Sample records for geometric continuum regularization

  1. Emergent space-time via a geometric renormalization method

    NASA Astrophysics Data System (ADS)

    Rastgoo, Saeed; Requardt, Manfred

    2016-12-01

    We present a purely geometric renormalization scheme for metric spaces (including uncolored graphs), which consists of a coarse graining and a rescaling operation on such spaces. The coarse graining is based on the concept of quasi-isometry, which yields a sequence of discrete coarse grained spaces each having a continuum limit under the rescaling operation. We provide criteria under which such sequences do converge within a superspace of metric spaces, or may constitute the basin of attraction of a common continuum limit, which hopefully may represent our space-time continuum. We discuss some of the properties of these coarse grained spaces as well as their continuum limits, such as scale invariance and metric similarity, and show that different layers of space-time can carry different distance functions while being homeomorphic. Important tools in this analysis are the Gromov-Hausdorff distance functional for general metric spaces and the growth degree of graphs or networks. The whole construction is in the spirit of the Wilsonian renormalization group (RG). Furthermore, we introduce a physically relevant notion of dimension on the spaces of interest in our analysis, which, e.g., for regular lattices reduces to the ordinary lattice dimension. We show that this dimension is stable under the proposed coarse graining procedure as long as the latter is sufficiently local, i.e., quasi-isometric, and discuss the conditions under which this dimension is an integer. We comment on the possibility that the limit space may turn out to be fractal in case the dimension is noninteger. At the end of the paper we briefly mention the possibility that our network carries a translocal far order that leads to the concept of wormhole spaces and a scale dependent dimension if the coarse graining procedure is no longer local.

  2. Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams?

    NASA Technical Reports Server (NTRS)

    Harik, Vasyl Michael; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Ranges of validity for the continuum-beam model, the length-scale effects and continuum assumptions are analyzed in the framework of scaling analysis of NT structure. Two coupled criteria for the applicability of the continuum model are presented. Scaling analysis of NT buckling and geometric parameters (e.g., diameter and length) is carried out to determine the key non-dimensional parameters that control the buckling strains and modes of NT buckling. A model applicability map, which represents two classes of NTs, is constructed in the space of non-dimensional parameters. In an analogy with continuum mechanics, a mechanical law of geometric similitude is presented for two classes of beam-like NTs having different geometries. Expressions for the critical buckling loads and strains are tailored for the distinct groups of NTs and compared with the data provided by the molecular dynamics simulations. Implications for molecular dynamics simulations and the NT-based scanning probes are discussed.

  3. Automatic Aircraft Collision Avoidance System and Method

    NASA Technical Reports Server (NTRS)

    Skoog, Mark (Inventor); Hook, Loyd (Inventor); McWherter, Shaun (Inventor); Willhite, Jaimie (Inventor)

    2014-01-01

    The invention is a system and method of compressing a DTM to be used in an Auto-GCAS system using a semi-regular geometric compression algorithm. In general, the invention operates by first selecting the boundaries of the three dimensional map to be compressed and dividing the three dimensional map data into regular areas. Next, a type of free-edged, flat geometric surface is selected which will be used to approximate terrain data of the three dimensional map data. The flat geometric surface is used to approximate terrain data for each regular area. The approximations are checked to determine if they fall within selected tolerances. If the approximation for a specific regular area is within specified tolerance, the data is saved for that specific regular area. If the approximation for a specific area falls outside the specified tolerances, the regular area is divided and a flat geometric surface approximation is made for each of the divided areas. This process is recursively repeated until all of the regular areas are approximated by flat geometric surfaces. Finally, the compressed three dimensional map data is provided to the automatic ground collision system for an aircraft.

  4. A Geometrically Nonlinear Phase Field Theory of Brittle Fracture

    DTIC Science & Technology

    2014-10-01

    of crack propagation. Philos Mag 91:75–95 Sun X, Khaleel M (2004) Modeling of glass fracture damage using continuum damage mechanics -static spherical...elastic fracture mechanics ). Engineering finite element (FE) simula- tions often invoke continuum damage mechanics the- ories, wherein the tangent...stiffness of a material ele- ment degrades as “damage” accumulates.Conventional continuum damage mechanics theories (Clayton and McDowell 2003, 2004; Sun and

  5. Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods

    NASA Technical Reports Server (NTRS)

    Harik, V. M.

    2001-01-01

    Limitations in the validity of the continuum beam model for carbon nanotubes (NTs) and nanorods are examined. Applicability of all assumptions used in the model is restricted by the two criteria for geometric parameters that characterize the structure of NTs. The key non-dimensional parameters that control the NT buckling behavior are derived via dimensional analysis of the nanomechanical problem. A mechanical law of geometric similitude for NT buckling is extended from continuum mechanics for different molecular structures. A model applicability map, where two classes of beam-like NTs are identified, is constructed for distinct ranges of non-dimensional parameters. Expressions for the critical buckling loads and strains are tailored for two classes of NTs and compared with the data provided by the molecular dynamics simulations. copyright 2001 Elsevier Science Ltd. All rights reserved.

  6. Variational analysis of the coupling between a geometrically exact Cosserat rod and an elastic continuum

    NASA Astrophysics Data System (ADS)

    Sander, Oliver; Schiela, Anton

    2014-12-01

    We formulate the static mechanical coupling of a geometrically exact Cosserat rod to a nonlinearly elastic continuum. In this setting, appropriate coupling conditions have to connect a one-dimensional model with director variables to a three-dimensional model without directors. Two alternative coupling conditions are proposed, which correspond to two different configuration trace spaces. For both, we show existence of solutions of the coupled problems, using the direct method of the calculus of variations. From the first-order optimality conditions, we also derive the corresponding conditions for the dual variables. These are then interpreted in mechanical terms.

  7. Microstructural comparison of the kinematics of discrete and continuum dislocations models

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Po, Giacomo

    2015-12-01

    The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.

  8. Discrete structures in continuum descriptions of defective crystals

    PubMed Central

    2016-01-01

    I discuss various mathematical constructions that combine together to provide a natural setting for discrete and continuum geometric models of defective crystals. In particular, I provide a quite general list of ‘plastic strain variables’, which quantifies inelastic behaviour, and exhibit rigorous connections between discrete and continuous mathematical structures associated with crystalline materials that have a correspondingly general constitutive specification. PMID:27002070

  9. Discrete structures in continuum descriptions of defective crystals.

    PubMed

    Parry, G P

    2016-04-28

    I discuss various mathematical constructions that combine together to provide a natural setting for discrete and continuum geometric models of defective crystals. In particular, I provide a quite general list of 'plastic strain variables', which quantifies inelastic behaviour, and exhibit rigorous connections between discrete and continuous mathematical structures associated with crystalline materials that have a correspondingly general constitutive specification. © 2016 The Author(s).

  10. Finsler-Geometric Continuum Mechanics

    DTIC Science & Technology

    2016-05-01

    gravitation and astrophysical applications. Physical Review D. 1977;16:1643–1663. 50. Ozakin A, Yavari A. A geometric theory of thermal stresses...to physical problems of tensile fracture, shear localization, and cavitation in solid bodies. The pseudo-Finsler approach is demonstrated to be more...Weyl-type transformation of the fundamental tensor, analytical and numerical solutions of representative example problems offer new physical insight

  11. Four Data Based Objections to the Regular Education Initiative.

    ERIC Educational Resources Information Center

    Anderegg, M. L.; Vergason, Glenn A.

    One of the changes advocated by the Regular Education Initiative (REI) is the placement of all students with disabilities in regular education classes. This paper analyzes this REI proposal and discusses four objections, with citations to relevant literature: (1) restriction of the continuum of services, which may result in students being put…

  12. Differential porosimetry and permeametry for random porous media.

    PubMed

    Hilfer, R; Lemmer, A

    2015-07-01

    Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ-CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850μm, thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates.

  13. Applicability of the Continuum-Shell Theories to the Mechanics of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Harik, V. M.; Gates, T. S.; Nemeth, M. P.

    2002-01-01

    Validity of the assumptions relating the applicability of continuum shell theories to the global mechanical behavior of carbon nanotubes is examined. The present study focuses on providing a basis that can be used to qualitatively assess the appropriateness of continuum-shell models for nanotubes. To address the effect of nanotube structure on their deformation, all nanotube geometries are divided into four major classes that require distinct models. Criteria for the applicability of continuum models are presented. The key parameters that control the buckling strains and deformation modes of these classes of nanotubes are determined. In an analogy with continuum mechanics, mechanical laws of geometric similitude are presented. A parametric map is constructed for a variety of nanotube geometries as a guide for the applicability of different models. The continuum assumptions made in representing a nanotube as a homogeneous thin shell are analyzed to identify possible limitations of applying shell theories and using their bifurcation-buckling equations at the nano-scale.

  14. Geometric quadratic stochastic operator on countable infinite set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-02-03

    In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.

  15. Regularity and Tresse's theorem for geometric structures

    NASA Astrophysics Data System (ADS)

    Sarkisyan, R. A.; Shandra, I. G.

    2008-04-01

    For any non-special bundle P\\to X of geometric structures we prove that the k-jet space J^k of this bundle with an appropriate k contains an open dense domain U_k on which Tresse's theorem holds. For every s\\geq k we prove that the pre-image \\pi^{-1}(k,s)(U_k) of U_k under the natural projection \\pi(k,s)\\colon J^s\\to J^k consists of regular points. (A point of J^s is said to be regular if the orbits of the group of diffeomorphisms induced from X have locally constant dimension in a neighbourhood of this point.)

  16. Tensor Arithmetic, Geometric and Mathematic Principles of Fluid Mechanics in Implementation of Direct Computational Experiments

    NASA Astrophysics Data System (ADS)

    Bogdanov, Alexander; Khramushin, Vasily

    2016-02-01

    The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.

  17. Geometric and Topological Methods for Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Cardona, Alexander; Contreras, Iván.; Reyes-Lega, Andrés. F.

    2013-05-01

    Introduction; 1. A brief introduction to Dirac manifolds Henrique Bursztyn; 2. Differential geometry of holomorphic vector bundles on a curve Florent Schaffhauser; 3. Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles Sylvie Paycha; 4. Introduction to Feynman integrals Stefan Weinzierl; 5. Iterated integrals in quantum field theory Francis Brown; 6. Geometric issues in quantum field theory and string theory Luis J. Boya; 7. Geometric aspects of the standard model and the mysteries of matter Florian Scheck; 8. Absence of singular continuous spectrum for some geometric Laplacians Leonardo A. Cano García; 9. Models for formal groupoids Iván Contreras; 10. Elliptic PDEs and smoothness of weakly Einstein metrics of Hölder regularity Andrés Vargas; 11. Regularized traces and the index formula for manifolds with boundary Alexander Cardona and César Del Corral; Index.

  18. Defects in crystalline packings of twisted filament bundles. I. Continuum theory of disclinations.

    PubMed

    Grason, Gregory M

    2012-03-01

    We develop the theory of the coupling between in-plane order and out-of-plane geometry in twisted, two-dimensionally ordered filament bundles based on the nonlinear continuum elasticity theory of columnar materials. We show that twisted textures of filament backbones necessarily introduce stresses into the cross-sectional packing of bundles and that these stresses are formally equivalent to the geometrically induced stresses generated in thin elastic sheets that are forced to adopt spherical curvature. As in the case of crystalline order on curved membranes, geometrically induced stresses couple elastically to the presence of topological defects in the in-plane order. We derive the effective theory of multiple disclination defects in the cross section of bundle with a fixed twist and show that above a critical degree of twist, one or more fivefold disclinations is favored in the elastic energy ground state. We study the structure and energetics of multidisclination packings based on models of equilibrium and nonequilibrium cross-sectional order.

  19. A note on the Poisson bracket of 2d smeared fluxes in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Perez, Alejandro

    2017-05-01

    We show that the non-Abelian nature of geometric fluxes—the corner-stone in the definition of quantum geometry in the framework of loop quantum gravity (LQG)—follows directly form the continuum canonical commutations relations of gravity in connection variables and the validity of the Gauss law. The present treatment simplifies previous formulations and thus identifies more clearly the root of the discreteness of geometric operators in LQG. Our statement generalizes to arbitrary gauge theories and relies only on the validity of the Gauss law.

  20. Application of micropolar plasticity to post failure analysis in geomechanics

    NASA Astrophysics Data System (ADS)

    Manzari, Majid T.

    2004-08-01

    A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy-Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright

  1. Temperature distribution in a stellar atmosphere diagnostic basis

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.; Morrison, N. D.

    1973-01-01

    A stellar chromosphere is considered a region where the temperature increases outward and where the temperature structure of the gas controls the shape of the spectral lines. It is shown that lines which have collision-dominated source sink terms, like the Ca(+) and Mg(+) H and K lines, can be used to obtain the distribution of temperature with height from observed line profiles. Intrinsic emission lines and geometrical emission lines are found in spectral regions where the continuum is depressed. In visual regions, where the continuum is not depressed, emission core in absorption lines are attributed to reflections of intrinsic emission lines.

  2. AGN Space Telescope and Optical Reverberation Mapping Project II. Ultraviolet and Optical Continuum Analysis

    NASA Astrophysics Data System (ADS)

    Fausnaugh, Michael; Agn Storm Team

    2015-01-01

    The AGN STORM collaboration recently completed an extensive reverberation mapping campaign, targeting NGC 5548 with observations spanning the hard X-rays to mid-infrared. This campaign represents a massive collaborative effort, with far UV continuum spectrophotometry obtained through an intensive HST COS program, and near-UV/optical broad band photometry obtained from Swift and over 25 ground-based telescopes (in BVR and griz). The campaign spanned the entire 2014 observing season with virtually daily cadence, which allows us to compare with unprecedented accuracy the detailed structure of the observed UV and optical continuum emission signals in this archetypal AGN. We find statistically significant time delays between lightcurves from different wavebands, and this result has implications for the temperature, ionization, and geometric configuration of the AGN's sub-parsec scale environment. We will present the UV/optical continuum lightcurves from this campaign, as well as an analysis of the wavelength-dependent structure of the time delays.

  3. MM Algorithms for Geometric and Signomial Programming

    PubMed Central

    Lange, Kenneth; Zhou, Hua

    2013-01-01

    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates. PMID:24634545

  4. MM Algorithms for Geometric and Signomial Programming.

    PubMed

    Lange, Kenneth; Zhou, Hua

    2014-02-01

    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.

  5. A new computational approach to simulate pattern formation in Paenibacillus dendritiformis bacterial colonies

    NASA Astrophysics Data System (ADS)

    Tucker, Laura Jane

    Under the harsh conditions of limited nutrient and hard growth surface, Paenibacillus dendritiformis in agar plates form two classes of patterns (morphotypes). The first class, called the dendritic morphotype, has radially directed branches. The second class, called the chiral morphotype, exhibits uniform handedness. The dendritic morphotype has been modeled successfully using a continuum model on a regular lattice; however, a suitable computational approach was not known to solve a continuum chiral model. This work details a new computational approach to solving the chiral continuum model of pattern formation in P. dendritiformis. The approach utilizes a random computational lattice and new methods for calculating certain derivative terms found in the model.

  6. SIC-POVMS and MUBS: Geometrical Relationships in Prime Dimension

    NASA Astrophysics Data System (ADS)

    Appleby, D. M.

    2009-03-01

    The paper concerns Weyl-Heisenberg covariant SIC-POVMs (symmetric informationally complete positive operator valued measures) and full sets of MUBs (mutually unbiased bases) in prime dimension. When represented as vectors in generalized Bloch space a SIC-POVM forms a d2-1 dimensional regular simplex (d being the Hilbert space dimension). By contrast, the generalized Bloch vectors representing a full set of MUBs form d+1 mutually orthogonal d-1 dimensional regular simplices. In this paper we show that, in the Weyl-Heisenberg case, there are some simple geometrical relationships between the single SIC-POVM simplex and the d+1 MUB simplices. We go on to give geometrical interpretations of the minimum uncertainty states introduced by Wootters and Sussman, and by Appleby, Dang and Fuchs, and of the fiduciality condition given by Appleby, Dang and Fuchs.

  7. Global regularizing flows with topology preservation for active contours and polygons.

    PubMed

    Sundaramoorthi, Ganesh; Yezzi, Anthony

    2007-03-01

    Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.

  8. Geodesic active fields--a geometric framework for image registration.

    PubMed

    Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2011-05-01

    In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to the best of our knowledge, the first reparametrization invariant registration method introduced in the literature. Thirdly, the multiplicative coupling between the registration term, i.e. local image discrepancy, and the regularization term naturally results in a data-dependent tuning of the regularization strength. Finally, by choosing the metric on the deformation field one can freely interpolate between classic Gaussian and more interesting anisotropic, TV-like regularization.

  9. Literature Reviews on Modeling Internal Geometry of Textile Composites and Rate-Independent Continuum Damage

    NASA Technical Reports Server (NTRS)

    Su-Yuen, Hsu

    2011-01-01

    Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.

  10. Small-amplitude acoustics in bulk granular media

    NASA Astrophysics Data System (ADS)

    Henann, David L.; Valenza, John J., II; Johnson, David L.; Kamrin, Ken

    2013-10-01

    We propose and validate a three-dimensional continuum modeling approach that predicts small-amplitude acoustic behavior of dense-packed granular media. The model is obtained through a joint experimental and finite-element study focused on the benchmark example of a vibrated container of grains. Using a three-parameter linear viscoelastic constitutive relation, our continuum model is shown to quantitatively predict the effective mass spectra in this geometry, even as geometric parameters for the environment are varied. Further, the model's predictions for the surface displacement field are validated mode-by-mode against experiment. A primary observation is the importance of the boundary condition between grains and the quasirigid walls.

  11. Unified formalism for the generalized kth-order Hamilton-Jacobi problem

    NASA Astrophysics Data System (ADS)

    Colombo, Leonardo; de Léon, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2014-08-01

    The geometric formulation of the Hamilton-Jacobi theory enables us to generalize it to systems of higher-order ordinary differential equations. In this work we introduce the unified Lagrangian-Hamiltonian formalism for the geometric Hamilton-Jacobi theory on higher-order autonomous dynamical systems described by regular Lagrangian functions.

  12. A Multiscale Model for Virus Capsid Dynamics

    PubMed Central

    Chen, Changjun; Saxena, Rishu; Wei, Guo-Wei

    2010-01-01

    Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. PMID:20224756

  13. Different approach to the modeling of nonfree particle diffusion

    NASA Astrophysics Data System (ADS)

    Buhl, Niels

    2018-03-01

    A new approach to the modeling of nonfree particle diffusion is presented. The approach uses a general setup based on geometric graphs (networks of curves), which means that particle diffusion in anything from arrays of barriers and pore networks to general geometric domains can be considered and that the (free random walk) central limit theorem can be generalized to cover also the nonfree case. The latter gives rise to a continuum-limit description of the diffusive motion where the effect of partially absorbing barriers is accounted for in a natural and non-Markovian way that, in contrast to the traditional approach, quantifies the absorptivity of a barrier in terms of a dimensionless parameter in the range 0 to 1. The generalized theorem gives two general analytic expressions for the continuum-limit propagator: an infinite sum of Gaussians and an infinite sum of plane waves. These expressions entail the known method-of-images and Laplace eigenfunction expansions as special cases and show how the presence of partially absorbing barriers can lead to phenomena such as line splitting and band gap formation in the plane wave wave-number spectrum.

  14. Continuum limit and symmetries of the periodic gℓ(1|1) spin chain

    NASA Astrophysics Data System (ADS)

    Gainutdinov, A. M.; Read, N.; Saleur, H.

    2013-06-01

    This paper is the first in a series devoted to the study of logarithmic conformal field theories (LCFT) in the bulk. Building on earlier work in the boundary case, our general strategy consists in analyzing the algebraic properties of lattice regularizations (quantum spin chains) of these theories. In the boundary case, a crucial step was the identification of the space of states as a bimodule over the Temperley-Lieb (TL) algebra and the quantum group Uqsℓ(2). The extension of this analysis in the bulk case involves considerable difficulties, since the Uqsℓ(2) symmetry is partly lost, while the TL algebra is replaced by a much richer version (the Jones-Temperley-Lieb — JTL — algebra). Even the simplest case of the gℓ(1|1) spin chain — corresponding to the c=-2 symplectic fermions theory in the continuum limit — presents very rich aspects, which we will discuss in several papers. In this first work, we focus on the symmetries of the spin chain, that is, the centralizer of the JTL algebra in the alternating tensor product of the gℓ(1|1) fundamental representation and its dual. We prove that this centralizer is only a subalgebra of Uqsℓ(2) at q=i that we dub Uqoddsℓ(2). We then begin the analysis of the continuum limit of the JTL algebra: using general arguments about the regularization of the stress-energy tensor, we identify families of JTL elements going over to the Virasoro generators Ln,L in the continuum limit. We then discuss the sℓ(2) symmetry of the (continuum limit) symplectic fermions theory from the lattice and JTL point of view. The analysis of the spin chain as a bimodule over Uqoddsℓ(2) and JTLN is discussed in the second paper of this series.

  15. Discovering Structural Regularity in 3D Geometry

    PubMed Central

    Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.

    2010-01-01

    We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292

  16. Optimal boundary regularity for a singular Monge-Ampère equation

    NASA Astrophysics Data System (ADS)

    Jian, Huaiyu; Li, You

    2018-06-01

    In this paper we study the optimal global regularity for a singular Monge-Ampère type equation which arises from a few geometric problems. We find that the global regularity does not depend on the smoothness of domain, but it does depend on the convexity of the domain. We introduce (a , η) type to describe the convexity. As a result, we show that the more convex is the domain, the better is the regularity of the solution. In particular, the regularity is the best near angular points.

  17. Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Williams, G. Grant; Leonard, Douglas C.; Smith, Paul S.; Filippenko, Alexei V.; Smith, Nathan; Hoffman, Jennifer L.; Huk, Leah; Clubb, Kelsey I.; Silverman, Jeffrey M.; Cenko, S. Bradley; Milne, Peter; Gal-Yam, Avishay; Ben-Ami, Sagi

    2015-11-01

    We present seven epochs of spectropolarimetry of the Type IIb supernova (SN IIb) 2011dh in M51, spanning 86 d of its evolution. The first epoch was obtained 9 d after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P ≈ 0.5 per cent through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H α and He I polarization peak after 30 d and exhibit position angles roughly aligned with the earlier continuum, while O I and Ca II appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of 56Ni from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other SNe IIb.

  18. Coarsening of ion-beam-induced surface ripple in Si: Nonlinear effect vs. geometrical shadowing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Debi Prasad; Chini, Tapas Kumar

    The temporal evolution of a periodic ripple pattern on a silicon surface undergoing erosion by 30 keV argon ion bombardment has been studied for two angles of ion incidence of 60 deg. and 70 deg. using ex situ atomic force microscopy (AFM) in ambient condition. The roughness amplitude (w) grows exponentially with sputtering time for both the angle of ion incidence followed by a slow growth process that saturates eventually with almost constant amplitude. Within the exponential growth regime of amplitude, however, ripple wavelength (l) remains constant initially and increases subsequently as a power law fashion l{proportional_to}t{sup n}, where n=0.47{+-}0.02more » for a 60 deg. angle of ion incidence followed by a saturation. Wavelength coarsening was also observed for 70 deg. but ordering in the periodic ripple pattern is destroyed quickly for 70 deg. as compared to 60 deg. . The ripple orientation, average ripple wavelength at the initial stage of ripple evolution, and the exponential growth of ripple amplitude can be described by a linear continuum model. While the wavelength coarsening could possibly be explained in the light of recent hydrodynamic model based continuum theory, the subsequent saturation of wavelength and amplitude was attributed to the effect of geometrical shadowing. This is an experimental result that probably gives a hint about the upper limit of the energy of ion beam rippling for applying the recently developed type of nonlinear continuum model.« less

  19. Time evolution as refining, coarse graining and entangling

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Steinhaus, Sebastian

    2014-12-01

    We argue that refining, coarse graining and entangling operators can be obtained from time evolution operators. This applies in particular to geometric theories, such as spin foams. We point out that this provides a construction principle for the physical vacuum in quantum gravity theories and more generally allows construction of a (cylindrically) consistent continuum limit of the theory.

  20. Soft Snakes: Construction, Locomotion, and Control

    NASA Astrophysics Data System (ADS)

    Branyan, Callie; Courier, Taylor; Fleming, Chloe; Remaley, Jacquelin; Hatton, Ross; Menguc, Yigit

    We fabricated modular bidirectional silicone pneumatic actuators to build a soft snake robot, applying geometric models of serpenoid swimmers to identify theoretically optimal gaits to realize serpentine locomotion. With the introduction of magnetic connections and elliptical cross-sections in fiber-reinforced modules, we can vary the number of continuum segments in the snake body to achieve more supple serpentine motion in a granular media. The performance of these gaits is observed using a motion capture system and efficiency is assessed in terms of pressure input and net displacement. These gaits are optimized using our geometric soap-bubble method of gait optimization, demonstrating the applicability of this tool to soft robot control and coordination.

  1. Drug–drug interaction of microdose and regular-dose omeprazole with a CYP2C19 inhibitor and inducer

    PubMed Central

    Park, Gab-jin; Bae, Soo Hyeon; Park, Wan-Su; Han, Seunghoon; Park, Min-Ho; Shin, Seok-Ho; Shin, Young G; Yim, Dong-Seok

    2017-01-01

    Purpose A microdose drug–drug interaction (DDI) study may be a valuable tool for anticipating drug interaction at therapeutic doses. This study aimed to compare the magnitude of DDIs at microdoses and regular doses to explore the applicability of a microdose DDI study. Patients and methods Six healthy male volunteer subjects were enrolled into each DDI study of omeprazole (victim) and known perpetrators: fluconazole (inhibitor) and rifampin (inducer). For both studies, the microdose (100 μg, cold compound) and the regular dose (20 mg) of omeprazole were given at days 0 and 1, respectively. On days 2–9, the inhibitor or inducer was given daily, and the microdose and regular dose of omeprazole were repeated at days 8 and 9, respectively. Full omeprazole pharmacokinetic samplings were performed at days 0, 1, 8, and 9 of both studies for noncompartmental analysis. Results The magnitude of the DDI, the geometric mean ratios (with perpetrator/omeprazole only) of maximum concentration (Cmax) and area under the curve to the last measurement (AUCt) of the microdose and the regular dose were compared. The geometric mean ratios in the inhibition study were: 2.17 (micro) and 2.68 (regular) for Cmax, and 4.07 (micro), 4.33 (regular) for AUCt. For the induction study, they were 0.26 (micro) and 0.21 (regular) for Cmax, and 0.16 (micro) and 0.15 (regular) for AUCt. There were no significant statistical differences in the magnitudes of DDIs between microdose and regular-dose conditions, regardless of induction or inhibition. Conclusion Our results may be used as partial evidence that microdose DDI studies may replace regular-dose studies, or at least be used for DDI-screening purposes. PMID:28408803

  2. Drug-drug interaction of microdose and regular-dose omeprazole with a CYP2C19 inhibitor and inducer.

    PubMed

    Park, Gab-Jin; Bae, Soo Hyeon; Park, Wan-Su; Han, Seunghoon; Park, Min-Ho; Shin, Seok-Ho; Shin, Young G; Yim, Dong-Seok

    2017-01-01

    A microdose drug-drug interaction (DDI) study may be a valuable tool for anticipating drug interaction at therapeutic doses. This study aimed to compare the magnitude of DDIs at microdoses and regular doses to explore the applicability of a microdose DDI study. Six healthy male volunteer subjects were enrolled into each DDI study of omeprazole (victim) and known perpetrators: fluconazole (inhibitor) and rifampin (inducer). For both studies, the microdose (100 μg, cold compound) and the regular dose (20 mg) of omeprazole were given at days 0 and 1, respectively. On days 2-9, the inhibitor or inducer was given daily, and the microdose and regular dose of omeprazole were repeated at days 8 and 9, respectively. Full omeprazole pharmacokinetic samplings were performed at days 0, 1, 8, and 9 of both studies for noncompartmental analysis. The magnitude of the DDI, the geometric mean ratios (with perpetrator/omeprazole only) of maximum concentration (C max ) and area under the curve to the last measurement (AUC t ) of the microdose and the regular dose were compared. The geometric mean ratios in the inhibition study were: 2.17 (micro) and 2.68 (regular) for C max , and 4.07 (micro), 4.33 (regular) for AUC t . For the induction study, they were 0.26 (micro) and 0.21 (regular) for C max , and 0.16 (micro) and 0.15 (regular) for AUC t . There were no significant statistical differences in the magnitudes of DDIs between microdose and regular-dose conditions, regardless of induction or inhibition. Our results may be used as partial evidence that microdose DDI studies may replace regular-dose studies, or at least be used for DDI-screening purposes.

  3. Investigation of solvent polarity effect on molecular structure and vibrational spectrum of xanthine with the aid of quantum chemical computations.

    PubMed

    Polat, Turgay; Yıldırım, Gurcan

    2014-04-05

    The main scope of this study is to determine the effects of 8 solvents on the geometric structure and vibrational spectra of the title compound, xanthine, by means of the DFT/B3LYP level of theory in the combination with the polarizable conductor continuum model (CPCM) for the first time. After determination of the most-steady state (favored structure) of the xanthine molecule, the role of the solvent polarity on the SCF energy (for the molecule stability), atomic charges (for charge distribution) and dipole moments (for molecular charge transfer) belonging to tautomer is discussed in detail. The results obtained indicate not only the presence of the hydrogen bonding and strong intra-molecular charge transfer (ICT) in the compound but the increment of the molecule stability with the solvent polarity, as well. Moreover, it is noted that the optimized geometric parameters and the theoretical vibrational frequencies are in good agreement with the available experimental results found in the literature. In fact, the correlations between the experimental and theoretical findings for the molecular structures improve with the enhancement of the solvent polarity. At the same time, the dimer forms of the xanthine compound are simulated to describe the effect of intermolecular hydrogen bonding on the molecular geometry and vibrational frequencies. It is found that the CO and NH stretching vibrations shift regularly to lower frequency value with higher IR intensity as the dielectric medium enhances systematically due to the intermolecular NH⋯O hydrogen bonds. Theoretical vibrational spectra are also assigned based on the potential energy distribution (PED) using the VEDA 4 program. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The N-Simplex and Its Generalizations towards Fractals

    ERIC Educational Resources Information Center

    Kosi-Ulbl, Irena; Pagon, Dusan

    2002-01-01

    Nature is full of different crystals and many of them have shapes of regular geometric objects. Those in which the fractal structure of a geometric object can be recognized are especially unusual. In this paper a generalization of one of these shapes is described: a formation, based on an n-dimensional simplex. The construction of an n-dimensional…

  5. Balancing Selection in Species with Separate Sexes: Insights from Fisher’s Geometric Model

    PubMed Central

    Connallon, Tim; Clark, Andrew G.

    2014-01-01

    How common is balancing selection, and what fraction of phenotypic variance is attributable to balanced polymorphisms? Despite decades of research, answers to these questions remain elusive. Moreover, there is no clear theoretical prediction about the frequency with which balancing selection is expected to arise within a population. Here, we use an extension of Fisher’s geometric model of adaptation to predict the probability of balancing selection in a population with separate sexes, wherein polymorphism is potentially maintained by two forms of balancing selection: (1) heterozygote advantage, where heterozygous individuals at a locus have higher fitness than homozygous individuals, and (2) sexually antagonistic selection (a.k.a. intralocus sexual conflict), where the fitness of each sex is maximized by different genotypes at a locus. We show that balancing selection is common under biologically plausible conditions and that sex differences in selection or sex-by-genotype effects of mutations can each increase opportunities for balancing selection. Although heterozygote advantage and sexual antagonism represent alternative mechanisms for maintaining polymorphism, they mutually exist along a balancing selection continuum that depends on population and sex-specific parameters of selection and mutation. Sexual antagonism is the dominant mode of balancing selection across most of this continuum. PMID:24812306

  6. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization

    PubMed Central

    Teichtmeister, S.; Aldakheel, F.

    2016-01-01

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic–plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. PMID:27002069

  7. Gender and Racial Differences: Development of Sixth Grade Students' Geometric Spatial Visualization within an Earth/Space Unit

    ERIC Educational Resources Information Center

    Jackson, Christa; Wilhelm, Jennifer Anne; Lamar, Mary; Cole, Merryn

    2015-01-01

    This study investigated sixth-grade middle-level students' geometric spatial development by gender and race within and between control and experimental groups at two middle schools as they participated in an Earth/Space unit. The control group utilized a regular Earth/Space curriculum and the experimental group used a National Aeronautics and…

  8. A study of the continuum of integration of mathematics content with science concepts at the middle school level in West Virginia

    NASA Astrophysics Data System (ADS)

    Meisel, Edna Marie

    The purpose of this study was to examine the practices and perceptions of regular education seventh grade middle school mathematics teachers in West Virginia concerning the integration of mathematics objectives with science concepts. In addition, this study also emphasized the use of integrated curriculum continuum models to study mathematics teachers' practices and perceptions for teaching mathematics objectives in connection with science concepts. It was argued that the integrated curriculum continuum model can be used to help educators begin to form a common definition of integrated curriculum. The population was described as the regular education seventh grade middle school mathematics teachers in West Virginia. The entire population (N = 173) was used as the participants in this study. Data was collected using an integrated curriculum practices and perceptions survey constructed by the researcher. This was a descriptive study that incorporated the Chi Square statistic to show trends in teacher practices and perceptions. Also, an ex post facto design, that incorporated the Mann-Whitney U statistic, was used to compare practices and perceptions between teachers grouped according to factors that influence teaching practices and perceptions. These factors included teaching certificate endorsement and teacher professional preparation. Results showed that the regular education seventh grade middle school mathematics teachers of West Virginia are teaching mathematics objectives mainly at a discipline-based level with no formal attempt for integration with science concepts. However, these teachers perceived that many of the mathematics objectives should be taught at varying levels of integration with science concepts. It was also shown that teachers who experienced professional preparation courses that emphasized integrated curriculum courses did teach many of the mathematics objectives at higher levels of integration with science than those teachers who did not experience integrated curriculum courses.

  9. Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion

    NASA Astrophysics Data System (ADS)

    McBride, A. T.; Javili, A.; Steinmann, P.; Bargmann, S.

    2011-10-01

    Surfaces can have a significant influence on the overall response of a continuum body but are often neglected or accounted for in an ad hoc manner. This work is concerned with a nonlinear continuum thermomechanics formulation which accounts for surface structures and includes the effects of diffusion and viscoelasticity. The formulation is presented within a thermodynamically consistent framework and elucidates the nature of the coupling between the various fields, and the surface and the bulk. Conservation principles are used to determine the form of the constitutive relations and the evolution equations. Restrictions on the jump in the temperature and the chemical potential between the surface and the bulk are not a priori assumptions, rather they arise from the reduced dissipation inequality on the surface and are shown to be satisfiable without imposing the standard assumptions of thermal and chemical slavery. The nature of the constitutive relations is made clear via an example wherein the form of the Helmholtz energy is explicitly given.

  10. Optimal control of underactuated mechanical systems: A geometric approach

    NASA Astrophysics Data System (ADS)

    Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela

    2010-08-01

    In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.

  11. On a Continuum Limit for Loop Quantum Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corichi, Alejandro; Center for Fundamental Theory, Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park PA 16802; Vukasinac, Tatjana

    2008-03-06

    The use of non-regular representations of the Heisenberg-Weyl commutation relations has proved to be useful for studying conceptual and technical issues in quantum gravity. Of particular relevance is the study of Loop Quantum Cosmology (LQC), symmetry reduced theory that is related to Loop Quantum Gravity, and that is based on a non-regular, polymeric representation. Recently, a soluble model was used by Ashtekar, Corichi and Singh to study the relation between Loop Quantum Cosmology and the standard Wheeler-DeWitt theory and, in particular, the passage to the limit in which the auxiliary parameter (interpreted as ''quantum geometry discreetness'') is sent to zeromore » in hope to get rid of this 'regulator' that dictates the LQC dynamics at each 'scale'. In this note we outline the first steps toward reformulating this question within the program developed by the authors for studying the continuum limit of polymeric theories, which was successfully applied to simple systems such as a Simple Harmonic Oscillator.« less

  12. Four years of Landsat-7 on-orbit geometric calibration and performance

    USGS Publications Warehouse

    Lee, D.S.; Storey, James C.; Choate, M.J.; Hayes, R.W.

    2004-01-01

    Unlike its predecessors, Landsat-7 has undergone regular geometric and radiometric performance monitoring and calibration since launch in April 1999. This ongoing activity, which includes issuing quarterly updates to calibration parameters, has generated a wealth of geometric performance data over the four-year on-orbit period of operations. A suite of geometric characterization (measurement and evaluation procedures) and calibration (procedures to derive improved estimates of instrument parameters) methods are employed by the Landsat-7 Image Assessment System to maintain the geometric calibration and to track specific aspects of geometric performance. These include geodetic accuracy, band-to-band registration accuracy, and image-to-image registration accuracy. These characterization and calibration activities maintain image product geometric accuracy at a high level - by monitoring performance to determine when calibration is necessary, generating new calibration parameters, and verifying that new parameters achieve desired improvements in accuracy. Landsat-7 continues to meet and exceed all geometric accuracy requirements, although aging components have begun to affect performance.

  13. [Continuity and discontinuity of the geomerida: the bionomic and biotic aspects].

    PubMed

    Kafanov, A I

    2005-01-01

    The view of the spatial structure of the geomerida (Earth's life cover) as a continuum that prevails in modern phytocoenology is mostly determined by a physiognomic (landscape-bionomic) discrimination of vegetation components. In this connection, geography of life forms appears as subject of the landscapebionomic biogeography. In zoocoenology there is a tendency of synthesis of alternative concepts based on the assumption that there are no absolute continuum and absolute discontinuum in the organic nature. The problem of continuum and discontinuum of living cover being problem of scale aries from fractal structure of geomerida. This problem arises from fractal nature of the spatial structure of geomerida. The continuum mainly belongs to regularities of topological order. At regional and subregional scale the continuum of biochores is rather rare. The objective evidences of relative discontinuity of the living cover are determined by significant alterations of species diversity at the regional, subregional and even topological scale Alternatively to conventionally discriminated units in physionomically continuous vegetation, the same biotic complexes, represented as operational units of biogeographical and biocenological zoning, are distinguished repeatedly and independently by different researchers. An area occupied by certain flora (fauna, biota) could be considered as elementary unit of biotic diversity (elementary biotic complex).

  14. Correlation applied to the recognition of regular geometric figures

    NASA Astrophysics Data System (ADS)

    Lasso, William; Morales, Yaileth; Vega, Fabio; Díaz, Leonardo; Flórez, Daniel; Torres, Cesar

    2013-11-01

    It developed a system capable of recognizing of regular geometric figures, the images are taken by the software automatically through a process of validating the presence of figure to the camera lens, the digitized image is compared with a database that contains previously images captured, to subsequently be recognized and finally identified using sonorous words referring to the name of the figure identified. The contribution of system set out is the fact that the acquisition of data is done in real time and using a spy smart glasses with usb interface offering an system equally optimal but much more economical. This tool may be useful as a possible application for visually impaired people can get information of surrounding environment.

  15. Research and Demonstration Projects: Programs for Gifted, January 1990-1991.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Div. of Special Education.

    Thirteen research and demonstration projects developed by Ohio school districts for the education of gifted students are described. The programs involve inservice teacher education; interdepartmental teamwork; collaboration with community and university resources; a continuum of services for gifted children in regular classrooms; learning options…

  16. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418

  17. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization.

    PubMed

    Miehe, C; Teichtmeister, S; Aldakheel, F

    2016-04-28

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).

  18. Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papari, G. P.; Glatz, A.; Carillo, F.

    Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less

  19. Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.

    DOE PAGES

    Papari, G. P.; Glatz, A.; Carillo, F.; ...

    2016-12-23

    Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less

  20. Mainstreaming: Sharing Ideas, Strategies, Materials, Techniques.

    ERIC Educational Resources Information Center

    Hillside School, Cushing, OK.

    The manual provides teaching approaches based on a model of least to highest modification of instruction, which may be used for a continuum of special education placements ranging from regular classroom through hospital settings. The first section on adaptive techniques (requiring the least modification) includes suggestions to adjust time for…

  1. Investigation of the hysteresis phenomena in steady shock reflection using kinetic and continuum methods

    NASA Astrophysics Data System (ADS)

    Ivanov, M.; Zeitoun, D.; Vuillon, J.; Gimelshein, S.; Markelov, G.

    1996-05-01

    The problem of transition of planar shock waves over straight wedges in steady flows from regular to Mach reflection and back was numerically studied by the DSMC method for solving the Boltzmann equation and finite difference method with FCT algorithm for solving the Euler equations. It is shown that the transition from regular to Mach reflection takes place in accordance with detachment criterion while the opposite transition occurs at smaller angles. The hysteresis effect was observed at increasing and decreasing shock wave angle.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itagaki, Masafumi; Miyoshi, Yoshinori; Hirose, Hideyuki

    A procedure is presented for the determination of geometric buckling for regular polygons. A new computation technique, the multiple reciprocity boundary element method (MRBEM), has been applied to solve the one-group neutron diffusion equation. The main difficulty in applying the ordinary boundary element method (BEM) to neutron diffusion problems has been the need to compute a domain integral, resulting from the fission source. The MRBEM has been developed for transforming this type of domain integral into an equivalent boundary integral. The basic idea of the MRBEM is to apply repeatedly the reciprocity theorem (Green's second formula) using a sequence ofmore » higher order fundamental solutions. The MRBEM requires discretization of the boundary only rather than of the domain. This advantage is useful for extensive survey analyses of buckling for complex geometries. The results of survey analyses have indicated that the general form of geometric buckling is B[sub g][sup 2] = (a[sub n]/R[sub c])[sup 2], where R[sub c] represents the radius of the circumscribed circle of the regular polygon under consideration. The geometric constant A[sub n] depends on the type of regular polygon and takes the value of [pi] for a square and 2.405 for a circle, an extreme case that has an infinite number of sides. Values of a[sub n] for a triangle, pentagon, hexagon, and octagon have been calculated as 4.190, 2.281, 2.675, and 2.547, respectively.« less

  3. Fitting C 2 Continuous Parametric Surfaces to Frontiers Delimiting Physiologic Structures

    PubMed Central

    Bayer, Jason D.

    2014-01-01

    We present a technique to fit C 2 continuous parametric surfaces to scattered geometric data points forming frontiers delimiting physiologic structures in segmented images. Such mathematical representation is interesting because it facilitates a large number of operations in modeling. While the fitting of C 2 continuous parametric curves to scattered geometric data points is quite trivial, the fitting of C 2 continuous parametric surfaces is not. The difficulty comes from the fact that each scattered data point should be assigned a unique parametric coordinate, and the fit is quite sensitive to their distribution on the parametric plane. We present a new approach where a polygonal (quadrilateral or triangular) surface is extracted from the segmented image. This surface is subsequently projected onto a parametric plane in a manner to ensure a one-to-one mapping. The resulting polygonal mesh is then regularized for area and edge length. Finally, from this point, surface fitting is relatively trivial. The novelty of our approach lies in the regularization of the polygonal mesh. Process performance is assessed with the reconstruction of a geometric model of mouse heart ventricles from a computerized tomography scan. Our results show an excellent reproduction of the geometric data with surfaces that are C 2 continuous. PMID:24782911

  4. Finsler-Geometric Continuum Dynamics and Shock Compression

    DTIC Science & Technology

    2018-01-01

    An important mathe - matical device used in the current derivations centers on the divergence theorem of Finsler geometry first presented by Rund...carbide ceramic. Philos Mag 92:2860–2893 Clayton JD (2012b)On anholonomic deformation, geometry, and differentiation. Math Mech Solids 17:702–735 Clayton... Math Phys 2015:828475 Clayton JD (2015b) Penetration resistance of armor ceramics: dimensional analysis and property correlations. Int J Impact Eng

  5. Balancing selection in species with separate sexes: insights from Fisher's geometric model.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2014-07-01

    How common is balancing selection, and what fraction of phenotypic variance is attributable to balanced polymorphisms? Despite decades of research, answers to these questions remain elusive. Moreover, there is no clear theoretical prediction about the frequency with which balancing selection is expected to arise within a population. Here, we use an extension of Fisher's geometric model of adaptation to predict the probability of balancing selection in a population with separate sexes, wherein polymorphism is potentially maintained by two forms of balancing selection: (1) heterozygote advantage, where heterozygous individuals at a locus have higher fitness than homozygous individuals, and (2) sexually antagonistic selection (a.k.a. intralocus sexual conflict), where the fitness of each sex is maximized by different genotypes at a locus. We show that balancing selection is common under biologically plausible conditions and that sex differences in selection or sex-by-genotype effects of mutations can each increase opportunities for balancing selection. Although heterozygote advantage and sexual antagonism represent alternative mechanisms for maintaining polymorphism, they mutually exist along a balancing selection continuum that depends on population and sex-specific parameters of selection and mutation. Sexual antagonism is the dominant mode of balancing selection across most of this continuum. Copyright © 2014 by the Genetics Society of America.

  6. Catalytic dimer nanomotors: continuum theory and microscopic dynamics.

    PubMed

    Reigh, Shang Yik; Kapral, Raymond

    2015-04-28

    Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.

  7. IUE observations of the 1987 superoutburst of the dwarf nova Z Cha

    NASA Technical Reports Server (NTRS)

    Harlaftis, E.; Hassall, B. J. M.; Sonneborn, G.; Naylor, T.; Charles, P. A.

    1988-01-01

    Low resolution IUE observations of the dwarf nova Z Cha during superoutburst are presented. These cover most of the development of the outburst and have sufficient time resolution to probe continuum and line behavior on orbital phase. The observed modulation on this phase is very similar to that observed in the related object OY Car. The results imply the presence of a cool spot on the edge of the edge of the accretion disk, which periodically occults the brighter inner disk. Details of the line behavior suggest that the line originated in an extended wind-emitting region. In contrast to archive spectra obtained in normal outburst, the continuum is fainter and redder, indicating that the entire superoutburst disk may be geometrically thicker than during a normal outburst.

  8. Ideal regularization for learning kernels from labels.

    PubMed

    Pan, Binbin; Lai, Jianhuang; Shen, Lixin

    2014-08-01

    In this paper, we propose a new form of regularization that is able to utilize the label information of a data set for learning kernels. The proposed regularization, referred to as ideal regularization, is a linear function of the kernel matrix to be learned. The ideal regularization allows us to develop efficient algorithms to exploit labels. Three applications of the ideal regularization are considered. Firstly, we use the ideal regularization to incorporate the labels into a standard kernel, making the resulting kernel more appropriate for learning tasks. Next, we employ the ideal regularization to learn a data-dependent kernel matrix from an initial kernel matrix (which contains prior similarity information, geometric structures, and labels of the data). Finally, we incorporate the ideal regularization to some state-of-the-art kernel learning problems. With this regularization, these learning problems can be formulated as simpler ones which permit more efficient solvers. Empirical results show that the ideal regularization exploits the labels effectively and efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Computational models of airway branching morphogenesis.

    PubMed

    Varner, Victor D; Nelson, Celeste M

    2017-07-01

    The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Geometric Approach to Modeling Microstructurally Small Fatigue Crack Formation. 2; Simulation and Prediction of Crack Nucleation in AA 7075-T651

    NASA Technical Reports Server (NTRS)

    Hochhalter, Jake D.; Littlewood, David J.; Christ, Robert J., Jr.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.; Maniatty, Antionette M.

    2010-01-01

    The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.

  11. Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism

    NASA Astrophysics Data System (ADS)

    Trugenberger, Carlo A.

    2015-12-01

    Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.

  12. A Gifted Child Education Model that Seems to Be Working in South Africa.

    ERIC Educational Resources Information Center

    Mentz, Hendrik Jeremy

    1989-01-01

    The coordinator of gifted child education in 200 preprimary, primary, and high schools in South Africa describes parameters of giftedness and the four area enrichment model which offers a continuum of services from enrichment in the regular class to team development of special programing for the potential genius. (DB)

  13. Determining decision thresholds and evaluating indicators when conservation status is measured as a continuum.

    PubMed

    Connors, B M; Cooper, A B

    2014-12-01

    Categorization of the status of populations, species, and ecosystems underpins most conservation activities. Status is often based on how a system's current indicator value (e.g., change in abundance) relates to some threshold of conservation concern. Receiver operating characteristic (ROC) curves can be used to quantify the statistical reliability of indicators of conservation status and evaluate trade-offs between correct (true positive) and incorrect (false positive) classifications across a range of decision thresholds. However, ROC curves assume a discrete, binary relationship between an indicator and the conservation status it is meant to track, which is a simplification of the more realistic continuum of conservation status, and may limit the applicability of ROC curves in conservation science. We describe a modified ROC curve that treats conservation status as a continuum rather than a discrete state. We explored the influence of this continuum and typical sources of variation in abundance that can lead to classification errors (i.e., random variation and measurement error) on the true and false positive rates corresponding to varying decision thresholds and the reliability of change in abundance as an indicator of conservation status, respectively. We applied our modified ROC approach to an indicator of endangerment in Pacific salmon (Oncorhynchus nerka) (i.e., percent decline in geometric mean abundance) and an indicator of marine ecosystem structure and function (i.e., detritivore biomass). Failure to treat conservation status as a continuum when choosing thresholds for indicators resulted in the misidentification of trade-offs between true and false positive rates and the overestimation of an indicator's reliability. We argue for treating conservation status as a continuum when ROC curves are used to evaluate decision thresholds in indicators for the assessment of conservation status. © 2014 Society for Conservation Biology.

  14. Image segmentation with a novel regularized composite shape prior based on surrogate study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu

    Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulatedmore » in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.« less

  15. Group-sparse representation with dictionary learning for medical image denoising and fusion.

    PubMed

    Li, Shutao; Yin, Haitao; Fang, Leyuan

    2012-12-01

    Recently, sparse representation has attracted a lot of interest in various areas. However, the standard sparse representation does not consider the intrinsic structure, i.e., the nonzero elements occur in clusters, called group sparsity. Furthermore, there is no dictionary learning method for group sparse representation considering the geometrical structure of space spanned by atoms. In this paper, we propose a novel dictionary learning method, called Dictionary Learning with Group Sparsity and Graph Regularization (DL-GSGR). First, the geometrical structure of atoms is modeled as the graph regularization. Then, combining group sparsity and graph regularization, the DL-GSGR is presented, which is solved by alternating the group sparse coding and dictionary updating. In this way, the group coherence of learned dictionary can be enforced small enough such that any signal can be group sparse coded effectively. Finally, group sparse representation with DL-GSGR is applied to 3-D medical image denoising and image fusion. Specifically, in 3-D medical image denoising, a 3-D processing mechanism (using the similarity among nearby slices) and temporal regularization (to perverse the correlations across nearby slices) are exploited. The experimental results on 3-D image denoising and image fusion demonstrate the superiority of our proposed denoising and fusion approaches.

  16. River meanders

    USGS Publications Warehouse

    Leopold, Luna Bergere; Langbein, Walter Basil

    1966-01-01

    The striking geometric regularity of a winding river is no accident. Meanders appear to be the form in which a river does the least work in turning; hence they are the most probable form a river can take

  17. Continuum Reverberation Mapping of AGN Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fausnaugh, Michael M.; Peterson, Bradley M.; Starkey, David A.; Horne, Keith; AGN Storm Collaboration

    2017-12-01

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3 to 3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T˜ R^{-3/4} expected for a standard thin disk . Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminsoity AGN.

  18. Global Regularity of 2D Density Patches for Inhomogeneous Navier-Stokes

    NASA Astrophysics Data System (ADS)

    Gancedo, Francisco; García-Juárez, Eduardo

    2018-07-01

    This paper is about Lions' open problem on density patches (Lions in Mathematical topics in fluid mechanics. Vol. 1, volume 3 of Oxford Lecture series in mathematics and its applications, Clarendon Press, Oxford University Press, New York, 1996): whether or not inhomogeneous incompressible Navier-Stokes equations preserve the initial regularity of the free boundary given by density patches. Using classical Sobolev spaces for the velocity, we first establish the propagation of {C^{1+γ}} regularity with {0 < γ < 1} in the case of positive density. Furthermore, we go beyond this to show the persistence of a geometrical quantity such as the curvature. In addition, we obtain a proof for {C^{2+γ}} regularity.

  19. The relaxed-polar mechanism of locally optimal Cosserat rotations for an idealized nanoindentation and comparison with 3D-EBSD experiments

    NASA Astrophysics Data System (ADS)

    Fischle, Andreas; Neff, Patrizio; Raabe, Dierk

    2017-08-01

    The rotation {{polar}}(F) \\in {{SO}}(3) arises as the unique orthogonal factor of the right polar decomposition F = {{polar}}(F) U of a given invertible matrix F \\in {{GL}}^+(3). In the context of nonlinear elasticity Grioli (Boll Un Math Ital 2:252-255, 1940) discovered a geometric variational characterization of {{polar}}(F) as a unique energy-minimizing rotation. In preceding works, we have analyzed a generalization of Grioli's variational approach with weights (material parameters) μ > 0 and μ _c ≥ 0 (Grioli: μ = μ _c). The energy subject to minimization coincides with the Cosserat shear-stretch contribution arising in any geometrically nonlinear, isotropic and quadratic Cosserat continuum model formulated in the deformation gradient field F :=\

  20. Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexey B.; Antman, Stuart S.

    2017-12-01

    This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.

  1. Enhancing Collaboration between School Nurses and School Psychologists When Providing a Continuum of Care for Children with Medical Needs

    ERIC Educational Resources Information Center

    Hernández Finch, Maria E.; Finch, W. Holmes; Mcintosh, Constance E.; Thomas, Cynthia; Maughan, Erin

    2015-01-01

    Students who are medically involved often require sustained related services, regular care coordination, and case management to ensure that they are receiving a free and appropriate public education. Exploring the collaboration efforts of school psychologists and school nurses for meeting the educational and related services needs of these…

  2. Life-times of quantum resonances through the Geometrical Phase Propagator Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlou, G.E.; Karanikas, A.I.; Diakonos, F.K., E-mail: fdiakono@phys.uoa.gr

    We employ the recently introduced Geometric Phase Propagator Approach (GPPA) (Diakonos et al., 2012) to develop an improved perturbative scheme for the calculation of life times in driven quantum systems. This incorporates a resummation of the contributions of virtual processes starting and ending at the same state in the considered time interval. The proposed procedure allows for a strict determination of the conditions leading to finite life times in a general driven quantum system by isolating the resummed terms in the perturbative expansion contributing to their generation. To illustrate how the derived conditions apply in practice, we consider the effect ofmore » driving in a system with purely discrete energy spectrum, as well as in a system for which the eigenvalue spectrum contains a continuous part. We show that in the first case, when the driving contains a dense set of frequencies acting as a noise to the system, the corresponding bound states acquire a finite life time. When the energy spectrum contains also a continuum set of eigenvalues then the bound states, due to the driving, couple to the continuum and become quasi-bound resonances. The benchmark of this change is the appearance of a Fano-type peak in the associated transmission profile. In both cases the corresponding life-time can be efficiently estimated within the reformulated GPPA approach.« less

  3. Continuum limit of Bk from 2+1 flavor domain wall QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni, A.; T. Izubuchi, et al.

    2011-07-01

    We determine the neutral kaon mixing matrix element B{sub K} in the continuum limit with 2+1 flavors of domain wall fermions, using the Iwasaki gauge action at two different lattice spacings. These lattice fermions have near exact chiral symmetry and therefore avoid artificial lattice operator mixing. We introduce a significant improvement to the conventional nonperturbative renormalization (NPR) method in which the bare matrix elements are renormalized nonperturbatively in the regularization invariant momentum scheme (RI-MOM) and are then converted into the MS{sup -} scheme using continuum perturbation theory. In addition to RI-MOM, we introduce and implement four nonexceptional intermediate momentum schemesmore » that suppress infrared nonperturbative uncertainties in the renormalization procedure. We compute the conversion factors relating the matrix elements in this family of regularization invariant symmetric momentum schemes (RI-SMOM) and MS{sup -} at one-loop order. Comparison of the results obtained using these different intermediate schemes allows for a more reliable estimate of the unknown higher-order contributions and hence for a correspondingly more robust estimate of the systematic error. We also apply a recently proposed approach in which twisted boundary conditions are used to control the Symanzik expansion for off-shell vertex functions leading to a better control of the renormalization in the continuum limit. We control chiral extrapolation errors by considering both the next-to-leading order SU(2) chiral effective theory, and an analytic mass expansion. We obtain B{sub K}{sup MS{sup -}} (3 GeV) = 0.529(5){sub stat}(15){sub {chi}}(2){sub FV}(11){sub NPR}. This corresponds to B{sup -}{sub K}{sup RGI{sup -}} = 0.749(7){sub stat}(21){sub {chi}}(3){sub FV}(15){sub NPR}. Adding all sources of error in quadrature, we obtain B{sup -}{sub K}{sup RGI{sup -}} = 0.749(27){sub combined}, with an overall combined error of 3.6%.« less

  4. Geometric integration in Born-Oppenheimer molecular dynamics.

    PubMed

    Odell, Anders; Delin, Anna; Johansson, Börje; Cawkwell, Marc J; Niklasson, Anders M N

    2011-12-14

    Geometric integration schemes for extended Lagrangian self-consistent Born-Oppenheimer molecular dynamics, including a weak dissipation to remove numerical noise, are developed and analyzed. The extended Lagrangian framework enables the geometric integration of both the nuclear and electronic degrees of freedom. This provides highly efficient simulations that are stable and energy conserving even under incomplete and approximate self-consistent field (SCF) convergence. We investigate three different geometric integration schemes: (1) regular time reversible Verlet, (2) second order optimal symplectic, and (3) third order optimal symplectic. We look at energy conservation, accuracy, and stability as a function of dissipation, integration time step, and SCF convergence. We find that the inclusion of dissipation in the symplectic integration methods gives an efficient damping of numerical noise or perturbations that otherwise may accumulate from finite arithmetics in a perfect reversible dynamics. © 2011 American Institute of Physics

  5. A Hybrid 3D Indoor Space Model

    NASA Astrophysics Data System (ADS)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  6. MIB Galerkin method for elliptic interface problems.

    PubMed

    Xia, Kelin; Zhan, Meng; Wei, Guo-Wei

    2014-12-15

    Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields. The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm the designed second order convergence of the MIB Galerkin method in the L ∞ and L 2 errors. Some of the best results are obtained in the present work when the interface is C 1 or Lipschitz continuous and the solution is C 2 continuous.

  7. Splash control of drop impacts with geometric targets.

    PubMed

    Juarez, Gabriel; Gastopoulos, Thomai; Zhang, Yibin; Siegel, Michael L; Arratia, Paulo E

    2012-02-01

    Drop impacts on solid and liquid surfaces exhibit complex dynamics due to the competition of inertial, viscous, and capillary forces. After impact, a liquid lamella develops and expands radially, and under certain conditions, the outer rim breaks up into an irregular arrangement of filaments and secondary droplets. We show experimentally that the lamella expansion and subsequent breakup of the outer rim can be controlled by length scales that are of comparable dimension to the impacting drop diameter. Under identical impact parameters (i.e., fluid properties and impact velocity) we observe unique splashing dynamics by varying the target cross-sectional geometry. These behaviors include (i) geometrically shaped lamellae and (ii) a transition in splashing stability, from regular to irregular splashing. We propose that regular splashes are controlled by the azimuthal perturbations imposed by the target cross-sectional geometry and that irregular splashes are governed by the fastest-growing unstable Plateau-Rayleigh mode.

  8. A generalized Condat's algorithm of 1D total variation regularization

    NASA Astrophysics Data System (ADS)

    Makovetskii, Artyom; Voronin, Sergei; Kober, Vitaly

    2017-09-01

    A common way for solving the denosing problem is to utilize the total variation (TV) regularization. Many efficient numerical algorithms have been developed for solving the TV regularization problem. Condat described a fast direct algorithm to compute the processed 1D signal. Also there exists a direct algorithm with a linear time for 1D TV denoising referred to as the taut string algorithm. The Condat's algorithm is based on a dual problem to the 1D TV regularization. In this paper, we propose a variant of the Condat's algorithm based on the direct 1D TV regularization problem. The usage of the Condat's algorithm with the taut string approach leads to a clear geometric description of the extremal function. Computer simulation results are provided to illustrate the performance of the proposed algorithm for restoration of degraded signals.

  9. A viscoplastic constitutive theory for metal matrix composites at high temperature

    NASA Technical Reports Server (NTRS)

    Robinson, David N.; Duffy, Stephen F.; Ellis, John R.

    1988-01-01

    A viscoplastic constitutive theory is presented for representing the high temperature deformation behavior of metal matrix composites. The point of view taken is a continuum one where the composite is considered a material in its own right, with its own properties that can be determined for the composite as a whole. It is assumed that a single preferential (fiber) direction is identifiable at each material point (continuum element) admitting the idealization of local transverse isotropy. A key ingredient is the specification of an experimental program for the complete determination of the material functions and parameters for characterizing a particular metal matrix composite. The parameters relating to the strength of anisotropy can be determined through tension/torsion tests on longitudinally and circumferentially reinforced thin walled tubes. Fundamental aspects of the theory are explored through a geometric interpretation of some basic features analogous to those of the classical theory of plasticity.

  10. A viscoplastic constitutive theory for metal matrix composites at high temperature

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Duffy, S. F.; Ellis, J. R.

    1986-01-01

    A viscoplastic constitutive theory is presented for representing the high-temperature deformation behavior of metal matrix composites. The point of view taken is a continuum one where the composite is considered a material in its own right, with its own properties that can be determined for the composite as a whole. It is assumed that a single preferential (fiber) direction is identifiable at each material point (continuum element) admitting the idealization of local transverse isotropy. A key ingredient in this work is the specification of an experimental program for the complete determination of the material functions and parameters for characterizing a particular metal matrix composite. The parameters relating to the strength of anisotropy can be determined through tension/torsion tests on longitudinally and circumferentially reinforced thin-walled tubes. Fundamental aspects of the theory are explored through a geometric interpretation of some basic features analogous to those of the classical theory of plasticity.

  11. A viscoplastic constitutive theory for metal matrix composites at high temperature

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Ellis, J. R.; Duffy, S. F.

    1987-01-01

    A viscoplastic theory is presented for representing the high-temperature deformation behavior of metal matrix composites. The point of view taken is a continuum one where the composite is considered a material in its own right, with its own properties that can be determined for the composite as a whole. It is presumed that a single preferential (fiber) direction is identifiable at each material point (continuum element) admitting the idealization of local transverse isotropy. A key ingredient in this work is the specification of an experimental program for the complete determination of the material functions and parameters for characterizing a particular metal matrix composite. The parameters relating to the strength of anisotropy can be determined through tension/torsion tests on longitudinally and circumferentially reinforced thin-walled tubes. Fundamental aspects of the theory are explored through a geometric interpretation of some basic features analogous to those of the classical theory of plasticity.

  12. Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Lu, Ya Yan

    2018-02-01

    Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.

  13. Coarse-grained mechanics of viral shells

    NASA Astrophysics Data System (ADS)

    Klug, William S.; Gibbons, Melissa M.

    2008-03-01

    We present an approach for creating three-dimensional finite element models of viral capsids from atomic-level structural data (X-ray or cryo-EM). The models capture heterogeneous geometric features and are used in conjunction with three-dimensional nonlinear continuum elasticity to simulate nanoindentation experiments as performed using atomic force microscopy. The method is extremely flexible; able to capture varying levels of detail in the three-dimensional structure. Nanoindentation simulations are presented for several viruses: Hepatitis B, CCMV, HK97, and φ29. In addition to purely continuum elastic models a multiscale technique is developed that combines finite-element kinematics with MD energetics such that large-scale deformations are facilitated by a reduction in degrees of freedom. Simulations of these capsid deformation experiments provide a testing ground for the techniques, as well as insight into the strength-determining mechanisms of capsid deformation. These methods can be extended as a framework for modeling other proteins and macromolecular structures in cell biology.

  14. The next-generation ESL continuum gyrokinetic edge code

    NASA Astrophysics Data System (ADS)

    Cohen, R.; Dorr, M.; Hittinger, J.; Rognlien, T.; Collela, P.; Martin, D.

    2009-05-01

    The Edge Simulation Laboratory (ESL) project is developing continuum-based approaches to kinetic simulation of edge plasmas. A new code is being developed, based on a conservative formulation and fourth-order discretization of full-f gyrokinetic equations in parallel-velocity, magnetic-moment coordinates. The code exploits mapped multiblock grids to deal with the geometric complexities of the edge region, and utilizes a new flux limiter [P. Colella and M.D. Sekora, JCP 227, 7069 (2008)] to suppress unphysical oscillations about discontinuities while maintaining high-order accuracy elsewhere. The code is just becoming operational; we will report initial tests for neoclassical orbit calculations in closed-flux surface and limiter (closed plus open flux surfaces) geometry. It is anticipated that the algorithmic refinements in the new code will address the slow numerical instability that was observed in some long simulations with the existing TEMPEST code. We will also discuss the status and plans for physics enhancements to the new code.

  15. One to Grow On. Chapter One in Ohio: Education Consolidation and Improvement Act.

    ERIC Educational Resources Information Center

    Douthitt, Frieda

    Since 1965, first through Title I of the Elementary and Secondary Education Act and now through Chapter 1 of the Education Consolidation and Improvement Act, funds have been allocated to supplement regular classroom instruction for children achieving below grade level. Together, Title I and Chapter 1 form a 20-year continuum of a concentrated,…

  16. Optical, near, infrared and ultraviolet monitoring of the Seyfert 1 galaxy Markarian 335

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Sun, W.-H.; Turner, T. J.; Hintzen, P. M.

    1990-01-01

    Preliminary results of a multifrequency monitoring campaign for the bright, Seyfert 1 galactic nuclei Mkn335 are presented. Nearly uniform sampling at 3 day intervals is achieved quasi simultaneously at each wavelength band. Wavelength dependent variability is seen at the 20 to 30 percent level. Interpretation of variability in terms of geometrically thin, optically thick accretion disk models is discussed. The inferred blackhole masses and accretion rates are discussed. Possible correlation between continuum and emission line variations is discussed.

  17. The geometry of discombinations and its applications to semi-inverse problems in anelasticity

    PubMed Central

    Yavari, Arash; Goriely, Alain

    2014-01-01

    The geometrical formulation of continuum mechanics provides us with a powerful approach to understand and solve problems in anelasticity where an elastic deformation is combined with a non-elastic component arising from defects, thermal stresses, growth effects or other effects leading to residual stresses. The central idea is to assume that the material manifold, prescribing the reference configuration for a body, has an intrinsic, non-Euclidean, geometrical structure. Residual stresses then naturally arise when this configuration is mapped into Euclidean space. Here, we consider the problem of discombinations (a new term that we introduce in this paper), that is, a combined distribution of fields of dislocations, disclinations and point defects. Given a discombination, we compute the geometrical characteristics of the material manifold (curvature, torsion, non-metricity), its Cartan's moving frames and structural equations. This identification provides a powerful algorithm to solve semi-inverse problems with non-elastic components. As an example, we calculate the residual stress field of a cylindrically symmetric distribution of discombinations in an infinite circular cylindrical bar made of an incompressible hyperelastic isotropic elastic solid. PMID:25197257

  18. The far-ultraviolet spectra and geometric albedos of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.; Feldman, P. D.

    1982-01-01

    Spectra and geometric albedoes in the range 1200 to 1940 A are compiled for Jupiter and Saturn on the basis of IUE observations. The spectra of both planets are dominated by H Lyman-alpha emission line at 1216 A, although absorption bands of C2H2 are apparent at longer wavelengths, particularly in the spectrum of Saturn, and the C I line at 1657 A is also observed. Geometric albedoes show emission features corresponding to the weak H2 Lyman and Werner bands around 1230-1280 A, auroral Lyman band emission, C I emission, and C2H2 absorption from 1600 to 1900 A. A model of atmospheric absorption in homogeneously mixed atmospheres of H2 and trace molecular absorbers is then presented and fit to the Jupiter albedo, resulting in a predicted atmosphere containing C2H2 and an unidentified molecular or particulate absorber. Finally, north-south maps of Jupiter continuum emission show limb darkening, and a comparison of equatorial and polar spectra indicates a polar increase in C2H2 absorption and weaker polar H2 emissions than previously reported.

  19. Regular black holes in f(T) Gravity through a nonlinear electrodynamics source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junior, Ednaldo L.B.; Rodrigues, Manuel E.; Houndjo, Mahouton J.S., E-mail: ednaldobarrosjr@gmail.com, E-mail: esialg@gmail.com, E-mail: sthoundjo@yahoo.fr

    2015-10-01

    We seek to obtain a new class of exact solutions of regular black holes in f(T) Gravity with non-linear electrodynamics material content, with spherical symmetry in 4D. The equations of motion provide the regaining of various solutions of General Relativity, as a particular case where the function f(T)=T. We developed a powerful method for finding exact solutions, where we get the first new class of regular black holes solutions in the f(T) Theory, where all the geometrics scalars disappear at the origin of the radial coordinate and are finite everywhere, as well as a new class of singular black holes.

  20. Mathematical Modeling the Geometric Regularity in Proteus Mirabilis Colonies

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Jiang, Yi; Minsu Kim Collaboration

    Proteus Mirabilis colony exhibits striking spatiotemporal regularity, with concentric ring patterns with alternative high and low bacteria density in space, and periodicity for repetition process of growth and swarm in time. We present a simple mathematical model to explain the spatiotemporal regularity of P. Mirabilis colonies. We study a one-dimensional system. Using a reaction-diffusion model with thresholds in cell density and nutrient concentration, we recreated periodic growth and spread patterns, suggesting that the nutrient constraint and cell density regulation might be sufficient to explain the spatiotemporal periodicity in P. Mirabilis colonies. We further verify this result using a cell based model.

  1. A geometric rationale for invariance, covariance and constitutive relations

    NASA Astrophysics Data System (ADS)

    Romano, Giovanni; Barretta, Raffaele; Diaco, Marina

    2018-01-01

    There are, in each branch of science, statements which, expressed in ambiguous or even incorrect but seemingly friendly manner, were repeated for a long time and eventually became diffusely accepted. Objectivity of physical fields and of their time rates and frame indifference of constitutive relations are among such notions. A geometric reflection on the description of frame changes as spacetime automorphisms, on induced push-pull transformations and on proper physico-mathematical definitions of material, spatial and spacetime tensor fields and of their time-derivatives along the motion, is here carried out with the aim of pointing out essential notions and of unveiling false claims. Theoretical and computational aspects of nonlinear continuum mechanics, and especially those pertaining to constitutive relations, involving material fields and their time rates, gain decisive conceptual and operative improvement from a proper geometric treatment. Outcomes of the geometric analysis are frame covariance of spacetime velocity, material stretching and material spin. A univocal and frame-covariant tool for evaluation of time rates of material fields is provided by the Lie derivative along the motion. The postulate of frame covariance of material fields is assessed to be a natural physical requirement which cannot interfere with the formulation of constitutive laws, with claims of the contrary stemming from an improper imposition of equality in place of equivalence.

  2. Fermion-number violation in regularizations that preserve fermion-number symmetry

    NASA Astrophysics Data System (ADS)

    Golterman, Maarten; Shamir, Yigal

    2003-01-01

    There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral U(1) invariance (“fermion number”). Such regularizations necessarily break gauge invariance but, in a covariant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counterterms. At the nonperturbative level, an apparent conflict then arises between the chiral U(1) symmetry of the regularized theory and the existence of ’t Hooft vertices in the renormalized theory. The only possible resolution of the paradox is that the chiral U(1) symmetry is broken spontaneously in the enlarged Hilbert space of the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore be defined by introducing a small fermion-mass term that breaks explicitly the chiral U(1) invariance and is sent to zero after the infinite-volume limit has been taken. Using this careful definition (and a lattice regularization) for the calculation of correlation functions in the one-instanton sector, we show that the ’t Hooft vertices are recovered as expected.

  3. Regularity of Solutions of the Nonlinear Sigma Model with Gravitino

    NASA Astrophysics Data System (ADS)

    Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao

    2018-02-01

    We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using Rivière's regularity theory and Riesz potential theory.

  4. The Sloan Digital Sky Survey Reverberation Mapping Project: Ensemble Spectroscopic Variability of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey

    2015-09-01

    We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.

  5. Computation of the effective mechanical response of biological networks accounting for large configuration changes.

    PubMed

    El Nady, K; Ganghoffer, J F

    2016-05-01

    The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A geometric level set model for ultrasounds analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarti, A.; Malladi, R.

    We propose a partial differential equation (PDE) for filtering and segmentation of echocardiographic images based on a geometric-driven scheme. The method allows edge-preserving image smoothing and a semi-automatic segmentation of the heart chambers, that regularizes the shapes and improves edge fidelity especially in presence of distinct gaps in the edge map as is common in ultrasound imagery. A numerical scheme for solving the proposed PDE is borrowed from level set methods. Results on human in vivo acquired 2D, 2D+time,3D, 3D+time echocardiographic images are shown.

  7. Phase space localization for anti-de Sitter quantum mechanics and its zero curvature limit

    NASA Technical Reports Server (NTRS)

    Elgradechi, Amine M.

    1993-01-01

    Using techniques of geometric quantization and SO(sub 0)(3,2)-coherent states, a notion of optimal localization on phase space is defined for the quantum theory of a massive and spinning particle in anti-de Sitter space time. It is shown that this notion disappears in the zero curvature limit, providing one with a concrete example of the regularizing character of the constant (nonzero) curvature of the anti-de Sitter space time. As a byproduct a geometric characterization of masslessness is obtained.

  8. Numerical modeling and analytical evaluation of light absorption by gold nanostars

    NASA Astrophysics Data System (ADS)

    Zarkov, Sergey; Akchurin, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Akchurin, Garif; Tuchin, Valery

    2018-04-01

    In this paper, the regularity of local light absorption by gold nanostars (AuNSts) model is studied by method of numerical simulation. The mutual diffraction influence of individual geometric fragments of AuNSts is analyzed. A comparison is made with an approximate analytical approach for estimating the average bulk density of absorbed power and total absorbed power by individual geometric fragments of AuNSts. It is shown that the results of the approximate analytical estimate are in qualitative agreement with the numerical calculations of the light absorption by AuNSts.

  9. A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.

    PubMed

    Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A

    2014-02-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.

  10. A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure

    PubMed Central

    Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.

    2014-01-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582

  11. Ecomorphological analysis of bovid mandibles from Laetoli Tanzania using 3D geometric morphometrics: Implications for hominin paleoenvironmental reconstruction.

    PubMed

    Forrest, Frances L; Plummer, Thomas W; Raaum, Ryan L

    2018-01-01

    The current study describes a new method of mandibular ecological morphology (ecomorphology). Three-dimensional geometric morphometrics (3D GM) was used to quantify mandibular shape variation between extant bovids with different feeding preferences. Landmark data were subjected to generalized Procrustes analysis (GPA), principal components analysis (PCA), and discriminant function analysis (DFA). The PCA resulted in a continuum from grazers to browsers along PC1 and DFA classified 88% or more of the modern specimens to the correct feeding category. The protocol was reduced to a subset of landmarks on the mandibular corpus in order to make it applicable to incomplete fossils. The reduced landmark set resulted in greater overlap between feeding categories but maintained the same continuum as the complete landmark model. The DFA resubstitution and jackknife analyses resulted in classification success rates of 85% and 80%, respectively. The reduced landmark model was applied to fossil mandibles from the Upper Laetolil Beds (∼4.3-3.5 Ma) and Upper Ndolanya Beds (∼2.7-2.6 Ma) at Laetoli, Tanzania in order to assess antelope diet, and indirectly evaluate paleo-vegetation structure. The majority of the fossils were classified by the DFA as browsers or mixed feeders preferring browse. Our results indicate a continuous presence of wooded habitats and are congruent with recent environmental studies at Laetoli indicating a mosaic woodland-bushland-grassland savanna ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Casimir effect due to a single boundary as a manifestation of the Weyl problem

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Eugene B.; Straley, Joseph P.; Langsjoen, Luke S.; Zaidi, Hussain

    2010-09-01

    The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases, the divergences can be eliminated by methods such as zeta-function regularization or through physical arguments (ultraviolet transparency of the boundary would provide a cutoff). Using the example of a massless scalar field theory with a single Dirichlet boundary, we explore the relationship between such approaches, with the goal of better understanding of the origin of the divergences. We are guided by the insight due to Dowker and Kennedy (1978 J. Phys. A: Math. Gen. 11 895) and Deutsch and Candelas (1979 Phys. Rev. D 20 3063) that the divergences represent measurable effects that can be interpreted with the aid of the theory of the asymptotic distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases, the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having a geometrical origin, and an 'intrinsic' term that is independent of the cutoff. The Weyl terms make a measurable contribution to the physical situation even when regularization methods succeed in isolating the intrinsic part. Regularization methods fail when the Weyl terms and intrinsic parts of the Casimir effect cannot be clearly separated. Specifically, we demonstrate that the Casimir self-energy of a smooth boundary in two dimensions is a sum of two Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a geometrical term that is independent of cutoff and a non-geometrical intrinsic term. As by-products, we resolve the puzzle of the divergent Casimir force on a ring and correct the sign of the coefficient of linear tension of the Dirichlet line predicted in earlier treatments.

  13. An Alternative Lattice Field Theory Formulation Inspired by Lattice Supersymmetry-Summary of the Formulation-

    NASA Astrophysics Data System (ADS)

    D'Adda, Alessandro; Kawamoto, Noboru; Saito, Jun

    2018-03-01

    We propose a lattice field theory formulation which overcomes some fundamental diffculties in realizing exact supersymmetry on the lattice. The Leibniz rule for the difference operator can be recovered by defining a new product on the lattice, the star product, and the chiral fermion species doublers degrees of freedom can be avoided consistently. This framework is general enough to formulate non-supersymmetric lattice field theory without chiral fermion problem. This lattice formulation has a nonlocal nature and is essentially equivalent to the corresponding continuum theory. We can show that the locality of the star product is recovered exponentially in the continuum limit. Possible regularization procedures are proposed.The associativity of the product and the lattice translational invariance of the formulation will be discussed.

  14. Color visualization for fluid flow prediction

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Speray, D. E.

    1982-01-01

    High-resolution raster scan color graphics allow variables to be presented as a continuum, in a color-coded picture that is referenced to a geometry such as a flow field grid or a boundary surface. Software is used to map a scalar variable such as pressure or temperature, defined on a two-dimensional slice of a flow field. The geometric shape is preserved in the resulting picture, and the relative magnitude of the variable is color-coded onto the geometric shape. The primary numerical process for color coding is an efficient search along a raster scan line to locate the quadrilteral block in the grid that bounds each pixel on the line. Tension spline interpolation is performed relative to the grid for specific values of the scalar variable, which is then color coded. When all pixels for the field of view are color-defined, a picture is played back from a memory device onto a television screen.

  15. Method of locating related items in a geometric space for data mining

    DOEpatents

    Hendrickson, B.A.

    1999-07-27

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity. 12 figs.

  16. Method of locating related items in a geometric space for data mining

    DOEpatents

    Hendrickson, Bruce A.

    1999-01-01

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity.

  17. Parallelization strategies for continuum-generalized method of moments on the multi-thread systems

    NASA Astrophysics Data System (ADS)

    Bustamam, A.; Handhika, T.; Ernastuti, Kerami, D.

    2017-07-01

    Continuum-Generalized Method of Moments (C-GMM) covers the Generalized Method of Moments (GMM) shortfall which is not as efficient as Maximum Likelihood estimator by using the continuum set of moment conditions in a GMM framework. However, this computation would take a very long time since optimizing regularization parameter. Unfortunately, these calculations are processed sequentially whereas in fact all modern computers are now supported by hierarchical memory systems and hyperthreading technology, which allowing for parallel computing. This paper aims to speed up the calculation process of C-GMM by designing a parallel algorithm for C-GMM on the multi-thread systems. First, parallel regions are detected for the original C-GMM algorithm. There are two parallel regions in the original C-GMM algorithm, that are contributed significantly to the reduction of computational time: the outer-loop and the inner-loop. Furthermore, this parallel algorithm will be implemented with standard shared-memory application programming interface, i.e. Open Multi-Processing (OpenMP). The experiment shows that the outer-loop parallelization is the best strategy for any number of observations.

  18. L1-norm locally linear representation regularization multi-source adaptation learning.

    PubMed

    Tao, Jianwen; Wen, Shiting; Hu, Wenjun

    2015-09-01

    In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this "small sample" regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of loading modes on densification efficiency of spark plasma sintering: sample study of zirconium carbide consolidation

    NASA Astrophysics Data System (ADS)

    Wei, Xialu; Maximenko, Andrey L.; Back, Christina; Izhvanov, Oleg; Olevsky, Eugene A.

    2017-07-01

    Theoretical studies on the densification kinetics of the new spark plasma sinter-forging (SPS-forging) consolidation technique and of the regular SPS have been carried out based on the continuum theory of sintering. Both modelling and verifying experimental results indicate that the loading modes play important roles in the densification efficiency of SPS of porous ZrC specimens. Compared to regular SPS, SPS-forging is shown to be able to enhance the densification more significantly during later sintering stages. The derived analytical constitutive equations are utilised to evaluate the high-temperature creep parameters of ZrC under SPS conditions. SPS-forging and regular SPS setups are combined to form a new SPS hybrid loading mode with the purpose of reducing shape irregularity in the SPS-forged specimens. Loading control is imposed to secure the geometry as well as the densification of ZrC specimens during hybrid SPS process.

  20. Similar Tensor Arrays - A Framework for Storage of Tensor Array Data

    NASA Astrophysics Data System (ADS)

    Brun, Anders; Martin-Fernandez, Marcos; Acar, Burak; Munoz-Moreno, Emma; Cammoun, Leila; Sigfridsson, Andreas; Sosa-Cabrera, Dario; Svensson, Björn; Herberthson, Magnus; Knutsson, Hans

    This chapter describes a framework for storage of tensor array data, useful to describe regularly sampled tensor fields. The main component of the framework, called Similar Tensor Array Core (STAC), is the result of a collaboration between research groups within the SIMILAR network of excellence. It aims to capture the essence of regularly sampled tensor fields using a minimal set of attributes and can therefore be used as a “greatest common divisor” and interface between tensor array processing algorithms. This is potentially useful in applied fields like medical image analysis, in particular in Diffusion Tensor MRI, where misinterpretation of tensor array data is a common source of errors. By promoting a strictly geometric perspective on tensor arrays, with a close resemblance to the terminology used in differential geometry, (STAC) removes ambiguities and guides the user to define all necessary information. In contrast to existing tensor array file formats, it is minimalistic and based on an intrinsic and geometric interpretation of the array itself, without references to other coordinate systems.

  1. Competitive intransitivity, population interaction structure, and strategy coexistence.

    PubMed

    Laird, Robert A; Schamp, Brandon S

    2015-01-21

    Intransitive competition occurs when competing strategies cannot be listed in a hierarchy, but rather form loops-as in the game rock-paper-scissors. Due to its cyclic competitive replacement, competitive intransitivity promotes strategy coexistence, both in rock-paper-scissors and in higher-richness communities. Previous work has shown that this intransitivity-mediated coexistence is strongly influenced by spatially explicit interactions, compared to when populations are well mixed. Here, we extend and broaden this line of research and examine the impact on coexistence of intransitive competition taking place on a continuum of small-world networks linking spatial lattices and regular random graphs. We use simulations to show that the positive effect of competitive intransitivity on strategy coexistence holds when competition occurs on networks toward the spatial end of the continuum. However, in networks that are sufficiently disordered, increasingly violent fluctuations in strategy frequencies can lead to extinctions and the prevalence of monocultures. We further show that the degree of disorder that leads to the transition between these two regimes is positively dependent on population size; indeed for very large populations, intransitivity-mediated strategy coexistence may even be possible in regular graphs with completely random connections. Our results emphasize the importance of interaction structure in determining strategy dynamics and diversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Treatment of geometric singularities in implicit solvent models

    NASA Astrophysics Data System (ADS)

    Yu, Sining; Geng, Weihua; Wei, G. W.

    2007-06-01

    Geometric singularities, such as cusps and self-intersecting surfaces, are major obstacles to the accuracy, convergence, and stability of the numerical solution of the Poisson-Boltzmann (PB) equation. In earlier work, an interface technique based PB solver was developed using the matched interface and boundary (MIB) method, which explicitly enforces the flux jump condition at the solvent-solute interfaces and leads to highly accurate biomolecular electrostatics in continuum electric environments. However, such a PB solver, denoted as MIBPB-I, cannot maintain the designed second order convergence whenever there are geometric singularities, such as cusps and self-intersecting surfaces. Moreover, the matrix of the MIBPB-I is not optimally symmetrical, resulting in the convergence difficulty. The present work presents a new interface method based PB solver, denoted as MIBPB-II, to address the aforementioned problems. The present MIBPB-II solver is systematical and robust in treating geometric singularities and delivers second order convergence for arbitrarily complex molecular surfaces of proteins. A new procedure is introduced to make the MIBPB-II matrix optimally symmetrical and diagonally dominant. The MIBPB-II solver is extensively validated by the molecular surfaces of few-atom systems and a set of 24 proteins. Converged electrostatic potentials and solvation free energies are obtained at a coarse grid spacing of 0.5Å and are considerably more accurate than those obtained by the PBEQ and the APBS at finer grid spacings.

  3. Science, art and geometrical imagination

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    2011-06-01

    From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental rôle of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Dürer, Kepler, Escher, Grisey or the author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as on beauty, conciseness and an emotional approach of the world.

  4. Image fusion based on Bandelet and sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiuxing; Zhang, Wei; Li, Xuzhi

    2018-04-01

    Bandelet transform could acquire geometric regular direction and geometric flow, sparse representation could represent signals with as little as possible atoms on over-complete dictionary, both of which could be used to image fusion. Therefore, a new fusion method is proposed based on Bandelet and Sparse Representation, to fuse Bandelet coefficients of multi-source images and obtain high quality fusion effects. The test are performed on remote sensing images and simulated multi-focus images, experimental results show that the performance of new method is better than tested methods according to objective evaluation indexes and subjective visual effects.

  5. Structure, Nanomechanics and Dynamics of Dispersed Surfactant-Free Clay Nanocomposite Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhao, Jing; Snyder, Chad; Karim, Alamgir; National Institute of Standards; Technology Collaboration

    Natural Montmorillonite particles were dispersed as tactoids in thin films of polycaprolactone (PCL) through a flow coating technique assisted by ultra-sonication. Wide angle X-ray scattering (WAXS), Grazing-incidence wide angle X-ray scattering (GI-WAXS), and transmission electron microscopy (TEM) were used to confirm the level of dispersion. These characterization techniques are in conjunction with its nanomechanical properties via strain-induced buckling instability for modulus measurements (SIEBIMM), a high throughput technique to characterize thin film mechanical properties. The linear strengthening trend of the elastic modulus enhancements was fitted with Halpin-Tsai (HT) model, correlating the nanoparticle geometric effects and mechanical behaviors based on continuum theories. The overall aspect ratio of dispersed tactoids obtained through HT model fitting is in reasonable agreement with digital electron microscope image analysis. Moreover, glass transition behaviors of the composites were characterized using broadband dielectric relaxation spectroscopy. The segmental relaxation behaviors indicate that the associated mechanical property changes are due to the continuum filler effect rather than the interfacial confinement effect.

  6. On a common circle: natural scenes and Gestalt rules.

    PubMed

    Sigman, M; Cecchi, G A; Gilbert, C D; Magnasco, M O

    2001-02-13

    To understand how the human visual system analyzes images, it is essential to know the structure of the visual environment. In particular, natural images display consistent statistical properties that distinguish them from random luminance distributions. We have studied the geometric regularities of oriented elements (edges or line segments) present in an ensemble of visual scenes, asking how much information the presence of a segment in a particular location of the visual scene carries about the presence of a second segment at different relative positions and orientations. We observed strong long-range correlations in the distribution of oriented segments that extend over the whole visual field. We further show that a very simple geometric rule, cocircularity, predicts the arrangement of segments in natural scenes, and that different geometrical arrangements show relevant differences in their scaling properties. Our results show similarities to geometric features of previous physiological and psychophysical studies. We discuss the implications of these findings for theories of early vision.

  7. Discrete spacetime, quantum walks, and relativistic wave equations

    NASA Astrophysics Data System (ADS)

    Mlodinow, Leonard; Brun, Todd A.

    2018-04-01

    It has been observed that quantum walks on regular lattices can give rise to wave equations for relativistic particles in the continuum limit. In this paper, we define the three-dimensional discrete-time walk as a product of three coined one-dimensional walks. The factor corresponding to each one-dimensional walk involves two projection operators that act on an internal coin space; each projector is associated with either the "forward" or "backward" direction in that physical dimension. We show that the simple requirement that there is no preferred axis or direction along an axis—that is, that the walk be symmetric under parity transformations and steps along different axes of the cubic lattice be uncorrelated—leads, in the case of the simplest solution, to the requirement that the continuum limit of the walk is fully Lorentz-invariant. We show further that, in the case of a massive particle, this symmetry requirement necessitates the use of a four-dimensional internal space (as in the Dirac equation). The "coin flip" operation is generated by the parity transformation on the internal coin space, while the differences of the projection operators associated with each dimension must all anticommute. Finally, we discuss the leading correction to the continuum limit, and the possibility of distinguishing through experiment between the discrete random walk and the continuum-based Dirac equation as a description of fermion dynamics.

  8. Microfabrication Technology for Photonics

    DTIC Science & Technology

    1990-06-01

    specifically addressed by a "folded," parallel architecture currently being proposed by A. Huang(35) who calls it "Computational Origami ." 25 IV...34Computational Origami " U.S. Patent Pending; H.M. Lu, "computatiortal Origami : A Geometric Approach to Regular Multiprocessing," MIT Master’s Thesis in

  9. Automatic optical inspection of regular grid patterns with an inspection camera used below the Shannon-Nyquist criterion for optical resolution

    NASA Astrophysics Data System (ADS)

    Ferreira, Flávio P.; Forte, Paulo M. F.; Felgueiras, Paulo E. R.; Bret, Boris P. J.; Belsley, Michael S.; Nunes-Pereira, Eduardo J.

    2017-02-01

    An Automatic Optical Inspection (AOI) system for optical inspection of imaging devices used in automotive industry using an inspecting optics of lower spatial resolution than the device under inspection is described. This system is robust and with no moving parts. The cycle time is small. Its main advantage is that it is capable of detecting and quantifying defects in regular patterns, working below the Shannon-Nyquist criterion for optical resolution, using a single low resolution image sensor. It is easily scalable, which is an important advantage in industrial applications, since the same inspecting sensor can be reused for increasingly higher spatial resolutions of the devices to be inspected. The optical inspection is implemented with a notch multi-band Fourier filter, making the procedure especially fitted for regular patterns, like the ones that can be produced in image displays and Head Up Displays (HUDs). The regular patterns are used in production line only, for inspection purposes. For image displays, functional defects are detected at the level of a sub-image display grid element unit. Functional defects are the ones impairing the function of the display, and are preferred in AOI to the direct geometric imaging, since those are the ones directly related with the end-user experience. The shift in emphasis from geometric imaging to functional imaging is critical, since it is this that allows quantitative inspection, below Shannon-Nyquist. For HUDs, the functional detect detection addresses defects resulting from the combined effect of the image display and the image forming optics.

  10. Kinematic assumptions and their consequences on the structure of field equations in continuum dislocation theory

    NASA Astrophysics Data System (ADS)

    Silbermann, C. B.; Ihlemann, J.

    2016-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Therefore, the dislocation tensor is introduced as an additional thermodynamic state variable which reflects tensorial properties of dislocation ensembles. Moreover, the CDT captures both the strain energy from the macroscopic deformation of the crystal and the elastic energy of the dislocation network, as well as the dissipation of energy due to dislocation motion. The present contribution deals with the geometrically linear CDT. More precise, the focus is on the role of dislocation kinematics for single and multi-slip and its consequences on the field equations. Thereby, the number of active slip systems plays a crucial role since it restricts the degrees of freedom of plastic deformation. Special attention is put on the definition of proper, well-defined invariants of the dislocation tensor in order to avoid any spurious dependence of the resulting field equations on the coordinate system. It is shown how a slip system based approach can be in accordance with the tensor nature of the involved quantities. At first, only dislocation glide in one active slip system of the crystal is allowed. Then, the special case of two orthogonal (interacting) slip systems is considered and the governing field equations are presented. In addition, the structure and symmetry of the backstress tensor is investigated from the viewpoint of thermodynamical consistency. The results will again be used in order to facilitate the set of field equations and to prepare for a robust numerical implementation.

  11. Structural characterization of the packings of granular regular polygons.

    PubMed

    Wang, Chuncheng; Dong, Kejun; Yu, Aibing

    2015-12-01

    By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.

  12. ASPRS research on quantifying the geometric quality of lidar data

    USGS Publications Warehouse

    Sampath, Aparajithan; Heidemann, Hans K.; Stensaas, Gregory L.; Christopherson, Jon B.

    2014-01-01

    The ASPRS Lidar Cal/Val (calibration/validation) Working Group led by the US Geological Survey (USGS) to establish “Guidelines on Geometric Accuracy and Quality of Lidar Data” has made excellent progress via regular teleconferences and meetings. The group is focused on identifying data quality metrics and establishing a set of guidelines for quantifying the quality of lidar data. The working group has defined and agreed on lidar Data Quality Measures (DQMs) to be used for this purpose. The DQMs are envisaged as the first ever consistent way of checking lidar data. It is expected that these metrics will be used as standard methods for quantifying the geometric quality of lidar data. The goal of this article is to communicate these developments to the readers and the larger geospatial community and invite them to participate in the process.  

  13. The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1975-01-01

    The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.

  14. Origin of the vertebrate body plan via mechanically biased conservation of regular geometrical patterns in the structure of the blastula.

    PubMed

    Edelman, David B; McMenamin, Mark; Sheesley, Peter; Pivar, Stuart

    2016-09-01

    We present a plausible account of the origin of the archetypal vertebrate bauplan. We offer a theoretical reconstruction of the geometrically regular structure of the blastula resulting from the sequential subdivision of the egg, followed by mechanical deformations of the blastula in subsequent stages of gastrulation. We suggest that the formation of the vertebrate bauplan during development, as well as fixation of its variants over the course of evolution, have been constrained and guided by global mechanical biases. Arguably, the role of such biases in directing morphology-though all but neglected in previous accounts of both development and macroevolution-is critical to any substantive explanation for the origin of the archetypal vertebrate bauplan. We surmise that the blastula inherently preserves the underlying geometry of the cuboidal array of eight cells produced by the first three cleavages that ultimately define the medial-lateral, dorsal-ventral, and anterior-posterior axes of the future body plan. Through graphical depictions, we demonstrate the formation of principal structures of the vertebrate body via mechanical deformation of predictable geometrical patterns during gastrulation. The descriptive rigor of our model is supported through comparisons with previous characterizations of the embryonic and adult vertebrate bauplane. Though speculative, the model addresses the poignant absence in the literature of any plausible account of the origin of vertebrate morphology. A robust solution to the problem of morphogenesis-currently an elusive goal-will only emerge from consideration of both top-down (e.g., the mechanical constraints and geometric properties considered here) and bottom-up (e.g., molecular and mechano-chemical) influences. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Characterization of double continuum formulations of transport through pore-scale information

    NASA Astrophysics Data System (ADS)

    Porta, G.; Ceriotti, G.; Bijeljic, B.

    2016-12-01

    Information on pore-scale characteristics is becoming increasingly available at unprecedented levels of detail from modern visualization/data-acquisition techniques. These advancements are not completely matched by corresponding developments of operational procedures according to which we can engineer theoretical findings aiming at improving our ability to reduce the uncertainty associated with the outputs of continuum-scale models to be employed at large scales. We present here a modeling approach which rests on pore-scale information to achieve a complete characterization of a double continuum model of transport and fluid-fluid reactive processes. Our model makes full use of pore-scale velocity distributions to identify mobile and immobile regions. We do so on the basis of a pointwise (in the pore space) evaluation of the relative strength of advection and diffusion time scales, as rendered by spatially variable values of local Péclet numbers. After mobile and immobile regions are demarcated, we build a simplified unit cell which is employed as a representative proxy of the real porous domain. This model geometry is then employed to simplify the computation of the effective parameters embedded in the double continuum transport model, while retaining relevant information from the pore-scale characterization of the geometry and velocity field. We document results which illustrate the applicability of the methodology to predict transport of a passive tracer within two- and three-dimensional media upon comparison with direct pore-scale numerical simulation of transport in the same geometrical settings. We also show preliminary results about the extension of this model to fluid-fluid reactive transport processes. In this context, we focus on results obtained in two-dimensional porous systems. We discuss the impact of critical quantities required as input to our modeling approach to obtain continuum-scale outputs. We identify the key limitations of the proposed methodology and discuss its capability also in comparison with alternative approaches grounded, e.g., on nonlocal and particle-based approximations.

  16. Unified formalism for higher order non-autonomous dynamical systems

    NASA Astrophysics Data System (ADS)

    Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2012-03-01

    This work is devoted to giving a geometric framework for describing higher order non-autonomous mechanical systems. The starting point is to extend the Lagrangian-Hamiltonian unified formalism of Skinner and Rusk for these kinds of systems, generalizing previous developments for higher order autonomous mechanical systems and first-order non-autonomous mechanical systems. Then, we use this unified formulation to derive the standard Lagrangian and Hamiltonian formalisms, including the Legendre-Ostrogradsky map and the Euler-Lagrange and the Hamilton equations, both for regular and singular systems. As applications of our model, two examples of regular and singular physical systems are studied.

  17. Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories

    NASA Astrophysics Data System (ADS)

    Román-Roy, Narciso

    2009-11-01

    This review paper is devoted to presenting the standard multisymplectic formulation for describing geometrically classical field theories, both the regular and singular cases. First, the main features of the Lagrangian formalism are revisited and, second, the Hamiltonian formalism is constructed using Hamiltonian sections. In both cases, the variational principles leading to the Euler-Lagrange and the Hamilton-De Donder-Weyl equations, respectively, are stated, and these field equations are given in different but equivalent geometrical ways in each formalism. Finally, both are unified in a new formulation (which has been developed in the last years), following the original ideas of Rusk and Skinner for mechanical systems.

  18. Euclid, Fibonacci, Sketchpad.

    ERIC Educational Resources Information Center

    Litchfield, Daniel C.; Goldenheim, David A.

    1997-01-01

    Describes the solution to a geometric problem by two ninth-grade mathematicians using The Geometer's Sketchpad computer software program. The problem was to divide any line segment into a regular partition of any number of parts, a variation on a problem by Euclid. The solution yielded two constructions, one a GLaD construction and the other using…

  19. Markov random field model-based edge-directed image interpolation.

    PubMed

    Li, Min; Nguyen, Truong Q

    2008-07-01

    This paper presents an edge-directed image interpolation algorithm. In the proposed algorithm, the edge directions are implicitly estimated with a statistical-based approach. In opposite to explicit edge directions, the local edge directions are indicated by length-16 weighting vectors. Implicitly, the weighting vectors are used to formulate geometric regularity (GR) constraint (smoothness along edges and sharpness across edges) and the GR constraint is imposed on the interpolated image through the Markov random field (MRF) model. Furthermore, under the maximum a posteriori-MRF framework, the desired interpolated image corresponds to the minimal energy state of a 2-D random field given the low-resolution image. Simulated annealing methods are used to search for the minimal energy state from the state space. To lower the computational complexity of MRF, a single-pass implementation is designed, which performs nearly as well as the iterative optimization. Simulation results show that the proposed MRF model-based edge-directed interpolation method produces edges with strong geometric regularity. Compared to traditional methods and other edge-directed interpolation methods, the proposed method improves the subjective quality of the interpolated edges while maintaining a high PSNR level.

  20. Class of regular bouncing cosmologies

    NASA Astrophysics Data System (ADS)

    Vasilić, Milovan

    2017-06-01

    In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.

  1. Advances in modelling of biomimetic fluid flow at different scales

    PubMed Central

    2011-01-01

    The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed. PMID:21711847

  2. Simulation of non-Newtonian oil-water core annular flow through return bends

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Wang, Ke; Skote, Martin; Wong, Teck Neng; Duan, Fei

    2018-01-01

    The volume of fluid (VOF) model is used together with the continuum surface force (CSF) model to numerically simulate the non-Newtonian oil-water core annular flow across return bends. A comprehensive study is conducted to generate the profiles of pressure, velocity, volume fraction and wall shear stress for different oil properties, flow directions, and bend geometries. It is revealed that the oil core may adhere to the bend wall under certain operating conditions. Through the analysis of the total pressure gradient and fouling angle, suitable bend geometric parameters are identified for avoiding the risk of fouling.

  3. Forensic Assertive Community Treatment in a Continuum of Care for Male Internees in Belgium: Results After 33 Months.

    PubMed

    Marquant, Thomas; Sabbe, Bernard; Van Nuffel, Meike; Verelst, Rudy; Goethals, Kris

    2018-01-01

    Non-forensic or regular assertive community treatment (ACT) has positive effects on non-forensic outcomes but has poor effects on forensic outcome measures. In this study, we examined non-forensic and forensic outcome measures of a forensic adaptation of ACT (ForACT) within a continuum of care for internees. Data were collected retrospectively from files of 70 participants in the ForACT group who had been released from a forensic hospital. The control group comprised internees who had left prison and entered community-based care (n = 56). The ForACT group demonstrated significantly better outcomes on forensic measures, such as arrests and incarcerations, and had better community tenure. However, this group showed high hospitalization rates. The findings indicate that this type of community-based care can be beneficial for such internees; however, internees continue to experience difficulties reintegrating into society.

  4. Thermodynamics of gravitational clustering phenomena: N-body self-gravitating gas on the sphere {{{S}}^{3}}\\subset {{{R}}^{4}}

    NASA Astrophysics Data System (ADS)

    Tello-Ortiz, F.; Velazquez, L.

    2016-10-01

    This work is devoted to the thermodynamics of gravitational clustering, a collective phenomenon with a great relevance in the N-body cosmological problem. We study a classical self-gravitating gas of identical non-relativistic particles defined on the sphere {{{S}}3}\\subset {{{R}}4} by considering gravitational interaction that corresponds to this geometric space. The analysis is performed within microcanonical description of an isolated Hamiltonian system by combining continuum approximation and the steepest descend method. According to numerical solution of resulting equations, the gravitational clustering can be associated with two microcanonical phase transitions. A first phase transition with a continuous character is associated with breakdown of SO(4) symmetry of this model. The second one is the gravitational collapse, whose continuous or discontinuous character crucially depends on the regularization of short-range divergence of gravitation potential. We also derive the thermodynamic limit of this model system, the astrophysical counterpart of the Gibbs-Duhem relation, the order parameters that characterize its phase transitions and the equation of state. Other interesting behavior is the existence of states with negative heat capacities, which appear when the effects of gravitation turn dominant for energies sufficiently low. Finally, we comment on the relevance of some of these results in the study of astrophysical and cosmological situations. Special interest deserves the gravitational modification of the equation of state due to the local inhomogeneities of matter distribution. Although this feature is systematically neglected in studies about universe expansion, the same one is able to mimic an effect that is attributed to the dark energy: a negative pressure.

  5. Seismic waves in a self-gravitating planet

    NASA Astrophysics Data System (ADS)

    Brazda, Katharina; de Hoop, Maarten V.; Hörmann, Günther

    2013-04-01

    The elastic-gravitational equations describe the propagation of seismic waves including the effect of self-gravitation. We rigorously derive and analyze this system of partial differential equations and boundary conditions for a general, uniformly rotating, elastic, but aspherical, inhomogeneous, and anisotropic, fluid-solid earth model, under minimal assumptions concerning the smoothness of material parameters and geometry. For this purpose we first establish a consistent mathematical formulation of the low regularity planetary model within the framework of nonlinear continuum mechanics. Using calculus of variations in a Sobolev space setting, we then show how the weak form of the linearized elastic-gravitational equations directly arises from Hamilton's principle of stationary action. Finally we prove existence and uniqueness of weak solutions by the method of energy estimates and discuss additional regularity properties.

  6. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ℓ1-Norm Regularization in the Derivative Domain

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2014-05-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall), and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients (called ℓ1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a data base of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

  7. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational 1-Norm Regularization in the Derivative Domain

    NASA Technical Reports Server (NTRS)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2013-01-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

  8. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  9. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  10. To 3D or Not to 3D, That Is the Question: Do 3D Surface Analyses Improve the Ecomorphological Power of the Distal Femur in Placental Mammals?

    PubMed Central

    Gould, Francois D. H.

    2014-01-01

    Improvements in three-dimensional imaging technologies have renewed interest in the study of functional and ecological morphology. Quantitative approaches to shape analysis are used increasingly to study form-function relationships. These methods are computationally intensive, technically demanding, and time-consuming, which may limit sampling potential. There have been few side-by-side comparisons of the effectiveness of such approaches relative to more traditional analyses using linear measurements and ratios. Morphological variation in the distal femur of mammals has been shown to reflect differences in locomotor modes across clades. Thus I tested whether a geometric morphometric analysis of surface shape was superior to a multivariate analysis of ratios for describing ecomorphological patterns in distal femoral variation. A sample of 164 mammalian specimens from 44 genera was assembled. Each genus was assigned to one of six locomotor categories. The same hypotheses were tested using two methods. Six linear measurements of the distal femur were taken with calipers, from which four ratios were calculated. A 3D model was generated with a laser scanner, and analyzed using three dimensional geometric morphometrics. Locomotor category significantly predicted variation in distal femoral morphology in both analyses. Effect size was larger in the geometric morphometric analysis than in the analysis of ratios. Ordination reveals a similar pattern with arboreal and cursorial taxa as extremes on a continuum of morphologies in both analyses. Discriminant functions calculated from the geometric morphometric analysis were more accurate than those calculated from ratios. Both analysis of ratios and geometric morphometric surface analysis reveal similar, biologically meaningful relationships between distal femoral shape and locomotor mode. The functional signal from the morphology is slightly higher in the geometric morphometric analysis. The practical costs of conducting these sorts of analyses should be weighed against potentially slight increases in power when designing protocols for ecomorphological studies. PMID:24633081

  11. Manifold regularized multitask learning for semi-supervised multilabel image classification.

    PubMed

    Luo, Yong; Tao, Dacheng; Geng, Bo; Xu, Chao; Maybank, Stephen J

    2013-02-01

    It is a significant challenge to classify images with multiple labels by using only a small number of labeled samples. One option is to learn a binary classifier for each label and use manifold regularization to improve the classification performance by exploring the underlying geometric structure of the data distribution. However, such an approach does not perform well in practice when images from multiple concepts are represented by high-dimensional visual features. Thus, manifold regularization is insufficient to control the model complexity. In this paper, we propose a manifold regularized multitask learning (MRMTL) algorithm. MRMTL learns a discriminative subspace shared by multiple classification tasks by exploiting the common structure of these tasks. It effectively controls the model complexity because different tasks limit one another's search volume, and the manifold regularization ensures that the functions in the shared hypothesis space are smooth along the data manifold. We conduct extensive experiments, on the PASCAL VOC'07 dataset with 20 classes and the MIR dataset with 38 classes, by comparing MRMTL with popular image classification algorithms. The results suggest that MRMTL is effective for image classification.

  12. On the Brγ line emission of the Herbig Ae/Be star MWC 120

    NASA Astrophysics Data System (ADS)

    Kreplin, Alexander; Tambovtseva, Larisa; Grinin, Vladimir; Kraus, Stefan; Weigelt, Gerd; Wang, Yang

    2018-06-01

    The origin of the Br γ line in Herbig Ae/Be stars is still an open question. It has been proposed that a fraction of the 2.166-μm Br γ emission might emerge from a disc wind, the magnetosphere and other regions. Investigations of the Br γ line in young stellar objects are important to improve our understanding of the accretion-ejection process. Near-infrared long-baseline interferometry enables the investigation of the Br γ line-emitting region with high spatial and high spectral resolution. We observed the Herbig Ae/Be star MWC 120 with the Astronomical Multi-Beam Recombiner (AMBER) on the Very Large Telescope Interferometer (VLTI) in different spectral channels across the Br γ line with a spectral resolution of R ˜ 1500. Comparison of the visibilities, differential and closure phases in the continuum and the line-emitting region with geometric and radiative transfer disc-wind models leads to constraints on the origin and dynamics of the gas emitting the Br γ light. Geometric modelling of the visibilities reveals a line-emission region about two times smaller than the K-band continuum region, which indicates a scenario where the Br γ emission is dominated by an extended disc wind rather than by a much more compact magnetospheric origin. To compare our data with a physical model, we applied a state-of-the-art radiative transfer disc-wind model. We find that all measured visibilities, differential and closure phases of MWC 120 can be approximately reproduced by a disc-wind model. A comparison with other Herbig stars indicates a correlation of the modelled inner disc-wind radii with the corresponding Alfvén radii for late spectral type stars.

  13. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  14. Use of Self-to-Object and Object-to-Object Spatial Relations in Locomotion

    ERIC Educational Resources Information Center

    Xiao, Chengli; Mou, Weimin; McNamara, Timothy P.

    2009-01-01

    In 8 experiments, the authors examined the use of representations of self-to-object or object-to-object spatial relations during locomotion. Participants learned geometrically regular or irregular layouts of objects while standing at the edge or in the middle and then pointed to objects while blindfolded in 3 conditions: before turning (baseline),…

  15. Measurement of machine parts dimensions positional deviation with regard to their geometric accuracy

    NASA Astrophysics Data System (ADS)

    Martemyanov, D. B.; Pshenichnikova, V. V.; Penner, V. A.; Zemtsov, A. E.

    2018-04-01

    Real surfaces of the parts, obtained with the help of technological processes, are always characterized by deviations from a nominal (regular) form. When analyzing a nominal cylindrical surface or a prismatic component element, the interrelation between current dimensions in various sections and a surface form, as well as surfaces position, can be found.

  16. Continuum damage modeling and simulation of hierarchical dental enamel

    NASA Astrophysics Data System (ADS)

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-05-01

    Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.

  17. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation

    PubMed Central

    Botello-Smith, Wesley M.; Luo, Ray

    2016-01-01

    Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membrane into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multi-grid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations. PMID:26389966

  18. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles.

    PubMed

    Macke, A; Mishchenko, M I

    1996-07-20

    We ascertain the usefulness of simple ice particle geometries for modeling the intensity distribution of light scattering by atmospheric ice particles. To this end, similarities and differences in light scattering by axis-equivalent, regular and distorted hexagonal cylindric, ellipsoidal, and circular cylindric ice particles are reported. All the results pertain to particles with sizes much larger than a wavelength and are based on a geometrical optics approximation. At a nonabsorbing wavelength of 0.55 µm, ellipsoids (circular cylinders) have a much (slightly) larger asymmetry parameter g than regular hexagonal cylinders. However, our computations show that only random distortion of the crystal shape leads to a closer agreement with g values as small as 0.7 as derived from some remote-sensing data analysis. This may suggest that scattering by regular particle shapes is not necessarily representative of real atmospheric ice crystals at nonabsorbing wavelengths. On the other hand, if real ice particles happen to be hexagonal, they may be approximated by circular cylinders at absorbing wavelengths.

  19. Application of Fourier-wavelet regularized deconvolution for improving image quality of free space propagation x-ray phase contrast imaging.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2012-11-21

    New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.

  20. Geodesics in nonexpanding impulsive gravitational waves with Λ. II

    NASA Astrophysics Data System (ADS)

    Sämann, Clemens; Steinbauer, Roland

    2017-11-01

    We investigate all geodesics in the entire class of nonexpanding impulsive gravitational waves propagating in an (anti-)de Sitter universe using the distributional metric. We extend the regularization approach of part I [Sämann, C. et al., Classical Quantum Gravity 33(11), 115002 (2016)] to a full nonlinear distributional analysis within the geometric theory of generalized functions. We prove global existence and uniqueness of geodesics that cross the impulsive wave and hence geodesic completeness in full generality for this class of low regularity spacetimes. This, in particular, prepares the ground for a mathematically rigorous account on the "physical equivalence" of the continuous form with the distributional "form" of the metric.

  1. The gravitational potential of axially symmetric bodies from a regularized green kernel

    NASA Astrophysics Data System (ADS)

    Trova, A.; Huré, J.-M.; Hersant, F.

    2011-12-01

    The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.

  2. Predicting silicon pore optics

    NASA Astrophysics Data System (ADS)

    Vacanti, Giuseppe; Barriére, Nicolas; Bavdaz, Marcos; Chatbi, Abdelhakim; Collon, Maximilien; Dekker, Danielle; Girou, David; Günther, Ramses; van der Hoeven, Roy; Landgraf, Boris; Sforzini, Jessica; Vervest, Mark; Wille, Eric

    2017-09-01

    Continuing improvement of Silicon Pore Optics (SPO) calls for regular extension and validation of the tools used to model and predict their X-ray performance. In this paper we present an updated geometrical model for the SPO optics and describe how we make use of the surface metrology collected during each of the SPO manufacturing runs. The new geometrical model affords the user a finer degree of control on the mechanical details of the SPO stacks, while a standard interface has been developed to make use of any type of metrology that can return changes in the local surface normal of the reflecting surfaces. Comparisons between the predicted and actual performance of samples optics will be shown and discussed.

  3. Regular black holes: Electrically charged solutions, Reissner-Nordstroem outside a de Sitter core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, Jose P. S.; Zanchin, Vilson T.; Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia, 166, 09210-170, Santo Andre, Sao Paulo

    2011-06-15

    To have the correct picture of a black hole as a whole, it is of crucial importance to understand its interior. The singularities that lurk inside the horizon of the usual Kerr-Newman family of black hole solutions signal an endpoint to the physical laws and, as such, should be substituted in one way or another. A proposal that has been around for sometime is to replace the singular region of the spacetime by a region containing some form of matter or false vacuum configuration that can also cohabit with the black hole interior. Black holes without singularities are called regularmore » black holes. In the present work, regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several types of solutions: regular nonextremal black holes with a null matter boundary, regular nonextremal black holes with a timelike matter boundary, regular extremal black holes with a timelike matter boundary, and regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed.« less

  4. A Three-Dimensional Finite Element Analysis of the Stress Distribution Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges with Regular or Short Morse Taper Implants.

    PubMed

    Toniollo, Marcelo Bighetti; Macedo, Ana Paula; Rodrigues, Renata Cristina; Ribeiro, Ricardo Faria; de Mattos, Maria G

    The aim of this study was to compare the biomechanical performance of splinted or nonsplinted prostheses over short- or regular-length Morse taper implants (5 mm and 11 mm, respectively) in the posterior area of the mandible using finite element analysis. Three-dimensional geometric models of regular implants (Ø 4 × 11 mm) and short implants (Ø 4 × 5 mm) were placed into a simulated model of the left posterior mandible that included the first premolar tooth; all teeth posterior to this tooth had been removed. The four experimental groups were as follows: regular group SP (three regular implants were rehabilitated with splinted prostheses), regular group NSP (three regular implants were rehabilitated with nonsplinted prostheses), short group SP (three short implants were rehabilitated with splinted prostheses), and short group NSP (three short implants were rehabilitated with nonsplinted prostheses). Oblique forces were simulated in molars (365 N) and premolars (200 N). Qualitative and quantitative analyses of the minimum principal stress in bone were performed using ANSYS Workbench software, version 10.0. The use of splinting in the short group reduced the stress to the bone surrounding the implants and tooth. The use of NSP or SP in the regular group resulted in similar stresses. The best indication when there are short implants is to use SP. Use of NSP is feasible only when regular implants are present.

  5. On relativistic generalization of Perelman's W-entropy and thermodynamic description of gravitational fields and cosmology

    NASA Astrophysics Data System (ADS)

    Ruchin, Vyacheslav; Vacaru, Olivia; Vacaru, Sergiu I.

    2017-03-01

    Using double 2+2 and 3+1 nonholonomic fibrations on Lorentz manifolds, we extend the concept of W-entropy for gravitational fields in general relativity (GR). Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional (3-d) Riemannian metrics by Perelman (the entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159). Non-relativistic 3-d Ricci flows are characterized by associated statistical thermodynamical values determined by W-entropy. Generalizations for geometric flows of 4-d pseudo-Riemannian metrics are considered for models with local thermodynamical equilibrium and separation of dissipative and non-dissipative processes in relativistic hydrodynamics. The approach is elaborated in the framework of classical field theories (relativistic continuum and hydrodynamic models) without an underlying kinetic description, which will be elaborated in other work. The 3+1 splitting allows us to provide a general relativistic definition of gravitational entropy in the Lyapunov-Perelman sense. It increases monotonically as structure forms in the Universe. We can formulate a thermodynamic description of exact solutions in GR depending, in general, on all spacetime coordinates. A corresponding 2+2 splitting with nonholonomic deformation of linear connection and frame structures is necessary for generating in very general form various classes of exact solutions of the Einstein and general relativistic geometric flow equations. Finally, we speculate on physical macrostates and microstate interpretations of the W-entropy in GR, geometric flow theories and possible connections to string theory (a second unsolved problem also contained in Perelman's work) in Polyakov's approach.

  6. A nonlinear generalized continuum approach for electro-elasticity including scale effects

    NASA Astrophysics Data System (ADS)

    Skatulla, S.; Arockiarajan, A.; Sansour, C.

    2009-01-01

    Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear hyperelasticity, is embedded in the generalized continuum. In this way material information of the micro-space, which are here only the geometrical specifications of the micro-continuum, can naturally enter the constitutive law. Several applications with moving least square-based approximations (MLS) demonstrate the potential of the proposed method. This particular meshfree method is chosen, as it has been proven to be highly flexible with regard to continuity and consistency required by this generalized approach.

  7. Spectrophotometry of seventeen comets. II - The continuum

    NASA Technical Reports Server (NTRS)

    Newburn, R. L., Jr.; Spinrad, H.

    1985-01-01

    One-hundred-twenty IDS scans of the continua in 17 comets are analyzed to determine dust production rates and color as a function of heliocentric distance. Improved theory indicates that the dust loading of gas typically varies between 0.05 and 0.3 by mass (assuming a geometric albedo of 0.05 and oxygen expansion at 1 km/s) except during outbursts, when it rises much higher. P/Encke near perihelion falls much lower yet, to 0.004 or less. Dust loading is not always constant as a function of time in a given comet. Dust color is typically reddish, as has often been noted before.

  8. Spacetime from Entanglement

    NASA Astrophysics Data System (ADS)

    Swingle, Brian

    2018-03-01

    This is an idiosyncratic colloquium-style review of the idea that spacetime and gravity can emerge from entanglement. Drawing inspiration from the conjectured duality between quantum gravity in anti de Sitter space and certain conformal field theories, we argue that tensor networks can be used to define a discrete geometry that encodes entanglement geometrically. With the additional assumption that a continuum limit can be taken, the resulting geometry necessarily obeys Einstein's equations. The discussion takes the point of view that the emergence of spacetime and gravity is a mysterious phenomenon of quantum many-body physics that we would like to understand. We also briefly discuss possible experiments to detect emergent gravity in highly entangled quantum systems.

  9. Spectrophotometry of seventeen comets. II - The continuum

    NASA Astrophysics Data System (ADS)

    Newburn, R. L.; Spinrad, H.

    1985-12-01

    One hundred twenty IDS scans of the continua in 17 comets are analyzed to determine dust production rates and color as a function of heliocentric distance. Improved theory indicates that the dust loading of gas typically varies between 0.05 and 0.3 by mass (assuming a geometric albedo of 0.05 and oxygen expansion at 1 km s-1) except during outbursts, when it rises much higher. P/Encke near perihelion falls much lower yet, to 0.004 or less. Dust loading is not always constant as a function of time in a given comet. Dust color is typically reddish, as has often been noted before.

  10. Optimizing Nanoscale Quantitative Optical Imaging of Subfield Scattering Targets

    PubMed Central

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui; Sohn, Martin; Silver, Richard M.

    2016-01-01

    The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information, and with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of such finite sets of features. Such optimized conditions are reported through quantitative optical imaging in 193 nm scatterfield microscopy using feature sets up to four times smaller in area than state-of-the-art critical dimension targets. PMID:27805660

  11. Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.

    PubMed

    Bieze, Thor Morales; Largilliere, Frederick; Kruszewski, Alexandre; Zhang, Zhongkai; Merzouki, Rochdi; Duriez, Christian

    2018-06-01

    This article presents a modeling methodology and experimental validation for soft manipulators to obtain forward kinematic model (FKM) and inverse kinematic model (IKM) under quasi-static conditions (in the literature, these manipulators are usually classified as continuum robots. However, their main characteristic of interest in this article is that they create motion by deformation, as opposed to the classical use of articulations). It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics, which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on finite element method with a numerical optimization based on Lagrange multipliers to obtain FKM and IKM. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors, and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this article. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.

  12. Developing Mathematical Knowledge and Skills through the Awareness Approach of Teaching and Learning

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Gialamas, Stefanos; Stamati, Angeliki

    2017-01-01

    Every object we think of or encounter, whether a natural or human-made, has a regular or irregular shape. In its own intrinsic conceptual design, it has elements of mathematics, science, engineering, and arts, etc., which are part of the object's geometric shape, form and structure. Geometry is not only an important part of mathematics, but it is…

  13. The Influence of Cue Reliability and Cue Representation on Spatial Reorientation in Young Children

    ERIC Educational Resources Information Center

    Lyons, Ian M.; Huttenlocher, Janellen; Ratliff, Kristin R.

    2014-01-01

    Previous studies of children's reorientation have focused on cue representation (e.g., whether cues are geometric) as a predictor of performance but have not addressed cue reliability (the regularity of the relation between a given cue and an outcome) as a predictor of performance. Here we address both factors within the same series of…

  14. Structured penalties for functional linear models-partially empirical eigenvectors for regression.

    PubMed

    Randolph, Timothy W; Harezlak, Jaroslaw; Feng, Ziding

    2012-01-01

    One of the challenges with functional data is incorporating geometric structure, or local correlation, into the analysis. This structure is inherent in the output from an increasing number of biomedical technologies, and a functional linear model is often used to estimate the relationship between the predictor functions and scalar responses. Common approaches to the problem of estimating a coefficient function typically involve two stages: regularization and estimation. Regularization is usually done via dimension reduction, projecting onto a predefined span of basis functions or a reduced set of eigenvectors (principal components). In contrast, we present a unified approach that directly incorporates geometric structure into the estimation process by exploiting the joint eigenproperties of the predictors and a linear penalty operator. In this sense, the components in the regression are 'partially empirical' and the framework is provided by the generalized singular value decomposition (GSVD). The form of the penalized estimation is not new, but the GSVD clarifies the process and informs the choice of penalty by making explicit the joint influence of the penalty and predictors on the bias, variance and performance of the estimated coefficient function. Laboratory spectroscopy data and simulations are used to illustrate the concepts.

  15. Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound.

    PubMed

    Ahmed, Suzanne; Gentekos, Dillon T; Fink, Craig A; Mallouk, Thomas E

    2014-11-25

    Segmented gold-ruthenium nanorods (300 ± 30 nm in diameter and 2.0 ± 0.2 μm in length) with thin Ni segments at one end assemble into few-particle, geometrically regular dimers, trimers, and higher multimers while levitated in water by ∼4 MHz ultrasound at the midpoint of a cylindrical acoustic cell. The assembly of the nanorods into multimers is controlled by interactions between the ferromagnetic Ni segments. These assemblies are propelled autonomously in fluids by excitation with ∼4 MHz ultrasound and exhibit several distinct modes of motion. Multimer assembly and disassembly are dynamic in the ultrasonic field. The relative numbers of monomers, dimers, trimers, and higher multimers are dependent upon the number density of particles in the fluid and their speed, which is in turn determined by the ultrasonic power applied. The magnetic binding energy of the multimers estimated from their speed-dependent equilibria is in agreement with the calculated strength of the magnetic dipole interactions. These autonomously propelled multimers can also be steered with an external magnetic field and remain intact after removal from the acoustic chamber for SEM imaging.

  16. Regular Mechanical Transformation of Rotations Into Translations: Part 1. Kinematic Analysis and Definition of the Basic Characteristics

    NASA Astrophysics Data System (ADS)

    Abadjieva, Emilia; Abadjiev, Valentin

    2017-06-01

    The science that study the processes of motions transformation upon a preliminary defined law between non-coplanar axes (in general case) axes of rotations or axis of rotation and direction of rectilinear translation by three-link mechanisms, equipped with high kinematic joints, can be treated as an independent branch of Applied Mechanics. It deals with mechanical behaviour of these multibody systems in relation to the kinematic and geometric characteristics of the elements of the high kinematic joints, which form them. The object of study here is the process of regular transformation of rotation into translation. The developed mathematical model is subjected to the defined task for studying the sliding velocity vector function at the contact point from the surfaces elements of arbitrary high kinematic joints. The main kinematic characteristics of the studied type motions transformation (kinematic cylinders on level, kinematic relative helices (helical conoids) and kinematic pitch configurations) are defined on the bases of the realized analysis. These features expand the theoretical knowledge, which is the objective of the gearing theory. They also complement the system of kinematic and geometric primitives, that form the mathematical model for synthesis of spatial rack mechanisms.

  17. The probability of object-scene co-occurrence influences object identification processes.

    PubMed

    Sauvé, Geneviève; Harmand, Mariane; Vanni, Léa; Brodeur, Mathieu B

    2017-07-01

    Contextual information allows the human brain to make predictions about the identity of objects that might be seen and irregularities between an object and its background slow down perception and identification processes. Bar and colleagues modeled the mechanisms underlying this beneficial effect suggesting that the brain stocks information about the statistical regularities of object and scene co-occurrence. Their model suggests that these recurring regularities could be conceptualized along a continuum in which the probability of seeing an object within a given scene can be high (probable condition), moderate (improbable condition) or null (impossible condition). In the present experiment, we propose to disentangle the electrophysiological correlates of these context effects by directly comparing object-scene pairs found along this continuum. We recorded the event-related potentials of 30 healthy participants (18-34 years old) and analyzed their brain activity in three time windows associated with context effects. We observed anterior negativities between 250 and 500 ms after object onset for the improbable and impossible conditions (improbable more negative than impossible) compared to the probable condition as well as a parieto-occipital positivity (improbable more positive than impossible). The brain may use different processing pathways to identify objects depending on whether the probability of co-occurrence with the scene is moderate (rely more on top-down effects) or null (rely more on bottom-up influences). The posterior positivity could index error monitoring aimed to ensure that no false information is integrated into mental representations of the world.

  18. Reverberation Mapping of the Continuum Source in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fausnaugh, Michael Martin

    I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently variable to measure continuum-Hbeta lags and super-massive black hole masses: MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. I also obtain Hgamma and HeII lags for all objects except 3C 382. The HeII lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines to continuum variations are also in qualitative agreement with photoionization models. Finally, I measure optical continuum lags for the two most variable targets, MCG+08-11-011 and NGC 2617. I again find lags consistent with geometrically thin accretion-disk models that have temperature profiles T ∝ R-3/4. The observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. Using a physical model, these differences can be explained if the mass accretion rates are larger than inferred from the optical continuum luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long 2.6 day lag is problematic for coronal reprocessing models.

  19. Discovery of a complex linearly polarized spectrum of Betelgeuse dominated by depolarization of the continuum

    NASA Astrophysics Data System (ADS)

    Aurière, M.; López Ariste, A.; Mathias, P.; Lèbre, A.; Josselin, E.; Montargès, M.; Petit, P.; Chiavassa, A.; Paletou, F.; Fabas, N.; Konstantinova-Antova, R.; Donati, J.-F.; Grunhut, J. H.; Wade, G. A.; Herpin, F.; Kervella, P.; Perrin, G.; Tessore, B.

    2016-06-01

    Context. Betelgeuse is an M supergiant that harbors spots and giant granules at its surface and presents linear polarization of its continuum. Aims: We have previously discovered linear polarization signatures associated with individual lines in the spectra of cool and evolved stars. Here, we investigate whether a similar linearly polarized spectrum exists for Betelgeuse. Methods: We used the spectropolarimeter Narval, combining multiple polarimetric sequences to obtain high signal-to-noise ratio spectra of individual lines, as well as the least-squares deconvolution (LSD) approach, to investigate the presence of an averaged linearly polarized profile for the photospheric lines. Results: We have discovered the existence of a linearly polarized spectrum for Betelgeuse, detecting a rather strong signal (at a few times 10-4 of the continuum intensity level), both in individual lines and in the LSD profiles. Studying its properties and the signal observed for the resonant Na I D lines, we conclude that we are mainly observing depolarization of the continuum by the absorption lines. The linear polarization of the Betelgeuse continuum is due to the anisotropy of the radiation field induced by brightness spots at the surface and Rayleigh scattering in the atmosphere. We have developed a geometrical model to interpret the observed polarization, from which we infer the presence of two brightness spots and their positions on the surface of Betelgeuse. We show that applying the model to each velocity bin along the Stokes Q and U profiles allows the derivation of a map of the bright spots. We use the Narval linear polarization observations of Betelgeuse obtained over a period of 1.4 yr to study the evolution of the spots and of the atmosphere. Conclusions: Our study of the linearly polarized spectrum of Betelgeuse provides a novel method for studying the evolution of brightness spots at its surface and complements quasi-simultaneous observations obtained with PIONIER at the VLTI. Based on observations obtained at the Télescope Bernard Lyot (TBL) at Observatoire du Pic du Midi, CNRS/INSU and Université de Toulouse, France.

  20. Interactive graphic editing tools in bioluminescent imaging simulation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Tian, Jie; Luo, Jie; Wang, Ge; Cong, Wenxiang

    2005-04-01

    It is a challenging task to accurately describe complicated biological tissues and bioluminescent sources in bioluminescent imaging simulation. Several graphic editing tools have been developed to efficiently model each part of the bioluminescent simulation environment and to interactively correct or improve the initial models of anatomical structures or bioluminescent sources. There are two major types of graphic editing tools: non-interactive tools and interactive tools. Geometric building blocks (i.e. regular geometric graphics and superquadrics) are applied as non-interactive tools. To a certain extent, complicated anatomical structures and bioluminescent sources can be approximately modeled by combining a sufficient large number of geometric building blocks with Boolean operators. However, those models are too simple to describe the local features and fine changes in 2D/3D irregular contours. Therefore, interactive graphic editing tools have been developed to facilitate the local modifications of any initial surface model. With initial models composed of geometric building blocks, interactive spline mode is applied to conveniently perform dragging and compressing operations on 2D/3D local surface of biological tissues and bioluminescent sources inside the region/volume of interest. Several applications of the interactive graphic editing tools will be presented in this article.

  1. System for conversion between the boundary representation model and a constructive solid geometry model of an object

    DOEpatents

    Christensen, Noel C.; Emery, James D.; Smith, Maurice L.

    1988-04-05

    A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object.

  2. Edge Diffraction Coefficients around Critical Rays

    NASA Astrophysics Data System (ADS)

    Fradkin, L.; Harmer, M.; Darmon, M.

    2014-04-01

    The classical GTD (Geometrical Theory of Diffraction) gives a recipe, based on high-frequency asymptotics, for calculating edge diffraction coefficients in the geometrical regions where only diffracted waves propagate. The Uniform GTD extends this recipe to transition zones between irradiated and silent regions, known as penumbra. For many industrial materials, e.g. steels, and frequencies utlized in industrial ultrasonic transducers, that is, around 5 MHz, asymptotics suggested for description of geometrical regions supporting the head waves or transition regions surrounding their boundaries, known as critical rays, prove unsatisfactory. We present a numerical extension of GTD, which is based on a regularized, variable step Simpson's method for evaluating the edge diffraction coefficients in the regions of interference between head waves, diffracted waves and/or reflected waves. In mathematical terms, these are the regions of coalescence of three critical points - a branch point, stationary point and/or pole, respectively. We show that away from the shadow boundaries, near the critical rays the GTD still produces correct values of the edge diffraction coefficients.

  3. Geometrical influence of a deposited particle on the performance of bridged carbon nanotube-based mass detectors

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, H. R.; Ceballes, S.; Abdelkefi, A.

    2017-10-01

    A nonlocal continuum-based model is derived to simulate the dynamic behavior of bridged carbon nanotube-based nano-scale mass detectors. The carbon nanotube (CNT) is modeled as an elastic Euler-Bernoulli beam considering von-Kármán type geometric nonlinearity. In order to achieve better accuracy in characterization of the CNTs, the geometrical properties of an attached nano-scale particle are introduced into the model by its moment of inertia with respect to the central axis of the beam. The inter-atomic long-range interactions within the structure of the CNT are incorporated into the model using Eringen's nonlocal elastic field theory. In this model, the mass can be deposited along an arbitrary length of the CNT. After deriving the full nonlinear equations of motion, the natural frequencies and corresponding mode shapes are extracted based on a linear eigenvalue problem analysis. The results show that the geometry of the attached particle has a significant impact on the dynamic behavior of the CNT-based mechanical resonator, especially, for those with small aspect ratios. The developed model and analysis are beneficial for nano-scale mass identification when a CNT-based mechanical resonator is utilized as a small-scale bio-mass sensor and the deposited particles are those, such as proteins, enzymes, cancer cells, DNA and other nano-scale biological objects with different and complex shapes.

  4. Real-world spatial regularities affect visual working memory for objects.

    PubMed

    Kaiser, Daniel; Stein, Timo; Peelen, Marius V

    2015-12-01

    Traditional memory research has focused on measuring and modeling the capacity of visual working memory for simple stimuli such as geometric shapes or colored disks. Although these studies have provided important insights, it is unclear how their findings apply to memory for more naturalistic stimuli. An important aspect of real-world scenes is that they contain a high degree of regularity: For instance, lamps appear above tables, not below them. In the present study, we tested whether such real-world spatial regularities affect working memory capacity for individual objects. Using a delayed change-detection task with concurrent verbal suppression, we found enhanced visual working memory performance for objects positioned according to real-world regularities, as compared to irregularly positioned objects. This effect was specific to upright stimuli, indicating that it did not reflect low-level grouping, because low-level grouping would be expected to equally affect memory for upright and inverted displays. These results suggest that objects can be held in visual working memory more efficiently when they are positioned according to frequently experienced real-world regularities. We interpret this effect as the grouping of single objects into larger representational units.

  5. Dynamics of Geometrically Nonlinear Elastic Nonthin Anisotropic Shells of Variable Thickness

    NASA Astrophysics Data System (ADS)

    Marchuk, M. V.; Tuchapskii, R. I.

    2017-11-01

    A theory of dynamic elastic geometrically nonlinear deformation of nonthin anisotropic shells with variable thickness is constructed. Shells are assumed asymmetric about the reference surface. Functions are expanded into Legendre series. The basic equations are written in a coordinate system aligned with the lines of curvature of the reference surface. The equations of motion and appropriate boundary conditions are obtained using the Hamilton-Ostrogradsky variational principle. The change in metric across the thickness is taken into account. The theory assumes that the refinement process is regular and allows deriving equations including products of terms of Legendre series of unknown functions of arbitrary order. The behavior of a square metallic plate acted upon by a pressure pulse distributed over its face is studied.

  6. Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D- and 3D-spatial configurations

    NASA Astrophysics Data System (ADS)

    Geints, Yu E.; Zemlyanov, A. A.; Minin, O. V.; Minin, I. V.

    2018-06-01

    We present the systematic study of key characteristics (field intensity enhancement, spatial extents) of the 2D- and 3D-photonic nanojets (PNJs) produced by geometrically-regular micron-sized dielectric particles illuminated by a plane laser wave. By means of the finite-difference time-domain calculations, we highlight the differences and similarities between PNJs in these two spatial configurations for curved- (sphere, circular cylinder) and rectangle-shaped scatterers (cube, square bar). Our findings can be useful, for example, for the design of particle-based high-resolution imaging because the spatial resolution by such systems might be further controlled by the optimization of refractive index contrast and geometrical shape of the particle-lens.

  7. Notes on Accuracy of Finite-Volume Discretization Schemes on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2011-01-01

    Truncation-error analysis is a reliable tool in predicting convergence rates of discretization errors on regular smooth grids. However, it is often misleading in application to finite-volume discretization schemes on irregular (e.g., unstructured) grids. Convergence of truncation errors severely degrades on general irregular grids; a design-order convergence can be achieved only on grids with a certain degree of geometric regularity. Such degradation of truncation-error convergence does not necessarily imply a lower-order convergence of discretization errors. In these notes, irregular-grid computations demonstrate that the design-order discretization-error convergence can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all.

  8. Contemporary Diagnosis and Management of Atrial Flutter: A Continuum of Atrial Fibrillation and Vice Versa?

    PubMed

    Manolis, Antonis S

    Atrial flutter (AFlu) is usually a fast (>240 bpm) and regular right atrial macroreentrant tachycardia, with a constrained critical region of the reentry circuit located at the cavotricuspid isthmus (CTI; typical CTI-dependent AFlu). However, a variety of right and left atrial tachycardias, resulting from different mechanisms, can also present as AFlu (atypical non-CTI-dependent AFlu). The electrocardiogram can provide clues to its origin and location; however, additional entrainment and more sophisticated electroanatomical mapping techniques may be required to identify its mechanism, location, and target area for a successful ablation. Although atrial fibrillation and AFlu are 2 separate arrhythmias, they often coexist before and after drug and/or ablation therapies. Indeed, there appears to be a close interrelationship between these 2 arrhythmias, and one may "transform" into the other. These issues are discussed in this overview, and practical algorithms are proposed to guide AFlu localization and illustrate the AFlu and atrial fibrillation continuum.

  9. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    PubMed Central

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  10. Nonlinear sigma models with compact hyperbolic target spaces

    NASA Astrophysics Data System (ADS)

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James

    2016-06-01

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  11. Nonlinear sigma models with compact hyperbolic target spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less

  12. Nonlinear sigma models with compact hyperbolic target spaces

    DOE PAGES

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; ...

    2016-06-23

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less

  13. Primary Care and the Hypertension Care Continuum in Brazil.

    PubMed

    Macinko, James; Leventhal, Daniel G P; Lima-Costa, Maria Fernanda

    This study provides estimates of hypertension prevalence, awareness, treatment, and control in Brazil and assesses how well different modes of primary care delivery achieve each of these outcomes. Over one-third of the Brazilian adult population had measured hypertension or prior diagnosis. Nearly 90% of these had recent contact with the health system, but only 65% were aware of their condition. Only 62% of these regularly sought care for hypertension, but of these 92% received treatment. Hypertension control was 33% overall, but increased to 57% among those who received all levels of care.

  14. Geometric effects on electrocapillarity in nanochannels with an overlapped electric double layer.

    PubMed

    Lee, Jung A; Kang, In Seok

    2016-10-01

    Unsteady filling of electrolyte solution inside a nanochannel by the electrocapillarity effect is studied. The filling rate is predicted as a function of the bulk concentration of the electrolyte, the surface potential (or surface charge density), and the cross sectional shape of the channel. For a nanochannel, the average outward normal stress exerted on the cross section of a channel (P[over ¯]_{zz}^{}) can be regarded as a measure of electrocapillarity and it is the driving force of the flow. This electrocapillarity measure is first analyzed by using the solution of the Poisson-Boltzmann equation. From the analysis, it is found that the results for many different cross sectional shapes can be unified with good accuracy if the hydraulic radius is adopted as the characteristic length scale of the problem. Especially in the case of constant surface potential, for both limits of κh→0 and κh→∞, it can be shown theoretically that the electrocapillarity is independent of the cross sectional shape if the hydraulic radius is the same. In order to analyze the geometric effects more systematically, we consider the regular N-polygons with the same hydraulic radius and the rectangles of different aspect ratios. Washburn's approach is then adopted to predict the filling rate of electrolyte solution inside a nanochannel. It is found that the average filling velocity decreases as N increases in the case of regular N-polygons with the same hydraulic radius. This is because the regular N-polygons of the same hydraulic radius share the same inscribing circle.

  15. Determination of heat transfer parameters by use of finite integral transform and experimental data for regular geometric shapes

    NASA Astrophysics Data System (ADS)

    Talaghat, Mohammad Reza; Jokar, Seyyed Mohammad

    2017-12-01

    This article offers a study on estimation of heat transfer parameters (coefficient and thermal diffusivity) using analytical solutions and experimental data for regular geometric shapes (such as infinite slab, infinite cylinder, and sphere). Analytical solutions have a broad use in experimentally determining these parameters. Here, the method of Finite Integral Transform (FIT) was used for solutions of governing differential equations. The temperature change at centerline location of regular shapes was recorded to determine both the thermal diffusivity and heat transfer coefficient. Aluminum and brass were used for testing. Experiments were performed for different conditions such as in a highly agitated water medium ( T = 52 °C) and in air medium ( T = 25 °C). Then, with the known slope of the temperature ratio vs. time curve and thickness of slab or radius of the cylindrical or spherical materials, thermal diffusivity value and heat transfer coefficient may be determined. According to the method presented in this study, the estimated of thermal diffusivity of aluminum and brass is 8.395 × 10-5 and 3.42 × 10-5 for a slab, 8.367 × 10-5 and 3.41 × 10-5 for a cylindrical rod and 8.385 × 10-5 and 3.40 × 10-5 m2/s for a spherical shape, respectively. The results showed there is close agreement between the values estimated here and those already published in the literature. The TAAD% is 0.42 and 0.39 for thermal diffusivity of aluminum and brass, respectively.

  16. Exact finite volume expectation values of \\overline{Ψ}Ψ in the massive Thirring model from light-cone lattice correlators

    NASA Astrophysics Data System (ADS)

    Hegedűs, Árpád

    2018-03-01

    In this paper, using the light-cone lattice regularization, we compute the finite volume expectation values of the composite operator \\overline{Ψ}Ψ between pure fermion states in the Massive Thirring Model. In the light-cone regularized picture, this expectation value is related to 2-point functions of lattice spin operators being located at neighboring sites of the lattice. The operator \\overline{Ψ}Ψ is proportional to the trace of the stress-energy tensor. This is why the continuum finite volume expectation values can be computed also from the set of non-linear integral equations (NLIE) governing the finite volume spectrum of the theory. Our results for the expectation values coming from the computation of lattice correlators agree with those of the NLIE computations. Previous conjectures for the LeClair-Mussardo-type series representation of the expectation values are also checked.

  17. Efficient field-theoretic simulation of polymer solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villet, Michael C.; Fredrickson, Glenn H., E-mail: ghf@mrl.ucsb.edu; Department of Materials, University of California, Santa Barbara, California 93106

    2014-12-14

    We present several developments that facilitate the efficient field-theoretic simulation of polymers by complex Langevin sampling. A regularization scheme using finite Gaussian excluded volume interactions is used to derive a polymer solution model that appears free of ultraviolet divergences and hence is well-suited for lattice-discretized field theoretic simulation. We show that such models can exhibit ultraviolet sensitivity, a numerical pathology that dramatically increases sampling error in the continuum lattice limit, and further show that this pathology can be eliminated by appropriate model reformulation by variable transformation. We present an exponential time differencing algorithm for integrating complex Langevin equations for fieldmore » theoretic simulation, and show that the algorithm exhibits excellent accuracy and stability properties for our regularized polymer model. These developments collectively enable substantially more efficient field-theoretic simulation of polymers, and illustrate the importance of simultaneously addressing analytical and numerical pathologies when implementing such computations.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irwin, Judith; Krause, Marita; Beck, Rainer

    This third paper in the Continuum Halos in Nearby Galaxies—an EVLA Survey (CHANG-ES) series shows the first results from our regular data taken with the Karl G. Jansky Very Large Array. The edge-on galaxy, UGC 10288, has been observed in the B, C, and D configurations at L band (1.5 GHz) and in the C and D configurations at C band (6 GHz) in all polarization products. We show the first spatially resolved images of this galaxy in these bands, the first polarization images, and the first composed image at an intermediate frequency (4.1 GHz) which has been formed frommore » a combination of all data sets. A surprising new result is the presence of a strong, polarized, double-lobed extragalactic radio source (CHANG-ES A) almost immediately behind the galaxy and perpendicular to its disk. The core of CHANG-ES A has an optical counterpart (SDSS J161423.28–001211.8) at a photometric redshift of z {sub phot} = 0.39; the southern radio lobe is behind the disk of UGC 10288 and the northern lobe is behind the halo region. This background ''probe'' has allowed us to do a preliminary Faraday rotation analysis of the foreground galaxy, putting limits on the regular magnetic field and electron density in the halo of UGC 10288 in regions in which there is no direct detection of a radio continuum halo. We have revised the flux densities of the two sources individually as well as the star formation rate (SFR) for UGC 10288. The SFR is low (0.4-0.5 M {sub ☉} yr{sup –1}) and the galaxy has a high thermal fraction (44% at 6 GHz), as estimated using both the thermal and non-thermal SFR calibrations of Murphy et al. UGC 10288 would have fallen well below the CHANG-ES flux density cutoff, had it been considered without the brighter contribution of the background source. UGC 10288 shows discrete high-latitude radio continuum features, but it does not have a global radio continuum halo (exponential scale heights are typically ≈1 kpc averaged over regions with and without extensions). One prominent feature appears to form a large arc to the north of the galaxy on its east side, extending to 3.5 kpc above the plane. The total minimum magnetic field strength at a sample position in the arc is ∼10 μG. Thus, this galaxy still appears to be able to form substantial high latitude, localized features in spite of its relatively low SFR.« less

  19. A Spatially Resolved Study of Cold Dust, Molecular Gas, H II Regions, and Stars in the z = 2.12 Submillimeter Galaxy ALESS67.1

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Chou; Hodge, J. A.; Smail, Ian; Swinbank, A. M.; Walter, Fabian; Simpson, J. M.; Calistro Rivera, Gabriela; Bertoldi, F.; Brandt, W. N.; Chapman, S. C.; da Cunha, Elisabete; Dannerbauer, H.; De Breuck, C.; Harrison, C. M.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Wardlow, J. L.; Weiß, A.; van der Werf, P. P.

    2017-09-01

    We present detailed studies of a z = 2.12 submillimeter galaxy, ALESS67.1, using sub-arcsecond resolution ALMA, adaptive optics-aided VLT/SINFONI, and Hubble Space Telescope (HST)/CANDELS data to investigate the kinematics and spatial distributions of dust emission (870 μm continuum), 12CO(J = 3–2), strong optical emission lines, and visible stars. Dynamical modeling of the optical emission lines suggests that ALESS67.1 is not a pure rotating disk but a merger, consistent with the apparent tidal features revealed in the HST imaging. Our sub-arcsecond resolution data set allows us to measure half-light radii for all the tracers, and we find a factor of 4–6 smaller sizes in dust continuum compared to all the other tracers, including 12CO; also, ultraviolet (UV) and Hα emission are significantly offset from the dust continuum. The spatial mismatch between the UV continuum and the cold dust and gas reservoir supports the explanation that geometrical effects are responsible for the offset of the dusty galaxy on the IRX–β diagram. Using a dynamical method we derive an {α }CO}=1.8+/- 1.0, consistent with other submillimeter galaxies (SMGs) that also have resolved CO and dust measurements. Assuming a single {α }CO} value we also derive resolved gas and star formation rate surface densities, and find that the core region of the galaxy (≲ 5 kpc) follows the trend of mergers on the Schmidt–Kennicutt relationship, whereas the outskirts (≳ 5 kpc) lie on the locus of normal star-forming galaxies, suggesting different star formation efficiencies within one galaxy. Our results caution against using single size or morphology for different tracers of the star formation activity and gas content of galaxies, and therefore argue the need to use spatially resolved, multi-wavelength observations to interpret the properties of SMGs, and perhaps even for z> 1 galaxies in general.

  20. Impact of geometric, thermal and tunneling effects on nano-transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Langhua; Chen, Duan, E-mail: dchen10@uncc.edu; Wei, Guo-Wei

    Electronic transistors are fundamental building blocks of large scale integrated circuits in modern advanced electronic equipments, and their sizes have been down-scaled to nanometers. Modeling and simulations in the framework of quantum dynamics have emerged as important tools to study functional characteristics of these nano-devices. This work explores the effects of geometric shapes of semiconductor–insulator interfaces, phonon–electron interactions, and quantum tunneling of three-dimensional (3D) nano-transistors. First, we propose a two-scale energy functional to describe the electron dynamics in a dielectric continuum of device material. Coupled governing equations, i.e., Poisson–Kohn–Sham (PKS) equations, are derived by the variational principle. Additionally, it ismore » found that at a given channel cross section area and gate voltage, the geometry that has the smallest perimeter of the channel cross section offers the largest channel current, which indicates that ultra-thin nanotransistors may not be very efficient in practical applications. Moreover, we introduce a new method to evaluate quantum tunneling effects in nanotransistors without invoking the comparison of classical and quantum predictions. It is found that at a given channel cross section area and gate voltage, the geometry that has the smallest perimeter of the channel cross section has the smallest quantum tunneling ratio, which indicates that geometric defects can lead to higher geometric confinement and larger quantum tunneling effect. Furthermore, although an increase in the phonon–electron interaction strength reduces channel current, it does not have much impact to the quantum tunneling ratio. Finally, advanced numerical techniques, including second order elliptic interface methods, have been applied to ensure computational accuracy and reliability of the present PKS simulation.« less

  1. Effect of initial strain and material nonlinearity on the nonlinear static and dynamic response of graphene sheets

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; Patel, B. P.

    2018-06-01

    Computationally efficient multiscale modelling based on Cauchy-Born rule in conjunction with finite element method is employed to study static and dynamic characteristics of graphene sheets, with/without considering initial strain, involving Green-Lagrange geometric and material nonlinearities. The strain energy density function at continuum level is established by coupling the deformation at continuum level to that at atomic level through Cauchy-Born rule. The atomic interactions between carbon atoms are modelled through Tersoff-Brenner potential. The governing equation of motion obtained using Hamilton's principle is solved through standard Newton-Raphson method for nonlinear static response and Newmark's time integration technique to obtain nonlinear transient response characteristics. Effect of initial strain on the linear free vibration frequencies, nonlinear static and dynamic response characteristics is investigated in detail. The present multiscale modelling based results are found to be in good agreement with those obtained through molecular mechanics simulation. Two different types of boundary constraints generally used in MM simulation are explored in detail and few interesting findings are brought out. The effect of initial strain is found to be greater in linear response when compared to that in nonlinear response.

  2. Prediction of rarefied micro-nozzle flows using the SPARTA library

    NASA Astrophysics Data System (ADS)

    Deschenes, Timothy R.; Grot, Jonathan

    2016-11-01

    The accurate numerical prediction of gas flows within micro-nozzles can help evaluate the performance and enable the design of optimal configurations for micro-propulsion systems. Viscous effects within the large boundary layers can have a strong impact on the nozzle performance. Furthermore, the variation in collision length scales from continuum to rarefied preclude the use of continuum-based computational fluid dynamics. In this paper, we describe the application of a massively parallel direct simulation Monte Carlo (DSMC) library to predict the steady-state and transient flow through a micro-nozzle. The nozzle's geometric configuration is described in a highly flexible manner to allow for the modification of the geometry in a systematic fashion. The transient simulation highlights a strong shock structure that forms within the converging portion of the nozzle when the expanded gas interacts with the nozzle walls. This structure has a strong impact on the buildup of the gas in the nozzle and affects the boundary layer thickness beyond the throat in the diverging section of the nozzle. Future work will look to examine the transient thrust and integrate this simulation capability into a web-based rarefied gas dynamics prediction software, which is currently under development.

  3. Infants learn better from left to right: a directional bias in infants' sequence learning.

    PubMed

    Bulf, Hermann; de Hevia, Maria Dolores; Gariboldi, Valeria; Macchi Cassia, Viola

    2017-05-26

    A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds' ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants' ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.

  4. Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation

    PubMed Central

    Lee, Kit-Hang; Fu, Denny K.C.; Leong, Martin C.W.; Chow, Marco; Fu, Hing-Choi; Althoefer, Kaspar; Sze, Kam Yim; Yeung, Chung-Kwong

    2017-01-01

    Abstract Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments. PMID:29251567

  5. Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation.

    PubMed

    Lee, Kit-Hang; Fu, Denny K C; Leong, Martin C W; Chow, Marco; Fu, Hing-Choi; Althoefer, Kaspar; Sze, Kam Yim; Yeung, Chung-Kwong; Kwok, Ka-Wai

    2017-12-01

    Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments.

  6. Bound states in the continuum and polarization singularities in periodic arrays of dielectric rods

    NASA Astrophysics Data System (ADS)

    Bulgakov, Evgeny N.; Maksimov, Dmitrii N.

    2017-12-01

    We consider optical bound states in the continuum (BICs) in periodic arrays of dielectric rods. The full classification of BICs in the above system is provided, including the modes propagating along the axes of the rods and bidirectional BICs propagating both along the axes of the rods and the axis of periodicity. It is shown that the leaky zones supporting the BICs generally have elliptically polarized far-field radiation patterns, with the polarization ellipses collapsing on approach to the BICs in momentum space. That allowed us to apply the concept of polarization singularities and demonstrate that the BICs possess a topological charge defined as the winding number of the polarization direction [Phys. Rev. Lett. 113, 257401 (2014), 10.1103/PhysRevLett.113.257401]. It is found that the evolution of the BICs, including their creation and annihilation, under variation of geometric parameters is controlled by the topological charge. Three scenarios of such evolution for different leaky zones are described. Finally, it is shown that the topological properties of the BICs can be extracted from transmission spectra when the system is illuminated by a plane wave of circular polarization.

  7. Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Fausnaugh, M. M.; Starkey, D. A.; Horne, Keith; Kochanek, C. S.; Peterson, B. M.; Bentz, M. C.; Denney, K. D.; Grier, C. J.; Grupe, D.; Pogge, R. W.; De Rosa, G.; Adams, S. M.; Barth, A. J.; Beatty, Thomas G.; Bhattacharjee, A.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brown, Jacob E.; Brown, Jonathan S.; Brotherton, M. S.; Coker, C. T.; Crawford, S. M.; Croxall, K. V.; Eftekharzadeh, Sarah; Eracleous, Michael; Joner, M. D.; Henderson, C. B.; Holoien, T. W.-S.; Hutchison, T.; Kaspi, Shai; Kim, S.; King, Anthea L.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; MacInnis, F.; Manne-Nicholas, E. R.; Mason, M.; Montuori, Carmen; Mosquera, Ana; Mudd, Dale; Musso, R.; Nazarov, S. V.; Nguyen, M. L.; Okhmat, D. N.; Onken, Christopher A.; Ou-Yang, B.; Pancoast, A.; Pei, L.; Penny, Matthew T.; Poleski, Radosław; Rafter, Stephen; Romero-Colmenero, E.; Runnoe, Jessie; Sand, David J.; Schimoia, Jaderson S.; Sergeev, S. G.; Shappee, B. J.; Simonian, Gregory V.; Somers, Garrett; Spencer, M.; Stevens, Daniel J.; Tayar, Jamie; Treu, T.; Valenti, Stefano; Van Saders, J.; Villanueva, S., Jr.; Villforth, C.; Weiss, Yaniv; Winkler, H.; Zhu, W.

    2018-02-01

    We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC 2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of τ ∝ λ 4/3. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long (2.6 day) lag is problematic for coronal reprocessing models.

  8. THE RADIO CONTINUUM STRUCTURE OF CENTAURUS A AT 1.4 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feain, I. J.; Cornwell, T. J.; Ekers, R. D.

    2011-10-10

    A 45 deg{sup 2} radio continuum imaging campaign of the nearest radio galaxy, Centaurus A, is reported. Using the Australia Telescope Compact Array and the Parkes 64 m radio telescope at 1.4 GHz, the spatial resolution of the resultant image is {approx}600 pc ({approx}50''), resolving the {approx}>500 kpc giant radio lobes with approximately five times better physical resolution compared to any previous image, and making this the most detailed radio continuum image of any radio galaxy to date. In this paper, we present these new data and discuss briefly some of the most interesting morphological features that we have discoveredmore » in the images. The two giant outer lobes are highly structured and considerably distinct. The southern part of the giant northern lobe naturally extends out from the northern middle lobe with uniformly north-streaming emission. The well known northern loop is resolved into a series of semi-regular shells with a spacing of approximately 25 kpc. The northern part of the giant northern lobe also contains identifiable filaments and partial ring structures. As seen in previous single-dish images at lower angular resolution, the giant southern lobe is not physically connected to the core at radio wavelengths. Almost the entirety of the giant southern lobe is resolved into a largely chaotic and mottled structure which appears considerably different (morphologically) to the diffuse regularity of the northern lobe. We report the discovery of a vertex and a vortex near the western boundary of the southern lobe, two striking, high surface brightness features that are named based on their morphology and not their dynamics (which are presently unknown). The vortex and vertex are modeled as reaccelerated lobe emission due to shocks from the active galactic nucleus itself or from the passage of a dwarf elliptical galaxy through the lobe. Preliminary polarimetric and spectral index studies support a plasma reacceleration model and could explain the origin of the Faraday rotation structure detected in the southern lobe. In addition, there are a series of low surface brightness wisps detected around the edges of both the giant lobes.« less

  9. Scaled lattice fermion fields, stability bounds, and regularity

    NASA Astrophysics Data System (ADS)

    O'Carroll, Michael; Faria da Veiga, Paulo A.

    2018-02-01

    We consider locally gauge-invariant lattice quantum field theory models with locally scaled Wilson-Fermi fields in d = 1, 2, 3, 4 spacetime dimensions. The use of scaled fermions preserves Osterwalder-Seiler positivity and the spectral content of the models (the decay rates of correlations are unchanged in the infinite lattice). In addition, it also results in less singular, more regular behavior in the continuum limit. Precisely, we treat general fermionic gauge and purely fermionic lattice models in an imaginary-time functional integral formulation. Starting with a hypercubic finite lattice Λ ⊂(aZ ) d, a ∈ (0, 1], and considering the partition function of non-Abelian and Abelian gauge models (the free fermion case is included) neglecting the pure gauge interactions, we obtain stability bounds uniformly in the lattice spacing a ∈ (0, 1]. These bounds imply, at least in the subsequential sense, the existence of the thermodynamic (Λ ↗ (aZ ) d) and the continuum (a ↘ 0) limits. Specializing to the U(1) gauge group, the known non-intersecting loop expansion for the d = 2 partition function is extended to d = 3 and the thermodynamic limit of the free energy is shown to exist with a bound independent of a ∈ (0, 1]. In the case of scaled free Fermi fields (corresponding to a trivial gauge group with only the identity element), spectral representations are obtained for the partition function, free energy, and correlations. The thermodynamic and continuum limits of the free fermion free energy are shown to exist. The thermodynamic limit of n-point correlations also exist with bounds independent of the point locations and a ∈ (0, 1], and with no n! dependence. Also, a time-zero Hilbert-Fock space is constructed, as well as time-zero, spatially pointwise scaled fermion creation operators which are shown to be norm bounded uniformly in a ∈ (0, 1]. The use of our scaled fields since the beginning allows us to extract and isolate the singularities of the free energy when a ↘ 0.

  10. FAR-ULTRAVIOLET OBSERVATIONS OF THE SPICA NEBULA AND THE INTERACTION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yeon-Ju; Min, Kyoung-Wook; Lim, Tae-Ho

    2013-09-01

    We report the analysis results of far-ultraviolet (FUV) observations, made for a broad region around {alpha} Vir (Spica) including the interaction zone of Loop I and the Local Bubble. The whole region was optically thin and a general correlation was seen between the FUV continuum intensity and the dust extinction, except in the neighborhood of the bright central star, indicating the dust scattering nature of the FUV continuum. We performed Monte Carlo radiative transfer simulations to obtain the optical parameters related to the dust scattering as well as to the geometrical structure of the region. The albedo and asymmetry factormore » were found to be 0.38 {+-} 0.06 and 0.46 {+-} 0.06, respectively, in good agreement with the Milky Way dust grain models. The distance to and the thickness of the interaction zone were estimated to be 70{sup +4}{sub -8} pc and 40{sup +8}{sub -10} pc, respectively. The diffuse FUV continuum in the northern region above Spica was mostly the result of scattering of the starlight from Spica, while that in the southern region was mainly due to the background stars. The C IV {lambda}{lambda}1548, 1551 emission was found throughout the whole region, in contrast to the Si II* {lambda}1532 emission which was bright only within the H II region. This indicates that the C IV line arises mostly at the shell boundaries of the bubbles, with a larger portion likely from the Loop I than from the Local Bubble side, whereas the Si II* line is from the photoionized Spica Nebula.« less

  11. Acoustic field of a pulsating cylinder in a rarefied gas: Thermoviscous and curvature effects

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Manela, A.

    2017-09-01

    We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering both single cylinder and coaxial cylinders setups. Numerical calculations are carried out via the direct simulation Monte Carlo method, applying a noniterative algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained in the limits of ballistic- and continuum-flow conditions. Comparing with a reference inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of the generated disturbance, the continuum-limit solution exhibits an exponential decay of the signal with the distance from the source, reflecting thermoviscous effects, and accompanied by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation is observed in the ballistic limit, where boundary curvature results in "geometric reduction" of the molecular layer affected by the source, and the signal vanishes at a distance of few acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal. The impact of boundary curvature becomes significant in the ballistic-flow regime, where the optimal heat-flux amplitude required for sound reduction decreases with the distance from the source and is essentially a function of the acoustic-wavelength-scaled distance only.

  12. Constraints on the optical polarization source in the luminous non-blazar quasar 3C 323.1 (PG 1545+210) from the photometric and polarimetric variability

    NASA Astrophysics Data System (ADS)

    Kokubo, Mitsuru

    2017-05-01

    We examine the optical photometric and polarimetric variability of the luminous type 1 non-blazar quasar 3C 323.1 (PG 1545+210). Two optical spectropolarimetric measurements taken during the periods 1996-1998 and 2003 combined with a V-band imaging-polarimetric measurement taken in 2002 reveal that (1) as noted in the literature, the polarization of 3C 323.1 is confined only to the continuum emission, I.e. the emission from the broad-line region is unpolarized; (2) the polarized flux spectra show evidence of a time-variable broad absorption feature in the wavelength range of the Balmer continuum and other recombination lines; (3) weak variability in the polarization position angle (PA) of ˜4°over a time-scale of 4-6 yr is observed and (4) the V-band total flux and the polarized flux show highly correlated variability over a time-scale of 1 yr. Taking the above-mentioned photometric and polarimetric variability properties and the results from previous studies into consideration, we propose a geometrical model for the polarization source in 3C 323.1, in which an equatorial absorbing region and an axi-asymmetric equatorial electron-scattering region are assumed to be located between the accretion disc and the broad-line region. The scattering/absorbing regions can perhaps be attributed to the accretion disc wind or flared disc surface, but further polarimetric monitoring observations for 3C 323.1 and other quasars with continuum-confined polarization are needed to probe the true physical origins of these regions.

  13. Voluminator 2.0 - Speeding up the Approximation of the Volume of Defective 3d Building Models

    NASA Astrophysics Data System (ADS)

    Sindram, M.; Machl, T.; Steuer, H.; Pültz, M.; Kolbe, T. H.

    2016-06-01

    Semantic 3D city models are increasingly used as a data source in planning and analyzing processes of cities. They represent a virtual copy of the reality and are a common information base and source of information for examining urban questions. A significant advantage of virtual city models is that important indicators such as the volume of buildings, topological relationships between objects and other geometric as well as thematic information can be derived. Knowledge about the exact building volume is an essential base for estimating the building energy demand. In order to determine the volume of buildings with conventional algorithms and tools, the buildings may not contain any topological and geometrical errors. The reality, however, shows that city models very often contain errors such as missing surfaces, duplicated faces and misclosures. To overcome these errors (Steuer et al., 2015) have presented a robust method for approximating the volume of building models. For this purpose, a bounding box of the building is divided into a regular grid of voxels and it is determined which voxels are inside the building. The regular arrangement of the voxels leads to a high number of topological tests and prevents the application of this method using very high resolutions. In this paper we present an extension of the algorithm using an octree approach limiting the subdivision of space to regions around surfaces of the building models and to regions where, in the case of defective models, the topological tests are inconclusive. We show that the computation time can be significantly reduced, while preserving the robustness against geometrical and topological errors.

  14. Implementation of the Domino Sampling Waveform digitizer in the PIBETA experiment

    NASA Astrophysics Data System (ADS)

    Wang, Ying

    The Domino Sampling Chip(DSC)-Waveform digitization system is a significant addition to electronics arsenal of PIBETA experiment. It is used to digitize waveforms from every photo tube in the detector. Through carefully programmed offline analysis of its raw data collected during regular runtime, better timing and energy resolution are achieved compared with feast's results. And more importantly, the geometric character of the digitized waveform which contains information of energy deposition of particle decays can be utilized for particle identification, a great advantage that regular unit could not possess. In addition to fastbus, incorporate DSC data through its offline analysis including timing and energy offset, scale calibration will contribute a final more precise result of PIBETA experiment.

  15. Internal-Modified Dithiol DNA–Directed Au Nanoassemblies: Geometrically Controlled Self–Assembly and Quantitative Surface–Enhanced Raman Scattering Properties

    PubMed Central

    Yan, Yuan; Shan, Hangyong; Li, Min; Chen, Shu; Liu, Jianyu; Cheng, Yanfang; Ye, Cui; Yang, Zhilin; Lai, Xuandi; Hu, Jianqiang

    2015-01-01

    In this work, a hierarchical DNA–directed self–assembly strategy to construct structure–controlled Au nanoassemblies (NAs) has been demonstrated by conjugating Au nanoparticles (NPs) with internal–modified dithiol single-strand DNA (ssDNA) (Au–B–A or A–B–Au–B–A). It is found that the dithiol–ssDNA–modified Au NPs and molecule quantity of thiol–modified ssDNA grafted to Au NPs play critical roles in the assembly of geometrically controlled Au NAs. Through matching Au–DNA self–assembly units, geometrical structures of the Au NAs can be tailored from one–dimensional (1D) to quasi–2D and 2D. Au–B–A conjugates readily give 1D and quasi–2D Au NAs while 2D Au NAs can be formed by A–B–Au–B–A building blocks. Surface-enhanced Raman scattering (SERS) measurements and 3D finite–difference time domain (3D-FDTD) calculation results indicate that the geometrically controllable Au NAs have regular and linearly “hot spots”–number–depended SERS properties. For a certain number of NPs, the number of “hot spots” and accordingly enhancement factor of Au NAs can be quantitatively evaluated, which open a new avenue for quantitative analysis based on SERS technique. PMID:26581251

  16. Internal-Modified Dithiol DNA-Directed Au Nanoassemblies: Geometrically Controlled Self-Assembly and Quantitative Surface-Enhanced Raman Scattering Properties

    NASA Astrophysics Data System (ADS)

    Yan, Yuan; Shan, Hangyong; Li, Min; Chen, Shu; Liu, Jianyu; Cheng, Yanfang; Ye, Cui; Yang, Zhilin; Lai, Xuandi; Hu, Jianqiang

    2015-11-01

    In this work, a hierarchical DNA-directed self-assembly strategy to construct structure-controlled Au nanoassemblies (NAs) has been demonstrated by conjugating Au nanoparticles (NPs) with internal-modified dithiol single-strand DNA (ssDNA) (Au-B-A or A-B-Au-B-A). It is found that the dithiol-ssDNA-modified Au NPs and molecule quantity of thiol-modified ssDNA grafted to Au NPs play critical roles in the assembly of geometrically controlled Au NAs. Through matching Au-DNA self-assembly units, geometrical structures of the Au NAs can be tailored from one-dimensional (1D) to quasi-2D and 2D. Au-B-A conjugates readily give 1D and quasi-2D Au NAs while 2D Au NAs can be formed by A-B-Au-B-A building blocks. Surface-enhanced Raman scattering (SERS) measurements and 3D finite-difference time domain (3D-FDTD) calculation results indicate that the geometrically controllable Au NAs have regular and linearly “hot spots”-number-depended SERS properties. For a certain number of NPs, the number of “hot spots” and accordingly enhancement factor of Au NAs can be quantitatively evaluated, which open a new avenue for quantitative analysis based on SERS technique.

  17. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Opticallymore » classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.« less

  18. Sleep duration, nightshift work, and the timing of meals and urinary levels of 8-isoprostane and 6-sulfatoxymelatonin in Japanese women.

    PubMed

    Nagata, Chisato; Tamura, Takashi; Wada, Keiko; Konishi, Kie; Goto, Yuko; Nagao, Yasuko; Ishihara, Kazuhiro; Yamamoto, Satoru

    2017-01-01

    It has been hypothesized that disruption of circadian rhythms affects human health. Shift work and sleep deprivation are thought to disrupt the normal light-dark cycle, although the disruption due to shiftwork may be dependent on sleep deprivation. Both conditions have been suggested to be associated with an increased risk of cardiometabolic disorders. Non-photic environmental factors, such as the timing of eating, are also thought to regulate circadian rhythm and thus, may have effects on health, but the evidence from human studies is scarce. Oxidative stress is a risk factor of cardiometabolic disorders. Some laboratory studies suggest an involvement of circadian clock genes in the regulation of the redox system. The present study aimed to examine the association of sleeping habits, nightshift work, and the timing of meals with urinary levels of 8-isoprostane, a marker of oxidative stress, and 6-sulfatoxymelatonin, the principal metabolite of melatonin. Study subjects were 542 women who had previously attended a breast cancer mass screening in a community in Japan. Information on bedtimes and wake-up times, history of nightshift work, and the timing of meals was obtained by a self-administered questionnaire. The 8-isoprostane and 6-sulfatoxymelatonin were measured using the first morning void of urine and expressed per mg of creatinine. The geometric mean of 8-isoprostane levels was 12.1% higher in women with ≤6 hours of sleep than that in those with >8 hours of sleep on weekdays, and longer sleep duration on weekdays was significantly associated with lower urinary levels of 8-isoprostane after controlling for covariates (p for trend = 0.04). Women who were currently working the nightshift had a 33.3% higher geometric mean of 8-isoprostane levels than those who were not working nightshift (p = 0.03). Urinary 6-sulfatoxymelatonin levels were unrelated to sleep habits or nightshift work. Women who ate breakfast at irregular times had a 19.8% higher geometric mean of 8-isoprostane levels than those who ate breakfast at a regular time or who did not eat (p = 0.02). Women who ate nighttime snacks at irregular times had a 16.2% higher geometric mean of 8-isoprostane levels than those who did not eat nighttime snacks or who ate nighttime snacks at a regular time (p = 0.003). Among women who ate dinner at a regular time, earlier times for dinner were associated with higher 8-isoprostane and 6-sulfatoxymelatonin levels (p values for trends were 0.01 and 0.02, respectively). However, the times of dinner and nighttime snack are overlapping, and the time of last meal of the day was not associated with 8-isoprostane and 6-sulfatoxymelatonin levels. The time of breakfast or lunch was not associated with these biomarkers among women who ate the meal at regular times. Disturbing the rhythmicity of daily life may be associated with oxidative stress.

  19. Gaussian Curvature as an Identifier of Shell Rigidity

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Davit

    2017-11-01

    In the paper we deal with shells with non-zero Gaussian curvature. We derive sharp Korn's first (linear geometric rigidity estimate) and second inequalities on that kind of shell for zero or periodic Dirichlet, Neumann, and Robin type boundary conditions. We prove that if the Gaussian curvature is positive, then the optimal constant in the first Korn inequality scales like h, and if the Gaussian curvature is negative, then the Korn constant scales like h 4/3, where h is the thickness of the shell. These results have a classical flavour in continuum mechanics, in particular shell theory. The Korn first inequalities are the linear version of the famous geometric rigidity estimate by Friesecke et al. for plates in Arch Ration Mech Anal 180(2):183-236, 2006 (where they show that the Korn constant in the nonlinear Korn's first inequality scales like h 2), extended to shells with nonzero curvature. We also recover the uniform Korn-Poincaré inequality proven for "boundary-less" shells by Lewicka and Müller in Annales de l'Institute Henri Poincare (C) Non Linear Anal 28(3):443-469, 2011 in the setting of our problem. The new estimates can also be applied to find the scaling law for the critical buckling load of the shell under in-plane loads as well as to derive energy scaling laws in the pre-buckled regime. The exponents 1 and 4/3 in the present work appear for the first time in any sharp geometric rigidity estimate.

  20. System for conversion between the boundary representation model and a constructive solid geometry model of an object

    DOEpatents

    Christensen, N.C.; Emery, J.D.; Smith, M.L.

    1985-04-29

    A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object. 19 figs.

  1. A practical application of the geometrical theory on fibered manifolds to an autonomous bicycle motion in mechanical system with nonholonomic constraints

    NASA Astrophysics Data System (ADS)

    Haddout, Soufiane

    2018-01-01

    The equations of motion of a bicycle are highly nonlinear and rolling of wheels without slipping can only be expressed by nonholonomic constraint equations. A geometrical theory of general nonholonomic constrained systems on fibered manifolds and their jet prolongations, based on so-called Chetaev-type constraint forces, was proposed and developed in the last decade by O. Krupková (Rossi) in 1990's. Her approach is suitable for study of all kinds of mechanical systems-without restricting to Lagrangian, time-independent, or regular ones, and is applicable to arbitrary constraints (holonomic, semiholonomic, linear, nonlinear or general nonholonomic). The goal of this paper is to apply Krupková's geometric theory of nonholonomic mechanical systems to study a concrete problem in nonlinear nonholonomic dynamics, i.e., autonomous bicycle. The dynamical model is preserved in simulations in its original nonlinear form without any simplifying. The results of numerical solutions of constrained equations of motion, derived within the theory, are in good agreement with measurements and thus they open the possibility of direct application of the theory to practical situations.

  2. α clustering with a hollow structure: Geometrical structure of α clusters from platonic solids to fullerene shape

    NASA Astrophysics Data System (ADS)

    Tohsaki, Akihiro; Itagaki, Naoyuki

    2018-01-01

    We study α -cluster structure based on the geometric configurations with a microscopic framework, which takes full account of the Pauli principle, and which also employs an effective internucleon force including finite-range three-body terms suitable for microscopic α -cluster models. Here, special attention is focused upon the α clustering with a hollow structure; all the α clusters are put on the surface of a sphere. All the platonic solids (five regular polyhedra) and the fullerene-shaped polyhedron coming from icosahedral structure are considered. Furthermore, two configurations with dual polyhedra, hexahedron-octahedron and dodecahedron-icosahedron, are also scrutinized. When approaching each other from large distances with these symmetries, α clusters create certain local energy pockets. As a consequence, we insist on the possible existence of α clustering with a geometric shape and hollow structure, which is favored from Coulomb energy point of view. Especially, two configurations, that is, dual polyhedra of dodecahedron-icosahedron and fullerene, have a prominent hollow structure compared with the other six configurations.

  3. Discrimination Between Maturity and Composition from Integrated Clementine UltraViolet-Visible and Near-Infrared Data

    NASA Astrophysics Data System (ADS)

    Le Mouelic, S.; Langevin, Y.; Erard, S.; Pinet, P.; Daydou, Y.; Chevrel, S.

    1999-01-01

    The Clementine UV-VIS dataset has greatly improved our understanding of the Moon. The UV-VIS camera was limited to five spectral channels from 415 to 1000 nm. The Clementine near-infrared (NIR) camera was designed to complement this spectral coverage. The NIR filter at 2000 run allows the discrimination between olivine and pyroxene within identified mare basalts. In addition, we will show that the integration of Clementine UV-VIS and NIR datasets allows a better evaluation of the ferrous 1-micron absorption band depth and gives access to the slope of the continuum. The discrimination between maturity and FeO composition can be achieved by a principal component analysis performed on spectral parameters. We selected 952 Clementine UV-VIS and NIR images to compute a multispectral cube covering the Aristarchus Plateau. Aristarchus Plateau is one of the most heterogeneous areas on the Moon. Highland-type materials, mare basalts, and dark mantle deposits have previously been mentioned. The mosaic represents a set of about 500 x 600 nine-channel spectra. UV-VIS filters at 415, 750, 900, 950, and 1000 run were calibrated using the ISIS software. We applied the reduction method described elsewhere to reduce the NIR filters at 1100, 1250, 1500 and 2000 nm. Absolute gain and offset values were refined for the NIR images by using eight telescopic spectra acquired as references. With this calibration test, we were able to reproduce the eight telescopic spectra with a maximum error of 1.8%. The integration of UV-VIS and NIR spectral channels allows the visualization of complete low-resolution spectra. In order to investigate the spectral effects of the space-weathering processes, we focused our analysis on a small mare crater and its immediate surroundings. According to the small size of the crater (about 2-km) and its location on an homogeneous mare area, we can reasonably assume that the content in FeO is homogeneous. The impact event has induced a variation of the maturity of the soil by excavating fresh material. Graphs displays five absolute reflectance spectra extracted from this area. One graph displays the same spectra divided by a continuum, which is considered to be a right line fitting the spectra at 0.75 and 1.5 micron. Spectrum 1 is extracted from the brightest part of the crater interior, and spectrum 5 is extracted from the surrounding mare material. Spectra 2, 3, and 4 are extracted from intermediate distances between the two areas. The 1-and-2 micron absorption band depths and the overall reflectance increase from spectrum 5 (corresponding to a mature area) to spectrum 1 (the most immature area). Conversely, the continuum slope decreases from spectrum 5 to spectrum 1. These three spectral effects of maturity have also been identified on laboratory spectra of lunar samples. Most of the lunar soils exhibit a signature near 1 micron. This absorption band is due to the presence of Fe2+ in mafic minerals such as orthopyroxene, clinopyroxene, and olivine. In the case of Clementine UV-VIS data alone, the depth of the 1-micron feature is evaluated by the 950/750-nm reflectance ratio. This ratio combined to the reflectance at 750nm has been used to evaluate the global content in FeO of the lunar surface. Near-infrared data makes a more precise evaluation of the 1 micron band depth possible by providing the right side of the band. The continuum in the vicinity of the band can be evaluated by an arithmetic mean or a geometric interpolation of both sides of the band, which are taken at 750 and 1500nm. The geometric interpolation is less sensitive to residual calibration uncertainties. With this method, the 1-micron absorption band depth for the Aristarchus; Plateau can be refined by as much as 10%. The difference is maximum on Fe-poor, highland-type materials. Similarly, the NIR data provide the possibility to investigate the continuum slope of the spectra. The continuum slope is a key parameter in any spectral analysis. The continuum slope variations seem to be mainly dominated by maturity effects, as suggested by the high correlation with the independent evaluation of maturity (OMAT parameter). We have also found a good correlation between the continuum slope and the OMAT parameter on laboratory spectra of lunar samples of the J. B. Adams collection. The discrimination between maturity effects and composition effects can be achieved by using a principal component analysis (PCA) on three spectral parameters, which are the reflectance at 0.75 micron the depth of the 1-micron feature, and the continuum slope. These parameters are mostly affected by maturity and FeO content. The effects of various glass content are assimilated to maturity. The aim of the PCA is to decorrelate the FeO content and maturity effects in the three input parameters. The integration of UV-VIS and NIR datasets allows for a better understanding of the spectral properties of the lunar surface by giving access to key parameters such as the 1 and 2-micron band depths and the continuum slope. The continuum slope can be combined with the depth of the mafic 1-micron absorption feature and the reflectance at 750 nm to discriminate between maturity and composition. NIR images of the sample return stations will be very interesting to refine absolute FeO content and maturity evaluations. Additional information is available in original.

  4. Geometric comparison of popular mixture-model distances.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Scott A.

    2010-09-01

    Statistical Latent Dirichlet Analysis produces mixture model data that are geometrically equivalent to points lying on a regular simplex in moderate to high dimensions. Numerous other statistical models and techniques also produce data in this geometric category, even though the meaning of the axes and coordinate values differs significantly. A distance function is used to further analyze these points, for example to cluster them. Several different distance functions are popular amongst statisticians; which distance function is chosen is usually driven by the historical preference of the application domain, information-theoretic considerations, or by the desirability of the clustering results. Relatively littlemore » consideration is usually given to how distance functions geometrically transform data, or the distances algebraic properties. Here we take a look at these issues, in the hope of providing complementary insight and inspiring further geometric thought. Several popular distances, {chi}{sup 2}, Jensen - Shannon divergence, and the square of the Hellinger distance, are shown to be nearly equivalent; in terms of functional forms after transformations, factorizations, and series expansions; and in terms of the shape and proximity of constant-value contours. This is somewhat surprising given that their original functional forms look quite different. Cosine similarity is the square of the Euclidean distance, and a similar geometric relationship is shown with Hellinger and another cosine. We suggest a geodesic variation of Hellinger. The square-root projection that arises in Hellinger distance is briefly compared to standard normalization for Euclidean distance. We include detailed derivations of some ratio and difference bounds for illustrative purposes. We provide some constructions that nearly achieve the worst-case ratios, relevant for contours.« less

  5. Destabilizing geometrical and bimaterial effects in frictional sliding

    NASA Astrophysics Data System (ADS)

    Aldam, M.; Bar Sinai, Y.; Svetlizky, I.; Fineberg, J.; Brener, E.; Xu, S.; Ben-Zion, Y.; Bouchbinder, E.

    2017-12-01

    Asymmetry of the two blocks forming a fault plane, i.e. the lack of reflection symmetry with respect to the fault plane, either geometrical or material, gives rise to generic destabilizing effects associated with the elastodynamic coupling between slip and normal stress variations. While geometric asymmetry exists in various geophysical contexts, such as thrust faults and landslide systems, its effect on fault dynamics is often overlooked. In the first part of the talk, I will show that geometrical asymmetry alone can destabilize velocity-strengthening faults, which are otherwise stable. I will further show that geometrical asymmetry accounts for a significant weakening effect observed in rupture propagation and present laboratory data that support the theory. In the second part of the talk, I will focus on material asymmetry and discuss an unexpected property of the well-studied frictional bimaterial effect. I will show that while the bimaterial coupling between slip and normal stress variations is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a non-monotonic dependence on the bimaterial contrast. This non-monotonicity is demonstrated for the stability of steady-sliding and for unsteady rupture propagation in faults described by various friction laws (regularized Coulomb, slip-weakening, rate-and-state friction), using analytic and numerical tools. All in all, the importance of bulk asymmetry to interfacial fault dynamics is highlighted. [1] Michael Aldam, Yohai Bar-Sinai, Ilya Svetlizky, Efim A. Brener, Jay Fineberg, and Eran Bouchbinder. Frictional Sliding without Geometrical Reflection Symmetry. Phys. Rev. X, 6(4):041023, 2016. [2] Michael Aldam, Shiqing Xu, Efim A. Brener, Yehuda Ben-Zion, and Eran Bouchbinder. Non-monotonicity of the frictional bimaterial effect. arXiv:1707.01132, 2017.

  6. Night Airglow Observations from Orbiting Spacecraft Compared with Measurements from Rockets.

    PubMed

    Koomen, M J; Gulledge, I S; Packer, D M; Tousey, R

    1963-06-07

    A luminous band around the night-time horizon, observed from orbiting capsules by J. H. Glenn and M. S. Carpenter, and identified as the horizon enhancement of the night airglow, is detected regularly in rocket-borne studies of night airglow. Values of luminance and dip angle of this band derived from Carpenter's observations agree remarkably well with values obtained from rocket data. The rocket results, however, do not support Carpenter's observation that the emission which he saw was largely the atomic oxygen line at 5577 A, but assign the principal luminosity to the green continuum.

  7. Exact supersymmetry on the lattice

    NASA Astrophysics Data System (ADS)

    Ghadab, Sofiane

    We describe a new approach of putting supersymmetric theories on the lattice. The basic idea is to discretize a twisted formulation of the (extended) supersymmetric theory. One can think about the twisting as an exotic change of variables that modifies the quantum numbers of the original fields. It exposes a scalar nilpotent supercharge which one can be preserved exactly on the lattice. We give explicit examples from sigma models and Yang-Mills theories. For the former, we show how to deform the theory by the addition of potential terms which preserve the supersymmmetry and play the role of Wilson terms, thus preventing the appearance of doublers. For the Yang-Mills theories however, one can show that their twisted versions can be rewritten in terms of two real Kahler-Dirac fields whose components transform into each other under the twisted supersymmetry. Once written in this geometrical language, one can ensure that the model does not exhibit spectrum doubling if one maps the component tensor fields to appropriate geometrical structures in the lattice. Numerical study of the O(3) sigma models and U(2) and SU(2) Yang-Mills theories for the case N = D = 2 indicates that no additional fine tuning is needed to recover the continuum supersymmetric models.

  8. Relative Positioning Evaluation of a Tetrahedral Flight Formation’s Satellites

    NASA Astrophysics Data System (ADS)

    Mahler, W. F. C.; Rocco, E. M.; Santos, D. P. S.

    2017-10-01

    This paper presents a study about the tetrahedral layout of four satellites in a way that every half-orbital period this set groups together while flying in formation. The formation is calculated analyzing the problem from a geometrical perspective and disposed by precisely adjusting the orbital parameters of each satellite. The dynamic modelling considers the orbital motion equations. The results are analyzed, compared and discussed. A detection algorithm is used as flag to signal the regular tetrahedron’s exact moments of occurrence. To do so, the volume calculated during the simulation is compared to the real volume, based on the initial conditions of the exact moment of formation and respecting a tolerance. This tolerance value is stablished arbitrarily depending on the mission and the formation’s geometrical parameters. The simulations will run on a computational environment.

  9. Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction.

    PubMed

    Dalaudier, F; Kan, V; Gurvich, A S

    2001-02-20

    We describe refractive and chromatic effects, both regular and random, that occur during star occultations by the Earth's atmosphere. The scintillation that results from random density fluctuations, as well as the consequences of regular chromatic refraction, is qualitatively described. The resultant chromatic scintillation will produce random features on the Global Ozone Monitoring by Occultation of Stars (GOMOS) spectrometer, with an amplitude comparable with that of some of the real absorbing features that result from atmospheric constituents. A correction method that is based on the use of fast photometer signals is described, and its efficiency is discussed. We give a qualitative (although accurate) description of the phenomena, including numerical values when needed. Geometrical optics and the phase-screen approximation are used to keep the description simple.

  10. Field-induced assembly of colloidal ellipsoids into well-defined microtubules

    PubMed Central

    Crassous, Jérôme J.; Mihut, Adriana M.; Wernersson, Erik; Pfleiderer, Patrick; Vermant, Jan; Linse, Per; Schurtenberger, Peter

    2014-01-01

    Current theoretical attempts to understand the reversible formation of stable microtubules and virus shells are generally based on shape-specific building blocks or monomers, where the local curvature of the resulting structure is explicitly built-in via the monomer geometry. Here we demonstrate that even simple ellipsoidal colloids can reversibly self-assemble into regular tubular structures when subjected to an alternating electric field. Supported by model calculations, we discuss the combined effects of anisotropic shape and field-induced dipolar interactions on the reversible formation of self-assembled structures. Our observations show that the formation of tubular structures through self-assembly requires much less geometrical and interaction specificity than previously thought, and advance our current understanding of the minimal requirements for self-assembly into regular virus-like structures. PMID:25409686

  11. Typology of nonlinear activity waves in a layered neural continuum.

    PubMed

    Koch, Paul; Leisman, Gerry

    2006-04-01

    Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).

  12. VizieR Online Data Catalog: V444 Cyg BV differential light curves (Eris+, 2011)

    NASA Astrophysics Data System (ADS)

    Eris, F. Z.; Ekmekci, F.

    2015-04-01

    Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson-Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR=10.64M⊙, MO=24.68M⊙, RWR=7.19R⊙, RO=6.85R⊙, TWR=31000K, and TO=40000K, respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The O-C analysis of the system revealed a period lengthening of 0.139+/-0.018s/yr, implying a mass loss rate of (6.76+/-0.39)x10-6M_⊙/yr for the WR component. Moreover, 106 IUE-NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200-2000Å) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The CIV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the CIV line (wind velocity) was found as 2326km/s. (4 data files).

  13. Kaon BSM B -parameters using improved staggered fermions from N f = 2 + 1 unquenched QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Benjamin J.

    2016-01-28

    In this paper, we present results for the matrix elements of the additional ΔS = 2 operators that appear in models of physics beyond the Standard Model (BSM), expressed in terms of four BSM B -parameters. Combined with experimental results for ΔM K and ε K, these constrain the parameters of BSM models. We use improved staggered fermions, with valence hypercubic blocking transfromation (HYP)-smeared quarks and N f = 2 + 1 flavors of “asqtad” sea quarks. The configurations have been generated by the MILC Collaboration. The matching between lattice and continuum four-fermion operators and bilinears is done perturbatively at one-loop order. We use three lattice spacings for the continuum extrapolation: a ≈ 0.09 , 0.06 and 0.045 fm. Valence light-quark masses range down to ≈ mmore » $$phys\\atop{s}$$ /13 while the light sea-quark masses range down to ≈ m$$phys\\atop{s}$$ / 20 . Compared to our previous published work, we have added four additional lattice ensembles, leading to better controlled extrapolations in the lattice spacing and sea-quark masses. We report final results for two renormalization scales, μ = 2 and 3 GeV, and compare them to those obtained by other collaborations. Agreement is found for two of the four BSM B-parameters (B 2 and B$$SUSY\\atop{3}$$ ). The other two (B 4 and B 5) differ significantly from those obtained using regularization independent momentum subtraction (RI-MOM) renormalization as an intermediate scheme, but are in agreement with recent preliminary results obtained by the RBC-UKQCD Collaboration using regularization independent symmetric momentum subtraction (RI-SMOM) intermediate schemes.« less

  14. Analysis of Plume Impingement Effects from Orion Crew Service Module Dual Reaction Control System Engine Firings

    NASA Technical Reports Server (NTRS)

    Prisbell, Andrew; Marichalar, J.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.5 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.

  15. Physiological optics and physical geometry.

    PubMed

    Hyder, D J

    2001-09-01

    Hermann von Helmholtz's distinction between "pure intuitive" and "physical" geometry must be counted as the most influential of his many contributions to the philosophy of science. In a series of papers from the 1860s and 70s, Helmholtz argued against Kant's claim that our knowledge of Euclidean geometry was an a priori condition for empirical knowledge. He claimed that geometrical propositions could be meaningful only if they were taken to concern the behaviors of physical bodies used in measurement, from which it followed that it was posterior to our acquaintance with this behavior. This paper argues that Helmholtz's understanding of geometry was fundamentally shaped by his work in sense-physiology, above all on the continuum of colors. For in the course of that research, Helmholtz was forced to realize that the color-space had no inherent metrical structure. The latter was a product of axiomatic definitions of color-addition and the empirical results of such additions. Helmholtz's development of these views is explained with detailed reference to the competing work of the mathematician Hermann Grassmann and that of the young James Clerk Maxwell. It is this separation between 1) essential properties of a continuum, 2) supplementary axioms concerning distance-measurement, and 3) the behaviors of the physical apparatus used to realize the axioms, which is definitive of Helmholtz's arguments concerning geometry.

  16. Continuum study on the oscillatory characteristics of carbon nanocones inside single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Sadeghi, F.; Darvizeh, M.

    2016-02-01

    This article aims to present a comprehensive study on the oscillatory behavior of concentric carbon nanocones (CNCs) inside carbon nanotubes (CNTs) using a continuum approach. To this end, the optimum radius of nanotube for which the nanocone lies on the tube axis is determined based on the distribution of suction energy. Using the Runge-Kutta numerical integration scheme, the equation of motion is solved numerically to attain the time history of displacement and velocity of nanocone. It is observed that the oscillation of nanocone occurs with respect to its axial equilibrium distance which moves further away from the middle axis of nanotube as the number of pentagons increases. A novel semi-analytical expression as a function of geometrical parameters, initial conditions and cone vertex direction is also proposed for the precise evaluation of oscillation frequency. With respect to the proposed frequency expression, a detailed parametric study is conducted to get an insight into the effects of number of pentagons, cone vertex direction and initial conditions on the oscillatory behavior of CNC-CNT oscillators. It is found that nanocones with more pentagons generate greater maximum frequencies inside nanotubes. Furthermore, it is shown that higher maximum frequencies can be achieved if the nanocone enters the nanotube from base.

  17. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions

    DOE PAGES

    Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...

    2015-08-05

    Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less

  18. Hall viscosity and geometric response in the Chern-Simons matrix model of the Laughlin states

    NASA Astrophysics Data System (ADS)

    Lapa, Matthew F.; Hughes, Taylor L.

    2018-05-01

    We study geometric aspects of the Laughlin fractional quantum Hall (FQH) states using a description of these states in terms of a matrix quantum mechanics model known as the Chern-Simons matrix model (CSMM). This model was proposed by Polychronakos as a regularization of the noncommutative Chern-Simons theory description of the Laughlin states proposed earlier by Susskind. Both models can be understood as describing the electrons in a FQH state as forming a noncommutative fluid, i.e., a fluid occupying a noncommutative space. Here, we revisit the CSMM in light of recent work on geometric response in the FQH effect, with the goal of determining whether the CSMM captures this aspect of the physics of the Laughlin states. For this model, we compute the Hall viscosity, Hall conductance in a nonuniform electric field, and the Hall viscosity in the presence of anisotropy (or intrinsic geometry). Our calculations show that the CSMM captures the guiding center contribution to the known values of these quantities in the Laughlin states, but lacks the Landau orbit contribution. The interesting correlations in a Laughlin state are contained entirely in the guiding center part of the state/wave function, and so we conclude that the CSMM accurately describes the most important aspects of the physics of the Laughlin FQH states, including the Hall viscosity and other geometric properties of these states, which are of current interest.

  19. MAGNA (Materially and Geometrically Nonlinear Analysis). Part II. Preprocessor Manual.

    DTIC Science & Technology

    1982-12-01

    AGRID can accept a virtually arbitrary collection of point coor- dinates which lie on a surface of interest, and generate a regular grid of mesh points...in the form of a collection of such patches to be translated into an assemblage of biquadratic surface elements (see Subsection 2.1, Figure 2.2...using IMPRESS can be converted for use with the present preprocessor by means of the IMPRINT translator. IMPRINT is a collection of conversion routines

  20. Separated Component-Based Restoration of Speckled SAR Images

    DTIC Science & Technology

    2014-01-01

    One of the simplest approaches for speckle noise reduction is known as multi-look processing. It involves non-coherently summing the independent...image is assumed to be piecewise smooth [21], [22], [23]. It has been shown that TV regular- ization often yields images with the stair -casing effect...as a function f , is to be decomposed into a sum of two components f = u+ v, where u represents the cartoon or geometric (i.e. piecewise smooth

  1. Cross-scale morphology

    USGS Publications Warehouse

    Allen, Craig R.; Holling, Crawford S.; Garmestani, Ahjond S.; El-Shaarawi, Abdel H.; Piegorsch, Walter W.

    2013-01-01

    The scaling of physical, biological, ecological and social phenomena is a major focus of efforts to develop simple representations of complex systems. Much of the attention has been on discovering universal scaling laws that emerge from simple physical and geometric processes. However, there are regular patterns of departures both from those scaling laws and from continuous distributions of attributes of systems. Those departures often demonstrate the development of self-organized interactions between living systems and physical processes over narrower ranges of scale.

  2. Simulation of Grouting Process in Rock Masses Under a Dam Foundation Characterized by a 3D Fracture Network

    NASA Astrophysics Data System (ADS)

    Deng, Shaohui; Wang, Xiaoling; Yu, Jia; Zhang, Yichi; Liu, Zhen; Zhu, Yushan

    2018-06-01

    Grouting plays a crucial role in dam safety. Due to the concealment of grouting activities, complexity of fracture distribution in rock masses and rheological properties of cement grout, it is difficult to analyze the effects of grouting. In this paper, a computational fluid dynamics (CFD) simulation approach of dam foundation grouting based on a 3D fracture network model is proposed. In this approach, the 3D fracture network model, which is based on an improved bootstrap sampling method and established by VisualGeo software, can provide a reliable and accurate geometric model for CFD simulation of dam foundation grouting. Based on the model, a CFD simulation is performed, in which the Papanastasiou regularized model is used to express the grout rheological properties, and the volume of fluid technique is utilized to capture the grout fronts. Two sets of tests are performed to verify the effectiveness of the Papanastasiou regularized model. When applying the CFD simulation approach for dam foundation grouting, three technical issues can be solved: (1) collapsing potential of the fracture samples, (2) inconsistencies in the geometric model in actual fractures under complex geological conditions, and (3) inappropriate method of characterizing the rheological properties of cement grout. The applicability of the proposed approach is demonstrated by an illustrative case study—a hydropower station dam foundation in southwestern China.

  3. Rotational elasticity

    NASA Astrophysics Data System (ADS)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  4. An exact general remeshing scheme applied to physically conservative voxelization

    DOE PAGES

    Powell, Devon; Abel, Tom

    2015-05-21

    We present an exact general remeshing scheme to compute analytic integrals of polynomial functions over the intersections between convex polyhedral cells of old and new meshes. In physics applications this allows one to ensure global mass, momentum, and energy conservation while applying higher-order polynomial interpolation. We elaborate on applications of our algorithm arising in the analysis of cosmological N-body data, computer graphics, and continuum mechanics problems. We focus on the particular case of remeshing tetrahedral cells onto a Cartesian grid such that the volume integral of the polynomial density function given on the input mesh is guaranteed to equal themore » corresponding integral over the output mesh. We refer to this as “physically conservative voxelization.” At the core of our method is an algorithm for intersecting two convex polyhedra by successively clipping one against the faces of the other. This algorithm is an implementation of the ideas presented abstractly by Sugihara [48], who suggests using the planar graph representations of convex polyhedra to ensure topological consistency of the output. This makes our implementation robust to geometric degeneracy in the input. We employ a simplicial decomposition to calculate moment integrals up to quadratic order over the resulting intersection domain. We also address practical issues arising in a software implementation, including numerical stability in geometric calculations, management of cancellation errors, and extension to two dimensions. In a comparison to recent work, we show substantial performance gains. We provide a C implementation intended to be a fast, accurate, and robust tool for geometric calculations on polyhedral mesh elements.« less

  5. Decay of solutions of the wave equation with arbitrary localized nonlinear damping

    NASA Astrophysics Data System (ADS)

    Bellassoued, Mourad

    We study the problem of decay rate for the solutions of the initial-boundary value problem to the wave equation, governed by localized nonlinear dissipation and without any assumption on the dynamics (i.e., the control geometric condition is not satisfied). We treat separately the autonomous and the non-autonomous cases. Providing regular initial data, without any assumption on an observation subdomain, we prove that the energy decays at last, as fast as the logarithm of time. Our result is a generalization of Lebeau (in: A. Boutet de Monvel, V. Marchenko (Eds.), Algebraic and Geometric Methods in Mathematical Physics, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1996, pp. 73) result in the autonomous case and Nakao (Adv. Math. Sci. Appl. 7 (1) (1997) 317) work in the non-autonomous case. In order to prove that result we use a new method based on the Fourier-Bross-Iaglintzer (FBI) transform.

  6. Exact moduli space metrics for hyperbolic vortex polygons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krusch, S.; Speight, J. M.

    2010-02-15

    Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as {sigma}{sub n,m}, are spaces of C{sub n}-invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of {sigma}{sub n,m} are investigated, and it is found that {sigma}{sub n,n-1} is isometric to the hyperbolic plane of curvature -(3{pi}n){sup -1}. The geodesic flow on {sigma}{sub n,m} and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ['The dynamics of Chern-Simons vortices', Phys.more » Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail.« less

  7. Thermodynamic studies of different black holes with modifications of entropy

    NASA Astrophysics Data System (ADS)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-02-01

    In recent years, the thermodynamic properties of black holes are topics of interests. We investigate the thermodynamic properties like surface gravity and Hawking temperature on event horizon of regular black holes viz. Hayward Class and asymptotically AdS (Anti-de Sitter) black holes. We also analyze the thermodynamic volume and naive geometric volume of asymptotically AdS black holes and show that the entropy of these black holes is simply the ratio of the naive geometric volume to thermodynamic volume. We plot the different graphs and interpret them physically. We derive the `cosmic-Censorship-Inequality' for both type of black holes. Moreover, we calculate the thermal heat capacity of aforesaid black holes and study their stabilities in different regimes. Finally, we compute the logarithmic correction to the entropy for both the black holes considering the quantum fluctuations around the thermal equilibrium and study the corresponding thermodynamics.

  8. CICATRIZATION OF WOUNDS

    PubMed Central

    Carrel, Alexis; Hartmann, Alice

    1916-01-01

    1. A method for measuring the area of a wound not geometric in form is described. 2. The rate of cicatrization of a wound is greater at the beginning than at the end of the period of repair. It depends on the area rather than on the age of the wound. There is a constant relation between the size of a wound and the rate of cicatrization. The larger the wound the greater is the rate of cicatrization. Two wounds of different size have a tendency to become equal. 3. The rate is proportional to the area, but diminishes less rapidly than the area. 4. The process of contraction is the more important factor in the repair of a wound. Epidermization completes the work of contraction. After the wound is healed, the cicatrix as a rule expands. 5. The curve representing the diminution of the size of an aseptic wound while it cicatrizes is regular and geometric. PMID:19868052

  9. Mesoscale studies of ionic closed membranes with polyhedral geometries

    DOE PAGES

    Olvera de la Cruz, Monica

    2016-06-01

    Large crystalline molecular shells buckle spontaneously into icosahedra while multicomponent shells buckle into various polyhedra. Continuum elastic theory explains the buckling of closed shells with one elastic component into icosahedra. A generalized elastic model, on the other hand, describes the spontaneous buckling of inhomogeneous shells into regular and irregular polyhedra. By coassembling water-insoluble anionic (–1) amphiphiles with cationic (3+) amphiphiles, we realized ionic vesicles. Results revealed that surface crystalline domains and the unusual shell shapes observed arise from the competition of ionic correlations with charge-regulation. We explain here the mechanism by which these ionic membranes generate a mechanically heterogeneous vesicle.

  10. Modeling Standards of Care for an Online Environment

    PubMed Central

    Jones-Schenk, Jan; Rossi, Julia

    1998-01-01

    At Intermountain Health Care in Salt Lake City a team was created to develop core standards for clinical practice that would enhance consistency of care across the care continuum. The newly developed Standards of Care had to meet the following criteria: electronic delivery, research-based, and support an interdisciplinary care environment along with an exception-based documentation system. The process has slowly evolved and the team has grown to include clinicians from multiple sites and disciplines who have met on a regular basis for over a year. The first challenge was to develop a model for the standards of care that would be suitable for an online environment.

  11. Strange quark condensate in the nucleon in 2 + 1 flavor QCD.

    PubMed

    Toussaint, D; Freeman, W

    2009-09-18

    We calculate the "strange quark content of the nucleon," , which is important for interpreting the results of some dark matter detection experiments. The method is to evaluate quark-line disconnected correlations on the MILC lattice ensembles, which include the effects of dynamical light and strange quarks. After continuum and chiral extrapolations, the result is = 0.69(7)_{stat}(9)_{syst}, in the modified minimal subtraction scheme (2 GeV) regularization, or for the renormalization scheme invariant form, m_{s} partial differentialM_{N}/ partial differentialm_{s} = 59(6)(8) MeV.

  12. Earth-based remote sensing of planetary surfaces and atmospheres at radio wavelengths

    NASA Technical Reports Server (NTRS)

    Dickel, J. R.

    1982-01-01

    Two reasons for remote sensing from the Earth are given: (1) space exploration, particularly below the surfaces or underneath cloud layers, is limited to only a very few planets; and (2) a program of regular monitoring, currently impractical with a limited number of space probes, is required. Reflected solar and nonthermal radiation are discussed. Relativistic electrons, trapped in large magnetospheres on Saturn and Jupiter, are discussed. These electrons produce synchrotron radiation and also interact with the ionosphere to produce bursts of low frequency emission. Because most objects are black-bodies, continuum radiometry is emphasized. Spectroscopic techniques and the measurement of nonthermal emission are also discussed.

  13. Folding and Fracturing of Rocks: the background

    NASA Astrophysics Data System (ADS)

    Ramsay, John G.

    2017-04-01

    This book was generated by structural geology teaching classes at Imperial College. I was appointed lecturer during 1957 and worked together with Dr Gilbert Wilson teaching basic structural geology at B.Sc level. I became convinced that the subject, being essentially based on geometric field observations, required a firm mathematical basis for its future development. In particular it seemed to me to require a very sound understanding of stress and strain. My field experience suggested that a knowledge of two- and three-demensional strain was critical in understanding natural tectonic processes. I found a rich confirmation for this in early publications of deformed fossils, oolitic limestones and spotted slates made by several geologists around the beginning of the 20th century (Sorby, Philips, Haughton, Harker) often using surprisingly sophisticated mathematical methods. These methods were discussed and elaborated in Folding and Fracturing of Rocks in a practical way. The geometric features of folds were related to folding mechanisms and the fold related small scale structures such as cleavage, schistosity and lineation explained in terms of rock strain. My work in the Scottish Highlands had shown just how repeated fold superposition could produce very complex geometric features, while further work in other localities suggested that such geometric complications are common in many orogenic zones. From the development of structural geological studies over the past decades it seems that the readers of this book have found many of the ideas set out are still of practical application. The mapping of these outcrop-scale structures should be emphasised in all field studies because they can be seen as ''fingerprints'' of regional scale tectonic processes. My own understanding of structural geology has been inspired by field work and I am of the opinion that future progress in understanding will be likewise based on careful observation and measurement of the features of naturally deformed rocks mathematically analysed using the concepts of three-dimensional continuum mechanics.

  14. Anomalous double-stripe charge ordering in β -NaFe2O3 with double triangular layers consisting of almost perfect regular Fe4 tetrahedra

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shintaro; Ueda, Hiroaki; Michioka, Chishiro; Yoshimura, Kazuyoshi; Nakamura, Shin; Katsufuji, Takuro; Sawa, Hiroshi

    2018-05-01

    The physical properties of the mixed-valent iron oxide β -NaFe2O3 were investigated by means of synchrotron radiation x-ray diffraction, magnetization, electrical resistivity, differential scanning calorimetry, 23Na NMR, and 57FeM o ̈ssbauer measurements. This compound has double triangular layers consisting of almost perfect regular Fe4 tetrahedra, which suggests geometrical frustration. We found that this compound exhibits an electrostatically unstable double-stripe-type charge ordering, which is stabilized by the cooperative compression of Fe3 +O6 octahedra, owing to a valence change and Fe2 +O6 octahedra due to Jahn-Teller distortion. Our results indicate the importance of electron-phonon coupling for charge ordering in the region of strong charge frustration.

  15. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.

    PubMed

    Maslennikov, Oleg V; Nekorkin, Vladimir I

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  16. The Vlasov-Navier-Stokes System in a 2D Pipe: Existence and Stability of Regular Equilibria

    NASA Astrophysics Data System (ADS)

    Glass, Olivier; Han-Kwan, Daniel; Moussa, Ayman

    2018-05-01

    In this paper, we study the Vlasov-Navier-Stokes system in a 2D pipe with partially absorbing boundary conditions. We show the existence of stationary states for this system near small Poiseuille flows for the fluid phase, for which the kinetic phase is not trivial. We prove the asymptotic stability of these states with respect to appropriately compactly supported perturbations. The analysis relies on geometric control conditions which help to avoid any concentration phenomenon for the kinetic phase.

  17. Self-Avoiding Walks Over Adaptive Triangular Grids

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1999-01-01

    Space-filling curves is a popular approach based on a geometric embedding for linearizing computational meshes. We present a new O(n log n) combinatorial algorithm for constructing a self avoiding walk through a two dimensional mesh containing n triangles. We show that for hierarchical adaptive meshes, the algorithm can be locally adapted and easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the runtime partitioning and load balancing of adaptive unstructured grids.

  18. Chaotic Model for Lévy Walks in Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Ariel, Gil; Be'er, Avraham; Reynolds, Andy

    2017-06-01

    We describe a new mechanism for Lévy walks, explaining the recently observed superdiffusion of swarming bacteria. The model hinges on several key physical properties of bacteria, such as an elongated cell shape, self-propulsion, and a collectively generated regular vortexlike flow. In particular, chaos and Lévy walking are a consequence of group dynamics. The model explains how cells can fine-tune the geometric properties of their trajectories. Experiments confirm the spectrum of these patterns in fluorescently labeled swarming Bacillus subtilis.

  19. Bisimulation equivalence of differential-algebraic systems

    NASA Astrophysics Data System (ADS)

    Megawati, Noorma Yulia; Schaft, Arjan van der

    2018-01-01

    In this paper, the notion of bisimulation relation for linear input-state-output systems is extended to general linear differential-algebraic (DAE) systems. Geometric control theory is used to derive a linear-algebraic characterisation of bisimulation relations, and an algorithm for computing the maximal bisimulation relation between two linear DAE systems. The general definition is specialised to the case where the matrix pencil sE - A is regular. Furthermore, by developing a one-sided version of bisimulation, characterisations of simulation and abstraction are obtained.

  20. Stickney Crater on Phobos and some other outstanding planetary depressions as features of crustal wave interference origin

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    Some not fully understood (enigmatic) large planetary depressions and geoid minima on planets and satellites are better understood as regular wave woven features, not random large impacts [1]. A main reason for this is their similar tectonic position in a regular sectoral network produced by interfering crossing standing waves warping any celestial body. These waves arise in the bodies due to their movements in keplerian elliptical orbits with changing accelerations. The fundamental wave1 produces universal tectonic dichotomy, its first overtone wave2 superposes on it sectoring - a regular network of risen and fallen blocks [2, 3]. Thus, deeply subsided sectoral blocks are formed on uplifted highland segments -hemispheres [1]. Examples of this pattern are shown in Fig. 1 to 8 on various globes and irregular bodies. The Moon - the SPA basin, Earth - Indian geoid min imum, Phobos - Stickney Crater, Miranda - an ovoid, Phoebe - a sector, Mars - Hellas Planitia, Lutetia - a deep sector indentation. Fig. 9 - a geometrical model of dichotomy and sectors format ion by wave interference.

  1. Spatial Alignment and Response Hand in Geometric and Motion Illusions

    PubMed Central

    Scocchia, Lisa; Paroli, Michela; Stucchi, Natale A.; Sedda, Anna

    2017-01-01

    Perception of visual illusions is susceptible to manipulation of their spatial properties. Further, illusions can sometimes affect visually guided actions, especially the movement planning phase. Remarkably, visual properties of objects related to actions, such as affordances, can prime more accurate perceptual judgements. In spite of the amount of knowledge available on affordances and on the influence of illusions on actions (or lack of thereof), virtually nothing is known about the reverse: the influence of action-related parameters on the perception of visual illusions. Here, we tested a hypothesis that the response mode (that can be linked to action-relevant features) can affect perception of the Poggendorff (geometric) and of the Vanishing Point (motion) illusion. We explored the role of hand dominance (right dominant versus left non-dominant hand) and its interaction with stimulus spatial alignment (i.e., congruency between visual stimulus and the hand used for responses). Seventeen right-handed participants performed our tasks with their right and left hands, and the stimuli were presented in regular and mirror-reversed views. It turned out that the regular version of the Poggendorff display generates a stronger illusion compared to the mirror version, and that participants are less accurate and show more variability when they use their left hand in responding to the Vanishing Point. In summary, our results show that there is a marginal effect of hand precision in motion related illusions, which is absent for geometrical illusions. In the latter, attentional anisometry seems to play a greater role in generating the illusory effect. Taken together, our findings suggest that changes in the response mode (here: manual action-related parameters) do not necessarily affect illusion perception. Therefore, although intuitively speaking there should be at least unidirectional effects of perception on action, and possible interactions between the two systems, this simple study still suggests their relative independence, except for the case when the less skilled (non-dominant) hand and arguably more deliberate responses are used. PMID:28769830

  2. Elastic Response and Failure Studies of Multi-Wall Carbon Nanotube Twisted Yarns

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2007-01-01

    Experimental data on the stress-strain behavior of a polymer multiwall carbon nanotube (MWCNT) yarn composite are used to motivate an initial study in multi-scale modeling of strength and stiffness. Atomistic and continuum length scale modeling methods are outlined to illustrate the range of parameters required to accurately model behavior. The carbon nanotubes yarns are four-ply, twisted, and combined with an elastomer to form a single-layer, unidirectional composite. Due to this textile structure, the yarn is a complicated system of unique geometric relationships subjected to combined loads. Experimental data illustrate the local failure modes induced by static, tensile tests. Key structure-property relationships are highlighted at each length scale indicating opportunities for parametric studies to assist the selection of advantageous material development and manufacturing methods.

  3. Emergent vortices in populations of colloidal rollers

    PubMed Central

    Bricard, Antoine; Caussin, Jean-Baptiste; Das, Debasish; Savoie, Charles; Chikkadi, Vijayakumar; Shitara, Kyohei; Chepizhko, Oleksandr; Peruani, Fernando; Saintillan, David; Bartolo, Denis

    2015-01-01

    Coherent vortical motion has been reported in a wide variety of populations including living organisms (bacteria, fishes, human crowds) and synthetic active matter (shaken grains, mixtures of biopolymers), yet a unified description of the formation and structure of this pattern remains lacking. Here we report the self-organization of motile colloids into a macroscopic steadily rotating vortex. Combining physical experiments and numerical simulations, we elucidate this collective behaviour. We demonstrate that the emergent-vortex structure lives on the verge of a phase separation, and single out the very constituents responsible for this state of polar active matter. Building on this observation, we establish a continuum theory and lay out a strong foundation for the description of vortical collective motion in a broad class of motile populations constrained by geometrical boundaries. PMID:26088835

  4. A Hierarchical Approach to Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Taasan, Shlomo

    2004-01-01

    Recent research conducted under NASA LaRC's Creativity and Innovation Program has led to the development of an initial approach for a hierarchical fracture mechanics. This methodology unites failure mechanisms occurring at different length scales and provides a framework for a physics-based theory of fracture. At the nanoscale, parametric molecular dynamic simulations are used to compute the energy associated with atomic level failure mechanisms. This information is used in a mesoscale percolation model of defect coalescence to obtain statistics of fracture paths and energies through Monte Carlo simulations. The mathematical structure of predicted crack paths is described using concepts of fractal geometry. The non-integer fractal dimension relates geometric and energy measures between meso- and macroscales. For illustration, a fractal-based continuum strain energy release rate is derived for inter- and transgranular fracture in polycrystalline metals.

  5. HIV Testing, Care, and Treatment Among Women Who Use Drugs From a Global Perspective: Progress and Challenges.

    PubMed

    Metsch, Lisa; Philbin, Morgan M; Parish, Carrigan; Shiu, Karen; Frimpong, Jemima A; Giang, Le Minh

    2015-06-01

    The article reviews data on HIV testing, treatment, and care outcomes for women who use drugs in 5 countries across 5 continents. We chose countries in which the HIV epidemic has, either currently or historically, been fueled by injection and non-injection drug use and that have considerable variation in social structural and drug policies: Argentina, Vietnam, Australia, Ukraine, and the United States. There is a dearth of available HIV care continuum outcome data [ie, testing, linkage, retention, antiretroviral therapy (ART) provision, viral suppression] among women drug users, particularly among noninjectors. Although some progress has been made in increasing HIV testing in this population, HIV-positive women drug users in 4 of the 5 countries have not fully benefitted from ART nor are they regularly engaged in HIV care. Issues such as the criminalization of drug users, HIV-specific criminal laws, and the lack of integration between substance use treatment and HIV primary care play a major role. Strategies that effectively address the pervasive factors that prevent women drug users from engaging in HIV care and benefitting from ART and other prevention services are critical. Future success in enhancing the HIV continuum for women drug users should consider structural and contextual level barriers and promote social, economic, and legal policies that overhaul the many years of discrimination and stigmatization faced by women drug users worldwide. Such efforts must emphasis the translation of policies into practice and approaches to implementation that can help HIV-infected women who use drugs engage at all points of the HIV care continuum.

  6. Patient Navigation in Medically Underserved Areas study design: A trial with implications for efficacy, effect modification, and full continuum assessment.

    PubMed

    Molina, Yamile; Glassgow, Anne E; Kim, Sage J; Berrios, Nerida M; Pauls, Heather; Watson, Karriem S; Darnell, Julie S; Calhoun, Elizabeth A

    2017-02-01

    The Patient Navigation in Medically Underserved Areas study objectives are to assess if navigation improves: 1) care uptake and time to diagnosis; and 2) outcomes depending on patients' residential medically underserved area (MUA) status. Secondary objectives include the efficacy of navigation across 1) different points of the care continuum among patients diagnosed with breast cancer; and 2) multiple regular screening episodes among patients who did not obtain breast cancer diagnoses. Our randomized controlled trial was implemented in three community hospitals in South Chicago. Eligible participants were: 1) female, 2) 18+years old, 3) not pregnant, 4) referred from a primary care provider for a screening or diagnostic mammogram based on an abnormal clinical breast exam. Participants were randomized to 1) control care or 2) receive longitudinal navigation, through treatment if diagnosed with cancer or across multiple years if asymptomatic, by a lay health worker. Participants' residential areas were identified as: 1) established MUA (before 1998), 2) new MUA (after 1998), 3) eligible/but not designated as MUA, and 4) affluent/ineligible for MUA. Primary outcomes include days to initially recommended care after randomization and days to diagnosis for women with abnormal results. Secondary outcomes concern days to treatment initiation following a diagnosis and receipt of subsequent screening following normal/benign results. This intervention aims to assess the efficacy of patient navigation on breast cancer care uptake across the continuum. If effective, the program may improve rates of early cancer detection and breast cancer morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. True versus apparent shapes of bow shocks

    NASA Astrophysics Data System (ADS)

    Tarango-Yong, Jorge A.; Henney, William J.

    2018-06-01

    Astrophysical bow shocks are a common result of the interaction between two supersonic plasma flows, such as winds or jets from stars or active galaxies, or streams due to the relative motion between a star and the interstellar medium. For cylindrically symmetric bow shocks, we develop a general theory for the effects of inclination angle on the apparent shape. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow's apex, which we term planitude, and the openness of its wings, which we term alatude. We calculate the expected distribution in the planitude-alatude plane for a variety of simple geometrical and physical models: quadrics of revolution, wilkinoids, cantoids, and ancantoids. We further test our methods against numerical magnetohydrodynamical simulations of stellar bow shocks and find that the apparent planitude and alatude measured from infrared dust continuum maps serve as accurate diagnostics of the shape of the contact discontinuity, which can be used to discriminate between different physical models. We present an algorithm that can determine the planitude and alatude from observed bow shock emission maps with a precision of 10 to 20 per cent.

  8. Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal

    NASA Technical Reports Server (NTRS)

    Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric

    2016-01-01

    Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.

  9. Pattern formation by curvature-inducing proteins on spherical membranes

    NASA Astrophysics Data System (ADS)

    Agudo-Canalejo, Jaime; Golestanian, Ramin

    2017-12-01

    Spatial organisation is a hallmark of all living cells, and recreating it in model systems is a necessary step in the creation of synthetic cells. It is therefore of both fundamental and practical interest to better understand the basic mechanisms underlying spatial organisation in cells. In this work, we use a continuum model of membrane and protein dynamics to study the behaviour of curvature-inducing proteins on membranes of spherical shape, such as living cells or lipid vesicles. We show that the interplay between curvature energy, entropic forces, and the geometric constraints on the membrane can result in the formation of patterns of highly-curved/protein-rich and weakly-curved/protein-poor domains on the membrane. The spontaneous formation of such patterns can be triggered either by an increase in the average density of curvature-inducing proteins, or by a relaxation of the geometric constraints on the membrane imposed by the membrane tension or by the tethering of the membrane to a rigid cell wall or cortex. These parameters can also be tuned to select the size and number of the protein-rich domains that arise upon pattern formation. The very general mechanism presented here could be related to protein self-organisation in many biological processes, ranging from (proto)cell division to the formation of membrane rafts.

  10. Exploring Eucladoceros ecomorphology using geometric morphometrics.

    PubMed

    Curran, Sabrina C

    2015-01-01

    An increasingly common method for reconstructing paleoenvironmental parameters of hominin sites is ecological functional morphology (ecomorphology). This study provides a geometric morphometric study of cervid rearlimb morphology as it relates to phylogeny, size, and ecomorphology. These methods are then applied to an extinct Pleistocene cervid, Eucladoceros, which is found in some of the earliest hominin-occupied sites in Eurasia. Variation in cervid postcranial functional morphology associated with different habitats can be summarized as trade-offs between joint stability versus mobility and rapid movement versus power-generation. Cervids in open habitats emphasize limb stability to avoid joint dislocation during rapid flight from predators. Closed-adapted cervids require more joint mobility to rapidly switch directions in complex habitats. Two skeletal features (of the tibia and calcaneus) have significant phylogenetic signals, while two (the femur and third phalanx) do not. Additionally, morphology of two of these features (tibia and third phalanx) were correlated with body size. For the tibial analysis (but not the third phalanx) this correlation was ameliorated when phylogeny was taken into account. Eucladoceros specimens from France and Romania fall on the more open side of the habitat continuum, a result that is at odds with reconstructions of their diet as browsers, suggesting that they may have had a behavioral regime unlike any extant cervid. © 2014 Wiley Periodicals, Inc.

  11. Geometric k-nearest neighbor estimation of entropy and mutual information

    NASA Astrophysics Data System (ADS)

    Lord, Warren M.; Sun, Jie; Bollt, Erik M.

    2018-03-01

    Nonparametric estimation of mutual information is used in a wide range of scientific problems to quantify dependence between variables. The k-nearest neighbor (knn) methods are consistent, and therefore expected to work well for a large sample size. These methods use geometrically regular local volume elements. This practice allows maximum localization of the volume elements, but can also induce a bias due to a poor description of the local geometry of the underlying probability measure. We introduce a new class of knn estimators that we call geometric knn estimators (g-knn), which use more complex local volume elements to better model the local geometry of the probability measures. As an example of this class of estimators, we develop a g-knn estimator of entropy and mutual information based on elliptical volume elements, capturing the local stretching and compression common to a wide range of dynamical system attractors. A series of numerical examples in which the thickness of the underlying distribution and the sample sizes are varied suggest that local geometry is a source of problems for knn methods such as the Kraskov-Stögbauer-Grassberger estimator when local geometric effects cannot be removed by global preprocessing of the data. The g-knn method performs well despite the manipulation of the local geometry. In addition, the examples suggest that the g-knn estimators can be of particular relevance to applications in which the system is large, but the data size is limited.

  12. Packing Regularities in Biological Structures Relate to Their Dynamics

    PubMed Central

    Jernigan, Robert L.; Kloczkowski, Andrzej

    2007-01-01

    The high packing density inside proteins leads to certain geometric regularities and also is one of the most important contributors to the high extent of cooperativity manifested by proteins in their cohesive domain motions. The orientations between neighboring non-bonded residues in proteins substantially follow the similar geometric regularities, regardless of whether the residues are on the surface or buried - a direct result of hydrophobicity forces. These orientations are relatively fixed and correspond closely to small deformations from those of the face-centered cubic lattice, which is the way in which identical spheres pack at the highest density. Packing density also is related to the extent of conservation of residues, and we show this relationship for residue packing densities by averaging over a large sample or residue packings. There are three regimes: 1) over a broad range of packing densities the relationship between sequence entropy and inverse packing density is nearly linear, 2) over a limited range of low packing densities the sequence entropy is nearly constant, and 3) at extremely low packing densities the sequence entropy is highly variable. These packing results provide important justification for the simple elastic network models that have been shown for a large number of proteins to represent protein dynamics so successfully, even when the models are extremely coarse-grained. Elastic network models for polymeric chains are simple and could be combined with these protein elastic networks to represent partially denatured parts of proteins. Finally, we show results of applications of the elastic network model to study the functional motions of the ribosome, based on its known structure. These results indicate expected correlations among its components for the step-wise processing steps in protein synthesis, and suggest ways to use these elastic network models to develop more detailed mechanisms - an important possibility, since most experiments yield only static structures. PMID:16957327

  13. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  14. An ab initio time-dependent Hartree Fock study of solvent effects on the polarizability and second hyperpolarizability of polyacetylene chains within the polarizable continuum model

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Mennucci, Benedetta; Cossi, Maurizio; Cammi, Roberto; Tomasi, Jacopo

    1998-11-01

    The solvent effects upon the longitudinal polarizability ( αL) and second hyperpolarizability ( γL) of small all-trans polyacetylene (PA) chains ranging from C 2H 4 to C 10H 12 have been evaluated at the time-dependent Hartree-Fock (TDHF) level within the framework of the polarizable continuum model. The solvent effects, which correspond to the solvent-induced modifications of the solute properties, result in large increases of the linear and nonlinear responses even for solvents with low dielectric constants. When the dielectric constant is increased, the αL values tend to saturate at values 30%-40% larger than in vacuo, whereas for γL it ranges from 100% to 400% depending upon the nonlinear optical process and the length of the PA chain. These solvent-induced αL and γL enhancements can partially be accounted for by the corresponding decrease of the energy of the lowest optically-allowed electronic excitation. The geometrical parameters of the ground state of the PA chains are almost unaffected by the solvent. This shows that the solvent effects are mainly of electronic nature. In addition, the local field factors, which relate the macroscopic or Maxwell field to the field experienced by the solute, tend towards unity with increasing chain length for the longitudinal PA axis.

  15. A Suzaku, NuSTAR and XMMNewton} view on variable absorption and relativistic reflection in NGC 4151

    NASA Astrophysics Data System (ADS)

    Beuchert, T.; Markowitz, A.; Dauser, T.; Garcia, J.; Keck, M.; Wilms, J.; Kadler, M.; Brenneman, L.; Zdziarski, A.

    2017-10-01

    We disentangle X-ray disk reflection from complex line-of-sight absorption in NGC 4151 using Suzaku, NuSTAR, and XMMNewton}. Extending upon Keck et al. (2015), we develop a physically-motivated baseline model using the latest lamp-post reflection code relxillCp_lp, which includes a Comptonization continuum. We identify two components at heights of 1.2 and 15.0 gravitational radii using a long-look simultaneous Suzaku/NuSTAR observation but argue for a vertically extended corona as opposed to distinct primary sources. We also find two neutral absorbers (one full-covering and one partial-covering), an ionized absorber (log ξ=2.8), and a highly-ionized ultra-fast outflow, all reported previously. All analyzed spectra are well described by this baseline model. The bulk of the spectral variability on time-scales from days to years can be attributed to changes of both neutral absorbers, which are inversely correlated with the hard X-ray continuum flux. The observed evolution is either consistent with changes in the absorber structure (clumpy absorber in the outer BLR or a dusty radiatively driven wind) or a geometrically stable neutral absorber that becomes increasingly ionized at a rising flux level. The soft X-rays below 1 keV are dominated by photoionized emission from extended gas, which may act as a warm mirror for the nuclear radiation.

  16. A continuum-based structural modeling approach for cellulose nanocrystals (CNCs)

    NASA Astrophysics Data System (ADS)

    Shishehbor, Mehdi; Dri, Fernando L.; Moon, Robert J.; Zavattieri, Pablo D.

    2018-02-01

    We present a continuum-based structural model to study the mechanical behavior of cellulose nanocrystals (CNCs), and analyze the effect of bonded and non-bonded interactions on the mechanical properties under various loading conditions. In particular, this model assumes the uncoupling between the bonded and non-bonded interactions and their behavior is obtained from atomistic simulations. Our results indicates that the major contribution to the tensile and bending stiffness is mainly due to the cellulose chain stiffness, and the shear behavior is mainly governed by Van der Waals (VdW) forces. In addition, we report a negligible torsional stiffness, which may explain the CNC tendency to easily twist under very small or nonexistent torques. In addition, the sensitivity of geometrical imperfection on the mechanical properties using an analytical model of the CNC structure was investigated. Our results indicate that the presence of imperfections have a small influence on the majority of the elastic properties. Finally, it is shown that a simple homogeneous and orthotropic representation of a CNC under bending underestimates the contribution of non-bonded interaction leading up to 60% error in the calculation of the bending stiffness of CNCs. On the other hand, the proposed model can lead to more accurate predictions of the elastic behavior of CNCs. This is the first step toward the development of a more efficient model that can be used to model the inelastic behavior of single and multiple CNCs.

  17. Assembly of the most topologically regular two-dimensional micro and nanocrystals with spherical, conical, and tubular shapes

    NASA Astrophysics Data System (ADS)

    Roshal, D. S.; Konevtsova, O. V.; Myasnikova, A. E.; Rochal, S. B.

    2016-11-01

    We consider how to control the extension of curvature-induced defects in the hexagonal order covering different curved surfaces. In these frames we propose a physical mechanism for improving structures of two-dimensional spherical colloidal crystals (SCCs). For any SCC comprising of about 300 or less particles the mechanism transforms all extended topological defects (ETDs) in the hexagonal order into the point disclinations. Perfecting the structure is carried out by successive cycles of the particle implantation and subsequent relaxation of the crystal. The mechanism is potentially suitable for obtaining colloidosomes with better selective permeability. Our approach enables modeling the most topologically regular tubular and conical two-dimensional nanocrystals including various possible polymorphic forms of the HIV viral capsid. Different HIV-like shells with an arbitrary number of structural units (SUs) and desired geometrical parameters are easily formed. Faceting of the obtained structures is performed by minimizing the suggested elastic energy.

  18. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basicmore » properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.« less

  19. Projective Ponzano-Regge spin networks and their symmetries

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Marzuoli, Annalisa

    2018-02-01

    We present a novel hierarchical construction of projective spin networks of the Ponzano-Regge type from an assembling of five quadrangles up to the combinatorial 4-simplex compatible with a geometrical realization in Euclidean 4-space. The key ingredients are the projective Desargues configuration and the incidence structure given by its space-dual, on the one hand, and the Biedenharn-Elliott identity for the 6j symbol of SU(2), on the other. The interplay between projective-combinatorial and algebraic features relies on the recoupling theory of angular momenta, an approach to discrete quantum gravity models carried out successfully over the last few decades. The role of Regge symmetry-an intriguing discrete symmetry of the 6j which goes beyond the standard tetrahedral symmetry of this symbol-will be also discussed in brief to highlight its role in providing a natural regularization of projective spin networks that somehow mimics the standard regularization through a q-deformation of SU(2).

  20. A Note on Weak Solutions of Conservation Laws and Energy/Entropy Conservation

    NASA Astrophysics Data System (ADS)

    Gwiazda, Piotr; Michálek, Martin; Świerczewska-Gwiazda, Agnieszka

    2018-03-01

    A common feature of systems of conservation laws of continuum physics is that they are endowed with natural companion laws which are in such cases most often related to the second law of thermodynamics. This observation easily generalizes to any symmetrizable system of conservation laws; they are endowed with nontrivial companion conservation laws, which are immediately satisfied by classical solutions. Not surprisingly, weak solutions may fail to satisfy companion laws, which are then often relaxed from equality to inequality and overtake the role of physical admissibility conditions for weak solutions. We want to answer the question: what is a critical regularity of weak solutions to a general system of conservation laws to satisfy an associated companion law as an equality? An archetypal example of such a result was derived for the incompressible Euler system in the context of Onsager's conjecture in the early nineties. This general result can serve as a simple criterion to numerous systems of mathematical physics to prescribe the regularity of solutions needed for an appropriate companion law to be satisfied.

  1. MASS ESTIMATES OF RAPIDLY MOVING PROMINENCE MATERIAL FROM HIGH-CADENCE EUV IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, David R.; Baker, Deborah; Van Driel-Gesztelyi, Lidia, E-mail: d.r.williams@ucl.ac.uk

    We present a new method for determining the column density of erupting filament material using state-of-the-art multi-wavelength imaging data. Much of the prior work on filament/prominence structure can be divided between studies that use a polychromatic approach with targeted campaign observations and those that use synoptic observations, frequently in only one or two wavelengths. The superior time resolution, sensitivity, and near-synchronicity of data from the Solar Dynamics Observatory's Advanced Imaging Assembly allow us to combine these two techniques using photoionization continuum opacity to determine the spatial distribution of hydrogen in filament material. We apply the combined techniques to SDO/AIA observationsmore » of a filament that erupted during the spectacular coronal mass ejection on 2011 June 7. The resulting 'polychromatic opacity imaging' method offers a powerful way to track partially ionized gas as it erupts through the solar atmosphere on a regular basis, without the need for coordinated observations, thereby readily offering regular, realistic mass-distribution estimates for models of these erupting structures.« less

  2. From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.

  3. Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Kamm, Paul; García-Moreno, Francisco; Banhart, John; Pasini, Damiano

    2017-10-01

    This paper examines three-dimensional metallic lattices with regular octet and rhombicuboctahedron units fabricated with geometric imperfections via Selective Laser Sintering. We use X-ray computed tomography to capture morphology, location, and distribution of process-induced defects with the aim of studying their role in the elastic response, damage initiation, and failure evolution under quasi-static compression. Testing results from in-situ compression tomography show that each lattice exhibits a distinct failure mechanism that is governed not only by cell topology but also by geometric defects induced by additive manufacturing. Extracted from X-ray tomography images, the statistical distributions of three sets of defects, namely strut waviness, strut thickness variation, and strut oversizing, are used to develop numerical models of statistically representative lattices with imperfect geometry. Elastic and failure responses are predicted within 10% agreement from the experimental data. In addition, a computational study is presented to shed light into the relationship between the amplitude of selected defects and the reduction of elastic properties compared to their nominal values. The evolution of failure mechanisms is also explained with respect to strut oversizing, a parameter that can critically cause failure mode transitions that are not visible in defect-free lattices.

  4. Riemannian and Lorentzian flow-cut theorems

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  5. Progress with the COGENT Edge Kinetic Code: Collision operator options

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Compton, J. C.; ...

    2012-06-27

    In this study, COGENT is a continuum gyrokinetic code for edge plasmas being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of the fourth order conservative discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. It is written in v∥-μ (parallel velocity – magnetic moment) velocity coordinates, and making use of the gyrokinetic Poisson equation for the calculation of a self-consistent electric potential. In the present manuscript we report on the implementation and initial testing of a succession of increasingly detailed collision operator options, including a simple drag-diffusion operatormore » in the parallel velocity space, Lorentz collisions, and a linearized model Fokker-Planck collision operator conserving momentum and energy (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)« less

  6. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  7. Living on the Edge: A Geometric Theory of Phase Transitions in Convex Optimization

    DTIC Science & Technology

    2013-03-24

    framework for constructing a regularizer f that promotes a specified type of structure, as well as many additional examples. We say that the...Rd that promote the structures we expect to find in x0 8 D. AMELUNXEN, M. LOTZ, M. B. MCCOY, AND J. A. TROPP and y0. Then we can frame the convex...signal x0 is sparse in the standard basis, and the second signal U y0 is sparse in a known basis U . In this case, we can use `1 norms to promote

  8. Gap probability - Measurements and models of a pecan orchard

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Li, Xiaowen; Moody, Aaron; Liu, YI

    1992-01-01

    Measurements and models are compared for gap probability in a pecan orchard. Measurements are based on panoramic photographs of 50* by 135 view angle made under the canopy looking upwards at regular positions along transects between orchard trees. The gap probability model is driven by geometric parameters at two levels-crown and leaf. Crown level parameters include the shape of the crown envelope and spacing of crowns; leaf level parameters include leaf size and shape, leaf area index, and leaf angle, all as functions of canopy position.

  9. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION

    PubMed Central

    HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG

    2011-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem. The convergence and accuracy of the overall AFEM algorithm is also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein. PMID:21949541

  10. Continuum dislocation-density based models for the dynamic shock response of single-crystal and polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Luscher, Darby

    2017-06-01

    The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal RDX and polycrystalline PBX will be discussed. The talk will also emphasize recent implementation of the coupled nonlocal model into a 3D shock hydrocode and simulation results for the dynamic response of polycrystalline copper in two and three dimensions.

  11. A sliding-control switch stabilizes synchronized states in a model of actuated cilia

    NASA Astrophysics Data System (ADS)

    Buchmann, Amy; Cortez, Ricardo; Fauci, Lisa

    2017-11-01

    A key function of cilia, flexible hairlike appendages located on the surface of a cell, is the transport of mucus in the lungs, where the cilia self-organize forming a metachronal wave that propels the surrounding fluid. Cilia also play an important role in the locomotion of ciliated microswimmers and other biological processes. To analyze the coordinated movement of cilia interacting through a fluid, we model each cilium as an elastic, actuated body whose beat pattern is driven by a geometric switch that drives the motion of the power and recovery strokes. The cilia are coupled to the viscous fluid using a numerical method based upon a centerline distribution of regularized Stokeslets. We first characterize the beat cycle and flow produced by a single cilium and then present results on the synchronization states between two cilia that show that the in-phase equilibrium is unstable while the anti-phase equilibrium is stable under the geometric switch model. Adding a sliding-control switching mechanism stabilizes the in-phase motion.

  12. Geometrical and topological issues in octree based automatic meshing

    NASA Technical Reports Server (NTRS)

    Saxena, Mukul; Perucchio, Renato

    1987-01-01

    Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is discussed. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary representation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractor. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed.

  13. A versatile model for soft patchy particles with various patch arrangements.

    PubMed

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-01-21

    We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.

  14. CICATRIZATION OF WOUNDS : I. THE RELATION BETWEEN THE SIZE OF A WOUND AND THE RATE OF ITS CICATRIZATION.

    PubMed

    Carrel, A; Hartmann, A

    1916-11-01

    1. A method for measuring the area of a wound not geometric in form is described. 2. The rate of cicatrization of a wound is greater at the beginning than at the end of the period of repair. It depends on the area rather than on the age of the wound. There is a constant relation between the size of a wound and the rate of cicatrization. The larger the wound the greater is the rate of cicatrization. Two wounds of different size have a tendency to become equal. 3. The rate is proportional to the area, but diminishes less rapidly than the area. 4. The process of contraction is the more important factor in the repair of a wound. Epidermization completes the work of contraction. After the wound is healed, the cicatrix as a rule expands. 5. The curve representing the diminution of the size of an aseptic wound while it cicatrizes is regular and geometric.

  15. The spatial extent of polycyclic aromatic hydrocarbons emission in the Herbig star HD 179218

    NASA Astrophysics Data System (ADS)

    Taha, A. S.; Labadie, L.; Pantin, E.; Matter, A.; Alvarez, C.; Esquej, P.; Grellmann, R.; Rebolo, R.; Telesco, C.; Wolf, S.

    2018-04-01

    Aim. We investigate, in the mid-infrared, the spatial properties of the polycyclic aromatic hydrocarbons (PAHs) emission in the disk of HD 179218, an intermediate-mass Herbig star at 300 pc. Methods: We obtained mid-infrared images in the PAH-1, PAH-2 and Si-6 filters centered at 8.6, 11.3, and 12.5 μm, and N-band low-resolution spectra using CanariCam on the 10-m Gran Telescopio Canarias (GTC). We compared the point spread function (PSF) profiles measured in the PAH filters to the profile derived in the Si-6 filter, where the thermal continuum emission dominates. We performed radiative transfer modeling of the spectral energy distribution (SED) and produced synthetic images in the three filters to investigate different spatial scenarios. Results: Our data show that the disk emission is spatially resolved in the PAH-1 and PAH-2 filters, while unresolved in the Si-6 filter. Thanks to very good observing conditions, an average full width at half maximum (FWHM) of 0.232'', 0.280'' and 0.293'' is measured in the three filters, respectively. Gaussian disk fitting and quadratic subtraction of the science and calibrator PSFs suggests a lower-limit characteristic angular diameter of the emission of 100 mas, or 30 au. The photometric and spectroscopic results are compatible with previous findings. Our radiative transfer (RT) modeling of the continuum suggests that the resolved emission should result from PAH molecules on the disk atmosphere being UV-excited by the central star. Simple geometrical models of the PAH component compared to the underlying continuum point to a PAH emission uniformly extended out to the physical limits of the disk model. Furthermore, our RT best model of the continuum requires a negative exponent of the surface density power-law, in contrast with earlier modeling pointing to a positive exponent. Conclusions: We have spatially resolved - for the first time to our knowledge - the PAHs emission in the disk of HD 179218 and set constraints on its spatial extent. Based on spatial and spectroscopic considerations as well as on qualitative comparison with IRS 48 and HD 97048, we favor a scenario in which PAHs extend out to large radii across the flared disk surface and are at the same time predominantly in an ionized charge state due to the strong UV radiation field of the 180 L⊙ central star.

  16. A 2007 photometric study and UV spectral analysis of the Wolf-Rayet binary V444 Cyg

    NASA Astrophysics Data System (ADS)

    Eriş, F. Z.; Ekmekçi, F.

    2011-07-01

    Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson-Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR=10.64 M⊙, MO=24.68 M⊙, RWR=7.19 R⊙, RO=6.85 R⊙, TWR=31 000 K, and TO=40 000 K , respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The O-C analysis of the system revealed a period lengthening of 0.139±0.018 s yr-1, implying a mass loss rate of (6.76 ± 0.39) × 10-6 M⊙ yr-1 for the WR component. Moreover, 106 IUE-NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200-2000 \\rA) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s-1. Tables 2 and 3 and Figs. 4 and 8 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr or via http:://cdsweb.u-strasbg.fr/AN/332/616

  17. Computerized tomography with total variation and with shearlets

    NASA Astrophysics Data System (ADS)

    Garduño, Edgar; Herman, Gabor T.

    2017-04-01

    To reduce the x-ray dose in computerized tomography (CT), many constrained optimization approaches have been proposed aiming at minimizing a regularizing function that measures a lack of consistency with some prior knowledge about the object that is being imaged, subject to a (predetermined) level of consistency with the detected attenuation of x-rays. One commonly investigated regularizing function is total variation (TV), while other publications advocate the use of some type of multiscale geometric transform in the definition of the regularizing function, a particular recent choice for this is the shearlet transform. Proponents of the shearlet transform in the regularizing function claim that the reconstructions so obtained are better than those produced using TV for texture preservation (but may be worse for noise reduction). In this paper we report results related to this claim. In our reported experiments using simulated CT data collection of the head, reconstructions whose shearlet transform has a small ℓ 1-norm are not more efficacious than reconstructions that have a small TV value. Our experiments for making such comparisons use the recently-developed superiorization methodology for both regularizing functions. Superiorization is an automated procedure for turning an iterative algorithm for producing images that satisfy a primary criterion (such as consistency with the observed measurements) into its superiorized version that will produce results that, according to the primary criterion are as good as those produced by the original algorithm, but in addition are superior to them according to a secondary (regularizing) criterion. The method presented for superiorization involving the ℓ 1-norm of the shearlet transform is novel and is quite general: It can be used for any regularizing function that is defined as the ℓ 1-norm of a transform specified by the application of a matrix. Because in the previous literature the split Bregman algorithm is used for similar purposes, a section is included comparing the results of the superiorization algorithm with the split Bregman algorithm.

  18. Assessment of chemical exchange in tryptophan-albumin solution through (19)F multicomponent transverse relaxation dispersion analysis.

    PubMed

    Lin, Ping-Chang

    2015-06-01

    A number of NMR methods possess the capability of probing chemical exchange dynamics in solution. However, certain drawbacks limit the applications of these NMR approaches, particularly, to a complex system. Here, we propose a procedure that integrates the regularized nonnegative least squares (NNLS) analysis of multiexponential T2 relaxation into Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments to probe chemical exchange in a multicompartmental system. The proposed procedure was validated through analysis of (19)F T2 relaxation data of 6-fluoro-DL-tryptophan in a two-compartment solution with and without bovine serum albumin. Given the regularized NNLS analysis of a T2 relaxation curve acquired, for example, at the CPMG frequency υ CPMG  = 125, the nature of two distinct peaks in the associated T2 distribution spectrum indicated 6-fluoro-DL-tryptophan either retaining the free state, with geometric mean */multiplicative standard deviation (MSD) = 1851.2 ms */1.51, or undergoing free/albumin-bound interconversion, with geometric mean */MSD = 236.8 ms */1.54, in the two-compartment system. Quantities of the individual tryptophan species were accurately reflected by the associated T2 peak areas, with an interconversion state-to-free state ratio of 0.45 ± 0.11. Furthermore, the CPMG relaxation dispersion analysis estimated the exchange rate between the free and albumin-bound states in this fluorinated tryptophan analog and the corresponding dissociation constant of the fluorinated tryptophan-albumin complex in the chemical-exchanging, two-compartment system.

  19. The Dropout Learning Algorithm

    PubMed Central

    Baldi, Pierre; Sadowski, Peter

    2014-01-01

    Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879

  20. The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results

    PubMed Central

    Seppecher, P.

    2015-01-01

    In order to found continuum mechanics, two different postulations have been used. The first, introduced by Lagrange and Piola, starts by postulating how the work expended by internal interactions in a body depends on the virtual velocity field and its gradients. Then, by using the divergence theorem, a representation theorem is found for the volume and contact interactions which can be exerted at the boundary of the considered body. This method assumes an a priori notion of internal work, regards stress tensors as dual of virtual displacements and their gradients, deduces the concept of contact interactions and produces their representation in terms of stresses using integration by parts. The second method, conceived by Cauchy and based on the celebrated tetrahedron argument, starts by postulating the type of contact interactions which can be exerted on the boundary of every (suitably) regular part of a body. Then it proceeds by proving the existence of stress tensors from a balance-type postulate. In this paper, we review some relevant literature on the subject, discussing how the two postulations can be reconciled in the case of higher gradient theories. Finally, we underline the importance of the concept of contact surface, edge and wedge s-order forces. PMID:26730215

  1. Mid-IR Spectra Herbig Ae/Be Stars

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Herbig Ae/Be stars are intermediate mass pre-main sequence stars, the higher mass analogues to the T Tauri stars. Because of their higher mass, they are expected form more rapidly than the T Tauri stars. Whether the Herbig Ae/Be stars accrete only from collapsing infalling envelopes or whether accrete through geometrically flattened viscous accretion disks is of current debate. When the Herbig Ae/Be stars reach the main sequence they form a class called Vega-like stars which are known from their IR excesses to have debris disks, such as the famous beta Pictoris. The evolutionary scenario between the pre-main sequence Herbig Ae/Be stars and the main sequence Vega-like stars is not yet revealed and it bears on the possibility of the presence of Habitable Zone planets around the A stars. Photometric studies of Herbig Ae/Be stars have revealed that most are variable in the optical, and a subset of stars show non-periodic drops of about 2 magnitudes. These drops in visible light are accompanied by changes in their colors: at first the starlight becomes reddened, and then it becomes bluer, the polarization goes from less than 0.1 % to roughly 1% during these minima. The theory postulated by V. Grinnin is that large cometary bodies on highly eccentric orbits occult the star on their way to being sublimed, for systems that are viewed edge-on. This theory is one of several controversial theories about the nature of Herbig Ae/Be stars. A 5 year mid-IR spectrophotometric monitoring campaign was begun by Wooden and Butner in 1992 to look for correlations between the variations in visible photometry and mid-IR dust emission features. Generally the approximately 20 stars that have been observed by the NASA Ames HIFOGS spectrometer have been steady at 10 microns. There are a handful, however, that have shown variable mid-IR spectra, with 2 showing variations in both the continuum and features anti-correlated with visual photometry, and 3 showing variations in the emission features only while the continuum level remained unchanged. The first 2 stars mentioned probably have reprocessing envelopes. The other 3 stars gives important clues to the controversy over the geometry of the gas and dust around these pre-main sequence stars: the steady underlying 10 microns continuum and variable features indicates that an optically thick continuum probably arising from an accretion disk is decoupled from the optically thin emission features which may arise in a disk atmosphere. Bernadette Rodgers has joined this monitoring campaign in the near-IR using GRIMII with the goal of detecting variations in the hot dust continuum and the gas density in the dense accretion region close to these stars.

  2. Historical Buildings Models and Their Handling via 3d Survey: from Points Clouds to User-Oriented Hbim

    NASA Astrophysics Data System (ADS)

    Chiabrando, F.; Sammartano, G.; Spanò, A.

    2016-06-01

    This paper retraces some research activities and application of 3D survey techniques and Building Information Modelling (BIM) in the environment of Cultural Heritage. It describes the diffusion of as-built BIM approach in the last years in Heritage Assets management, the so-called Built Heritage Information Modelling/Management (BHIMM or HBIM), that is nowadays an important and sustainable perspective in documentation and administration of historic buildings and structures. The work focuses the documentation derived from 3D survey techniques that can be understood like a significant and unavoidable knowledge base for the BIM conception and modelling, in the perspective of a coherent and complete management and valorisation of CH. It deepens potentialities, offered by 3D integrated survey techniques, to acquire productively and quite easilymany 3D information, not only geometrical but also radiometric attributes, helping the recognition, interpretation and characterization of state of conservation and degradation of architectural elements. From these data, they provide more and more high descriptive models corresponding to the geometrical complexity of buildings or aggregates in the well-known 5D (3D + time and cost dimensions). Points clouds derived from 3D survey acquisition (aerial and terrestrial photogrammetry, LiDAR and their integration) are reality-based models that can be use in a semi-automatic way to manage, interpret, and moderately simplify geometrical shapes of historical buildings that are examples, as is well known, of non-regular and complex geometry, instead of modern constructions with simple and regular ones. In the paper, some of these issues are addressed and analyzed through some experiences regarding the creation and the managing of HBIMprojects on historical heritage at different scales, using different platforms and various workflow. The paper focuses on LiDAR data handling with the aim to manage and extract geometrical information; on development and optimization of semi-automatic process of segmentation, recognition and modelling of historical shapes of complex structures; on communication of historical heritage by virtual and augmented reality (VR/AR) in a 3D reconstruction of buildings aggregates from a LiDAR and UAV survey. The HBIM model have been implemented and optimized to be managed and browse by mobile devices for not only touristic or informative scopes, but also to ensure that HBIM platforms will become more easy and valuable tools helping all professionals of AEC involved in the documentation and valorisation process, that nowadays more and more distinguish CH policies.

  3. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n](2 - n) (n + m = 5).

    PubMed

    Ingram, Kieran I M; Häller, L Jonas L; Kaltsoyannis, Nikolas

    2006-05-28

    Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands.

  4. The geometric structures, vibrational frequencies and redox properties of the actinyl coordination complexes ([AnO2(L)n](m); An = U, Pu, Np; L = H2O, Cl-, CO3(2-), CH3CO2(-), OH-) in aqueous solution, studied by density functional theory methods.

    PubMed

    Austin, Jonathan P; Sundararajan, Mahesh; Vincent, Mark A; Hillier, Ian H

    2009-08-14

    The geometric and electronic structures of the aqua, chloro, acetato, hydroxo and carbonato complexes of U, Np and Pu in both their (VI) and (V) oxidation states, and in an aqueous environment, have been studied using density functional theory methods. We have obtained micro-solvated structures derived from molecular dynamics simulations and included the bulk solvent using a continuum model. We find that two different hydrogen bonding patterns involving the axial actinyl oxygen atoms are sometimes possible, and may give rise to different An-O bond lengths and vibrational frequencies. These alternative structures are reflected in the experimental An-O bond lengths of the aqua and carbonato complexes. The variation of the redox potential of the uranyl complexes with the different ligands has been studied using both BP86 and B3LYP functionals. The relative values for the four uranium complexes having anionic ligands are in surprisingly good agreement with experiment, although the absolute values are in error by approximately 1 eV. The absolute error for the aqua species is much less, leading to an incorrect order of the redox potentials of the aqua and chloro species.

  5. Nonlinear refraction and reflection travel time tomography

    USGS Publications Warehouse

    Zhang, Jiahua; ten Brink, Uri S.; Toksoz, M.N.

    1998-01-01

    We develop a rapid nonlinear travel time tomography method that simultaneously inverts refraction and reflection travel times on a regular velocity grid. For travel time and ray path calculations, we apply a wave front method employing graph theory. The first-arrival refraction travel times are calculated on the basis of cell velocities, and the later refraction and reflection travel times are computed using both cell velocities and given interfaces. We solve a regularized nonlinear inverse problem. A Laplacian operator is applied to regularize the model parameters (cell slownesses and reflector geometry) so that the inverse problem is valid for a continuum. The travel times are also regularized such that we invert travel time curves rather than travel time points. A conjugate gradient method is applied to minimize the nonlinear objective function. After obtaining a solution, we perform nonlinear Monte Carlo inversions for uncertainty analysis and compute the posterior model covariance. In numerical experiments, we demonstrate that combining the first arrival refraction travel times with later reflection travel times can better reconstruct the velocity field as well as the reflector geometry. This combination is particularly important for modeling crustal structures where large velocity variations occur in the upper crust. We apply this approach to model the crustal structure of the California Borderland using ocean bottom seismometer and land data collected during the Los Angeles Region Seismic Experiment along two marine survey lines. Details of our image include a high-velocity zone under the Catalina Ridge, but a smooth gradient zone between. Catalina Ridge and San Clemente Ridge. The Moho depth is about 22 km with lateral variations. Copyright 1998 by the American Geophysical Union.

  6. A Learning-Style Theory for Understanding Autistic Behaviors

    PubMed Central

    Qian, Ning; Lipkin, Richard M.

    2011-01-01

    Understanding autism's ever-expanding array of behaviors, from sensation to cognition, is a major challenge. We posit that autistic and typically developing brains implement different algorithms that are better suited to learn, represent, and process different tasks; consequently, they develop different interests and behaviors. Computationally, a continuum of algorithms exists, from lookup table (LUT) learning, which aims to store experiences precisely, to interpolation (INT) learning, which focuses on extracting underlying statistical structure (regularities) from experiences. We hypothesize that autistic and typical brains, respectively, are biased toward LUT and INT learning, in low- and high-dimensional feature spaces, possibly because of their narrow and broad tuning functions. The LUT style is good at learning relationships that are local, precise, rigid, and contain little regularity for generalization (e.g., the name–number association in a phonebook). However, it is poor at learning relationships that are context dependent, noisy, flexible, and do contain regularities for generalization (e.g., associations between gaze direction and intention, language and meaning, sensory input and interpretation, motor-control signal and movement, and social situation and proper response). The LUT style poorly compresses information, resulting in inefficiency, sensory overload (overwhelm), restricted interests, and resistance to change. It also leads to poor prediction and anticipation, frequent surprises and over-reaction (hyper-sensitivity), impaired attentional selection and switching, concreteness, strong local focus, weak adaptation, and superior and inferior performances on simple and complex tasks. The spectrum nature of autism can be explained by different degrees of LUT learning among different individuals, and in different systems of the same individual. Our theory suggests that therapy should focus on training autistic LUT algorithm to learn regularities. PMID:21886617

  7. Effect of surface on the dissociation of perfect dislocations into Shockley partials describing the herringbone Au(1\\xA01\\xA01) surface reconstruction

    NASA Astrophysics Data System (ADS)

    Ait-Oubba, A.; Coupeau, C.; Durinck, J.; Talea, M.; Grilhé, J.

    2018-06-01

    In the framework of the continuum elastic theory, the equilibrium positions of Shockley partial dislocations have been determined as a function of their distance from the free surface. It is found that the dissociation width decreases with the decreasing depth, except for a depth range very close to the free surface for which the dissociation width is enlarged. A similar behaviour is also predicted when Shockley dislocation pairs are regularly arranged, whatever the wavelength. These results derived from the elastic theory are compared to STM observations of the reconstructed (1 1 1) surface in gold, which is usually described by a Shockley dislocations network.

  8. Sandia fracture challenge 2: Sandia California's modeling approach

    DOE PAGES

    Karlson, Kyle N.; James W. Foulk, III; Brown, Arthur A.; ...

    2016-03-09

    The second Sandia Fracture Challenge illustrates that predicting the ductile fracture of Ti-6Al-4V subjected to moderate and elevated rates of loading requires thermomechanical coupling, elasto-thermo-poro-viscoplastic constitutive models with the physics of anisotropy and regularized numerical methods for crack initiation and propagation. We detail our initial approach with an emphasis on iterative calibration and systematically increasing complexity to accommodate anisotropy in the context of an isotropic material model. Blind predictions illustrate strengths and weaknesses of our initial approach. We then revisit our findings to illustrate the importance of including anisotropy in the failure process. Furthermore, mesh-independent solutions of continuum damage modelsmore » having both isotropic and anisotropic yields surfaces are obtained through nonlocality and localization elements.« less

  9. Fractal patterns formed by growth of radial viscous fingers*

    NASA Astrophysics Data System (ADS)

    Praud, Olivier

    2004-03-01

    We examine fractal patterns formed by the injection of air into oil in a thin (0.13 mm) layer contained between two cylindrical glass plates of 288 mm diameter (a Hele-Shaw cell) [1]. The resultant radially grown patterns are similar to those formed in Diffusion Limited Aggregation (DLA), but the relation between the continuum limit of DLA and continuum (Laplacian) growth remains an open question. Our viscous fingering patterns in the limit of very high pressure difference reach an asymptotic state in which they exhibit a fractal dimension of 1.70± 0.02, in good agreement with a calculation of the fractal dimension of a DLA cluster, 1.713± 0.003 [2]. The generalized dimensions are also computed and show that the observed pattern is self-similar with Dq = 1.70 for all q. Further, the probability density function of shielding angles suggests the existence of a critical angle close to 75 degrees. This result is in accord with numerical and analytical evidence of a critical angle in DLA [3]. Thus fractal viscous fingering patterns and Diffusion Limited Aggregation clusters have a similar geometrical structure. *Work conducted in collaboration with H.L. Swinney, M.G. Moore and Eran Sharon [1] E. Sharon, M. G. Moore, W. D. McCormick, and H. L. Swinney, Phys. Rev. Lett. 91, 205504 (2003). [2] B.Davidovitch et A. Levermann and I. Procaccia, Phys. Rev. E 62, 5919 (2000). [3] D. A. Kessler et al., Phys. Rev. E 57, 6913 (1998).

  10. Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations

    NASA Astrophysics Data System (ADS)

    Clayton, J. D.; Knap, J.

    2018-03-01

    A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.

  11. Modelling CO2 flow in naturally fractured geological media using MINC and multiple subregion upscaling procedure

    NASA Astrophysics Data System (ADS)

    Tatomir, Alexandru Bogdan A. C.; Flemisch, Bernd; Class, Holger; Helmig, Rainer; Sauter, Martin

    2017-04-01

    Geological storage of CO2 represents one viable solution to reduce greenhouse gas emission in the atmosphere. Potential leakage of CO2 storage can occur through networks of interconnected fractures. The geometrical complexity of these networks is often very high involving fractures occurring at various scales and having hierarchical structures. Such multiphase flow systems are usually hard to solve with a discrete fracture modelling (DFM) approach. Therefore, continuum fracture models assuming average properties are usually preferred. The multiple interacting continua (MINC) model is an extension of the classic double porosity model (Warren and Root, 1963) which accounts for the non-linear behaviour of the matrix-fracture interactions. For CO2 storage applications the transient representation of the inter-porosity two phase flow plays an important role. This study tests the accuracy and computational efficiency of the MINC method complemented with the multiple sub-region (MSR) upscaling procedure versus the DFM. The two phase flow MINC simulator is implemented in the free-open source numerical toolbox DuMux (www.dumux.org). The MSR (Gong et al., 2009) determines the inter-porosity terms by solving simplified local single-phase flow problems. The DFM is considered as the reference solution. The numerical examples consider a quasi-1D reservoir with a quadratic fracture system , a five-spot radial symmetric reservoir, and a completely random generated fracture system. Keywords: MINC, upscaling, two-phase flow, fractured porous media, discrete fracture model, continuum fracture model

  12. A Novel Method for Modeling Neumann and Robin Boundary Conditions in Smoothed Particle Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Amon, Cristina

    2010-08-26

    In this paper we present an improved method for handling Neumann or Robin boundary conditions in smoothed particle hydrodynamics. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to model in volumetric modeling techniques such as smoothed particle hydrodynamics (SPH). A new SPH method for diffusion type equations subject to Neumann or Robin boundary conditions is proposed. The new method is based on the continuum surface force model [1] and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method for geometrically complex boundaries.more » The paper discusses the details of the method and the criteria needed to apply the model. The model is used to simulate diffusion and surface reactions and its accuracy is demonstrated through test cases for boundary conditions describing different surface reactions.« less

  13. How the continents deform: The evidence from tectonic geodesy

    USGS Publications Warehouse

    Thatcher, Wayne R.

    2009-01-01

    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  14. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies

    NASA Astrophysics Data System (ADS)

    Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan

    2017-02-01

    We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.

  15. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    NASA Astrophysics Data System (ADS)

    Teixeira, P.; Santos, Abel; César Sá, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-05-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.

  16. Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Hariswaran; Moreno, Gilberto; Narumanchi, Sreekant V

    2017-08-03

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulationsmore » pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.« less

  17. Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Hariswaran; Moreno, Gilberto; Narumanchi, Sreekant V

    2017-07-12

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulationsmore » pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.« less

  18. Cytoplasmic streaming emerges naturally from hydrodynamic self-organisation of a microfilament suspension

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Goldstein, Raymond

    2013-03-01

    Cytoplasmic streaming is the ubiquitous phenomenon of deliberate, active circulation of the entire liquid contents of a plant or animal cell by the walking of motor proteins on polymer filament tracks. Its manifestation in the plant kingdom is particularly striking, where many cells exhibit highly organised patterns of flow. How these regimented flow templates develop is biologically unclear, but there is growing experimental evidence to support hydrodynamically-mediated self-organisation of the underlying microfilament tracks. Using the spirally-streaming giant internodal cells of the characean algae Chara and Nitella as our prototype, we model the developing sub-cortical streaming cytoplasm as a continuum microfilament suspension subject to hydrodynamic and geometric forcing. We show that our model successfully reproduces emergent streaming behaviour by evolving from a totally disordered initial state into a steady characean ``conveyor belt'' configuration as a consequence of the cell geometry, and discuss applicability to other classes of steadily streaming plant cells.

  19. Classical Dynamics of Fullerenes

    NASA Astrophysics Data System (ADS)

    Sławianowski, Jan J.; Kotowski, Romuald K.

    2017-06-01

    The classical mechanics of large molecules and fullerenes is studied. The approach is based on the model of collective motion of these objects. The mixed Lagrangian (material) and Eulerian (space) description of motion is used. In particular, the Green and Cauchy deformation tensors are geometrically defined. The important issue is the group-theoretical approach to describing the affine deformations of the body. The Hamiltonian description of motion based on the Poisson brackets methodology is used. The Lagrange and Hamilton approaches allow us to formulate the mechanics in the canonical form. The method of discretization in analytical continuum theory and in classical dynamics of large molecules and fullerenes enable us to formulate their dynamics in terms of the polynomial expansions of configurations. Another approach is based on the theory of analytical functions and on their approximations by finite-order polynomials. We concentrate on the extremely simplified model of affine deformations or on their higher-order polynomial perturbations.

  20. ``The Princess and the Pea'' at the Nanoscale: Wrinkling and Delamination of Graphene on Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael S.; Einstein, Theodore L.; Cullen, William G.

    2012-10-01

    Thin membranes exhibit complex responses to external forces or geometrical constraints. A familiar example is the wrinkling, exhibited by human skin, plant leaves, and fabrics, that results from the relative ease of bending versus stretching. Here, we study the wrinkling of graphene, the thinnest and stiffest known membrane, deposited on a silica substrate decorated with silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate, detached only in small regions around the nanoparticles. With increasing nanoparticle density, we observe the formation of wrinkles which connect nanoparticles. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, global delamination from the substrate is observed. The observations can be well understood within a continuum-elastic model and have important implications for strain-engineering the electronic properties of graphene.

  1. OpenFOAM: Open source CFD in research and industry

    NASA Astrophysics Data System (ADS)

    Jasak, Hrvoje

    2009-12-01

    The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

  2. Semiclassical description of photoionization microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordas, Ch.; Lepine, F.; Nicole, C.

    2003-07-01

    Recently, experiments have been reported where a geometrical interference pattern was observed when photoelectrons ejected in the threshold photoionization of xenon were detected in a velocity-map imaging apparatus [C. Nicole et al., Phys. Rev. Lett. 88, 133001 (2002)]. This technique, called photoionization microscopy, relies on the existence of interferences between various trajectories by which the electron moves from the atom to the plane of observation. Unlike previous predictions relevant to the hydrogenic case, the structure of the interference pattern evolves smoothly with the excess energy above the saddle point and is only weakly affected by the presence of continuum Starkmore » resonances. In this paper, we describe a semiclassical analysis of this process and present numerical simulations in excellent agreement with the experimental results. It is shown that the background contribution dominates in the observations, as opposed to the behavior expected for hydrogenic systems where the interference pattern is qualitatively different on quasidiscrete Stark resonances.« less

  3. Heuristic rule for binary superlattice coassembly: mixed plastic mesophases of hard polyhedral nanoparticles.

    PubMed

    Khadilkar, Mihir R; Escobedo, Fernando A

    2014-10-17

    Sought-after ordered structures of mixtures of hard anisotropic nanoparticles can often be thermodynamically unfavorable due to the components' geometric incompatibility to densely pack into regular lattices. A simple compatibilization rule is identified wherein the particle sizes are chosen such that the order-disorder transition pressures of the pure components match (and the entropies of the ordered phases are similar). Using this rule with representative polyhedra from the truncated-cube family that form pure-component plastic crystals, Monte Carlo simulations show the formation of plastic-solid solutions for all compositions and for a wide range of volume fractions.

  4. Spatial Modeling of the Influence of Mining-Geometric Indices on the Efficiency of Mining

    NASA Astrophysics Data System (ADS)

    Sobolevskyi, Ruslan; Korobiichuk, Igor; Nowicki, Michał; Szewczyk, Roman; Shlapak, Vladimir

    2017-12-01

    The regularities of the changes of horizontal and sub-horizontal systems of cracks at different locations of Holovyne labradorite deposits are studied. The trend for stress to increase has been established in the quarry LLS "Optima" for Holovyne labradorite deposits in Volodar-Volynsk district, Zhytomyr region at the deepening of excavation. The duration of the working cycle of borehole drilling in a solid and cracked massif is calculated using a new method. The calendar planning method of mining is developed taking into account the dependence of drilling efficiency on horizontal and sub-horizontal systems of cracks.

  5. On the inverse Magnus effect in free molecular flow

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick D.; Herczynski, Andrzej

    2004-02-01

    A Newton-inspired particle interaction model is introduced to compute the sideways force on spinning projectiles translating through a rarefied gas. The simple model reproduces the inverse Magnus force on a sphere reported by Borg, Söderholm and Essén [Phys. Fluids 15, 736 (2003)] using probability theory. Further analyses given for cylinders and parallelepipeds of rectangular and regular polygon section point to a universal law for this class of geometric shapes: when the inverse Magnus force is steady, it is proportional to one-half the mass M of gas displaced by the body.

  6. A shadowed flow in the stem of the Crab nebula?

    NASA Technical Reports Server (NTRS)

    Morrison, P.; Roberts, D.

    1985-01-01

    The faint radio and emission line 'jet' outward from the northern boundary of the Crab Nebula which appears as a neat right cylinder is modelled here as the convected margin of a gas cloud that accidentially cast its shallow across the nearly ballistic flow of the stellar envelope ejected in the supernova explosion. It is shown that this model is consistent with known data on the jet, and that it accounts for the strikingly regular geometrical features in a natural way. In contrast, flow instability models do not easily result in so neat a cylinder.

  7. Non-rigid Reconstruction of Casting Process with Temperature Feature

    NASA Astrophysics Data System (ADS)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu

    2017-09-01

    Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.

  8. Modified Denavit-Hartenberg parameters for better location of joint axis systems in robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.

    1986-01-01

    The Denavit-Hartenberg parameters define the relative location of successive joint axis systems in a robot arm. A recent justifiable criticism is that one of these parameters becomes extremely large when two successive joints have near-parallel rotational axes. Geometrically, this parameter then locates a joint axis system at an excessive distance from the robot arm and, computationally, leads to an ill-conditioned transformation matrix. In this paper, a simple modification (which results from constraining a transverse vector between successive joint rotational axes to be normal to one of the rotational axes, instead of both) overcomes this criticism and favorably locates the joint axis system. An example is given for near-parallel rotational axes of the elbow and shoulder joints in a robot arm. The regular and modified parameters are extracted by an algebraic method with simulated measurement data. Unlike the modified parameters, extracted values of the regular parameters are very sensitive to measurement accuracy.

  9. Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method

    DOE PAGES

    Wang, Junjian; Kang, Qinjun; Wang, Yuzhu; ...

    2017-06-01

    One primary challenge for prediction of gas flow in the unconventional gas reservoir at the pore-scale such as shale and tight gas reservoirs is the geometric complexity of the micro-porous media. In this paper, a regularized multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is applied to analyze gas flow in 2-dimensional micro-porous medium reconstructed by quartet structure generation set (QSGS) on pore-scale. In this paper, the velocity distribution inside the porous structure is presented and analyzed, and the effects of the porosity and specific surface area on the rarefied gas flow and apparent permeability are examined and investigated. The simulation resultsmore » indicate that the gas exhibits different flow behaviours at various pressure conditions and the gas permeability is strongly related to the pressure. Finally, the increased porosity or the decreased specific surface area leads to the increase of the gas apparent permeability, and the gas flow is more sensitive to the pore morphological properties at low-pressure conditions.« less

  10. Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Junjian; Kang, Qinjun; Wang, Yuzhu

    One primary challenge for prediction of gas flow in the unconventional gas reservoir at the pore-scale such as shale and tight gas reservoirs is the geometric complexity of the micro-porous media. In this paper, a regularized multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is applied to analyze gas flow in 2-dimensional micro-porous medium reconstructed by quartet structure generation set (QSGS) on pore-scale. In this paper, the velocity distribution inside the porous structure is presented and analyzed, and the effects of the porosity and specific surface area on the rarefied gas flow and apparent permeability are examined and investigated. The simulation resultsmore » indicate that the gas exhibits different flow behaviours at various pressure conditions and the gas permeability is strongly related to the pressure. Finally, the increased porosity or the decreased specific surface area leads to the increase of the gas apparent permeability, and the gas flow is more sensitive to the pore morphological properties at low-pressure conditions.« less

  11. A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis

    PubMed Central

    Refahi, Yassin; Brunoud, Géraldine; Farcot, Etienne; Jean-Marie, Alain; Pulkkinen, Minna; Vernoux, Teva; Godin, Christophe

    2016-01-01

    Exploration of developmental mechanisms classically relies on analysis of pattern regularities. Whether disorders induced by biological noise may carry information on building principles of developmental systems is an important debated question. Here, we addressed theoretically this question using phyllotaxis, the geometric arrangement of plant aerial organs, as a model system. Phyllotaxis arises from reiterative organogenesis driven by lateral inhibitions at the shoot apex. Motivated by recurrent observations of disorders in phyllotaxis patterns, we revisited in depth the classical deterministic view of phyllotaxis. We developed a stochastic model of primordia initiation at the shoot apex, integrating locality and stochasticity in the patterning system. This stochastic model recapitulates phyllotactic patterns, both regular and irregular, and makes quantitative predictions on the nature of disorders arising from noise. We further show that disorders in phyllotaxis instruct us on the parameters governing phyllotaxis dynamics, thus that disorders can reveal biological watermarks of developmental systems. DOI: http://dx.doi.org/10.7554/eLife.14093.001 PMID:27380805

  12. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds.

    PubMed

    Moncho, Salvador; Autschbach, Jochen

    2010-01-12

    A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.

  13. Fine Structure and Dynamics of Sunspot Penumbra

    NASA Astrophysics Data System (ADS)

    Ryutova, M.; Berger, T.; Title, A.

    2007-08-01

    A mature sunspot is usually surrounded by a penumbra: strong vertical magnetic field in the umbra, the dark central region of sunspot, becomes more and more horizontal toward the periphery forming an ensemble of a thin magnetic filaments of varying inclinations. Recent high resolution observations with the 1-meter Swedish Solar Telescope (SST) on La Palma revealed a fine substructure of penumbral filaments and new regularities in their dynamics.1 These findings provide both the basis and constraints for an adequate model of the penumbra whose origin still remains enigmatic. We present results of recent observations obtained with the SST. Our data, taken simultaneously in 4305 Å G-band and 4396 Å continuum bandpasses and compiled in high cadence movies, confirm previous results and reveal new features of the penumbra. We find e.g. that individual filaments are cylindrical helices with a pitch/radius ratio providing their dynamic stability. We propose a mechanism that may explain the fine structure of penumbral filaments, the observed regularities, and their togetherness with sunspot formation. The mechanism is based on the anatomy of sunspots in which not only penumbra has a filamentary structure but umbra itself is a dense conglomerate of twisted interlaced flux tubes.

  14. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.

    PubMed

    Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin

    2017-10-11

    Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

  15. Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design.

    PubMed

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2014-01-01

    We investigated the flow modifications induced by a large panel of commercial-off-the-shelf (COTS) intracranial stents in an idealized sidewall intracranial aneurysm (IA). Flow velocities in IA silicone model were assessed with and without stent implantation using particle imaging velocimetry (PIV). The use of the recently developed multi-time-lag method has allowed for uniform and precise measurements of both high and low velocities at IA neck and dome, respectively. Flow modification analysis of both regular (RSs) and flow diverter stents (FDSs) was subsequently correlated with relevant geometrical stent parameters. Flow reduction was found to be highly sensitive to stent porosity variations for regular stents RSs and moderately sensitive for FDSs. Consequently, two distinct IA flow change trends, with velocity reductions up to 50% and 90%, were identified for high-porosity RS and low-porosity FDS, respectively. The intermediate porosity (88%) regular braided stent provided the limit at which the transition in flow change trend occurred with a flow reduction of 84%. This transition occurred with decreasing stent porosity, as the driving force in IA neck changed from shear stress to differential pressure. Therefore, these results suggest that stents with intermediate porosities could possibly provide similar flow change patterns to FDS, favourable to curative thrombogenesis in IAs.

  16. Least squares reconstruction of non-linear RF phase encoded MR data.

    PubMed

    Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E

    2016-09-01

    The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  17. Sleep characteristics and progression of coronary artery calcification: Results from the Heinz Nixdorf Recall cohort study.

    PubMed

    Kowall, Bernd; Lehmann, Nils; Mahabadi, Amir-Abbas; Lehnich, Anna-Therese; Moebus, Susanne; Budde, Thomas; Seibel, Rainer; Grönemeyer, Dietrich; Erbel, Raimund; Jöckel, Karl-Heinz; Stang, Andreas

    2018-04-01

    Sleep characteristics are associated with incident cardiovascular diseases (CVD), but there is a lack of studies on the association between sleep characteristics and incidence/progression of coronary artery calcification (CAC). In the Heinz Nixdorf Recall Study, a population-based cohort study in Germany, CAC was assessed by electron-beam tomography at baseline and at 5-year follow-up. In an analysis set of 3043 subjects (age at baseline 45-74 years; 47% men), we fitted logistic and linear regression models to assess associations between self-rated sleep characteristics (nocturnal and total sleep duration; napping; various sleep disorders) and CAC incidence/CAC progression. Progression was measured as 5-year progression factor, as categories of absolute CAC change, and additionally characterized as rapid or slow compared to an extrapolation of baseline CAC values. We observed barely any association between sleep characteristics and CAC progression regardless of the chosen statistical approach; associations between sleep and CAC incidence were slightly larger, e.g., the geometric mean of the 5-year CAC progression factor was 6.8% (95% confidence interval: -9.5; 25.9) larger for ≤5 h, 2.9% (-7.3; 14.3) larger for 5.1-6.9 h and 7.1% (-2.4; 15.7) smaller for ≥7.5 h total sleep compared to 7- <7.5 h total sleep. For subjects with any regular sleep disorder, the geometric mean of the 5-year CAC progression was 3.5% (-4.7; 11.2) smaller compared to subjects without any regular sleep disorder. In this German cohort study, sleep characteristics were barely associated with CAC progression. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2018-01-01

    The geometric arrangement of planet and moon orbits into a regularly spaced pattern of distances is the result of a self-organizing system. The positive feedback mechanism that operates a self-organizing system is accomplished by harmonic orbit resonances, leading to long-term stable planet and moon orbits in solar or stellar systems. The distance pattern of planets was originally described by the empirical Titius-Bode law, and by a generalized version with a constant geometric progression factor (corresponding to logarithmic spacing). We find that the orbital periods Ti and planet distances Ri from the Sun are not consistent with logarithmic spacing, but rather follow the quantized scaling (Ri + 1 /Ri) =(Ti + 1 /Ti) 2 / 3 =(Hi + 1 /Hi) 2 / 3 , where the harmonic ratios are given by five dominant resonances, namely (Hi + 1 :Hi) =(3 : 2) ,(5 : 3) ,(2 : 1) ,(5 : 2) ,(3 : 1) . We find that the orbital period ratios tend to follow the quantized harmonic ratios in increasing order. We apply this harmonic orbit resonance model to the planets and moons in our solar system, and to the exo-planets of 55 Cnc and HD 10180 planetary systems. The model allows us a prediction of missing planets in each planetary system, based on the quasi-regular self-organizing pattern of harmonic orbit resonance zones. We predict 7 (and 4) missing exo-planets around the star 55 Cnc (and HD 10180). The accuracy of the predicted planet and moon distances amounts to a few percents. All analyzed systems are found to have ≈ 10 resonant zones that can be occupied with planets (or moons) in long-term stable orbits.

  19. A Novel Graph Constructor for Semisupervised Discriminant Analysis: Combined Low-Rank and k-Nearest Neighbor Graph

    PubMed Central

    Pan, Yongke; Niu, Wenjia

    2017-01-01

    Semisupervised Discriminant Analysis (SDA) is a semisupervised dimensionality reduction algorithm, which can easily resolve the out-of-sample problem. Relative works usually focus on the geometric relationships of data points, which are not obvious, to enhance the performance of SDA. Different from these relative works, the regularized graph construction is researched here, which is important in the graph-based semisupervised learning methods. In this paper, we propose a novel graph for Semisupervised Discriminant Analysis, which is called combined low-rank and k-nearest neighbor (LRKNN) graph. In our LRKNN graph, we map the data to the LR feature space and then the kNN is adopted to satisfy the algorithmic requirements of SDA. Since the low-rank representation can capture the global structure and the k-nearest neighbor algorithm can maximally preserve the local geometrical structure of the data, the LRKNN graph can significantly improve the performance of SDA. Extensive experiments on several real-world databases show that the proposed LRKNN graph is an efficient graph constructor, which can largely outperform other commonly used baselines. PMID:28316616

  20. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering.

    PubMed

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-10-24

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.

  1. Geographic Gossip: Efficient Averaging for Sensor Networks

    NASA Astrophysics Data System (ADS)

    Dimakis, Alexandros D. G.; Sarwate, Anand D.; Wainwright, Martin J.

    Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $\\sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $\\epsilon$ using $O(\\frac{n^{1.5}}{\\sqrt{\\log n}} \\log \\epsilon^{-1})$ radio transmissions, which yields a $\\sqrt{\\frac{n}{\\log n}}$ factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.

  2. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering

    PubMed Central

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-01-01

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064

  3. Exobiology, SETI, von Neumann and geometric phase control.

    PubMed

    Hansson, P A

    1995-11-01

    The central difficulties confronting us at present in exobiology are the problems of the physical forces which sustain three-dimensional organisms, i.e., how one dimensional systems with only nearest interaction and two dimensional ones with its regular vibrations results in an integrated three-dimensional functionality. For example, a human lung has a dimensionality of 2.9 and thus should be measured in m2.9. According to thermodynamics, the first life-like system should have a small number of degrees of freedom, so how can evolution, via cycles of matter, lead to intelligence and theoretical knowledge? Or, more generally, what mechanisms constrain and drive this evolution? We are now on the brink of reaching an understanding below the photon level, into the domain where quantum events implode to the geometric phase which maintains the history of a quantum object. Even if this would exclude point to point communication, it could make it possible to manipulate the molecular level from below, in the physical scale, and result in a new era of geometricised engineering. As such, it would have a significant impact on space exploration and exobiology.

  4. Electromagnetically induced transparency in sinusoidal modulated ring resonator

    NASA Astrophysics Data System (ADS)

    Malik, Jagannath; Oruganti, Sai Kiran; Song, Seongkyu; Ko, Nak Young; Bien, Franklin

    2018-06-01

    In the present work, we demonstrate controlling the excitation of bright mode (continuum mode) resonance and dark mode (discrete mode) resonance in a planar metasurface made of sinusoidal modulation inside a closed rectangular metallic ring placed over a dielectric substrate. Unlike asymmetrical breaking of a meta-atom (often referred to as the unit cell) to achieve the dark mode response in regular metamaterials, in the present structure, the bright or dark mode resonance is achieved using even or odd half cycle modulation. The achieved dark-mode shows a sharp resonance for a particular polarization of the incident electric field, which results in an electromagnetically induced transparency like spectrum. The electromagnetic behavior of the proposed meta-atom has been investigated in the frequency domain using commercially available software and validated through experiments in the gigahertz regime.

  5. Isogeometric frictionless contact analysis with the third medium method

    NASA Astrophysics Data System (ADS)

    Kruse, R.; Nguyen-Thanh, N.; Wriggers, P.; De Lorenzis, L.

    2018-01-01

    This paper presents an isogeometric formulation for frictionless contact between deformable bodies, based on the recently proposed concept of the third medium. This concept relies on continuum formulations not only for the contacting bodies but also for a fictitious intermediate medium in which the bodies can move and interact. Key to the formulation is a suitable definition of the constitutive behavior of the third medium. In this work, based on a number of numerical tests, the role of the material parameters of the third medium is systematically assessed. We also assess the rate of spatial convergence for higher-order discretizations, stemming from the regularization of the non-smooth contact problem inherent to the third medium approach. Finally, problems with self contact are considered and turn out to be an attractive application of the method.

  6. VLTI/AMBER spectro-interferometric imaging of VX Sagittarii's inhomogenous outer atmosphere

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Lacour, S.; Millour, F.; Driebe, T.; Wittkowski, M.; Plez, B.; Thiébaut, E.; Josselin, E.; Freytag, B.; Scholz, M.; Haubois, X.

    2010-02-01

    Aims: We aim to explore the photosphere of the very cool late-type star VX Sgr and in particular the characterization of molecular layers above the continuum forming photosphere. Methods: We obtained interferometric observations with the VLTI/AMBER interferometer using the fringe tracker FINITO in the spectral domain 1.45-2.50 μm with a spectral resolution of ≈35 and baselines ranging from 15 to 88 m. We performed independent image reconstruction for different wavelength bins and fit the interferometric data with a geometrical toy model. We also compared the data to 1D dynamical models of Miras atmosphere and to 3D hydrodynamical simulations of red supergiant (RSG) and asymptotic giant branch (AGB) stars. Results: Reconstructed images and visibilities show a strong wavelength dependence. The H-band images display two bright spots whose positions are confirmed by the geometrical toy model. The inhomogeneities are qualitatively predicted by 3D simulations. At ≈2.00 μm and in the region 2.35-2.50 μm, the photosphere appears extended and the radius is larger than in the H band. In this spectral region, the geometrical toy model locates a third bright spot outside the photosphere that can be a feature of the molecular layers. The wavelength dependence of the visibility can be qualitatively explained by 1D dynamical models of Mira atmospheres. The best-fitting photospheric models show a good match with the observed visibilities and give a photospheric diameter of Theta=8.82 ± 0.50 mas. The H2O molecule seems to be the dominant absorber in the molecular layers. Conclusions: We show that the atmosphere of VX Sgr seems to resemble Mira/AGB star model atmospheres more closely than do RSG model atmospheres. In particular, we see molecular (water) layers that are typical of Mira stars. Based on the observations made with VLTI-ESO Paranal, Chile under the programs IDs 081.D-0005(A, B, C, D, E, F, G, H).

  7. Effect of geometrical configuration of sediment replenishment on the development of bed form patterns in a gravel bed channel

    NASA Astrophysics Data System (ADS)

    Battisacco, Elena; Franca, Mário J.; Schleiss, Anton J.

    2016-04-01

    Dams interrupt the longitudinal continuity of river reaches since they store water and trap sediment in the upstream reservoir. By the interruption of the sediment continuum, the transport capacity of downstream stretch exceeds the sediment supply, thus the flow becomes "hungry". Sediment replenishment is an increasingly used method for restoring the continuity in rivers and for re-establishing the sediment regime of such disturbed river reaches. This research evaluates the effect of different geometrical configurations of sediment replenishment on the evolution of the bed morphology by systematic laboratory experiments. A typical straight armoured gravel reach is reproduced in a laboratory flume in terms of slope, grain size and cross section. The total amount of replenished sediment is placed in four identical volumes on both channel banks, forming six different geometrical configurations. Both alternated and parallel combinations are studied. Preliminary studies demonstrate that a complete submergence condition of the replenishment deposits is most adequate for obtaining a complete erosion and a high persistence of the replenished material in the channel. The response of the channel bed morphology to replenishment is documented by camera and laser scanners installed on a moveable carriage. The parallel configurations create an initially strong narrowing of the channel section. The transport capacity is thus higher and most of the replenished sediments exit the channel. The parallel configurations result in a more spread distribution of grains but with no clear morphological pattern. Clear bed form patterns can be observed when applying alternated configurations. Furthermore, the wavelength of depositions correspond to the replenishment deposit length. These morphological forms can be assumed as mounds. In order to enhance channel bed morphology on an armoured bed by sediment replenishment, alternated deposit configurations are more favourable and effective. The present study is supported by FOEN (Federal Office for the Environment, Switzerland).

  8. On the Disappearance of a Cold Molecular Torus around the Low-luminosity Active Galactic Nucleus of NGC 1097

    NASA Astrophysics Data System (ADS)

    Izumi, T.; Kohno, K.; Fathi, K.; Hatziminaoglou, E.; Davies, R. I.; Martín, S.; Matsushita, S.; Schinnerer, E.; Espada, D.; Aalto, S.; Onishi, K.; Turner, J. L.; Imanishi, M.; Nakanishi, K.; Meier, D. S.; Wada, K.; Kawakatu, N.; Nakajima, T.

    2017-08-01

    We used the Atacama Large Millimeter/Submillimeter Array to map the CO(3-2) and the underlying continuum emissions around the type-1 low-luminosity active galactic nucleus (LLAGN; bolometric luminosity ≲ {10}42 erg s-1) of NGC 1097 at ˜10 pc resolution. These observations revealed a detailed cold gas distribution within a ˜100 pc of this LLAGN. In contrast to the luminous Seyfert galaxy NGC 1068, where a ˜7 pc cold molecular torus was recently revealed, a distinctively dense and compact torus is missing in our CO(3-2) integrated intensity map of NGC 1097. Based on the CO(3-2) flux, the gas mass of the torus of NGC 1097 would be a factor of ≳2-3 less than that found for NGC 1068 by using the same CO-to-H2 conversion factor, which implies less active nuclear star formation and/or inflows in NGC 1097. Our dynamical modeling of the CO(3-2) velocity field implies that the cold molecular gas is concentrated in a thin layer as compared to the hot gas traced by the 2.12 μm H2 emission in and around the torus. Furthermore, we suggest that NGC 1097 hosts a geometrically thinner torus than NGC 1068. Although the physical origin of the torus thickness remains unclear, our observations support a theoretical prediction that geometrically thick tori with high opacity will become deficient as AGNs evolve from luminous Seyferts to LLAGNs.

  9. Geometric multiaxial representation of N -qubit mixed symmetric separable states

    NASA Astrophysics Data System (ADS)

    SP, Suma; Sirsi, Swarnamala; Hegde, Subramanya; Bharath, Karthik

    2017-08-01

    The study of N -qubit mixed symmetric separable states is a longstanding challenging problem as no unique separability criterion exists. In this regard, we take up the N -qubit mixed symmetric separable states for a detailed study as these states are of experimental importance and offer an elegant mathematical analysis since the dimension of the Hilbert space is reduced from 2N to N +1 . Since there exists a one-to-one correspondence between the spin-j system and an N -qubit symmetric state, we employ Fano statistical tensor parameters for the parametrization of the spin-density matrix. Further, we use a geometric multiaxial representation (MAR) of the density matrix to characterize the mixed symmetric separable states. Since the separability problem is NP-hard, we choose to study it in the continuum limit where mixed symmetric separable states are characterized by the P -distribution function λ (θ ,ϕ ) . We show that the N -qubit mixed symmetric separable states can be visualized as a uniaxial system if the distribution function is independent of θ and ϕ . We further choose a distribution function to be the most general positive function on a sphere and observe that the statistical tensor parameters characterizing the N -qubit symmetric system are the expansion coefficients of the distribution function. As an example for the discrete case, we investigate the MAR of a uniformly weighted two-qubit mixed symmetric separable state. We also observe that there exists a correspondence between the separability and classicality of states.

  10. Using volcano plots and regularized-chi statistics in genetic association studies.

    PubMed

    Li, Wentian; Freudenberg, Jan; Suh, Young Ju; Yang, Yaning

    2014-02-01

    Labor intensive experiments are typically required to identify the causal disease variants from a list of disease associated variants in the genome. For designing such experiments, candidate variants are ranked by their strength of genetic association with the disease. However, the two commonly used measures of genetic association, the odds-ratio (OR) and p-value may rank variants in different order. To integrate these two measures into a single analysis, here we transfer the volcano plot methodology from gene expression analysis to genetic association studies. In its original setting, volcano plots are scatter plots of fold-change and t-test statistic (or -log of the p-value), with the latter being more sensitive to sample size. In genetic association studies, the OR and Pearson's chi-square statistic (or equivalently its square root, chi; or the standardized log(OR)) can be analogously used in a volcano plot, allowing for their visual inspection. Moreover, the geometric interpretation of these plots leads to an intuitive method for filtering results by a combination of both OR and chi-square statistic, which we term "regularized-chi". This method selects associated markers by a smooth curve in the volcano plot instead of the right-angled lines which corresponds to independent cutoffs for OR and chi-square statistic. The regularized-chi incorporates relatively more signals from variants with lower minor-allele-frequencies than chi-square test statistic. As rare variants tend to have stronger functional effects, regularized-chi is better suited to the task of prioritization of candidate genes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Thermodynamics of photons on fractals.

    PubMed

    Akkermans, Eric; Dunne, Gerald V; Teplyaev, Alexander

    2010-12-03

    A thermodynamical treatment of a massless scalar field (a photon) confined to a fractal spatial manifold leads to an equation of state relating pressure to internal energy, PV(s) = U/d(s), where d(s) is the spectral dimension and V(s) defines the "spectral volume." For regular manifolds, V(s) coincides with the usual geometric spatial volume, but on a fractal this is not necessarily the case. This is further evidence that on a fractal, momentum space can have a different dimension than position space. Our analysis also provides a natural definition of the vacuum (Casimir) energy of a fractal. We suggest ways that these unusual properties might be probed experimentally.

  12. Explorations in fuzzy physics and non-commutative geometry

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Seckin

    Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We develop a finite-dimensional matrix model, whose large size limit approximates the CS theory on the infinite strip, and show that there are edge observables in this model obeying a finite-dimensional Lie algebra, that resembles the Kac-Moody algebra.

  13. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the codemore » computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.« less

  14. Discrete-element simulation of sea-ice mechanics: Contact mechanics and granular jamming

    NASA Astrophysics Data System (ADS)

    Damsgaard, A.; Adcroft, A.; Sergienko, O. V.; Stern, A. A.

    2017-12-01

    Lagrangian models of sea-ice dynamics offer several advantages to Eulerian continuum methods. Spatial discretization on the ice-floe scale is natural for Lagrangian models, which additionally offer the convenience of being able to handle arbitrary sea-ice concentrations. This is likely to improve model performance in ice-marginal zones with strong advection. Furthermore, phase transitions in granular rheology around the jamming limit, such as observed when sea ice moves through geometric confinements, includes sharp thresholds in effective viscosity which are typically ignored in Eulerian models. Granular jamming is a stochastic process dependent on having the right grains in the right place at the right time, and the jamming likelihood over time can be described by a probabilistic model. Difficult to parameterize in continuum formulations, jamming occurs naturally in dense granular systems simulated in a Lagrangian framework, and is a very relevant process controlling sea-ice transport through narrow straits. We construct a flexible discrete-element framework for simulating Lagrangian sea-ice dynamics at the ice-floe scale, forced by ocean and atmosphere velocity fields. Using this framework, we demonstrate that frictionless contact models based on compressive stiffness alone are unlikely to jam, and describe two different approaches based on friction and tensile strength which both result in increased bulk shear strength of the granular assemblage. The frictionless but cohesive contact model, with certain tensile strength values, can display jamming behavior which on the large scale is very similar to a more complex and realistic model with contact friction and ice-floe rotation.

  15. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    NASA Astrophysics Data System (ADS)

    Masuda, Akihiko; Matsumoto, Tetsuro; Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi; Yashima, Hiroshi; Nakane, Yoshihiro; Nishiyama, Jun; Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji; Harano, Hideki; Nakamura, Takashi

    2017-03-01

    Quasi-monoenergetic high-energy neutron fields induced by 7Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96-387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  16. On the dynamical and geometrical symmetries of Keplerian motion

    NASA Astrophysics Data System (ADS)

    Wulfman, Carl E.

    2009-05-01

    The dynamical symmetries of classical, relativistic and quantum-mechanical Kepler systems are considered to arise from geometric symmetries in PQET phase space. To establish their interconnection, the symmetries are related with the aid of a Lie-algebraic extension of Dirac's correspondence principle, a canonical transformation containing a Cunningham-Bateman inversion, and a classical limit involving a preliminary canonical transformation in ET space. The Lie-algebraic extension establishes the conditions under which the uncertainty principle allows the local dynamical symmetry of a quantum-mechanical system to be the same as the geometrical phase-space symmetry of its classical counterpart. The canonical transformation converts Poincaré-invariant free-particle systems into ISO(3,1) invariant relativistic systems whose classical limit produces Keplerian systems. Locally Cartesian relativistic PQET coordinates are converted into a set of eight conjugate position and momentum coordinates whose classical limit contains Fock projective momentum coordinates and the components of Runge-Lenz vectors. The coordinate systems developed via the transformations are those in which the evolution and degeneracy groups of the classical system are generated by Poisson-bracket operators that produce ordinary rotation, translation and hyperbolic motions in phase space. The way in which these define classical Keplerian symmetries and symmetry coordinates is detailed. It is shown that for each value of the energy of a Keplerian system, the Poisson-bracket operators determine two invariant functions of positions and momenta, which together with its regularized Hamiltonian, define the manifold in six-dimensional phase space upon which motions evolve.

  17. Multisymplectic unified formalism for Einstein-Hilbert gravity

    NASA Astrophysics Data System (ADS)

    Gaset, Jordi; Román-Roy, Narciso

    2018-03-01

    We present a covariant multisymplectic formulation for the Einstein-Hilbert model of general relativity. As it is described by a second-order singular Lagrangian, this is a gauge field theory with constraints. The use of the unified Lagrangian-Hamiltonian formalism is particularly interesting when it is applied to these kinds of theories, since it simplifies the treatment of them, in particular, the implementation of the constraint algorithm, the retrieval of the Lagrangian description, and the construction of the covariant Hamiltonian formalism. In order to apply this algorithm to the covariant field equations, they must be written in a suitable geometrical way, which consists of using integrable distributions, represented by multivector fields of a certain type. We apply all these tools to the Einstein-Hilbert model without and with energy-matter sources. We obtain and explain the geometrical and physical meaning of the Lagrangian constraints and we construct the multimomentum (covariant) Hamiltonian formalisms in both cases. As a consequence of the gauge freedom and the constraint algorithm, we see how this model is equivalent to a first-order regular theory, without gauge freedom. In the case of the presence of energy-matter sources, we show how some relevant geometrical and physical characteristics of the theory depend on the type of source. In all the cases, we obtain explicitly multivector fields which are solutions to the gravitational field equations. Finally, a brief study of symmetries and conservation laws is done in this context.

  18. 77 FR 45367 - Continuum of Care Homeless Assistance Grant Application; Continuum of Care Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5603-N-53] Continuum of Care Homeless Assistance Grant Application; Continuum of Care Application AGENCY: Office of the Chief Information Officer..., called Continuums of Care (CoC), will complete the Exhibit 1 of the Continuum of Care Homeless Assistance...

  19. Cyclic multiverses

    NASA Astrophysics Data System (ADS)

    Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  20. Failure Analysis in Platelet Molded Composite Systems

    NASA Astrophysics Data System (ADS)

    Kravchenko, Sergii G.

    Long-fiber discontinuous composite systems in the form of chopped prepreg tapes provide an advanced, structural grade, molding compound allowing for fabrication of complex three-dimensional components. Understanding of process-structure-property relationship is essential for application of prerpeg platelet molded components, especially because of their possible irregular disordered heterogeneous morphology. Herein, a structure-property relationship was analyzed in the composite systems of many platelets. Regular and irregular morphologies were considered. Platelet-based systems with more ordered morphology possess superior mechanical performance. While regular morphologies allow for a careful inspection of failure mechanisms derived from the morphological characteristics, irregular morphologies are representative of the composite architectures resulting from uncontrolled deposition and molding with chopped prerpegs. Progressive failure analysis (PFA) was used to study the damaged deformation up to ultimate failure in a platelet-based composite system. Computational damage mechanics approaches were utilized to conduct the PFA. The developed computational models granted understanding of how the composite structure details, meaning the platelet geometry and system morphology (geometrical arrangement and orientation distribution of platelets), define the effective mechanical properties of a platelet-molded composite system, its stiffness, strength and variability in properties.

  1. Similarity-based Regularized Latent Feature Model for Link Prediction in Bipartite Networks.

    PubMed

    Wang, Wenjun; Chen, Xue; Jiao, Pengfei; Jin, Di

    2017-12-05

    Link prediction is an attractive research topic in the field of data mining and has significant applications in improving performance of recommendation system and exploring evolving mechanisms of the complex networks. A variety of complex systems in real world should be abstractly represented as bipartite networks, in which there are two types of nodes and no links connect nodes of the same type. In this paper, we propose a framework for link prediction in bipartite networks by combining the similarity based structure and the latent feature model from a new perspective. The framework is called Similarity Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly takes the local characteristics into consideration and encodes the geometrical information of the networks by constructing a similarity based matrix. We also develop an iterative scheme to solve the objective function based on gradient descent. Extensive experiments on a variety of real world bipartite networks show that the proposed framework of link prediction has a more competitive, preferable and stable performance in comparison with the state-of-art methods.

  2. Continuum modeling of large lattice structures: Status and projections

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Mikulas, Martin M., Jr.

    1988-01-01

    The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.

  3. Finiteness of corner vortices

    NASA Astrophysics Data System (ADS)

    Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu

    2018-04-01

    Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.

  4. Leucine/Pd-loaded (5,5) single-walled carbon nanotube matrix as a novel nanobiosensors for in silico detection of protein.

    PubMed

    Yoosefian, Mehdi; Etminan, Nazanin

    2018-06-01

    We have designed a novel nanobiosensor for in silico detecting proteins based on leucine/Pd-loaded single-walled carbon nanotube matrix. Density functional theory at the B3LYP/6-31G (d) level of theory was realized to analyze the geometrical and electronic structure of the proposed nanobiosensor. The solvent effects were investigated using the Tomasi's polarized continuum model. Atoms-in-molecules theory was used to study the nature of interactions by calculating the electron density ρ(r) and Laplacian at the bond critical points. Natural bond orbital analysis was performed to achieve a deep understanding of the nature of the interactions. The biosensor has potential application for high sensitive and rapid response to protein due to the chemical adsorption of L-leucine amino acid onto Pd-loaded single-walled carbon nanotube and reactive functional groups that can incorporate in hydrogen binding, hydrophobic interactions and van der Waals forces with the protein surface in detection process.

  5. Metamorphic core complexes: Expression of crustal extension by ductile-brittle shearing of the geologic column

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1985-01-01

    Metamorphic core complexes and detachment fault terranes in the American Southwest are products of stretching of continental crust in the Tertiary. The physical and geometric properties of the structures, fault rocks, and contact relationships that developed as a consequence of the extension are especially well displayed in southeastern Arizona. The structures and fault rocks, as a system, reflect a ductile-through-brittle continuum of deformation, with individual structures and faults rocks showing remarkably coordinated strain and displacement patterns. Careful mapping and analysis of the structural system has led to the realization that strain and displacement were partitioned across a host of structures, through a spectrum of scales, in rocks of progressively changing rheology. By integrating observations made in different parts of the extensional system, especially at different inferred depth levels, it has been possible to construct a descriptive/kinematic model of the progressive deformation that achieved continental crustal extension in general, and the development of metamorphic core complexes in particular.

  6. Shape design sensitivity analysis and optimization of three dimensional elastic solids using geometric modeling and automatic regridding. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yao, Tse-Min; Choi, Kyung K.

    1987-01-01

    An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.

  7. Discrete-continuum multiscale model for transport, biomass development and solid restructuring in porous media

    NASA Astrophysics Data System (ADS)

    Ray, Nadja; Rupp, Andreas; Prechtel, Alexander

    2017-09-01

    Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.

  8. Spectrum of the Laplace-Beltrami operator and the phase structure of causal dynamical triangulations

    NASA Astrophysics Data System (ADS)

    Clemente, Giuseppe; D'Elia, Massimo

    2018-06-01

    We propose a new method to characterize the different phases observed in the nonperturbative numerical approach to quantum gravity known as causal dynamical triangulations. The method is based on the analysis of the eigenvalues and the eigenvectors of the Laplace-Beltrami operator computed on the triangulations: it generalizes previous works based on the analysis of diffusive processes and proves capable of providing more detailed information on the geometric properties of the triangulations. In particular, we apply the method to the analysis of spatial slices, showing that the different phases can be characterized by a new order parameter related to the presence or absence of a gap in the spectrum of the Laplace-Beltrami operator, and deriving an effective dimensionality of the slices at the different scales. We also propose quantities derived from the spectrum that could be used to monitor the running to the continuum limit around a suitable critical point in the phase diagram, if any is found.

  9. Patterns of Carbon Nanotubes by Flow-Directed Deposition on Substrates with Architectured Topographies.

    PubMed

    K Jawed, M; Hadjiconstantinou, N G; Parks, D M; Reis, P M

    2018-03-14

    We develop and perform continuum mechanics simulations of carbon nanotube (CNT) deployment directed by a combination of surface topography and rarefied gas flow. We employ the discrete elastic rods method to model the deposition of CNT as a slender elastic rod that evolves in time under two external forces, namely, van der Waals (vdW) and aerodynamic drag. Our results confirm that this self-assembly process is analogous to a previously studied macroscopic system, the "elastic sewing machine", where an elastic rod deployed onto a moving substrate forms nonlinear patterns. In the case of CNTs, the complex patterns observed on the substrate, such as coils and serpentines, result from an intricate interplay between van der Waals attraction, rarefied aerodynamics, and elastic bending. We systematically sweep through the multidimensional parameter space to quantify the pattern morphology as a function of the relevant material, flow, and geometric parameters. Our findings are in good agreement with available experimental data. Scaling analysis involving the relevant forces helps rationalize our observations.

  10. Design sensitivity analysis and optimization tool (DSO) for sizing design applications

    NASA Technical Reports Server (NTRS)

    Chang, Kuang-Hua; Choi, Kyung K.; Perng, Jyh-Hwa

    1992-01-01

    The DSO tool, a structural design software system that provides the designer with a graphics-based menu-driven design environment to perform easy design optimization for general applications, is presented. Three design stages, preprocessing, design sensitivity analysis, and postprocessing, are implemented in the DSO to allow the designer to carry out the design process systematically. A framework, including data base, user interface, foundation class, and remote module, has been designed and implemented to facilitate software development for the DSO. A number of dedicated commercial software/packages have been integrated in the DSO to support the design procedures. Instead of parameterizing an FEM, design parameters are defined on a geometric model associated with physical quantities, and the continuum design sensitivity analysis theory is implemented to compute design sensitivity coefficients using postprocessing data from the analysis codes. A tracked vehicle road wheel is given as a sizing design application to demonstrate the DSO's easy and convenient design optimization process.

  11. Coagulation algorithms with size binning

    NASA Technical Reports Server (NTRS)

    Statton, David M.; Gans, Jason; Williams, Eric

    1994-01-01

    The Smoluchowski equation describes the time evolution of an aerosol particle size distribution due to aggregation or coagulation. Any algorithm for computerized solution of this equation requires a scheme for describing the continuum of aerosol particle sizes as a discrete set. One standard form of the Smoluchowski equation accomplishes this by restricting the particle sizes to integer multiples of a basic unit particle size (the monomer size). This can be inefficient when particle concentrations over a large range of particle sizes must be calculated. Two algorithms employing a geometric size binning convention are examined: the first assumes that the aerosol particle concentration as a function of size can be considered constant within each size bin; the second approximates the concentration as a linear function of particle size within each size bin. The output of each algorithm is compared to an analytical solution in a special case of the Smoluchowski equation for which an exact solution is known . The range of parameters more appropriate for each algorithm is examined.

  12. Simultaneous observation of the gamma-ray binary LS I+61 303 with GLAST and Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Takuya; Fukazawa, Yasushi; Mizuno, Tsunefumi

    2007-07-12

    The gamma-ray binary LS I+61 303 is a bright gamma-ray source, and thus an attracting object for GLAST. We proposed to observe this object with the X-ray satellite Suzaku (AO-2), simultaneously with GLAST, radio wave, and optical spectro-polarimetry, in order to probe the geometrical state of the binary system emitting the gamma-ray radiation, as a function of the binary orbital phase for the first time. This is essential to understand the mechanism of jet production and gamma-ray emission. The idea is not only to measure the multi-band overall continuum shape, but also to make use of continuous monitoring capability ofmore » GLAST, wide X-ray band of Suzaku, and good accessibility of the Kanata optical/NIR telescope (Hiroshima University) with the sensitive optical spectro-polarimetry. Further collaboration with TeV gamma-ray telescopes is also hoped to constrain the jet constitution.« less

  13. Progress with the COGENT Edge Kinetic Code: Implementing the Fokker-Plank Collision Operator

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...

    2014-06-20

    Here, COGENT is a continuum gyrokinetic code for edge plasma simulations being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of a fourth-order finite-volume (conservative) discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. The distribution function F is discretized in v∥ – μ (parallel velocity – magnetic moment) velocity coordinates, and the code presently solves an axisymmetric full-f gyro-kinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. COGENT capabilities are extended by implementing the fully nonlinear Fokker-Plank operator to model Coulomb collisions in magnetized edge plasmas.more » The corresponding Rosenbluth potentials are computed by making use of a finite-difference scheme and multipole-expansion boundary conditions. Details of the numerical algorithms and results of the initial verification studies are discussed. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)« less

  14. Fracture as a material sink

    NASA Astrophysics Data System (ADS)

    Volokh, K. Y.

    2017-12-01

    Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.

  15. Experimental and quantum-chemical studies on the three-particle fragmentation of neutral triatomic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galster, Ulrich; Baumgartner, Frank; Mueller, Ulrich

    2005-12-15

    Dissociation of well-defined H{sub 3} Rydberg states into three ground state hydrogen atoms reveals characteristic correlation patterns in the center-of-mass motion of the three fragments. We present an extensive experimental dataset of momentum correlation maps for all lower Rydberg states of H{sub 3} and D{sub 3}. In particular the states with principal quantum number n=2 feature simple correlation patterns with regular occurence of mutual affinities. Energetically higher-lying states typically show more complex patterns which are unique for each state. Quantum-chemical calculations on adiabatic potential energy surfaces of H{sub 3} Rydberg states are presented to illuminate the likely origin of thesemore » differences. We discuss the likely dissociation mechanisms and paths which are responsible for the observed continuum correlation.« less

  16. The Quirky Collider Signals of Folded Supersymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng

    2008-08-01

    We investigate the collider signals associated with scalar quirks ('squirks') in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Due to the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. The excited 'squirkonium' loses energy to radiation before annihilating back into Standard Model particles. We calculate the branching fractions into various channels for this process, which is prompt on collider time-scales. The most promising annihilation channelmore » for discovery is W+photon which dominates for squirkonium near its ground state. We demonstrate the feasibility of the LHC search, showing that the mass peak is visible above the SM continuum background and estimate the discovery reach.« less

  17. Social workers' experiences as the family support person during cardiopulmonary resuscitation attempts.

    PubMed

    Firn, Janice; DeVries, Keli; Morano, Dawnielle; Spano-English, Toni

    2017-07-01

    During inhospital cardiopulmonary resuscitation attempts, a designated family support person (FSP) may provide guidance and support to family members. Research on nurses and chaplains in this role has been published. Social workers also regularly fulfill this service, however, little is known about how they perceive and enact this role. To explore their experiences, qualitative interviews (n = 10) were conducted with FSP social workers. Critical realist thematic analysis identified five themes: walking in cold, promoting family presence, responding to the whole spectrum of grief, going beyond the family support role, and repercussions of bearing witness. Social workers perform a variety of tasks to promote family presence during resuscitation attempts and provide psychosocial support over the continuum of care. The FSP role impacts social workers emotionally and professionally. Implications for hospital policy, staffing, and clinical practice are discussed.

  18. Passing waves from atomistic to continuum

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

    2018-02-01

    Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

  19. 77 FR 33229 - Notice of Proposed Information Collection for Public Comment; Continuum of Care Homeless...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Information Collection for Public Comment; Continuum of Care Homeless Assistance Grant Application--Continuum of Care Application AGENCY: Office of Assistant Secretary for Community Planning and Development... collection for public comment entitled Continuum of Care of Homeless Assistance Grant Application- Continuum...

  20. Optimizing the Distribution of Tie Points for the Bundle Adjustment of HRSC Image Mosaics

    NASA Astrophysics Data System (ADS)

    Bostelmann, J.; Breitkopf, U.; Heipke, C.

    2017-07-01

    For a systematic mapping of the Martian surface, the Mars Express orbiter is equipped with a multi-line scanner: Since the beginning of 2004 the High Resolution Stereo Camera (HRSC) regularly acquires long image strips. By now more than 4,000 strips covering nearly the whole planet are available. Due to the nine channels, each with different viewing direction, and partly with different optical filters, each strip provides 3D and color information and allows the generation of digital terrain models (DTMs) and orthophotos. To map larger regions, neighboring HRSC strips can be combined to build DTM and orthophoto mosaics. The global mapping scheme Mars Chart 30 is used to define the extent of these mosaics. In order to avoid unreasonably large data volumes, each MC-30 tile is divided into two parts, combining about 90 strips each. To ensure a seamless fit of these strips, several radiometric and geometric corrections are applied in the photogrammetric process. A simultaneous bundle adjustment of all strips as a block is carried out to estimate their precise exterior orientation. Because size, position, resolution and image quality of the strips in these blocks are heterogeneous, also the quality and distribution of the tie points vary. In absence of ground control points, heights of a global terrain model are used as reference information, and for this task a regular distribution of these tie points is preferable. Besides, their total number should be limited because of computational reasons. In this paper, we present an algorithm, which optimizes the distribution of tie points under these constraints. A large number of tie points used as input is reduced without affecting the geometric stability of the block by preserving connections between strips. This stability is achieved by using a regular grid in object space and discarding, for each grid cell, points which are redundant for the block adjustment. The set of tie points, filtered by the algorithm, shows a more homogenous distribution and is considerably smaller. Used for the block adjustment, it yields results of equal quality, with significantly shorter computation time. In this work, we present experiments with MC-30 half-tile blocks, which confirm our idea for reaching a stable and faster bundle adjustment. The described method is used for the systematic processing of HRSC data.

  1. PACCE: Perl Algorithm to Compute Continuum and Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Riffel, Rogério; Borges Vale, Tibério

    2011-05-01

    PACCE (Perl Algorithm to Compute continuum and Equivalent Widths) computes continuum and equivalent widths. PACCE is able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies, and is also able to compute the uncertainties in the equivalent widths using photon statistics.

  2. Robust point matching via vector field consensus.

    PubMed

    Jiayi Ma; Ji Zhao; Jinwen Tian; Yuille, Alan L; Zhuowen Tu

    2014-04-01

    In this paper, we propose an efficient algorithm, called vector field consensus, for establishing robust point correspondences between two sets of points. Our algorithm starts by creating a set of putative correspondences which can contain a very large number of false correspondences, or outliers, in addition to a limited number of true correspondences (inliers). Next, we solve for correspondence by interpolating a vector field between the two point sets, which involves estimating a consensus of inlier points whose matching follows a nonparametric geometrical constraint. We formulate this a maximum a posteriori (MAP) estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose nonparametric geometrical constraints on the correspondence, as a prior distribution, using Tikhonov regularizers in a reproducing kernel Hilbert space. MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value) is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation). We illustrate this method on data sets in 2D and 3D and demonstrate that it is robust to a very large number of outliers (even up to 90%). We also show that in the special case where there is an underlying parametric geometrical model (e.g., the epipolar line constraint) that we obtain better results than standard alternatives like RANSAC if a large number of outliers are present. This suggests a two-stage strategy, where we use our nonparametric model to reduce the size of the putative set and then apply a parametric variant of our approach to estimate the geometric parameters. Our algorithm is computationally efficient and we provide code for others to use it. In addition, our approach is general and can be applied to other problems, such as learning with a badly corrupted training data set.

  3. Metric dimensional reduction at singularities with implications to Quantum Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2014-08-15

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being justmore » non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained opens new ways for Quantum Gravity.« less

  4. Why threefold-replication of families?

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Gerald L.

    1998-04-01

    In spite of the many successes of the standard model of particle physics, the observed proliferation of matter-fields, in the form of ``replicated'' generations or families, is a major unsolved problem. In this paper, I explore some of the algebraic, geometric and physical consequences of a new organizing principle for fundamental fermions (quarks and leptons)(Gerald L. Fitzpatrick, phThe Family Problem--New Internal Algebraic and Geometric Regularities), Nova Scientific Press, Issaquah, Washington, 1997. Read more about this book (ISBN 0--9655695--0--0) and its subject matter at: http://www.tp.umu.se/TIPTOP and/or http://www.amazon.com.. The essence of the new organizing principle is the idea that the standard-model concept of scalar fermion numbers f can be generalized. In particular, a ``generalized fermion number,'' which consists of a 2× 2 matrix F that ``acts'' on an internal 2-space, instead of spacetime, is taken to describe certain internal properties of fundamental fermions. This generalization automatically introduces internal degrees of freedom that ``explain,'' among other things, family replication and the number (three) of families observed in nature.

  5. A Semi-Discrete Landweber-Kaczmarz Method for Cone Beam Tomography and Laminography Exploiting Geometric Prior Information

    NASA Astrophysics Data System (ADS)

    Vogelgesang, Jonas; Schorr, Christian

    2016-12-01

    We present a semi-discrete Landweber-Kaczmarz method for solving linear ill-posed problems and its application to Cone Beam tomography and laminography. Using a basis function-type discretization in the image domain, we derive a semi-discrete model of the underlying scanning system. Based on this model, the proposed method provides an approximate solution of the reconstruction problem, i.e. reconstructing the density function of a given object from its projections, in suitable subspaces equipped with basis function-dependent weights. This approach intuitively allows the incorporation of additional information about the inspected object leading to a more accurate model of the X-rays through the object. Also, physical conditions of the scanning geometry, like flat detectors in computerized tomography as used in non-destructive testing applications as well as non-regular scanning curves e.g. appearing in computed laminography (CL) applications, are directly taken into account during the modeling process. Finally, numerical experiments of a typical CL application in three dimensions are provided to verify the proposed method. The introduction of geometric prior information leads to a significantly increased image quality and superior reconstructions compared to standard iterative methods.

  6. High-order graph matching based feature selection for Alzheimer's disease identification.

    PubMed

    Liu, Feng; Suk, Heung-Il; Wee, Chong-Yaw; Chen, Huafu; Shen, Dinggang

    2013-01-01

    One of the main limitations of l1-norm feature selection is that it focuses on estimating the target vector for each sample individually without considering relations with other samples. However, it's believed that the geometrical relation among target vectors in the training set may provide useful information, and it would be natural to expect that the predicted vectors have similar geometric relations as the target vectors. To overcome these limitations, we formulate this as a graph-matching feature selection problem between a predicted graph and a target graph. In the predicted graph a node is represented by predicted vector that may describe regional gray matter volume or cortical thickness features, and in the target graph a node is represented by target vector that include class label and clinical scores. In particular, we devise new regularization terms in sparse representation to impose high-order graph matching between the target vectors and the predicted ones. Finally, the selected regional gray matter volume and cortical thickness features are fused in kernel space for classification. Using the ADNI dataset, we evaluate the effectiveness of the proposed method and obtain the accuracies of 92.17% and 81.57% in AD and MCI classification, respectively.

  7. Cartographie de corps stériles sous couverture quaternaire par méthode de résistivités électriques dans le gisement phosphaté de Sidi Chennane (Maroc)Sterile bodies mapping under Quaternary cover using resistivity-sounding method in the phosphatic bearing of Sidi Chennane (Morocco)

    NASA Astrophysics Data System (ADS)

    Kchikach, Azzouz; Jaffal, Mohammed; Aı̈fa, Tahar; Bahi, Lahcen

    In the Ouled Abdoun sedimentary basin (Morocco), the phosphatic series is composed of regular interbedded phosphatic and marly limestone layers. Some phosphatic deposits in this basin show sterile bodies causing two kinds of problems: (1) as they are hard, compact and masked by a Quaternary cover, they disturb the exploitation in some yards and give bad reserve calculations; (2) even the use of wells and mechanical boreholes did not evidence their delimitation. Therefore, electric prospecting method has been used to evidence their geometrical shape. Petrographical and geometrical studies on these sterile bodies allowed us to choose the appropriate geophysical method to map them. The electrical resistivity survey that we used in the Sidi Chennane area shows that this technique is a good tool to contour these sterile bodies. This method is now considered as useful to the mining engineers to get round them during the exploitation. To cite this article: A. Kchikach et al., C. R. Geoscience 334 (2002) 379-386.

  8. Emergent dynamic structures and statistical law in spherical lattice gas automata.

    PubMed

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  9. Emergent dynamic structures and statistical law in spherical lattice gas automata

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  10. Style-independent document labeling: design and performance evaluation

    NASA Astrophysics Data System (ADS)

    Mao, Song; Kim, Jong Woo; Thoma, George R.

    2003-12-01

    The Medical Article Records System or MARS has been developed at the U.S. National Library of Medicine (NLM) for automated data entry of bibliographical information from medical journals into MEDLINE, the premier bibliographic citation database at NLM. Currently, a rule-based algorithm (called ZoneCzar) is used for labeling important bibliographical fields (title, author, affiliation, and abstract) on medical journal article page images. While rules have been created for medical journals with regular layout types, new rules have to be manually created for any input journals with arbitrary or new layout types. Therefore, it is of interest to label any journal articles independent of their layout styles. In this paper, we first describe a system (called ZoneMatch) for automated generation of crucial geometric and non-geometric features of important bibliographical fields based on string-matching and clustering techniques. The rule based algorithm is then modified to use these features to perform style-independent labeling. We then describe a performance evaluation method for quantitatively evaluating our algorithm and characterizing its error distributions. Experimental results show that the labeling performance of the rule-based algorithm is significantly improved when the generated features are used.

  11. Fractal morphometry of cell complexity.

    PubMed

    Losa, Gabriele A

    2002-01-01

    Irregularity and self-similarity under scale changes are the main attributes of the morphological complexity of both normal and abnormal cells and tissues. In other words, the shape of a self-similar object does not change when the scale of measurement changes, because each part of it looks similar to the original object. However, the size and geometrical parameters of an irregular object do differ when it is examined at increasing resolution, which reveals more details. Significant progress has been made over the past three decades in understanding how irregular shapes and structures in the physical and biological sciences can be analysed. Dominant influences have been the discovery of a new practical geometry of Nature, now known as fractal geometry, and the continuous improvements in computation capabilities. Unlike conventional Euclidean geometry, which was developed to describe regular and ideal geometrical shapes which are practically unknown in nature, fractal geometry can be used to measure the fractal dimension, contour length, surface area and other dimension parameters of almost all irregular and complex biological tissues. We have used selected examples to illustrate the application of the fractal principle to measuring irregular and complex membrane ultrastructures of cells at specific functional and pathological stage.

  12. Uncertainty quantification of resonant ultrasound spectroscopy for material property and single crystal orientation estimation on a complex part

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Mayes, Alexander; Jauriqui, Leanne; Biedermann, Eric; Heffernan, Julieanne; Livings, Richard; Goodlet, Brent; Mazdiyasni, Siamack

    2018-04-01

    A case study is presented evaluating uncertainty in Resonance Ultrasound Spectroscopy (RUS) inversion for a single crystal (SX) Ni-based superalloy Mar-M247 cylindrical dog-bone specimens. A number of surrogate models were developed with FEM model solutions, using different sampling schemes (regular grid, Monte Carlo sampling, Latin Hyper-cube sampling) and model approaches, N-dimensional cubic spline interpolation and Kriging. Repeated studies were used to quantify the well-posedness of the inversion problem, and the uncertainty was assessed in material property and crystallographic orientation estimates given typical geometric dimension variability in aerospace components. Surrogate model quality was found to be an important factor in inversion results when the model more closely represents the test data. One important discovery was when the model matches well with test data, a Kriging surrogate model using un-sorted Latin Hypercube sampled data performed as well as the best results from an N-dimensional interpolation model using sorted data. However, both surrogate model quality and mode sorting were found to be less critical when inverting properties from either experimental data or simulated test cases with uncontrolled geometric variation.

  13. Modeling Optical Properties of Mineral Aerosol Particles by Using Nonsymmetric Hexahedra

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Kahn, Ralph

    2010-01-01

    We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the "equivalent sphere" model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

  14. Relativistic electron precipitation at International Space Station: Space weather monitoring by Calorimetric Electron Telescope

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Asaoka, Yoichi; Torii, Shoji; Terasawa, Toshio; Ozawa, Shunsuke; Tamura, Tadahisa; Shimizu, Yuki; Akaike, Yosui; Mori, Masaki

    2016-05-01

    The charge detector (CHD) of the Calorimetric Electron Telescope (CALET) on board the International Space Station (ISS) has a huge geometric factor for detecting MeV electrons and is sensitive to relativistic electron precipitation (REP) events. During the first 4 months, CALET CHD observed REP events mainly at the dusk to midnight sector near the plasmapause, where the trapped radiation belt electrons can be efficiently scattered by electromagnetic ion cyclotron (EMIC) waves. Here we show that interesting 5-20 s periodicity regularly exists during the REP events at ISS, which is useful to diagnose the wave-particle interactions associated with the nonlinear wave growth of EMIC-triggered emissions.

  15. Master-slave mixed arrays for data-flow computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, T.L.; Fisher, P.D.

    1983-01-01

    Control cells (masters) and computation cells (slaves) are mixed in regular geometric patterns to form reconfigurable arrays known as master-slave mixed arrays (MSMAS). Interconnections of the corners and edges of the hexagonal control cells and the edges of the hexagonal computation cells are used to construct synchronous and asynchronous communication networks, which support local computation and local communication. Data-driven computations result in self-directed ring pipelines within the MSMA, and composite data-flow computations are executed in a pipelined fashion. By viewing an MSMA as a computing network of tightly-linked ring pipelines, data-flow programs can be uniformly distributed over these pipelines formore » efficient resource utilisation. 9 references.« less

  16. On the Inequalities of Babu\\vska-Aziz, Friedrichs and Horgan-Payne

    NASA Astrophysics Data System (ADS)

    Costabel, Martin; Dauge, Monique

    2015-09-01

    The equivalence between the inequalities of Babu\\vska-Aziz and Friedrichs for sufficiently smooth bounded domains in the plane was shown by Horgan and Payne 30 years ago. We prove that this equivalence, and the equality between the associated constants, is true without any regularity condition on the domain. For the Horgan-Payne inequality, which is an upper bound of the Friedrichs constant for plane star-shaped domains in terms of a geometric quantity known as the Horgan-Payne angle, we show that it is true for some classes of domains, but not for all bounded star-shaped domains. We prove a weaker inequality that is true in all cases.

  17. Soap films and GeoGebra in the study of Fermat and Steiner points

    NASA Astrophysics Data System (ADS)

    Flores, Alfinio; Park, Jungeun

    2018-05-01

    We discuss how mathematics and secondary mathematics education majors developed an understanding of Fermat points for the triangle as well as Steiner points for the square and regular pentagon, and also of soap film configurations between parallel plates where forces are in equilibrium. The activities included the use of soap films and the interactive geometry program GeoGebra. Students worked in small groups using these tools to investigate the properties of Fermat and Steiner points and then justified the results of their investigations using geometrical arguments. These activities are specific approaches of how to encourage prospective teachers to use physical experiments to support students' development of mathematical curiosity and mathematical justifications.

  18. On the n-body problem on surfaces of revolution

    NASA Astrophysics Data System (ADS)

    Stoica, Cristina

    2018-05-01

    We explore the n-body problem, n ≥ 3, on a surface of revolution with a general interaction depending on the pairwise geodesic distance. Using the geometric methods of classical mechanics we determine a large set of properties. In particular, we show that Saari's conjecture fails on surfaces of revolution admitting a geodesic circle. We define homographic motions and, using the discrete symmetries, prove that when the masses are equal, they form an invariant manifold. On this manifold the dynamics are reducible to a one-degree of freedom system. We also find that for attractive interactions, regular n-gon shaped relative equilibria with trajectories located on geodesic circles typically experience a pitchfork bifurcation. Some applications are included.

  19. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y C

    2015-01-01

    A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals.

  20. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics

    PubMed Central

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y. C.

    2015-01-01

    A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals. PMID:26064591

  1. A Comparison of Moment Rates for the Eastern Mediterranean Region from Competitive Kinematic Models

    NASA Astrophysics Data System (ADS)

    Klein, E. C.; Ozeren, M. S.; Shen-Tu, B.; Galgana, G. A.

    2017-12-01

    Relatively continuous, complex, and long-lived episodes of tectonic deformation gradually shaped the lithosphere of the eastern Mediterranean region into its present state. This large geodynamically interconnected and seismically active region absorbs, accumulates and transmits strains arising from stresses associated with: (1) steady northward convergence of the Arabian and African plates; (2) differences in lithospheric gravitational potential energy; and (3) basal tractions exerted by subduction along the Hellenic and Cyprus Arcs. Over the last twenty years, numerous kinematic models have been built using a variety of assumptions to take advantage of the extensive and dense GPS observations made across the entire region resulting in a far better characterization of the neotectonic deformation field than ever previously achieved. In this study, three separate horizontal strain rate field solutions obtained from three, region-wide, GPS only based kinematic models (i.e., a regional block model, a regional continuum model, and global continuum model) are utilized to estimate the distribution and uncertainty of geodetic moment rates within the eastern Mediterranean region. The geodetic moment rates from each model are also compared with seismic moment release rates gleaned from historic earthquake data. Moreover, kinematic styles of deformation derived from each of the modeled horizontal strain rate fields are examined for their degree of correlation with earthquake rupture styles defined by proximal centroid moment tensor solutions. This study suggests that significant differences in geodetically obtained moment rates from competitive kinematic models may introduce unforeseen bias into regularly updated, geodetically constrained, regional seismic hazard assessments.

  2. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.

  3. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    NASA Astrophysics Data System (ADS)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  4. X-Ray Quasi-periodic Oscillations in the Lense–Thirring Precession Model. I. Variability of Relativistic Continuum

    NASA Astrophysics Data System (ADS)

    You, Bei; Bursa, Michal; Życki, Piotr T.

    2018-05-01

    We develop a Monte Carlo code to compute the Compton-scattered X-ray flux arising from a hot inner flow that undergoes Lense–Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate the disk, and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modeled within the framework of general relativity, taking light bending and gravitational redshift into account. The simulations are performed in the context of the Lense–Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk toward the innermost stable circular orbit. In the hard state, where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with a fractional variability amplitude of ≤10% in the soft state, where the Comptonizing flow is cooled down and thus becomes geometrically thin, the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.

  5. Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle

    NASA Astrophysics Data System (ADS)

    Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.

    2003-03-01

    Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.

  6. Effects of Geometrical and Flow Rates on the Prediction of Bottom Pressure Coefficients of Tunnel Lift Gate of Dams

    NASA Astrophysics Data System (ADS)

    Ameen, Sheeraz; Taher, Taha; Ahmed, Thamir M.

    2018-06-01

    Hydrostatics and hydrodynamics forces are generated and applied on the vertical lift tunnel gates due to the influence of a wide range of dam operating conditions. One of the most important forces is the uplift force resulting from the jet flow issuing below the gate. This force is based mainly upon many hydraulic and geometrical parameters. In this work, the uplift force is studied in terms of bottom pressure coefficient. The investigation is made paying particular attention on the effects of various three discharges and three gate lip angles on values of bottom pressure coefficients in addition to four different tunnel longitudinal slopes whose impact has not been studied in many previous works. Hydraulic model is constructed in this work for the sake of measuring all parameters required for estimating the bottom pressure coefficients, which are all examined against gate openings. The results show that the bottom pressure coefficient is related to the said variables, however, its behaviour and values are not necessary regular with variance of studied variables. The values are seen more significantly related to the flow rates and for some extent to the slopes of tunnel. An attempt by using the nonlinear regression of Statistical package of social sciences (SPSS) is made to set equations relating bottom pressure coefficient with gate openings for several angles of gate lips. The obtained equations are shown in good agreement with the selected cases of experimental results. The results are applicable for design purposes for similar geometrical and flow parameters considered in this study.

  7. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.

    PubMed

    Peng, Yong; Lu, Bao-Liang; Wang, Suhang

    2015-05-01

    Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Sensorimotor strategies for recognizing geometrical shapes: a comparative study with different sensory substitution devices

    PubMed Central

    Bermejo, Fernando; Di Paolo, Ezequiel A.; Hüg, Mercedes X.; Arias, Claudia

    2015-01-01

    The sensorimotor approach proposes that perception is constituted by the mastery of lawful sensorimotor regularities or sensorimotor contingencies (SMCs), which depend on specific bodily characteristics and on actions possibilities that the environment enables and constrains. Sensory substitution devices (SSDs) provide the user information about the world typically corresponding to one sensory modality through the stimulation of another modality. We investigate how perception emerges in novice adult participants equipped with vision-to-auditory SSDs while solving a simple geometrical shape recognition task. In particular, we examine the distinction between apparatus-related SMCs (those originating mostly in properties of the perceptual system) and object-related SMCs (those mostly connected with the perceptual task). We study the sensorimotor strategies employed by participants in three experiments with three different SSDs: a minimalist head-mounted SSD, a traditional, also head-mounted SSD (the vOICe) and an enhanced, hand-held echolocation device. Motor activity and fist-person data are registered and analyzed. Results show that participants are able to quickly learn the necessary skills to distinguish geometric shapes. Comparing the sensorimotor strategies utilized with each SSD we identify differential features of the sensorimotor patterns attributable mostly to the device, which account for the emergence of apparatus-based SMCs. These relate to differences in sweeping strategies between SSDs. We identify, also, components related to the emergence of object-related SMCs. These relate mostly to exploratory movements around the border of a shape. The study provides empirical support for SMC theory and discusses considerations about the nature of perception in sensory substitution. PMID:26106340

  9. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function

    PubMed Central

    Röhrle, O.; Davidson, J. B.; Pullan, A. J.

    2012-01-01

    Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509

  10. Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Bo; Zeng, Yong Quan; Liang, Guozhen

    2015-09-14

    We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.

  11. Spine labeling in MRI via regularized distribution matching.

    PubMed

    Hojjat, Seyed-Parsa; Ayed, Ismail; Garvin, Gregory J; Punithakumar, Kumaradevan

    2017-11-01

    This study investigates an efficient (nearly real-time) two-stage spine labeling algorithm that removes the need for an external training while being applicable to different types of MRI data and acquisition protocols. Based solely on the image being labeled (i.e., we do not use training data), the first stage aims at detecting potential vertebra candidates following the optimization of a functional containing two terms: (i) a distribution-matching term that encodes contextual information about the vertebrae via a density model learned from a very simple user input, which amounts to a point (mouse click) on a predefined vertebra; and (ii) a regularization constraint, which penalizes isolated candidates in the solution. The second stage removes false positives and identifies all vertebrae and discs by optimizing a geometric constraint, which embeds generic anatomical information on the interconnections between neighboring structures. Based on generic knowledge, our geometric constraint does not require external training. We performed quantitative evaluations of the algorithm over a data set of 90 mid-sagittal MRI images of the lumbar spine acquired from 45 different subjects. To assess the flexibility of the algorithm, we used both T1- and T2-weighted images for each subject. A total of 990 structures were automatically detected/labeled and compared to ground-truth annotations by an expert. On the T2-weighted data, we obtained an accuracy of 91.6% for the vertebrae and 89.2% for the discs. On the T1-weighted data, we obtained an accuracy of 90.7% for the vertebrae and 88.1% for the discs. Our algorithm removes the need for external training while being applicable to different types of MRI data and acquisition protocols. Based on the current testing data, a subject-specific model density and generic anatomical information, our method can achieve competitive performances when applied to T1- and T2-weighted MRI images.

  12. Evaluating Middle School Students' Spatial-scientific Performance in Earth-space Science

    NASA Astrophysics Data System (ADS)

    Wilhelm, Jennifer; Jackson, C.; Toland, M. D.; Cole, M.; Wilhelm, R. J.

    2013-06-01

    Many astronomical concepts cannot be understood without a developed understanding of four spatial-mathematics domains defined as follows: a) Geometric Spatial Visualization (GSV) - Visualizing the geometric features of a system as it appears above, below, and within the system’s plane; b) Spatial Projection (SP) - Projecting to a different location and visualizing from that global perspective; c) Cardinal Directions (CD) - Distinguishing directions (N, S, E, W) in order to document an object’s vector position in space; and d) Periodic Patterns - (PP) Recognizing occurrences at regular intervals of time and/or space. For this study, differences were examined between groups of sixth grade students’ spatial-scientific development pre/post implementation of an Earth/Space unit. Treatment teachers employed a NASA-based curriculum (Realistic Explorations in Astronomical Learning), while control teachers implemented their regular Earth/Space units. A 2-level hierarchical linear model was used to evaluate student performance on the Lunar Phases Concept Inventory (LPCI) and four spatial-mathematics domains, while controlling for two variables (gender and ethnicity) at the student level and one variable (teaching experience) at the teacher level. Overall LPCI results show pre-test scores predicted post-test scores, boys performed better than girls, and Whites performed better than non-Whites. We also compared experimental and control groups’ by spatial-mathematics domain outcomes. For GSV, it was found that boys, in general, tended to have higher GSV post-scores. For domains CD and SP, no statistically significant differences were observed. PP results show Whites performed better than non-Whites. Also for PP, a significant cross-level interaction term (gender-treatment) was observed, which means differences in control and experimental groups are dependent on students’ gender. These findings can be interpreted as: (a) the experimental girls scored higher than the control girls and/or (b) the control group displayed a gender gap in favor of boys while no gender gap was displayed within the experimental group.

  13. SPICE Supports Planetary Science Observation Geometry

    NASA Astrophysics Data System (ADS)

    Hall Acton, Charles; Bachman, Nathaniel J.; Semenov, Boris V.; Wright, Edward D.

    2015-11-01

    "SPICE" is an information system, comprising both data and software, providing scientists with the observation geometry needed to plan observations from instruments aboard robotic spacecraft, and to subsequently help in analyzing the data returned from those observations. The SPICE system has been used on the majority of worldwide planetary exploration missions since the time of NASA's Galileo mission to Jupiter. Along with its "free" price tag, portability and the absence of licensing and export restrictions, its stable, enduring qualities help make it a popular choice. But stability does not imply rigidity-improvements and new capabilities are regularly added. This poster highlights recent additions that could be of interest to planetary scientists.Geometry Finder allows one to find all the times or time intervals when a particular geometric condition exists (e.g. occultation) or when a particular geometric parameter is within a given range or has reached a maximum or minimum.Digital Shape Kernel (DSK) provides means to compute observation geometry using accurately modeled target bodies: a tessellated plate model for irregular bodies and a digital elevation model for large, regular bodies.WebGeocalc (WGC) provides a graphical user interface (GUI) to a SPICE "geometry engine" installed at a mission operations facility, such as the one operated by NAIF. A WGC user need have only a computer with a web browser to access this geometry engine. Using traditional GUI widgets-drop-down menus, check boxes, radio buttons and fill-in boxes-the user inputs the data to be used, the kind of calculation wanted, and the details of that calculation. The WGC server makes the specified calculations and returns results to the user's browser.Cosmographia is a mission visualization program. This tool provides 3D visualization of solar system (target) bodies, spacecraft trajectory and orientation, instrument field-of-view "cones" and footprints, and more.The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  14. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    NASA Astrophysics Data System (ADS)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  15. Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor

    NASA Astrophysics Data System (ADS)

    Pranger, Casper

    2017-04-01

    In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.

  16. A Thermodynamically Consistent Damage Model for Advanced Composites

    NASA Technical Reports Server (NTRS)

    Maimi, Pere; Camanho, Pedro P.; Mayugo, Joan-Andreu; Davila, Carlos G.

    2006-01-01

    A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant's Crack Band Model. To verify the accuracy of the approach, analyses of coupon specimens were performed, and the numerical predictions were compared with experimental data.

  17. Macroecology: A Primer for Biological Oceanography

    NASA Astrophysics Data System (ADS)

    Li, W. K. W.

    2016-02-01

    Macroecology is the study of ecological patterns discerned at a spatial, temporal, or organization scale higher than that at which the focal entities interact. Such patterns are statistical or emergent manifestations arising from the ensemble of component entities. Although macroecology is a neologism largely based in terrestrial and avian ecology, macroscopic patterns have long been recognised in biological oceanography. Familiar examples include Redfield elemental stoichiometry, Elton trophic pyramids, Sheldon biomass spectrum, and Margalef life-forms mandala. Macroecological regularities can often be found along various continua, such as along body size in power-law scaling or along habitat temperature in metabolic theory. Uniquely in oceanography, a partition of the world ocean continuum into Longhurst biogeochemical provinces provides a spatial organization well-suited for macroecological investigations. In this rational discrete approach, fundamental processes in physical and biological oceanography that differentiate a set of non-overlapping ocean regions also appear to shape the macroecological structure of phytoplankton communities.

  18. Buckling of graded coatings: A continuum model

    NASA Astrophysics Data System (ADS)

    Chiu, Tz-Cheng

    2000-12-01

    Requirements for the protection of hot section components in many high temperature applications such as earth-to-orbit winged planes and advanced turbine systems have led to the application of thermal barrier coatings (TBCs) that utilize ceramic coatings on metal substrates. An alternative concept to homogeneous ceramic coatings is the functionally graded materials (FGM) in which the composition of the coating is intentionally graded to improve the bonding strength and to reduce the magnitude of the residual and thermal stresses. A widely observed failure mode in such layered systems is known to be interface cracking that leads to spallation fracture. In most cases, the final stage of the failure process for a thin coating appears to be due to buckling instability under thermally or mechanically induced compressive stress. The objective of this study is to develop a solution to the buckling instability problem by using continuum elasticity rather than a structural mechanics approach. The emphasis in the solution will be on the investigation of the effect of material inhomogeneity in graded coatings on the instability load, the postbuckling behavior, and fracture mechanics parameters such as the stress intensity factors and strain energy release rate. In this analysis, a nonlinear continuum theory is employed to examine the interface crack problem. The analytical solution of the instability problem permits the study of the effect of material inhomogeneity upon the inception of buckling and establishes benchmark results for the numerical solutions of related problems. To study the postbuckling behavior and to calculate the stress intensity factors and strain energy release rate a geometrically nonlinear finite element procedure with enriched crack-tip element is developed. Both plane strain and axisymmetric interface crack problems in TBCs with either homogeneous or graded coating are then considered by using the finite element procedure. It is assumed that the applied load is a uniform temperature drop. Comparison of the results with that obtained from the plate approximation shows that because of the higher constraints the plate theory predicts greater instability strains and lower strain energy release rates. It is also observed that compared with a homogeneous coating the graded coating gives lower strain energy release rate because of the lower thermal residual stress and higher bending stiffness. (Abstract shortened by UMI.)

  19. Multiscale multiphysics and multidomain models—Flexibility and rigidity

    PubMed Central

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei

    2013-01-01

    The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of \\documentclass[12pt]{minimal}\\begin{document}${\\cal O}(N^2)$\\end{document}O(N2) at most, where N is the number of atoms or residues, in contrast to \\documentclass[12pt]{minimal}\\begin{document}${\\cal O}(N^3)$\\end{document}O(N3) for Hamiltonian based methods. We demonstrate that the proposed FRI gives rise to accurate prediction of protein B-Factor for a set of 263 proteins. We show that a parameter free FRI is able to achieve about 95% accuracy of the parameter optimized FRI. An interpolation algorithm is developed to construct continuous atomic flexibility functions for visualization and use with CEWAR. PMID:24320318

  20. Multiscale multiphysics and multidomain models—Flexibility and rigidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei, E-mail: wei@math.msu.edu

    The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomicmore » charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O(N{sup 2}) at most, where N is the number of atoms or residues, in contrast to O(N{sup 3}) for Hamiltonian based methods. We demonstrate that the proposed FRI gives rise to accurate prediction of protein B-Factor for a set of 263 proteins. We show that a parameter free FRI is able to achieve about 95% accuracy of the parameter optimized FRI. An interpolation algorithm is developed to construct continuous atomic flexibility functions for visualization and use with CEWAR.« less

  1. Quasi-Continuum Reduction of Field Theories: A Route to Seamlessly Bridge Quantum and Atomistic Length-Scales with Continuum

    DTIC Science & Technology

    2016-04-01

    AFRL-AFOSR-VA-TR-2016-0145 Quasi-continuum reduction of field theories: A route to seamlessly bridge quantum and atomistic length-scales with...field theories: A route to seamlessly bridge quantum and atomistic length-scales with continuum Principal Investigator: Vikram Gavini Department of...calculations on tens of thousands of atoms, and enable continuing efforts towards a seamless bridging of the quantum and continuum length-scales

  2. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the regularization invariant symmetric momentum-subtraction schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Leandro G.; Physics Department, Brookhaven National Laboratory, Upton, New York 11973; Sturm, Christian

    2010-09-01

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the MS scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f}=3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less

  3. Laser-induced periodic surface structures of thin, complex multi-component films

    NASA Astrophysics Data System (ADS)

    Reif, Juergen; Varlamova, Olga; Ratzke, Markus; Uhlig, Sebastian

    2016-04-01

    Femtosecond laser-induced regular nanostructures are generated on a complex multilayer target, namely a piece of a commercial, used hard disk memory. It is shown that after single-shot 800-nm irradiation at 0.26 J/cm2 only the polymer cover layer and—in the center—a portion of the magnetic multilayer are ablated. A regular array of linearly aligned spherical 450-nm features at the uncovered interface between cover and magnetic layers appears not to be produced by the irradiation. Only after about 10 pulses on one spot, classical ripples perpendicular to the laser polarization with a period of ≈700 nm are observed, with a modulation between 40 nm above and 40 nm below the pristine surface and an ablation depth only slightly larger than the thickness of the multilayer magnetic film. Further increase of the pulse number does not result in deeper ablation. However, 770-nm ripples become parallel to the polarization and are swelling to more than 120 nm above zero, much more than the full multilayer film thickness. In the spot periphery, much shallower 300-nm ripples are perpendicular to the strong modulation and the laser polarization. Irradiation with 0.49-J/cm2 pulses from an ultrafast white-light continuum results—in the spot periphery—in the formation of 200-nm ripples, only swelling above zero after removal of the polymer cover, without digging into the magnetic film.

  4. A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries

    NASA Astrophysics Data System (ADS)

    Heumann, Holger; Rapetti, Francesca

    2017-04-01

    Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.

  5. Development of a software package for solid-angle calculations using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Chen, Xiulian; Zhang, Changsheng; Li, Gang; Xu, Jiayun; Sun, Guangai

    2014-02-01

    Solid-angle calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources, which are often complicated. In the present paper, a software package is developed to provide a convenient tool for solid-angle calculations in nuclear physics. The proposed software calculates solid angles using the Monte Carlo method, in which a new type of variance reduction technique was integrated. The package, developed under the environment of Microsoft Foundation Classes (MFC) in Microsoft Visual C++, has a graphical user interface, in which, the visualization function is integrated in conjunction with OpenGL. One advantage of the proposed software package is that it can calculate the solid angle subtended by a detector with different geometric shapes (e.g., cylinder, square prism, regular triangular prism or regular hexagonal prism) to a point, circular or cylindrical source without any difficulty. The results obtained from the proposed software package were compared with those obtained from previous studies and calculated using Geant4. It shows that the proposed software package can produce accurate solid-angle values with a greater computation speed than Geant4.

  6. CFD analysis of turbopump volutes

    NASA Technical Reports Server (NTRS)

    Ascoli, Edward P.; Chan, Daniel C.; Darian, Armen; Hsu, Wayne W.; Tran, Ken

    1993-01-01

    An effort is underway to develop a procedure for the regular use of CFD analysis in the design of turbopump volutes. Airflow data to be taken at NASA Marshall will be used to validate the CFD code and overall procedure. Initial focus has been on preprocessing (geometry creation, translation, and grid generation). Volute geometries have been acquired electronically and imported into the CATIA CAD system and RAGGS (Rockwell Automated Grid Generation System) via the IGES standard. An initial grid topology has been identified and grids have been constructed for turbine inlet and discharge volutes. For CFD analysis of volutes to be used regularly, a procedure must be defined to meet engineering design needs in a timely manner. Thus, a compromise must be established between making geometric approximations, the selection of grid topologies, and possible CFD code enhancements. While the initial grid developed approximated the volute tongue with a zero thickness, final computations should more accurately account for the geometry in this region. Additionally, grid topologies will be explored to minimize skewness and high aspect ratio cells that can affect solution accuracy and slow code convergence. Finally, as appropriate, code modifications will be made to allow for new grid topologies in an effort to expedite the overall CFD analysis process.

  7. Infrared radiative transfer through a regular array of cuboidal clouds

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN; Weinman, J. A.

    1981-01-01

    Infrared radiative transfer through a regular array of cuboidal clouds is studied and the interaction of the sides of the clouds with each other and the ground is considered. The theory is developed for black clouds and is extended to scattering clouds using a variable azimuth two-stream approximation. It is shown that geometrical considerations often dominate over the microphysical aspects of radiative transfer through the clouds. For example, the difference in simulated 10 micron brightness temperature between black isothermal cubic clouds and cubic clouds of optical depth 10, is less than 2 deg for zenith angles less than 50 deg for all cloud fractions when viewed parallel to the array. The results show that serious errors are made in flux and cooling rate computations if broken clouds are modeled as planiform. Radiances computed by the usual practice of area-weighting cloudy and clear sky radiances are in error by 2 to 8 K in brightness temperature for cubic clouds over a wide range of cloud fractions and zenith angles. It is also shown that the lapse rate does not markedly affect the exiting radiances for cuboidal clouds of unit aspect ratio and optical depth 10.

  8. Spherical Tippe Tops

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2013-03-01

    A tippe top (see Fig. 1) is usually constructed as a truncated sphere with a cylindrical peg on top, as indicated in Fig. 2(a). When spun rapidly on a horizontal surface, a tippe top spins about a vertical axis while rotating slowly about a horizontal axis until the peg touches the surface. At that point, weight is transferred to the peg, the truncated sphere rises off the surface, and the top spins on the peg until it is upright. A feature of a tippe top is that its center of mass, labeled G in Fig. 2, is below the geometric center of the sphere, C, when the top is at rest. That is where it will return if the top is tilted sideways and released since that is the stable equilibrium position. The fact that a tippe top turns upside down when it spins is therefore astonishing. The behavior of a tippe top is quite unlike that of a regular top since the spin axis remains closely vertical the whole time. The center of mass of a regular top can also rise, but the spin axis tilts upward as the top rises and enters a "sleeping" position.

  9. 77 FR 44653 - Continuum of Care Homeless Assistance Grant Application-Technical Submission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5603-N-50] Continuum of Care Homeless... obtain more detailed technical information not contained in the original Continuum of Care Homeless...: Continuum of Care Homeless Assistance Grant Application--Technical Submission. OMB Approval Number: 2506...

  10. Irreducible projective representations and their physical applications

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Liu, Zheng-Xin

    2018-01-01

    An eigenfunction method is applied to reduce the regular projective representations (Reps) of finite groups to obtain their irreducible projective Reps. Anti-unitary groups are treated specially, where the decoupled factor systems and modified Schur’s lemma are introduced. We discuss the applications of irreducible Reps in many-body physics. It is shown that in symmetry protected topological phases, geometric defects or symmetry defects may carry projective Rep of the symmetry group; while in symmetry enriched topological phases, intrinsic excitations (such as spinons or visons) may carry projective Rep of the symmetry group. We also discuss the applications of projective Reps in problems related to spectrum degeneracy, such as in search of models without sign problem in quantum Monte Carlo simulations.

  11. Superposing pure quantum states with partial prior information

    NASA Astrophysics Data System (ADS)

    Dogra, Shruti; Thomas, George; Ghosh, Sibasish; Suter, Dieter

    2018-05-01

    The principle of superposition is an intriguing feature of quantum mechanics, which is regularly exploited in many different circumstances. A recent work [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403] shows that the fundamentals of quantum mechanics restrict the process of superimposing two unknown pure states, even though it is possible to superimpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input states. We discuss an experimentally feasible protocol to superimpose multiple pure states of a d -dimensional quantum system and carry out an explicit experimental realization for two single-qubit pure states with partial prior information on a two-qubit NMR quantum information processor.

  12. Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity.

    PubMed

    Duplantier, Bertrand; Sheffield, Scott

    2009-04-17

    We present a (mathematically rigorous) probabilistic and geometrical proof of the Knizhnik-Polyakov-Zamolodchikov relation between scaling exponents in a Euclidean planar domain D and in Liouville quantum gravity. It uses the properly regularized quantum area measure dmicro_{gamma}=epsilon;{gamma;{2}/2}e;{gammah_{epsilon}(z)}dz, where dz is the Lebesgue measure on D, gamma is a real parameter, 02 is shown to be related to the quantum measure dmu_{gamma;{'}}, gamma;{'}<2, by the fundamental duality gammagamma;{'}=4.

  13. Mapping luminous blue compact galaxies with VIRUS-P. Morphology, line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; García Lorenzo, B.; Kelz, A.; Roth, M.; Papaderos, P.; Streicher, O.

    2012-11-01

    Context. Blue compact galaxies (BCG) are narrow emission-line systems that undergo a violent burst of star formation. They are compact, low-luminosity galaxies, with blue colors and low chemical abundances, which offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple, dynamically unperturbed environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopy (IFS) study of a sample of luminous BCGs, with the aim to probe the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium (ISM). Methods: We obtained IFS data for five luminous BCGs with VIRUS-P, the prototype instrument for the Visible Integral Field Replicable Unit Spectrograph, attached to the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory. VIRUS-P consists of a square array of 247 optical fibers, which covers a 109″ × 109″ field of view, with a spatial sampling of 4farcs2 and a 0.3 filling factor. We observed in the 3550-5850 Å spectral range, with a resolution of 5 Å FWHM. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines ([O ii] λ3727, Hγ, Hβ and [O iii] λ5007), and investigated the morphology of diagnostic emission-line ratios and the extinction patterns in the ISM as well as stellar and gas kinematics. Additionally, from integrated spectra we inferred total line fluxes and luminosity-weighted extinction coefficients and gas-phase metallicities. Results: All galaxies exhibit an overall regular morphology in the stellar continuum, while their warm ISM morphology is more complex: in II Zw 33 and Mrk 314, the star-forming regions are aligned along a chain-structure; Haro 1, NGC 4670 and III Zw 102 display several salient features, such as extended gaseous filaments and bubbles. A significant intrinsic absorption by dust is present in all galaxies, the most extreme case being III Zw 102. Our data reveal a plethora of kinematical patterns, from overall regular gas and stellar rotation to complex velocity fields produced by structurally and kinematically distinct components.

  14. HYDROGEN BALMER CONTINUUM IN SOLAR FLARES DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH (IRIS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinzel, P.; Kleint, L., E-mail: pheinzel@asu.cas.cz

    We present a novel observation of the white light flare (WLF) continuum, which was significantly enhanced during the X1 flare on 2014 March 29 (SOL2014-03-29T17:48). Data from the Interface Region Imaging Spectrograph (IRIS) in its near-UV channel show that at the peak of the continuum enhancement, the contrast at the quasi-continuum window above 2813 Å reached 100%-200% and can be even larger closer to Mg II lines. This is fully consistent with the hydrogen recombination Balmer-continuum emission, which follows an impulsive thermal and non-thermal ionization caused by the precipitation of electron beams through the chromosphere. However, a less probable photosphericmore » continuum enhancement cannot be excluded. The light curves of the Balmer continuum have an impulsive character with a gradual fading, similar to those detected recently in the optical region on the Solar Optical Telescope on board Hinode. This observation represents a first Balmer-continuum detection from space far beyond the Balmer limit (3646 Å), eliminating seeing effects known to complicate the WLF detection. Moreover, we use a spectral window so far unexplored for flare studies, which provides the potential to study the Balmer continuum, as well as many metallic lines appearing in emission during flares. Combined with future ground-based observations of the continuum near the Balmer limit, we will be able to disentangle various scenarios of the WLF origin. IRIS observations also provide a critical quantitative measure of the energy radiated in the Balmer continuum, which constrains various models of the energy transport and deposit during flares.« less

  15. Efficient Geometric Probabilities of Multi-transiting Systems, Circumbinary Planets, and Exoplanet Mutual Events

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, D.

    2012-10-01

    The transit method for discovering extra-solar planets relies on detecting regular diminutions of light from stars due to the shadows of planets passing in between the star and the observer. NASA's Kepler Mission has successfully discovered thousands of exoplanet candidates using this technique, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, our research concerns the efficient calculation of geometric probabilities for detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods (e.g., Ragozzine & Holman 2010, Tremaine & Dong 2011), we have constructed an efficient, analytical algorithm which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets are transiting. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere (see Ragozzine & Holman 2010). The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparison with Monte Carlo simulations. Expanding this work, we have also developed semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability two planets will transit each other (Planet-Planet Occultation) and the probability that this transit occurs simultaneously as they transit their star (Overlapping Double Transits; see Ragozzine & Holman 2010). The latter algorithm can also be applied to calculating the probability of observing transiting circumbinary planets (Doyle et al. 2011, Welsh et al. 2012). All of these algorithms have been coded in C and will be made publicly available. We will present and advertise these codes and illustrate their value for studying exoplanetary systems.

  16. Three-Dimensional Reconstruction and Solar Energy Potential Estimation of Buildings

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, M.; Cheng, L.; Xu, H.; Li, S.; Liu, X.

    2017-12-01

    In the context of the construction of low-carbon cities, green cities and eco-cities, the ability of the airborne and mobile LiDAR should be explored in urban renewable energy research. As the main landscape in urban environment, buildings have large regular envelopes could receive a huge amount of solar radiation. In this study, a relatively complete calculation scheme about building roof and façade solar utilization potential is proposed, using building three-dimensional geometric feature information. For measuring the city-level building solar irradiance, the precise three-dimensional building roof and façade models should be first reconstructed from the airborne and mobile LiDAR, respectively. In order to obtaining the precise geometric structure of building facades from the mobile LiDAR data, a new method for structure detection and the three-dimensional reconstruction of building façades from mobile LiDAR data is proposed. The method consists of three steps: the preprocessing of façade points, the detection of façade structure, the restoration and reconstruction of building façade. As a result, the reconstruction method can effectively deal with missing areas caused by occlusion, viewpoint limitation, and uneven point density, as well as realizing the highly complete 3D reconstruction of a building façade. Furthermore, the window areas can be excluded for more accurate estimation of solar utilization potential. After then, the solar energy utilization potential of global building roofs and facades is estimate by using the solar irradiance model, which combine the analysis of the building shade and sky diffuse, based on the analysis of the geometrical structure of buildings.

  17. Techniques to derive geometries for image-based Eulerian computations

    PubMed Central

    Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.

    2014-01-01

    Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID:25750470

  18. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    PubMed Central

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-01-01

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410

  19. The continuum of fetal alcohol spectrum disorders in a community in South Africa: Prevalence and characteristics in a fifth sample.

    PubMed

    May, Philip A; Marais, Anna-Susan; de Vries, Marlene M; Kalberg, Wendy O; Buckley, David; Hasken, Julie M; Adnams, Colleen M; Barnard, Ronel; Joubert, Belinda; Cloete, Marise; Tabachnick, Barbara; Robinson, Luther K; Manning, Melanie A; Jones, Kenneth Lyons; Bezuidenhout, Heidre; Seedat, Soraya; Parry, Charles D H; Hoyme, H Eugene

    2016-11-01

    The prevalence and characteristics of the continuum of diagnoses within fetal alcohol spectrum disorders (FASD) were researched in a fifth sample in a South African community. An active case ascertainment approach was employed among all first grade learners in this community (n=862). Following individual examination by clinical geneticists/dysmorphologists, cognitive/behavioral testing, and maternal interviews, final diagnoses were made in multidisciplinary case conferences. Physical measurements, cardinal facial features of FAS, and total dysmorphology scores clearly differentiated diagnostic categories in a consistent, linear fashion, from severe to mild. Neurodevelopmental delays and behavioral problems were significantly worse for each of the FASD diagnostic categories, although not as consistently linear across diagnostic groups. Alcohol use was documented by direct report from the mother in 71% to 100% of cases in specific diagnostic groups. Significant distal maternal risk factors in this population are: advanced maternal age at pregnancy; low height, weight, and body mass index (BMI); small head circumference; low education; low income; and rural residence. Even when controlling for socioeconomic status, prenatal drinking correlates significantly with total dysmorphology score, head circumference, and five cognitive and behavioral measures. In this community, FAS occurs in 59-79 per 1,000 children, and total FASD in 170-233 per 1,000 children, or 17% to 23%. Very high rates of FASD continue in this community where entrenched practices of regular binge drinking co-exist with challenging conditions for childbearing and child development in a significant portion of the population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. THE CONTINUUM OF FETAL ALCOHOL SPECTRUM DISORDERS IN A COMMUNITY IN SOUTH AFRICA: PREVALENCE AND CHARACTERISTICS IN A FIFTH SAMPLE

    PubMed Central

    May, Philip A.; Marais, Anna-Susan; de Vries, Marlene M.; Kalberg, Wendy O.; Buckley, David; Hasken, Julie M.; Adnams, Colleen M.; Barnard, Ronel; Joubert, Belinda; Cloete, Marise; Tabachnick, Barbara; Robinson, Luther K.; Manning, Melanie A.; Jones, Kenneth Lyons; Bezuidenhout, Heidre; Seedat, Soraya; Parry, Charles D.H.; Hoyme, H. Eugene

    2016-01-01

    Background The prevalence and characteristics of the continuum of diagnoses within fetal alcohol spectrum disorders (FASD) were researched in a fifth sample in a South African community. Methods An active case ascertainment approach was employed among all first grade learners in this community (n=862). Following individual examination by clinical geneticists/ dysmorphologists, cognitive/behavioral testing, and maternal interviews, final diagnoses were made in multidisciplinary case conferences. Results Physical measurements, cardinal facial features of FAS, and total dysmorphology scores clearly differentiated diagnostic categories in a consistent, linear fashion, from severe to mild. Neurodevelopmental delays and behavioral problems were significantly worse for each of the FASD diagnostic categories, although not as consistently linear across diagnostic groups. Alcohol use was documented by direct report from the mother in 71% to 100% of cases in specific diagnostic groups. Significant distal maternal risk factors in this population are: advanced maternal age at pregnancy; low height, weight, and body mass index (BMI); small head circumference; low education; low income; and rural residence. Even when controlling for socioeconomic status, prenatal drinking correlates significantly with total dysmorphology score, head circumference, and five cognitive and behavioral measures. In this community, FAS occurs in 59 – 79 per 1,000 children, and total FASD in 170 – 233 per 1,000 children, or 17% to 23%. Conclusions Very high rates of FASD continue in this community where entrenched practices of regular binge drinking co-exist with challenging conditions for childbearing and child development in a significant portion of the population. PMID:27736681

  1. The continuum of fetal alcohol spectrum disorders in four rural communities in South Africa: Prevalence and characteristics.

    PubMed

    May, Philip A; de Vries, Marlene M; Marais, Anna-Susan; Kalberg, Wendy O; Adnams, Colleen M; Hasken, Julie M; Tabachnick, Barbara; Robinson, Luther K; Manning, Melanie A; Jones, Kenneth Lyons; Hoyme, Derek; Seedat, Soraya; Parry, Charles D H; Hoyme, H Eugene

    2016-02-01

    Prevalence and characteristics of the continuum of diagnoses within fetal alcohol spectrum disorders (FASD) were researched in previously unstudied rural, agricultural, lower socioeconomic populations in South Africa (ZA). Using an active case ascertainment approach among first grade learners, 1354 (72.6%) were consented into the study via: height, weight, and/or head circumference ≤ 25th centile and/or random selection as normal control candidates. Final diagnoses were made following: examination by pediatric dysmorphologists/geneticists, cognitive/behavioral testing, and maternal risk factor interviews. FASD children were significantly growth deficient and dysmorphic: physical measurements, cardinal facial features of FAS, and total dysmorphology scores clearly differentiated diagnostic categories from severe to mild to normal in a consistent, linear fashion. Neurodevelopmental delays were also significantly worse for each of the FASD diagnostic categories, although not as consistently linear across groups. Alcohol use is well documented as the proximal maternal risk factor for each diagnostic group. Significant distal maternal risk factors in this population are: low body weight, body mass, education, and income; and high gravidity, parity, and age at birth of the index child. In this low SES, highly rural region, FAS occurs in 93-128 per 1000 children, PFAS in 58-86, and, ARND in 32-46 per 1000. Total FASD affect 182-259 per 1000 children or 18-26%. Very high rates of FASD exist in these rural areas and isolated towns where entrenched practices of regular binge drinking co-exist with challenging conditions for childbearing and child development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. THE CONTINUUM OF FETAL ALCOHOL SPECTRUM DISORDERS IN FOUR RURAL COMMUNITIES IN SOUTH AFRICA: PREVALENCE AND CHARACTERISTICS

    PubMed Central

    May, Philip A.; de Vries, Marlene M.; Marais, Anna-Susan; Kalberg, Wendy O.; Adnams, Colleen M.; Hasken, Julie M.; Tabachnick, Barbara; Robinson, Luther K.; Manning, Melanie A.; Jones, Kenneth Lyons; Hoyme, Derek; Seedat, Soraya; Parry, Charles D.H.; Hoyme, H. Eugene

    2016-01-01

    Background Prevalence and characteristics of the continuum of diagnoses within fetal alcohol spectrum disorders (FASD) were researched in previously unstudied rural, agricultural, lower socioeconomic populations in South Africa (ZA). Methods Using an active case ascertainment approach among first grade learners, 1354 (72.6%) were consented into the study via: height, weight, and/or head circumference ≤25th centile and/or random selection as normal control candidates. Final diagnoses were made following: examination by pediatric dysmorphologists/geneticists, cognitive/behavioral testing, and maternal risk factor interviews. Results FASD children were significantly growth deficient and dysmorphic: physical measurements, cardinal facial features of FAS, and total dysmorphology scores clearly differentiated diagnostic categories from severe to mild to normal in a consistent, linear fashion. Neurodevelopmental delays were also significantly worse for each of the FASD diagnostic categories, although not as consistently linear across groups. Alcohol use is well documented as the proximal maternal risk factor for each diagnostic group. Significant distal maternal risk factors in this population are: low body weight, body mass, education, and income; and high gravidity, parity, and age at birth of the index child. In this low SES, highly rural region, FAS occurs in 93 – 128 per 1,000 children, PFAS in 58 – 86, and, ARND in 32 – 46 per 1,000. Total FASD affect 182 to 259 per 1,000 children or 18% to 26%. Conclusions Very high rates of FASD exist in these rural areas and isolated towns where entrenched practices of regular binge drinking co-exist with challenging conditions for childbearing and child development. PMID:26774945

  3. The emergent relevance of care staff decision-making and situation awareness to mobility care in nursing homes: an ethnographic study.

    PubMed

    Taylor, Janice; Sims, Jane; Haines, Terry P

    2014-12-01

    To explore mobility care as provided by care staff in nursing homes. Care staff regularly assist residents with their mobility. Nurses are increasingly reliant on such staff to provide safe and quality mobility care. However, the nature of care staff decision-making when providing assistance has not been fully addressed in the literature. A focused ethnography. The study was conducted in four nursing homes in Melbourne, Australia. Non-participant observations of residents and staff in 2011. Focus groups with 18 nurses, care and lifestyle staff were conducted at three facilities in 2012. Thematic analysis was employed for focus groups and content analysis for observation data. Cognitive Continuum Theory and the notion of 'situation awareness' assisted data interpretation. Decision-making during mobility care emerged as a major theme. Using Cognitive Continuum Theory as a guide, nursing home staff's decision-making was described as ranging from system-aided, through resident- and peer-aided, to reflective and intuitive. Staff seemed aware of the need for resident-aided decision-making consistent with person-centred care. Habitual mobility care based on shared mental models occurred. It was noted that levels of situation awareness may vary among staff. Care staff may benefit from support via collaborative and reflective practice to develop decision-making skills, situation awareness and person-centred mobility care. Further research is required to explore the connection between staff's skills in mobility care and their decision-making competence as well as how these factors link to quality mobility care. © 2014 John Wiley & Sons Ltd.

  4. Elastic interaction of hydrogen atoms on graphene: A multiscale approach from first principles to continuum elasticity

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.

    2016-10-01

    The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.

  5. Provider-patient in-office discussions of response to hepatitis C antiviral therapy and impact on patient comprehension.

    PubMed

    Hamilton, Heidi E; Nelson, Meaghan; Martin, Paul; Cotler, Scott J

    2006-04-01

    Providers need to communicate projected response rates effectively to enable patients with hepatitis C virus to make informed decisions about therapy. This study used interactional sociolinguistics (1) to evaluate how gastroenterologists and allied health professionals communicate information regarding response rates to antiviral therapy, (2) to determine how these discussions relate to where the patient is in the continuum of evaluation and treatment, (3) to assess whether patients were aligned with providers in their perceptions of response rates after office visits, and (4) to identify factors that improve provider-patient alignment. Gastroenterologists, allied health professionals, and patients with hepatitis C virus were videotaped and audiotaped during regularly scheduled visits. Postvisit interviews were conducted separately with patients and providers. Visits and postvisits were transcribed and analyzed using validated sociolinguistic techniques. The phase of hepatitis C virus treatment shaped the benchmarks of response talk, although across the treatment continuum providers overwhelmingly made strategic use of positive statistics, providing motivation. In postvisit interviews, 55% of providers and patients were aligned on response rates. Patients with a favorable outcome and patients who asked response-related questions in the visit were more likely to be aligned with providers. Areas identified for improvement included the tendency to discuss response rates before an individualized assessment could be made, balancing motivation and accuracy, and assessing the patient's perspective before delivering any bad news, if necessary. Sociolinguistic analysis provides a powerful tool to evaluate provider-patient interactions and to identify ways to improve in-office communication regarding antiviral therapy.

  6. A model of mudflow propagation downstream from the Grohovo landslide near the city of Rijeka (Croatia)

    NASA Astrophysics Data System (ADS)

    Žic, E.; Arbanas, Ž.; Bićanić, N.; Ožanić, N.

    2014-11-01

    Mudflows regularly generate significant human and property losses. Analyzing mudflows is important to assess the risks and to delimit vulnerable areas where mitigation measures are required. In recent decades, modeling of the propagation stage has been largely performed within the framework of continuum mechanics, and a number of new and sophisticated computational models have been developed. Most of the available approaches treat the heterogeneous and multiphase moving mass as a single-phase continuum. The smoothed particle hydrodynamics model (SPH model) adopted here considers, in two phases, a granular skeleton with voids filled with either water or mud. The SPH depth integrated numerical model (Pastor et al., 2009a) used for the present simulations is a 2-D model capable of predicting the runout distance, flow velocity, deposition pattern and the final volume of mudflows. It is based on mathematical and rheological models. In this study, the main characteristics of mudflow processes that have emerged in the past in the area downstream of the Grohovo landslide are examined, and the more relevant parameters and attributes describing the mudflow are presented. Principal equations that form the basis of the SPH depth integrated model are reviewed and applied to analyze the Grohovo landslide and the propagation of the mudflow wave downstream of the landslide. Based on the SPH method, the runout distance, quantities of the deposited materials and the velocity of mudflow progression which occurred in the past at the observed area are analysed and qualitatively compared to the recorded consequences of the actual event.

  7. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere

    PubMed Central

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-01-01

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031

  8. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns.

    PubMed

    Ynsa, M D; Dang, Z Y; Manso-Silvan, M; Song, J; Azimi, S; Wu, J F; Liang, H D; Torres-Costa, V; Punzon-Quijorna, E; Breese, M B H; Garcia-Ruiz, J P

    2014-04-01

    Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.

  9. Geometric chaos indicators and computations of the spherical hypertube manifolds of the spatial circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Guzzo, Massimiliano; Lega, Elena

    2018-06-01

    The circular restricted three-body problem has five relative equilibria L1 ,L2, . . . ,L5. The invariant stable-unstable manifolds of the center manifolds originating at the partially hyperbolic equilibria L1 ,L2 have been identified as the separatrices for the motions which transit between the regions of the phase-space which are internal or external with respect to the two massive bodies. While the stable and unstable manifolds of the planar problem have been extensively studied both theoretically and numerically, the spatial case has not been as deeply investigated. This paper is devoted to the global computation of these manifolds in the spatial case with a suitable finite time chaos indicator. The definition of the chaos indicator is not trivial, since the mandatory use of the regularizing Kustaanheimo-Stiefel variables may introduce discontinuities in the finite time chaos indicators. From the study of such discontinuities, we define geometric chaos indicators which are globally defined and smooth, and whose ridges sharply approximate the stable and unstable manifolds of the center manifolds of L1 ,L2. We illustrate the method for the Sun-Jupiter mass ratio, and represent the topology of the asymptotic manifolds using sections and three-dimensional representations.

  10. Continuum of Collaboration: Little Steps for Little Feet

    ERIC Educational Resources Information Center

    Powell, Gwynn M.

    2013-01-01

    This mini-article outlines a continuum of collaboration for faculty within a department of the same discipline. The goal of illustrating this continuum is showcase different stages of collaboration so that faculty members can assess where they are as a collective and consider steps to collaborate more. The separate points along a continuum of…

  11. Geometry of the perceptual space

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Palmer, Stephen; Eghbalnia, Hamid; Carew, John

    1999-09-01

    The concept of space and geometry varies across the subjects. Following Poincare, we consider the construction of the perceptual space as a continuum equipped with a notion of magnitude. The study of the relationships of objects in the perceptual space gives rise to what we may call perceptual geometry. Computational modeling of objects and investigation of their deeper perceptual geometrical properties (beyond qualitative arguments) require a mathematical representation of the perceptual space. Within the realm of such a mathematical/computational representation, visual perception can be studied as in the well-understood logic-based geometry. This, however, does not mean that one could reduce all problems of visual perception to their geometric counterparts. Rather, visual perception as reported by a human observer, has a subjective factor that could be analytically quantified only through statistical reasoning and in the course of repetitive experiments. Thus, the desire to experimentally verify the statements in perceptual geometry leads to an additional probabilistic structure imposed on the perceptual space, whose amplitudes are measured through intervention by human observers. We propose a model for the perceptual space and the case of perception of textured surfaces as a starting point for object recognition. To rigorously present these ideas and propose computational simulations for testing the theory, we present the model of the perceptual geometry of surfaces through an amplification of theory of Riemannian foliation in differential topology, augmented by statistical learning theory. When we refer to the perceptual geometry of a human observer, the theory takes into account the Bayesian formulation of the prior state of the knowledge of the observer and Hebbian learning. We use a Parallel Distributed Connectionist paradigm for computational modeling and experimental verification of our theory.

  12. On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disk Models

    PubMed Central

    Malandrino, Andrea; Pozo, José M.; Castro-Mateos, Isaac; Frangi, Alejandro F.; van Rijsbergen, Marc M.; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme

    2015-01-01

    Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration. PMID:25717471

  13. Geometric effects in microfluidics on heterogeneous cell stress using an Eulerian-Lagrangian approach.

    PubMed

    Warren, K M; Mpagazehe, J N; LeDuc, P R; Higgs, C F

    2016-02-07

    The response of individual cells at the micro-scale in cell mechanics is important in understanding how they are affected by changing environments. To control cell stresses, microfluidics can be implemented since there is tremendous control over the geometry of the devices. Designing microfluidic devices to induce and manipulate stress levels on biological cells can be aided by computational modeling approaches. Such approaches serve as an efficient precursor to fabricating various microfluidic geometries that induce predictable levels of stress on biological cells, based on their mechanical properties. Here, a three-dimensional, multiphase computational fluid dynamics (CFD) modeling approach was implemented for soft biological materials. The computational model incorporates the physics of the particle dynamics, fluid dynamics and solid mechanics, which allows us to study how stresses affect the cells. By using an Eulerian-Lagrangian approach to treat the fluid domain as a continuum in the microfluidics, we are conducting studies of the cells' movement and the stresses applied to the cell. As a result of our studies, we were able to determine that a channel with periodically alternating columns of obstacles was capable of stressing cells at the highest rate, and that microfluidic systems can be engineered to impose heterogenous cell stresses through geometric configuring. We found that when using controlled geometries of the microfluidics channels with staggered obstructions, we could increase the maximum cell stress by nearly 200 times over cells flowing through microfluidic channels with no obstructions. Incorporating computational modeling in the design of microfluidic configurations for controllable cell stressing could help in the design of microfludic devices for stressing cells such as cell homogenizers.

  14. Second-order Poisson Nernst-Planck solver for ion channel transport

    PubMed Central

    Zheng, Qiong; Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The Poisson Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are compared with experimental measurements. PMID:21552336

  15. Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis.

    PubMed

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2014-01-01

    The ground-state tautomerization of the G·C Watson-Crick base pair by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ϵ = 4), corresponding to a hydrophobic interface of protein-nucleic acid interactions, using DFT and MP2 levels of quantum-mechanical (QM) theory and quantum theory "Atoms in molecules" (QTAIM). Based on the sweeps of the electron-topological, geometric, polar, and energetic parameters, which describe the course of the G·C ↔ G*·C* tautomerization (mutagenic tautomers of the G and C bases are marked with an asterisk) through the DPT along the intrinsic reaction coordinate (IRC), it was proved that it is, strictly speaking, a concerted asynchronous process both at the DFT and MP2 levels of theory, in which protons move with a small time gap in vacuum, while this time delay noticeably increases in the continuum with ϵ = 4. It was demonstrated using the conductor-like polarizable continuum model (CPCM) that the continuum with ϵ = 4 does not qualitatively affect the course of the tautomerization reaction. The DPT in the G·C Watson-Crick base pair occurs without any intermediates both in vacuum and in the continuum with ϵ = 4 at the DFT/MP2 levels of theory. The nine key points along the IRC of the G·C base pair tautomerization, which could be considered as electron-topological "fingerprints" of a concerted asynchronous process of the tautomerization via the DPT, have been identified and fully characterized. These key points have been used to define the reactant, transition state, and product regions of the DPT reaction in the G·C base pair. Analysis of the energetic characteristics of the H-bonds allows us to arrive at a definite conclusion that the middle N1H⋯N3/N3H⋯N1 and the lower N2H⋯O2/N2H⋯O2 parallel H-bonds in the G·C/G*·C* base pairs, respectively, are anticooperative, that is, the strengthening of the middle H-bond is accompanied by the weakening of the lower H-bond. At that point, the upper N4H⋯O6 and O6H⋯N4 H-bonds in the G·C and G*·C* base pairs, respectively, remain constant at the changes of the middle and the lower H-bonds at the beginning and at the ending of the G·C ↔ G*·C* tautomerization. Aiming to answer the question posed in the title of the article, we established that the G*·C* Löwdin's base pair satisfies all the requirements necessary to cause point mutations in DNA except its lifetime, which is much less than the period of time required for the replication machinery to forcibly dissociate a base pair into the monomers (several ns) during DNA replication. So, from the physicochemical point of view, the G*·C* Löwdin's base pair cannot be considered as a source of point mutations arising during DNA replication.

  16. Numerical Modeling of Thermal Edge Flow

    NASA Astrophysics Data System (ADS)

    Ibrayeva, Aizhan

    A gas flow can be induced between two interdigitated arrays of thin vanes, when one of the arrays is uniformly heated or cooled. Sharply curved isotherms near the vane edges leads to momentum imbalance among incident particles, which creates Knudsen force to the vane and thermal edge flow in a gas. The flow is observed in a rarefied gas, when the mean free path of the molecules are comparable with the characteristic length scale of the system. In order to understand a physical mechanism of the flow and Knudsen force, the configuration was numerically investigated under different gas rarefication degrees and temperature gradients in the system by direct simulation Monte Carlo (DSMC) method. From simulations, the highest force value is obtained when Knudsen number is around 0.5 and becomes negligible in free molecular and continuum regimes. DSMC results are analyzed from the theoretical point of view and compared to experimental data. Validation of the simulations is done by the RKDG method. An effect of various geometric parameters to the performance of the actuator was investigated and suggestions were made for improved design of the device.

  17. Dynamic Creep Buckling: Analysis of Shell Structures Subjected to Time-dependent Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Carlson, R. L.; Riff, R.

    1985-01-01

    The objective of the present research is to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. A complete, true ab-initio rate theory of kinematics and kinetics for continuum and curved thin structures, without any restriction on the magnitude of the strains or the deformations, was formulated. The time dependence and large strain behavior are incorporated through the introduction of the time rates of metric and curvature in two coordinate systems: fixed (spatial) and convected (material). The relations between the time derivative and the covariant derivative (gradient) were developed for curved space and motion, so the velocity components supply the connection between the equations of motion and the time rates of change of the metric and curvature tensors.

  18. Application of Video Image Correlation Techniques to the Space Shuttle External Tank Foam Materials

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.

    2005-01-01

    Results that illustrate the use of a video-image-correlation-based displacement and strain measurement system to assess the effects of material nonuniformities on the behavior of the sprayed-on foam insulation (SOFI) used for the thermal protection system on the Space Shuttle External Tank are presented. Standard structural verification specimens for the SOFI material with and without cracks and subjected to mechanical or thermal loading conditions were tested. Measured full-field displacements and strains are presented for selected loading conditions to illustrate the behavior of the foam and the viability of the measurement technology. The results indicate that significant strain localization can occur in the foam because of material nonuniformities. In particular, elongated cells in the foam can interact with other geometric or material discontinuities in the foam and develop large-magnitude localized strain concentrations that likely initiate failures. Furthermore, some of the results suggest that continuum mechanics and linear elastic fracture mechanics might not adequately represent the physical behavior of the foam, and failure predictions based on homogeneous linear material models are likely to be inadequate.

  19. Application of Video Image Correlation Techniques to the Space Shuttle External Tank Foam Materials

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.

    2006-01-01

    Results that illustrate the use of a video-image-correlation-based displacement and strain measurement system to assess the effects of material nonuniformities on the behavior of the sprayed-on foam insulation (SOFI) used for the thermal protection system on the Space Shuttle External Tank are presented. Standard structural verification specimens for the SOFI material with and without cracks and subjected to mechanical or thermal loading conditions were tested. Measured full-field displacements and strains are presented for selected loading conditions to illustrate the behavior of the foam and the viability of the measurement technology. The results indicate that significant strain localization can occur in the foam because of material nonuniformities. In particular, elongated cells in the foam can interact with other geometric or material discontinuities in the foam and develop large-magnitude localized strain concentrations that likely initiate failures. Furthermore, some of the results suggest that continuum mechanics and linear elastic fracture mechanics might not adequately represent the physical behavior of the foam, and failure predictions based on homogeneous linear material models are likely to be inadequate.

  20. Nonlinear finite-element analysis of nanoindentation of viral capsids

    NASA Astrophysics Data System (ADS)

    Gibbons, Melissa M.; Klug, William S.

    2007-03-01

    Recent atomic force microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick-shell models are proposed for two capsids: the spherical cowpea chlorotic mottle virus (CCMV), and the ellipsocylindrical bacteriophage ϕ29 . As analyzed by the finite-element method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimensions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is shown to be insensitive to constitutive particulars, and greatly influenced by geometric and kinematic details. Nonlinear stiffening and softening of the force response is dependent on the AFM tip dimensions and shell thickness. Fits of the models capture the roughly linear behavior observed in experimental measurements and result in estimates of Young’s moduli of ≈280-360MPa for CCMV and ≈4.5GPa for ϕ29 .

  1. New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards’ equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil

    2016-04-29

    We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less

  2. Improvements to the APBS biomolecular solvation software suite: Improvements to the APBS Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurrus, Elizabeth; Engel, Dave; Star, Keith

    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that has provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suitemore » of accompanying software since its release in 2001. In this manuscript, we discuss the models and capabilities that have recently been implemented within the APBS software package including: a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory based algorithm for determining pKa values, and an improved web-based visualization tool for viewing electrostatics.« less

  3. Improvements to the APBS biomolecular solvation software suite.

    PubMed

    Jurrus, Elizabeth; Engel, Dave; Star, Keith; Monson, Kyle; Brandi, Juan; Felberg, Lisa E; Brookes, David H; Wilson, Leighton; Chen, Jiahui; Liles, Karina; Chun, Minju; Li, Peter; Gohara, David W; Dolinsky, Todd; Konecny, Robert; Koes, David R; Nielsen, Jens Erik; Head-Gordon, Teresa; Geng, Weihua; Krasny, Robert; Wei, Guo-Wei; Holst, Michael J; McCammon, J Andrew; Baker, Nathan A

    2018-01-01

    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory-based algorithm for determining pK a values, and an improved web-based visualization tool for viewing electrostatics. © 2017 The Protein Society.

  4. Modification of the quantum mechanical flux formula for electron-hydrogen ionization through Bohm's velocity field

    NASA Astrophysics Data System (ADS)

    Randazzo, J. M.; Ancarani, L. U.

    2015-12-01

    For the single differential cross section (SDCS) for hydrogen ionization by electron impact (e -H problem), we propose a correction to the flux formula given by R. Peterkop [Theory of Ionization of Atoms by Electron Impact (Colorado Associated University Press, Boulder, 1977)]. The modification is based on an alternative way of defining the kinetic energy fraction, using Bohm's definition of velocities instead of the usual asymptotic kinematical, or geometrical, approximation. It turns out that the solution-dependent, modified energy fraction is equally related to the components of the probability flux. Compared to what is usually observed, the correction yields a finite and well-behaved SDCS value in the asymmetrical situation where one of the continuum electrons carries all the energy while the other has zero energy. We also discuss, within the S -wave model of the e -H ionization process, the continuity of the SDCS derivative at the equal energy sharing point, a property not so clearly observed in published benchmark results obtained with integral and S -matrix formulas with unequal final states.

  5. Spherically symmetric, expanding, non-LTE model atmospheres for novae during their early stages

    NASA Technical Reports Server (NTRS)

    Hauschildt, P. H.; Wehrse, R.; Starrfield, S.; Shaviv, G.

    1992-01-01

    In the continuum and line-blanketed models presented here, nova atmospheres are characterized by a very slow decrease of density with increasing radius. This feature leads to very large geometrical extensions so that there are large temperature differences between the inner and outer parts of the line-forming regions. The theoretical spectra show a large IR excess and a small Balmer jump which may be either in absorption or in emission. For the parameters considered (effective temperature of about 10 exp 4 K, L = 2 x 10 exp 4 solar luminosities, outer boundary density of about 3 x 10 exp -15 g cm exp -3, mass-loss rate of 10 exp -5 solar masses/yr), most lines are in absorption. The effects of changes in the abundances of the heavy elements on the emergent spectra are discussed. The strong unidentified features observed in ultraviolet spectra of novae are found in actuality to be regions of transparency within the Fe 'forest'. Ultraviolet spectra obtained from the IUE archives are displayed, and spectral synthesis of these spectra is done using the theoretical atmospheres.

  6. Finite Element Aircraft Simulation of Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.

    1997-01-01

    A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.

  7. Strong Solvent Effects on the Nonlinear Optical Properties of Z and E isomers from Azo-Enaminone Derivatives.

    PubMed

    Machado, Daniel Francisco Scalabrini; Lopes, Thiago O; Lima, Igo Torres; da Silva Filho, Demetrio Antonio; de Oliveira, Heibbe Cristhian Benedito

    2016-07-01

    We calculated the nonlinear optical properties of 24 azo-enaminone derivatives, incorporating solvent effects on their geometric and elec-tronic structure, to assess the impact of the environment on these properties. Namely, we incorporated chloroform, tetrahydrofuran, acetone, ethanol, methanol, dimethyl sulfoxide on our calculations and compared our results incorporating solvent effects with our gas phase calculations. To account for the electron correlation effects on NLO properties, the calculations were performed at MP2/6-31G(p)//MP2/6-31G(d) level set. The Polarizable Continuum Model (PCM) was used to simulate the presence of the solvent. The exponents of p extra functions added to heavy atoms were obtained, imposing the maximization of the first hyperpolarizability. Two structural configurations (Z and E) of azo-enaminones were investigated to assess the isomeric effects of the electric properties. Our results show that both solvent polarity and relative strength of the donor groups have significant impact on the electric properties, but more strikingly on the first hyperpolarizability β.

  8. Can Fe3+ and Al3+ ions serve as cationic bridges to facilitate the adsorption of anionic As(V) species on humic acids? A density functional theory study.

    PubMed

    Gorb, Leonid; Shukla, Manoj K

    2017-03-01

    A computational chemistry investigation was undertaken to shed light on the facilitatory role played by Fe 3+ and Al 3+ cations in the adsorption of anionic As(V) species by humic acids through the formation of so-called cationic bridges. Geometric and energetic parameters were obtained using density functional theory at the B3LYP/6-31G(d,p) level in conjunction with the polarizable continuum model (to account for the influence of bulk water). We found that, despite their similar molecular geometries, the adsorption energies of the As(V) species AsO 4 3- and H 2 AsO 4- differ when Fe 3+ , FeOH 2+ , Al 3+ , and AlOH 2+ participate in the bridge. We also found that effective adsorption of As(V) species by humic acids strongly depends on whether the considered cationic bridges are tightly coordinated by humic acids at the adsorption sites, as well as on the rigidity of these humic acid adsorption sites.

  9. Effect of geometric parameters on the in-plane crushing behavior of honeycombs and honeycombs with facesheets

    NASA Astrophysics Data System (ADS)

    Atli-Veltin, Bilim

    In aerospace field, use of honeycombs in energy absorbing applications is a very attractive concept since they are relatively low weight structures and their crushing behavior satisfies the requirements of ideal energy absorbing applications. This dissertation is about the utilization of honeycomb crushing in energy absorbing applications and maximizing their specific energy absorption (SEA) capacity by modifying their geometry. In-plane direction crushing of honeycombs is investigated with the help of simulations conducted with ABAQUS. Due to the nonlinearity of the problem an optimization technique could not be implemented; however, the results of the trend studies lead to geometries with improved SEA. This study has two objectives; the first is to obtain modified cell geometry for a hexagonal honeycomb cell in order to provide higher energy absorption for minimum weight relative to the regular hexagonal cell geometry which has 30° cell angle and walls at equal length. The results of the first objective show that by increasing the cell angle, increasing wall thickness and reducing vertical wall length it is possible to increase the SEA 4.8 times; where the honeycomb with modified geometry provided 3.3 kJ/kg SEA and with regular geometry 0.68 kJ/kg SEA. The second objective considers integration of the energy absorbing honeycombs into the helicopter subfloor, possibly as the web section of a keel beam. In-plane direction crushing of a honeycomb core sandwiched between two facesheets is simulated. Effects of core and facesheet geometric parameters on the energy absorption are investigated, and modified geometries are suggested. For the sandwich structure with thin facesheets increasing cell angle, increasing wall thicknesses and decreasing the cell depth increase the SEA. For the ones with thick facesheet reducing vertical wall length, increasing wall thicknesses and reducing the cell depth increase the SEA. The results show that regular honeycomb geometry with thin facesheets has SEA of 7.24 kJ/kg and with thick facesheets 13.16 kJ/kg. When the geometries are modified the SEA increases to 20.5 kJ/kg for the core with thin facesheets and 53.47 kJ/kg for the core with thick facesheets. The key finding of the dissertation is that the in-plane direction crushing of the honeycombs with facesheets has great potential to be used for the energy absorbing applications since their SEA levels are high enough to make them attractive for applications where high crash loads need to be absorbed such as helicopter crash.

  10. Potential Release Site Sediment Concentrations Correlated to Storm Water Station Runoff through GIS Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.T. McLean

    2005-06-01

    This research examined the relationship between sediment sample data taken at Potential Release Sites (PRSs) and storm water samples taken at selected sites in and around Los Alamos National Laboratory (LANL). The PRSs had been evaluated for erosion potential and a matrix scoring system implemented. It was assumed that there would be a stronger relationship between the high erosion PRSs and the storm water samples. To establish the relationship, the research was broken into two areas. The first area was raster-based modeling, and the second area was data analysis utilizing the raster based modeling results and the sediment and stormmore » water sample results. Two geodatabases were created utilizing raster modeling functions and the Arc Hydro program. The geodatabase created using only Arc Hydro functions contains very fine catchment drainage areas in association with the geometric network and can be used for future contaminant tracking. The second geodatabase contains sub-watersheds for all storm water stations used in the study along with a geometric network. The second area of the study focused on data analysis. The analytical sediment data table was joined to the PRSs spatial data in ArcMap. All PRSs and PRSs with high erosion potential were joined separately to create two datasets for each of 14 analytes. Only the PRSs above the background value were retained. The storm water station spatial data were joined to the table of analyte values that were either greater than the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP) benchmark value, or the Department of Energy (DOE) Drinking Water Defined Contribution Guideline (DWDCG). Only the storm water stations were retained that had sample values greater than the NPDES MSGP benchmark value or the DOE DWDCG. Separate maps were created for each analyte showing the sub-watersheds, the PRSs over background, and the storm water stations greater than the NPDES MSGP benchmark value or the DOE DWDCG. Tables were then created for each analyte that listed the PRSs average value by storm water station allowing a tabular view of the mapped data. The final table that was created listed the number of high erosion PRSs and regular PRSs over background values that were contained in each watershed. An overall relationship between the high erosion PRSs or the regular PRSs and the storm water stations was not identified through the methods used in this research. However, the Arc Hydro data models created for this analysis were used to track possible sources of contamination found through sampling at the storm water gaging stations. This geometric network tracing was used to identify possible relationships between the storm water stations and the PRSs. The methods outlined for the geometric network tracing could be used to find other relationships between the sites. A cursory statistical analysis was performed which could be expanded and applied to the data sets generated during this research to establish a broader relationship between the PRSs and storm water stations.« less

  11. Optical and NIR spectroscopy of Mrk 1210: constraints and physical conditions of the active nucleus

    NASA Astrophysics Data System (ADS)

    Mazzalay, X.; Rodríguez-Ardila, A.

    2007-02-01

    Aims:Mrk 1210 is an outstanding Seyfert 2 galaxy because it displays signatures of recent circumnuclear star formation and a high level of X-ray activity, in addition to the classical spectral characteristics typical of an AGN. Here we investigate the extinction affecting the nuclear and extended emitting gas, the kinematics of the narrow-line region, and the physical properties and conditions of that gas. Methods: Near-infrared and optical spectra of the nuclear and extended emission region of Mrk 1210 are presented, covering the interval 0.4-2.4 μm. Emission and absorption lines were used to infer, respectively, the geometrical extension of the ionized gas and the contribution of the underlying stellar population to the observed integrated continuum. The emission line profiles were employed to study the kinematics in the NLR. The reddening and physical condition of the gas were investigated by means of flux ratios among permitted and forbidden lines. Results: The NIR nuclear spectrum is dominated by H I and He I recombination lines, as well as [S II], [S III], and [Fe II] forbidden lines. Coronal lines of [S VIII], [S IX], [Si VI], [Si X], and [Ca VIII], in addition to molecular H{2} lines, were also detected. The 12CO(6{-3)} 1.618 μm overtone bandhead helped to estimate the contribution of the stellar population to the continuum. It was found that 83±8% of the H-band continuum has a stellar origin. It improves previous estimates, which claimed that at least 50% of the observed continuum was attributed to the AGN. Analysis of the emission line profiles, both allowed and forbidden, shows a narrower ({FWHM} ˜ 500 km s-1) line on top of a broad ({FWHM} > 1000 km s-1) blue-shifted component. This seems to be associated to a nuclear outflow. This hypothesis is supported by 6 cm VLBI observations, which show a radio ejecta extending up to 30 pc from the nucleus. This result does not require the presence of the hidden BLR claimed to be present in previous NIR observations of this object. Internal extinction, calculated by means of several indicators including Fe II] flux ratios not previously used before in AGNs, reveals a dusty AGN, while the extended regions are barely affected by dust, if at all. The density and temperature are calculated for the NLR using optical and NIR lines as diagnostic ratios. The results show electronic temperatures from 10 000 K up to 40 000 K and densities between 10^3-105 cm-3. The higher temperatures show that shocks, most probably related to the radio outflow, must contribute to the line emission. Based in part in observations collected at the Pico dos Dias Observatory/LNA, Brazil. Figures 1-3 are only available in electronic form at http://www.aanda.org

  12. Changing public stigma with continuum beliefs.

    PubMed

    Corrigan, Patrick W; Schmidt, Annie; Bink, Andrea B; Nieweglowski, Katherine; Al-Khouja, Maya A; Qin, Sang; Discont, Steve

    2017-10-01

    Given the egregious effect of public stigma on the lives of people with mental illness, researchers have sought to unpack and identify effective components of anti-stigma programs. We expect to show that continuum messages have more positive effect on stigma and affirming attitudes (beliefs that people with mental illness recover and should be personally empowered) than categorical perspectives. The effect of continuum beliefs will interact with contact strategies. A total of 598 research participants were randomly assigned to online presentations representing one of the six conditions: three messages (continuum, categorical, or neutral control) by two processes (education or contact). Participants completed measures of continuum beliefs (as a manipulation check), stigma and affirming attitudes after viewing the condition. Continuum messages had significantly better effect on views that people with mental illness are "different," a finding that interacted with contact. Continuum messages also had better effects on recovery beliefs, once again an effect that interacted significantly with contact. Implications of these findings for improving anti-stigma programs are discussed.

  13. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2017-12-01

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely resolved (e.g., molecular dynamics) and coarse-grained (e.g., continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 084115 (2016)], simulated using a particle-based continuum method known as smoothed dissipative particle dynamics. An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.

  14. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns - Time history of the dust continuum and line emission

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.

    1993-01-01

    Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.

  15. Deforestation of Peano continua and minimal deformation retracts☆

    PubMed Central

    Conner, G.; Meilstrup, M.

    2012-01-01

    Every Peano continuum has a strong deformation retract to a deforested continuum, that is, one with no strongly contractible subsets attached at a single point. In a deforested continuum, each point with a one-dimensional neighborhood is either fixed by every self-homotopy of the space, or has a neighborhood which is a locally finite graph. A minimal deformation retract of a continuum (if it exists) is called its core. Every one-dimensional Peano continuum has a unique core, which can be obtained by deforestation. We give examples of planar Peano continua that contain no core but are deforested. PMID:23471120

  16. Charge-induced fluctuation forces in graphitic nanostructures

    DOE PAGES

    Drosdoff, D.; Bondarev, Igor V.; Widom, Allan; ...

    2016-01-21

    Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van derWaals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Lastly, our results stronglymore » indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.« less

  17. Modeling for Ultrasonic Health Monitoring of Foams with Embedded Sensors

    NASA Technical Reports Server (NTRS)

    Wang, L.; Rokhlin, S. I.; Rokhlin, Stanislav, I.

    2005-01-01

    In this report analytical and numerical methods are proposed to estimate the effective elastic properties of regular and random open-cell foams. The methods are based on the principle of minimum energy and on structural beam models. The analytical solutions are obtained using symbolic processing software. The microstructure of the random foam is simulated using Voronoi tessellation together with a rate-dependent random close-packing algorithm. The statistics of the geometrical properties of random foams corresponding to different packing fractions have been studied. The effects of the packing fraction on elastic properties of the foams have been investigated by decomposing the compliance into bending and axial compliance components. It is shown that the bending compliance increases and the axial compliance decreases when the packing fraction increases. Keywords: Foam; Elastic properties; Finite element; Randomness

  18. [Micropore filters for measuring red blood cell deformability and their pore diameters].

    PubMed

    Niu, X; Yan, Z

    2001-09-01

    Micropore filters are the most important components in micropore filtration testes for assessing red blood cell (RBC) deformability. With regard to their appearance and filtration behaviors, comparisons are made for different kinds of filters currently in use. Nickel filters with regular geometric characteristics are found to be more sensitive to the effects of physical, chemical, especially pathological factors on the RBC deformability. We have critically reviewed the following viewpoint that filters with 3 microns pore diameter are more sensitive to cell volume than to internal viscosity while filters with 5 microns pore diameter are just the opposite. After analyzing the experiment results with 3 microns and 5 microns filters, we point out that filters with smaller pore diameters are more suitable for assessing the RBC deformability.

  19. Self-Avoiding Walks over Adaptive Triangular Grids

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    In this paper, we present a new approach to constructing a "self-avoiding" walk through a triangular mesh. Unlike the popular approach of visiting mesh elements using space-filling curves which is based on a geometric embedding, our approach is combinatorial in the sense that it uses the mesh connectivity only. We present an algorithm for constructing a self-avoiding walk which can be applied to any unstructured triangular mesh. The complexity of the algorithm is O(n x log(n)), where n is the number of triangles in the mesh. We show that for hierarchical adaptive meshes, the algorithm can be easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the run-time partitioning and load balancing of adaptive unstructured grids.

  20. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.; Shestakov, Igor A.

    2016-02-01

    Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity - the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.

  1. Piecewise silence in discrete cosmological models

    NASA Astrophysics Data System (ADS)

    Clifton, Timothy; Gregoris, Daniele; Rosquist, Kjell

    2014-05-01

    We consider a family of cosmological models in which all mass is confined to a regular lattice of identical black holes. By exploiting the reflection symmetry about planes that bisect these lattices into identical halves, we are able to consider the evolution of a number of geometrically distinguished surfaces that exist within each of them. We find that the evolution equations for the reflection symmetric surfaces can be written as a simple set of Friedmann-like equations, with source terms that behave like a set of interacting effective fluids. We then show that gravitational waves are effectively trapped within small chambers for all time, and are not free to propagate throughout the space-time. Each chamber therefore evolves as if it were in isolation from the rest of the universe. We call this phenomenon ‘piecewise silence’.

  2. Galileo's Discorsi as a Tool for the Analytical Art.

    PubMed

    Raphael, Renee Jennifer

    2015-01-01

    A heretofore overlooked response to Galileo's 1638 Discorsi is described by examining two extant copies of the text (one which has received little attention in the historiography, the other apparently unknown) which are heavily annotated. It is first demonstrated that these copies contain annotations made by Seth Ward and Sir Christopher Wren. This article then examines one feature of Ward's and Wren's responses to the Discorsi, namely their decision to re-write several of Galileo's geometrical demonstrations into the language of symbolic algebra. It is argued that this type of active reading of period mathematical texts may have been part of the regular scholarly and pedagogical practices of early modern British mathematicians like Ward and Wren. A set of Appendices contains a transcription and translation of the analytical solutions found in these annotated copies.

  3. Regular Mechanical Transformation of Rotations Into Translations: Part 2. Kinematic Synthesis of the Elements of High Kinematic Joints, Realizing the Process of Motions Transformation

    NASA Astrophysics Data System (ADS)

    Abadjieva, Emilia; Abadjiev, Valentin

    2017-09-01

    This work is developed on the basis of the illustrated main parts of the kinematic theory (theory of gearing) of the spatial rack drives in Part 1 of this study. The applied theoretical approach to their synthesis, based on the T. Olivier's second principle is defined. A study of the geometric nature of the surface of action (mesh region, respectively) of these class transmissions is shown. Research software programs for synthesis and visualization of these transmissions and their specific elements are elaborated, on the basis of the given algorithms to the synthesis of the elements of high kinematic joints (active tooth surfaces), with which the movable links of the studied gear systems are equipped.

  4. An Optimization-based Atomistic-to-Continuum Coupling Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Derek; Bochev, Pavel B.; Luskin, Mitchell

    2014-08-21

    In this paper, we present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. Finally,more » we present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.« less

  5. Continuum limbed robots for locomotion

    NASA Astrophysics Data System (ADS)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  6. Evidence against the continuum structure underlying motivation measures derived from self-determination theory.

    PubMed

    Chemolli, Emanuela; Gagné, Marylène

    2014-06-01

    Self-determination theory (SDT) proposes a multidimensional conceptualization of motivation in which the different regulations are said to fall along a continuum of self-determination. The continuum has been used as a basis for using a relative autonomy index as a means to create motivational scores. Rasch analysis was used to verify the continuum structure of the Multidimensional Work Motivation Scale and of the Academic Motivation Scale. We discuss the concept of continuum against SDT's conceptualization of motivation and argue against the use of the relative autonomy index on the grounds that evidence for a continuum structure underlying the regulations is weak and because the index is statistically problematic. We suggest exploiting the full richness of SDT's multidimensional conceptualization of motivation through the use of alternative scoring methods when investigating motivational dynamics across life domains.

  7. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.

    PubMed

    Ptashnik, Igor V; McPheat, Robert A; Shine, Keith P; Smith, Kevin M; Williams, R Gary

    2012-06-13

    For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called 'windows') was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H(2)O--H(2)O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H(2)O--N(2) bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000-2000 cm(-1)). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m(-2) (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer-Tobin-Clough-Kneizys-Davies) foreign-continuum model.

  8. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  9. STATCONT: A statistical continuum level determination method for line-rich sources

    NASA Astrophysics Data System (ADS)

    Sánchez-Monge, Á.; Schilke, P.; Ginsburg, A.; Cesaroni, R.; Schmiedeke, A.

    2018-01-01

    STATCONT is a python-based tool designed to determine the continuum emission level in spectral data, in particular for sources with a line-rich spectrum. The tool inspects the intensity distribution of a given spectrum and automatically determines the continuum level by using different statistical approaches. The different methods included in STATCONT are tested against synthetic data. We conclude that the sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination. This uncertainty can be used to correct the final continuum emission level, resulting in the here called `corrected sigma-clipping method' or c-SCM. The c-SCM has been tested against more than 750 different synthetic spectra reproducing typical conditions found towards astronomical sources. The continuum level is determined with a discrepancy of less than 1% in 50% of the cases, and less than 5% in 90% of the cases, provided at least 10% of the channels are line free. The main products of STATCONT are the continuum emission level, together with a conservative value of its uncertainty, and datacubes containing only spectral line emission, i.e., continuum-subtracted datacubes. STATCONT also includes the option to estimate the spectral index, when different files covering different frequency ranges are provided.

  10. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  11. Asymptotic analysis of quasilinear parabolic-hyperbolic equations describing the large longitudinal motion of a light viscoelastic bar with a heavy attachment

    NASA Astrophysics Data System (ADS)

    Yip, Shui Cheung

    We study the longitudinal motion of a nonlinearly viscoelastic bar with one end fixed and the other end attached to a heavy tip mass. This problem is a precise continuum mechanical analog of the basic discrete mechanical problem of the motion of a mass point on a (massless) spring. This motion is governed by an initial-boundary-value problem for a class of third-order quasilinear parabolic-hyperbolic partial differential equations subject to a nonstandard boundary condition, which is the equation of motion of the tip mass. The ratio of the mass of the bar to that of the tip mass is taken to be a small parameter varepsilon. We prove that this problem has a unique regular solution that admits a valid asymptotic expansion, including an initial-layer expansion, in powers of varepsilon for varepsilon near 0. The fundamental constitutive hypothesis that the tension be a uniformly monotone function of the strain rate plays a critical role in a delicate proof that each term of the initial layer expansion decays exponentially in time. These results depend on new decay estimates for the solution of quasilinear parabolic equations. The constitutive hypothesis that the viscosity become large where the bar nears total compression leads to important uniform bounds for the strain and the strain rate. Higher-order energy estimates support the proof by the Schauder Fixed-Point Theorem of the existence of solutions having a level of regularity appropriate for the asymptotics.

  12. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    DOE PAGES

    Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott

    2017-12-21

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less

  13. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less

  14. Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow

    NASA Astrophysics Data System (ADS)

    Holman, Timothy D.; Boyd, Iain D.

    2011-02-01

    This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.

  15. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands

    NASA Astrophysics Data System (ADS)

    Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.

    2017-05-01

    Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.

  16. Defining the loop structures in proteins based on composite β-turn mimics.

    PubMed

    Dhar, Jesmita; Chakrabarti, Pinak

    2015-06-01

    Asx- and ω-turns are β-turn mimics, which replace the conventional main-chain hydrogen bonds seen in the latter by those involving the side chains, and both involve three residues. In this paper we analyzed the cases where these turns occur together--side by side, with or without any gap, overlapping and in any order. These composite turns (of length 3-15 residues), occurring at ∼1 per 100 residues, may constitute the full length of many loops, and when the residues in the two component turns overlap or are adjacent to each other, the composite may take well-defined shape. It is thus possible for non-regular regions in protein structure to form local structural motifs, akin to the regular geometrical features exhibited by secondary structures. Composites having the order ω-turns followed by Asx-turns can constitute N-terminal helix capping motif. Ternary composite turns (made up of ω-, Asx- and ST-turns), some with characteristic shape, have also been identified. Delineation of composite turns would help in characterizing loops in protein structures, which often have functional roles. Some sequence patterns seen in composites can be used for their incorporation in protein design. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Tumor segmentation of multi-echo MR T2-weighted images with morphological operators

    NASA Astrophysics Data System (ADS)

    Torres, W.; Martín-Landrove, M.; Paluszny, M.; Figueroa, G.; Padilla, G.

    2009-02-01

    In the present work an automatic brain tumor segmentation procedure based on mathematical morphology is proposed. The approach considers sequences of eight multi-echo MR T2-weighted images. The relaxation time T2 characterizes the relaxation of water protons in the brain tissue: white matter, gray matter, cerebrospinal fluid (CSF) or pathological tissue. Image data is initially regularized by the application of a log-convex filter in order to adjust its geometrical properties to those of noiseless data, which exhibits monotonously decreasing convex behavior. Finally the regularized data is analyzed by means of an 8-dimensional morphological eccentricity filter. In a first stage, the filter was used for the spatial homogenization of the tissues in the image, replacing each pixel by the most representative pixel within its structuring element, i.e. the one which exhibits the minimum total distance to all members in the structuring element. On the filtered images, the relaxation time T2 is estimated by means of least square regression algorithm and the histogram of T2 is determined. The T2 histogram was partitioned using the watershed morphological operator; relaxation time classes were established and used for tissue classification and segmentation of the image. The method was validated on 15 sets of MRI data with excellent results.

  18. Multivariate Spline Algorithms for CAGD

    NASA Technical Reports Server (NTRS)

    Boehm, W.

    1985-01-01

    Two special polyhedra present themselves for the definition of B-splines: a simplex S and a box or parallelepiped B, where the edges of S project into an irregular grid, while the edges of B project into the edges of a regular grid. More general splines may be found by forming linear combinations of these B-splines, where the three-dimensional coefficients are called the spline control points. Univariate splines are simplex splines, where s = 1, whereas splines over a regular triangular grid are box splines, where s = 2. Two simple facts render the development of the construction of B-splines: (1) any face of a simplex or a box is again a simplex or box but of lower dimension; and (2) any simplex or box can be easily subdivided into smaller simplices or boxes. The first fact gives a geometric approach to Mansfield-like recursion formulas that express a B-spline in B-splines of lower order, where the coefficients depend on x. By repeated recursion, the B-spline will be expressed as B-splines of order 1; i.e., piecewise constants. In the case of a simplex spline, the second fact gives a so-called insertion algorithm that constructs the new control points if an additional knot is inserted.

  19. Manifold Regularized Experimental Design for Active Learning.

    PubMed

    Zhang, Lining; Shum, Hubert P H; Shao, Ling

    2016-12-02

    Various machine learning and data mining tasks in classification require abundant data samples to be labeled for training. Conventional active learning methods aim at labeling the most informative samples for alleviating the labor of the user. Many previous studies in active learning select one sample after another in a greedy manner. However, this is not very effective because the classification models has to be retrained for each newly labeled sample. Moreover, many popular active learning approaches utilize the most uncertain samples by leveraging the classification hyperplane of the classifier, which is not appropriate since the classification hyperplane is inaccurate when the training data are small-sized. The problem of insufficient training data in real-world systems limits the potential applications of these approaches. This paper presents a novel method of active learning called manifold regularized experimental design (MRED), which can label multiple informative samples at one time for training. In addition, MRED gives an explicit geometric explanation for the selected samples to be labeled by the user. Different from existing active learning methods, our method avoids the intrinsic problems caused by insufficiently labeled samples in real-world applications. Various experiments on synthetic datasets, the Yale face database and the Corel image database have been carried out to show how MRED outperforms existing methods.

  20. Cognitive Continuum Theory in nursing decision-making.

    PubMed

    Cader, Raffik; Campbell, Steve; Watson, Don

    2005-02-01

    The purpose of this paper is to analyse and evaluate Cognitive Continuum Theory and to provide evidence for its relevance to nurses' decision-making. It is critical that theories used in nursing are evaluated to provide an understanding of their aims, concepts and usefulness. With the advent of evidence-based care, theories on decision-making have acquired increased significance. The criteria identified by Fawcett's framework has been used to analyse and evaluate Hammond's Cognitive Continuum Theory. Findings. There is empirical evidence to support many of the concepts and propositions of Cognitive Continuum Theory. The theory has been applied to the decision-making process of many professionals, including medical practitioners and nurses. Existing evidence suggests that Cognitive Continuum Theory can provide the framework to explain decision-making in nursing. Cognitive Continuum Theory has the potential to make major contributions towards understanding the decision-making process of nurses in the clinical environment. Knowledge of the theory in nursing practice has become crucial.

Top