 2005 Geomagnetic Storms?

    NASA Astrophysics Data System (ADS)

    Brandt, P. C.; Mitchell, D. G.; Ohtani, S.

    2006-05-01

    The 20 November, 2003 and the 24 August, 2005 geomagnetic storms were both driven by an interplantery magnetic field (IMF) down to approximately -60 nT. Although, the minimum SYM-H (or Dst)depression on ground reached about -500 nT for the 20 November, 2003 storm, but not even -200 nT for the 24 August, 2005 storm. There can be several reasons for this outstanding difference: the meaning of the SYMH index and the relative tail-current contribution; the duration of the southward IMF was relatively short (~1 h) for the 24 August, 2005 storm. Did this imply less time for substorms to inject fresh plasma (especially O+) into the ring current?; Cold and dense plasmasheet. We discuss the composition and intensity of the global ring current during these two storms, by using energetic neutral atom (ENA) data from the Medium- and High Energy Neutral Atom (MENA and HENA) imagers onboard the IMAGE satellite. While at first glance the strength of the ENA images in the 10-200 keV hydrogen and oxygen are comparable for the two storms, we investigate indications that the <10 keV hydrogen data is slightly enhanced for the 20 November, 2003 storm. We will re analyze the HENA images (H and O) in more detail to retrieve the parent ion intensity and investigate the effect of substorms.

  4. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Mursula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.

  5. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  6. Satellite accelerometer measurements of neutral density and winds during geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Marcos, F. A.; Forbes, J. M.

    1986-01-01

    A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.

  7. Dynamic Responses of the Earth's Outer Core to Assimilation of Observed Geomagnetic Secular Variation

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2014-01-01

    Assimilation of surface geomagnetic observations and geodynamo models has advanced very quickly in recent years. However, compared to advanced data assimilation systems in meteorology, geomagnetic data assimilation (GDAS) is still in an early stage. Among many challenges ranging from data to models is the disparity between the short observation records and the long time scales of the core dynamics. To better utilize available observational information, we have made an effort in this study to directly assimilate the Gauss coefficients of both the core field and its secular variation (SV) obtained via global geomagnetic field modeling, aiming at understanding the dynamical responses of the core fluid to these additional observational constraints. Our studies show that the SV assimilation helps significantly to shorten the dynamo model spin-up process. The flow beneath the core-mantle boundary (CMB) responds significantly to the observed field and its SV. The strongest responses occur in the relatively small scale flow (of the degrees L is approx. 30 in spherical harmonic expansions). This part of the flow includes the axisymmetric toroidal flow (of order m = 0) and non-axisymmetric poloidal flow with m (is) greater than 5. These responses can be used to better understand the core flow and, in particular, to improve accuracies of predicting geomagnetic variability in future.

  8. Bottom-up control of geomagnetic secular variation by the Earth's inner core.

    PubMed

    Aubert, Julien; Finlay, Christopher C; Fournier, Alexandre

    2013-10-10

    Temporal changes in the Earth's magnetic field, known as geomagnetic secular variation, occur most prominently at low latitudes in the Atlantic hemisphere (that is, from -90 degrees east to 90 degrees east), whereas in the Pacific hemisphere there is comparatively little activity. This is a consequence of the geographical localization of intense, westward drifting, equatorial magnetic flux patches at the core surface. Despite successes in explaining the morphology of the geomagnetic field, numerical models of the geodynamo have so far failed to account systematically for this striking pattern of geomagnetic secular variation. Here we show that it can be reproduced provided that two mechanisms relying on the inner core are jointly considered. First, gravitational coupling aligns the inner core with the mantle, forcing the flow of liquid metal in the outer core into a giant, westward drifting, sheet-like gyre. The resulting shear concentrates azimuthal magnetic flux at low latitudes close to the core-mantle boundary, where it is expelled by core convection and subsequently transported westward. Second, differential inner-core growth, fastest below Indonesia, causes an asymmetric buoyancy release in the outer core which in turn distorts the gyre, forcing it to become eccentric, in agreement with recent core flow inversions. This bottom-up heterogeneous driving of core convection dominates top-down driving from mantle thermal heterogeneities, and localizes magnetic variations in a longitudinal sector centred beneath the Atlantic, where the eccentric gyre reaches the core surface. To match the observed pattern of geomagnetic secular variation, the solid material forming the inner core must now be in a state of differential growth rather than one of growth and melting induced by convective translation. PMID:24108054

  9. 2D MHD test-particle simulations in modeling geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Li, Z.; Elkington, S. R.; Hudson, M. K.; Murphy, J. J.; Schmitt, P.; Wiltberger, M. J.

    2012-12-01

    The effects of magnetic storms on the evolution of the electron radiation belts are studied using MHD test-particle simulations. The 2D guiding center code developed by Elkington et al. (2002) has been used to simulate particle motion in the Solar Magnetic equatorial plane in the MHD fields calculated from the Lyon-Fedder-Mobarry global MHD code. However, our study shows that the B-minimum plane is well off the SM equatorial plane during solstice events. Since 3D test-particle simulation is computationally expensive, we improve the 2D model by pushing particles in the B-minimum surface instead of the SM equatorial plane. Paraview software is used to visualize the LFM data file and to find the B-minimum surface. Magnetic and electric fields on B-minimum surface are projected to the equatorial plane for particle pushing.

  10. Annual and semiannual variations of the geomagnetic field at equatorial locations

    USGS Publications Warehouse

    Campbell, W.H.

    1981-01-01

    For a year of quiet solar-activity level, geomagnetic records from American hemisphere observatories located between about 0?? and 30?? north geomagnetic latitude were used to compare the annual and semiannual variations of the geomagnetic field associated with three separate contributions: (a) the quiet-day midnight level, MDT; (b) the solar-quiet daily variation, Sq; (c) the quiet-time lunar semidiurnal tidal variation, L(12). Four Fourier spectral constituents (24, 12, 8, 6 h periods) of Sq were individually treated. All three orthogonal elements (H, D and Z) were included in the study. The MDT changes show a dominant semiannual variation having a range of about 7 gammas in H and a dominant annual variation in Z having a range of over 8 gammas. These changes seem to be a seasonal response to the nightside distortions by magnetospheric currents. There is a slow decrease in MDT amplitudes with increasing latitude. The Sq changes follow the patterns expected from an equatorial ionospheric dynamo electrojet current system. The dominant seasonal variations occur in H having a range of over 21 gammas for the 24 h period and over 12 gammas for the 12 h period spectral components. The higher-order components are relatively smaller in size. The Sq(H) amplitudes decrease rapidly with increasing latitude. Magnetospheric contributions to the equatorial Sq must be less than a few per cent of the observed magnitude. The L(12) variation shows the ionospheric electrojet features by the dominance of H and the rapid decrease in amplitude with latitude away from the equator. However, the seasonal variation range of over 7 gammas has a maximum in early February and minimum in late June that is not presently explainable by the known ionospheric conductivity and tidal behavior. ?? 1981.

  11. Compressional perturbations of the dayside magnetosphere during high-speed-stream-driven geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Denton, Michael H.

    2016-05-01

    The quasi-DC compressions of the Earth's dayside magnetic field by ram-pressure fluctuations in the solar wind are characterized by using multiple GOES spacecraft in geosynchronous orbit, multiple Los Alamos spacecraft in geosynchronous orbit, global MHD simulations, and ACE and Wind solar wind measurements. Owing to the inward-outward advection of plasma as the dayside magnetic field is compressed, magnetic field compressions experienced by the plasma in the dayside magnetosphere are greater than the magnetic field compressions measured by a spacecraft. Theoretical calculations indicate that the plasma compression can be a factor of 2 higher than the observed magnetic field compression. The solar wind ram-pressure changes causing the quasi-DC magnetospheric compressions are mostly owed to rapid changes in the solar wind number density associated with the crossing of plasma boundaries; an Earth crossing of a plasma boundary produces a sudden change in the dayside magnetic field strength accompanied by a sudden inward or outward motion of the plasma in the dayside magnetosphere. Superposed epoch analysis of high-speed-stream-driven storms was used to explore solar wind compressions and storm time geosynchronous magnetic field compressions, which are of particular interest for the possible contribution to the energization of the outer electron radiation belt. The occurrence distributions of dayside magnetic field compressions, solar wind ram-pressure changes, and dayside radial plasma flow velocities were investigated: all three quantities approximately obey power law statistics for large values. The approximate power law indices for the distributions of magnetic compressions and ram-pressure changes were both -3.

  12. A statistical study of the response of the dayside equatorial F2 layer to the main phase of intense geomagnetic storms as an indicator of penetration electric field

    NASA Astrophysics Data System (ADS)

    Balan, N.; Yamamoto, M.; Sreeja, V.; Batista, I. S.; Lynn, K. J. W.; Abdu, M. A.; Ravindran, S.; Kikuchi, T.; Otsuka, Y.; Shokawa, K.; Alex, S.

    2011-03-01

    The response of the dayside equatorial F2 layer to the main phases of the 22 intense geomagnetic storms (Dst < -150 nT) in 1998-2008 is investigated using the digital ionosonde data from the equatorial stations in Brazilian, Indian, and Australian longitudes together with equatorial electrojet strength and IMF Bz; the storms include 15 superstorms (Dst < -200 nT). The observations show that there is a period during all MPs when the F2 layer peak rises (and falls) rapidly with large peak electron density (Nmax) reduction, the rise velocity strongly correlates with the intensity (Dst) of the storms, and the duration of the Nmax reduction corresponds to that of strong eastward electrojet when IMF Bz remains highly negative. The observations indicate the occurrence of strong eastward prompt penetration electric fields (PPEF) during the rapid F2 layer response. The PPEF drives the F2 layer peak rapidly upward, which reduces Nmax due to vertical expansion and diffusion. The results therefore suggest that the rapid F2 layer response (rapid rise (and fall) of peak height (hmax) with large Nmax reduction) observed by ionosondes can be used to detect the occurrence of the daytime eastward PPEF during intense geomagnetic storms irrespective of season and level of solar activity. The data also show two rare events of strong daytime westward electric fields due to disturbance dynamo and/or prompt penetration. The results are important when radars are not available to monitor the occurrence of the PPEF.

  13. Diurnal changes of earthquake activity and geomagnetic Sq-variations

    NASA Astrophysics Data System (ADS)

    Duma, G.; Ruzhin, Y.

    Statistic analyses demonstrate that the probability of earthquake occurrence in many earthquake regions strongly depends on the time of day, that is on Local Time (e.g. Conrad, 1909, 1932; Shimshoni, 1971; Duma, 1997; Duma and Vilardo, 1998). This also applies to strong earthquake activity. Moreover, recent observations reveal an involvement of the regular diurnal variations of the Earth's magnetic field, commonly known as Sq-variations, in this geodynamic process of changing earthquake activity with the time of day (Duma, 1996, 1999). In the article it is attempted to quantify the forces which result from the interaction between the induced Sq-variation currents in the Earth's lithosphere and the regional Earth's magnetic field, in order to assess the influence on the tectonic stress field and on seismic activity. A reliable model is obtained, which indicates a high energy involved in this process. The effect of Sq-induction is compared with the results of the large scale electromagnetic experiment "Khibiny" (Velikhov, 1989), where a giant artificial current loop was activated in the Barents Sea.

  14. Long-term variation in the ionosphere and lower thermosphere as seen in the geomagnetic solar quiet daily variation

    NASA Astrophysics Data System (ADS)

    Shinbori, A.; Koyama, Y.; Hori, T.; Nose, M.; Otsuka, Y.

    2015-12-01

    In order to investigate characteristics of the long-term variation in the ionosphere and lower thermosphere, we analyzed the amplitude of geomagnetic solar quiet (Sq) field daily variation using 1-h geomagnetic field data obtained from 69 geomagnetic stations within the period of 1947-2013. In the present data analysis, we took advantage of the Inter-university Upper atmosphere Global Observation NETwork (IUGONET) products (metadata database and analysis software) for finding and handling the long-term observation data obtained at many observatories. The Sq amplitude observed at these geomagnetic stations showed a clear solar activity dependence and tended to be enhanced during each solar maximum phase. The Sq amplitude was the smallest around the minimum of solar cycle 23/24 in 2008-2009. This significant depression implies that the solar extreme ultraviolet (EUV) radiation responsible for ionization of the upper atmosphere decreased during this solar cycle minimum. In order to examine a global distribution of the long-term trend in the Sq amplitude, we derived the residual Sq amplitude from the deviation from the fitting curve between the solar F10.7 index and Sq amplitude. As a result, a majority of the trends in the residual Sq amplitude showed negative values over a wide region. This tendency was relatively strong in Europe, India, the eastern part of Canada, and New Zealand. Moreover, we estimate the neutral wind in the lower thermosphere from the Sq amplitude and height-integrated ionospheric conductivity in order to know the physical mechanism of the long-term trend in the residual Sq amplitude. As a result, the estimated thermospheric zonal and meridional winds showed a seasonal variation with a period of one year or less, but the solar activity dependence was unclear. This result suggests that the solar cycle dependence of the Sq amplitude may be mainly attributed to the variation of the ionospheric conductivity.

  15. Temporal variation of the arterial pressure in healthy young people and its relation to geomagnetic activity in Mexico

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.; Sánchez de la Peña, S.; Martínez, J. L.

    2012-11-01

    We present a study of the temporal behavior of the systolic (SBP) and diastolic (DBP) blood pressure for a sample of 51 normotensive, healthy volunteers, 18 men and 33 women with an average age of 19 years old in Mexico City, Mexico, during April and May, 2008. We divided the data by sex along the circadian rhythm. Three geomagnetic storms occurred during the studied time-span. The strongest one, a moderate storm, is attributed to a coronal hole border that reached the Earth. The ANOVA test applied to the strongest storm showed that even though we are dealing with a moderate geomagnetic storm, there are statistically significant responses of the blood pressure. The superposed epoch analysis during a three-day window around the strongest storm shows that on average the largest changes occurred for the SBP. Moreover, the SBP largest increases occurred two days before and one day after this storm, and women are the most sensitive group as they present larger SBP and DBP average changes than men. Finally, given the small size of the sample, we cannot generalize our results.

  16. Multispacecraft observations and modeling of the 22/23 June 2015 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Daou, A. G.; Sazykin, S. Y.; Nakamura, R.; Hairston, M. R.; Coffey, V.; Chandler, M. O.; Anderson, B. J.; Russell, C. T.; Welling, D.; Fuselier, S. A.; Genestreti, K. J.

    2016-07-01

    The magnetic storm of 22-23 June 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE (Active Magnetosphere and Planetary Electrodynamics Response), and ionospheric flow data from Defense Meteorological Satellite Program (DMSP). Our real-time space weather alert system sent out a "red alert," correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS Fast Plasma Instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the Block Adaptive Tree-Solarwind - Roe - Upwind Scheme (BATS-R-US) global magnetohydrodynamic model linked with the Rice Convection Model. The model predicted the magnitude of the dipolarizations, and varying polar cap convection patterns, which were confirmed by DMSP measurements.

  17. Multispacecraft Observations and Modeling of the 22/23 June 2015 Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Daou, A. G.; Sazykin, S. Y.; Nakamura, R.; Hairston, M. R.; Coffey, V.; Chandler, M. O.; Anderson, B. J.; Russell, C. T.; Welling, D.; Fuselier, S. A.; Genestreti, K. J.

    2016-01-01

    The magnetic storm of 22-23 June 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE (Active Magnetosphere and Planetary Electrodynamics Response), and ionospheric flow data from Defense Meteorological Satellite Program (DMSP). Our real-time space weather alert system sent out a "red alert," correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS Fast Plasma Instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the Block Adaptive Tree-Solarwind - Roe - Upwind Scheme (BATS-R-US) global magnetohydrodynamic model linked with the Rice Convection Model. The model predicted the magnitude of the dipolarizations, and varying polar cap convection patterns, which were confirmed by DMSP measurements.

  18. Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE) of the November 2004 Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Datta-Barua, S.; Bust, G.; Crowley, G.; Curtis, N.; Reynolds, A.

    2008-12-01

    One of the current limitations to the community's understanding of ionospheric processes is knowledge of the local physical drivers responsible for the distribution of ionospheric electron density. Direct measurement of these drivers is infrequent and spatially scarce. Our ongoing goal has been to use measurements that are plentiful, such as TEC-based density specification, to infer the drivers. This technique we call Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). The EMPIRE algorithm and validation methods, using simulated ionospheric data from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIMEGCM-ASPEN) physics-based model [Crowley et al., 1999], were described by Bust et al. [2008]. The EMPIRE weighted least squares estimates of the field-aligned neutral winds in the equatorial region were in reasonable agreement with the TIMEGCM background model "true" winds. The other drivers, such as production, loss, diffusion, gravity, and drifts, were modeled as known quantities. Here we present results, based upon an improved algorithm, that estimate corrections to other physical drivers, such as diffusion, ExB drifts, production and loss, simultaneously with estimating the neutral winds. In addition, we apply the new algorithm to actual estimates of the 4D electron density field, obtained from the ionospheric data assimilation algorithm IDA4D, for a quiet day and for the November 2004 magnetic storm. The EMPIRE estimates of the field-aligned velocity terms in the continuity equation are compared to Arecibo incoherent scatter radar measurements, when available, for validation. Bust, G. S., S. Datta-Barua, G. Crowley, and N. Curtis [2008], "Estimation of neutral winds from 4D ionospheric imaging," presented at the XXIX General Assembly of the International Union of Radio Science (URSI), Chicago, IL, 7-16 Aug 2008. Crowley, G., C. Freitas, A. Ridley, D. Winningham, R. G. Roble, and A. D. Richmond, "Next

  19. Large Enhancements in the O/N2 Ratio in the Evening Sector of the Winter Hemisphere During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Burns, A. G.; Killeen, T. L.; Carignan, G. R.; Roble, R. G.

    1995-01-01

    In this paper, we have looked for enhancements of the O/N2 ratio in data measured by the Dynamics Explorer 2 (DE 2) satellite in the middle latitudes of the winter hemisphere, based on a prediction that was made by the National Center for Atmospheric Research thermosphere/tonosphere general circulation model (NCAR-TIGCM) that such increases occur. The NCAR-TIGCM predicts that these enhancements should be seen throughout the low latitude region and in many middle latitude locations, but that the enhancements in O/N2 are particularly strong in the middle-latitude, evening-to-midnight sector of the winter hemisphere. When this prediction was used to look for these effects in DE 2 NACS (neutral atmosphere composition spectrometer) data, large enhancements in the O/N2 ratio (approx. 50 to 90%) were seen. These enhancements were observed during the main phase of a storm that occurred on November 24, 1982, and were seen in the same region of the winter hemisphere predicted by the NCAR-TIGCM. They are partially the result of the depletion of N2 and, as electron loss is dependent on dissociative recombination at F(sub 2) altitudes, they have implications for electron densities in this area. Parcel trajectories, which have been followed through the NCAR-TIGCM history file for this event, show that large O/N2 enhancements occur in this limited region in the winter hemisphere for two reasons. First, these parcels of air are decelerated by the antisunward edge of the ion convection pattern; individual parcels converge and subsidence occurs. Thus molecular-nitrogen-poor air is brought from higher to lower heights. Because neutral parcels that are found a little poleward of the equatorial edge of the eveningside convection pattern are swept inward toward the center of the auroral oval, the enhancements occur only in a very limited range of latitudes. Second, nitrogen-poor air is transported from regions close to the magnetic pole in the winter hemisphere. During geomagnetic

  20. Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24?

    NASA Astrophysics Data System (ADS)

    Kilpua, E. K. J.; Luhmann, J. G.; Jian, L. K.; Russell, C. T.; Li, Y.

    2014-01-01

    The minimum following solar cycle 23 was the deepest and longest since the dawn of the space age. In this paper we examine geomagnetic activity using Dst and AE indices, interplanetary magnetic field (IMF) and plasma conditions, and the properties and occurrence rate of interplanetary coronal mass ejections (ICMEs) during two periods around the last two solar minima and rising phases (Period 1: 1995-1999 and Period 2: 2006-2012). The data is obtained from the 1-h OMNI database. Geomagnetic activity was considerably weaker during Period 2 than during Period 1, in particular in terms of Dst. We show that the responses of AE and Dst depend on whether it is solar wind speed or the southward IMF component (BS) that controls the variations in solar wind driving electric field (EY). We conclude that weak Dst activity during Period 2 was primarily a consequence of weak BS and presumably further weakened due to low solar wind densities. In contrast, solar wind speed did not show significant differences between our two study periods and the high-speed solar wind during Period 2 maintained AE activity despite of weak BS. The weakness of BS during Period 2 was attributed in particular to the lack of strong and long-duration ICMEs. We show that for our study periods there was a clear annual north-south IMF asymmetry, which affected in particular the intense Dst activity. This implies that the annual amount of intense Dst activity may rather be determined by the coincidence of what magnetic structure the strong ICMEs encountering the Earth have than by the solar cycle size.

  1. Response of the Fair Weather Atmospheric Electrical Current to Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Price, Colin; Elhalal, Gal

    2013-04-01

    The Global Electric Circuit (GEC) is a conceptual model that integrates the observed electrical properties of the atmosphere in the Earth-ionosphere cavity. An average potential difference of 250 kV exists between these two conducting layers, leading to a surface electric field (Ez, sometimes also named the Potential Gradient or PG) of ~130 V/m, and a nearly constant downward flowing direct current density (Jz) of ~2 pA m-2. This is known as the DC component of the GEC. The Jz is an extremely sensitive parameter whose magnitude and fluctuations can be used for monitoring local and global conductivity changes due to aerosols, air-pollution and solar activity. The AC part of the circuit is driven by ~50 lightning flashes per second generating the global Schumann resonances (SR) in the ELF range. There are two time-scales for identifying solar effects on the GEC. On the longer scale, an 11-year modulation by solar activity, likely due to changes in ionization, was reported by several authors. For example, Satori et al. (2005) noted a decrease in the frequency of the first 3 modes of the SR band in conjunction with the solar minimum of 1995-6. On shorter time scales typical of solar activity (e.g. CMEs, solar flares and SEP events), observations show marked perturbations in Jz and in the ionospheric potential at the surface. Cobb (1967) observed an increase of Jz by 75% for ~ 6 h in measurements made at Mauna Loa in Hawaii, during a period of multiple solar flares. Reiter (1989) observed an increase in Jz of about 50%-60% following large solar flares, persisting for 4 days (at the Zungspietze station in the Alps). Belova et al. (2001) reported increased Jz for about 2 hours before T=0 (time of minimum in Bx) as well as enhanced average fluctuations. This talk will review the effects of solar storms on the GEC, and present new results from continuous measurements of Jz conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35'N, 34°45'E). During 3 different

  2. Geomagnetic secular variation in the Cretaceous Normal Superchron and in the Jurassic

    NASA Astrophysics Data System (ADS)

    Biggin, Andrew J.; van Hinsbergen, Douwe J. J.; Langereis, Cor G.; Straathof, Gijs B.; Deenen, Martijn H. L.

    2008-08-01

    It is now widely thought that geomagnetic polarity reversals occur spontaneously as a result of normal dynamo action rather than being externally triggered. If this is the case, then it may well be that periods of time in which the geomagnetic reversal frequency was dramatically different were characterised by different styles of secular variation. Two such periods were the Cretaceous Normal Superchron (CNS: 84-125 Ma) when the field was dominantly of a single polarity for 40 Myr and the Jurassic period (145-200 Ma) when reversals occurred at an average rate of as much as 4.6 Myr -1. Here, we analyse a database of new and published palaeomagnetic directions from lavas emplaced during these periods in order to obtain first-order descriptions of the palaeosecular variation (PSV) during these times. We then compare these records with one another and with that produced for the period 0-5 Ma (with average reversal frequency of 4.0 Myr -1). Our results are more equivocal than those obtained in a previous similar study [McFadden, P.L., Merrill, R.T., McElhinny, M.W., Lee, S.H., 1991. Reversals of the Earths magnetic-field and temporal variations of the dynamo families. Journal of Geophysical Research-Solid Earth and Planets 96, 3923-3933]. We demonstrate that this is probably a result of the previous study being affected by an artefact of their correction for within-site scatter. The usefulness of our Jurassic record is severely limited by the restricted palaeolatitudinal span of the available data. However, our record for the CNS is sufficient to allow us to conclude that it was likely that secular variation then was different from that in the 0-5 Ma period. This supports the hypothesis of a link between PSV and reversal frequency and therefore endorses PSV analysis as a first-order tool for determining geomagnetic stability in the past.

  3. The camp century 10Be record: Implications for long-term variations of the geomagnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Beer, Jürg; Andree, Michael; Oeschger, Hans; Siegenthaler, Ulrich; Bonani, G.; Hofmann, H.; Morenzoni, E.; Nessi, M.; Suter, M.; Wölfli, W.; Finkel, R.; Langway, C.

    1984-11-01

    10Be concentrations measured in ice samples from Camp Century, Greenland, show short term variations which in general correspond to the 100-200 year "wiggles" in the 14C tree ring record. There is, however, no evidence for a long term variation over the last 5000 years. This constancy is in contrast to the approximately sinusoidal variation of the atmospheric 14C concentration which has generally been attributed to a changing geomagnetic dipole moment. This discrepancy implies that the 14C trend might stem from other causes such as changes of oceanic circulation processes or from higher production rates during the Wisconsin rather than from variation in the geomagnetic field.

  4. Investigation of ionospheric response to two moderate geomagnetic storms using GPS-TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24

    NASA Astrophysics Data System (ADS)

    de Abreu, A. J.; Fagundes, P. R.; Gende, M.; Bolaji, O. S.; de Jesus, R.; Brunini, C.

    2014-05-01

    The responses of the ionospheric F region using GPS-TEC measurements during two moderate geomagnetic storms at equatorial, low-, and mid-latitude regions over the South American and African sectors in May 2010, during the ascending phase of solar cycle 24, are investigated. The first moderate geomagnetic storm studied reached a minimum Dst value of -64 nT at 1500 UT on 02 May 2010 and the second moderate geomagnetic storm reached a minimum Dst value of -85 nT at 1400 UT on 29 May 2010. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations from the equatorial to mid-latitude regions in the South American and African sectors. Our results obtained during these two moderate geomagnetic storms from both sectors show significant positive ionospheric storms during daytime hours at the equatorial, low-, and mid-latitude regions during the main and recovery phases of the storms. The thermospheric wind circulation change towards the equator is a strong indicator that suggests an important mechanism is responsible for these positive phases at these regions. A pre-storm event that was observed in the African sector from low- to the mid-latitude regions on 01 May 2010 was absent in the South American sector. This study also showed that there was no generation or suppression of ionospheric irregularities by storm events. Therefore, knowledge about the suppression and generation of ionospheric irregularities during moderate geomagnetic storms is still unclear.

  5. Cosmic rays, conditions in interplanetary space and geomagnetic variations during solar cycles 19-24

    NASA Astrophysics Data System (ADS)

    Biktash, Lilia

    2016-07-01

    We have studied conditions in interplanetary space, which can have an influence on galactic and solar cosmic rays (CRs). In this connection the solar wind and interplanetary magnetic field parameters and CRs variations have been compared with geomagnetic activity represented by the equatorial Dst and Kp indices beginning from 1955 to the end 2015. The indices are in common practice in the solar wind-magnetosphere-ionosphere interaction studies and they are the final product of this interaction. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Correlation of sunspot numbers and long-term variations of cosmic rays do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU also. Moreover records of in situ space measurements of the IMF and most other indicators of solar activity cover only a few decades and have a lot of gaps for calculations of long-term variations. Because of this, in such investigations, the geomagnetic indices have some inestimable advantage as continuous series other the solar wind measurements. We have compared the yearly average variations of the indices and of the solar wind parameters with cosmic ray data from Moscow, Climax, Halekala and Oulu neutron monitors during the 20-24 solar cycles. During the descending phases of the solar cycles the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations and had effects on cosmic rays variations. We show that long-term Dst and Kp variations in these solar cycles were correlated with cosmic ray count rates and can be used for prediction of CR variations. Climate change in connection with evolution of CRs variations is discussed.

  6. Statistics of the geomagnetic secular variation for the past 5 m.y

    NASA Technical Reports Server (NTRS)

    Constable, C. G.; Parker, R. L.

    1988-01-01

    A new statistical model is proposed for the geomagnetic secular variation over the past 5Ma. Unlike previous models, the model makes use of statistical characteristics of the present day geomagnetic field. The spatial power spectrum of the non-dipole field is consistent with a white source near the core-mantle boundary with Gaussian distribution. After a suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a single giant Gaussian process; this is the model of the non-dipole field. The model can be combined with an arbitrary statistical description of the dipole and probability density functions and cumulative distribution functions can be computed for declination and inclination that would be observed at any site on Earth's surface. Global paleomagnetic data spanning the past 5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to be consistent with the available data. An advantage of specifying the model in terms of the spherical harmonic coefficients is that it is a complete statistical description of the geomagnetic field, enabling us to test specific properties for a general description. Both intensity and directional data distributions may be tested to see if they satisfy the expected model distributions.

  7. Statistics of the geomagnetic secular variation for the past 5Ma

    NASA Technical Reports Server (NTRS)

    Constable, C. G.; Parker, R. L.

    1986-01-01

    A new statistical model is proposed for the geomagnetic secular variation over the past 5Ma. Unlike previous models, the model makes use of statistical characteristics of the present day geomagnetic field. The spatial power spectrum of the non-dipole field is consistent with a white source near the core-mantle boundary with Gaussian distribution. After a suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a single giant Gaussian process; this is the model of the non-dipole field. The model can be combined with an arbitrary statistical description of the dipole and probability density functions and cumulative distribution functions can be computed for declination and inclination that would be observed at any site on Earth's surface. Global paleomagnetic data spanning the past 5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to be consistent with the available data. An advantage of specifying the model in terms of the spherical harmonic coefficients is that it is a complete statistical description of the geomagnetic field, enabling us to test specific properties for a general description. Both intensity and directional data distributions may be tested to see if they satisfy the expected model distributions.

  8. Response of the Midlatitude F2 Layer to Some Strong Geomagnetic Storms during Solar Minimum as Observed at Four Sites of the Globe

    NASA Astrophysics Data System (ADS)

    Kim, Vitaly P.; Hegai, Valery V.

    2015-12-01

    In this study, we documented the midlatitude F2-layer response to five strong geomagnetic storms with minimum Dst < -150 nT that occurred in solar minimum years using hourly values of the F2-layer critical frequency (foF2) from four ionosondes located in different hemispheres. The results were very limited, but they illustrated some peculiarities in the behavior of the F2-layer storm. During equinox, the characteristic ionospheric disturbance patterns over the Japanese station Wakkanai in the Northern Hemisphere and the Australian station Mundaring in the Southern Hemisphere were consistent with the well-known scenario by Prölss (1993); however, during a December solstice magnetic storm, both stations did not observe any noticeable positive ionospheric disturbances. Over the "near-pole" European ionosonde, clear positive ionospheric storms were not observed during the events, but the "far-from-pole" Southern Hemisphere station Port Stanley showed prominent enhancements in F2-layer peak electron density in all magnetic storms except one. No event produced noticeable nighttime enhancements in foF2 over all four ionosondes.

  9. Storm-time changes of geomagnetic field at MAGSAT altitudes (325-550 Km) and their comparison with changes at ground locations

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Kane, R. P.; Trivedi, N. B.

    1983-01-01

    The values of H, X, Y, Z at MAGSAT altitudes were first expressed as residuals delta H, delta X, delta Y, delta Z after subtracting the model HMD, XMD, YMD, ZMC. The storm-time variations of H showed that delta H (Dusk) was larger (negative) than delta H (Dawn) and occurred earlier, indicating a sort of hysteresis effect. Effects at MAGSAT altitudes were roughly the same (10% accuracy) as at ground, indicating that these effects were mostly of magnetospheric origin. The delta Y component also showed large storm-time changes. The latitudinal distribution of storm-time delta H showed north-south asymmetries varying in nature as the storm progressed. It seems that the central plane of the storm-time magnetospheric ring current undergoes latitudinal meanderings during the course of the storm.

  10. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model

    NASA Astrophysics Data System (ADS)

    Finlay, Christopher C.; Olsen, Nils; Kotsiaros, Stavros; Gillet, Nicolas; Tøffner-Clausen, Lars

    2016-07-01

    We use more than 2 years of magnetic data from the Swarm mission, and monthly means from 160 ground observatories as available in March 2016, to update the CHAOS time-dependent geomagnetic field model. The new model, CHAOS-6, provides information on time variations of the core-generated part of the Earth's magnetic field between 1999.0 and 2016.5. We present details of the secular variation (SV) and secular acceleration (SA) from CHAOS-6 at Earth's surface and downward continued to the core surface. At Earth's surface, we find evidence for positive acceleration of the field intensity in 2015 over a broad area around longitude 90°E that is also seen at ground observatories such as Novosibirsk. At the core surface, we are able to map the SV up to at least degree 16. The radial field SA at the core surface in 2015 is found to be largest at low latitudes under the India-South-East Asia region, under the region of northern South America, and at high northern latitudes under Alaska and Siberia. Surprisingly, there is also evidence for significant SA in the central Pacific region, for example near Hawaii where radial field SA is observed on either side of a jerk in 2014. On the other hand, little SV or SA has occurred over the past 17 years in the southern polar region. Inverting for a quasi-geostrophic core flow that accounts for this SV, we obtain a prominent planetary-scale, anti-cyclonic, gyre centred on the Atlantic hemisphere. We also find oscillations of non-axisymmetric, azimuthal, jets at low latitudes, for example close to 40°W, that may be responsible for localized SA oscillations. In addition to scalar data from Ørsted, CHAMP, SAC-C and Swarm, and vector data from Ørsted, CHAMP and Swarm, CHAOS-6 benefits from the inclusion of along-track differences of scalar and vector field data from both CHAMP and the three Swarm satellites, as well as east-west differences between the lower pair of Swarm satellites, Alpha and Charlie. Moreover, ground observatory SV

  11. A Statistical Model of the Fluctuations in the Geomagnetic Field from Paleosecular Variation to Reversal

    PubMed

    Camps; Prevot

    1996-08-01

    The statistical characteristics of the local magnetic field of Earth during paleosecular variation, excursions, and reversals are described on the basis of a database that gathers the cleaned mean direction and average remanent intensity of 2741 lava flows that have erupted over the last 20 million years. A model consisting of a normally distributed axial dipole component plus an independent isotropic set of vectors with a Maxwellian distribution that simulates secular variation fits the range of geomagnetic fluctuations, in terms of both direction and intensity. This result suggests that the magnitude of secular variation vectors is independent of the magnitude of Earth's axial dipole moment and that the amplitude of secular variation is unchanged during reversals. PMID:8670413

  12. Full Vector Geomagnetic Field Variation during the Holocene registered by Hawaiian Lava Flow

    NASA Astrophysics Data System (ADS)

    Herrero-Bervera, E.; Tema, E.

    2015-12-01

    Hawaii is an ideal place to study the secular variation (SV) of the Earth's magnetic field in central Pacific region, thanks to its long and continuous volcanic activity. We present here a compilation of well-dated palaeomagnetic data from Hawaiian lava flows that allow a complete description of the full geomagnetic field vector (declination, inclination and intensity) in this area. All available radiocarbon ages have been uniformly calibrated using the IntCal13 calibration curve and the most probable radiocarbon ages have been used for further considerations. A total of 323 directional and 98 intensity data have been collected for the last 10 000 years, most of them coming from the Big Island (data from lava cores have not been included). The data cover almost continuously the last 5 millennia while data from older periods are still scarce. The directional data are well consistent with each other while the intensity data are less abundant and show a higher dispersion. For the last 5000 years, where the majority of the data are concentrated, continuous secular variation curves for both direction and intensity have been calculated using the moving window technique with windows of 200 years shifted by 100 years. The obtained curves clearly show some characteristic features of the geomagnetic field variation in the central Pacific. Low inclination values are well documented around 500 AD, 1000 BC and 2500 BC while high inclinations are observed around 3000 BC and 1500 AD. Declination shows an eastward trend from 1000 AD to the present while a declination low is registered around 500 BC. The intensity curve is highly influenced by the important dispersion of the reference data points. The obtained curves have been compared with the predictions of the CALS10k.1b and pfm9k.1a global geomagnetic field models. Such comparison shows a good general agreement even though the models show much smoother variations mainly regarding intensity. Nevertheless, both the Hawaiian SV

  13. Geomagnetic Secular Variation in Texas over the Last 17,000 Years: High-Intensity Geomagnetic Field 'Spike' Observed at ca. 3000 cal BP

    NASA Astrophysics Data System (ADS)

    Bourne, M. D.; Feinberg, J. M.; Waters, M. R.; Stafford, T. W., Jr.; Forman, S. L.; Lundelius, E. L.

    2015-12-01

    By observing the fluctuations in direction and intensity of the Earth's magnetic field through time, we increase our understanding of the fluid motions in the Earth's outer core that sustain the geomagnetic field, the geodynamo. Recent archaeomagnetic studies in the Near East have proposed extremely rapid increases - 'spikes' - in geomagnetic field intensity ca. 3000 years ago that have proved problematic for our current understanding of core-flow. However, until now, these geomagnetic spikes had not been observed outside of the Near East, where they have been found in metallurgical slag and mud brick walls. We present a new fully-oriented, geomagnetic secular variation and relative palaeointensity (RPI) record for the last 17,000 years from Hall's Cave, Texas. Sediment washed into the cave has formed a continuous stratigraphic sequence that is at least 3.5 m thick. Within the stable, cool climate of the cave, pedogenic and bioturbation processes are almost non-existent, thereby limiting post-depositional physical and geochemical alteration of the magnetic record. The sub-aerial and subterranean setting of the sedimentary sequence in Hall's Cave enabled us to collect oriented palaeomagnetic cubes from an excavated section through the sequence. The palaeomagnetic samples yielded high-quality vectors. An age model for the sequence, determined using 57 AMS 14C-dates on individual bones from microvertebrate, was combined with the palaeomagnetic data to construct a secular variation record. The record is in broad agreement with predictions by Holocene field models for the site's location. However, at ca. 3000 years ago, the RPI data indicate an almost four-fold increase in geomagnetic field intensity lasting several hundred years and contemporaneous with the more short-lived, decadal-scale spikes reported from the Near East. Evidence for this extreme intensity event outside of the Near East has major implications for our current understanding of core-dynamics.

  14. On the geomagnetic and ionospheric responses of an intense storm associated with weak IMF Bz and high solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Chukwuma, Victor

    A study of the geomagnetic storm of July 13-14, 1982 and its ionospheric storm is presented using the low-latitude magnetic index, Dst and is interpreted using solar wind interplanetary data: proton number density, solar wind flow speed, interplanetary magnetic field southward component Bz, and solar wind dynamic pressure. The F2 region structure response to the geomagnetic storm was studied using foF2 data obtained during the storm from a network of ionosonde stations located in Wakkanai, Akita, Kokubunji, Okinawa and Manila, Slough, Kiev, Sofia, Rome, Dakar and Ouagadougou, Boulder, Point Arguello and Ottawa.. Our results appear to show simultaneous abrupt depletion of foF2 that occurred at all latitudes in both the East Asian and African/European longitudinal zone during the period: 18:00-19:00 UT on July 13 and is as result of an abrupt increase in the dynamic pressure between 16:00 and 17:00 UT. The dynamic pressure increased from 3.21 nPa to 28.07 nPa within an hour. The aforementioned abrupt depletion of foF2 simultaneously resulted in intense negative storm with peak depletion of foF2 at 19:00 at all the stations in the East Asian longitudinal zone. In the African/European longitudinal zone, this simultaneous abrupt depletion of foF2 resulted in intense negative storm that occurred simultaneously at the low latitude stations with peak depletion at 20:00 UT on July 13, while the resulting negative storm at the mid latitude stations recorded peak depletion of foF2 simultaneously at 2:00 UT on July 14. The present results indicate that most of the stations in the three longitudinal zones showed some level of simultaneity in the depletion of foF2 between 18:00 UT on July 13 and 2:00 UT on July 14. The depletion of foF2 during the main phase of the storm was especially strongly dependent on the solar wind dynamic pressure.

  15. Dipolarization in the inner magnetosphere during a geomagnetic storm on 7 October 2015

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Erickson, P. J.; Foster, J. C.; Torbert, R. B.; Argall, M. R.; Anderson, B. J.; Blake, J. B.; Cohen, I. J.; Ergun, R. E.; Farrugia, C. J.; Khotyaintsev, Yu. V.; Korth, H.; Lindqvist, P.-A.; Magnes, W.; Marklund, G. T.; Mauk, B. H.; Paulson, K. W.; Russell, C. T.; Strangeway, R. J.; Turner, D. L.

    2016-09-01

    A dipolarization event was observed by the Magnetospheric Multiscale (MMS) spacecraft at L = 3.8 and 19.8 magnetic local time starting at ˜23:42:36 UT on 7 October 2015. The magnetic and electric fields showed initially coherent variations between the spacecraft. The sunward convection turned tailward after the dipolarization. The observation is interpreted in terms of the pressure balance or the momentum equation. This was followed by a region traversed where the fields were irregular. The scale length was of the order of the ion gyroradius, suggesting the kinetic nature of the fluctuations. Combination of the multi-instrument, multispacecraft data reveals a more detailed picture of the dipolarization event in the inner magnetosphere. Conjunction ionosphere-plasmasphere observations from DMSP, two-dimensional GPS total electron content, the Millstone Hill midlatitude incoherent scatter radar, and AMPERE measurements imply that MMS observations are located on the poleward edge of the ionospheric trough where Region 2 field-aligned currents flow.

  16. Do Geomagnetic Variations Affect the Foliar Spiral Direction of Coconut Palms?

    NASA Astrophysics Data System (ADS)

    Minorsky, P. V.; Bronstein, N. B.

    2005-12-01

    In coconut palms, leaves are attached to the stem in either an ascending clockwise (left-handed or L) or counter-clockwise (right-handed or R) spiral (1). Foliar spiral direction (FSD) is a classic case of morphological antisymmetry, in which dextral and sinistral forms are not inherited and are equally common within a species (2). FSD would seem a simple stochastic process unworthy of further study if not for the observation, based on data collected from 71,640 coconut palms in 42 locations around the world, that the FSD of coconut palms varies with latitude: R-trees predominate in the N Hemisphere and L-trees predominate in the S Hemisphere (3). Hemispheric asymmetries in FSD are significantly better correlated with magnetic latitude than with geographic or geomagnetic latitude, suggesting that latitudinal asymmetries in FSD might be associated with the temporally varying component of Earth's magnetic field (4). Here, we present two new lines of evidence that geomagnetic variations may underlie asymmetries in palm FSD. First, we show that asymmetries occur in the FSD of palm populations on opposite sides of islands, and second, that asymmetries in FSD vary with the 11-year solar cycle. The prediction that asymmetries in coconut palm FSD should exist on opposite sides of islands arises from the fact that because seawater is more electrically conductive than land, induced earth currents divide and stream past an island more strongly in one particular direction. The "geomagnetic island effect" is characterized by a complete reversal of the vertical Z component of short-period geomagnetic field anomalies at observation points on opposite sides of islands (5). To examine whether FSD varied around the circumferences of islands, we collected data on 6 islands (Puerto Rico, n = 4311; Antigua, n = 2038; Hawaii, n = 3552; Maui, n = 2175; Tahiti, n = 1582; Moorea, n = 2116). For each population, the degree of asymmetry was determined by calculating an "asymmetry quotient

  17. On the latitude dependence of drift velocity of the geomagnetic main field and its secular variation

    NASA Astrophysics Data System (ADS)

    Yukutake, Takesi; Shimizu, Hisayoshi

    2016-08-01

    There is an apparent difference in the westward drift between the geomagnetic main field and its time derivative, secular variation. The drift velocity of the main field is about 0.2°/year, definitely lower than that of the secular variation, 0.3°/year. The drift velocity of the main field appears to change with latitude, being low at high latitudes and higher at low latitudes, whereas the velocity of the secular variation is nearly constant irrespective of latitude. This paper examines what causes this difference by adopting the drifting and standing field model that assumes the geomagnetic field consists of the field steadily drifting westwards and the field remaining at nearly the same location. In this study, we confirm that the existence of the non-drifting standing field significantly affects the estimate of the drift velocity of the total field (i.e., the main field), and makes it slower than that of the secular variation. The drifting field is intense in low latitudes with its maximum at the equator, while the standing field dominates in higher latitudes. As a consequence, reduction of the apparent drifting velocity of the total field by the standing field is conspicuous in higher latitudes and less so in low latitudes. This creates the observed latitudinal structure of the drift velocity of the main field. On the other hand, the drift velocity of the secular variation is less affected by existence of the standing field, and mostly reflects the velocity of the drifting field that is almost constant with latitude. The velocity of the secular variation thus becomes almost uniform independent of latitude. The observed difference between the main field and the secular variation is naturally derived from the drifting and standing field model. This implies that physical mechanisms to generate the drifting and standing fields can be considered independently.

  18. Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y.; Maute, A.

    2016-09-01

    A record of the geomagnetic field on the ground sometimes shows smooth daily variations on the order of a few tens of nano teslas. These daily variations, commonly known as Sq, are caused by electric currents of several μA/m2 flowing on the sunlit side of the E-region ionosphere at about 90-150 km heights. We review advances in our understanding of the geomagnetic daily variation and its source ionospheric currents during the past 75 years. Observations and existing theories are first outlined as background knowledge for the non-specialist. Data analysis methods, such as spherical harmonic analysis, are then described in detail. Various aspects of the geomagnetic daily variation are discussed and interpreted using these results. Finally, remaining issues are highlighted to provide possible directions for future work.

  19. New Insights on Long Term Geomagnetic Moment Variation from Cosmogenic Nuclide and Paleointensity Signatures along Ocean Sediment Cores.

    NASA Astrophysics Data System (ADS)

    Thouveny, N.; Bourles, D. L.; Valet, J. P.; Bassinot, F. C.; Ménabréaz, L.; Simon, Q.; Demory, F.; Valery, G.; Vidal, L.; Beaufort, L.; de Garidel-Thoron, T.

    2015-12-01

    Some numerical and experimental simulations suggest that precession might supply enough power to influence planetary dynamos. The demonstration of a causal relationship between the Earth's orbital motion and variations of the geomagnetic field intensity, would open interesting perspective for modelling the past and future geomagnetic field behaviour and its eventual relationships to past and future orbitally constrained, climatic changes. Although pristine geomagnetic signals can be extracted by filtering and stacking multiple normalized intensity records, the reconstruction of high resolution geomagnetic field variations still raises questions. Namely, significant variance at orbital frequencies in relative paleointensity (RPI) records are generally considered as clues of residual contamination by paleoclimatically induced variations of magnetic carriers size ranges or mineralogy. Such questions can be adressed using other indicators of the geomagnetic dipole moment variation, such as the cosmogenic production modulated by the magnetospheric shielding. During the MAGORB project (ANR-09-BLAN-053-001) cosmogenic nuclide geochemistry, d18O, and paleomagnetic records were constructed along thick clayey-carbonate sequences deposited in the equatorial pacific and indian oceans over the last million of years. Authigenic 10Be/9Be ratio and RPI variations generally exhibit similar ranges of oscillations. However significant offsets appear between some RPI lows and their corresponding 10Be/9Be peaks, suggesting delayed lock-in of the remanent magnetization. After transfer on time scales the new geomagnetic moment series can be compared with the PISO-1500 and SINT-2000 stacks, and with the 10Be ice core record of EPICA Dome C. These new authigenic 10Be/9Be ratio records provide new opportunities to: 1) assess the validity of high resolution RPI records, 2) evaluate address the question of the presence of orbital periods in the paleo-field geomagnetic spectrum, and 3) to

  20. Solar and Interplanetary Sources of Major Geomagnetic Storms (Dst less than or equal to -100 nT) During 1996 - 2005

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Richardson, I.; Webb, D. F.; Gopalswamy, N.; Huttunen, E.; Kasper, J.; Nitta, N.; Poomvises, W.; Thompson, B. J.; Wu, C.-C.; Yashiro, S.; Zhukov, A.

    2007-01-01

    We present the results of an investigation of the sequence of events from the Sun to the Earth that ultimately led to the 88 major geomagnetic storms (defined by minimum Dst less than or equal to -100 nT) that occurred during 1996 - 2005. The results are achieved through cooperative efforts that originated at the Living with a Star (LWS) Coordinated Data- Analysis Workshop (CDAW) held at George Mason University in March 2005. Based on careful examination of the complete array of solar and in-situ solar wind observations, we have identified and characterized, for each major geomagnetic storm, the overall solar-interplanetary (solar-IP) source type, the time, velocity and angular width of the source coronal mass ejection (CME), the type and heliographic location of the solar source region, the structure of the transient solar wind flow with the storm-driving component specified, the arrival time of shock/disturbance, and the start and ending times of the corresponding IP CME (ICME). The storm-driving component, which possesses a prolonged and enhanced southward magnetic field (B(sub s)) may be an ICME, the sheath of shocked plasma (SH) upstream of an ICME, a corotating interaction region (CIR), or a combination of these structures. We classify the Solar-IP sources into three broad types: (1) S-type, in which the storm is associated with a single ICME and a single CME at the Sun; (2) M-type, in which the storm is associated with a complex solar wind flow produced by multiple interacting ICMEs arising from multiple halo CMEs launched from the Sun in a short period; (3) C-type, in which the storm is associated with a CIR formed at the leading edge of a high speed stream originating from a solar coronal hole (CH). For the 88 major storms, the S-type, M-type and C-type events number 53 (60%): 24 (27%) and 11 (13%), respectively. For the 85 events for which the surface source regions could be investigated, 54 (63%) of the storms originated in solar active regions, 10 (12

  1. Variation of surface electric field during geomagnetic disturbed period at Maitri, Antarctica

    NASA Astrophysics Data System (ADS)

    Victor, N. Jeni; Panneerselvam, C.; Anil Kumar, C. P.

    2015-12-01

    The paper discusses on the variations of the atmospheric vertical electric field measured at sub-auroral station Maitri (70∘75'S, 11∘75'E), and polar station Vostok (78.5∘S, 107∘E) during the geomagnetic disturbances on 25-26 January 2006. Diurnal variation of surface electric field measured at Maitri shows a similar variation with worldwide thunderstorm activity, whereas the departure of the field is observed during disturbed periods. This part of the field corresponds to the magnetospheric/ionospheric (an additional generator in the polar regions) voltage generators. Solar wind parameters and planetary indices represent the temporal variation of the disturbances, and digital fluxgate magnetometer variation continuously monitored to trace the auroral movement at Maitri. We have observed that the electrojet movement leaves its signature on vertical and horizontal components of the DFM in addition; the study infers the position of auroral current wedge with respect to Maitri. To exhibit the auroral oval, OVATION model is obtained with the aid of DMSP satellite and UV measurements. It is noted that the Maitri is almost within the auroral oval during the periods of disturbances. To examine the simultaneous changes in the vertical electric field associated with this magnetic disturbance, the dawn-dusk potential is studied for every UT hours; the potential was obtained from Weimer model and SuperDARN radar. The comparison reveals the plausible situation for the superposition of dawn-dusk potential on surface electric field over Maitri. This observation also shows that the superposition may not be consistent with the phase of the electrojet. Comparison of surface electric field at Maitri and Vostok shows that the parallel variation exhibits with each other, but during the period of geomagnetic disturbances, the influence is not much discerned at Vostok.

  2. Westward electric field penetration to the dayside equatorial ionosphere during the main phase of the geomagnetic storm on 22 July 2009

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Pant, Tarun Kumar; Jose, Lijo; Ravindran, Sudha

    2011-03-01

    The moderate geomagnetic storm (minimum SYM-H = -89 nT) that occurred during the period from 21 to 25 July 2009 is anomalous because the storm main phase developed during northward interplanetary magnetic field (IMF). A reduction (for ˜4 h) in the daytime E region westward drift (eastward electric field) over the magnetic equatorial location of Trivandrum (8.5°N, 77°E; dip latitude ˜0.5°N) in India is observed during the storm main phase. This reduction in the drift is also indicated by the disappearance of the equatorial sporadic E region (Esq) echoes on the ionograms. It is suggested that an additional westward prompt penetration electric field characterized by the northward IMF Bz is superposed on the ionosphere during the storm main phase which contributed to the observed reduction in the drift. These are the first observations which indicate the effects of the dusk-to-dawn penetration electric fields on the east-west drifts during northward IMF.

  3. Dependence of the high-latitude plasma irregularities on the auroral activity indices: a case study of 17 March 2015 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    2015-09-01

    The magnetosphere substorm plays a crucial role in the solar wind energy dissipation into the ionosphere. We report on the intensity of the high-latitude ionospheric irregularities during one of the largest storms of the current solar cycle—the St. Patrick's Day storm of 17 March 2015. The database of more than 2500 ground-based Global Positioning System (GPS) receivers was used to estimate the irregularities occurrence and dynamics over the auroral region of the Northern Hemisphere. We analyze the dependence of the GPS-detected ionospheric irregularities on the auroral activity. The development and intensity of the high-latitude irregularities during this geomagnetic storm reveal a high correlation with the auroral hemispheric power and auroral electrojet indices (0.84 and 0.79, respectively). Besides the ionospheric irregularities caused by particle precipitation inside the polar cap region, evidences of other irregularities related to the storm enhanced density (SED), formed at mid-latitudes and its further transportation in the form of tongue of ionization (TOI) towards and across the polar cap, are presented. We highlight the importance accounting contribution of ionospheric irregularities not directly related with particle precipitation in overall irregularities distribution and intensity.

  4. Impacts of CME-induced geomagnetic storms on the midlatitude mesosphere and lower thermosphere observed by a sodium lidar and TIMED/GUVI

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Zhang, Y.; Cai, X.; She, C.-Y.; Paxton, L. J.

    2015-09-01

    In this paper, we report our findings on the correlation between the neutral temperature (around the mesopause) and thermospheric column density O/N2 ratio, along with their response to geomagnetic storms above midlatitude of North America. A temperature/wind Doppler Na lidar, operating at Fort Collins, CO (41°N, 105°W), and later at Logan, UT (42°N and 112°W), observed significant temperature increases (temperature anomaly) above 95 km (as much as 55 K at 105 km altitude) during four coronal mass ejection-induced geomagnetic storms (April 2002, November 2004, May 2005, and October 2012). Coincident Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Global Ultraviolet Spectrographic Imager observations indicate significant depletion in the thermospheric O/N2 ratio at the lidar locations. These observations suggest that the local mesopause warming seen by the lidar is due to transport of the high-latitude joule and particle heated neutrals at the E and F layers to the midlatitude region.

  5. SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM

    SciTech Connect

    Liu, Ying D.; Yang, Zhongwei; Wang, Rui; Luhmann, Janet G.; Richardson, John D.; Lugaz, Noé

    2014-10-01

    On 2012 September 30-October 1 the Earth underwent a two-step geomagnetic storm. We examine the Sun-to-Earth characteristics of the coronal mass ejections (CMEs) responsible for the geomagnetic storm with combined heliospheric imaging and in situ observations. The first CME, which occurred on 2012 September 25, is a slow event and shows an acceleration followed by a nearly invariant speed in the whole Sun-Earth space. The second event, launched from the Sun on 2012 September 27, exhibits a quick acceleration, then a rapid deceleration, and finally a nearly constant speed, a typical Sun-to-Earth propagation profile for fast CMEs. These two CMEs interacted near 1 AU as predicted by the heliospheric imaging observations and formed a complex ejecta observed at Wind, with a shock inside that enhanced the pre-existing southward magnetic field. Reconstruction of the complex ejecta with the in situ data indicates an overall left-handed flux-rope-like configuration with an embedded concave-outward shock front, a maximum magnetic field strength deviating from the flux rope axis, and convex-outward field lines ahead of the shock. While the reconstruction results are consistent with the picture of CME-CME interactions, a magnetic cloud-like structure without clear signs of CME interactions is anticipated when the merging process is finished.

  6. Marine sediments and Beryllium-10 record of the geomagnetic moment variations during the Brunhes period.

    NASA Astrophysics Data System (ADS)

    Ménabréaz, Lucie; Thouveny, Nicolas; Bourlès, Didier; Demory, François

    2010-05-01

    Over millennial time scales, the atmospheric production of the cosmonuclid 10Be (half-life 1.387 ± 0.012 Ma [Shmeleff et al., 2009; Korschinek et al., 2009]) is modulated by the geomagnetic field strength, following a negative power law (e.g. Lal, 1988; Masarik and Beer, 2009). With respect to paleomagnetic reconstructions, 10Be-derived paleointensity records can therefore constitute an alternative, global and independent reading of the dipole moment variations. During the last years, efforts have been made to extract a geomagnetic signal from single and stacked 10Be records in natural archives such as ice and marine sediments (e.g. Carcaillet et al., 2004; Christl et al., 2007; Muscheler et al., 2005). In marine sediments, the 10Be concentration results from complex interplay of several processes: cosmogenic production, adsorption on sediment particles, redistribution by fluviatile and oceanic transport, and deposition. Therefore, a correction procedure is required to consider both sediment redistribution and enhanced scavenging, which can alter the primary signatures. To reconstruct the succession of field intensity lows accompanying excursions during the Brunhes chron, we investigated authigenic 10Be/9Be record of marine sequences also studied for paleomagnetism and oxygen isotopes. Mid and low latitude sites were preferred in order to benefit from the most efficient modulation by the magnetospheric shielding. We present a high resolution authigenic 10Be/9Be record of the last 50 ka recovered from the Portuguese Margin, that deciphers the cosmonuclide 10Be overproduction created by the geomagnetic dipole low associated with the Laschamp excursion. This record is compared to other proxy records of the geomagnetic field variations for the same time interval: (1) the relative paleointensity (RPI) reconstructed from the same sediments and the GLOPIS-75 record (Laj et al., 2004), (2) the absolute VDM record based on absolute paleointensities measured on lava flows

  7. Time-varying geomagnetic field models: tools for studying millennial to million year secular variation

    NASA Astrophysics Data System (ADS)

    Constable, Catherine

    2010-05-01

    Global reconstructions of past geomagnetic field behavior draw on community efforts to gather reliable, well-dated paleomagnetic records. The number and spatial distribution of such records is continually improving and a range of model reconstructions have been used to assess temporal variations in geomagnetic dipole moment. On millennial time scales increasingly detailed images of the field are recovered which hint at the recurrence of prominent features like those mapped in the historical field (e.g., high latitude flux lobes and the South Atlantic Magnetic Anomaly). From lower resolution million-year models it is possible to infer the presence, if not the details, of changing non axial-dipole field structures, and to analyze the nature of temporal variations in the axial dipole moment. Such views are inevitably fuzzy representations of the real field, limited in both temporal and spatial resolution. Sharpening the image is desirable, but ongoing efforts to do so will ultimately remain restricted by data distribution, uncertainties, and finite age control. Progress in understanding long term geomagnetic secular variation requires an acute awareness of both limitations and value of such models and an ability to test specific hypotheses rather than relying on the accuracy of the resulting maps. One approach is to analyze a time varying model of a specific paleofield attribute. PADM2M is a recent reconstruction of paleomagnetic axial dipole moment variations for the past 2 million years which shows a persistent asymmetry in the growth and decay of the axial dipole moment on time scales longer than 10 kyr; overall the growth rate for the axial dipole is significantly larger than the decay rate. This feature is not limited to times when the field is reversing, suggesting that the asymmetry may reflect fundamental physical processes underlying the paleosecular variation. The longer decay cycle may suggest periods with a major contribution from diffusive processes

  8. Development of models for maximum and time variation of storm surges at the Tanshui estuary

    NASA Astrophysics Data System (ADS)

    Tsai, C.-P.; You, C.-Y.

    2014-09-01

    In this study, artificial neural networks, including both multilayer perception and the radial basis function neural networks, are applied for modeling and forecasting the maximum and time variation of storm surges at the Tanshui estuary in Taiwan. The physical parameters, including both the local atmospheric pressure and the wind field factors, for finding the maximum storm surges, are first investigated based on the training of neural networks. Then neural network models for forecasting the time series of storm surges are accordingly developed using the major meteorological parameters with time variations. The time series of storm surges for six typhoons were used for training and testing the models, and data for three typhoons were used for model forecasting. The results show that both neural network models perform very well for the forecasting of the time variation of storm surges.

  9. The cosmic ray differential diurnal variation dependences on the zenith angle and the geomagnetic disturbance

    NASA Technical Reports Server (NTRS)

    Kavlakov, S.; Georgiev, L.

    1985-01-01

    Simultaneous and continuous muon measurements in two opposite azimuthal directions under equal zenith angles demonstrated the importance of this method for cosmic ray diurnal variation investigations. Lately these measurements were extended by means of improved telescopes. The obtained cosmic ray diurnal variations were presented as intensity differential curves. Theoretical investigations connected the properties of these curves with some interplanetary spece parameters. The harmonics of these curves were interpreted physically. Some order difference curves were introduced. In earlier works some dependences between the parameters characterizing the first and the second harmonics of the differential intensity curves and the geomagnetic activity were found. Then all measurements were carried out under only one zenith angle. The results of investigations of similar dependences using data of simultaneous measurements under three different zenith angles are presented.

  10. Long periods (1 -10 mHz) geomagnetic pulsations variation with solar cycle in South Atlantic Magnetic Anomaly

    NASA Astrophysics Data System (ADS)

    Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio

    The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.

  11. Palaeomagnetism of the Upper Miocene- Lower Pliocene lavas from the East Carpathians: contribution to the paleosecular variation of geomagnetic field

    NASA Astrophysics Data System (ADS)

    Vişan, Mădălina; Panaiotu, Cristian G.; Necula, Cristian; Dumitru, Anca

    2016-03-01

    Investigations of the paleosecular variation of the geomagnetic field on geological timescales depend on globally distributed data sets from lava flows. We report new paleomagnetic results from lava flows of the East Carpathian Mountains (23.6°E, 46.4°N) erupted between 4 and 6 Ma. The average virtual geomagnetic pole position (76 sites) includes the North Geographic Pole and the dispersion of virtual geomagnetic poles is in general agreement with the data of the Time Averaged geomagnetic Field Initiative. Based on this study and previous results from the East Carpathians obtained from 0.04–4 Ma old lava flows, we show that high value of dispersion are characteristic only for 1.5–2.8 Ma old lava flows. High values of dispersion during the Matuyama chron are also reported around 50°N, in the global paleosecular variation data set. More data are needed at a global level to determine if these high dispersions reflect the behaviour of the geomagnetic field or an artefact of inadequate number of sites. This study of the East Carpathians volcanic rocks brings new data from southeastern Europe and which can contribute to the databases for time averaged field and paleosecular variation from lavas in the last 6 Ma.

  12. Palaeomagnetism of the Upper Miocene- Lower Pliocene lavas from the East Carpathians: contribution to the paleosecular variation of geomagnetic field

    PubMed Central

    Vişan, Mădălina; Panaiotu, Cristian G.; Necula, Cristian; Dumitru, Anca

    2016-01-01

    Investigations of the paleosecular variation of the geomagnetic field on geological timescales depend on globally distributed data sets from lava flows. We report new paleomagnetic results from lava flows of the East Carpathian Mountains (23.6°E, 46.4°N) erupted between 4 and 6 Ma. The average virtual geomagnetic pole position (76 sites) includes the North Geographic Pole and the dispersion of virtual geomagnetic poles is in general agreement with the data of the Time Averaged geomagnetic Field Initiative. Based on this study and previous results from the East Carpathians obtained from 0.04–4 Ma old lava flows, we show that high value of dispersion are characteristic only for 1.5–2.8 Ma old lava flows. High values of dispersion during the Matuyama chron are also reported around 50°N, in the global paleosecular variation data set. More data are needed at a global level to determine if these high dispersions reflect the behaviour of the geomagnetic field or an artefact of inadequate number of sites. This study of the East Carpathians volcanic rocks brings new data from southeastern Europe and which can contribute to the databases for time averaged field and paleosecular variation from lavas in the last 6 Ma. PMID:26997549

  13. Palaeomagnetism of the Upper Miocene- Lower Pliocene lavas from the East Carpathians: contribution to the paleosecular variation of geomagnetic field.

    PubMed

    Vişan, Mădălina; Panaiotu, Cristian G; Necula, Cristian; Dumitru, Anca

    2016-01-01

    Investigations of the paleosecular variation of the geomagnetic field on geological timescales depend on globally distributed data sets from lava flows. We report new paleomagnetic results from lava flows of the East Carpathian Mountains (23.6°E, 46.4°N) erupted between 4 and 6 Ma. The average virtual geomagnetic pole position (76 sites) includes the North Geographic Pole and the dispersion of virtual geomagnetic poles is in general agreement with the data of the Time Averaged geomagnetic Field Initiative. Based on this study and previous results from the East Carpathians obtained from 0.04-4 Ma old lava flows, we show that high value of dispersion are characteristic only for 1.5-2.8 Ma old lava flows. High values of dispersion during the Matuyama chron are also reported around 50°N, in the global paleosecular variation data set. More data are needed at a global level to determine if these high dispersions reflect the behaviour of the geomagnetic field or an artefact of inadequate number of sites. This study of the East Carpathians volcanic rocks brings new data from southeastern Europe and which can contribute to the databases for time averaged field and paleosecular variation from lavas in the last 6 Ma. PMID:26997549

  14. A new high-resolution record of Holocene geomagnetic secular variation from New Zealand

    NASA Astrophysics Data System (ADS)

    Turner, G. M.; Howarth, J. D.; de Gelder, G. I. N. O.; Fitzsimons, S. J.

    2015-11-01

    We present the first full Holocene palaeomagnetic secular variation record from New Zealand. The 11 500 year-long record, from the sediments of Mavora Lakes, comprises composite declination, inclination and relative palaeointensity logs, compiled from two six-metre long cores and the uppermost 1.5 m of another. An age model has been developed from 28 AMS radiocarbon age determinations on fragments of southern beech (Lophozonia menziesii and Fuscospora cliffortioides) leaves. The excellent between-core correlation in all three components of the field results in a high-resolution palaeosecular variation record, with precise and accurate age control. The variations change in character from high amplitude in-phase declination and inclination swings in the earliest part of the record to low amplitude variations in the middle part and declination and inclination swings that are 90° out of phase, leading to broad looping of the vector in the upper part of the record, that is consistent with westward drifting sources in the outer core. The present-day field at the site (Dec = 24.2°E, Inc = - 70.7 °, F = 59 μT) represents a rare steep and easterly extreme direction, but close to average intensity. The palaeointensity is inferred to have varied between about 40 and 90 μT, with variations that, to some extent, mirror variations in the virtual axial geomagnetic dipole moment seen from global data, but also show some notable differences, particularly in the past few thousand years.

  15. Eight thousand years of geomagnetic field intensity variations in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Genevey, AgnèS.; Gallet, Yves; Margueron, Jean-Claude

    2003-05-01

    Twenty new intensity determinations of the ancient geomagnetic field have been obtained from groups of potsherds and brick fragments from Syria. These artifacts, archeologically well dated from ˜6000 B.C. to approximately A.D. 1200, have been analyzed using the [1959] method as modified by [1967]. Intensity values have been corrected for the effects of anisotropy of thermal remanent magnetization and cooling rate. Our results indicate that field intensities were moderate in Syria from ˜6000 B.C. to ˜3500 B.C., with values of ˜30-40 μT. There was a significant increase in intensity by a factor of 2 from ˜3500 B.C. to ˜700 B.C., which was interrupted by a moderate decrease between ˜2550 B.C. and ˜1750 B.C. During more recent periods, our results show an intensity minimum approximately A.D. 200 and a maximum around the tenth century. Comparison with different data sets from the eastern Mediterranean and central Asia shows that geomagnetic field intensity variations were consistent at this large regional scale, at least over the last 5 millennia.

  16. On cosmic rays flux variations in midlatitudes and their relations to geomagnetic and atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Morozova, Anna; Blanco, Juan Jose; Mendes Ribeiro, Paulo Fernando

    The cosmic rays flux is globally modulated by the solar cycle and shows anti-correlation with the sunspot number. Near to the Earth it is modulated by the solar wind and the Earth's magnetic field. The analysis of the secondary cosmic rays produced when they interact in the low stratosphere allows extracting information about solar wind structures surrounding Earth's orbit, the magnetic field of the Earth and the temperature of the stratosphere. Recently, a new cosmic ray detector, the TRAGALDABAS, composed by RPC (Resistive Plate Chamber) planes, has been developed and installed to go deeper into the understanding of the cosmic rays arriving to the Earth surface. An international collaboration has been organized for keeping the detector operative and for analyzing the data. Here we present the analysis of the cosmic rays flux variations measured by two cosmic rays detectors of different types located in Spain (Castilla-La Mancha Neutron Monitor - CaLMa - in Guadalajara and TRAGALDABAS in Santiago de Compostela) and their comparison to changes both in the geomagnetic field components measured by the Coimbra Geomagnetic Observatory (Portugal) and in the atmospheric conditions (tropo- and stratosphere) measured by Spanish and Portuguese meteorological stations. The study is focused on a number of recent cosmic rays events and pays specific attention to the comparison of the CaLMa series and the preliminary TRAGALDABAS data.

  17. On the relation between the electron content of the ionospheric D-region, variations of the riometer absorption, and the H-component of the geomagnetic field

    NASA Technical Reports Server (NTRS)

    Zelenkova, L. V.; Soldatov, V. A.; Arkhipov, J. V.; Laikova, V. F.

    1989-01-01

    The correlation between lower ionosphere disturbances, geomagnetic variations and radiowave absorption is an important geophysical problem. The correlation is investigated between the electron density profile structure and riometer absorption, and between the absorption and the H-component magnetic field, in order to determine the relation between the (e)-profile parameters and the geomagnetic field variations.

  18. Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results

    NASA Astrophysics Data System (ADS)

    Connor, Hyunju Kim; Zesta, Eftyhia; Fedrizzi, Mariangel; Shi, Yong; Raeder, Joachim; Codrescu, Mihail V.; Fuller-Rowell, Tim J.

    2016-06-01

    The magnetosphere is a major source of energy for the Earth's ionosphere and thermosphere (IT) system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere Ionosphere Model (CTIM). OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD) equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe). CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCM-CTIM reproduces localized neutral density peaks at ~ 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset, which in turn

  19. Constraints on geomagnetic secular variation modeling from electromagnetism and fluid dynamics of the Earth's core

    NASA Technical Reports Server (NTRS)

    Benton, E. R.

    1986-01-01

    A spherical harmonic representation of the geomagnetic field and its secular variation for epoch 1980, designated GSFC(9/84), is derived and evaluated. At three epochs (1977.5, 1980.0, 1982.5) this model incorporates conservation of magnetic flux through five selected patches of area on the core/mantle boundary bounded by the zero contours of vertical magnetic field. These fifteen nonlinear constraints are included like data in an iterative least squares parameter estimation procedure that starts with the recently derived unconstrained field model GSFC (12/83). Convergence is approached within three iterations. The constrained model is evaluated by comparing its predictive capability outside the time span of its data, in terms of residuals at magnetic observatories, with that for the unconstrained model.

  20. Dispersion of the Geomagnetic Field Caused by Secular Variation: Constraints From Sediment Cores From Around Antarctica

    NASA Astrophysics Data System (ADS)

    Acton, G.; Jovane, L.; Verosub, K. L.; Sagnotti, L.; Ohneiser, C.; Strada, E.; Florindo, F.; Wilson, G. S.

    2010-12-01

    The angular dispersion of the virtual geomagnetic pole (VGP) measured over time and at many sites around the globe provides a measure of spatial variability in geodynamo processes. For example, longitudinal and latitudinal variations in dispersion may imply lateral differences in the boundary conditions at the core-mantle interface. Latitudinal variations in dispersion may also provide constraints on the size of dipole wobble and zonal non-dipole components. Furthermore, changes in dispersion across high latitudes may be indicative of changes in outer core flow regimes across the tangent cylinder. The spatial variation of dispersion, particularly the latitudinal variation, thus has the potential to be a powerful constraint on geodynamo models. Currently, estimates of the latitudinal variation in dispersion are based on volcanic data sets that give ambiguous results, with some studies finding an increase in dispersion with latitude and others finding virtually no change with latitude. The ambiguity arises mainly from the sparseness of data from high latitudes and from the difficulty in dealing with excursional VGPs in volcanic data sets. To improve the dispersion estimates at high latitudes, we use paleomagnetic data obtained from sedimentary ocean drill cores from several sites from around Antarctica, including ODP Leg 178 Sites 1095, 1096, and 1098 cored off the Antarctic Peninsula, and ANDRILL Site AND-2A and Eltanin Core 27-21 from the Ross Sea. Unlike volcanic units, sedimentary sections can provide continuous paleomagnetic records that capture both short and long term geomagnetic field variability. This allows us to examine not only the size of dispersion but changes in dispersion that occur over time. Such records also make it possible to investigate the amount of time it takes to average paleosecular variation and to use that information to estimate the duration of sedimentation at other sites. As with volcanics, a variety of issues, including sedimentation

  1. Paleosecular variation record of geomagnetic full vector during late Miocene, from the Nayarit area, Mexico

    NASA Astrophysics Data System (ADS)

    Goguitchaichvili, Avto; Alva Valdivia, Luis M.; Elguera, Jose Rosas; Fucugauchi, Jaime Urrutia; Cervantes, Miguel Angel; Morales, Juan

    2002-11-01

    We have sampled a sequence of 45 late Miocene consecutive lava flows in the Tepic area (Nayarit State, Mexico). The age of the volcanic units lies between 8 and 9 million years (Ma) according to available radiometric data. All samples were stepwise demagnetized, partly with alternating field (AF), partly thermally with very similar results. Most of the rocks exhibited well-defined one component remanent magnetisation with high unblocking temperatures (mostly above 525 °C) and high median destructive fields (MDF) (40-50 mT). Rock-magnetic experiments combined with microscopy show that, in most cases, the main magnetic mineral is Ti-poor titanomagnetite associated with exsoluted ilmenite. Continuous susceptibility measurements with temperature and hysteresis experiments yield in most cases nearly reversible curves with Curie points close to that of magnetite and pseudo-single-domain characteristics. Characteristic remanent magnetisations (ChRM) isolated after the first steps of demagnetisation are all normal polarity. According to the dispersion of virtual geomagnetic pole (VGP) directions, paleosecular variation was abnormally lower than the one observed in general during Miocene. Considering our paleomagnetic results together with available radiometric data, it seems that the volcanic units have been emplaced during a very short time span of about 0.08 million years. The mean paleomagnetic directions obtained from this study do not differ significantly from that expected for the middle Miocene. Thirty-one samples from eight individual flows yielded acceptable paleointensity estimates. The site mean paleointensities range from 27.8±0.9 to 42.0±7.9 μT. The virtual dipole moments (VDM) range from 5.9 to 9.5×10 22 Am 2. This corresponds to a mean value of 7.6±1.4×10 22 Am 2, which is higher than the average VDM value for late Miocene. Altogether our data suggest the existence of relatively high geomagnetic field strength undergoing low fluctuations. These

  2. Geomagnetic Secular Variation Recorded in Volcanic Rocks: The End of the Geocentric Axial Dipole

    NASA Astrophysics Data System (ADS)

    Champion, D. E.; Turrin, B. D.; Robinson, J. E.

    2015-12-01

    Most paleomagnetic textbooks ascribe secular variation (SV) to the movement and waxing/waning of non-dipole magnetic features in the fluid core, perhaps joined by wobble of a geocentric axial dipole (GAD). The actuality of a GAD is profoundly limited by the existence of the static, solid inner core, and the dynamic nature of the fluid outer core. A study of >560 Brunhes Epoch Virtual Geomagnetic Poles (VGP) suggests that geomagnetic field behavior arises from the waxing/waning of three approximately "stationary" offset dipoles (OD) situated in the middle of the ring of the outer core. These OD have been loosely fixed to preferred longitudes of 40°E, 120°E, and 280°E for at least the past 17Ma. The three offset dipoles in these positions determine transitional and excursional paths, and also normal SV. An extended literature documents these longitude corridors as paths of preferred VGP movement, guided by the polarity inversion of one of the three OD. Analysis of volcanic rock and archeomagnetic SV records shows a three-fold symmetric movement of local magnetic directions, guided by the variation in strength of the three OD. Preliminary data indicates that in the recent past the dominant OD at a given time yields to the next OD in movement toward greater east longitude. The frequency of OD dominance exchange is ~400 years, with return to the original OD in ~1200 years. Archeomagnetic "jerks", not easily explained by a single dominant, inertial GAD, are more easily understood with 3 waxing/waning and exchanging OD. The particular analysis of Hawaiian SV with regard to the three OD suggests that tropical locales, far from the three spin axis-parallel OD, may still record true non-dipole influences.

  3. Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Gonzalez, Walter D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine. A few years later, speculation on a causal relationship between flares and storms arose when Carrington reported that a large magnetic storm followed the great September 1859 solar flare. However, it was not until this century that a well-accepted statistical survey on large solar flares and geomagnetic storms was performed, and a significant correlation between flares and geomagnetic storms was noted. Although the two phenomena, one on the Sun and the other on the Earth, were statistically correlated, the exact physical linkage was still an unknown at this time. Various hypotheses were proposed, but it was not until interplanetary spacecraft measurements were available that a high-speed plasma stream rich in helium was associated with an intense solar flare. The velocity of the solar wind increased just prior to and during the helium passage, identifying the solar ejecta for the first time. Space plasma measurements and Skylab's coronagraph images of coronal mass elections (CMES) from the Sun firmly established the plasma link between the Sun and the Earth. One phenomenon associated with magnetic storms is brilliant "blood" red auroras, as shown.

  4. Geomagnetic secular variation of Bransfield Strait (Western Antarctica) from analysis of marine crossover data

    NASA Astrophysics Data System (ADS)

    Catalán, M.; Agudo, L. M.; Muñoz, Alfonso

    2006-04-01

    Tracking the secular variation of the geomagnetic field in the past is severely limited in some cases by factors relating to the remoteness of the sites. This is maximal in the Antarctic where the remote location and severe climate lead to logistic limitations that make it difficult to keep a continuous record of magnetic field variations. From the magnetic information available from historical marine expeditions, it is possible to infer this time-varying component from the comparison of readings at crossovers. This study focuses on this technique, discusses the impact of the different error sources and proposes a simple mathematical procedure to infer average secular variation rates. The result is validated by comparing it with local data from the Arctowski and Livingston magnetic observatories, sited in the area. Additionally, using a high-quality data set from a local area in the neighbourhood of Deception Island, we have detected a systematic distribution in its secular variation. This dichotomy has been interpreted in terms of a volcano-magnetic signal. This fact and the nature of its principal mechanisms are analysed and discussed.

  5. Temporal Variation of Different Categories Sunspot Groups since 1996: Their Relation with Geomagnetic Ap and Dst Indices

    NASA Astrophysics Data System (ADS)

    Kilcik, Ali; Ozguc, Atila; Rozelot, Jean Pierre; Donmez, Burcin; Yurchyshyn, Vasyl

    2016-07-01

    We studied the temporal variation of the number of sunspot groups and sunspot counts in these groups in four categories as small (A, B), medium (C), large (D, E, F) and final (H modified Zurich classes) since 1996. Then we compared these data sets with geomagnetic Ap and Dst indices. In results of our analysis we found followings: 1) different categories sunspot groups and sunspot counts in these groups behave differently during a solar cycle. ii) Response of geomagnetic indices to these data sets are also different.

  6. Geomagnetic storm effect on the occurrence of ionospheric irregularities over African equatorial sector using GPS-TEC

    NASA Astrophysics Data System (ADS)

    Amaechi, Paul; Oyeyemi, Elijah; Akala, Andrew

    2016-07-01

    Total electron content (TEC) derived from Global Navigation Satellite Systems (GNSS) measurements provided by the International GNSS Service (IGS) network have been used to study the occurrence of large scale ionospheric irregularities over the African equatorial sector. The rate of change of TEC (ROT) as well as its standard deviation over five minutes (ROTI) were used to monitor the level of irregularities over 3 stations distributed across the three longitudinal sectors of Africa (eastern, central and western longitudinal sectors). The storm effect on irregularities occurrence has been studied in conjunction with the disturbance storm time (Dst) and the z component of the Interplanetary magnetic field (IMFBz) indices during four intense storms which were classified according to their season of occurrence during the year 2015. Irregularities were associated with GPS-TEC fluctuations as seen in the increased ROT and ROTI values especially in the post sunset period. Irregularities were inhibited over all the stations during the storm of March plausibly as a result of electric field conditioned by the southward turning of IMFBz during the pre and post midnight periods. The triggering of irregularities over the western and central stations and their inhibition over the eastern station during the storm of June was controlled by the ring current. The storm effect on irregularities was not evident over the western and central stations but inhibition of irregularities was observed over the eastern station during the storm of September.

  7. The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Chu, W.; Qin, G.

    2016-01-01

    Studying the access of the cosmic rays (CRs) into the magnetosphere is important to understand the coupling between the magnetosphere and the solar wind. In this paper we numerically studied CRs' magnetospheric access with vertical geomagnetic cutoff rigidities using the method proposed by Smart and Shea (1999). By the study of CRs' vertical geomagnetic cutoff rigidities at high latitudes we obtain the CRs' window (CRW) whose boundary is determined when the vertical geomagnetic cutoff rigidities drop to a value lower than a threshold value. Furthermore, we studied the area of CRWs and found out they are sensitive to different parameters, such as the z component of interplanetary magnetic field (IMF), the solar wind dynamic pressure, AE index, and Dst index. It was found that both the AE index and Dst index have a strong correlation with the area of CRWs during strong geomagnetic storms. However, during the medium storms, only AE index has a strong correlation with the area of CRWs, while Dst index has a much weaker correlation with the area of CRWs. This result on the CRW can be used for forecasting the variation of the cosmic rays during the geomagnetic storms.

  8. 27-day variation of the GCR intensity based on corrected and uncorrected for geomagnetic disturbances data of neutron monitors

    NASA Astrophysics Data System (ADS)

    Alania, M. V.; Modzelewska, R.; Wawrzynczak, A.; Sdobnov, V. E.; Kravtsova, M. V.

    2015-08-01

    We study 27-day variations of the galactic cosmic ray (GCR) intensity for 2005-2008 period of the solar cycle #23. We use neutron monitors (NMs) data corrected and uncorrected for geomagnetic disturbances. Besides the limited time intervals when the 27-day variations are clearly established, always exist some feeble 27-day variations in the GCR intensity related to the constantly present weak heliolongitudinal asymmetry in the heliosphere. We calculate the amplitudes of the 27-day variation of the GCR intensity based on the NMs data corrected and uncorrected for geomagnetic disturbances. We show that these amplitudes do not differ for NMs with cut-off rigidities smaller than 4-5 GV comparing with NMs of higher cut-off rigidities. Rigidity spectrum of the 27-day variation of the GCR intensity found in the uncorrected data is soft while it is hard in the case of the corrected data. For both cases exists definite tendency of softening the temporal changes of the 27-day variation's rigidity spectrum in period of 2005 to 2008 approaching the minimum of solar activity. We believe that a study of the 27-day variation of the GCR intensity based on the data uncorrected for geomagnetic disturbances should be carried out by NMs with cut-off rigidities smaller than 4-5 GV.

  9. A Climatological Analysis of Geoelectric Field Variations

    NASA Astrophysics Data System (ADS)

    Balch, C. C.; Cilliers, P. J.; Viljanen, A.; Thomson, A. W. P.; Gaunt, T.; Lotz, S.

    2015-12-01

    Geomagnetic variations induce currents that flow along natural and artificial conducting pathways including critical infrastructure such as the electrical power grid. The level of induction is controlled by the geoelectric field at the Earth's surface, which may be calculated by convolving the geomagnetic variations with an earth-conductivity model. We carry out a long-term statistical analysis of calculated geoelectric field variations using about 30 years of geomagnetic observations from selected locations. We find two dominant classes of geoelectric field events: those that are driven by shock arrival at the Earth which produces a sudden impulse or sudden storm commencement, and those that are associated with geomagnetic storm activity. We provide a historical perspective on the distribution of the geoelectric field for these types of events and compare the geoelectric field with other measures of geomagnetic activity. We also demonstrate the sensitivity of these results to different conductivity models and to geomagnetic latitude.

  10. Low-latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: Results from a chain of ground-based observations over Indian sector

    NASA Astrophysics Data System (ADS)

    Ramsingh; Sripathi, S.; Sreekumar, Sreeba; Banola, S.; Emperumal, K.; Tiwari, P.; Kumar, Burudu Suneel

    2015-12-01

    In this paper, we present unique results of equatorial and low-latitude ionosphere response to one of the major geomagnetic storms of the current solar cycle that occurred during 17-18 March 2015, where Dst reached its minimum of -228 nT. Here we utilized data from magnetometers, chain of ionosondes located at Tirunelveli (8.73°N, 77.70°E; geometry: 0.32°N), Hyderabad (17.36°N, 78.47°E; geometry 8.76°N), and Allahabad (25.45°N, 81.85°E; geometry 16.5°N) along with multistation GPS receivers over Indian sector. The observations showed a remarkable increase of h'F to as high as ~560 km over Tirunelveli (magnetic equator) with vertical drift of ~70 m/s at 13:30 UT due to direct penetration of storm time eastward electric fields which exactly coincided with the local time of pre-reversal enhancement (PRE) and caused intense equatorial spread F irregularities in ionosondes and scintillations in GPS receivers at wide latitudes. Plasma irregularities are so intense that their signatures are seen in Allahabad/Lucknow. Storm time thermospheric meridional winds as estimated using two ionosondes suggest the equatorward surge of gravity waves with period of ~2 h. Suppression of anomaly crest on the subsequent day of the storm suggests the complex role of disturbance dynamo electric fields and disturbance wind effects. Our results also show an interesting feature of traveling ionospheric disturbances possibly associated with disturbance meridional wind surge during recovery phase. In addition, noteworthy observations are nighttime westward zonal drifts and PRE-related total electron content enhancements at anomaly crests during main phase and counter electrojet signatures during recovery phase.

  11. Extremely strong geomagnetic storm of September 2-3, 1859, according to the archived data of observations at the Russian network

    NASA Astrophysics Data System (ADS)

    Tyasto, M. I.; Ptitsyna, N. G.; Veselovsky, I. S.; Yakovchouk, O. S.

    2009-04-01

    A retrospective analysis of the Russian magnetic observations of the Carrington event that occurred on September 2-3, 1859, has been performed. The conclusion has been made that this event was caused by the series of three recurrent eruptive solar flares during ˜40 h. The characteristics of the geomagnetic crochet, related to a considerable flux of the ionizing electromagnetic radiation during this flare, have been studied. The value and direction of a magnetic field disturbance, registered during the maximum of the geomagnetic storm of September 2, unambiguously indicate that all Russian stations were in the auroral oval zone, which was strongly expanded southward from its average position. The disturbance dependence on the station longitude—the absence of magnetometer pinning in Nerchinsk—is interpreted as the possible manifestation of a strong asymmetry in the effective contour of the current system, which was connected to the heliosphere and covered the disturbed magnetosphere and ionosphere during the short period that lasted only 1-3 h.

  12. Multifluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms-Initial Results

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J.-C.; Kistler, L. M.

    2009-01-01

    The magnetosphere contains a significant amount of ionospheric O+, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multifluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single-fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multifluid MHD model (with outflow) gives comparable results to the multispecies MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multispecies and multifluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H+ and O+, which is not possible when utilizing the other techniques considered

  13. Multi-Fluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms, Initial Results

    NASA Technical Reports Server (NTRS)

    Gkocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J. C.; Kistler, L. M.

    2010-01-01

    The magnetosphere contains a significant amount of ionospheric O{+}, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the BATS-R-US model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multi-fluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single- fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multi-fluid MHD model (with outflow) gives comparable results to the multi-species MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multi-species and multi-fluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H{+} and O(+}, which is not possible when utilizing the other techniques considered.

  14. Decadal-scale variations in geomagnetic field intensity from ancient Cypriot slag mounds

    NASA Astrophysics Data System (ADS)

    Shaar, Ron; Tauxe, Lisa; Ben-Yosef, Erez; Kassianidou, Vasiliki; Lorentzen, Brita; Feinberg, Joshua M.; Levy, Thomas E.

    2015-01-01

    models based on direct observations since the 1830s show that the averaged relative change in field intensity on Earth's surface over the past 170 years is less than 4.8% per decade. It is unknown if these rates represent the typical behavior of secular variations due to insufficient temporal resolution of archaeomagnetic records from earlier periods. To address this question, we investigate two ancient slag mounds in Cyprus—Skouriotissa Vouppes (SU1, fourth to fifth centuries CE, 21 m in height), and Mitsero Kokkinoyia (MK1, seventh to fifth centuries BCE, 8 m in height). The mounds are multilayered sequences of slag and charcoals that accumulated near ancient copper production sites. We modeled the age-height relation of the mounds using radiocarbon dates, and estimated paleointensities using Thellier-type IZZI experiments with additional anisotropy, cooling rate, and nonlinear TRM assessments. To screen out ambiguous paleointensity interpretations, we applied strict selection criteria at the specimen/sample levels. To ensure objectivity, consistency, and robust error estimation, we employed an automatic interpretation technique and put the data available in the MagIC database. The analyses yielded two independent subcentury-scale paleointensity time series. The MK1 data indicate relatively stable field at the time the mound accumulated. In contrast, the SU1 data demonstrate changes that are comparable in magnitude to the fastest changes inferred from geomagnetic models. We suggest that fast changes observed in the published archaeomagnetic data from the Levant are driven by two longitudinally paired regions, the Middle East and South Africa, that show unusual activity in geomagnetic models.

  15. Overshooting cloud top, variation of tropopause and severe storm formation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1984-01-01

    The development of severe multicell thunderstorms leading to the touchdown of six tornados near Pampa, TX, on May 19-20, 1982, is characterized in detail on the basis of weather maps, rawinsonde data, and radar summaries, and the results are compared with GOES rapid-scan IR images. The multicell storm cloud is shown to have formed beginning at 1945 GMT at the point of highest horizontal moisture convergence and lowest tropopause height and to have penetrated the tropopause at 2130 GMT, reaching a maximum altitude and a cloud-top black-body temperature 9 C lower than the tropopause temperature at 2245 GMT and collapsing about 20 min, when the firt tornado touched down. The value of the real-time vertical profiles provided by satellite images in predicting which severe storms will produce tornados or other violent phenomena is stressed.

  16. Holocene geomagnetic secular variation recorded by volcanic deposits at Mount St. Helens, Washington

    USGS Publications Warehouse

    Hagstrum, J.T.; Hoblitt, R.P.; Gardner, C.A.; Gray, T.E.

    2002-01-01

    A compilation of paleomagnetic data from volcanic deposits of Mount St. Helens is presented in this report. The database is used to determine signature paleomagnetic directions of products from its Holocene eruptive events, to assign sampled units to their proper eruptive period, and to begin the assembly of a much larger database of paleomagnetic directions from Holocene volcanic rocks in western North America. The paleomagnetic results from Mount St. Helens are mostly of high quality, and generally agree with the division of its volcanic deposits into eruptive episodes based on previous geologic mapping and radiocarbon dates. The Muddy River andesite's paleomagnetic direction, however, indicates that it is more likely part of the Pine Creek eruptive period rather than the Castle Creek period. In addition, the Two-Fingers andesite flow is more likely part of the Middle Kalama eruptive period and not part of the Goat Rocks period. The paleomagnetic data from Mount St. Helens and Mount Hood document variation in the geomagnetic field's pole position over the last ~2,500 years. A distinct feature of the new paleosecular variation (PSV) record, similar to the Fish Lake record (Oregon), indicates a sudden change from rapid clockwise movement of the pole about the Earth's spin axis to relatively slow counterclockwise movement at ???800 to 900 years B.P.

  17. The Dst index underestimates the solar cycle variation of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Temerin, Michael; Li, Xinlin

    2015-07-01

    It is known that the correction of the Kyoto Dst index for the secular variation of the Earth's internal field produces a discontinuity in the Kyoto Dst index at the end of each year. We show that this secular correction also introduces a significant baseline error to the Kyoto Dst index that leads to an underestimate of the solar cycle variation of geomagnetic activity and of the strength of the ring current as measured by the Kyoto Dst index. Thus, the average value of the Kyoto Dst index would be approximately 13 nT more negative for the active year 2003 compared to quiet years 2006 and 2009 if the Kyoto Dst index properly measured the effects of the ring current and other currents that influence the Dst observatories. Discontinuities in the Kyoto Dst index at the end of each year have an average value of about 5 nT, but the discontinuity at the end of year 2002 was approximately 12 nT, and the discontinuity at the end of year 1982 may have been as large as 20 nT.

  18. Comment on ``Annual variation of geomagnetic activity'' by Alicia L. Clúa de Gonzales et al.

    NASA Astrophysics Data System (ADS)

    Sonnemann, G. R.

    2002-10-01

    Clúa de Gonzales et al. (J. Atmos. Terr. Phys. 63 (2001) 367) analyzed the monthly means of the geomagnetic /aa-index available since 1868 and found enhanced geomagnetic activity in July outside of the known seasonal course of semiannual variation. They pointed out that this behavior is mainly caused by the high values of the geomagnetic activity. Their analysis confirmed results obtained from an analysis of Ap-values nearly 30 years ago but widely unknown to the scientific community. At that time the entire year was analyzed using running means of the activity values averaged to the same date. Aside from the July period, the calculations revealed distinct deviations from the seasonal course-called geomagnetic singularities. The most marked singularity occurs from the middle of March to the end of March characterized by a strong increase from, on average, relatively calm values to the actually strongest ones during the entire year. Some typical time patterns around and after equinox are repeated half a year later. An analysis in 1998 on the basis of the available /aa-values confirmed the findings derived from Ap-values and the local activity index Ak from Niemegk, Germany available since 1890. The new results will be presented and discussed. Special attention is paid to the statistical problem of the persistence of geomagnetic perturbations. The main problem under consideration is that the variation of the mean activity is not caused by an accidental accumulation of strong perturbations occurring within certain intervals of days. We assume that the most marked variations of the mean value are not accidental and result from internal processes within the earth's atmosphere but different, particularly small-scale features, are most probably accidental.

  19. Monitoring of the mass density profile along the 0° geomagnetic longitude during magnetic storms with the use of ground magnetometers.

    NASA Astrophysics Data System (ADS)

    Romanova, N.; Stepanova, M. V.; Kozyreva, O. V.; Pilipenko, V.; Zesta, E.

    2015-12-01

    Ground magnetometers offer a very cheap and robust means of globally monitoring the magnetospheric mass density, by determining the ULF field line resonant frequency. ULF waves are almost always present in near-Earth environment and are generated by the solar wind interaction with the terrestrial magnetosphere. These waves from the magnetopause propagate through the magnetosphere. When they encounter a field line that resonates at the same frequency, coupling to the Alfven field line oscillations occurs and the resonance can be detected on the ground at that particular latitude. There are different methods for determining resonant frequencies from ground ULF waves. the density profiles along the 0° geomagnetic longitude were obtained using both the gradient and the amplitude-phase methods for the analysis of the magnetic field data from the magnetometer arrays: SAMBA (South American Meridional B-field Array), MAGDAS and American Antarctic bases (Palmer, WAIS-D). We compared the density profiles during quiet magnetic conditions and during strong magnetic storms (recovery phase). It is shown that in the recovery phase of strong magnetic storms (Dst <-150 nT) profile of the equatorial mass density varies greatly in comparison with the density distribution in quiet days.

  20. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    SciTech Connect

    Deng, W.; Killeen, T.L.; Burns, A.G. ); Roble, R.G. ); Slavin, J.A.; Wharton, L.E. )

    1993-05-01

    The authors extend previous work with a National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM), to study dynamo effects in the high latitude thermosphere. Ionospheric convection can drive neutral currents in much the same pattern by means of ion drag reactions. It has been observed that ion currents established during magnetic storms can induce neutral currents which persist for hours after the end of the storm. Model results have shown that such currents can account for up to 80 percent of the Hall currents in the period immediately following storms. Here this previous work is extended and compared with experimental observations. The authors simulate time dependent Hall currents, field-aligned currents, and electrical power fluxes coupling the magnetosphere and ionosphere. They discuss their results in terms of a loaded magnetosphere, which accounts for the fact that the neutral currents can also induce currents and electric fields in the ionosphere.

  1. Spatial and diurnal variations of storm heights in the East Asia summer monsoon: storm height regimes and large-scale diurnal modulation

    NASA Astrophysics Data System (ADS)

    Park, Myung-Sook; Lee, Myong-In; Kim, Hyerim; Im, Jungho; Yoo, Jung-Moon

    2016-02-01

    This study investigates the spatial and diurnal variation of storm height in the East Asia summer monsoon region using 13-year Tropical Rainfall Measuring Mission Precipitation Radar data. Precipitating storms are classified as shallow (<5 km), middle (5-10 km), and deep (>10 km) depending the height. Four different regimes are identified to characterize the region: the continental (CT) shallow regime over inland China with elevated terrain, the CT deep over the Chinese Plain, the coastal (CS) middle over the East China Sea and South Sea of Korea, and the CS shallow over the south coastal area of Japan. This regime separation reflects well the distinctive regional difference in the rainfall contribution by each storm type. The occurrence frequencies of shallow, middle, and deep storms exhibit pronounced diurnal variation as well, but with significant differences in the amplitude and phase across the regimes. These lead to a diversity in the diurnal variation of surface rainfall such as bimodal morning and late evening peaks in the two CT regimes and the single morning peak in the two CS regimes. Processes involved in the diurnal variation of storms are different across the regimes, indicating difference in the contributing role of surface heating, large-scale diurnal circulation, and diurnal propagations of convective systems. The storm height also affects the rain intensity. This study highlights that the East Asia summer monsoon has distinctive sub-regional variation of the storm height distribution, thereby providing unique differences in the rainfall amount, intensity, and the diurnal variation.

  2. Geomagnetic palaeosecular variation around 15 ka ago from NW Barents Sea cores (south of Svalbard)

    NASA Astrophysics Data System (ADS)

    Sagnotti, Leonardo; Macrì, Patrizia; Lucchi, Renata G.

    2016-02-01

    The sedimentary sequence deposited during the deglaciation phase following the last glacial maximum in the Storfjorden trough, on the northwestern Barents Sea south of Svalbard, was sampled with 10 piston and gravity cores during the SVAIS and EGLACOM cruises. Three cores (SV-02, SV-03 and SV-05) collected on the upper continental slope are characterized by a thin (20-40 cm) Holocene interval and a thick (up to 4.5 m in core SV-03) late Pleistocene sequence of finely laminated fine-grained sediments that have been interpreted as plumites deposited during the Melt Water Pulse 1a (MWP-1a). Radiocarbon ages obtained at the top and bottom of this stratigraphic interval revealed that deposition occurred during less than two centuries at around 15 ka ago, with a very high sedimentary rate exceeding 3 cm a-1. We studied the palaeomagnetic and rock magnetic properties of this interval, by taking magnetic measurements at 1 cm spacing on u-channel samples collected from the three cores. The data show that this sequence is characterized by good palaeomagnetic properties and the palaeomagnetic and rock magnetic trends may be correlated at high resolution from core to core. The obtained palaeomagnetic data therefore offer the unique opportunity to investigate in detail the rate of geomagnetic palaeosecular variation (PSV) in the high northern latitudes at a decadal scale. Notwithstanding the palaeomagnetic trends of the three cores may be closely matched, the amplitude of directional PSV and the consequent virtual geomagnetic pole (VGP) scatter (S) is distinctly higher in one core (SV-05) than in the other two cores (SV-02 and SV-03). This might result from a variable proportion of two distinct populations of magnetic minerals in core SV-05, as suggested by the variable tendency to acquire a gyromagnetic remanent magnetization at high fields during the AF demagnetization treatment. For the plumite interval of cores SV-02 and SV-03, where the magnetic mineralogy is uniform and

  3. Response of equatorial and low latitude ionosphere to 2015 St. Patrick's Day super geomagnetic storm: Results from a chain of ground based observations over Indian region

    NASA Astrophysics Data System (ADS)

    Samireddipalle, Sripathi; Singh, Ram; Sreekumar, Sreeba; Suneel Kumar, Buduru

    2016-07-01

    In this paper, we present unique results of equatorial and low latitude ionosphere response to one of the major geomagnetic storms of the current solar cycle that occurred during 17-18 March 2015 where Dst reached its minimum of -228 nT. Here we utilized data from magnetometers, chain of ionosondes located at Tirunelveli (8.73°N, 77.70°E; geom: 0.320N), Hyderabad (17.360N, 78.470E; geom: 8.760N) and Allahabad (25.45°N, 81.85°E; geom: 16.50N) along with multi station GPS receivers over Indian sector. The observations showed a remarkable increase of h'F to as high as ~560 km over Tirunelveli (magnetic equator) with vertical drift of ~70 m/s at 13:30 UT due to direct penetration of storm time eastward electric fields which exactly coincided with the local time of Pre-Reversal Enhancement (PRE) and caused intense ESF irregularities in ionosondes and scintillations in GPS receivers at wide latitudes. Plasma irregularities are so intense that their signatures are seen in Allahabad/Lucknow. Stormtime thermospheric meridional winds as estimated using two ionosondes suggest the equatorward surge of gravity waves with period of ~2 hrs. Suppression of anomaly crest on the subsequent day of the storm suggests the complex role of disturbance dynamo electric fields and disturbance wind effects. Our results also show an interesting feature of Traveling Ionospheric Disturbances (TIDs) possibly associated with disturbance meridional wind surge during recovery phase. In addition, noteworthy observations are nighttime westward zonal drifts and PRE related TEC enhancements at anomaly crests during main phase and CEJ signatures during recovery phase.

  4. A multi-technique study of the 29-31 October 2003 geomagnetic storm effect on low latitude ionosphere over Indian region with magnetometer, ionosonde, and GPS observations

    NASA Astrophysics Data System (ADS)

    Panda, Sampad Kumar; Gedam, Shirish S.; Rajaram, Girija; Sripathi, S.; Pant, Tarun Kumar; Das, Rupesh M.

    2014-12-01

    The present study demonstrates the ionospheric response to the extreme geomagnetic storms during 29-31 Oct 2003 (the Halloween storm), in the low latitude anomaly Indian region, based on multi-instrument measurements namely magnetometer, ionosonde, and GPS observations. Unlike earlier reports, we have suitably chosen the best quiet days (CQ-Days) amongst 10 international quiet days (Q-Days), on the basis of equatorial electrojet strength and pattern, that drives the distribution of plasma over the low latitude. We stress that arbitrarily selecting the Control/Q-Days may lead to erroneous interpretations and will not yield a clearer understanding of the equatorial electrodynamics. Our analysis confirms the anomalous increase in TEC at all stations on 29 Oct 2003 and suppressed TEC across anomaly crest latitudes during 30-31 Oct 2003. The sharp transition in h'F is noticed during the progressive period of the storm, though it was relatively lower at the equator. The respective foF2 remained subordinate at Trivandrum. However, we did not notice such foF2 changes at Delhi. Observations at various latitudes confirm the maximum positive deviation of TEC at mid-latitude POL2 (140 %), followed by the low latitude Jodhpur (108 %), and the rest of the stations showing relatively lower enhancements with deviations ranging between 60-90 %. However, at Ahmedabad, the lowest divergence from the mean CQ-Days, attribute the typical quiet day formation of crest at this latitude. Although the results are well agreeing with earlier reports, miniature differences is noticeable due to our way of choosing the best reference days in the analysis.

  5. A new Holocene record of geomagnetic secular variation from Windermere, UK

    NASA Astrophysics Data System (ADS)

    Avery, Rachael S.; Xuan, Chuang; Kemp, Alan E. S.; Bull, Jonathan M.; Cotterill, Carol J.; Fielding, J. James; Pearce, Richard

    2016-04-01

    Palaeomagnetic secular variation (PSV) records serve as valuable independent stratigraphic correlation and dating tools for marine and terrestrial sediment sequences. The master Holocene UK PSV record, used to date regional Holocene sediment sequences, was established over three decades ago using older radiocarbon techniques and discrete sediment samples from Windermere and two other lakes (Turner and Thompson, 1981). We present a new radiocarbon-dated record of Holocene geomagnetic secular variation from Windermere, with a view to updating the UK master PSV curve. Our analyses used u-channel samples taken from the centre of four sediment cores retrieved from Windermere in 2012.The natural remnant magnetisation (NRM) of each U-channel was measured before and after stepwise alternating field demagnetisation on a 2G Enterprises superconducting rock magnetometer at 0.5 cm resolution for the first core, and 1 cm resolution for the remaining cores. The NRM data reveal a stable and well-defined primary magnetization. Principal Component Analysis (PCA) directions of the four Windermere cores, especially the inclination records, appear to correlate well on their independent radiocarbon age models. The new Windermere PSV records compare well with the existing UK master curve on millennial timescales, as well as with records from other European lakes and northern North Atlantic marine records. These observations suggest that millennial scale secular variations of the Earth's magnetic field in the Europe- North Atlantic region shared common driving mechanisms during the Holocene. The new Windermere PSV record may thus be used in a regional context for correlating and dating sediment sequences through the Holocene.

  6. A coupled low order dynamo/turbulent shell model for geomagnetic field variations and reversals

    NASA Astrophysics Data System (ADS)

    Ryan, David A.; Sarson, Graeme R.

    2011-10-01

    We couple a low order αω dynamo model to a shell model of turbulence, with the dynamo α-effect being identified with the helicity of the shell model. Fluctuations ('noise') in this term lead to lognormal-like statistics in the magnetic field, as was noted for inter-reversal duration by Ryan and Sarson (2007). Here we extend the analysis to shorter time-scale field variations (viz. Virtual Axial Dipole Moments, VADMs), and find that a lognormal distribution is also a significant fit for this quantity, both for the output from our model and for the observed paleomagnetic data. This shared lognormality - which Ryan and Sarson (2007) argued arose from a common source in terms of 'multiplicative noise' in the underlying dynamo mechanism - makes the synthetic and observed data comparable; we also note some similarities in the patterns of VADM fluctuations (including asymmetric decay and recovery, epitomised in an extreme form by the controversial 'saw-tooth' pattern) and in reversal inter-event times (chrons) of widely varying duration. We describe the dynamics behind our coupled model, and discuss the effect of certain model parameters on the synthetic chron durations, including the occurrence of superchrons. Implications for the observed geomagnetic field behaviour are discussed.

  7. Paleosecular variations of the geomagnetic field during the Holocene from Eastern Asia

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqiang; Liu, Qingsong; Yu, Kefu; Huang, Wenya; Zhu, Liyan; Zhang, Huodai; Liu, Jian; Li, JinHua

    2016-05-01

    High-resolution paleomagnetic secular variation (PSV) records bear great information of dynamics processes of the Earth's geomagnetic field, and can be further used for inter-profile correlation and for dating sediments. However, effects of changes in the depositional environment on PSV records have not been fully determined. This study constructed Holocene PSV records for the gravity piston core (ZSQD34) obtained from the northern South China Sea. Rock magnetic and Transmission Electron Microscope (TEM) results indicate that single (SD) and PSD domain magnetites are the main carrier of the natural remanent magnetization. Comparable to the records derived from the freshwater lakes and the modeling results, we observed that direction curves from these two environments of contrasting salinity content are rather consistent. The direction curves are independent of the constructed salinity. However, the gradual increasing trend of relative intensity since about 5 kyr might be related to the decreasing sea surface salinity. Furthermore, on the centennial and millennial time scale, the relative intensity and salinity show some positive relation, suggesting a potential contribution of salinity to the paleomagnetic relative intensity recording processes.

  8. Decadal to millennial scale geomagnetic field variations in the Levantine archaeointensity curve (LAC): methodology and applications

    NASA Astrophysics Data System (ADS)

    Shaar, Ron; Tauxe, Lisa; Ron, Hagai; Agnon, Amotz; Ben-Yosef, Erez; Finkelstein, Israel; Zuckerman, Sharon; Levy, Thomas E.

    2014-05-01

    ) according to the dating method employed (archaeological, historical, radiocarbon). In addition, we cross check results from multiple archaeological sites using different source materials dated using different methodologies. The results of this effort are summarized in a regional compilation namely Levantine Archaeomagnetic Curve - LAC. The initial version of the LAC includes recently published data from ancient copper production sites, and new data from two important biblical archaeological mounds in Israel - Tel Megiddo ("Armageddon") and Tel Hazor. In this talk we review our working methodologies, report the current status of the LAC, and discuss its implications on our understanding of geomagnetic secular variations.

  9. Holocene geomagnetic field intensity variations: Contribution from the low latitude Canary Islands site

    NASA Astrophysics Data System (ADS)

    Kissel, C.; Laj, C.; Rodriguez-Gonzalez, A.; Perez-Torrado, F.; Carracedo, J. C.; Wandres, C.

    2015-11-01

    New absolute paleomagnetic intensity (PI) are investigated from 37 lava flows located at Tenerife and Gran Canaria (Canary Islands). They complete previously published directional results from the same flows and therefore allow to examine the time variations of the full geomagnetic vector. Twenty-eight flows are radiocarbon dated between 1706 AD and about 13 200 BC and one is historical. Eight other flows are not dated but they have stratigraphic links with the dated flows and archeomagnetic ages had been attributed to them based on their paleomagnetic directions. Various mineralogical analyses were conducted, giving access to the nature of the magnetic minerals and to their grain size. We performed the original Thellier and Thellier paleointensity (PI) experiments with a success rate of about 65% coupling this experiment with the strict set of selection criteria PICRIT-03. The mean PIs at the flow level are based on 3 to 12 independent PI determinations except for one site in which only one reliable determination could be obtained. The data indicate some variability in the local field intensity with a prominent PI peak centered around 600 BC and reaching 80 μT (VADM 16 ×1022 Am2), documented for the first time in this region. Combined with the published data obtained from western Africa, Spain, Portugal, Morocco and the Azores within a 2000 km-radius around the Canary Islands, our data allow to construct a curve illustrating the Earth magnetic field intensity fluctuations for Southwestern Europe/Western Africa. This curve, compared to the one produced for the Middle East and one calculated for Central Asia shows that maximum intensity patches have a very large geographical extent. They do not yet appear clearly in the models of variations of the dipolar field intensity.

  10. Geomagnetic intensity variations for the past 8 kyr: New archaeointensity results from Eastern China

    NASA Astrophysics Data System (ADS)

    Cai, Shuhui; Tauxe, Lisa; Deng, Chenglong; Pan, Yongxin; Jin, Guiyun; Zheng, Jianming; Xie, Fei; Qin, Huafeng; Zhu, Rixiang

    2014-04-01

    In this study, we have carried out paleointensity experiments on 918 specimens spanning the last ∼7 kyr, including pottery fragments, baked clay and slag, collected from Shandong, Liaoning, Zhejiang and Hebei Provinces in China. Approximately half of the specimens yielded results that passed strict data selection criteria and give high-fidelity paleointensities. The virtual axial dipole moments (VADMs) of our sites range from ∼2×1022 to ∼13×1022 Am. At ∼2250 BCE our results suggest a paleointensity low of ∼2×1022 Am, which increases to a high of ∼13×1022 Am by ∼1300 BCE. This rapid (less than 1000 yrs) six-fold change in the paleointensity may have important implications for the dynamics of core flow at this time. Our data from the last ∼3 kyr are generally in good agreement with the ARCH3k.1 model, but deviate significantly at certain time periods from the CALS3k.4 and CALS10k.1b model, which is likely due to differences in the data used to constrain these models. At ages older than ∼3 ka, where only the CALS10k.1b model is available for comparison, our data deviate significantly from the model. Combining our new results with the published data from China and Japan, we provide greatly improved constraints for the regional model of Eastern Asia. When comparing the variations of geomagnetic field in three global representative areas of Eastern Asia, the Middle East and Southern Europe, a common general trend of sinusoidal variations since ∼8 ka is shown, likely dominated by the dipole component. However, significant disparities are revealed as well, which we attribute to non-dipolar components caused by movement of magnetic flux patches at the core-mantle boundary.

  11. Geomagnetic Activity Forecast based on SW-M-I coupling

    NASA Astrophysics Data System (ADS)

    Nagatsuma, T.

    2009-12-01

    The geomagnetic activity shows diurnal and semiannual and solar cycle variations. The cause of these variations consists of two effects. One is the periodical change of the solar wind parameters due to a variation of the geometrical condition between the solar wind and the Earth’s magnetosphere. The other is the periodical change of the SW-M-I coupling efficiency caused by the changing of ionospheric conductivity in the polar cap region. Therefore, operational forecasting model of geomagnetic activity should take into account these variations and dependence. We have developed the empirical model for forecasting geomagnetic activity considering the change of the SW-M-I coupling efficiency. This model can reproduce Equinoctial effect and solar cycle dependence of geomagnetic activity. Further, we have found that the efficiency of SW-M-I coupling tend to be low during the low Alfven Mach number period, from the event analysis of Nov. 2003 storm. Also, we have found that the Alfven Mach number dependence exists independently form the solar wind electric field dependence based on the statistical analysis of PCN index. Since the condition of low Alfven Mach number tend to occur within the ICMEs, we are developing the empirical model with considering the Alfven Mach number dependence. We expect this modification will improve the prediction of severe geomagnetic storm. We also try to examine that our model is valid during the period of recent few years of quiet solar activity.

  12. Convection and overshielding electric fields in the global ionosphere as observed with magnetometers and SuperDARN during the geomagnetic storm on 14-15 December 2006

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Ebihara, Y.; Hashimoto, K. K.; Kataoka, R.; Hori, T.; Watari, S.; Nishitani, N.

    2008-12-01

    The convection electric field penetrates to the equatorial ionosphere with no significant shielding effects during the DP2 fluctuation event of period of 30 - 60 min (Nishida, 1968) and during the storm main phase continuing over several hours (Huang et al., 2007). On the other hand, shielding becomes effective during the substorm growth phase (Somajajulu et al., 1987; Kikuchi et al., 2000) and even during storm main phase (Kikuchi et al., 2008). The well-developed shielding electric field results in an overshielding at the beginning of the recovery phase of storm/substorms (Kikuchi et al., 2003, 2008). Thus, the electric field manifests complex features at mid-equatorial latitudes, which is not determined only by the solar wind electric field but strongly controlled by magnetospheric processes such as the ring current. To reveal comparative roles of the convection and overshielding electric fields and in what condition the overshielding occurs at mid-equatorial latitudes, we analyzed the geomagnetic storm on 14-15 December, 2006, characterized by the quasi-periodic DP2 fluctuation of 30 min period at the beginning of the storm. We used magnetometer data from mid- equatorial latitudes to detect magnetic signatures due to the electric field originating in the magnetosphere, and used the SuperDARN data to identify electric fields associated with the solar wind dynamo (Region-1 FAC) and the ring current (R2 FAC). We further calculated an electric potential pattern caused by the R1 and R2 FACs with the comprehensive ring current model (CRCM) to better understand the SuperDARN convection pattern. First we show that the DP2 fluctuation was caused by alternating eastward (e-EJ) and westward currents (w-EJ) in the equatorial ionosphere, which were caused by the southward and northward IMF, respectively. We further show that the e-EJ was associated with the large-scale two-cell convection vortices, while the w-EJ accompanied a reverse flow equatorward of the two

  13. Improving total field geomagnetic secular variation modeling from a new set of cross-over marine data

    NASA Astrophysics Data System (ADS)

    Pavón-Carrasco, F. Javier; Torta, J. Miquel; Catalán, Manuel; Talarn, Àngela; Ishihara, Takemi

    2013-03-01

    A new set of cross-over marine data has been used to generate a regional model for the secular variation of the total geomagnetic field, showing the potential of the suggested approach for gaining a better knowledge of the field over oceanic regions. The model, which is valid for the Northern Atlantic region during the temporal interval 1960-2000, was obtained using spherical cap harmonic analysis (SCHA) in space and penalized splines in time. The maximum spatial expansion is equivalent to degree 9 in ordinary spherical harmonic analysis. Annual mean intensity data from different geomagnetic observatories have been used to improve the spatial and temporal resolution of the original dataset. Results indicate that the regional model improves, in terms of the root mean square error, the prediction given by the 11th generation of IGRF and CM4 global models, especially for the geomagnetic observatories considered. We also provide the uncertainty of the model coefficients and the secular variation prediction given by a bootstrap algorithm. The model is available in the EarthRef. org Digital Archive at http://earthref.org/ERDA/1728/.

  14. Simulation of low-latitude ionospheric response to 2015 St. Patrick's Day super geomagnetic storm using ionosonde-derived PRE vertical drifts over Indian region

    NASA Astrophysics Data System (ADS)

    Joshi, L. M.; Sripathi, S.; Singh, Ram

    2016-03-01

    In this paper, we present low-latitude ionospheric response over Indian longitude to the recent super geomagnetic storm of 17 March 2015, using the Sami2 is Another Model of the Ionosphere (SAMI2) model which incorporates ionosonde-derived vertical drift impacted by prompt penetration eastward electric field occurring during the evening prereversal enhancement (PRE) in the vertical drift. The importance of this storm is that (1) Dst reaches as low as -228 nT and (2) prompt penetration of eastward electric field coincided with evening hours PRE. The daytime vertical E × B drifts in the SAMI2 model are, however, considered based on Scherliess-Fejer model. The simulations indicate a significant enhancement in F layer height and equatorial ionization anomaly (EIA) in the post sunset hours on 17 March 2015 vis-a-vis quiet day. The model simulations during recovery phase, considering disturbance dynamo vertical E × B drift along with equatorward disturbance wind, indicate suppression of the daytime EIA. SAMI2 simulations considering the disturbance wind during the recovery phase suggest that equatorward wind enhances the ionospheric density in the low latitude; however, its role in the formation of the EIA depends on the polarity of the zonal electric field. Comparison of model derived total electron content (TEC) with the TEC from ground GPS receivers indicates that model does reproduce enhancement of the EIA during the main phase and suppression of the EIA during the recovery phase of the superstorm. However, peculiarities pertaining to the ionospheric response to prompt penetration electric field in the Indian sector vis-a-vis earlier reports from American sector have been discussed.

  15. Extreme Geoelectric Fields Induced By Magnetic Storm Sudden Impulses

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Rigler, E. J.; Swidinsky, A.

    2014-12-01

    Large magnetic storms, as quantified by the Dst index, can produce geoelectric fields that are hazardous for the operation of electric power grids. The great storm of March 1989, for example, had the highest -Dst value of the 20th century. During the main phase of this storm, rapid magnetic variation induced geoelectric fields in the Earth's lithosphere that caused the complete collapse of the Canadian Hydro-Québec electric-power grid. In this study, we focus specifically on how sudden impulses in geomagnetic activity, those that occur during large storms, can induce geoelectric fields. These impulses can be seen during storm main phases, but they are most usually recognized as storm sudden commencements corresponding to the arrival, at Earth, of coronal mass ejections. We use a newly developed algorithm for estimating induced geoelectric fields from magnetic field variation recorded at ground-based observatories. We train the algorithm on 1-sec geomagnetic and geoelectric field data collected at Japanese observatories during the October 2003 Halloween storm. We then postdict geoelectric fields that would have been realized (but not directly measured at 1-sec resolution) in Japan during the 1989 Québec storm and during another intense storm that occurred in March 1991. The later storm is noteworthy, not because of its intense main phase, but because it commenced with a sudden impulse of enormous magnitude. For the first half minute of the 1991 storm, induced geoelectric fields far exceeded those realized during the 1989 storm. Recognizing the potential hazard, we also analyze a scenario geomagnetic time series of an extreme event sudden commencement, and we calculate the geoelectric fields that this scenario event might plausibly induce. Results show that substantial geoelectric field induction, possibly hazardous for electric power grids, can occur briefly but very abruptly as soon as a magnetic storm commences.

  16. Mapping Geomagnetic Field Variations in the Cretaceous Quiet Zone with Unmanned Airborne Vehicles

    NASA Astrophysics Data System (ADS)

    Gee, J. S.; Cande, S. C.; Kent, D. V.

    2007-12-01

    About one quarter of the present seafloor was generated during the constant normal polarity interval from 121 to 83 Ma (Cretaceous Quiet Zone or KQZ), and the lack of temporal markers limits tectonic reconstructions in these areas. Although magnetostratigraphic studies provide strong evidence that the KQZ formed during predominantly normal polarity, there are nonetheless relatively large amplitude variations in many sea surface magnetic anomaly profiles crossing KQZ crust. To evaluate the relative importance of geomagnetic and crustal variables (thickness, geochemistry) in generating these anomalies, we collected multibeam bathymetry and magnetic data on 19 profiles crossing anomaly 34 and extending 500 km into the KQZ in the southwest Pacific. The relatively fast spreading (60 km/m.y. half rate), minimal sediment cover and high paleolatitude of formation make this area ideal for evaluating the magnetic anomaly pattern. An additional 10,000 km of magnetic anomaly data were acquired using an autonomous unmanned airborne vehicle (UAV). Although land-launched UAVs have been used in a variety of research applications, the nine successful flights during our cruise represent the first deployment from a UNOLS research vessel. The UAV (operated by Fugro Airborne) was launched from a pneumatic catapult and captured by a wingtip clip that attaches to a rope suspended from a retractable boom on the fantail. The Cs-vapor magnetometer data from the UAV compare favorably with results from the surface-towed magnetometer, with minor differences related primarily to the higher elevation (120m above sea level) of the UAV. The resulting magnetic coverage indicates that, as with younger seafloor, quasi-linear short wavelength anomalies are present within the KQZ. These anomalies can vary on spatial scales smaller than the multibeam swath width, highlighting the utility of obtaining additional coverage with the UAVs.

  17. Predicting the Size of Sunspot Cycle 24 on the Basis of Single- and Bi-Variate Geomagnetic Precursor Methods

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2009-01-01

    Examined are single- and bi-variate geomagnetic precursors for predicting the maximum amplitude (RM) of a sunspot cycle several years in advance. The best single-variate fit is one based on the average of the ap index 36 mo prior to cycle minimum occurrence (E(Rm)), having a coefficient of correlation (r) equal to 0.97 and a standard error of estimate (se) equal to 9.3. Presuming cycle 24 not to be a statistical outlier and its minimum in March 2008, the fit suggests cycle 24 s RM to be about 69 +/- 20 (the 90% prediction interval). The weighted mean prediction of 11 statistically important single-variate fits is 116 +/- 34. The best bi-variate fit is one based on the maximum and minimum values of the 12-mma of the ap index; i.e., APM# and APm*, where # means the value post-E(RM) for the preceding cycle and * means the value in the vicinity of cycle minimum, having r = 0.98 and se = 8.2. It predicts cycle 24 s RM to be about 92 +/- 27. The weighted mean prediction of 22 statistically important bi-variate fits is 112 32. Thus, cycle 24's RM is expected to lie somewhere within the range of about 82 to 144. Also examined are the late-cycle 23 behaviors of geomagnetic indices and solar wind velocity in comparison to the mean behaviors of cycles 2023 and the geomagnetic indices of cycle 14 (RM = 64.2), the weakest sunspot cycle of the modern era.

  18. Variations of terrestrial geomagnetic activity correlated to M6+ global seismic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2013-04-01

    From the surface of the Sun, as a result of a solar flare, are expelled a coronal mass (CME or Coronal Mass Ejection) that can be observed from the Earth through a coronagraph in white light. This ejected material can be compared to an electrically charged cloud (plasma) mainly composed of electrons, protons and other small quantities of heavier elements such as helium, oxygen and iron that run radially from the Sun along the lines of the solar magnetic field and pushing into interplanetary space. Sometimes the CME able to reach the Earth causing major disruptions of its magnetosphere: mashed in the region illuminated by the Sun and expanding in the region not illuminated. This interaction creates extensive disruption of the Earth's geomagnetic field that can be detected by a radio receiver tuned to the ELF band (Extreme Low Frequency 0-30 Hz). The Radio Emissions Project (scientific research project founded in February 2009 by Gabriele Cataldi and Daniele Cataldi), analyzing the change in the Earth's geomagnetic field through an induction magnetometer tuned between 0.001 and 5 Hz (bandwidth in which possible to observe the geomagnetic pulsations) was able to detect the existence of a close relationship between this geomagnetic perturbations and the global seismic activity M6+. During the arrival of the CME on Earth, in the Earth's geomagnetic field are generated sudden and intensive emissions that have a bandwidth including between 0 and 15 Hz, an average duration of 2-8 hours, that preceding of 0-12 hours M6+ earthquakes. Between 1 January 2012 and 31 December 2012, all M6+ earthquakes recorded on a global scale were preceded by this type of signals which, due to their characteristics, have been called "Seismic Geomagnetic Precursors" (S.G.P.). The main feature of Seismic Geomagnetic Precursors is represented by the close relationship that they have with the solar activity. In fact, because the S.G.P. are geomagnetic emissions, their temporal modulation depends

  19. IMAGE EUV Observations and Modeling of the Plasmaspheric Density Trough Associated with the 24 May 2000 Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Adrian, M.L.; Gallagher, D. L.; Green, J. L.; Sandel, B. R.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The IMAGE EUV imager observed a plasmaspheric density trough in association with a geomagnetically active period on 24 May 2000. At EUV wavelengths, this density trough appeared as an Archimedes spiral extending from Earth's shadow to approximately 1800 MLT. We present an analysis of this density trough using simulated EUV images. Observational EUV images are subjected to edge analysis to establish the plasmapause L-shell and the location of the density trough in terms of L-shell, MLT extent, and radial width. The plasmaspheric density distribution is modeled using both static and dynamic models for the plasmasphere. The background plasmasphere is then numerically simulated using the 4-parameter plasmaspheric density model contained within the Global Core Plasma Model (GCPM) [Gallagher et al., 20001 and the Dynamic Global Core Plasma Model (DGCPM). Simulated EUV images of the model plasmasphere are produced once an artificial density depletion, matching the observed MLT extent and width, has been removed. Once the azimuthal extent and width of the trough have been simulated, the depth of the artificial density depletion is iteratively adjusted to produce simulated EUV images that approximate observation. The results of this analysis and discussion of possible origins for this density trough will be presented.

  20. Relationship between human physiological parameters and geomagnetic variations of solar origin

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    Results presented concern influence of increased geomagnetic activity on some human physiological parameters. The blood pressure and heart rate of 86 volunteers were measured on working days in autumn 2001 (01/10 09/11) and in spring 2002 (08/04 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether 2799 recordings were obtained and analysed. Questionnaire information about subjective psycho-physiological complaints was also gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were the following: (1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; (2) gender males and females; (3) blood pressure degree persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors’ levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure of the group examined reached 9%. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase and the highest sensitivity was revealed for the hypertensive females.

  1. Ionospheric F region effects observed in the American and African sectors during the intense geomagnetic storm of September-October 2012

    NASA Astrophysics Data System (ADS)

    De Jesus, Rodolfo; Gende, Mauricio; Fagundes, Paulo Roberto; Coster, Anthea; Bolaji, Segun; Kavutarapu, Venkatesh; De Abreu, Alessandro; Sobral, J. H. A.; Pillat, Valdir Gil; Batista, Inez S.

    This study presents an investigation of geomagnetic disturbance effects on the equatorial, low- and mid-latitude ionospheric F region over the American and African sectors during the intense geomagnetic storm (maximum Kp index of 6.7) that occurred on 30th September, 2012 and 1st October, 2012. In this study digital ionosonde and Global Positioning System (GPS) data are simultaneously utilized from 30th September to 3rd October 2012. The diurnal variability over this four day period observed from both the digital ionosonde and from ground based GPS units can be characterized as quiet, slightly disturbed, and strongly disturbed periods. This time period includes the sudden commencement of the storm (SCS), the main phase (MPS), and the recovery phase of the storm (RPS). During the period of investigation, ionospheric parameters F-region critical frequency (foF2) and minimum F-region virtual height ('hF) were obtained at Jicamarca, São Luís, Fortaleza, Palmas and Port Stanley at the following geographical coordinates, respectively: 12.0ºS 76.8ºW, 2.6ºS 44.2ºW, 3.8ºS 38ºW, 10.2ºS 48.8ºW and 51.6ºS 57.9ºW. In this study, we also used observations of 20 GPS stations located at Greenbelt (39.0ºN, 76.8ºW), Cambridge (38.6ºN, 76.1ºW), Virgin Islands (17.6ºN, 64.6ºW), Eusebio (03.9ºS, 38.4ºW), Iquitos (03.8ºS, 73.3 ºW), Arequipa (16.5ºS, 71.5ºW), Cachoeira Paulista (22.7ºS, 45.0ºW), Copiapo (27.4ºS, 70.4ºW), La Plata (34.9ºS, 57.9ºW), Concepcion (36.8ºS, 73.0ºW), Rio Grande (53.8ºS, 67.8ºW), Dakar (14.7ºN, 17.4ºW), Addis (09.0ºN, 38.8ºE), Cotonou (06.4ºN, 02.5ºE), Libreville (00.4ºN, 09.7ºE), Mbarara (00.6ºS, 30.7ºE), Lusaka (15.4ºS, 28.3ºE), Windhoek (22.6ºS, 17.1ºE), Springbok (29.7ºS, 17.9ºE) and Sutherland (32.4ºS, 20.8ºE). Vertical Total Electron Content (VTEC) and TEC fluctuations (ROT, rate of change of TEC) are calculated from GPS data using the measured Slant Total Electron Content (STEC) records from the 20 GPS

  2. Energy inputs in the polar cap during geomagnetic storms and the impacts on the ionosphere/thermosphere

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Sheng, C.; Huang, Y.; Huang, C. Y.

    2015-12-01

    Large Poynting flux has been observed in the polar cap by Defense Meteorological Satellite Program (DMSP) satellites during the main phase of the August 5, 2011 storm, the magnitude of which is comparable to that in the auroral zone. In order to understand the mechanisms for the observed large Poynting flux in the polar cap, the particle precipitation along DMSP satellite trajectory has been studied. Meanwhile, the global ionosphere-thermosphere model (GITM) has been run to examine the relative contribution of convection pattern and conductance to the polar cap Poynting flux enhancement. The influence of energy inputs in the polar cap including both Poynting flux and soft particle precipitation on the thermosphere has been examined through the analysis of the GRACE neutral density observations and GITM simulations with different forcings. This study will help to illustrate the mechanisms and impacts of the polar cap energy inputs.

  3. Observations and simulations of quasiperiodic ionospheric oscillations and large-scale traveling ionospheric disturbances during the December 2006 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Burns, Alan G.; Tsugawa, Takuya; Wang, Wenbin; Solomon, Stanley C.; Wiltberger, Michael

    2008-06-01

    A numerical simulation was performed to investigate quasiperiodic ionospheric oscillations that were observed with periods of 4-5 h by the ionosonde network (Okinawa, Yamagawa, Kokubunji, and Wakkanai) in Japan during the 15 December 2006 magnetic storm. This simulation used the Coupled Magnetosphere Ionosphere Thermosphere (CMIT) 2.0 model. The CMIT model reproduced the main characteristics of the observed ionospheric oscillations, although it remains a challenging task to simulate the observations in a quantitative sense. Term analysis of the ion continuity equation demonstrated that the ionospheric oscillations in this event were mainly induced by the disturbed neutral winds, which were associated with the large scale thermospheric circulation and traveling atmospheric disturbances (TADs) during the storm. The TADs simulated from the model were then compared with those observed by the GPS Earth Observation Network (GEONET) in Japan to validate the simulation results. A prominent northward propagating large-scale traveling ionospheric disturbance (LSTID) during daytime, seen by the GEONET total electron content (TEC) data, was captured by the CMIT model. Two southward LSTIDs observed by GEONET GPS network were also reproduced by the CMIT model. However, the model gave faster phase speeds for the southward propagating LSTID occurred during 0620-0800 UT and the northward propagating LSTID; furthermore, the model missed the LSTID seen in the TEC perturbation data during 0140-0220 UT. Finally, both observations and simulations showed a strong hemispheric asymmetry for the TAD propagation that occurred during 0000-0400 UT, which may be associated with the hemispheric asymmetry of the change of Joule heating at high latitude.

  4. Magnetic and Ionospheric Observations in the Far Eastern Region of Russia During the Magnetic Storm of 5 April 2010

    NASA Astrophysics Data System (ADS)

    Baishev, D. G.; Moiseyev, A. V.; Boroyev, R. N.; Kobyakova, S. E.; Stepanov, A. E.; Mandrikova, O. V.; Solovev, I. S.; Khomutov, S. Yu.; Polozov, Yu. A.; Yoshikawa, A.; Yumoto, K.

    2015-12-01

    Magnetic and ionospheric disturbances in the far eastern region of Russia during the magnetic storm of 5 April 2010 are studied using data of geophysical stations operated by IKFIA SB RAS and IKIR FEB RAS. By performing wavelet analysis of experimental data, the wavelet powers of geomagnetic perturbations at different stations are estimated, in an attempt to investigate the dynamical development of a geomagnetic storm. It is shown that, though weak geomagnetic disturbances were present prior to the main phase of magnetic storm, the variations of the magnetic field during a storm development were found to be rather strong. The highest intensity of geomagnetic disturbances during the interplanetary shock at the Earth's magnetosphere was observed at KTN (L~9) while at ZYK (L~4) strongest geomagnetic perturbations occurred during the magnetospheric substorm with the onset at 09:03 UT. Large geomagnetic fluctuations were recorded at TIX and CHD (L~5-6), when the High-Intensity Long-Duration Continuous AE Activity (HILDCAA) was observed on 6 April 2010. Ionospheric conditions at YAK (L~3.4) and PET (L~2.2) were characterized by a pre-storm enhancement in the electron density in the F2 layer on 4 April 2010 and prolonged negative phase of the ionospheric storm during the main and recovery phases of magnetic storm on 6-8 April 2010. These experimental results underscore the importance of multi-instrumental observations and provide clues to the complex interactive processes.

  5. Day-to-Day Variability of H Component of Geomagnetic Field in Central African Sector Provided by YACM (Yaoundé-Cameroon) Amber Magnetometer Station

    NASA Astrophysics Data System (ADS)

    Etoundi Messanga, Honoré

    2015-04-01

    The geomagnetic data obtained from Amber Network station in Cameroon has been used for this study. The variability of H component of geomagnetic field has been examined by using geomagnetic field data of X and Y components recorded at AMBER magnetometer station hosted by the Department of Physics of University of Yaoundé (3.87°N, 11.52°E). The day-to-day variability of the horizontal intensity of the geomagnetic field has been examined and shows that the scattering of H component of magnetic field variation is more on disturbed than on quiet days. The signatures H of geomagnetic Sq and Sd variations in intensities in the geomagnetic element, has been studied. This paper shows that the daytime variations in intensities of geomagnetic elements H, Sq(H) and Sd(H) respectively are generally greater at diurnal-times than at night-times. This study mainly interests to answer to two questions: 1) how can geomagnetic variations be used to study the equatorial ionosphere electrodynamics and electrojet equatorial over Africa in general and Cameroon in particular? 2) How can geomagnetic variations be used to monitor and predict Space weather events in Cameroon? This study presents and interprets the results of H component of geomagnetic field variations during magnetic storms and on quiet days.

  6. A Detection Study of the Ionospheric Total Electron Contents Variations Using GPS Network

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Kyu; Park, Jong-Uk; Lee, Sang-Jeong

    2007-12-01

    We established a regional ionospheric model for investigating ionospheric TEC (Total Electron Contents) variations over the Korean Peninsula during major geomagnetic storms. In order to monitor the ionospheric TEC variations, we used nine permanent GPS reference stations uniformly distributed in South Korea operated by the Korea Astronomy and Space Science Institute (KASI). The cubic spline smoothing (CSS) interpolation method was used to analyze the characteristics of the ionospheric TEC variations. It has been found that variations of TEC over the Korean Peninsula increase when a major geomagnetic storm occurred on November 20, 2003. The TEC has increased about one and a half of those averaged quite days at the specific time during a geomagnetic storm . It has been indicated that the KASI GPS-derived TEC has a correlation with the geomagnetic storm indices (eq. Kp and Dst indices).

  7. Simulating Geomagnetically Induced Currents in the Irish Power Network

    NASA Astrophysics Data System (ADS)

    Jones, A. G.; Blake, S. P.; Gallagher, P.; McCauley, J.; Hogg, C.; Beggan, C.; Thomson, A. W. P.; Kelly, G.; Walsh, S.

    2014-12-01

    Geomagnetic storms are known to cause geomagnetically induced currents (GICs) which can damage or destroy transformers on power grids. Previous studies have examined the vulnerability of power networks in countries such as the UK, New Zealand, Canada and South Africa. Here we describe the application of a British Geological Survey (BGS) thin-sheet conductivity model to compute the geo-electric field from the variation of the magnetic field, in order to better quantify the risk of space weather to Ireland's power network. This was achieved using DIAS magnetotelluric data from across Ireland. As part of a near-real-time warning package for Eirgrid (who oversee Ireland's transmission network), severe storm events such as the Halloween 2003 storm and the corresponding GIC flows at transformers are simulated.

  8. Impact of the lower atmosphere on the ionosphere response to a geomagnetic superstorm

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.

    2016-09-01

    Numerical simulations in the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM) are performed to elucidate the impacts of lower atmosphere forcing on the ionosphere response to a geomagnetic superstorm. In particular, how the ionosphere variability due to the October 2003 Halloween storm would be different if it occurred in January coincident with a major sudden stratosphere warming (SSW) event is investigated. The TIE-GCM simulations reveal that the E× B vertical drift velocity and total electron content (TEC) respond differently to the geomagnetic forcing when the lower atmosphere forcing is representative of SSW conditions compared to climatological lower atmosphere forcing conditions. Notably, the storm time variations in the E× B vertical drift velocity differ when the SSW-induced zonal mean and tidal variability in the lower thermosphere are considered, and this is in part due to effects of the SSW on the equatorial ionosphere being potentially misinterpreted as being of geomagnetic origin. Differences in the TEC response to the geomagnetic storm can be up to 100% (˜30 TEC unit (TECU: 1 TECU = 1016 el m-2)) of the storm-induced TEC change, and the temporal variability of the TEC during the storm recovery phase is considerably different if SSW effects are considered. The results demonstrate that even during periods of extreme geomagnetic forcing, it is important to consider the effects of lower atmosphere forcing on the ionosphere variability.

  9. Global Cosmic Ray Intensity Changes, Solar Activity Variations and Geomagnetic Disturbances as North Atlantic Hurricane Precursors

    NASA Astrophysics Data System (ADS)

    Kavlakov, S. P.

    It was shown that specific changes of the sunspots (SS) number, cosmic ray (CR) intensity and geomagnetic activity indices AP and KP were statistically noticeable in the interval of 30 days before the appearance of a cyclonic rotational system over the North Atlantic, developing gradually in a major hurricane.

  10. New archaeointensity results from archaeological sites and variation of the geomagnetic field intensity for the last 7 millennia in Greece

    NASA Astrophysics Data System (ADS)

    De Marco, E.; Spatharas, V.; Gómez-Paccard, M.; Chauvin, A.; Kondopoulou, D.

    In this study six new intensity determinations are presented, obtained from five well dated archaeological sites, located in northern Greece and in Paros, Cyclades Islands. The fired structures consisted of ceramic and pottery kilns belonging to the Hellenistic, Roman and Byzantine periods. Between 8 and 21 samples of highly fired baked clays, tiles and bricks were taken, homogeneously distributed over the structures. The samples were analysed using the classical Thellier method, providing the past intensities and directions of the geomagnetic field recorded at each site. The intensity values have been corrected for anisotropy of thermal remanent magnetisation and cooling rate effects. Differences in the mean archaeointensities per site ranging from 1% to 11%, before and after TRM anisotropy and cooling rate corrections, were obtained. The new results indicate a decrease of 20% of the geomagnetic field strength in Greece, during the last four centuries BC. In order to compare our results with previously published data, a catalogue of archaeo- and palaeointensity results for the Aegean area has been established, covering the last 7 millennia. It consists of 336 data from Greece, western Turkey and Former Yugoslavia, collected from various authors. Weighting factors have been applied to these data, that then have been treated with a hierarchical Bayesian modelling, and a geomagnetic field intensity variation curve for Greece was constructed. A good agreement is observed when comparing the curve for Greece with the Bulgarian secular variation curve (SVC) for intensity. Satisfactory coincidence is also found with the archaeointensity data from Mesopotamia. Despite the presence of some time gaps, a more precise secular variation intensity curve has been constructed for Greece which, combined with a forthcoming directional SVC, will help for dating purposes.

  11. A case study on the GEO flux dropout during a weak geomagnetic storm of November 7, 2008: RBE results

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Choi, Enjin; Park, Jong-Sun; Kim, Kyung-Chan; Lee, Dae-Young; Fok, Mei-Ching; Usanova, Maria

    2014-05-01

    We investigate a geosynchronous flux dropout event during a weak storm of which Sym-H minimum value is -37 nT on November 7, 2008. During this event period, two dropouts are observed by GOES observation. Interestingly we found that there is local time dependence by THEMIS SST observation such that the GEO flux dropout starts first from noon-dusk MLT and recovers from midnight-dawn MLT in a few hundreds of keV electrons. This tendency is confirmed with RBE simulation results for both lower and higher energies' electrons; a few hundreds of keV and ~Me V. There is no observed atmospheric precipitation during the first dropout period and there are just negligible atmospheric precipitations during the second dropout by all available NOAA POES satellites' observations. We also check wave activities can provide the indirect proof of the atmospheric precipitation through wave-particle interactions, Chorus wave power from THEMIS exists just only during the second dropout period. EMIC waves do not appear from THEMIS observations while ground observations by CARISMA network show that there are clear EMIC waves during both dropouts. Finally we conclude that the first dropout event is caused by purely magnetopause shadowing effect and the second one might be the result of the combination of magnetopause shadowing and atmospheric precipitation into the earth's atmosphere by wave-particle interaction.

  12. Simultaneous radio and optical observations of the mid-latitude atmospheric response to a major geomagnetic storm of 6-8 April 2000

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Ashkaliev, Ya. F.; Aushev, V. M.; Beletsky, A. B.; Vodyannikov, V. V.; Leonovich, L. A.; Lesyuta, O. S.; Lipko, Yu. V.; Mikhalev, A. V.; Yakovets, A. F.

    2002-12-01

    Basic properties of the mid-latitude traveling ionospheric disturbances (TIDs) during the maximum phase of a major magnetic storm of 6-8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics /(51.9°N,103.0°E), and MORTI located at the observatory of the Institute of Ionosphere (43.2°N,77.0°E). Observations of the O (557.7and630.0nm) emissions originating from atmospheric layers centered at altitudes of 90 and 250km were carried out at Irkutsk and of the O2(b1∑g+- X3∑g-) (0-1) emission originating from an atmospheric layer centered at altitude of 94km was carried out at Almaty. Our radio and optical measurement network observed a storm-induced solitary large-scale wave with duration of 1h and a wave front width of no less than 5000km, while it traveled equatorward with a velocity of 200m/s from /62°N to /38°N geographic latitude. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes. A comparison of the auroral oval parameters with dynamic spectra of TEC variations and optical 630nm emissions in the frequency range 0.4-4mHz (250-2500s periods) showed that as the auroral oval expands into mid-latitudes, also does the region with a developed medium-sale and small-scale TEC structure.

  13. Ionospheric Storms in Equatorial Region: Digisonde Observations

    NASA Astrophysics Data System (ADS)

    Paznukhov, V.; Altadill, D.; Blanch, E.

    2011-12-01

    We present a study of the ionospheric storms observed in the low-latitude and equatorial ionosphere at several digisonde stations: Jicamarca (Geomagnetic Coordinates: 2.0 S, 355.3 E), Kwajalein Island (3.8 N, 238.2 E), Ascension Island (2.5 S, 56.8 E), Fortaleza (4.8 N, 33.7 W), and Ramey (28.6 N, 5.2 E). The strongest geomagnetic storms from years 1995-2009 have been analyzed. The main ionospheric characteristics, hmF2 and foF2 were used in the study, making it possible to investigate the changes in the ionosphere peak density and height during the storms. All digisonde data were manually processed to assure the accuracy of the measurements. Solar wind data, geomagnetic field variations, and auroral activity indices have been used to characterize the geomagnetic environment during the events. It was found in our analysis that the major drivers for the ionospheric storms, electric field and neutral wind have approximately equal importance at the low-latitude and equatorial latitudes. This is noticeably different from the behavior of the ionsphere in the middle latitudes, where the neutral wind is usually a dominant factor. It was found that the auroral index, AE is the best precursor of the ionospheric effects observed during the storms in this region. We analyze the difference between time delays of the storm effects observed at the stations located in different local time sectors. The overall statistics of the time delays of the storms as a function of the local time at the stations is also presented. Several very interesting cases of sudden very strong ionospheric uplifting and their possible relation to the equatorial super fountain effect are investigated in greater details.

  14. New archaeomagnetic direction results from China and their constraints on palaeosecular variation of the geomagnetic field in Eastern Asia

    NASA Astrophysics Data System (ADS)

    Cai, Shuhui; Tauxe, Lisa; Deng, Chenglong; Qin, Huafeng; Pan, Yongxin; Jin, Guiyun; Chen, Xuexiang; Chen, Wei; Xie, Fei; Zhu, Rixiang

    2016-11-01

    We carried out an archaeomagnetic directional study on 38 oriented samples (bricks and baked clays) collected from four archaeological locations at three provinces in China. The ages of our samples, spanning from ˜3000 BCE to ˜1300 CE, were constrained using a combination of archaeological context, radiocarbon dating and stratigraphic information. Rock magnetic results demonstrate that the main magnetic minerals of the studied samples are magnetite and/or hematite in single domain and superparamagnetic states. A total of 20 new reliable archaeodirectional data from 12 independent sites are obtained after thermal demagnetization experiments. These are the first set of archaeodirectional data in China produced since the 1990s. The published data are largely from the past 2 kyr and data from older time periods are rare. Our new data, especially those from period older than 3 ka, fill many gaps of the presently published dataset and will provide strong constraints on palaeosecular variation of the geomagnetic field in Eastern Asia and on the improvement of global models. Quite a few inflection points in the direction of the geomagnetic field are recorded in Eastern Asia over the past 10 kyr and some of them synchronize with the maximums or minimums of the palaeointensity. The palaeosecular variation rates are very low (based on present data distribution) before 2000 BCE and then start to increase and fluctuate afterward, which is generally consistent with the pattern of palaeointensity variations in this area.

  15. New archaeomagnetic direction results from China and their constraints on paleosecular variation of the geomagnetic field in Eastern Asia

    NASA Astrophysics Data System (ADS)

    Cai, Shuhui; Tauxe, Lisa; Deng, Chenglong; Qin, Huafeng; Pan, Yongxin; Jin, Guiyun; Chen, Xuexiang; Chen, Wei; Xie, Fei; Zhu, Rixiang

    2016-09-01

    We carried out an archaeomagnetic directional study on 38 oriented samples (bricks and baked clays) collected from four archaeological locations at three provinces in China. The ages of our samples, spanning from ˜3000 BCE to ˜1300 CE, were constrained using a combination of archaeological context, radiocarbon dating and stratigraphic information. Rock magnetic results demonstrate that the main magnetic minerals of the studied samples are magnetite and/or hematite in single domain and superparamagnetic states. A total of 20 new reliable archaeodirectional data from 12 independent sites are obtained after thermal demagnetization experiments. These are the first set of archaeodirectional data in China produced since the 1990 s. The published data are largely from the past 2 kyr and data from older time periods are rare. Our new data, especially those from period older than 3 ka, fill many gaps of the presently published dataset and will provide strong constraints on paleosecular variation of the geomagnetic field in Eastern Asia and on the improvement of global models. Quite a few inflection points in the direction of the geomagnetic field are recorded in Eastern Asia over the past 10 kyr and some of them synchronize with the maximums or minimums of the paleointensity. The paleosecular variation rates are very low (based on present data distribution) before 2000 BCE and then start to increase and fluctuate afterward, which is generally consistent with the pattern of paleointensity variations in this area.

  16. Response of the H-geocorona to geomagnetic disturbances studied by TWINS Lyman-alpha data

    NASA Astrophysics Data System (ADS)

    Zoennchen, Jochen; Nass, Uwe; Fahr, Hans

    2016-04-01

    We have studied the variation of the exospheric H-density distribution during two geomagnetic storms of different strength in terms of their Dst-index values. This analysis is based on continuously monitored Lyman-alpha data observed by the TWINS1/2-LAD instruments. Since solar Lyman-alpha radiation is resonantly backscattered from geocoronal neutral hydrogen (H), the resulting resonance glow intensity in the optically thin regime is proportional to H-column density along the line of sight (LOS). We quantify the amplitude of the H-density's response to geomagnetic activity for different (observed) angular regions and radial Earth-distances. Interestingly the H-exosphere responded with a comparable density increase to both storms of different strength. Careful analysis of the geomagnetic H-density effect indicates that the temporal density response is well correlated with the Kp-index daily sum, but not with the Dst-index in case of the two analysed storms.

  17. A comparative study of the ionospheric F-region observations in the Brazilian low latitude region and the TIMEGCM model results during the super geomagnetic storm of 20 November 2003

    NASA Astrophysics Data System (ADS)

    Becker-Guedes, F.; Sahai, Y.; Fagundes, P.; Crowley, G.; Lima, W.

    The TIMEGCM is a global 1st principles model of the ionosphere-thermosphere I-T system with fully coupled and interactive ionospheric and thermospheric components The model requires a specification of the high latitude electric potential distribution for each time step along with specification of the auroral particle precipitation Each of these parameters is obtained by use of the AMIE Assimilative Mapping of Ionospheric Electrodynamics technique which assimilates data from nearly 200 ground-based magnetometers several DMSP satellites and the SuperDARN radar network In this paper we compare ionospheric observations from two low-latitude ionospheric sounding stations with predictions from the TIMEGCM during the super geomagnetic storm of 20 November 2003 The super geomagnetic storm with SSC at 08 03 UT on 20 November attained vert Dst vert max 472 nT at 20 00 UT 20 11 The digital ionosondes using the Canadian Advanced Digital Ionosondes CADIs are located at Palmas PAL 10 2 r S 48 2 r W dip latitude 5 5 r S a near equatorial station and S a o Jos e dos Campos SJC 23 2 r S 45 9 r W dip latitude 17 6 r S station located under the crest of equatorial ionospheric anomaly Brazil Comparisons of model predictions with ionospheric observations during intense geomagnetic disturbances are important studies related to space weather forecasting Salient features from this comparative study are presented and discussed in this paper

  18. Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-recurrent Geomagnetic Storms and Forbush Decreases

    NASA Astrophysics Data System (ADS)

    Chertok, I. M.; Grechnev, V. V.; Belov, A. V.; Abunin, A. A.

    2013-01-01

    This study aims at the early diagnostics of the geoeffectiveness of coronal mass ejections (CMEs) from quantitative parameters of the accompanying EUV dimming and arcade events. We study events of the 23th solar cycle, in which major non-recurrent geomagnetic storms (GMS) with Dst<-100 nT are sufficiently reliably identified with their solar sources in the central part of the disk. Using the SOHO/EIT 195 Å images and MDI magnetograms, we select significant dimming and arcade areas and calculate summarized unsigned magnetic fluxes in these regions at the photospheric level. The high relevance of this eruption parameter is displayed by its pronounced correlation with the Forbush decrease (FD) magnitude, which, unlike GMSs, does not depend on the sign of the B z component but is determined by global characteristics of ICMEs. Correlations with the same magnetic flux in the solar source region are found for the GMS intensity (at the first step, without taking into account factors determining the B z component near the Earth), as well as for the temporal intervals between the solar eruptions and the GMS onset and peak times. The larger the magnetic flux, the stronger the FD and GMS intensities are and the shorter the ICME transit time is. The revealed correlations indicate that the main quantitative characteristics of major non-recurrent space weather disturbances are largely determined by measurable parameters of solar eruptions, in particular, by the magnetic flux in dimming areas and arcades, and can be tentatively estimated in advance with a lead time from 1 to 4 days. For GMS intensity, the revealed dependencies allow one to estimate a possible value, which can be expected if the B z component is negative.

  19. Comparison of storm-time changes of geomagnetic field at ground and at MAGSAT altitudes, part 3

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Kane, R. P.; Trivedi, N. B.

    1982-01-01

    The latitudinal distributions of delta H, delta X, delta Y, and delta Z were studied for quiet and disturbed periods. For quiet periods, the average patterns showed some variations common to dusk and dawn, thus indicating probable ground anomaly. However, there were significant differences too between dusk and dawn, indicating considerable diurnal variation effects. Particularly in delta Y, these effects were large and were symmetric about the dip equator. For disturbed day passes, the quiet day patterns were considered as base levels and the latter were subtracted from the former. The resulting residual latitudinal patterns were, on the average, symmetric about the geographical equator. However, individual passes showed considerable north-south asymmetries, probably indicating meanderings of the central plane of the magnetospheric ring current.

  20. Centennial variations in sunspot number, open solar flux, and streamer belt width: 2. Comparison with the geomagnetic data

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Owens, M. J.; Barnard, L.

    2014-07-01

    We investigate the relationship between interdiurnal variation geomagnetic activity indices, IDV and IDV(1d), corrected sunspot number, RC , and the group sunspot number RG . RC uses corrections for both the "Waldmeier discontinuity," as derived in Paper 1, and the "Wolf discontinuity" revealed by Leussu et al. (2013). We show that the simple correlation of the geomagnetic indices with RCn or RGn masks a considerable solar cycle variation. Using IDV(1d) or IDV to predict or evaluate the sunspot numbers, the errors are almost halved by allowing for the fact that the relationship varies over the solar cycle. The results indicate that differences between RC and RG have a variety of causes and are highly unlikely to be attributable to errors in either RG alone, as has recently been assumed. Because it is not known if RC or RG is a better predictor of open flux emergence before 1874, a simple sunspot number composite is suggested which, like RG , enables modeling of the open solar flux for 1610 onward in Paper 3 but maintains the characteristics of RC .

  1. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W.; Taylor, E.R. Jr.; Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  2. Electric Utility Industry Experience with Geomagnetic Disturbances

    SciTech Connect

    Barnes, P.R.

    1991-01-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

  3. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. ); Taylor, E.R. Jr. ); Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  4. Geomagnetic control of the midlatitude daytime foF1 and foF2 long-term variations: Physical interpretation using European observations

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; Perrone, L.

    2016-07-01

    Morphological analysis of Slough/Chilton and Juliusruh foF2 and foF1 long-term variations for the period including recent observations made in the previous paper (PM) has shown that the geomagnetic control is valid in the 21st century, moreover, the dependence on geomagnetic activity has become more pronounced and explicit after 1990. A new method to retrieve thermospheric neutral composition (O, O2, and N2), exospheric temperature Tex, and the total solar EUV flux with λ < 1050 Å from routine foF1 ionosonde observations has been developed to understand the mechanism of this geomagnetic control. The method was tested using CHAMP/STAR neutral gas density measurements. The retrieved for the first time thermospheric parameters at Slough/Chilton and Juliusruh over the period of ~ 5 solar cycles were used to analyze the mechanism of foF1 and foF2 long-term variations in the light of the geomagnetic control concept. It was shown that the control was provided via two channels: [O] and [O]/[N2] variations. Geomagnetic activity presented by 11 year running mean weighted index Ap11y controls the (O/N2)11y ratio variations, while solar activity presented by (F10.7)11y controls atomic oxygen [O]11y variations. Atomic oxygen, the main aeronomic parameter controlling daytime foF1 and foF2 variations, manifests solar cycle and long-term (for some solar cycles) variations with the rising phase in 1965-1985 and the falling phase in 1985-2008. These long-term [O] variations are reflected in foF2 and foF1 long-term variations. The origin of these long-term variations is in the Sun. The empirical thermospheric model Mass Spectrometer Incoherent Scatter-86 driven by Ap and F10.7 indices manifests [O]11y and (O/N2 )11y variations similar to the retrieved ones including the period of deep solar minimum with a very low atomic oxygen concentration in 2008. This confirms the basic idea of the geomagnetic control concept that ionospheric long-term variations have a natural (not

  5. Signatures of solar event at middle and low latitudes in the Europe-African sector, during geomagnetic storms, October 2013

    NASA Astrophysics Data System (ADS)

    Azzouzi, I.; Migoya-Orué, Y.; Amory Mazaudier, C.; Fleury, R.; Radicella, S. M.; Touzani, A.

    2015-11-01

    This paper presents the variability of the total electron content, VTEC, the ROTI index (proxy of the scintillation index) and the transient variations of the Earth's magnetic field associated to the impacts of solar events during October 2013. The observations are from middle and low latitudes in European African longitude sector. During October 2013, there are four solar events reaching the Earth. The two first events, on October 2 and October 8 are CME, the third event on October 14, is a jet of fast solar wind flowing from a solar coronal hole, and the last event on October 30 is a slow solar wind with southward excursions of the Bz component of the interplanetary magnetic field, associated to CME passing near the Earth. For the four events, the variation of VTEC at middle latitudes is the same and presents an increase of VTEC at the time of the impact followed by a decrease of VTEC, lasting one or several days. At low latitudes, no clear common pattern for all the events appears. For the four events the variation of the ROTI index over Africa is different showing the asymmetry between West and East Africa. For the first event, on October 2, the scintillations are not inhibited, for the second and the fourth events on October 8 and 30, the scintillations are inhibited on East Africa and for the third event (high speed solar wind stream), on October 14, the scintillations are inhibited over the whole Africa. The available data allow the full explanation of the observations of October 14, indeed, on this day, there is no post sunset increase of the virtual height h‧F2 at Ascension Island. There is no Pre Reversal Enhancement (PRE) of the eastward electric field; it is this electric field which moves up the F layer, the necessary condition for the existence of scintillation. The analysis of the variations of the Earth's magnetic field at low latitudes highlights the presence of the ionospheric disturbance dynamo on October 14, which produces a decrease of the

  6. Holocene geomagnetic field variations from low latitude site: contribution from the Canary Islands

    NASA Astrophysics Data System (ADS)

    Kissel, Catherine; Laj, Carlo; Rodriguez-Gonzalez, Alejandro; Perez-Torrado, Francisco; Carrracedo, Juan-Carlos; Wandres, Camille

    2016-04-01

    Full geomagnetic vector information was retrieved from 37 lava flows (corresponding to 38 sites because one flow was sampled at two different localities) located in Tenerife and Gran Canaria (Canary Islands). Twenty-eight flows are dated between 1706 AD and about 13200 BC and one is historical. Eight other non-dated flows have stratigraphic links with the dated flows and at the end, our study allowed us to attribute to them archeomagnetic ages based on their paleomagnetic characteristics. Various mineralogical analyses were conducted, giving access to the nature and grain size of the magnetic minerals. Full stepwise (about 13 steps) thermal and AF demagnetizations were conducted on more than 400 samples to determine the paleomagnetic directions. The individual MAD values are on the average about 2° and the mean precision parameter at the flow scale (alpha95) is 4.2°. For paleointensities (PI), we performed the original Thellier and Thellier experiments with a success rate of about 65%, coupling it with the strict set of selection criteria PICRIT-03. The mean PIs at the flow level are based on 3 to 12 independent PI determinations except for one site in which only one reliable determination could be obtained. The obtained data are unique in this area over the 1000-14000 BC period and they are complementary to the dataset obtained in the Canary Islands for the last 500 years. Over the last 3 kyr, they indicate some variability in the local field intensity with a prominent PI peak centered around 600 BC and reaching 80 μT (VADM 16 x 10 ^22 Am ^2), documented by four different flows and associated to significantly easterly deviated declinations. The directional data are rather consistent with the most recent models proposed for that area but the obtained PI indicate that models largely underestimate the paleointensities. Combined with published data obtained from western Africa, Spain, Portugal, Morocco and the Azores within a 2000 km-radius around the Canary

  7. A solar wind-based model of geomagnetic field fluctuations at a mid-latitude station

    NASA Astrophysics Data System (ADS)

    Lotz, S. I.; Cilliers, P. J.

    2015-01-01

    Anomalous quasi-DC currents known as geomagnetically induced currents (GIC), produced in electric power network infrastructure during geomagnetic storms, pose a risk to reliable power transmission and network integrity. The prediction of a geomagnetic field-derived proxy to GIC provides an attractive mitigation technique that does not require changes to network hardware. In this paper we present the development of two artificial neural network based models tasked with predicting variations in the X (northward) and Y (eastward) components of the geomagnetic field at Hermanus, South Africa, with only solar wind plasma and interplanetary magnetic field (IMF) parameters as input. The models are developed by iteratively selecting the best set of solar wind parameters to predict the fluctuations in X and Y. To predict the variation in X, IMF magnitude, solar wind speed, fluctuation in solar wind proton density and a IMF-BZ derived parameter are selected. To predict the variation in Y, IMF-BZ , solar wind speed, and fluctuation in IMF magnitude are selected. The difference between the sets of selected input parameters are explained by the dependence of eastward perturbations in geomagnetic field at middle latitudes on field aligned currents. Model performance is evaluated during three storms in 2012. The onset and main phases of storms are fairly accurately predicted, but in cases where prolonged southward IMF coincides with solar wind parameters that are slowly varying the model fails to predict the observed fluctuations.

  8. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  9. Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMF By

    NASA Astrophysics Data System (ADS)

    Goncharenko, L.; Salah, J.; Crowley, G.; Paxton, L. J.; Zhang, Y.; Coster, A.; Rideout, W.; Huang, C.; Zhang, S.; Reinisch, B.; Taran, V.

    2006-03-01

    We investigate the variations in the thermosphere and ionosphere using multi-instrument observations during the April 2002 period, with a particular focus on periods during small geomagnetic disturbances. Large and long-lasting reductions in the daytime electron density were observed at midlatitudes by incoherent scatter radars, ionosondes, and GPS receivers. These reductions reached 30-50% and were observed over an extended longitudinal area. They propagated to middle latitudes (35-40°N) in the case of a weak geomagnetic disturbance (Kp = 3-) and to low latitudes (0-10°N) in the case of a stronger disturbance (Kp = 5-). Data from the GUVI instrument aboard the TIMED satellite reveal a reduction in the daytime O/N2 ratio in the coincident area. Similar decreases are also predicted by the TIMEGCM/ASPEN model in both O/N2 ratio and electron density, though the magnitude of the decrease from the model is smaller than observed. We suggest that these ionospheric and thermospheric disturbances result from high-latitude energy input and efficient transport of regions with reduced O/N2 to lower latitudes. We discuss the possible role of a strong positive By component of the interplanetary magnetic field in the transport of regions with reduced O/N2.

  10. Using “domino” model to study the secular variation of the geomagnetic dipolar moment

    NASA Astrophysics Data System (ADS)

    Duka, B.; Peqini, K.; De Santis, A.; Pavón-Carrasco, F. J.

    2015-05-01

    Aiming to understand the physical processes underneath the reversals events of geomagnetic field, different numerical models have been conceived. We considered here the so named “domino” model, an Ising-Heisenberg model of interacting magnetic macrospins aligned along a ring. This model was proposed by Mazaud and Laj (1989) and then applied by Mori et al. (2013) to study geomagnetic field reversals. The long series of the axial magnetic moment (dipolar moment or “magnetization”) generated by the “domino” model are empirically studied by varying all model parameters. We present here some results which are slightly different from those given by Mori et al. (2013), and will provide our explanation on the presence of these differences. We also define the set of parameters that supply the longest mean time between reversals. Using this set of parameters, a large number of time series of axial magnetic moment are also generated. After de-noising the fluctuation of these time series and averaging them, we compared the resulting averaged series with the series of axial dipolar magnetic moment values supplied by CALS7k.2, and CALS10k.1b models, finding similar behavior for the all time series. In a similar way, we also compared the averaged 14,000 years long series of dipolar moment with the dipolar magnetic moment obtained by the model SHA.DIF.14k.

  11. Applying "domino" model to study dipolar geomagnetic field reversals and secular variation

    NASA Astrophysics Data System (ADS)

    Peqini, Klaudio; Duka, Bejo

    2014-05-01

    Aiming to understand the physical processes underneath the reversals events of geomagnetic field, different numerical models have been conceived. We considered the so named "domino" model, an Ising-Heisenberg model of interacting magnetic spins aligned along a ring [Mazaud and Laj, EPSL, 1989; Mori et al., arXiv:1110.5062v2, 2012]. We will present here some results which are slightly different from the already published results, and will give our interpretation on the differences. Following the empirical studies of the long series of the axial magnetic moment (dipolar moment or "magnetization") generated by the model varying all model parameters, we defined the set of parameters that supply the longest mean time between reversals. Using this set of parameters, a short time series (about 10,000 years) of axial magnetic moment was generated. After de-noising the fluctuation of this time series, we compared it with the series of dipolar magnetic moment values supplied by CALS10K.1b model for the last 10000 years. We found similar behavior of the both series, even if the "domino" model could not supply a full explanation of the geomagnetic field SV. In a similar way we will compare a 14000 years long series with the dipolar magnetic moment obtained by the model SHA.DIF.14k [Pavón-Carrasco et al., EPSL, 2014].

  12. Marine sediments and Beryllium-10 record of the geomagnetic moment variations of the 20-50ka interval

    NASA Astrophysics Data System (ADS)

    Ménabréaz, L.; Thouveny, N.; Bourles, D. L.

    2012-12-01

    To better constrain the Earth's dipole moment changes at the time of the Laschamp and Mono Lake excursions, we reconstructed the cosmogenic nuclide 10Be production variations in the atmosphere using authigenic 10Be/9Be records measured along two marine sediment sequences from the north-east Atlantic (Portuguese margin) and west-equatorial Pacific (Papua-New Guinea margin) oceans. These two records evidence an almost doubling of the 10Be production at ~41 ka, thus assignable to the geomagnetic dipole low associated to the Laschamp excursion. The compilation of authigenic 10Be/9Be marine records provides a stack which indicates that the global 10Be production rates at 41 ka were enhanced by a ~1.5 factor compared to the average over the 20-50 ka interval. The comparison of this authigenic 10Be/9Be marine stack with the Greenland 10Be flux record (smoothed by 1000-year averaging) evidences a good coherency of the timing and amplitude of 10Be production recorded at high, mid and low latitudes. This confirms that the 10Be overproduction signal has a global significance, as expected from a geomagnetic dipole moment loss. The calibration of the 10Be/9Be stack using absolute virtual dipole moment values provides an independent tool to reconstruct geomagnetic dipole moment variations. This allows computing the loss rate leading to the Laschamp dipole minimum (~ -1.5 x 1022 A.m2.ka-1), which constitutes an interesting criterion to assess the loss rate of the historical field. In constrast with relative paleointensity records and absolute paleointensity data sets, the absence of significant cosmogenic enhancement at the age of 34 ka suggests that the Mono Lake dipole low was not sufficient to trigger a significant cosmogenic overproduction. This demonstrates that if the Mono lake excursion really occurred at that time, the duration and amplitude of the dipole weakening were very limited compared to that of the Laschamp. The 10Be overproduction quantified in this study

  13. Relativistic Electrons Observed at UARS and the Interpretation of their Storm-Associated Intensity Variations

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Goldberg, R. A.; Chenette, D. L.; Gaines, E. E.

    1999-01-01

    The High Energy Particle Spectrometer (HEPS) instrument on the Upper Atmosphere Research Satellite (UARS) provides a database of electron intensities well resolved in energy and pitch-angle. Because of its 57 deg. orbital inclination, UARS encounters with magnetic shells L greater than 2 occur quite far off-equator (B/B (sub 0) greater than 9), corresponding to equatorial pitch angle alpha (sub 0) greater than 20 deg. Data acquired by HEPS (October 1991 through September 1994) span the declining phase of Solar Cycle 22. To reveal the storm-associated time dependence of relativistic electron intensities over the wide range of energies (50 keV to 5 MeV) covered by HEPS, we divide the daily average of the measured spectrum at a given L value (bin width = 0.25) by the corresponding 500-day average and plot the results with a color scale that spans only 2.5 decades. The data show that our off-equatorial electron intensities typically increase with time after the end of recovery phase (not during main phase or recovery phase) of each geomagnetic storm. The delay in off-equatorial energetic electron response and the subsequent lifetime of the corresponding electron flux enhancement seem to increase with particle energy above 300 keV. The trend below 300 keV seems to be opposite, such that the delay varies inversely with electron energy. Our working hypothesis for interpretation is that stormtime radial transport tends to increase the phase-space densities of trapped relativistic electrons but typically leads to a flux increases at specified energies only as the current (as indicated by Dst) decays. Flux enhancements in early recovery phase are greatest for equatorially mirroring electrons, and to pitch-angle anisotropies are initially large. Subsequent pitch-angle diffusion broadens the flux enhancement to particles that mirror off equator, thus gradually increasing low-altitude electron intensities (as detected by HEPS/UARS) on time scales equal to about 20% of

  14. Early Prediction of Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Collins, D.; Feynman, J.

    2000-01-01

    A detailed conceptual design has been developed for a mission and microspacecraft that can provide information needed to answer key questions about the physics of space weather and also both provide and validate a system for early warning of hazardous space weather.

  15. Atmospheric inputs of organic matter to a forested watershed: Variations from storm to storm over the seasons