Sample records for geometric morphometric analyses

  1. Fused Traditional and Geometric Morphometrics Demonstrate Pinniped Whisker Diversity

    PubMed Central

    Ginter, Carly C.; DeWitt, Thomas J.; Fish, Frank E.; Marshall, Christopher D.

    2012-01-01

    Vibrissae (whiskers) are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length) were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics) was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC), which results in vibrotactile reception, but it is currently unclear how the diversity of shapes affects environmental signal modulation. PMID:22509310

  2. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches

    PubMed Central

    Schmieder, Daniela A.; Benítez, Hugo A.; Borissov, Ivailo M.; Fruciano, Carmelo

    2015-01-01

    External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern. PMID:25965335

  3. To 3D or Not to 3D, That Is the Question: Do 3D Surface Analyses Improve the Ecomorphological Power of the Distal Femur in Placental Mammals?

    PubMed Central

    Gould, Francois D. H.

    2014-01-01

    Improvements in three-dimensional imaging technologies have renewed interest in the study of functional and ecological morphology. Quantitative approaches to shape analysis are used increasingly to study form-function relationships. These methods are computationally intensive, technically demanding, and time-consuming, which may limit sampling potential. There have been few side-by-side comparisons of the effectiveness of such approaches relative to more traditional analyses using linear measurements and ratios. Morphological variation in the distal femur of mammals has been shown to reflect differences in locomotor modes across clades. Thus I tested whether a geometric morphometric analysis of surface shape was superior to a multivariate analysis of ratios for describing ecomorphological patterns in distal femoral variation. A sample of 164 mammalian specimens from 44 genera was assembled. Each genus was assigned to one of six locomotor categories. The same hypotheses were tested using two methods. Six linear measurements of the distal femur were taken with calipers, from which four ratios were calculated. A 3D model was generated with a laser scanner, and analyzed using three dimensional geometric morphometrics. Locomotor category significantly predicted variation in distal femoral morphology in both analyses. Effect size was larger in the geometric morphometric analysis than in the analysis of ratios. Ordination reveals a similar pattern with arboreal and cursorial taxa as extremes on a continuum of morphologies in both analyses. Discriminant functions calculated from the geometric morphometric analysis were more accurate than those calculated from ratios. Both analysis of ratios and geometric morphometric surface analysis reveal similar, biologically meaningful relationships between distal femoral shape and locomotor mode. The functional signal from the morphology is slightly higher in the geometric morphometric analysis. The practical costs of conducting these sorts of analyses should be weighed against potentially slight increases in power when designing protocols for ecomorphological studies. PMID:24633081

  4. Dietary Ecology of Murinae (Muridae, Rodentia): A Geometric Morphometric Approach

    PubMed Central

    Gómez Cano, Ana Rosa; Hernández Fernández, Manuel; Álvarez-Sierra, M. Ángeles

    2013-01-01

    Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera. PMID:24236090

  5. Geometric morphometric analysis reveals age-related differences in the distal femur of Europeans.

    PubMed

    Cavaignac, Etienne; Savall, Frederic; Chantalat, Elodie; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2017-12-01

    Few studies have looked into age-related variations in femur shape. We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences. The purpose of this study was to show that differences in distal femur shape related to age could be identified, visualized, and quantified using three-dimensional (3D) geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions. These analyses were used to identify trends in bone shape in various age-based subgroups (<40, 40-60, >60). Only the average bone shape of the < 40-year subgroup was statistically different from that of the other two groups. When the population was divided into two subgroups using 40 years of age as a threshold, the subject's age was correctly assigned 80% of the time. Age-related differences are present in this bone segment. This reliable, accurate method could be used for virtual autopsy and to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Manufacturers of knee replacement implants will have to adapt their prosthesis models as the population evolves over time.

  6. How effective are geometric morphometric techniques for assessing functional shape variation? An example from the great ape temporomandibular joint.

    PubMed

    Terhune, Claire E

    2013-08-01

    Functional shape analyses have long relied on the use of shape ratios to test biomechanical hypotheses. This method is powerful because of the ease with which results are interpreted, but these techniques fall short in quantifying complex morphologies that may not have a strong biomechanical foundation but may still be functionally informative. In contrast, geometric morphometric methods are continually being adopted for quantifying complex shapes, but they tend to prove inadequate in functional analyses because they have little foundation in an explicit biomechanical framework. The goal of this study was to evaluate the intersection of these two methods using the great ape temporomandibular joint as a case study. Three-dimensional coordinates of glenoid fossa and mandibular condyle shape were collected using a Microscribe digitizer. Linear distances extracted from these landmarks were analyzed using a series of one-way ANOVAs; further, the landmark configurations were analyzed using geometric morphometric techniques. Results suggest that the two methods are broadly similar, although the geometric morphometric data allow for the identification of shape differences among taxa that were not immediately apparent in the univariate analyses. Furthermore, this study suggests several new approaches for translating these shape data into a biomechanical context by adjusting the data using a biomechanically relevant variable. Copyright © 2013 Wiley Periodicals, Inc.

  7. A new lizard species of the Phymaturus patagonicus group (Squamata: Liolaemini) from northern Patagonia, Neuquén, Argentina.

    PubMed

    Marín, Andrea González; Pérez, Cristian Hernán Fulvio; Minoli, Ignacio; Morando, Mariana; Avila, Luciano Javier

    2016-06-10

    The integrative taxonomy framework allows developing robust hypotheses of species limits based on the integration of results from different data sets and analytical methods. In this work, we test a candidate species hypothesis previously suggested based on molecular data, with geometric and traditional morphometrics analyses (multivariate and univariate). This new lizard species is part of the Phymaturus patagonicus group (payuniae clade) that is distributed in Neuquén and Mendoza provinces (Argentina). Our results showed that Phymaturus rahuensis sp. nov. differs from the other species of the payuniae clade by a higher number of midbody scales, and fewer supralabials scales, finger lamellae and toe lamellae. Also, its multidimensional spaces, both based on continuous lineal variables and geometric morphometrics (shape) characters, do not overlap with those of the other species in this clade. The results of the morphometric and geometric morphometric analyses presented here, coupled with previously published molecular data, represent three independent lines of evidence that support the diagnosis of this new taxon.

  8. Experimental sharp force injuries to ribs: Multimodal morphological and geometric morphometric analyses using micro-CT, macro photography and SEM.

    PubMed

    Komo, Larissa; Grassberger, Martin

    2018-07-01

    Tool marks on bones induced by knife blades can be analysed morphometrically in order to enable an allocation of the suspected "inflicting weapon" to the particular morphology of the bone lesions. Until now, geometric morphometrics has not been used to analyse the morphology of knife lesions on fleshed bones in detail. By using twelve experimental knives and a drop weight tower, stab/cut injuries were inflicted on untreated pig ribs. The morphology of the experimentally produced lesions was subsequently recorded with three imaging techniques (μCT, macro photography and SEM) and analysed with different morphometric software (Amira, tps and Morpheus). Based on the measured distances between the walls of the kerf marks, which corresponded to the thickness of the blade, one could conclude to the respective blade thickness with a deviation of max. ±0.35mm and match the injuries to the knives. With subsequent reanalysis after maceration, an average shrinkage factor up to 8.6% was observed. Among the three imaging techniques used in this study, μCT was the most accurate and efficient technique, particularly because it represented the only non-destructive modality to document injuries without maceration, even though μCT is more expensive and time-consuming as well as less accessible than a macro SLR-camera or a SEM. For optimal characterizations of the blades' and kerfs' shapes the software tps proofed to be the best choice. Accordingly, geometric morphometrics could serve as a tool in forensic investigations concerning kerf marks. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Linear versus geometric morphometric approaches for the analysis of head shape dimorphism in lizards.

    PubMed

    Fabre, Anne-Claire; Cornette, Raphäel; Huyghe, Katleen; Andrade, Denis V; Herrel, Anthony

    2014-09-01

    Differences between the sexes may arise because of differences in reproductive strategy, with females investing more in traits related to reproductive output and males investing more in traits related to resource holding capacity and territory defence. Sexual dimorphism is widespread in lizards and in many species males and females also differ in head shape. Males typically have bigger heads than females resulting in intersexual differences in bite force. Whereas most studies documenting differences in head dimensions between sexes use linear dimensions, the use of geometric morphometrics has been advocated as more appropriate to characterize such differences. This method may allow the characterization of local shape differences that may have functional consequences, and provides unbiased indicators of shape. Here, we explore whether the two approaches provide similar results in an analyses of head shape in Tupinambis merianae. The Argentine black and white tegu differs dramatically in body size, head size, and bite force between the sexes. However, whether the intersexual differences in bite force are simply the result of differences in head size or whether more subtle modifications (e.g., in muscle insertion areas) are involved remains currently unknown. Based on the crania and mandibles of 19 lizards with known bite force, we show intersexual differences in the shape of the cranium and mandible using both linear and geometric morphometric approaches. Although both types of analyses showed generally similar results for the mandible, this was not the case for the cranium. Geometric morphometric approaches provided better insights into the underlying functional relationships between the cranium and the jaw musculature, as illustrated by shape differences in muscle insertion areas not detected using linear morphometric data. © 2014 Wiley Periodicals, Inc.

  10. Structural MRI and Cognitive Correlates in Pest-Control Personnel from Gulf War I

    DTIC Science & Technology

    2010-04-01

    Figure (ROCFT; Corwin & Blysma, 1993) Copying a complex geometric design; assess ability to organize and construct Raw Score...workstations at Boston University School of Medicine where they were reconstructed for morphometric analyses by the study imaging expert, Dr. Killiany...conventional structural MRI and morphometric analysis of K. Sullivan, Ph.D

  11. Structural MRI and Cognitive Correlates in Pest-control Personnel from Gulf War I

    DTIC Science & Technology

    2009-04-01

    Medicine where they will be reconstructed for morphometric analyses by the study imaging expert, Dr. Killiany. All the images will be transferred to... geometric design; assess ability to organize and construct Raw Score...MRI and morphometric analysis of the images. The results of the current study will be able to compare whether brain imaging differences exist

  12. Assessing the effects of tooth loss in adult crania using geometric morphometrics.

    PubMed

    Small, Candice; Brits, Desiré; Hemingway, Jason

    2016-01-01

    With high numbers of unidentified skeletonised remains recovered annually in South Africa and an increased number of edentate individuals being reported, the question arises as to whether tooth loss would result in craniofacial changes which might alter the accuracy of osteological analyses. Forty-five fixed landmarks together with sliding semilandmarks were collected from 229 white South African crania and were used to capture curve data pertaining to the basicranium, alveoli, zygomatic arches, nasal aperture and orbits. Geometric morphometric methods were employed to assess the effects of tooth loss on these structures. Although a number of effects were seen when the skull was analysed in its entirety, only the alveoli proved to be significantly affected when regions were analysed individually. Both upper facial height and palate shape were affected by tooth loss, which may influence various osteometric measurements and qualitative traits that are used during the assessment of ancestry and sex.

  13. ShapeRotator: An R tool for standardized rigid rotations of articulated three-dimensional structures with application for geometric morphometrics.

    PubMed

    Vidal-García, Marta; Bandara, Lashi; Keogh, J Scott

    2018-05-01

    The quantification of complex morphological patterns typically involves comprehensive shape and size analyses, usually obtained by gathering morphological data from all the structures that capture the phenotypic diversity of an organism or object. Articulated structures are a critical component of overall phenotypic diversity, but data gathered from these structures are difficult to incorporate into modern analyses because of the complexities associated with jointly quantifying 3D shape in multiple structures. While there are existing methods for analyzing shape variation in articulated structures in two-dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of capability and research. Here, we describe a simple geometric rigid rotation approach that removes the effect of random translation and rotation, enabling the morphological analysis of 3D articulated structures. Our method is based on Cartesian coordinates in 3D space, so it can be applied to any morphometric problem that also uses 3D coordinates (e.g., spherical harmonics). We demonstrate the method by applying it to a landmark-based dataset for analyzing shape variation using geometric morphometrics. We have developed an R tool (ShapeRotator) so that the method can be easily implemented in the commonly used R package geomorph and MorphoJ software. This method will be a valuable tool for 3D morphological analyses in articulated structures by allowing an exhaustive examination of shape and size diversity.

  14. Geometric morphometrics in primatology: craniofacial variation in Homo sapiens and Pan troglodytes.

    PubMed

    Lynch, J M; Wood, C G; Luboga, S A

    1996-01-01

    Traditionally, morphometric studies have relied on statistical analysis of distances, angles or ratios to investigate morphometric variation among taxa. Recently, geometric techniques have been developed for the direct analysis of landmark data. In this paper, we offer a summary (with examples) of three of these newer techniques, namely shape coordinate, thin-plate spline and relative warp analyses. Shape coordinate analysis detected significant craniofacial variation between 4 modern human populations, with African and Australian Aboriginal specimens being relatively prognathous compared with their Eurasian counterparts. In addition, the Australian specimens exhibited greater basicranial flexion than all other samples. The observed relationships between size and craniofacial shape were weak. The decomposition of shape variation into affine and non-affine components is illustrated via a thin-plate spline analysis of Homo and Pan cranial landmarks. We note differences between Homo and Pan in the degree of prognathism and basicranial flexion and the position and orientation of the foramen magnum. We compare these results with previous studies of these features in higher primates and discuss the utility of geometric morphometrics as a tool in primatology and physical anthropology. We conclude that many studies of morphological variation, both within and between taxa, would benefit from the graphical nature of these techniques.

  15. Shaping up: a geometric morphometric approach to assemblage ecomorphology.

    PubMed

    Bower, L M; Piller, K R

    2015-09-01

    This study adopts an ecomorphological approach to test the utility of body shape as a predictor of niche relationships among a stream fish assemblage of the Tickfaw River (Lake Pontchartrain Basin) in southeastern Louisiana, U.S.A. To examine the potential influence of evolutionary constraints, analyses were performed with and without the influence of phylogeny. Fish assemblages were sampled throughout the year, and ecological data (habitat and tropic guild) and body shape (geometric morphometric) data were collected for each fish specimen. Multivariate analyses were performed to examine relationships and differences between body shape and ecological data. Results indicate that a relationship exists between body shape and trophic guild as well as flow regime, but no significant correlation between body shape and substratum was found. Body shape was a reliable indicator of position within assemblage niche space. © 2015 The Fisheries Society of the British Isles.

  16. [Differentiation by geometric morphometrics among 11 Anopheles (Nyssorhynchus) in Colombia].

    PubMed

    Calle, David Alonso; Quiñones, Martha Lucía; Erazo, Holmes Francisco; Jaramillo, Nicolás

    2008-09-01

    The correct identification of the Anopheles species of the subgenus Nyssorhynchus is important because this subgenus includes the main malaria vectors in Colombia. This information is necessary for focusing a malaria control program. Geometric morphometrics were used to evaluate morphometric variation of 11 species of subgenus Nyssorhynchus present in Colombia and to distinguish females of each species. Materials and methods. The specimens were obtained from series and family broods from females collected with protected human hosts as attractants. The field collected specimens and their progeny were identified at each of the associated stages by conventional keys. For some species, wild females were used. Landmarks were selected on wings from digital pictures from 336 individuals, and digitized with coordinates. The coordinate matrix was processed by generalized Procrustes analysis which generated size and shape variables, free of non-biological variation. Size and shape variables were analyzed by univariate and multivariate statistics. The subdivision of subgenus Nyssorhynchus in sections is not correlated with wing shape. Discriminant analyses correctly classified 97% of females in the section Albimanus and 86% in the section Argyritarsis. In addition, these methodologies allowed the correct identification of 3 sympatric species from Putumayo which have been difficult to identify in the adult female stage. The geometric morphometrics were demonstrated to be a very useful tool as an adjunct to taxonomy of females the use of this method is recommended in studies of the subgenus Nyssorhynchus in Colombia.

  17. Geometric morphometrics as a tool for improving the comparative study of behavioural postures

    NASA Astrophysics Data System (ADS)

    Fureix, Carole; Hausberger, Martine; Seneque, Emilie; Morisset, Stéphane; Baylac, Michel; Cornette, Raphaël; Biquand, Véronique; Deleporte, Pierre

    2011-07-01

    Describing postures has always been a central concern when studying behaviour. However, attempts to compare postures objectively at phylogenetical, populational, inter- or intra-individual levels generally either rely upon a few key elements or remain highly subjective. Here, we propose a novel approach, based on well-established geometric morphometrics, to describe and to analyse postures globally (i.e. considering the animal's body posture in its entirety rather than focusing only on a few salient elements, such as head or tail position). Geometric morphometrics is concerned with describing and comparing variation and changes in the form (size and shape) of organisms using the coordinates of a series of homologous landmarks (i.e. positioned in relation to skeletal or muscular cues that are the same for different species for every variety of form and function and that have derived from a common ancestor, i.e. they have a common evolutionary ancestry, e.g. neck, wings, flipper/hand). We applied this approach to horses, using global postures (1) to characterise behaviours that correspond to different arousal levels, (2) to test potential impact of environmental changes on postures. Our application of geometric morphometrics to horse postures showed that this method can be used to characterise behavioural categories, to evaluate the impact of environmental factors (here human actions) and to compare individuals and groups. Beyond its application to horses, this promising approach could be applied to all questions involving the analysis of postures (evolution of displays, expression of emotions, stress and welfare, behavioural repertoires…) and could lead to a whole new line of research.

  18. A virtual reconstruction and comparative analysis of the KNM-ER 42700 cranium.

    PubMed

    Bauer, Catherine C; Harvati, Katerina

    2015-01-01

    The taxonomic attribution of the 1.55 million year old young adult fossil calvaria KNM-ER 42700   from Ileret, Kenya, is subject to ongoing controversy. It has been attributed to H. erectus based on comparative description and linear measurements. However, 3-D geometric morphometric analysis found that this specimen fell outside the range of variation of H. erectus in its cranial shape, which was intermediate between H. erectus and modern humans. One problem is that analyses so far were conducted on the original specimen, which shows slight post-mortem distortion. Here we use a surface scan of a high resolution cast of KNM-ER 42700 to virtually reconstruct the calvaria and conduct a new 3D geometric morphometric analysis of both its original and its reconstructed shape. Our comparative sample included several specimens of H. erectus (s.l., including the subadult KNM-WT 15000), H. habilis, H. heidelbergenis (s.l.) and H. neanderthalensis, as well as early and Upper Paleolithic H. sapiens. Our principal component analysis results showed that, like the original specimen, our virtual reconstruction of KNM-ER 42700 is also intermediate in shape between fossil Homo and modern humans. Taphonomic distortion, therefore, appears to not have been a major factor affecting previous 3-D geometric morphometric analyses. The intermediate shape of KNM-ER 42700 might instead be related to the young developmental age of the specimen. Further work on reconstructing the original specimen or based on computed tomorgraphic scans is needed to confirm these results.

  19. Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets.

    PubMed

    Daboul, Amro; Ivanovska, Tatyana; Bülow, Robin; Biffar, Reiner; Cardini, Andrea

    2018-01-01

    Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude of inter-operator differences in Procrustes-based geometric morphometric analyses. An in depth analysis of both absolute and relative error was performed in a subsample of individuals with replicated digitization by three different operators. The effect of inter-operator differences was also explored in a large sample of more than 900 individuals. Although absolute error was not unusual for MRI measurements, including bone landmarks, shape was particularly affected by differences among operators, with up to more than 30% of sample variation accounted for by this type of error. The magnitude of the bias was such that it dominated the main pattern of bone and total (all landmarks included) shape variation, largely surpassing the effect of sex differences between hundreds of men and women. In contrast, however, we found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in estimates of nasal size. Our study exemplifies the assessment of measurement error using geometric morphometrics on landmarks from MRIs and stresses the importance of relating it to total sample variance within the specific methodological framework being used. In summary, precise landmarks may not necessarily imply negligible errors, especially in shape data; indeed, size and shape may be differentially impacted by measurement error and different types of landmarks may have relatively larger or smaller errors. Importantly, and consistently with other recent studies using geometric morphometrics on digital images (which, however, were not specific to MRI data), this study showed that inter-operator biases can be a major source of error in the analysis of large samples, as those that are becoming increasingly common in the 'era of big data'.

  20. Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets

    PubMed Central

    Ivanovska, Tatyana; Bülow, Robin; Biffar, Reiner; Cardini, Andrea

    2018-01-01

    Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude of inter-operator differences in Procrustes-based geometric morphometric analyses. An in depth analysis of both absolute and relative error was performed in a subsample of individuals with replicated digitization by three different operators. The effect of inter-operator differences was also explored in a large sample of more than 900 individuals. Although absolute error was not unusual for MRI measurements, including bone landmarks, shape was particularly affected by differences among operators, with up to more than 30% of sample variation accounted for by this type of error. The magnitude of the bias was such that it dominated the main pattern of bone and total (all landmarks included) shape variation, largely surpassing the effect of sex differences between hundreds of men and women. In contrast, however, we found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in estimates of nasal size. Our study exemplifies the assessment of measurement error using geometric morphometrics on landmarks from MRIs and stresses the importance of relating it to total sample variance within the specific methodological framework being used. In summary, precise landmarks may not necessarily imply negligible errors, especially in shape data; indeed, size and shape may be differentially impacted by measurement error and different types of landmarks may have relatively larger or smaller errors. Importantly, and consistently with other recent studies using geometric morphometrics on digital images (which, however, were not specific to MRI data), this study showed that inter-operator biases can be a major source of error in the analysis of large samples, as those that are becoming increasingly common in the 'era of big data'. PMID:29787586

  1. A geometric morphometric study into the sexual dimorphism of the human scapula.

    PubMed

    Scholtz, Y; Steyn, M; Pretorius, E

    2010-08-01

    Sex determination is vital when attempting to establish identity from skeletal remains. Two approaches to sex determination exists: morphological and metrical. The aim of this paper was to use geometric morphometrics to study the shape of the scapula and its sexual dimorphism. The sample comprised 45 adult black male and 45 adult black female scapulae of known sex. The scapulae were photographed and 21 homologous landmarks were plotted to use for geometric morphometric analysis with the 'tps' series of programs, as well as the IMP package. Consensus thin-plate splines and vector plots for males and females were compared. The CVA and TwoGroup analyses indicated that significant differences exist between males and females. The lateral and medial borders of females are straighter while the supraspinous fossa is more convexly curved than that of males. More than 91% of the females and 95% of the males were correctly assigned. Hotelling's T(2)-test yielded a significant p-value of 0.00039. In addition, 100 equidistant landmarks representing the curve only were also assigned. These, however, yielded considerably poorer results. It is concluded that it is better to use homologous landmarks rather than curve data only, as it is most probable that the shape of the outline relative to the fixed homologous points on the scapula is sexually dimorphic.

  2. Characterization and Biomimcry of Avian Nanostructured Tissues

    DTIC Science & Technology

    2016-01-19

    keratin cortex (Maia et al. 2011) at the outer edge of barbs from TEM images. Geometric morphometrics of barb shape Digitized images of the barb thin...morphological measurements (all P > 0.05; Figure 4C; Table S2). Gloss and Barb Geometric Morphometrics Matte and glossy barbs differed significantly in...barbs and lack of multiple, clear anatomically homologous features, traditional landmark based morphometric techniques (Bookstein, 1982) would be

  3. Geometric morphometrics and virtual anthropology: advances in human evolutionary studies.

    PubMed

    Rein, Thomas R; Harvati, Katerina

    2014-01-01

    Geometric morphometric methods have been increasingly used in paleoanthropology in the last two decades, lending greater power to the analysis and interpretation of the human fossil record. More recently the advent of the wide use of computed tomography and surface scanning, implemented in combination with geometric morphometrics (GM), characterizes a new approach, termed Virtual Anthropology (VA). These methodological advances have led to a number of developments in human evolutionary studies. We present some recent examples of GM and VA related research in human evolution with an emphasis on work conducted at the University of Tübingen and other German research institutions.

  4. Morphometric Identification of Queens, Workers and Intermediates in In Vitro Reared Honey Bees (Apis mellifera).

    PubMed

    De Souza, Daiana A; Wang, Ying; Kaftanoglu, Osman; De Jong, David; Amdam, Gro V; Gonçalves, Lionel S; Francoy, Tiago M

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates.

  5. Morphometric Identification of Queens, Workers and Intermediates in In Vitro Reared Honey Bees (Apis mellifera)

    PubMed Central

    A. De Souza, Daiana; Wang, Ying; Kaftanoglu, Osman; De Jong, David; V. Amdam, Gro; S. Gonçalves, Lionel; M. Francoy, Tiago

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates. PMID:25894528

  6. Using geometric morphometric visualizations of directional selection gradients to investigate morphological differentiation.

    PubMed

    Weaver, Timothy D; Gunz, Philipp

    2018-04-01

    Researchers studying extant and extinct taxa are often interested in identifying the evolutionary processes that have lead to the morphological differences among the taxa. Ideally, one could distinguish the influences of neutral evolutionary processes (genetic drift, mutation) from natural selection, and in situations for which selection is implicated, identify the targets of selection. The directional selection gradient is an effective tool for investigating evolutionary process, because it can relate form (size and shape) differences between taxa to the variation and covariation found within taxa. However, although most modern morphometric analyses use the tools of geometric morphometrics (GM) to analyze landmark data, to date, selection gradients have mainly been calculated from linear measurements. To address this methodological gap, here we present a GM approach for visualizing and comparing between-taxon selection gradients with each other, associated difference vectors, and "selection" gradients from neutral simulations. To exemplify our approach, we use a dataset of 347 three-dimensional landmarks and semilandmarks recorded on the crania of 260 primate specimens (112 humans, 67 common chimpanzees, 36 bonobos, 45 gorillas). Results on this example dataset show how incorporating geometric information can provide important insights into the evolution of the human braincase, and serve to demonstrate the utility of our approach for understanding morphological evolution. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, W. James; Albertson, R Craig; Jacob, Rick E.

    Here we present a re-description of Abudefduf luridus and reassign it to the genus Similiparma. We supplement traditional diagnoses and descriptions of this species with quantitative anatomical data collected from a family-wide geometric morphometric analysis of head morphology (44 species representing all 30 damselfish genera) and data from cranial micro-CT scans of fishes in the genus Similiparma. The use of geometric morphometric analyses (and other methods of shape analysis) permits detailed comparisons between the morphology of specific taxa and the anatomical diversity that has arisen in an entire lineage. This provides a particularly useful supplement to traditional description methods andmore » we recommend the use of such techniques by systematists. Similiparma and its close relatives constitute a branch of the damselfish phylogenetic tree that predominantly inhabits rocky reefs in the Atlantic and Eastern Pacific, as opposed to the more commonly studied damselfishes that constitute a large portion of the ichthyofauna on all coral-reef communities.« less

  8. A new interpretation of the bee fossil Melitta willardi Cockerell (Hymenoptera, Melittidae) based on geometric morphometrics of the wing.

    PubMed

    Dewulf, Alexandre; De Meulemeester, Thibaut; Dehon, Manuel; Engel, Michael S; Michez, Denis

    2014-01-01

    Although bees are one of the major lineages of pollinators and are today quite diverse, few well-preserved fossils are available from which to establish the tempo of their diversification/extinction since the Early Cretaceous. Here we present a reassessment of the taxonomic affinities of Melitta willardiCockerell 1909, preserved as a compression fossil from the Florissant shales of Colorado, USA. Based on geometric morphometric wing shape analyses M. willardi cannot be confidently assigned to the genus Melitta Kirby (Anthophila, Melittidae). Instead, the species exhibits phenotypic affinity with the subfamily Andreninae (Anthophila, Andrenidae), but does not appear to belong to any of the known genera therein. Accordingly, we describe a new genus, Andrenopteryx gen. n., based on wing shape as well as additional morphological features and to accommodate M. willardi. The new combination Andrenopteryx willardi (Cockerell) is established.

  9. Left Atrial trajectory impairment in Hypertrophic Cardiomyopathy disclosed by Geometric Morphometrics and Parallel Transport

    NASA Astrophysics Data System (ADS)

    Piras, Paolo; Torromeo, Concetta; Re, Federica; Evangelista, Antonietta; Gabriele, Stefano; Esposito, Giuseppe; Nardinocchi, Paola; Teresi, Luciano; Madeo, Andrea; Chialastri, Claudia; Schiariti, Michele; Varano, Valerio; Uguccioni, Massimo; Puddu, Paolo E.

    2016-10-01

    The analysis of full Left Atrium (LA) deformation and whole LA deformational trajectory in time has been poorly investigated and, to the best of our knowledge, seldom discussed in patients with Hypertrophic Cardiomyopathy. Therefore, we considered 22 patients with Hypertrophic Cardiomyopathy (HCM) and 46 healthy subjects, investigated them by three-dimensional Speckle Tracking Echocardiography, and studied the derived landmark clouds via Geometric Morphometrics with Parallel Transport. Trajectory shape and trajectory size were different in Controls versus HCM and their classification powers had high AUC (Area Under the Receiving Operator Characteristic Curve) and accuracy. The two trajectories were much different at the transition between LA conduit and booster pump functions. Full shape and deformation analyses with trajectory analysis enabled a straightforward perception of pathophysiological consequences of HCM condition on LA functioning. It might be worthwhile to apply these techniques to look for novel pathophysiological approaches that may better define atrio-ventricular interaction.

  10. A new interpretation of the bee fossil Melitta willardi Cockerell (Hymenoptera, Melittidae) based on geometric morphometrics of the wing

    PubMed Central

    Dewulf, Alexandre; De Meulemeester, Thibaut; Dehon, Manuel; Engel, Michael S.; Michez, Denis

    2014-01-01

    Abstract Although bees are one of the major lineages of pollinators and are today quite diverse, few well-preserved fossils are available from which to establish the tempo of their diversification/extinction since the Early Cretaceous. Here we present a reassessment of the taxonomic affinities of Melitta willardi Cockerell 1909, preserved as a compression fossil from the Florissant shales of Colorado, USA. Based on geometric morphometric wing shape analyses M. willardi cannot be confidently assigned to the genus Melitta Kirby (Anthophila, Melittidae). Instead, the species exhibits phenotypic affinity with the subfamily Andreninae (Anthophila, Andrenidae), but does not appear to belong to any of the known genera therein. Accordingly, we describe a new genus, Andrenopteryx gen. n., based on wing shape as well as additional morphological features and to accommodate M. willardi. The new combination Andrenopteryx willardi (Cockerell) is established. PMID:24715773

  11. Geometric morphometric analysis of mandibular shape diversity in Pan.

    PubMed

    Robinson, Chris

    2012-07-01

    The aim of this research is to determine whether geometric morphometric (GM) techniques can provide insights into how the shape of the mandibular corpus differs between bonobos and chimpanzees and to explore the potential implications of those results for our understanding of hominin evolution. We focused on this region of the mandible because of the relative frequency with which it has been recovered in the hominin fossil record. In addition, no previous study had explored in-depth three-dimensional (3D) mandibular corpus shape differences between adults of the two Pan species using geometric morphometrics. GM methods enable researchers to quantitatively analyze and visualize 3D shape changes in skeletal elements and provide an important compliment to traditional two-dimensional analyses. Eighteen mandibular landmarks were collected using a Microscribe 3DX portable digitizer. Specimen configurations were superimposed using Generalized Procrustes analysis and the projections of the fitted coordinates to tangent space were analyzed using multivariate statistics. The size-adjusted corpus shapes of Pan paniscus and Pan troglodytes could be assigned to species with approximately 93% accuracy and the Procrustes distance between the two species was significant. Analyses of the residuals from a multivariate linear regression of the data on centroid size suggested that much of the shape difference between the species is size-related. Chimpanzee subspecies and a small sample of Australopithecus specimens could be correctly identified to taxon, at best, only 75% of the time, although the Procrustes distances between these taxa were significant. The shape of the mandibular symphysis was identified as especially useful in differentiating Pan species from one another. This suggests that this region of the mandible has the potential to be informative for taxonomic analyses of fossil hominoids, including hominins. The results also have implications for phylogenetic hypotheses of hominoid evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners

    PubMed Central

    Viscosi, Vincenzo; Cardini, Andrea

    2011-01-01

    Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in their studies as much as zoologists have done. Using free software and an example dataset from two geographical populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf morphology was large and differences between trees were generally bigger than within trees; differences between the two geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide an introduction to the discipline which, for many biologists, is less intimidating than the often inaccessible specialistic literature. PMID:21991324

  13. An Expanded Combined Evidence Approach to the Gavialis Problem Using Geometric Morphometric Data from Crocodylian Braincases and Eustachian Systems

    PubMed Central

    Gold, Maria Eugenia Leone; Brochu, Christopher A.; Norell, Mark A.

    2014-01-01

    The phylogenetic position of the Indian gharial (Gavialis gangeticus) is disputed - morphological characters place Gavialis as the sister to all other extant crocodylians, whereas molecular and combined analyses find Gavialis and the false gharial (Tomistoma schlegelii) to be sister taxa. Geometric morphometric techniques have only begun to be applied to this issue, but most of these studies have focused on the exterior of the skull. The braincase has provided useful phylogenetic information for basal crurotarsans, but has not been explored for the crown group. The Eustachian system is thought to vary phylogenetically in Crocodylia, but has not been analytically tested. To determine if gross morphology of the crocodylian braincase proves informative to the relationships of Gavialis and Tomistoma, we used two- and three-dimensional geometric morphometric approaches. Internal braincase images were obtained using high-resolution computerized tomography scans. A principal components analysis identified that the first component axis was primarily associated with size and did not show groupings that divide the specimens by phylogenetic affinity. Sliding semi-landmarks and a relative warp analysis indicate that a unique Eustachian morphology separates Gavialis from other extant members of Crocodylia. Ontogenetic expansion of the braincase results in a more dorsoventrally elongate median Eustachian canal. Changes in the shape of the Eustachian system do provide phylogenetic distinctions between major crocodylian clades. Each morphometric dataset, consisting of continuous morphological characters, was added independently to a combined cladistic analysis of discrete morphological and molecular characters. The braincase data alone produced a clade that included crocodylids and Gavialis, whereas the Eustachian data resulted in Gavialis being considered a basally divergent lineage. When each morphometric dataset was used in a combined analysis with discrete morphological and molecular characters, it generated a tree that matched the topology of the molecular phylogeny of Crocodylia. PMID:25198124

  14. DNA barcoding and wing morphometrics to distinguish three Aedes vectors in Thailand.

    PubMed

    Sumruayphol, Suchada; Apiwathnasorn, Chamnarn; Ruangsittichai, Jiraporn; Sriwichai, Patchara; Attrapadung, Siriluck; Samung, Yudthana; Dujardin, Jean-Pierre

    2016-07-01

    Aedes aegypti (Diptera: Culicidae) (L.), Ae. albopictus (Skuse), and Ae. scutellaris (Walker) are important mosquito vectors of dengue and chikungunya viruses. They are morphologically similar and sympatric in some parts of their distribution; therefore, there is a risk of incorrect morphological identification. Any confusion could have a negative impact on epidemiological studies or control strategies. Therefore, we explored two modern tools to supplement current morphological identification: DNA barcoding and geometric morphometric analyses. Field larvae were reared to adults and carefully classified based on morphological traits. The genetic analysis was based on the 658bp each of 30COI sequences. Some Culex spp., Mansonia bonneae, were included as outgroups, and inclusion of a few other Aedes spp. facilitated phylogenetic inference of the relationship between Ae. albopictus and Ae. scutellaris. The two species were separated by an average interspecific divergence of 0.123 (0.119-0.127). Morphometric examination included landmark- (392 specimens) and outline-based (317 specimens) techniques. The shape of the wing showed different discriminating power based on sex and digitizing technique. This is the first time that Ae. scutellaris and Ae. albopictus have been compared using these two techniques. We confirm that these morphologically close species are valid, and that geometric morphometrics can considerably increase the reliability of morphological identification. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The role of wing geometric morphometrics in the identification of sandflies within the subgenus Lutzomyia.

    PubMed

    Giordani, B F; Andrade, A J; Galati, E A B; Gurgel-Gonçalves, R

    2017-12-01

    The Lutzomyia subgenus (Diptera: Psychodidae) includes sibling species with morphologically indistinguishable females. The aims of this study were to analyse variations in the size and shape of wings of species within the Lutzomyia subgenus and to assess whether these analyses might be useful in their identification. Wings (n = 733) of 18 species deposited in Brazilian collections were analysed by geometric morphometrics, using other genera and subgenera as outgroups. Shape variation was summarized in multivariate analyses and differences in wing size among species were tested by analysis of variance. The results showed significant variation in the sizes and shapes of wings of different Lutzomyia species. Two clusters within the Lutzomyia subgenus were distinguished in analyses of both males and females. In Cluster 1 (Lutzomyia ischnacantha, Lutzomyia cavernicola, Lutzomyia almerioi, Lutzomyia forattinii, Lutzomyia renei and Lutzomyia battistinii), scores for correct reclassification were high (females, kappa = 0.91; males, kappa = 0.90), whereas in Cluster 2 (Lutzomyia alencari, Lutzomyia ischyracantha, Lutzomyia cruzi, Lutzomyia longipalpis, Lutzomyia gaminarai and Lutzomyia lichyi), scores for correct reclassification were low (females, kappa = 0.42; males, kappa = 0.48). Wing geometry was useful in the identification of some species of the Lutzomyia subgenus, but did not allow the identification of sibling species such as L. longipalpis and L. cruzi. © 2017 The Royal Entomological Society.

  16. Evaluation of Chemical Preparation on Insect Wing Shape for Geometric Morphometrics

    PubMed Central

    Lorenz, Camila; Suesdek, Lincoln

    2013-01-01

    Geometric morphometrics is an approach that has been increasingly applied in studies with insects. A limiting factor of this technique is that some mosquitoes have wings with dark spots or many scales, which jeopardizes the visualization of landmarks for morphometric analysis. Recently, in some studies, chemically treatment (staining) of the wings was used to improve the viewing of landmarks. In this study, we evaluated whether this method causes deformation of the wing veins and tested whether it facilitates the visualization of the most problematic landmarks. In addition, we tested whether mechanical removal of the scales was sufficient for this purpose. The results showed that the physical and chemical treatments are equally effective in improving visualization of the landmarks. The chemical method did not cause deformation of the wing. Thus, some of these treatments should be performed before beginning geometric morphometric analysis to avoid erroneous landmark digitizing. PMID:24019438

  17. Geometric Morphometrics on Gene Expression Patterns Within Phenotypes: A Case Example on Limb Development

    PubMed Central

    Martínez-Abadías, Neus; Mateu, Roger; Niksic, Martina; Russo, Lucia; Sharpe, James

    2016-01-01

    How the genotype translates into the phenotype through development is critical to fully understand the evolution of phenotypes. We propose a novel approach to directly assess how changes in gene expression patterns are associated with changes in morphology using the limb as a case example. Our method combines molecular biology techniques, such as whole-mount in situ hybridization, with image and shape analysis, extending the use of Geometric Morphometrics to the analysis of nonanatomical shapes, such as gene expression domains. Elliptical Fourier and Procrustes-based semilandmark analyses were used to analyze the variation and covariation patterns of the limb bud shape with the expression patterns of two relevant genes for limb morphogenesis, Hoxa11 and Hoxa13. We devised a multiple thresholding method to semiautomatically segment gene domains at several expression levels in large samples of limb buds from C57Bl6 mouse embryos between 10 and 12 postfertilization days. Besides providing an accurate phenotyping tool to quantify the spatiotemporal dynamics of gene expression patterns within developing structures, our morphometric analyses revealed high, non-random, and gene-specific variation undergoing canalization during limb development. Our results demonstrate that Hoxa11 and Hoxa13, despite being paralogs with analogous functions in limb patterning, show clearly distinct dynamic patterns, both in shape and size, and are associated differently with the limb bud shape. The correspondence between our results and already well-established molecular processes underlying limb development confirms that this morphometric approach is a powerful tool to extract features of development regulating morphogenesis. Such multilevel analyses are promising in systems where not so much molecular information is available and will advance our understanding of the genotype–phenotype map. In systematics, this knowledge will increase our ability to infer how evolution modified a common developmental pattern to generate a wide diversity of morphologies, as in the vertebrate limb. PMID:26377442

  18. Landmark-based geometric morphometric analysis of wing shape among certain species of Aedes mosquitoes in District Dehradun (Uttarakhand), India.

    PubMed

    Mondal, Ritwik; Devi, N Pemola; Jauhari, R K

    2015-06-01

    Insect wing morphology has been used in many studies to describe variations among species and populations using traditional morphometrics, and more recently geometric morphometrics. A landmark-based geometric morphometric analysis of the wings of three species of Aedes (Diptera: Culicidae), viz. Ae. aegypti, Ae. albopictus and Ae. pseudotaeniatus, at District Dehradun was conducted belling on the fact that it can provide insight into the population structure, ecology and taxonomic identification. Adult Aedes mosquito specimens were randomly collected using aerial nets and morphologically examined and identified. The landmarks were identified on the basis of landmark based geometric morphometric analysis thin-plate spline (mainly the software tps-Util 1.28; tps-Dig 1.40; tps-Relw 1.53; and tps-Spline 1.20) and integrated morphometrics programme (mainly twogroup win8 and PCA win8) were utilized. In relative warp (RW) analysis, the first two RW of Ae. aegypti accounted for the highest value (95.82%), followed by Ae. pseudotaeniatus (90.89%), while the lowest (90.12%) being recorded for Ae. albopictus. The bending energies of Ae. aegypti and Ae. pseudotaeniatus were quite identical being 0.1882 and 0.1858 respectively, while Ae. albopictus recorded the highest value of 0.9774. The mean difference values of the distances among Aedes species performing Hotelling's T 2 test were significantly high, predicting major differences among the taxa. In PCA analysis, the horizontal and vertical axis summarized 52.41 and 23.30% of variances respectively. The centroid size exhibited significant differences among populations (non-parametric Kruskal-Wallis test, H = 10.56, p < 0.01). It has been marked out that the geometric morphometrics utilizes powerful and comprehensive statistical procedures to analyze the shape differences of a morphological feature, assuming that the studied mosquitoes may represent different genotypes and probably come from one diverse gene pool.

  19. Analysing the floral elements of the lost tree of Easter Island: a morphometric comparison between the remaining ex-situ lines of the endemic extinct species Sophora toromiro.

    PubMed

    Püschel, Thomas A; Espejo, Jaime; Sanzana, María-José; Benítez, Hugo A

    2014-01-01

    Sophora toromiro (Phil) Skottsb. is a species that has been extinct in its natural habitat Easter Island (Rapa Nui) for over 50 years. However, seed collections carried out before its extinction have allowed its persistence ex-situ in different botanical gardens and private collections around the world. The progenies of these diverse collections have been classified in different lines, most of them exhibiting high similarity as corroborated by molecular markers. In spite of this resemblance observed between the different lines, one of them (Titze) has dissimilar floral elements, thus generating doubts regarding its species classification. The floral elements (wing, standard and keel) belonging to three different S. toromiro lines and two related species were analyzed using geometric morphometrics. This method was applied in order to quantify the floral shape variation of the standard, wing, and keel between the different lines and control species. Geometric morphometrics analyses were able to distinguish the floral elements at both intra (lines) and inter-specific levels. The present results are on line with the cumulative evidence that supports the Titze line as not being a proper member of the S. toromiro species, but probably a hybridization product or even another species of the Edwardsia section. The reintroduction programs of S. toromiro should consider this information when assessing the authenticity and origin of the lines that will be used to repopulate the island.

  20. Symmetry analysis of talus bone: A Geometric morphometric approach.

    PubMed

    Islam, K; Dobbe, A; Komeili, A; Duke, K; El-Rich, M; Dhillon, S; Adeeb, S; Jomha, N M

    2014-01-01

    The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139-45.

  1. Lujiatun Psittacosaurids: Understanding Individual and Taphonomic Variation Using 3D Geometric Morphometrics

    PubMed Central

    Hedrick, Brandon P.; Dodson, Peter

    2013-01-01

    Psittacosaurus is one of the most abundant and speciose genera in the Dinosauria, with fifteen named species. The genus is geographically and temporally widespread with large sample sizes of several of the nominal species allowing detailed analysis of intra- and interspecific variation. We present a reanalysis of three separate, coeval species within the Psittacosauridae; P. lujiatunensis, P. major, and Hongshanosaurus houi from the Lujiatun beds of the Yixian Formation, northeastern China, using three-dimensional geometric morphometrics on a sample set of thirty skulls in combination with a reevaluation of the proposed character states for each species. Using these complementary methods, we show that individual and taphonomic variation are the joint causes of a large range of variation among the skulls when they are plotted in a morphospace. Our results demonstrate that there is only one species of Psittacosaurus within the Lujiatun beds and that the three nominal species represent different taphomorphotypes of P. lujiatunensis. The wide range of geometric morphometric variation in a single species of Psittacosaurus implies that the range of variation found in other dinosaurian groups may also be related to taphonomic distortion rather than interspecific variation. As the morphospace is driven primarily by variation resulting from taphonomic distortion, this study demonstrates that the geometric morphometric approach can only be used with great caution to delineate interspecific variation in Psittacosaurus and likely other dinosaur groups without a complementary evaluation of character states. This study presents the first application of 3D geometric morphometrics to the dinosaurian morphospace and the first attempt to quantify taphonomic variation in dinosaur skulls. PMID:23950887

  2. Computer Aided Multi-Data Fusion Dismount Modeling

    DTIC Science & Technology

    2012-03-22

    The ability of geometric morphometric methods to estimate a known covariance matrix., volume 49. Systematic Biology, 2000. [39] Wang C., Yuen M...the use of human shape descriptors like landmarks, body composition, body segmentation, skeletonisation, body representation using geometrical shapes...Springer. [10] Bookstein, F. L. “ Morphometric Tools for Landmark Data: Geometry and Biology.” Cambridge University Press, 1991. [11] Borengasser, M

  3. Ancestry Estimation in Forensic Anthropology: Geometric Morphometric versus Standard and Nonstandard Interlandmark Distances.

    PubMed

    Katherine Spradley, M; Jantz, Richard L

    2016-07-01

    Standard cranial measurements are commonly used for ancestry estimation; however, 3D digitizers have made cranial landmark data collection and geometric morphometric (GM) analyses more popular within forensic anthropology. Yet there has been little focus on which data type works best. The goal of the present research is to test the discrimination ability of standard and nonstandard craniometric measurements and data derived from GM analysis. A total of 31 cranial landmarks were used to generate 465 interlandmark distances, including a subset of 20 commonly used measurements, and to generate principal component scores from procrustes coordinates. All were subjected to discriminant function analysis to ascertain which type of data performed best for ancestry estimation of American Black and White and Hispanic males and females. The nonstandard interlandmark distances generated the highest classification rates for females (90.5%) and males (88.2%). Using nonstandard interlandmark distances over more commonly used measurements leads to better ancestry estimates for our current population structure. © 2016 American Academy of Forensic Sciences.

  4. Scaling mimesis: Morphometric and ecomorphological similarities in three sympatric plant-mimetic fish of the family Carangidae (Teleostei).

    PubMed

    Queiroz, Alexya Cunha de; Vallinoto, Marcelo; Sakai, Yoichi; Giarrizzo, Tommaso; Barros, Breno

    2018-01-01

    The mimetic juveniles of a number of carangid fish species resemble plant parts floating near the water surface, such as leaves, seeds and other plant debris. The present study is the first to verify the morphological similarities and ecomorphological relationships between three carangids (Oligoplites saurus, Oligoplites palometa and Trachinotus falcatus) and their associated plant models. Behavioral observations were conducted in the estuary of Curuçá River, in northeastern Pará (Brazil) between August 2015 and July 2016. Individual fishes and associated floating objects (models) were sampled for comparative analysis using both geometric and morphometric approaches. While the mimetic fish and their models retain their own distinct, intrinsic morphological features, a high degree of morphological similarity was found between each fish species and its model. The morphometric analyses revealed a general tendency of isometric development in all three fish species, probably related to their pelagic habitats, during all ontogenetic stages.

  5. A protocol for the creation of useful geometric shape metrics illustrated with a newly derived geometric measure of leaf circularity.

    PubMed

    Krieger, Jonathan D

    2014-08-01

    I present a protocol for creating geometric leaf shape metrics to facilitate widespread application of geometric morphometric methods to leaf shape measurement. • To quantify circularity, I created a novel shape metric in the form of the vector between a circle and a line, termed geometric circularity. Using leaves from 17 fern taxa, I performed a coordinate-point eigenshape analysis to empirically identify patterns of shape covariation. I then compared the geometric circularity metric to the empirically derived shape space and the standard metric, circularity shape factor. • The geometric circularity metric was consistent with empirical patterns of shape covariation and appeared more biologically meaningful than the standard approach, the circularity shape factor. The protocol described here has the potential to make geometric morphometrics more accessible to plant biologists by generalizing the approach to developing synthetic shape metrics based on classic, qualitative shape descriptors.

  6. Directional asymmetry of upper limbs in a medieval population from Poland: A combination of linear and geometric morphometrics.

    PubMed

    Kubicka, Anna Maria; Lubiatowski, Przemysław; Długosz, Jan Dawid; Romanowski, Leszek; Piontek, Janusz

    2016-11-01

    Degrees of upper-limb bilateral asymmetry reflect habitual behavior and activity levels throughout life in human populations. The shoulder joint facilitates a wide range of combined motions due to the simultaneous motion of all three bones: clavicle, scapula, and humerus. Accordingly, we used three-dimensional geometric morphometrics to analyze shape differences in the glenoid cavity and linear morphometrics to obtain the degree of directional asymmetry in a medieval population. To calculate directional asymmetry, clavicles, humeri, and scapulae from 100 individuals (50 females, 50 males) were measured. Landmarks and semilandmarks were placed within a three-dimensional reconstruction of the glenoid cavity for analysis of shape differences between sides of the body within sexes. Linear morphometrics showed significant directional asymmetry in both sexes in all bones. Geometric morphometrics revealed significant shape differences of the glenoid cavity between sides of the body in females but not in males. Both indicators of directional asymmetry (%DA and %AA) did not show significant differences between sexes. PLS analysis revealed a significant correlation between glenoid shape and two humeral head diameters only in females on the left side of the body. The studied population, perhaps due to a high level of activity, exhibited slightly greater upper-limb bone bilateral asymmetry than other agricultural populations. Results suggest that the upper limbs were involved in similar activity patterns in both sexes but were characterized by different habitual behaviors. To obtain comprehensive results, studies should be based on sophisticated methods such as geometric morphometrics as well as standard measurements. Am. J. Hum. Biol. 28:817-824, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Error in geometric morphometric data collection: Combining data from multiple sources.

    PubMed

    Robinson, Chris; Terhune, Claire E

    2017-09-01

    This study compares two- and three-dimensional morphometric data to determine the extent to which intra- and interobserver and intermethod error influence the outcomes of statistical analyses. Data were collected five times for each method and observer on 14 anthropoid crania using calipers, a MicroScribe, and 3D models created from NextEngine and microCT scans. ANOVA models were used to examine variance in the linear data at the level of genus, species, specimen, observer, method, and trial. Three-dimensional data were analyzed using geometric morphometric methods; principal components analysis was employed to examine how trials of all specimens were distributed in morphospace and Procrustes distances among trials were calculated and used to generate UPGMA trees to explore whether all trials of the same individual grouped together regardless of observer or method. Most variance in the linear data was at the genus level, with greater variance at the observer than method levels. In the 3D data, interobserver and intermethod error were similar to intraspecific distances among Callicebus cupreus individuals, with interobserver error being higher than intermethod error. Generally, taxa separate well in morphospace, with different trials of the same specimen typically grouping together. However, trials of individuals in the same species overlapped substantially with one another. Researchers should be cautious when compiling data from multiple methods and/or observers, especially if analyses are focused on intraspecific variation or closely related species, as in these cases, patterns among individuals may be obscured by interobserver and intermethod error. Conducting interobserver and intermethod reliability assessments prior to the collection of data is recommended. © 2017 Wiley Periodicals, Inc.

  8. Morphometric study of third-instar larvae from five morphotypes of the Anastrepha fraterculus cryptic species complex (Diptera, Tephritidae)

    PubMed Central

    Canal, Nelson A.; Hernández-Ortiz, Vicente; Salas, Juan O. Tigrero; Selivon, Denise

    2015-01-01

    Abstract The occurrence of cryptic species among economically important fruit flies strongly affects the development of management tactics for these pests. Tools for studying cryptic species not only facilitate evolutionary and systematic studies, but they also provide support for fruit fly management and quarantine activities. Previous studies have shown that the South American fruit fly, Anastrepha fraterculus, is a complex of cryptic species, but few studies have been performed on the morphology of its immature stages. An analysis of mandible shape and linear morphometric variability was applied to third-instar larvae of five morphotypes of the Anastrepha fraterculus complex: Mexican, Andean, Ecuadorian, Peruvian and Brazilian-1. Outline geometric morphometry was used to study the mouth hook shape and linear morphometry analysis was performed using 24 linear measurements of the body, cephalopharyngeal skeleton, mouth hook and hypopharyngeal sclerite. Different morphotypes were grouped accurately using canonical discriminant analyses of both the geometric and linear morphometry. The shape of the mandible differed among the morphotypes, and the anterior spiracle length, number of tubules of the anterior spiracle, length and height of the mouth hook and length of the cephalopharyngeal skeleton were the most significant variables in the linear morphometric analysis. Third-instar larvae provide useful characters for studies of cryptic species in the Anastrepha fraterculus complex. PMID:26798253

  9. A geometric morphometric analysis of hominin lower molars: Evolutionary implications and overview of postcanine dental variation.

    PubMed

    Gómez-Robles, Aida; Bermúdez de Castro, José María; Martinón-Torres, María; Prado-Simón, Leyre; Arsuaga, Juan Luis

    2015-05-01

    Lower molars have been extensively studied in the context of hominin evolution using classic and geometric morphometric analyses, 2D and 3D approaches, evaluations of the external (outer enamel surface) and internal anatomy (dentine, pulp chamber, and radicular canals), and studies of the crown and root variation. In this study, we present a 2D geometric morphometric analysis of the crown anatomy of lower first, second, and third molars of a broad sample of hominins, including Pliocene and Lower, Middle, and Upper Pleistocene species coming from Africa, Asia, and Europe. We show that shape variability increases from first to second and third molars. While first molars tend to retain a relatively stable 5-cusped conformation throughout the hominin fossil record, second and third molars show marked distal reductions in later Homo species. This trend to distal reduction is similar to that observed in previous studies of premolars and upper second and third molars, and points to a correlated reduction of distal areas across the whole postcanine dentition. Results on lower molar variation, as well as on other postcanine teeth, show certain trends in European Pleistocene populations from the Atapuerca sites. Middle Pleistocene hominins from Sima de los Huesos show Neanderthal affinities and strong dental reduction, especially in the most distal molars. The degree of dental reduction in this population is stronger than that observed in classic Neanderthals. Homo antecessor hominins from Gran Dolina-TD6 have primitive lower teeth that contrast with their more derived upper teeth. The evolutionary implications of these dental affinities are discussed in light of recent paleogenetic studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach.

    PubMed

    Outomuro, David; Adams, Dean C; Johansson, Frank

    2013-06-07

    Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other damselflies and dragonflies. The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in wing shape. Our results also showed that wing coloration may have some effect on RSM. We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship) are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect groups.

  11. Scaling mimesis: Morphometric and ecomorphological similarities in three sympatric plant-mimetic fish of the family Carangidae (Teleostei)

    PubMed Central

    de Queiroz, Alexya Cunha; Vallinoto, Marcelo; Sakai, Yoichi; Giarrizzo, Tommaso

    2018-01-01

    The mimetic juveniles of a number of carangid fish species resemble plant parts floating near the water surface, such as leaves, seeds and other plant debris. The present study is the first to verify the morphological similarities and ecomorphological relationships between three carangids (Oligoplites saurus, Oligoplites palometa and Trachinotus falcatus) and their associated plant models. Behavioral observations were conducted in the estuary of Curuçá River, in northeastern Pará (Brazil) between August 2015 and July 2016. Individual fishes and associated floating objects (models) were sampled for comparative analysis using both geometric and morphometric approaches. While the mimetic fish and their models retain their own distinct, intrinsic morphological features, a high degree of morphological similarity was found between each fish species and its model. The morphometric analyses revealed a general tendency of isometric development in all three fish species, probably related to their pelagic habitats, during all ontogenetic stages. PMID:29558476

  12. Morphometric study of phylogenetic and ecologic signals in procyonid (mammalia: carnivora) endocasts.

    PubMed

    Ahrens, Heather E

    2014-12-01

    Endocasts provide a proxy for brain morphology but are rarely incorporated in phylogenetic analyses despite the potential for new suites of characters. The phylogeny of Procyonidae, a carnivoran family with relatively limited taxonomic diversity, is not well resolved because morphological and molecular data yield conflicting topologies. The presence of phylogenetic and ecologic signals in the endocasts of procyonids will be determined using three-dimensional geometric morphometrics. Endocasts of seven ingroup species and four outgroup species were digitally rendered and 21 landmarks were collected from the endocast surface. Two phylogenetic hypotheses of Procyonidae will be examined using methods testing for phylogenetic signal in morphometric data. In analyses of all taxa, there is significant phylogenetic signal in brain shape for both the morphological and molecular topologies. However, the analyses of ingroup taxa recover a significant phylogenetic signal for the morphological topology only. These results indicate support for the molecular outgroup topology, but not the ingroup topology given the brain shape data. Further examination of brain shape using principal components analysis and wireframe comparisons suggests procyonids possess more developed areas of the brain associated with motor control, spatial perception, and balance relative to the basal musteloid condition. Within Procyonidae, similar patterns of variation are present, and may be associated with increased arboreality in certain taxa. Thus, brain shape derived from endocasts may be used to test for phylogenetic signal and preliminary analyses suggest an association with behavior and ecology. © 2014 Wiley Periodicals, Inc.

  13. Computer-Aided Diagnosis of Solid Breast Lesions Using an Ultrasonic Multi-Feature Analysis Procedure

    DTIC Science & Technology

    2011-01-01

    areas. We quantified morphometric features by geometric and fractal analysis of traced lesion boundaries. Although no single parameter can reliably...These include acoustic descriptors (“echogenicity,” “heterogeneity,” “shadowing”) and morphometric descriptors (“area,” “aspect ratio,” “border...quantitative descriptors; some morphometric features (such as border irregularity) also were particularly effective in lesion classification. Our

  14. Sex determination from the frontal bone: a geometric morphometric study.

    PubMed

    Perlaza, Néstor A

    2014-09-01

    Sex estimation in human skeletal remains when using the cranium through traditional methods is a fundamental pillar in human identification; however, it may be possible to incur in a margin of error due because of the state of preservation in incomplete or fragmented remains. The aim of this investigation was sex estimation through the geometric morphometric analysis of the frontal bone. The sample employed 60 lateral radiographs of adult subjects of both sexes (30 males and 30 females), aged between 18 and 40 years, with mean age for males of 28 ± 4 and 30 ± 6 years for females. Thin-plate splines evidenced strong expansion of the glabellar region in males and contraction in females. No significant differences were found between sexes with respect to size. The findings suggest differences in shape and size in the glabellar region, besides reaffirming the use of geometric morphometrics as a quantitative method in sex estimation. © 2014 American Academy of Forensic Sciences.

  15. Biomechanical comparisons between a new avascular necrosis of femaral head stem based on Chinese patients with avascular necrosis and two other designs.

    PubMed

    Zhang, Qiang; Cheng, Cheng-Kung; Wei, Hung-Wen; Dong, Xiang; Chen, Yi-Ting; Lai, Yu-Shu; Wang, Yan

    2013-01-01

    There is a relatively high failure rate of the femoral component in patients with avascular necrosis at the intermediate-term follow-up. Improving the geometrical fit of the femoral stem against the medullary canal may help to provide long-term survivorship of the hip replacement for patients with avascular necrosis. We designed a specific stem, based on morphometric studies of proximal femoral canals in Chinese avascular necrosis patients and evaluated the stem by finite element analyses, comparing the novel stem with two commercially available and commonly used stems. The morphometric data from avascular necrosis patients showed specific geometric differences in the proximal femoral canal, including profile curves in both the sagittal and coronary planes than the patients with femoral neck fracture. The shorter stemmed prostheses (Fitmore(®) and our stem) performed better than the longer stemmed prosthesis (VerSys(®)). This is the first study to investigate the femoral geometries of Chinese avascular necrosis patients. Our stem provides better stability and is theoretically beneficial to bone ingrowth, which may increase the long-term stability and fixation of the implant.

  16. A geometric morphometric analysis of hominin upper premolars. Shape variation and morphological integration.

    PubMed

    Gómez-Robles, Aida; Martinón-Torres, María; Bermúdez de Castro, José María; Prado-Simón, Leyre; Arsuaga, Juan Luis

    2011-12-01

    This paper continues the series of articles initiated in 2006 that analyse hominin dental crown morphology by means of geometric morphometric techniques. The detailed study of both upper premolar occlusal morphologies in a comprehensive sample of hominin fossils, including those coming from the Gran Dolina-TD6 and Sima de los Huesos sites from Atapuerca, Spain, complement previous works on lower first and second premolars and upper first molars. A morphological gradient consisting of the change from asymmetric to symmetric upper premolars and a marked reduction of the lingual cusp in recent Homo species has been observed in both premolars. Although percentages of correct classification based on upper premolar morphologies are not very high, significant morphological differences between Neanderthals (and European middle Pleistocene fossils) and modern humans have been identified, especially in upper second premolars. The study of morphological integration between premolar morphologies reveals significant correlations that are weaker between upper premolars than between lower ones and significant correlations between antagonists. These results have important implications for understanding the genetic and functional factors underlying dental phenotypic variation and covariation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Testing convergent and parallel adaptations in talpids humeral mechanical performance by means of geometric morphometrics and finite element analysis.

    PubMed

    Piras, P; Sansalone, G; Teresi, L; Kotsakis, T; Colangelo, P; Loy, A

    2012-07-01

    The shape and mechanical performance in Talpidae humeri were studied by means of Geometric Morphometrics and Finite Element Analysis, including both extinct and extant taxa. The aim of this study was to test whether the ability to dig, quantified by humerus mechanical performance, was characterized by convergent or parallel adaptations in different clades of complex tunnel digger within Talpidae, that is, Talpinae+Condylura (monophyletic) and some complex tunnel diggers not belonging to this clade. Our results suggest that the pattern underlying Talpidae humerus evolution is evolutionary parallelism. However, this insight changed to true convergence when we tested an alternative phylogeny based on molecular data, with Condylura moved to a more basal phylogenetic position. Shape and performance analyses, as well as specific comparative methods, provided strong evidence that the ability to dig complex tunnels reached a functional optimum in distantly related taxa. This was also confirmed by the lower phenotypic variance in complex tunnel digger taxa, compared to non-complex tunnel diggers. Evolutionary rates of phenotypic change showed a smooth deceleration in correspondence with the most recent common ancestor of the Talpinae+Condylura clade. Copyright © 2012 Wiley Periodicals, Inc.

  18. A taxonomy review of Oreoderus Burmeister, 1842 from China with a geometric morphometric evaluation (Coleoptera, Scarabaeidae, Valgini)

    PubMed Central

    Li, Sha; Ricchiardi, Enrico; Bai, Ming; Yang, Xingke

    2016-01-01

    Abstract The species of the genus Oreoderus are morphologically similar, and can be challenging to distinguish without dissecting the male genitalia. In this study, the Oreoderus species from China are reviewed. Three new species of Oreoderus are described: Oreoderus dasystibialis Li & Yang, sp. n., Oreoderus brevitarsus Li & Yang, sp. n. and Oreoderus oblongus Li & Yang, sp. n. A key of the male Oreoderus and a distribution map are provided. Oreoderus coomani Paulian, 1961 was found as a new record in China. The first description of the female of Oreoderus arrowi Ricchiardi, 2001 is provided. Oreoderus humeralis Gestro, 1891, Oreoderus quadricarinatus Arrow, 1944, Oreoderus crassipes Arrow, 1944, and Oreoderus momeitensis Arrow, 1910 are excluded from the Chinese fauna. Furthermore, we utilize geometric morphometric approaches (GM) to analyze the shape variation of four characters (pronotum, elytra, protibia and aedeagus) in Oreoderus. The morphological variations of Oreoderus and the taxonomic value of each character are discussed. The combined analysis of geometric morphometrics and comparative morphology support recognition of the three new species. PMID:26865816

  19. The 'temporal effect' in hominids: Reinvestigating the nature of support for a chimp-human clade in bone morphology.

    PubMed

    Pearson, Alannah; Groves, Colin; Cardini, Andrea

    2015-11-01

    In 2004, an analysis by Lockwood and colleagues of hard-tissue morphology, using geometric morphometrics on the temporal bone, succeeded in recovering the correct phylogeny of living hominids without resorting to potentially problematic methods for transforming continuous shape variables into meristic characters. That work has increased hope that by using modern analytical methods and phylogenetically informative anatomical data we might one day be able to accurately infer the relationships of hominins, including the closest extinct relatives of modern humans. In the present study, using 3D virtually generated models of the hominid temporal bone and a larger suite of geometric morphometric and comparative techniques, we have re-examined the evidence for a Pan-Homo clade. Despite differences in samples, as well as the type of raw data, the effect of measurement error (and especially landmark digitization by a different operator), but also a broader perspective brought in by our diverse set of approaches, our reanalysis largely supports Lockwood and colleagues' original results. However, by focusing not only mainly on shape (as in the original 2004 analysis) but also on size and 'size-corrected' (non-allometric) shape, we demonstrate that the strong phylogenetic signal in the temporal bone is largely related to similarities in size. Thus, with this study, we are not suggesting the use of a single 'character', such as size, for phylogenetic inference, but we do challenge the common view that shape, with its highly complex and multivariate nature, is necessarily more phylogenetically informative than size and that actually size and size-related shape variation (i.e., allometry) confound phylogenetic inference based on morphology. This perspective may in fact be less generalizable than often believed. Thus, while we confirm the original findings by Lockwood et al., we provide a deep reinterpretation of their nature and potential implications for hominid phylogenetics and we show how crucial it is not to overlook size in geometric morphometric analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Three-dimensional (3D) geometric morphometric analysis of human premolars to assess sexual dimorphism and biological ancestry in Australian populations.

    PubMed

    Yong, Robin; Ranjitkar, Sarbin; Lekkas, Dimitra; Halazonetis, Demetrios; Evans, Alistair; Brook, Alan; Townsend, Grant

    2018-06-01

    This study aimed to investigate size and shape variation of human premolars between Indigenous Australians and Australians of European ancestry, and to assess whether sex and ancestry could be differentiated between these groups using 3D geometric morphometrics. Seventy dental casts from each group, equally subdivided by sex, were scanned using a structured-light scanner. The 3D meshes of upper and lower premolars were processed using geometric morphometric methods. Seventy-two landmarks were recorded for upper premolars and 50 landmarks for lower premolars. For each tooth type, two-way ANOVA was used to assess group differences in centroid size. Shape variations were explored using principal component analysis and visualized using 3D morphing. Two-way Procrustes ANOVA was applied to test group differences for ancestry and sex, and a "leave-one-out" discriminant function was applied to assess group assignment. Centroid size and shape did not display significant difference between the sexes. Centroid size was larger in Indigenous Australians for upper premolars and lower second premolars compared to the Australians of European ancestry. Significant shape variation was noted between the two ancestral groups for upper premolars and the lower first premolar. Correct group assignment of individual teeth to their ancestral groups ranged between 80.0 and 92.8% for upper premolars and 60.0 and 75.7% for lower premolars. Our findings provide evidence of significant size and shape variation in human premolars between the two ancestral groups. High classification rates based on shape analysis of upper premolars highlight potential application of geometric morphometrics in anthropological, bioarcheological and forensic contexts. © 2018 Wiley Periodicals, Inc.

  1. Deconstructing a Species-Complex: Geometric Morphometric and Molecular Analyses Define Species in the Western Rattlesnake (Crotalus viridis)

    PubMed Central

    Davis, Mark A.; Douglas, Marlis R.; Collyer, Michael L.; Douglas, Michael E.

    2016-01-01

    Morphological data are a conduit for the recognition and description of species, and their acquisition has recently been broadened by geometric morphometric (GM) approaches that co-join the collection of digital data with exploratory ‘big data’ analytics. We employed this approach to dissect the Western Rattlesnake (Crotalus viridis) species-complex in North America, currently partitioned by mitochondrial (mt)DNA analyses into eastern and western lineages (two and seven subspecies, respectively). The GM data (i.e., 33 dorsal and 50 lateral head landmarks) were gleaned from 2,824 individuals located in 10 museum collections. We also downloaded and concatenated sequences for six mtDNA genes from the NCBI GenBank database. GM analyses revealed significant head shape differences attributable to size and subspecies-designation (but not their interactions). Pairwise shape distances among subspecies were significantly greater than those derived from ancestral character states via squared-change parsimony, with the greatest differences separating those most closely related. This, in turn, suggests the potential for historic character displacement as a diversifying force in the complex. All subspecies, save one, were significantly differentiated in a Bayesian discriminant function analysis (DFA), regardless of whether our priors were uniform or informative (i.e., mtDNA data). Finally, shape differences among sister-clades were significantly greater than expected by chance alone under a Brownian model of evolution, promoting the hypothesis that selection rather than drift was the driving force in the evolution of the complex. Lastly, we combine head shape and mtDNA data so as to derived an integrative taxonomy that produced robust boundaries for six OTUs (operational taxonomic units) of the C. viridis complex. We suggest these boundaries are concomitant with species-status and subsequently provide a relevant nomenclature for its recognition and representation. PMID:26816132

  2. Global geometric morphometric analyses of the human pelvis reveal substantial neutral population history effects, even across sexes.

    PubMed

    Betti, Lia; von Cramon-Taubadel, Noreen; Manica, Andrea; Lycett, Stephen J

    2013-01-01

    Recent applications of population genetic models to human craniodental traits have revealed a strong neutral component to patterns of global variation. However, little work has been undertaken to determine whether neutral processes might also be influencing the postcranium, perhaps due to substantial evidence for selection and plastic environmental responses in these regions. Recent work has provided evidence for neutral effects in the pelvis, but has been limited in regard to shape data (small numbers of linear measurements) and restricted only to males. Here, we use geometric morphometric methods to examine population variation in the human os coxae (pelvic bone) in both males and females. Neutrality is examined via apportionment of variance patterns and fit to an Out-of-Africa serial founder effect model, which is known to structure neutral genetic patterns. Moreover, we compare males and females directly, and the true versus false pelvis, in order to examine potential obstetrical effects. Our results indicate evidence for substantial neutral population history effects on pelvic shape variation. They also reveal evidence for the effect of obstetrical constraints, but these affect males and females to equivalent extents. Our results do not deny an important role for selection in regard to specific aspects of human pelvic variation, especially in terms of features associated with body size and proportions. However, our analyses demonstrate that at a global level, the shape of the os coxae reveals substantial evidence for neutral variation. Our analyses thus indicate that population variation in the human pelvis might be used to address important questions concerning population history, just as the human cranium has done.

  3. A geometric morphometrics comparative analysis of Neandertal humeri (epiphyses-fused) from the El Sidrón cave site (Asturias, Spain).

    PubMed

    Rosas, Antonio; Pérez-Criado, Laura; Bastir, Markus; Estalrrich, Almudena; Huguet, Rosa; García-Tabernero, Antonio; Pastor, Juan Francisco; de la Rasilla, Marco

    2015-05-01

    A new collection of 49,000 year old Neandertal fossil humeri from the El Sidrón cave site (Asturias, Spain) is presented. A total of 49 humeral remains were recovered, representing 10 left and 8 right humeri from adults, adolescents, and a juvenile (not included in the analyses). 3D geometric morphometric (GM) methods as well as classic anthropological variables were employed to conduct a broad comparative analysis by means of mean centroid size and shape comparisons, principal components analysis, and cluster studies. Due to the fragmentary nature of the fossils, comparisons were organized in independent analyses according to different humeral portions: distal epiphysis, diaphysis, proximal epiphysis, and the complete humerus. From a multivariate viewpoint, 3D-GM analyses revealed major differences among taxonomic groups, supporting the value of the humerus in systematic classification. Notably, the Australopithecus anamensis (KP-271) and Homo ergaster Nariokotome (KNM-WT 15000) distal humerus consistently clusters close to those of modern humans, which may imply a primitive condition for Homo sapiens morphology. Australopithecus specimens show a high degree of dispersion in the morphospace. The El Sidrón sample perfectly fits into the classic Neandertal pattern, previously described as having a relatively wide olecranon fossa, as well as thin lateral and medial distodorsal pillars. These characteristics were also typical of the Sima de los Huesos (Atapuerca) sample, African mid-Pleistocene Bodo specimen, and Lower Pleistocene TD6-Atapuerca remains and may be considered as a derived state. Finally, we hypothesize that most of the features thought to be different between Neandertals and modern humans might be associated with structural differences in the pectoral girdle and shoulder joint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Global Geometric Morphometric Analyses of the Human Pelvis Reveal Substantial Neutral Population History Effects, Even across Sexes

    PubMed Central

    Betti, Lia; von Cramon-Taubadel, Noreen; Manica, Andrea; Lycett, Stephen J.

    2013-01-01

    Recent applications of population genetic models to human craniodental traits have revealed a strong neutral component to patterns of global variation. However, little work has been undertaken to determine whether neutral processes might also be influencing the postcranium, perhaps due to substantial evidence for selection and plastic environmental responses in these regions. Recent work has provided evidence for neutral effects in the pelvis, but has been limited in regard to shape data (small numbers of linear measurements) and restricted only to males. Here, we use geometric morphometric methods to examine population variation in the human os coxae (pelvic bone) in both males and females. Neutrality is examined via apportionment of variance patterns and fit to an Out-of-Africa serial founder effect model, which is known to structure neutral genetic patterns. Moreover, we compare males and females directly, and the true versus false pelvis, in order to examine potential obstetrical effects. Our results indicate evidence for substantial neutral population history effects on pelvic shape variation. They also reveal evidence for the effect of obstetrical constraints, but these affect males and females to equivalent extents. Our results do not deny an important role for selection in regard to specific aspects of human pelvic variation, especially in terms of features associated with body size and proportions. However, our analyses demonstrate that at a global level, the shape of the os coxae reveals substantial evidence for neutral variation. Our analyses thus indicate that population variation in the human pelvis might be used to address important questions concerning population history, just as the human cranium has done. PMID:23409086

  5. Homo floresiensis Contextualized: A Geometric Morphometric Comparative Analysis of Fossil and Pathological Human Samples

    PubMed Central

    Baab, Karen L.; McNulty, Kieran P.; Harvati, Katerina

    2013-01-01

    The origin of hominins found on the remote Indonesian island of Flores remains highly contentious. These specimens may represent a new hominin species, Homo floresiensis, descended from a local population of Homo erectus or from an earlier (pre-H. erectus) migration of a small-bodied and small-brained hominin out of Africa. Alternatively, some workers suggest that some or all of the specimens recovered from Liang Bua are pathological members of a small-bodied modern human population. Pathological conditions proposed to explain their documented anatomical features include microcephaly, myxoedematous endemic hypothyroidism (“cretinism”) and Laron syndrome (primary growth hormone insensitivity). This study evaluates evolutionary and pathological hypotheses through comparative analysis of cranial morphology. Geometric morphometric analyses of landmark data show that the sole Flores cranium (LB1) is clearly distinct from healthy modern humans and from those exhibiting hypothyroidism and Laron syndrome. Modern human microcephalic specimens converge, to some extent, on crania of extinct species of Homo. However in the features that distinguish these two groups, LB1 consistently groups with fossil hominins and is most similar to H. erectus. Our study provides further support for recognizing the Flores hominins as a distinct species, H. floresiensis, whose affinities lie with archaic Homo. PMID:23874886

  6. Sex determination by three-dimensional geometric morphometrics of the palate and cranial base.

    PubMed

    Chovalopoulou, Maria-Eleni; Valakos, Efstratios D; Manolis, Sotiris K

    2013-01-01

    The purpose of this study is to assess sexual dimorphism in the palate and base of adult crania using three-dimensional geometric morphometric methods. The study sample consisted of 176 crania of known sex (94 males, 82 females) belonging to individuals who lived during the 20th century in Greece. The three-dimensional co-ordinates of 30 ectocranial landmarks were digitized using a MicroScribe 3DX contact digitizer. Generalized Procrustes Analysis (GPA) was used to obtain size and shape variables for statistical analysis. Three discriminant function analyses were carried out: (1) using PC scores from Procrustes shape space, (2) centroid size alone, and (3) PC scores of GPA residuals which includes InCS for analysis in Procrustes form space. Results indicate that there are shape differences between sexes. In males, the palate is deepest and more elongated; the cranial base is shortened. Sex-specific shape differences for the cross-validated data give better classification results in the cranial base (77.2%) compared with the palate (68.9%). Size alone yielded better results for cranial base (82%) in opposition to palate (63.1%). As anticipated, the classification accuracy improves when both size and shape are combined (90.4% for cranial base, and 74.8% for palate).

  7. Human Bioresponse to Low-Frequency Underwater Sound

    DTIC Science & Technology

    2009-02-02

    polyhedrons. Figure 4.2 shows a vertical array of two alveolar duct units. Fung focused only on the morphometric accuracy of this geometrical ...created that includes idealized geometrical representations of the lungs, ribs, trachea, bronchiole tubes, spine, sternum, and a generalized...clusters subjected to different excitations and geometric constraints will be shown. With the objective of developing an effective medium model that

  8. Interspecific variation in the tetradactyl manus of modern tapirs (Perissodactyla: Tapirus) exposed using geometric morphometrics.

    PubMed

    MacLaren, Jamie A; Nauwelaerts, Sandra

    2017-11-01

    The distal forelimb (autopodium) of quadrupedal mammals is a key morphological unit involved in locomotion, body support, and interaction with the substrate. The manus of the tapir (Perissodactyla: Tapirus) is unique within modern perissodactyls, as it retains the plesiomorphic tetradactyl (four-toed) condition also exhibited by basal equids and rhinoceroses. Tapirs are known to exhibit anatomical mesaxonic symmetry in the manus, although interspecific differences and biomechanical mesaxony have yet to be rigorously tested. Here, we investigate variation in the manus morphology of four modern tapir species (Tapirus indicus, Tapirus bairdii, Tapirus pinchaque, and Tapirus terrestris) using a geometric morphometric approach. Autopodial bones were laser scanned to capture surface shape and morphology was quantified using 3D-landmark analysis. Landmarks were aligned using Generalised Procrustes Analysis, with discriminant function and partial least square analyses performed on aligned coordinate data to identify features that significantly separate tapir species. Overall, our results support the previously held hypothesis that T. indicus is morphologically separate from neotropical tapirs; however, previous conclusions regarding function from morphological differences are shown to require reassessment. We find evidence indicating that T. bairdii exhibits reduced reliance on the lateral fifth digit compared to other tapirs. Morphometric assessment of the metacarpophalangeal joint and the morphology of the distal facets of the lunate lend evidence toward high loading on the lateral digits of both the large T. indicus (large body mass) and the small, long limbed T. pinchaque (ground impact). Our results support other recent studies on T. pinchaque, suggesting subtle but important adaptations to a compliant but inclined habitat. In conclusion, we demonstrate further evidence that the modern tapir forelimb is a variable locomotor unit with a range of interspecific features tailored to habitual and biomechanical needs of each species. © 2017 Wiley Periodicals, Inc.

  9. Combined Use of Morphological and Molecular Tools to Resolve Species Mis-Identifications in the Bivalvia The Case of Glycymeris glycymeris and G. pilosa.

    PubMed

    Purroy, Ariadna; Šegvić-Bubić, Tanja; Holmes, Anna; Bušelić, Ivana; Thébault, Julien; Featherstone, Amy; Peharda, Melita

    Morphological and molecular tools were combined to resolve the misidentification between Glycymeris glycymeris and Glycymeris pilosa from Atlantic and Mediterranean populations. The ambiguous literature on the taxonomic status of these species requires this confirmation as a baseline to studies on their ecology and sclerochronology. We used classical and landmark-based morphometric approaches and performed bivariate and multivariate analyses to test for shell character interactions at the individual and population level. Both approaches generated complementary information. The former showed the shell width to length ratio and the valve asymmetry to be the main discriminant characters between Atlantic and Mediterranean populations. Additionally, the external microsculpture of additional and finer secondary ribs in G. glycymeris discriminates it from G. pilosa. Likewise, landmark-based geometric morphometrics revealed a stronger opisthogyrate beak and prosodetic ligament in G. pilosa than G. glycymeris. Our Bayesian and maximum likelihood phylogenetic analyses based on COI and ITS2 genes identified that G. glycymeris and G. pilosa form two separate monophyletic clades with mean interspecific divergence of 11% and 0.9% for COI and ITS2, respectively. The congruent patterns of morphometric analysis together with mitochondrial and nuclear phylogenetic reconstructions indicated the separation of the two coexisting species. The intraspecific divergence occurred during the Eocene and accelerated during the late Pliocene and Pleistocene. Glycymeris pilosa showed a high level of genetic diversity, appearing as a more robust species whose tolerance of environmental conditions allowed its expansion throughout the Mediterranean.

  10. Geometric morphometrics reveals shifts in flower shape symmetry and size following gene knockdown of CYCLOIDEA and ANTHOCYANIDIN SYNTHASE.

    PubMed

    Berger, Brent A; Ricigliano, Vincent A; Savriama, Yoland; Lim, Aedric; Thompson, Veronica; Howarth, Dianella G

    2017-11-17

    While floral symmetry has traditionally been assessed qualitatively, recent advances in geometric morphometrics have opened up new avenues to specifically quantify flower shape and size using robust multivariate statistical methods. In this study, we examine, for the first time, the ability of geometric morphometrics to detect morphological differences in floral dorsoventral asymmetry following virus-induced gene silencing (VIGS). Using Fedia graciliflora Fisch. & Meyer (Valerianaceae) as a model, corolla shape of untreated flowers was compared using canonical variate analysis to knockdown phenotypes of CYCLOIDEA2A (FgCYC2A), ANTHOCYANIDIN SYNTHASE (FgANS), and empty vector controls. Untreated flowers and all VIGS treatments were morphologically distinct from each other, suggesting that VIGS may cause subtle shifts in floral shape. Knockdowns of FgCYC2A were the most dramatic, affecting the position of dorsal petals in relation to lateral petals, thereby resulting in more actinomorphic-like flowers. Additionally, FgANS knockdowns developed larger flowers with wider corolla tube openings. These results provide a method to quantify the role that specific genes play in the developmental pathway affecting the dorsoventral axis of symmetry in zygomorphic flowers. Additionally, they suggest that ANS may have an unintended effect on floral size and shape.

  11. Morphometric evaluation of the knee in Chinese population reveals sexual dimorphism and age-related differences.

    PubMed

    Li, Ke; Cavaignac, Etienne; Xu, Wei; Cheng, Qiang; Telmon, Nobert; Huang, Wei

    2018-02-20

    Morphologic data of the knee is very important in the design of total knee prostheses. Generally, the designs of the total knee prostheses are based on the knee anatomy of Caucasian population. Moreover, in forensic medicine, a person's age and sex might be estimated by the shape of their knees. The aim of this study is to utilize three-dimensional morphometric analysis of the knee in Chinese population to reveal sexual dimorphism and age-related differences. Sexually dimorphic differences and age-related differences of the distal femur were studied by using geometric morphometric analysis of ten osteometric landmarks on three-dimensional reconstructions of 259 knees in Chinese population. General Procrustes analysis, PCA, and other discriminant analysis such as Mahalanobis and Goodall's F test were conducted for the knee to identify sexually dimorphism and age-related differences of the knee. The shape of distal femur between the male and female is significantly different. A difference between males and females in distal femur shape was identified by PCA; PC1 and PC2 accounted for 61.63% of the variance measured. The correct sex was assigned in 84.9% of cases by CVA, and the cross-validation revealed a 81.1% rate of correct sex estimation. The osteometric analysis also showed significant differences between the three age-related subgroups (< 40, 40-60, > 60 years, p < 0.005). This study showed both sex-related difference and age-related difference in the distal femur in Chinese population by 3D geometric morphometric analysis. Our bone measurements and geometric morphometric analysis suggest that population characteristics should be taken into account and may provide references for design of total knee prostheses in a Chinese population. Moreover, this reliable, accurate method could be used to perform diachronic and interethnic comparisons.

  12. Phenotypic plasticity in haptoral structures of Ligophorus cephali (Monogenea: Dactylogyridae) on the flathead mullet (Mugil cephalus): a geometric morphometric approach.

    PubMed

    Rodríguez-González, Abril; Míguez-Lozano, Raúl; Llopis-Belenguer, Cristina; Balbuena, Juan Antonio

    2015-04-01

    Evaluating phenotypic plasticity in attachment organs of parasites can provide information on the capacity to colonise new hosts and illuminate evolutionary processes driving host specificity. We analysed the variability in shape and size of the dorsal and ventral anchors of Ligophorus cephali from Mugil cephalus by means of geometric morphometrics and multivariate statistics. We also assessed the morphological integration between anchors and between the roots and points in order to gain insight into their functional morphology. Dorsal and ventral anchors showed a similar gradient of overall shape variation, but the amount of localised changes was much higher in the former. Statistical models describing variations in shape and size revealed clear differences between anchors. The dorsal anchor/bar complex seems more mobile than the ventral one in Ligophorus, and these differences may reflect different functional roles in attachment to the gills. The lower residual variation associated with the ventral anchor models suggests a tighter control of their shape and size, perhaps because these anchors seem to be responsible for firmer attachment and their size and shape would allow more effective responses to characteristics of the microenvironment within the individual host. Despite these putative functional differences, the high level of morphological integration indicates a concerted action between anchors. In addition, we found a slight, although significant, morphological integration between roots and points in both anchors, which suggests that a large fraction of the observed phenotypic variation does not compromise the functional role of anchors as levers. Given the low level of genetic variation in our sample, it is likely that much of the morphological variation reflects host-driven plastic responses. This supports the hypothesis of monogenean specificity through host-switching and rapid speciation. The present study demonstrates the potential of geometric morphometrics to provide new and previously unexplored insights into the functional morphology of attachment and evolutionary processes of host-parasite coevolution. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. The femur of Orrorin tugenensis exhibits morphometric affinities with both Miocene apes and later hominins.

    PubMed

    Almécija, Sergio; Tallman, Melissa; Alba, David M; Pina, Marta; Moyà-Solà, Salvador; Jungers, William L

    2013-01-01

    Orrorin tugenensis (Kenya, ca. 6 Ma) is one of the earliest putative hominins. Its proximal femur, BAR 1002'00, was originally described as being very human-like, although later multivariate analyses showed an australopith pattern. However, some of its traits (for example, laterally protruding greater trochanter, medially oriented lesser trochanter and presence of third trochanter) are also present in earlier Miocene apes. Here, we use geometric morphometrics to reassess the morphological affinities of BAR 1002'00 within a large sample of anthropoids (including fossil apes and hominins) and reconstruct hominoid proximal femur evolution using squared-change parsimony. Our results indicate that both hominin and modern great ape femora evolved in different directions from a primitive morphology represented by some fossil apes. Orrorin appears intermediate between Miocene apes and australopiths in shape space. This evidence is consistent with femoral shape similarities in extant great apes being derived and homoplastic and has profound implications for understanding the origins of human bipedalism.

  14. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics.

    PubMed

    Lockwood, Charles A; Lynch, John M; Kimbel, William H

    2002-12-01

    The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade.

  15. Morphometry, geometry, function, and the future.

    PubMed

    Mcnulty, Kieran P; Vinyard, Christopher J

    2015-01-01

    The proliferation of geometric morphometrics (GM) in biological anthropology and more broadly throughout the biological sciences has resulted in a multitude of studies that adopt landmark-based approaches for addressing a variety of questions in evolutionary morphology. In some cases, particularly in the realm of systematics, the fit between research question and analytical design is quite good. Functional-adaptive studies, however, do not readily conform to the methods available in the GM toolkit. The symposium organized by Terhune and Cooke entitled "Assessing function via shape: What is the place of GM in functional morphology?" held at the 2013 meetings of the American Association of Physical Anthropologists was designed specifically to explore this relationship between landmark-based methods and analyses of functional morphology, and the articles in this special issue, which stem in large part from this symposium, provide numerous examples of how the two approaches can complement and contrast each other. Here, we underscore some of the major difficulties in interpreting GM results within a functional regime. In combination with other contributions in this issue, we identify emerging areas of research that will help bridge the gap between multivariate morphometry and functional-adaptive analysis. Ultimately, neither geometric nor functional morphometric approaches is sufficient to elaborate the adaptive pathways that explain morphological evolution through natural selection. These perspectives must be further integrated with research from physiology, developmental biology, genomics, and ecology. © 2014 Wiley Periodicals, Inc.

  16. The shape of the hominoid proximal femur: a geometric morphometric analysis

    PubMed Central

    Harmon, Elizabeth H

    2007-01-01

    As part of the hip joint, the proximal femur is an integral locomotor component. Although a link between locomotion and the morphology of some aspects of the proximal femur has been identified, inclusive shapes of this element have not been compared among behaviourally heterogeneous hominoids. Previous analyses have partitioned complex proximal femoral morphology into discrete features (e.g. head, neck, greater trochanter) to facilitate conventional linear measurements. In this study, three-dimensional geometric morphometrics are used to examine the shape of the proximal femur in hominoids to determine whether femoral shape co-varies with locomotor category. Fourteen landmarks are recorded on adult femora of Homo, Pan, Gorilla, Pongo and Hylobates. Generalized Procrustes analysis (GPA) is used to adjust for position, orientation and scale among landmark configurations. Principal components analysis is used to collapse and compare variation in residuals from GPA, and thin-plate spline analysis is used to visualize shape change among taxa. The results indicate that knucklewalking African apes are similar to one another in femoral shape, whereas the more suspensory Asian apes diverge from the African ape pattern. The shape of the human and orangutan proximal femur converge, a result that is best explained in terms of the distinct requirements for locomotion in each group. These findings suggest that the shape of the proximal femur is brought about primarily by locomotor behaviour. PMID:17310545

  17. Sex determination by three-dimensional geometric morphometrics of craniofacial form.

    PubMed

    Chovalopoulou, Maria-Eleni; Valakos, Efstratios D; Manolis, Sotiris K

    The purpose of the present study is to define which regions of the cranium, the upper-face, the orbits and the nasal are the most sexually dimorphic, by using three-dimensional geometric morphometric methods, and investigate the effectiveness of this method in determining sex from the shape of these regions. The study sample consisted of 176 crania of known sex (94 males, 82 females) belonging to individuals who lived in Greece during the 20(th) century. The three-dimensional co-ordinates of 31 ecto-cranial landmarks were digitized using a MicroScribe 3DX contact digitizer. Goodall's F-test was performed in order to compare statistical differences in shape between males and females. Generalized Procrustes Analysis (GPA) was used to obtain size and shape variables for statistical analysis. Shape, Size and Form analyses were carried out by logistic regression and discriminant function analysis. The results indicate that there are shape differences between the sexes in the upper-face and the orbits. The highest shape classification rate was obtained from the upper-face region. The centroid size of the caraniofacial and the orbital regions was smaller in females than males. Moreover, it was found that size is significant for sexual dimorphism in the upper-face region. As anticipated, the classification accuracy improves when both size and shape are combined. The findings presented here constitute a firm basis upon which further research can be conducted.

  18. Modern morphometry: new perspectives in physical anthropology.

    PubMed

    Mantini, Simone; Ripani, Maurizio

    2009-06-01

    In the past one hundred years physical anthropology has recourse to more and more efficient methods, which provide several new information regarding, human evolution and biology. Apart from the molecular approach, the introduction of new computed assisted techniques gave rise to a new concept of morphometry. Computed tomography and 3D-imaging, allowed providing anatomical description of the external and inner structures exceeding the problems encountered with the traditional morphometric methods. Furthermore, the support of geometric morphometrics, allowed creating geometric models to investigate morphological variation in terms of evolution, ontogeny and variability. The integration of these new tools gave rise to the virtual anthropology and to a new image of the anthropologist in which anatomical, biological, mathematical statistical and data processing information are fused in a multidisciplinary approach.

  19. Sex determination by three-dimensional geometric morphometrics of the vault and midsagittal curve of the neurocranium in a modern Greek population sample.

    PubMed

    Chovalopoulou, Maria-Eleni; Valakos, Efstratios D; Manolis, Sotiris K

    2016-06-01

    The aim of this study is to assess sexual dimorphism of adult crania in the vault and midsagittal curve of the vault using three-dimensional geometric morphometric methods. The study sample consisted of 176 crania of known sex (94 males, 82 females) belonging to individuals who lived during the 20th century in Greece. The three-dimensional co-ordinates of 31 ecto-cranial landmarks and 30 semi-landmarks were digitized using a MicroScribe 3DX contact digitizer. Generalized Procrustes analysis (GPA) was used to obtain size and shape variables for statistical analysis. Shape, size and form analyses were carried out by logistic regression and three discriminant function analyses. Results indicate that there are shape differences between sexes. Females in the region of the parietal bones are narrower and the axis forming the frontal and occipital bones is more elongated; the frontal bone is more vertical. Sex-specific shape differences give better classification results in the vault (79%) compared with the midsagittal curve of the neurocranium (68.8%). Size alone yielded better results for cranial vault (82%), while for the midsagittal curve of the vault the result is poorer (68.1%). As anticipated, the classification accuracy improves when both size and shape are combined (89.2% for vault, and 79.4% for midsagittal curve of the vault). These latter findings imply that, in contrast to the midsagittal curve of the neurocranium, the shape of the cranial vault can be used as an indicator of sex in the modern Greek population. Copyright © 2016. Published by Elsevier GmbH.

  20. Investigation of Energy Transfer Dynamics Between Target Contrast Agents and Prostate Cancer Cells Using Ultrafast Spectroscopy

    DTIC Science & Technology

    2012-05-01

    morphometric comparison with clinically detected cancer in totally embedded specimens”, Hum. Pathol., 36, 646– 654 (2005). 20. Y. Pu, W. B. Wang...combination of optical spectroscopic investigations and fractal geometric analysis presents an intriguing possibility for development of a useful...prostate cancer. Morphometric analysis in whole-mount sections’’. Virchow Arch. 2000. 437: 625-634. 4. M. Chaplin. ‘‘Do we underestimate the importance

  1. Combined Use of Morphological and Molecular Tools to Resolve Species Mis-Identifications in the Bivalvia The Case of Glycymeris glycymeris and G. pilosa

    PubMed Central

    Holmes, Anna; Bušelić, Ivana; Thébault, Julien; Featherstone, Amy

    2016-01-01

    Morphological and molecular tools were combined to resolve the misidentification between Glycymeris glycymeris and Glycymeris pilosa from Atlantic and Mediterranean populations. The ambiguous literature on the taxonomic status of these species requires this confirmation as a baseline to studies on their ecology and sclerochronology. We used classical and landmark-based morphometric approaches and performed bivariate and multivariate analyses to test for shell character interactions at the individual and population level. Both approaches generated complementary information. The former showed the shell width to length ratio and the valve asymmetry to be the main discriminant characters between Atlantic and Mediterranean populations. Additionally, the external microsculpture of additional and finer secondary ribs in G. glycymeris discriminates it from G. pilosa. Likewise, landmark-based geometric morphometrics revealed a stronger opisthogyrate beak and prosodetic ligament in G. pilosa than G. glycymeris. Our Bayesian and maximum likelihood phylogenetic analyses based on COI and ITS2 genes identified that G. glycymeris and G. pilosa form two separate monophyletic clades with mean interspecific divergence of 11% and 0.9% for COI and ITS2, respectively. The congruent patterns of morphometric analysis together with mitochondrial and nuclear phylogenetic reconstructions indicated the separation of the two coexisting species. The intraspecific divergence occurred during the Eocene and accelerated during the late Pliocene and Pleistocene. Glycymeris pilosa showed a high level of genetic diversity, appearing as a more robust species whose tolerance of environmental conditions allowed its expansion throughout the Mediterranean. PMID:27669452

  2. Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers

    DTIC Science & Technology

    2011-03-01

    human rib cage through geometric morphometrics . J Biomech 41(7): 1545-54, 2008. Kent R, Trowbridge M, Lopez-Valdes FJ, et al. How many people are...to produce similar forces to those of the cadaver subjects (Figure 7). Due to variation in the geometrical characteristics of the cadaver subjects a...Figure 17: Views of 50th male CAD geometrical data. A. External view, transparent fascia, muscle groups and bone. B. Lateral view, transparent bone

  3. The evolution of the platyrrhine talus: A comparative analysis of the phenetic affinities of the Miocene platyrrhines with their modern relatives.

    PubMed

    Püschel, Thomas A; Gladman, Justin T; Bobe, René; Sellers, William I

    2017-10-01

    Platyrrhines are a diverse group of primates that presently occupy a broad range of tropical-equatorial environments in the Americas. However, most of the fossil platyrrhine species of the early Miocene have been found at middle and high latitudes. Although the fossil record of New World monkeys has improved considerably over the past several years, it is still difficult to trace the origin of major modern clades. One of the most commonly preserved anatomical structures of early platyrrhines is the talus. This work provides an analysis of the phenetic affinities of extant platyrrhine tali and their Miocene counterparts through geometric morphometrics and a series of phylogenetic comparative analyses. Geometric morphometrics was used to quantify talar shape affinities, while locomotor mode percentages (LMPs) were used to test if talar shape is associated with locomotion. Comparative analyses were used to test if there was convergence in talar morphology, as well as different models that could explain the evolution of talar shape and size in platyrrhines. Body mass predictions for the fossil sample were also computed using the available articular surfaces. The results showed that most analyzed fossils exhibit a generalized morphology that is similar to some 'generalist' modern species. It was found that talar shape covaries with LMPs, thus allowing the inference of locomotion from talar morphology. The results further suggest that talar shape diversification can be explained by invoking a model of shifts in adaptive peak to three optima representing a phylogenetic hypothesis in which each platyrrhine family occupied a separate adaptive peak. The analyses indicate that platyrrhine talar centroid size diversification was characterized by an early differentiation related to a multidimensional niche model. Finally, the ancestral platyrrhine condition was reconstructed as a medium-sized, generalized, arboreal, quadruped. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Morphometric analysis of the Marmara Sea river basins, Turkey

    NASA Astrophysics Data System (ADS)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems (GIS). This study shows that morphometric analysis of the basins in regional level are very important to understand general morphological characteristics of the basins. In this case, tectonic and lithological conditions of the basins have greatly affected the morphometric characteristics of the north and south basins of the Marmara Sea. References Abrahams, AD. 1984. Channel Networks: A Geomorphological Perspective. Water Resources Research, Volume 20, Issue 2, pages 161-188. Horton, R.E. 1932. Drainage basin characteristics. Trans Am Geophys Union 13:350-361. Keller, E.A., Pinter, N. 2002. Active Tectonics Earthquakes, Uplift, and Landscape, Second Edition, Prentice Hall, New Jersey. Ozdemir H., Bird D. 2009. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods, Environmental Geology, vol.56, pp.1405-1415. Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597-646. Strahler, A.N. 1957. Quantitative geomorphology of drainage and channel networks. In: Chow YT (ed) Handbook of appliecl hydrology. Me Graw Hill Book Company, New York. Verstappen, H.Th. 1983. Applied geomorphology. ITC, Enschede.

  5. Size and shape measurement in contemporary cephalometrics.

    PubMed

    McIntyre, Grant T; Mossey, Peter A

    2003-06-01

    The traditional method of analysing cephalograms--conventional cephalometric analysis (CCA)--involves the calculation of linear distance measurements, angular measurements, area measurements, and ratios. Because shape information cannot be determined from these 'size-based' measurements, an increasing number of studies employ geometric morphometric tools in the cephalometric analysis of craniofacial morphology. Most of the discussions surrounding the appropriateness of CCA, Procrustes superimposition, Euclidean distance matrix analysis (EDMA), thin-plate spline analysis (TPS), finite element morphometry (FEM), elliptical Fourier functions (EFF), and medial axis analysis (MAA) have centred upon mathematical and statistical arguments. Surprisingly, little information is available to assist the orthodontist in the clinical relevance of each technique. This article evaluates the advantages and limitations of the above methods currently used to analyse the craniofacial morphology on cephalograms and investigates their clinical relevance and possible applications.

  6. Comprehensive evolutionary analysis of the Anthroherpon radiation (Coleoptera, Leiodidae, Leptodirini).

    PubMed

    Njunjić, Iva; Perrard, Adrien; Hendriks, Kasper; Schilthuizen, Menno; Perreau, Michel; Merckx, Vincent; Baylac, Michel; Deharveng, Louis

    2018-01-01

    The genus Anthroherpon Reitter, 1889 exhibits the most pronounced troglomorphic characters among Coleoptera, and represents one of the most spectacular radiations of subterranean beetles. However, radiation, diversification, and biogeography of this genus have never been studied in a phylogenetic context. This study provides a comprehensive evolutionary analysis of the Anthroherpon radiation, using a dated molecular phylogeny as a framework for understanding Anthroherpon diversification, reconstructing the ancestral range, and exploring troglomorphic diversity. Based on 16 species and 22 subspecies, i.e. the majority of Anthroherpon diversity, we reconstructed the phylogeny using Bayesian analysis of six loci, both mitochondrial and nuclear, comprising a total of 4143 nucleotides. In parallel, a morphometric analysis was carried out with 79 landmarks on the body that were subjected to geometric morphometrics. We optimized morphometric features to phylogeny, in order to recognize the way troglomorphy was expressed in different clades of the tree, and did character evolution analyses. Finally, we reconstructed the ancestral range of the genus using BioGeoBEARS. Besides further elucidating the suprageneric classification of the East-Mediterranean Leptodirini, our main findings also show that Anthroherpon dates back to the Early Miocene (ca. 22 MYA) and that the genus diversified entirely underground. Biogeographic reconstruction of the ancestral range shows the origin of the genus in the area comprising three high mountains in western Montenegro, which is in the accordance with the available data on the paleogeography of the Balkan Peninsula. Character evolution analysis indicates that troglomorphic morphometric traits in Anthroherpon mostly evolve neutrally but may diverge adaptively under syntopic competition.

  7. Mechanics, Hydrodynamics and Energetics of Blue Whale Lunge Feeding: Efficiency Dependence on Krill Density

    DTIC Science & Technology

    2011-01-01

    obtained these morphometric data from blue whale specimens reposited at the National Museum of Natural History in Washington, DC (USNM 124326), the Santa...mouth-closing stage. The basic distance scale for this force is set by the ratio Ac/whead, calculated from Eqn A4, and the morphometrics of the body...allometry of mammalian metabolic rate supports niether geometric nor quarter-power scaling. Evolution 63, 2658-2667. Williams, T. M. (1999). The

  8. Taxonomy and phenotypic relationships of the Anastrepha fraterculus complex in the Mesoamerican and Pacific Neotropical dominions (Diptera, Tephritidae)

    PubMed Central

    Hernández-Ortiz, Vicente; Canal, Nelson A.; Salas, Juan O. Tigrero; Ruíz-Hurtado, Freddy M.; Dzul-Cauich, José F.

    2015-01-01

    Abstract Previous morphometric studies based on linear measurements of female structures of the aculeus, mesonotum, and wing revealed the existence of seven morphotypes within the Anastrepha fraterculus cryptic species complex along the Neotropical Region. The current research followed linear and geometric morphometric approaches in 40 population samples of the nominal species Anastrepha fraterculus (Wiedemann) spread throughout the Meso-American and Pacific Neotropical dominions (including Mexico, Central America, Venezuela, Colombia, Ecuador, and Peru). The goals were to explore the phenotypic relationships of the morphotypes in these biogeographical areas; evaluate the reliability of procedures used for delimitation of morphotypes; and describe their current distribution. Findings determined that morphotypes previously recognized via the linear morphometrics were also supported by geometric morphometrics of the wing shape. In addition, we found an eighth morphotype inhabiting the highlands of Ecuador and Peru. Morphotypes are related into three natural phenotypic groups nominated as Mesoamerican-Caribbean lineage, Andean lineage, and Brazilian lineage. The hypothesis that lineages are not directly related to each other is discussed, supported by their large morphological divergence and endemicity in these three well-defined biogeographic areas. In addition, this hypothesis of the non-monophyly of the Anastrepha fraterculus complex is also supported by evidence from other authors based on molecular studies and the strong reproductive isolation between morphs from different lineages. PMID:26798256

  9. Oval Window Size and Shape: a Micro-CT Anatomical Study With Considerations for Stapes Surgery.

    PubMed

    Zdilla, Matthew J; Skrzat, Janusz; Kozerska, Magdalena; Leszczyński, Bartosz; Tarasiuk, Jacek; Wroński, Sebastian

    2018-06-01

    The oval window is an important structure with regard to stapes surgeries, including stapedotomy for the treatment of otosclerosis. Recent study of perioperative imaging of the oval window has revealed that oval window niche height can indicate both operative difficulty and subjective discomfort during otosclerosis surgery. With regard to shape, structures incorporated into the oval window niche, such as cartilage grafts, must be compatible with the shape of the oval window. Despite the clinical importance of the oval window, there is little information regarding its size and shape. This study assessed oval window size and shape via micro-computed tomography paired with modern morphometric methodology in the fetal, infant, child, and adult populations. Additionally, the study compared oval window size and shape between sexes and between left- and right-sided ears. No significant differences were found among traditional morphometric parameters among age groups, sides, or sexes. However, geometric morphometric methods revealed shape differences between age groups. Further, geometric morphometric methods provided the average oval window shape and most-likely shape variance. Beyond demonstrating oval window size and shape variation, the results of this report will aid in identifying patients among whom anatomical variation may contribute to surgical difficulty and surgeon discomfort, or otherwise warrant preoperative adaptations for the incorporation of materials into and around the oval window.

  10. Taxonomic revision of the long-nosed armadillos, Genus Dasypus Linnaeus, 1758 (Mammalia, Cingulata)

    PubMed Central

    Patterson, Bruce D.; Cordeiro-Estrela, Pedro

    2018-01-01

    Dasypus is the most speciose genus of the order Cingulata, including approximately 40% of known living armadillos. Nine species are currently recognized, although comprehensive analyses of the entire genus have never been done. Our aim is to revise the taxonomy of the long-nosed armadillos and properly define the taxa. We examined 2126 specimens of Dasypus preserved in 39 different museum collections, including 17 type specimens. Three complementary methods were applied to explore morphological datasets both qualitatively and quantitatively. Qualitative morphological variation in discrete characters was assessed by direct observations of specimens. Linear morphometric variation was based on external data and cranial measurements of 887 adult skulls. The shape and size of the skull was abstracted through two-dimensional geometric morphometric analyses of dorsal, lateral and ventral views of respectively 421, 211, and 220 adult specimens. Our results converge on the recognition of eight living species (D. beniensis, D. kappleri, D. mazzai, D. novemcinctus, D. pastasae, D. pilosus, D. sabanicola, and D. septemcinctus), and three subspecies of D. septemcinctus (D. s. septemcinctus, D. s. hybridus, and a new subspecies from Cordoba described here). Information on type material, diagnosis, distribution, and taxonomic comments for each taxon are provided. We designate a lectotype for D. novemcinctus; and a neotype for Loricatus hybridus (= D. septemcinctus hybridus). PMID:29624590

  11. Taxonomic revision of the Dasypus kappleri complex, with revalidations of Dasypus pastasae (Thomas, 1901) and Dasypus beniensis Lönnberg, 1942 (Cingulata, Dasypodidae).

    PubMed

    Feijó, Anderson; Cordeiro-Estrela, Pedro

    2016-09-23

    Dasypus kappleri is the largest species of the genus Dasypus and is restricted to the Amazonian rainforest biome. Over the last century, related taxa have been described and synonymized without comprehensive analyses, and the current classification involving two subspecies, Dasypus k. kappleri and Dasypus k. pastasae, has never been revised. The aim of this work is to clarify the taxonomy of Dasypus kappleri through integrative morphological and morphometric analyses. We examined 70 specimens housed in scientific collections as well as photographs of the type specimens of five nominal taxa. Three methodologies (discrete characters, linear and geometric morphometrics) were employed. All results converged on the recognition of three allopatric groups, each with diagnostic qualitative and quantitative traits, that we recognize as full species: Dasypus kappleri Krauss, 1862, occurs in the Guiana shield; Dasypus pastasae (Thomas, 1901) is distributed from the eastern Andes of Peru, Ecuador, Colombia, and Venezuela south of the Orinoco River into the western Brazilian Amazon; and Dasypus beniensis Lönnberg, 1942, occurs in the lowlands of Amazonian Brazil and Bolivia to the south of the Madre de Dios, Madeira, and lower Amazon rivers. This revision raises to nine the number of living species of Dasypus.

  12. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach

    PubMed Central

    Gunz, Philipp; Ramsier, Marissa; Kuhrig, Melanie; Hublin, Jean-Jacques; Spoor, Fred

    2012-01-01

    The bony labyrinth in the temporal bone houses the sensory systems of balance and hearing. While the overall structure of the semicircular canals and cochlea is similar across therian mammals, their detailed morphology varies even among closely related groups. As such, the shape of the labyrinth carries valuable functional and phylogenetic information. Here we introduce a new, semilandmark-based three-dimensional geometric morphometric approach to shape analysis of the labyrinth, as a major improvement upon previous metric studies based on linear measurements and angles. We first provide a detailed, step-by-step description of the measurement protocol. Subsequently, we test our approach using a geographically diverse sample of 50 recent modern humans and 30 chimpanzee specimens belonging to Pan troglodytes troglodytes and P. t. verus. Our measurement protocol can be applied to CT scans of different spatial resolutions because it primarily quantifies the midline skeleton of the bony labyrinth. Accurately locating the lumen centre of the semicircular canals and the cochlea is not affected by the partial volume and thresholding effects that can make the comparison of the outer border problematic. After virtually extracting the bony labyrinth from CT scans of the temporal bone, we computed its midline skeleton by thinning the encased volume. On the resulting medial axes of the semicircular canals and cochlea we placed a sequence of semilandmarks. After Procrustes superimposition, the shape coordinates were analysed using multivariate statistics. We found statistically significant shape differences between humans and chimpanzees which corroborate previous analyses of the labyrinth based on traditional measurements. As the geometric relationship among the semilandmark coordinates was preserved throughout the analysis, we were able to quantify and visualize even small-scale shape differences. Notably, our approach made it possible to detect and visualize subtle, yet statistically significant (P = 0.009), differences between two chimpanzee subspecies in the shape of their semicircular canals. The ability to discriminate labyrinth shape at the subspecies level demonstrates that the approach presented here has great potential in future taxonomic studies of fossil specimens. PMID:22404255

  13. Which Factors Determine Spatial Segregation in the South American Opossums (Didelphis aurita and D. albiventris)? An Ecological Niche Modelling and Geometric Morphometrics Approach

    PubMed Central

    Cáceres, Nilton Carlos; de Moraes Weber, Marcelo; Melo, Geruza Leal; Meloro, Carlo; Sponchiado, Jonas; Carvalho, Renan dos Santos; Bubadué, Jamile de Moura

    2016-01-01

    Didelphis albiventris and D. aurita are Neotropical marsupials that share a unique evolutionary history and both are largely distributed throughout South America, being primarily allopatric throughout their ranges. In the Araucaria moist forest of Southern Brazil these species are sympatric and they might potentially compete having similar ecology. For this reason, they are ideal biological models to address questions about ecological character displacement and how closely related species might share their geographic space. Little is known about how two morphologically similar species of marsupials may affect each other through competition, if by competitive exclusion and competitive release. We combined ecological niche modeling and geometric morphometrics to explore the possible effects of competition on their distributional ranges and skull morphology. Ecological niche modeling was used to predict their potential distribution and this method enabled us to identify a case of biotic exclusion where the habit generalist D. albiventris is excluded by the presence of the specialist D. aurita. The morphometric analyses show that a degree of shape discrimination occurs between the species, strengthened by allometric differences, which possibly allowed them to occupy marginally different feeding niches supplemented by behavioral shift in contact areas. Overlap in skull morphology is shown between sympatric and allopatric specimens and a significant, but weak, shift in shape occurs only in D. aurita in sympatric areas. This could be a residual evidence of a higher past competition between both species, when contact zones were possibly larger than today. Therefore, the specialist D. aurita acts a biotic barrier to D. albiventris when niche diversity is not available for coexistence. On the other hand, when there is niche diversification (e.g. habitat mosaic), both species are capable to coexist with a minimal competitive effect on the morphology of D. aurita. PMID:27336371

  14. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics

    PubMed Central

    Lockwood, Charles A; Lynch, John M; Kimbel, William H

    2002-01-01

    The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade. PMID:12489757

  15. Resolving relationships between several Neolithic and Mesolithic populations in Northern Eurasia using geometric morphometrics.

    PubMed

    Stansfield Bulygina, Ekaterina; Rasskasova, Anna; Berezina, Natalia; Soficaru, Andrei D

    2017-09-01

    Remains from several Eastern European and Siberian Mesolithic and Neolithic sites are analysed to clarify their biological relationships. We assume that groups' geographical distances correlate with genetic and, therefore, morphological distances between them. Material includes complete male crania from several Mesolithic and Neolithic burial sites across Northern Eurasia and from several modern populations. Geometric morphometrics and multivariate statistical techniques are applied to explore morphological trends, group distances, and correlations with their geographical position, climate, and the time of origin. Despite an overlap in the morphology among the modern and archeological groups, some of them show significant morphological distances. Geographical parameters account for only a small proportion of cranial variation in the sample, with larger variance explained by geography and age together. Expectations of isolation by distance are met in some but not in all cases. Climate accounts for a large proportion of autocorrelation with geography. Nearest-neighbor joining trees demonstrate group relationships predicted by the regression on geography and on climate. The obtained results are discussed in application to relationships between particular groups. Unlike the Ukrainian Mesolithic, the Yuzhny Oleni Ostrov Mesolithic displays a high morphological affinity with several groups from Northern Eurasia of both European and Asian origin. A possibility of a common substrate for the Yuzhny Oleni Ostrov Mesolithic and Siberian Neolithic groups is reviewed. The Siberian Neolithic is shown to have morphological connection with both modern Siberian groups and the Native North Americans. © 2017 Wiley Periodicals, Inc.

  16. Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation

    PubMed Central

    Ivan Perez, S; Bernal, Valeria; Gonzalez, Paula N

    2006-01-01

    Over the last decade, geometric morphometric methods have been applied increasingly to the study of human form. When too few landmarks are available, outlines can be digitized as series of discrete points. The individual points must be slid along a tangential direction so as to remove tangential variation, because contours should be homologous from subject to subject whereas their individual points need not. This variation can be removed by minimizing either bending energy (BE) or Procrustes distance (D) with respect to a mean reference form. Because these two criteria make different assumptions, it becomes necessary to study how these differences modify the results obtained. We performed bootstrapped-based Goodall's F-test, Foote's measurement, principal component (PC) and discriminant function analyses on human molars and craniometric data to compare the results obtained by the two criteria. Results show that: (1) F-scores and P-values were similar for both criteria; (2) results of Foote's measurement show that both criteria yield different estimates of within- and between-sample variation; (3) there is low correlation between the first PC axes obtained by D and BE; (4) the percentage of correct classification is similar for BE and D, but the ordination of groups along discriminant scores differs between them. The differences between criteria can alter the results when morphological variation in the sample is small, as in the analysis of modern human populations. PMID:16761977

  17. Biomechanical implications of intraspecific shape variation in chimpanzee crania: moving towards an integration of geometric morphometrics and finite element analysis

    PubMed Central

    Smith, Amanda L.; Benazzi, Stefano; Ledogar, Justin A.; Tamvada, Kelli; Smith, Leslie C. Pryor; Weber, Gerhard W.; Spencer, Mark A.; Dechow, Paul C.; Grosse, Ian R.; Ross, Callum F.; Richmond, Brian G.; Wright, Barth W.; Wang, Qian; Byron, Craig; Slice, Dennis E.; Strait, David S.

    2014-01-01

    In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P3 and M2. Resulting strains indicate that intraspecific cranial variation in morphology is associated with quantitatively high levels of variation in strain magnitudes, but qualitatively little variation in the distribution of strain concentrations. Thus, interspecific comparisons should include considerations of the spatial patterning of strains rather than focus only their magnitude. PMID:25529239

  18. Three-dimensional geometric morphometric analysis of cranio-facial sexual dimorphism in a Central European sample of known sex.

    PubMed

    Bigoni, L; Velemínská, J; Brůzek, J

    2010-02-01

    This article presents an approach for estimating the sexual dimorphism of adult crania using three-dimensional geometric morphometric methods. The study sample consisted of 139 crania of known sex (73 males and 66 females) belonging to persons who lived during the first half of the 20th century in Bohemia. The three-dimensional co-ordinates of 82 ecto-cranial landmarks and 39 semi-landmarks covering the midsagittal curve of the cranial vault were digitised using a MicroScribe G2X contact digitiser. The purposes of the investigation were to define the regions of the cranium where sexual dimorphism is most pronounced and to investigate the effectiveness of this method for determining sex from the shape of the cranium. The results demonstrate that it is better to analyse apportionable parts of the cranium rather than the cranium as a whole. Significant sexual differences (significance was determined using multivariate analysis of variance) were noted in the shape of the midsagittal curve of the vault, upper face, the region of the nose, orbits, and palate. No differences were recorded either in the shape of the cranium as a whole or in the regions of the base and the neurocranium. The greatest accuracy in determining sex was found in the region of the upper face (100% of study subjects correctly classified) and the midsagittal curve of the vault (99% of study subjects correctly classified). Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  19. Ecomorphological analysis of bovid mandibles from Laetoli Tanzania using 3D geometric morphometrics: Implications for hominin paleoenvironmental reconstruction.

    PubMed

    Forrest, Frances L; Plummer, Thomas W; Raaum, Ryan L

    2018-01-01

    The current study describes a new method of mandibular ecological morphology (ecomorphology). Three-dimensional geometric morphometrics (3D GM) was used to quantify mandibular shape variation between extant bovids with different feeding preferences. Landmark data were subjected to generalized Procrustes analysis (GPA), principal components analysis (PCA), and discriminant function analysis (DFA). The PCA resulted in a continuum from grazers to browsers along PC1 and DFA classified 88% or more of the modern specimens to the correct feeding category. The protocol was reduced to a subset of landmarks on the mandibular corpus in order to make it applicable to incomplete fossils. The reduced landmark set resulted in greater overlap between feeding categories but maintained the same continuum as the complete landmark model. The DFA resubstitution and jackknife analyses resulted in classification success rates of 85% and 80%, respectively. The reduced landmark model was applied to fossil mandibles from the Upper Laetolil Beds (∼4.3-3.5 Ma) and Upper Ndolanya Beds (∼2.7-2.6 Ma) at Laetoli, Tanzania in order to assess antelope diet, and indirectly evaluate paleo-vegetation structure. The majority of the fossils were classified by the DFA as browsers or mixed feeders preferring browse. Our results indicate a continuous presence of wooded habitats and are congruent with recent environmental studies at Laetoli indicating a mosaic woodland-bushland-grassland savanna ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Laser Line Scan System for UXO Characterization

    DTIC Science & Technology

    2012-04-01

    they geometrically rectified. The Year 2 survey collected LLSS images from seven passes over two separate calibration strings and six passes over two...Microsoft DOS-based software tool. According to the side- by-side comparisons shown in Figure 9, the morphometrics were relatively equal between...survey. Note: The imagery in this figure is not presented at full resolution nor geometrically rectified. LLSS Targets, Pass One 1. Danforth

  1. Tissue Tracking: Applications for Brain MRI Classification

    DTIC Science & Technology

    2007-01-01

    General Hospital, Center for Morphometric Analysis.10,11 The IBSR data-sets are T1-weighted, 3D coronal brain scans after having been positionally...learned priors,” Image Processing, IEEE Transactions on 9(2), pp. 299–301, 2000. 5. P. Olver, G. Sapiro, and A. Tannenbaum, “Invariant Geometric Evolutions...MRI,” NeuroImage 22(3), pp. 1060–1075, 2004. 16. A. Zijdenbos, B. Dawant, R. Margolin, and A. Palmer, “ Morphometric analysis of white matter lesions in

  2. Geometric morphometric methods for three-dimensional virtual reconstruction of a fragmented cranium: the case of Angelo Poliziano.

    PubMed

    Benazzi, S; Stansfield, E; Milani, C; Gruppioni, G

    2009-07-01

    The process of forensic identification of missing individuals is frequently reliant on the superimposition of cranial remains onto an individual's picture and/or facial reconstruction. In the latter, the integrity of the skull or a cranium is an important factor in successful identification. Here, we recommend the usage of computerized virtual reconstruction and geometric morphometrics for the purposes of individual reconstruction and identification in forensics. We apply these methods to reconstruct a complete cranium from facial remains that allegedly belong to the famous Italian humanist of the fifteenth century, Angelo Poliziano (1454-1494). Raw data was obtained by computed tomography scans of the Poliziano face and a complete reference skull of a 37-year-old Italian male. Given that the amount of distortion of the facial remains is unknown, two reconstructions are proposed: The first calculates the average shape between the original and its reflection, and the second discards the less preserved left side of the cranium under the assumption that there is no deformation on the right. Both reconstructions perform well in the superimposition with the original preserved facial surface in a virtual environment. The reconstruction by means of averaging between the original and reflection yielded better results during the superimposition with portraits of Poliziano. We argue that the combination of computerized virtual reconstruction and geometric morphometric methods offers a number of advantages over traditional plastic reconstruction, among which are speed, reproducibility, easiness of manipulation when superimposing with pictures in virtual environment, and assumptions control.

  3. Geometric morphometric footprint analysis of young women

    PubMed Central

    2013-01-01

    Background Most published attempts to quantify footprint shape are based on a small number of measurements. We applied geometric morphometric methods to study shape variation of the complete footprint outline in a sample of 83 adult women. Methods The outline of the footprint, including the toes, was represented by a comprehensive set of 85 landmarks and semilandmarks. Shape coordinates were computed by Generalized Procrustes Analysis. Results The first four principal components represented the major axes of variation in foot morphology: low-arched versus high-arched feet, long and narrow versus short and wide feet, the relative length of the hallux, and the relative length of the forefoot. These shape features varied across the measured individuals without any distinct clusters or discrete types of footprint shape. A high body mass index (BMI) was associated with wide and flat feet, and a high frequency of wearing high-heeled shoes was associated with a larger forefoot area of the footprint and a relatively long hallux. Larger feet had an increased length-to-width ratio of the footprint, a lower-arched foot, and longer toes relative to the remaining foot. Footprint shape differed on average between left and right feet, and the variability of footprint asymmetry increased with BMI. Conclusions Foot shape is affected by lifestyle factors even in a sample of young women (median age 23 years). Geometric morphometrics proved to be a powerful tool for the detailed analysis of footprint shape that is applicable in various scientific disciplines, including forensics, orthopedics, and footwear design. PMID:23886074

  4. Arabidopsis phenotyping through Geometric Morphometrics.

    PubMed

    Manacorda, Carlos A; Asurmendi, Sebastian

    2018-06-18

    Recently, much technical progress was achieved in the field of plant phenotyping. High-throughput platforms and the development of improved algorithms for rosette image segmentation make it now possible to extract shape and size parameters for genetic, physiological and environmental studies on a large scale. The development of low-cost phenotyping platforms and freeware resources make it possible to widely expand phenotypic analysis tools for Arabidopsis. However, objective descriptors of shape parameters that could be used independently of platform and segmentation software used are still lacking and shape descriptions still rely on ad hoc or even sometimes contradictory descriptors, which could make comparisons difficult and perhaps inaccurate. Modern geometric morphometrics is a family of methods in quantitative biology proposed to be the main source of data and analytical tools in the emerging field of phenomics studies. Based on the location of landmarks (corresponding points) over imaged specimens and by combining geometry, multivariate analysis and powerful statistical techniques, these tools offer the possibility to reproducibly and accurately account for shape variations amongst groups and measure them in shape distance units. Here, a particular scheme of landmarks placement on Arabidopsis rosette images is proposed to study shape variation in the case of viral infection processes. Shape differences between controls and infected plants are quantified throughout the infectious process and visualized. Quantitative comparisons between two unrelated ssRNA+ viruses are shown and reproducibility issues are assessed. Combined with the newest automated platforms and plant segmentation procedures, geometric morphometric tools could boost phenotypic features extraction and processing in an objective, reproducible manner.

  5. BMI and WHR Are Reflected in Female Facial Shape and Texture: A Geometric Morphometric Image Analysis.

    PubMed

    Mayer, Christine; Windhager, Sonja; Schaefer, Katrin; Mitteroecker, Philipp

    2017-01-01

    Facial markers of body composition are frequently studied in evolutionary psychology and are important in computational and forensic face recognition. We assessed the association of body mass index (BMI) and waist-to-hip ratio (WHR) with facial shape and texture (color pattern) in a sample of young Middle European women by a combination of geometric morphometrics and image analysis. Faces of women with high BMI had a wider and rounder facial outline relative to the size of the eyes and lips, and relatively lower eyebrows. Furthermore, women with high BMI had a brighter and more reddish skin color than women with lower BMI. The same facial features were associated with WHR, even though BMI and WHR were only moderately correlated. Yet BMI was better predictable than WHR from facial attributes. After leave-one-out cross-validation, we were able to predict 25% of variation in BMI and 10% of variation in WHR by facial shape. Facial texture predicted only about 3-10% of variation in BMI and WHR. This indicates that facial shape primarily reflects total fat proportion, rather than the distribution of fat within the body. The association of reddish facial texture in high-BMI women may be mediated by increased blood pressure and superficial blood flow as well as diet. Our study elucidates how geometric morphometric image analysis serves to quantify the effect of biological factors such as BMI and WHR to facial shape and color, which in turn contributes to social perception.

  6. 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic

    PubMed Central

    Drake, Abby Grace; Coquerelle, Michael; Colombeau, Guillaume

    2015-01-01

    Whether dogs were domesticated during the Pleistocene, when humans were hunter-gatherers, or during the Neolithic, when humans began to form permanent settlements and engage in agriculture, remains controversial. Recently discovered Paleolithic fossil skulls, Goyet dated 31,680 +/− 250 YBP and Eliseevichi MAE 447/5298 dated 13,905 +/− 55 YBP, were previously identified as dogs. However, new genetic studies contradict the identification of these specimens as dogs, questioning the validity of traditional measurements used to morphologically identify canid fossil skulls. We employ 3D geometric morphometric analyses to compare the cranial morphology of Goyet and Eliseevichi MAE to that of ancient and modern dogs and wolves. We demonstrate that these Paleolithic canids are definitively wolves and not dogs. Compared to mesaticephalic (wolf-like breeds) dog skulls, Goyet and Eliseevichi MAE, do not have cranial flexion and the dorsal surface of their muzzles has no concavity near the orbits. Morphologically, these early fossil canids resemble wolves, and thus no longer support the establishment of dog domestication in the Paleolithic. PMID:25654325

  7. 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic.

    PubMed

    Drake, Abby Grace; Coquerelle, Michael; Colombeau, Guillaume

    2015-02-05

    Whether dogs were domesticated during the Pleistocene, when humans were hunter-gatherers, or during the Neolithic, when humans began to form permanent settlements and engage in agriculture, remains controversial. Recently discovered Paleolithic fossil skulls, Goyet dated 31,680 +/- 250 YBP and Eliseevichi MAE 447/5298 dated 13,905 +/- 55 YBP, were previously identified as dogs. However, new genetic studies contradict the identification of these specimens as dogs, questioning the validity of traditional measurements used to morphologically identify canid fossil skulls. We employ 3D geometric morphometric analyses to compare the cranial morphology of Goyet and Eliseevichi MAE to that of ancient and modern dogs and wolves. We demonstrate that these Paleolithic canids are definitively wolves and not dogs. Compared to mesaticephalic (wolf-like breeds) dog skulls, Goyet and Eliseevichi MAE, do not have cranial flexion and the dorsal surface of their muzzles has no concavity near the orbits. Morphologically, these early fossil canids resemble wolves, and thus no longer support the establishment of dog domestication in the Paleolithic.

  8. Genetic and Morphological Differentiation of the Semiterrestrial Crab Armases angustipes (Brachyura: Sesarmidae) along the Brazilian Coast.

    PubMed

    Marochi, Murilo Zanetti; Masunari, Setuko; Schubart, Christoph D

    2017-02-01

    The genetic and morphometric population structures of the semiterrestrial crab Armases angustipes from along the Brazilian coast were examined. The influence of the Central South Equatorial Current on larval dispersal of A. angustipes also was evaluated. Six populations were sampled from estuarine areas in São Luis do Maranhão, Maranhão; Natal, Rio Grande do Norte; Maceió, Alagoas; Ilhéus, Bahia; Aracruz, Espírito Santo; and Guaratuba, Paraná. Patterns of genetic differentiation were assessed using DNA sequence data corresponding to parts of the mitochondrial cytochrome c oxidase subunit 1. Geometric morphometric techniques were used to evaluate morphological variation in shape and size of the carapace and right cheliped propodus. Our results revealed low genetic variability and lack of phylogeographic structure; geometric morphometrics showed statistically significant morphological differentiation and geographic structuring. Our data indicate the absence of possible barriers to gene flow for this mobile species, and no clear correlation of morphological or genetic variation with ocean currents and/or geographic distance. Our results also suggest that historical geological and climatological events and/or possible bottleneck effects influenced the current low genetic variability among the populations of A. angustipes.

  9. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2009-11-01

    imaging using two distinct methods7-15: mathematically based models defined by geometric primitives and voxelized models derived from real human...trees to complete them. We also plan to add further detail by defining the Cooper’s ligaments using geometrical NURBS surfaces. Realistic...generated model for the coronary arterial tree based on multislice CT and morphometric data," Medical Imaging 2006: Physics of Medical Imaging 6142

  10. Automatic extraction of three-dimensional thoracic aorta geometric model from phase contrast MRI for morphometric and hemodynamic characterization.

    PubMed

    Volonghi, Paola; Tresoldi, Daniele; Cadioli, Marcello; Usuelli, Antonio M; Ponzini, Raffaele; Morbiducci, Umberto; Esposito, Antonio; Rizzo, Giovanna

    2016-02-01

    To propose and assess a new method that automatically extracts a three-dimensional (3D) geometric model of the thoracic aorta (TA) from 3D cine phase contrast MRI (PCMRI) acquisitions. The proposed method is composed of two steps: segmentation of the TA and creation of the 3D geometric model. The segmentation algorithm, based on Level Set, was set and applied to healthy subjects acquired in three different modalities (with and without SENSE reduction factors). Accuracy was evaluated using standard quality indices. The 3D model is characterized by the vessel surface mesh and its centerline; the comparison of models obtained from the three different datasets was also carried out in terms of radius of curvature (RC) and average tortuosity (AT). In all datasets, the segmentation quality indices confirmed very good agreement between manual and automatic contours (average symmetric distance < 1.44 mm, DICE Similarity Coefficient > 0.88). The 3D models extracted from the three datasets were found to be comparable, with differences of less than 10% for RC and 11% for AT. Our method was found effective on PCMRI data to provide a 3D geometric model of the TA, to support morphometric and hemodynamic characterization of the aorta. © 2015 Wiley Periodicals, Inc.

  11. The potential of statistical shape modelling for geometric morphometric analysis of human teeth in archaeological research

    PubMed Central

    Fernee, Christianne; Browne, Martin; Zakrzewski, Sonia

    2017-01-01

    This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique’s application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets. PMID:29216199

  12. Morphometrics applied to medical entomology.

    PubMed

    Dujardin, Jean-Pierre

    2008-12-01

    Morphometrics underwent a revolution more than one decade ago. In the modern morphometrics, the estimate of size is now contained in a single variable reflecting variation in many directions, as many as there are landmarks under study, and shape is defined as their relative positions after correcting for size, position and orientation. With these informative data, and the corresponding software freely available to conduct complex analyses, significant biological and epidemiological features can be quantified more accurately. We discuss the evolutionary significance of the environmental impact on metric variability, mentioning the importance of concepts like genetic assimilation, genetic accommodation, and epigenetics. We provide examples of measuring the effect of selection on metric variation by comparing (unpublished) Qst values with corresponding (published) Fst. The primary needs of medical entomologists are to distinguish species, especially cryptic species, and to detect them where they are not expected. We explain how geometric morphometrics could apply to these questions, and where there are deficiencies preventing the approach from being utilized at its maximum potential. Medical entomologists in connection with control programs aim to identify isolated populations where the risk of reinfestation after treatment would be low ("biogeographical islands"). Identifying them can be obtained from estimating the number of migrants per generation. Direct assessment of movement remains the most valid approach, but it scores active movement only. Genetic methods estimating gene flow levels among interbreeding populations are commonly used, but gene flow does not necessarily mean the current flow of migrants. Methods using the morphometric variation are neither suited to evaluate gene flow, nor are they adapted to estimate the flow of migrants. They may provide, however, the information needed to create a preliminary map pointing to relevant areas where one could invest in using molecular machinery. In case of reinfesting specimens after treatment, the question relates to the likely source of reinfesting specimens: are they a residual sample not affected by the control measures, or are they individuals migrating from surrounding, untreated foci? We explain why the morphometric approach may be adapted to answer such question. Thus, we describe the differences between estimating the flow of migrants and identifying the source of reinfestation after treatment: although morphometrics is not suited to deal with the former, it may be an appropriate tool to address the latter.

  13. Effect of Calcium Phosphate Coating and rhBMP-2 on Bone Regeneration in Rabbit Calvaria Using Poly(propylene fumarate) Scaffolds

    DTIC Science & Technology

    2015-01-07

    algorithm [30] applied across all the samples to minimize error. Morphometric analysis was carried out on CT images using CTanalyzer v. 1.4 (Bruker...remaining of 8.1 ± 1.0% was observed for uncoated PPF. 3.2. Scaffold micro-CT evaluation 3-D reconstructions of all scaffolds showed good geometric con...scaffolds. Within the single central histological cross-section, morphometric analysis indicated that the SBM scaffolds loaded with rhBMP-2 (50 and 100 lg

  14. A non-invasive geometric morphometrics method for exploring variation in dorsal head shape in urodeles: sexual dimorphism and geographic variation in Salamandra salamandra.

    PubMed

    Alarcón-Ríos, Lucía; Velo-Antón, Guillermo; Kaliontzopoulou, Antigoni

    2017-04-01

    The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso-ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non-invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso-ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark-based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra, despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475-485, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. BMI and WHR Are Reflected in Female Facial Shape and Texture: A Geometric Morphometric Image Analysis

    PubMed Central

    Mayer, Christine; Windhager, Sonja; Schaefer, Katrin; Mitteroecker, Philipp

    2017-01-01

    Facial markers of body composition are frequently studied in evolutionary psychology and are important in computational and forensic face recognition. We assessed the association of body mass index (BMI) and waist-to-hip ratio (WHR) with facial shape and texture (color pattern) in a sample of young Middle European women by a combination of geometric morphometrics and image analysis. Faces of women with high BMI had a wider and rounder facial outline relative to the size of the eyes and lips, and relatively lower eyebrows. Furthermore, women with high BMI had a brighter and more reddish skin color than women with lower BMI. The same facial features were associated with WHR, even though BMI and WHR were only moderately correlated. Yet BMI was better predictable than WHR from facial attributes. After leave-one-out cross-validation, we were able to predict 25% of variation in BMI and 10% of variation in WHR by facial shape. Facial texture predicted only about 3–10% of variation in BMI and WHR. This indicates that facial shape primarily reflects total fat proportion, rather than the distribution of fat within the body. The association of reddish facial texture in high-BMI women may be mediated by increased blood pressure and superficial blood flow as well as diet. Our study elucidates how geometric morphometric image analysis serves to quantify the effect of biological factors such as BMI and WHR to facial shape and color, which in turn contributes to social perception. PMID:28052103

  16. Analysis of the human female foot in two different measurement systems: from geometric morphometrics to functional morphology.

    PubMed

    Bookstein, Fred L; Domjanić, Jacqueline

    2014-09-01

    The relationship of geometric morphometrics (GMM) to functional analysis of the same morphological resources is currently a topic of active interest among functional morphologists. Although GMM is typically advertised as free of prior assumptions about shape features or morphological theories, it is common for GMM findings to be concordant with findings from studies based on a-priori lists of shape features whenever prior insights or theories have been properly accounted for in the study design. The present paper demonstrates this happy possibility by revisiting a previously published GMM analysis of footprint outlines for which there is also functionally relevant information in the form of a-pri-ori foot measurements. We show how to convert the conventional measurements into the language of shape, thereby affording two parallel statistical analyses. One is the classic multivariate analysis of "shape features", the other the equally classic GMM of semilandmark coordinates. In this example, the two data sets, analyzed by protocols that are remarkably different in both their geometry and their algebra, nevertheless result in one common biometrical summary: wearing high heels is bad for women inasmuch as it leads to the need for orthotic devices to treat the consequently flattened arch. This concordance bears implications for other branches of applied anthropology. To carry out a good biomedical analysis of applied anthropometric data it may not matter whether one uses GMM or instead an adequate assortment of conventional measurements. What matters is whether the conventional measurements have been selected in order to match the natural spectrum of functional variation.

  17. A geometric morphometric study of a Middle Pleistocene cranium from Hexian, China.

    PubMed

    Cui, Yaming; Wu, Xinzhi

    2015-11-01

    The Hexian calvarium is one of the most complete and well-preserved Homo erectus fossils ever found in east Asia, apart from the Zhoukoudian specimens. Various methods bracket the age of the Hexian fossil to between 150 and 412 ka (thousands of years ago). The Hexian calvarium has been considered to be H. erectus given its morphological similarities to Zhoukoudian and Javan H. erectus. However, discussion continues regarding the affinities of the Hexian specimen with other H. erectus fossils. The arguments mainly focus on its relationships to other Asian H. erectus fossils, including those from both China and Java. To better determine the affinities of the Hexian cranium, our study used 3D landmark and semilandmark geometric morphometric techniques and multivariate statistical analyses to quantify the shape of the neurocranium and to compare the Hexian cranium to other H. erectus specimens. The results of this study confirmed the morphological similarities between Hexian and Chinese H. erectus in overall morphology, and particularly in the structure of the frontal bone and the posterior part of the neurocranium. Although the Hexian specimen shows the strongest connection to Chinese H. erectus, the morphology of the lateral neurocranium resembles early Indonesian H. erectus specimens, possibly suggesting shared common ancestry or gene flow from early Indonesian populations. Overall cranial and frontal bone morphology are strongly influenced by geography. Although geographically intermediate between Zhoukoudian and Indonesian H. erectus, the Hexian specimen does not form part of an obvious morphological gradient with regard to overall cranial shape. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Detecting taxonomic signal in an under-utilised character system: geometric morphometrics of the forcipular coxae of Scutigeromorpha (Chilopoda)

    PubMed Central

    Gutierrez, Beatriz Lopez; MacLeod, Norman; Edgecombe, Gregory D.

    2011-01-01

    Abstract To date, the forcipules have played almost no role in determining the systematics of scutigeromorph centipedes though in his 1974 review of taxonomic characters Markus Würmli suggested some potentially informative variation might be found in these structures. Geometric morphometric analyses were used to evaluate Würmli’s suggestion, specifically to determine whether the shape of the forcipular coxa contains information useful for diagnosing species. The geometry of the coxae of eight species from the genera Sphendononema, Scutigera, Dendrothereua, Thereuonema, Thereuopoda, Thereuopodina, Allothereua and Parascutigera was characterised using a combination of landmark- and semi-landmark-based sampling methods to summarize group-specific morphological variation. Canonical variates analysis of shape data characterizing the forcipular coxae indicates that these structures differ significantly between taxa at various systematic levels. Models calculated for the canonical variates space facilitate identification of the main shape differences between genera, including overall length/width, curvature of the external coxal margin, and the extent to which the coxofemoral condyle projects laterally. Jackknifed discriminant function analysis demonstrates that forcipular coxal training-set specimens were assigned to correct species in 61% of cases on average, the most accurate assignments being those of Parascutigera (Parascutigera guttata) and Thereuonema (Thereuonema microstoma). The geographically widespread species Thereuopoda longicornis, Sphendononema guildingii, Scutigera coleoptrata, and Dendrothereua linceci exhibit the least diagnostic coxae in our dataset. Thereuopoda longicornis populations sampled from different parts of East and Southeast Asia were significantly discriminated from each other, suggesting that, in this case, extensive synonymy may be obscuring diagnosable inter-species coxal shape differences. PMID:22303095

  19. A geometric morphometric study of regional differences in the ontogeny of the modern human facial skeleton.

    PubMed

    Vioarsdóttir, Una Strand; O'Higgins, Paul; Stringer, Chris

    2002-09-01

    This study examines interpopulation variations in the facial skeleton of 10 modern human populations and places these in an ontogenetic perspective. It aims to establish the extent to which the distinctive features of adult representatives of these populations are present in the early post natal period and to what extent population differences in ontogenetic scaling and allometric trajectories contribute to distinct facial forms. The analyses utilize configurations of facial landmarks and are carried out using geometric morphometric methods. The results of this study show that modern human populations can be distinguished based on facial shape alone, irrespective of age or sex, indicating the early presence of differences. Additionally, some populations have statistically distinct facial ontogenetic trajectories that lead to the development of further differences later in ontogeny. We conclude that population-specific facial morphologies develop principally through distinctions in facial shape probably already present at birth and further accentuated and modified to variable degrees during growth. These findings raise interesting questions regarding the plasticity of facial growth patterns in modern humans. Further, they have important implications in relation to the study of growth in the face of fossil hominins and in relation to the possibility of developing effective discriminant functions for the identification of population affinities of immature facial skeletal material. Such tools would be of value in archaeological, forensic and anthropological applications. The findings of this study underline the need to examine more deeply, and in more detail, the ontogenetic basis of other causes of craniometric variation, such as sexual dimorphism and hominin species differentiation.

  20. Neandertal talus bones from El Sidrón site (Asturias, Spain): A 3D geometric morphometrics analysis.

    PubMed

    Rosas, Antonio; Ferrando, Anabel; Bastir, Markus; García-Tabernero, Antonio; Estalrrich, Almudena; Huguet, Rosa; García-Martínez, Daniel; Pastor, Juan Francisco; de la Rasilla, Marco

    2017-10-01

    The El Sidrón tali sample is assessed in an evolutionary framework. We aim to explore the relationship between Neandertal talus morphology and body size/shape. We test the hypothesis 1: talar Neandertal traits are influenced by body size, and the hypothesis 2: shape variables independent of body size correspond to inherited primitive features. We quantify 35 landmarks through 3D geometric morphometrics techniques to describe H. neanderthalensis-H. sapiens shape variation, by Mean Shape Comparisons, Principal Component, Phenetic Clusters, Minimum spanning tree analyses and partial least square and regression of talus shape on body variables. Shape variation correlated to body size is compared to Neandertals-Modern Humans (MH) evolutionary shape variation. The Neandertal sample is compared to early hominins. Neandertal talus presents trochlear hypertrophy, a larger equality of trochlear rims, a shorter neck, a more expanded head, curvature and an anterior location of the medial malleolar facet, an expanded and projected lateral malleolar facet and laterally expanded posterior calcaneal facet compared to MH. The Neandertal talocrural joint morphology is influenced by body size. The other Neandertal talus traits do not co-vary with it or not follow the same co-variation pattern as MH. Besides, the trochlear hypertrophy, the trochlear rims equality and the short neck could be inherited primitive features; the medial malleolar facet morphology could be an inherited primitive feature or a secondarily primitive trait; and the calcaneal posterior facet would be an autapomorphic feature of the Neandertal lineage. © 2017 Wiley Periodicals, Inc.

  1. Ontogeny of the female femur: geometric morphometric analysis applied on current living individuals of a Spanish population

    PubMed Central

    Pujol, Aniol; Rissech, Carme; Ventura, Jacint; Badosa, Joaquim; Turbón, Daniel

    2014-01-01

    In this study we describe the development of the female femur based on the analysis of high-resolution radiographic images by means of geometric morphometrics, while assessing the usefulness of this method in these kinds of studies. The material analysed consisted of digital images in DICOM format (telemetries), corresponding to 184 left femora in anterior view, obtained from the database of the Hospital Sant Joan de Déu of Barcelona (Spain). Bones analysed corresponded to individuals from 9 to 14 years old. Size and shape variation of the entire femur was quantified by 22 two-dimensional landmarks. Landmark digitisation errors were assessed using Procrustes anova test. Centroid size (CS) variation with age was evaluated by an anova test. Shape variation was assessed by principal component analysis. A mancova test between the first five principal components and age, using the CS as covariable, was applied. Results indicated that both size and shape vary significantly with age. Several age-related shape changes remained significant after removing the allometric effect. In general, an increase in the robustness of the bone and noticeable phenotypic changes in certain areas of the femur were observed. During growth in the proximal region of the femur, the collo-diaphyseal angle decreases, the neck of the femur widens and the fovea moves to a lower position, standing more in line with the plane of the neck. Likewise, the size of the greater and lesser trochanters increase. In the distal region, a significant increase of epiphyseal dimensions was recorded, mainly in the medial condyle. The angular remodelling of the neck and the bicondylar region of the femur in females continues until 13 years old. The information provided in the present study increases our knowledge on the timing and morphology of the femur during development, and in particular the morphology of the different femoral ossification centres during development. PMID:24975495

  2. Three-dimensionally derived interlandmark distances for sex estimation in intact and fragmentary crania.

    PubMed

    Small, Candice; Schepartz, Lynne; Hemingway, Jason; Brits, Desiré

    2018-06-01

    The skull is the element most frequently presented to forensic anthropologists for analysis yet weathering, corpse maiming, and scavenger activity often result in damage and fragmentation. This fragmentation results in a reduction in the number of traditional calliper derived measurements that can be obtained and subjected to discriminant based analyses for sex estimation. In this investigation, we employed three-dimensional geometric morphometric methods to derive novel interlandmark distance measures across six regions of the cranium including the basicranium, basipalate, zygoma, orbits and the cranium globally to create functions to discriminate sex with high efficacy, even in the event of fragmentation. Forty-five homologous landmarks were digitised across each of 227 (114 males and 113 females) South African crania of European descent (white) sampled from the Raymond A Dart Collection of Human Skeletons, housed in the School of Anatomical Sciences, University of the Witwatersrand, South Africa. A total of 990 interlandmark distances (ILDs) were mathematically derived using Pythagorean geometry. These ILDs were then filtered by region and subjected to both direct and stepwise discriminant function analyses. Discriminant equations where derived for each region and achieved the following average cross-validated sex estimation accuracies: basicranium-74%; basipalate-80.2%; zygomatic-82.4; orbits-71.8%; nasomaxilla-83.7%; global cranium-88.2%. A large number of the ILDs used to derive the discriminant functions are novel, demonstrating the efficacy of geometric morphometric methods and illustrating the need to reassess old methods of data collection using modern methods to determine whether they best capture biological differences. The results of this study provide an invaluable contribution to forensic anthropology in South Africa as it provides an accurate, practical means of assessing sex using fragmentary material that may otherwise have been disregarded. These will undeniable aid in accurate sex estimation and ultimately, victim identification. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Specific-age group sex estimation of infants through geometric morphometrics analysis of pubis and ischium.

    PubMed

    Estévez Campo, Enrique José; López-Lázaro, Sandra; López-Morago Rodríguez, Claudia; Alemán Aguilera, Inmaculada; Botella López, Miguel Cecilio

    2018-05-01

    Sex determination of unknown individuals is one of the primary goals of Physical and Forensic Anthropology. The adult skeleton can be sexed using both morphological and metric traits on a large number of bones. The human pelvis is often used as an important element of adult sex determination. However, studies carried out about the pelvic bone in subadult individuals present several limitations due the absence of sexually dimorphic characteristics. In this study, we analyse the sexual dimorphism of the immature pubis and ischium bones, attending to their shape (Procrustes residuals) and size (centroid size), using an identified sample of subadult individuals composed of 58 individuals for the pubis and 83 for the ischium, aged between birth and 1year of life, from the Granada osteological collection of identified infants (Granada, Spain). Geometric morphometric methods and discriminant analysis were applied to this study. The results of intra- and inter-observer error showed good and excellent agreement in the location of coordinates of landmarks and semilandmarks, respectively. Principal component analysis performed on shape and size variables showed superposition of the two sexes, suggesting a low degree of sexual dimorphism. Canonical variable analysis did not show significant changes between the male and female shapes. As a consequence, discriminant analysis with leave-one-out cross validation provided low classification accuracy. The results suggested a low degree of sexual dimorphism supported by significant sexual dimorphism in the subadult sample and poor cross-validated classification accuracy. The inclusion of centroid size as a discriminant variable does not imply a significant improvement in the results of the analysis. The similarities found between the sexes prevent consideration of pubic and ischial morphology as a sex estimator in early stages of development. The authors suggest extending this study by analysing the different trajectories of shape and size in later ontogeny between males and females. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Symmetry analysis of talus bone

    PubMed Central

    Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.

    2014-01-01

    Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391

  5. Morphometric evidence for a possible role of Rhodnius prolixus from palm trees in house re-infestation in the State of Barinas (Venezuela).

    PubMed

    Feliciangeli, M Dora; Sanchez-Martin, Maria; Marrero, Rosalba; Davies, Clive; Dujardin, Jean-Pierre

    2007-02-01

    The main vector of Chagas disease in Venezuela is Rhodnius prolixus. Specimens of Rhodnius sp., identified elsewhere as R. prolixus by molecular tools, were collected in Barinas State (Venezuela) before insecticide application, and compared by morphometric techniques with post-spraying, re-infesting insects after control. Geometric morphometry was applied, allowing separate analyses of shape and size. The idea of a single species sharing silvatic and domestic/peri-domestic ecotopes was supported, suggesting new evolutionary scenarios for the controversial R. prolixus origins. The same data allowed to understand the possible mechanisms of villages re-infestation after a control campaign, either recolonization by local recovery of survivors or re-infestation by external migrants. Both mechanisms were apparent. Although shape properties could distinguish very close subpopulations such as insects from houses and insects from peri-domestic shelters, they were unable to identify the insects from palm trees as a distinct subpopulation. This strongly suggested that human environment could receive immigrants from palm trees. The pattern of size variation supported the hypothesis of a one-way exchange from silvatic to human environments, but did not support the reverse movement. Thus, morphometric data indicated that a silvatic population of the local vector is probably responsible for re-infesting villages after insecticide application, and they also pointed to the existence of re-infestation by local recovery of survivors. According to this interpretation, new epidemiological scenarios must be considered to improve Chagas disease control in Venezuela.

  6. An analysis of beak shape variation in two ages of domestic turkeys (Meleagris gallopavo) using landmark-based geometric morphometrics.

    PubMed

    Dalton, Hillary A; Wood, Benjamin J; Widowski, Tina M; Guerin, Michele T; Torrey, Stephanie

    2017-01-01

    The objective of this study was to assess beak shape variation in domestic turkeys (Meleagris gallopavo) and determine the effects of age, sex, and beak size on beak shape variation using geometric morphometrics. Dorsal and right lateral images were taken of 2442 turkeys at 6 and 18.5 weeks of age. Landmarks were digitized in tpsDig in three analyses of the dorsal upper mandible, lateral upper mandible, and lateral lower mandible shape of each turkey at both ages. The coordinate data were then subjected to a principal components analysis (PCA), multivariate regression, and a canonical variates analysis (CVA) with a Procrustes ANOVA in MorphoJ. For the dorsal images, three principal components (PCs) showed beak shape variation ranged from long, narrow, and pointed to short, wide, and blunt upper mandibles at both ages (6 weeks: 95.36%, 18.5 weeks: 92.21%). Three PCs showed the lateral upper mandible shape variation ranged from long, wide beaks with long, curved beak tips to short, narrow beaks with short, pointed beak tips at both ages (6 weeks: 94.91%, 18.5 weeks: 94.33%). Three PCs also explained 97.80% (6 weeks) and 97.11% (18.5 weeks) of the lateral lower mandible shape variation ranging from wide and round to narrow and thin lower mandibles with superior/inferior beak tip shifts. Beak size accounted for varying proportions of the beak shape variation (0.96-54.76%; P < 0.0001) in the three analyses of each age group. For all the analyses, the CVA showed sexual dimorphism in beak shape (P < 0.0001) with female upper mandibles appearing wider and blunter dorsally with long, curved beak tips laterally. Whereas male turkey upper mandibles had a narrow, pointed dorsal appearance and short, pointed beak tips laterally. Future applications of beak shape variability could have a genetic and welfare value by incorporating beak shape variation to select for specific turkey beak phenotypes as an alternative to beak treatment.

  7. An analysis of beak shape variation in two ages of domestic turkeys (Meleagris gallopavo) using landmark-based geometric morphometrics

    PubMed Central

    Widowski, Tina M.; Guerin, Michele T.

    2017-01-01

    The objective of this study was to assess beak shape variation in domestic turkeys (Meleagris gallopavo) and determine the effects of age, sex, and beak size on beak shape variation using geometric morphometrics. Dorsal and right lateral images were taken of 2442 turkeys at 6 and 18.5 weeks of age. Landmarks were digitized in tpsDig in three analyses of the dorsal upper mandible, lateral upper mandible, and lateral lower mandible shape of each turkey at both ages. The coordinate data were then subjected to a principal components analysis (PCA), multivariate regression, and a canonical variates analysis (CVA) with a Procrustes ANOVA in MorphoJ. For the dorsal images, three principal components (PCs) showed beak shape variation ranged from long, narrow, and pointed to short, wide, and blunt upper mandibles at both ages (6 weeks: 95.36%, 18.5 weeks: 92.21%). Three PCs showed the lateral upper mandible shape variation ranged from long, wide beaks with long, curved beak tips to short, narrow beaks with short, pointed beak tips at both ages (6 weeks: 94.91%, 18.5 weeks: 94.33%). Three PCs also explained 97.80% (6 weeks) and 97.11% (18.5 weeks) of the lateral lower mandible shape variation ranging from wide and round to narrow and thin lower mandibles with superior/inferior beak tip shifts. Beak size accounted for varying proportions of the beak shape variation (0.96–54.76%; P < 0.0001) in the three analyses of each age group. For all the analyses, the CVA showed sexual dimorphism in beak shape (P < 0.0001) with female upper mandibles appearing wider and blunter dorsally with long, curved beak tips laterally. Whereas male turkey upper mandibles had a narrow, pointed dorsal appearance and short, pointed beak tips laterally. Future applications of beak shape variability could have a genetic and welfare value by incorporating beak shape variation to select for specific turkey beak phenotypes as an alternative to beak treatment. PMID:28934330

  8. Shell shape variation of queen conch Strombus gigas (Mesograstropoda: Strombidae) from Southwest Caribbean.

    PubMed

    Márquez, Edna Judith; Restrepo-Escobar, Natalia; Montoya-Herrera, Francisco Luis

    2016-12-01

    The endangered species Strombus gigas is a marine gastropod of significant economic importance through the Greater Caribbean region. In contrast to phenotypic plasticity, the role of genetics on shell variations in S. gigas has not been addressed so far, despite its importance in evolution, management and conservation of this species. This work used geometric morphometrics to investigate the phenotypic variation of 219 shells of S. gigas from eight sites of the Colombian Southwest Caribbean. Differences in mean size between sexes and among sites were contrasted by analysis of variance. Allometry was tested by multivariate regression and the hypothesis of common slope was contrasted by covariance multivariate analysis. Differences in the shell shape among sites were analyzed by principal component analysis. Sexual size dimorphism was not significant, whereas sexual shape dimorphism was significant and variable across sites. Differences in the shell shape among sites were concordant with genetic differences based on microsatellite data, supporting its genetic background. Besides, differences in the shell shape between populations genetically similar suggest a role of phenotypic plasticity in the morphometric variation of the shell shape. These outcomes evidence the role of genetic background and phenotypic plasticity in the shell shape of S. gigas. Thus, geometric morphometrics of shell shape may constitute a complementary tool to explore the genetic diversity of this species.

  9. A combined morphometric analysis of foot form and its association with sex, stature, and body mass.

    PubMed

    Domjanic, Jacqueline; Seidler, Horst; Mitteroecker, Philipp

    2015-08-01

    Morphometric analysis of footprints is a classic means for orthopedic diagnosis. In forensics and physical anthropology, it is commonly used for the estimation of stature and body mass. We studied individual variation and sexual dimorphism of foot dimensions and footprint shape by a combination of classic foot measurements and geometric morphometric methods. Left and right feet of 134 healthy adult males and females were scanned twice with a 3D optical laser scanner, and stature as well as body mass were recorded. Foot length and width were measured on the 3D scans. The 2D footprints were extracted as the plantar-most 2 mm of the 3D scans and measured with 85 landmarks and semilandmarks. Both foot size and footprint shape are sexually dimorphic and relate to stature and body mass. While dimorphism in foot length largely results from dimorphism in stature, dimorphism in footprint shape partly owes to the dimorphism in BMI. Stature could be estimated well based on foot length (R(2)  = 0.76), whereas body mass was more closely related to foot width (R(2)  = 0.62). Sex could be estimated correctly for 95% of the individuals based on a combination of foot width and length. Geometric morphometrics proved to be an effective tool for the detailed analysis of footprint shape. However, for the estimation of stature, body mass, and sex, shape variables did not considerably improve estimates based on foot length and width. © 2015 Wiley Periodicals, Inc.

  10. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2008-10-01

    K. Fishman and B. M. W. Tsui, "Development of a computer-generated model for the coronary arterial tree based on multislice CT and morphometric data...mathematical models based on geometric primitives8-22. Bakic et al created synthetic x-ray mammograms using a 3D simulated breast tissue model consisting of...utilized a combination of voxel matrices and geometric primitives to create a breast phantom that includes the breast surface, the duct system, and

  11. Hydrodynamic Performance of the Flippers of Large-bodied Cetaceans in Relation to Locomotor Ecology

    DTIC Science & Technology

    2014-04-01

    flow velocity (m/s) m Kinematic viscosity (m2/s) Table 2. Morphometrics of cetaceans and flippers. Fin whale Balaenoptera physalus Killer whale Orcinus...chord (m), and m is the kinematic viscosity (m2/s). Fluid kinematic similarity was obtained by ensuring both geometric and dynamic similarity between...the model and the flipper. Equation (2) was used to determine appropriate water tunnel testing speeds given the geometric parameters and water

  12. Morphometric Assessment of Convergent Tool Technology and Function during the Early Middle Palaeolithic: The Case of Payre, France

    PubMed Central

    Détroit, Florent; Coudenneau, Aude; Moncel, Marie-Hélène

    2016-01-01

    There appears to be little doubt as to the existence of an intentional technological resolve to produce convergent tools during the Middle Palaeolithic. However, the use of these pieces as pointed tools is still subject to debate: i.e., handheld tool vs. hafted tool. Present-day technological analysis has begun to apply new methodologies in order to quantify shape variability and to decipher the role of the morphology of these pieces in relation to function; for instance, geometric morphometric analyses have recently been applied with successful results. This paper presents a study of this type of analysis on 37 convergent tools from level Ga of Payre site (France), dated to MIS 8–7. These pieces are non-standardized knapping products produced by discoidal and orthogonal core technologies. Moreover, macro-wear studies attest to various activities on diverse materials with no evidence of hafting or projectile use. The aim of this paper is to test the geometric morphometric approach on non-standardized artefacts applying the Elliptical Fourier analysis (EFA) to 3D contours and to assess the potential relationship between size and shape, technology and function. This study is innovative in that it is the first time that this method, considered to be a valuable complement for describing technological and functional attributes, is applied to 3D contours of lithic products. Our results show that this methodology ensures a very good degree of accuracy in describing shape variations of the sharp edges of technologically non-standardized convergent tools. EFA on 3D contours indicates variations in deviations of the outline along the third dimension (i.e., dorso-ventrally) and yields quantitative and insightful information on the actual shape variations of tools. Several statistically significant relationships are found between shape variation and use-wear attributes, though the results emphasize the large variability of the shape of the convergent tools, which, in general, does not show a strong direct association with technological features and function. This is in good agreement with the technological context of this chronological period, characterized by a wide diversity of non-standardized tools adapted to multipurpose functions for varied subsistence activities. PMID:27191164

  13. Morphometric Assessment of Convergent Tool Technology and Function during the Early Middle Palaeolithic: The Case of Payre, France.

    PubMed

    Chacón, M Gema; Détroit, Florent; Coudenneau, Aude; Moncel, Marie-Hélène

    2016-01-01

    There appears to be little doubt as to the existence of an intentional technological resolve to produce convergent tools during the Middle Palaeolithic. However, the use of these pieces as pointed tools is still subject to debate: i.e., handheld tool vs. hafted tool. Present-day technological analysis has begun to apply new methodologies in order to quantify shape variability and to decipher the role of the morphology of these pieces in relation to function; for instance, geometric morphometric analyses have recently been applied with successful results. This paper presents a study of this type of analysis on 37 convergent tools from level Ga of Payre site (France), dated to MIS 8-7. These pieces are non-standardized knapping products produced by discoidal and orthogonal core technologies. Moreover, macro-wear studies attest to various activities on diverse materials with no evidence of hafting or projectile use. The aim of this paper is to test the geometric morphometric approach on non-standardized artefacts applying the Elliptical Fourier analysis (EFA) to 3D contours and to assess the potential relationship between size and shape, technology and function. This study is innovative in that it is the first time that this method, considered to be a valuable complement for describing technological and functional attributes, is applied to 3D contours of lithic products. Our results show that this methodology ensures a very good degree of accuracy in describing shape variations of the sharp edges of technologically non-standardized convergent tools. EFA on 3D contours indicates variations in deviations of the outline along the third dimension (i.e., dorso-ventrally) and yields quantitative and insightful information on the actual shape variations of tools. Several statistically significant relationships are found between shape variation and use-wear attributes, though the results emphasize the large variability of the shape of the convergent tools, which, in general, does not show a strong direct association with technological features and function. This is in good agreement with the technological context of this chronological period, characterized by a wide diversity of non-standardized tools adapted to multipurpose functions for varied subsistence activities.

  14. Illustrating ontogenetic change in the dentition of the Nile monitor lizard, Varanus niloticus: a case study in the application of geometric morphometric methods for the quantification of shape-size heterodonty.

    PubMed

    D'Amore, Domenic C

    2015-05-01

    Many recent attempts have been made to quantify heterodonty in non-mammalian vertebrates, but the majority of these are limited to Euclidian measurements. One taxon frequently investigated is Varanus niloticus, the Nile monitor. Juveniles possess elongate, pointed teeth (caniniform) along the entirety of the dental arcade, whereas adults develop large, bulbous distal teeth (molariform). The purpose of this study was to present a geometric morphometric method to quantify V. niloticus heterodonty through ontogeny that may be applied to other non-mammalian taxa. Data were collected from the entire tooth row of 19 dry skull specimens. A semilandmark analysis was conducted on the outline of the photographed teeth, and size and shape were derived. Width was also measured with calipers. From these measures, sample ranges and allometric functions were created using multivariate statistical analyses for each tooth position separately, as well as overall measures of heterodonty for each specimen based on morphological disparity. The results confirm and expand upon previous studies, showing measurable shape-size heterodonty in the species with significant differences at each tooth position. Tooth size increases with body size at most positions, and the allometric coefficient increases at more distal positions. Width shows a dramatic increase at the distal positions with ontogeny, often displaying pronounced positive allometry. Dental shape varied in two noticeable ways, with the first composing the vast majority of shape variance: (i) caniniformy vs. molariformy and (ii) mesially leaning, 'rounded' apices vs. distally leaning, 'pointed' apices. The latter was twice as influential in the mandible, a consequence of host bone shape. Mesial teeth show no significant shape change with growth, whereas distal teeth change significantly due primarily to an increase in molariformy. Overall, heterodonty increases with body size concerning both tooth size and shape, but shape heterodonty changes in the mandible are much less pronounced. Although it is unclear to what degree V. niloticus specializes in hard prey items (durophagy), previous studies of varanid feeding behavior, along with research on analogous durophagous vertebrates, indicate a division of labor along the tooth row in adults, due to a possible transition to at least a partial durophagous niche. The geometric morphometric method proposed here, although not without its own limitations, may be ideal for use with a number of dental morphotypes in the future. © 2015 Anatomical Society.

  15. Illustrating ontogenetic change in the dentition of the Nile monitor lizard, Varanus niloticus: a case study in the application of geometric morphometric methods for the quantification of shape–size heterodonty

    PubMed Central

    D'Amore, Domenic C

    2015-01-01

    Many recent attempts have been made to quantify heterodonty in non-mammalian vertebrates, but the majority of these are limited to Euclidian measurements. One taxon frequently investigated is Varanus niloticus, the Nile monitor. Juveniles possess elongate, pointed teeth (caniniform) along the entirety of the dental arcade, whereas adults develop large, bulbous distal teeth (molariform). The purpose of this study was to present a geometric morphometric method to quantify V. niloticus heterodonty through ontogeny that may be applied to other non-mammalian taxa. Data were collected from the entire tooth row of 19 dry skull specimens. A semilandmark analysis was conducted on the outline of the photographed teeth, and size and shape were derived. Width was also measured with calipers. From these measures, sample ranges and allometric functions were created using multivariate statistical analyses for each tooth position separately, as well as overall measures of heterodonty for each specimen based on morphological disparity. The results confirm and expand upon previous studies, showing measurable shape–size heterodonty in the species with significant differences at each tooth position. Tooth size increases with body size at most positions, and the allometric coefficient increases at more distal positions. Width shows a dramatic increase at the distal positions with ontogeny, often displaying pronounced positive allometry. Dental shape varied in two noticeable ways, with the first composing the vast majority of shape variance: (i) caniniformy vs. molariformy and (ii) mesially leaning, ‘rounded’ apices vs. distally leaning, ‘pointed’ apices. The latter was twice as influential in the mandible, a consequence of host bone shape. Mesial teeth show no significant shape change with growth, whereas distal teeth change significantly due primarily to an increase in molariformy. Overall, heterodonty increases with body size concerning both tooth size and shape, but shape heterodonty changes in the mandible are much less pronounced. Although it is unclear to what degree V. niloticus specializes in hard prey items (durophagy), previous studies of varanid feeding behavior, along with research on analogous durophagous vertebrates, indicate a division of labor along the tooth row in adults, due to a possible transition to at least a partial durophagous niche. The geometric morphometric method proposed here, although not without its own limitations, may be ideal for use with a number of dental morphotypes in the future. PMID:25939576

  16. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    PubMed Central

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root point, and the length between the inner root point and the dent point. The species on M. buchanani evolved larger, more robust anchors; those on L. subviridis evolved smaller, more delicate anchors. Anchor shape and size were significantly correlated, suggesting constraints in anchor evolution. Tight integration between the root and the point compartments within anchors confirms the anchor as a single, fully integrated module. The correlation between male copulatory organ morphology and size with anchor shape was consistent with predictions from the Rohde-Hobbs hypothesis. Conclusions. Monogenean anchors are tightly integrated structures, and their shape variation correlates strongly with phylogeny, thus underscoring their value for systematic and evolutionary biology studies. Our MonogeneaGM R package provides tools for researchers to mine biological insights from geometric morphometric data of speciose monogenean genera. PMID:26966649

  17. Police witness identification images: a geometric morphometric analysis.

    PubMed

    Hayes, Susan; Tullberg, Cameron

    2012-11-01

    Research into witness identification images typically occurs within the laboratory and involves subjective likeness and recognizability judgments. This study analyzed whether actual witness identification images systematically alter the facial shapes of the suspects described. The shape analysis tool, geometric morphometrics, was applied to 46 homologous facial landmarks displayed on 50 witness identification images and their corresponding arrest photographs, using principal component analysis and multivariate regressions. The results indicate that compared with arrest photographs, witness identification images systematically depict suspects with lowered and medially located eyebrows (p = <0.000001). This was found to occur independently of the Police Artist, and did not occur with composites produced under laboratory conditions. There are several possible explanations for this finding, including any, or all, of the following: The suspect was frowning at the time of the incident, the witness had negative feelings toward the suspect, this is an effect of unfamiliar face processing, the suspect displayed fear at the time of their arrest photograph. © 2012 American Academy of Forensic Sciences.

  18. Geometric morphometrics reveals sex-differential shape allometry in a spider.

    PubMed

    Fernández-Montraveta, Carmen; Marugán-Lobón, Jesús

    2017-01-01

    Common scientific wisdom assumes that spider sexual dimorphism (SD) mostly results from sexual selection operating on males. However, testing predictions from this hypothesis, particularly male size hyperallometry, has been restricted by methodological constraints. Here, using geometric morphometrics (GMM) we studied for the first time sex-differential shape allometry in a spider ( Donacosa merlini , Araneae: Lycosidae) known to exhibit the reverse pattern (i.e., male-biased) of spider sexual size dimorphism. GMM reveals previously undetected sex-differential shape allometry and sex-related shape differences that are size independent (i.e., associated to the y-intercept, and not to size scaling). Sexual shape dimorphism affects both the relative carapace-to-opisthosoma size and the carapace geometry, arguably resulting from sex differences in both reproductive roles (female egg load and male competition) and life styles (wandering males and burrowing females). Our results demonstrate that body portions may vary modularly in response to different selection pressures, giving rise to sex differences in shape, which reconciles previously considered mutually exclusive interpretations about the origins of spider SD.

  19. 2D or Not 2D? Testing the Utility of 2D Vs. 3D Landmark Data in Geometric Morphometrics of the Sculpin Subfamily Oligocottinae (Pisces; Cottoidea).

    PubMed

    Buser, Thaddaeus J; Sidlauskas, Brian L; Summers, Adam P

    2018-05-01

    We contrast 2D vs. 3D landmark-based geometric morphometrics in the fish subfamily Oligocottinae by using 3D landmarks from CT-generated models and comparing the morphospace of the 3D landmarks to one based on 2D landmarks from images. The 2D and 3D shape variables capture common patterns across taxa, such that the pairwise Procrustes distances among taxa correspond and the trends captured by principal component analysis are similar in the xy plane. We use the two sets of landmarks to test several ecomorphological hypotheses from the literature. Both 2D and 3D data reject the hypothesis that head shape correlates significantly with the depth at which a species is commonly found. However, in taxa where shape variation in the z-axis is high, the 2D shape variables show sufficiently strong distortion to influence the outcome of the hypothesis tests regarding the relationship between mouth size and feeding ecology. Only the 3D data support previous studies which showed that large mouth sizes correlate positively with high percentages of elusive prey in the diet. When used to test for morphological divergence, 3D data show no evidence of divergence, while 2D data show that one clade of oligocottines has diverged from all others. This clade shows the greatest degree of z-axis body depth within Oligocottinae, and we conclude that the inability of the 2D approach to capture this lateral body depth causes the incongruence between 2D and 3D analyses. Anat Rec, 301:806-818, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics.

    PubMed

    Palci, Alessandro; Lee, Michael S Y; Hutchinson, Mark N

    2016-12-01

    We compared the head skeleton (skull and lower jaw) of juvenile and adult specimens of five snake species [Anilios (=Ramphotyphlops) bicolor, Cylindrophis ruffus, Aspidites melanocephalus, Acrochordus arafurae, and Notechis scutatus] and two lizard outgroups (Ctenophorus decresii, Varanus gilleni). All major ontogenetic changes observed were documented both qualitatively and quantitatively. Qualitative comparisons were based on high-resolution micro-CT scanning of the specimens, and detailed quantitative analyses were performed using three-dimensional geometric morphometrics. Two sets of landmarks were used, one for accurate representation of the intraspecific transformations of each skull and jaw configuration, and the other for comparison between taxa. Our results document the ontogenetic elaboration of crests and processes for muscle attachment (especially for cervical and adductor muscles); negative allometry in the braincase of all taxa; approximately isometric growth of the snout of all taxa except Varanus and Anilios (positively allometric); and positive allometry in the quadrates of the macrostomatan snakes Aspidites, Acrochordus and Notechis, but also, surprisingly, in the iguanian lizard Ctenophorus. Ontogenetic trajectories from principal component analysis provide evidence for paedomorphosis in Anilios and peramorphosis in Acrochordus. Some primitive (lizard-like) features are described for the first time in the juvenile Cylindrophis. Two distinct developmental trajectories for the achievement of the macrostomatan (large-gaped) condition in adult snakes are documented, driven either by positive allometry of supratemporal and quadrate (in pythons), or of quadrate alone (in sampled caenophidians); this is consistent with hypothesised homoplasy in this adaptive complex. Certain traits (e.g. shape of coronoid process, marginal tooth counts) are more stable throughout postnatal ontogeny than others (e.g. basisphenoid keel), with implications for their reliability as phylogenetic characters. © 2016 Anatomical Society.

  1. Comparison of Maxilla Mandibular Transverse Ratios With Class II Anteroposterior Discrepancies

    DTIC Science & Technology

    2014-03-20

    the structure points has shown to be at best unreliable (Jacobson 1995). “2D landmarks may be hindered by rotational, geometric , and head positioning...deficiency in Class II and Class III malocclusions: a cephalometric and morphometric study on postero‐ anterior films. Orthodontics & Craniofacial

  2. New Graph Models and Algorithms for Detecting Salient Structures from Cluttered Images

    DTIC Science & Technology

    2010-02-24

    Development of graph models and algorithms to detect boundaries that show certain levels of symmetry, an important geometric property of many...Bookstein. Morphometric tools for landmark data. Cambridge University Press, 1991. [8] F. L. Bookstein. Principal warps: Thin-plate splines and the

  3. Developmental and Evolutionary Significance of the Zygomatic Bone

    PubMed Central

    Heuzé, Yann; Kawasaki, Kazuhiko; Schwarz, Tobias; Schoenebeck, Jeffrey J.

    2016-01-01

    ABSTRACT The zygomatic bone is derived evolutionarily from the orbital series. In most modern mammals the zygomatic bone forms a large part of the face and usually serves as a bridge that connects the facial skeleton to the neurocranium. Our aim is to provide information on the contribution of the zygomatic bone to variation in midfacial protrusion using three samples; humans, domesticated dogs, and monkeys. In each case, variation in midface protrusion is a heritable trait produced by one of three classes of transmission: localized dysmorphology associated with single gene dysfunction, selective breeding, or long‐term evolution from a common ancestor. We hypothesize that the shape of the zygomatic bone reflects its role in stabilizing the connection between facial skeleton and neurocranium and consequently, changes in facial protrusion are more strongly reflected by the maxilla and premaxilla. Our geometric morphometric analyses support our hypothesis suggesting that the shape of the zygomatic bone has less to do with facial protrusion. By morphometrically dissecting the zygomatic bone we have determined a degree of modularity among parts of the midfacial skeleton suggesting that these components have the ability to vary independently and thus can evolve differentially. From these purely morphometric data, we propose that the neural crest cells that are fated to contribute to the zygomatic bone experience developmental cues that distinguish them from the maxilla and premaxilla. The spatiotemporal and molecular identity of the cues that impart zygoma progenitors with their identity remains an open question that will require alternative data sets. Anat Rec, 299:1616–1630, 2016. © 2016 The Authors The Anatomical Record Published by Wiley Periodicals, Inc. PMID:27870340

  4. Review and Assessment of Chlorine Mammalian Lethality Data and the Development of a Human Estimate R-1

    DTIC Science & Technology

    2009-06-01

    BR; and Hartman, SE, Ratios as a Size Adjustment in Morphometrics , American Journal of Physical Anthropology. 91: 441-468, 1993. 18 Vanderburgh, PM...C2T was used for the toxic load model. After the median lethal C2T was determined, the geometric mean of all the individual exposure durations (T...was then calculated for each species dataset. The L(C2T)50 was assumed to be associated with this geometric mean time, which was found to equal

  5. Biogeography of “Cyprinella lutrensis”: intensive genetic sampling from the Pecos River ‘melting pot’ reveals a dynamic history and phylogenetic complexity

    PubMed Central

    Osborne, Megan J.; Diver, Tracy A.; Hoagstrom, Christopher W.; Turner, Thomas F.

    2015-01-01

    Thorough sampling is necessary to delineate lineage diversity for polytypic “species” such as Cyprinella lutrensis. We conducted extensive mtDNA sampling (cytochrome b and ND4) from the Pecos River, Rio Grande, and South Canadian River, New Mexico. Our study emphasized the Pecos River due to its complex geological history and potential to harbor multiple lineages. We used geometric-morphometric, morphometric, and meristic analyses to test for phenotypic divergence and combined nucDNA with mtDNA to test for cytonuclear disequilibrium and combined our sequences with published data to conduct a phylogenetic re-assessment of the entire C. lutrensis clade. We detected five co-occurring mtDNA lineages in the Pecos River, but no evidence for cytonuclear disequilibrium or phenotypic divergence. Recognized species were interspersed amongst divergent lineages of “C. lutrensis”. Allopatric divergence among drainages isolated in the Late Miocene and Pliocene apparently produced several recognized species and major divisions within “C. lutrensis”. Pleistocene re-expansion and subsequent re-fragmentation of a centralized lineage founded younger, divergent lineages throughout the Rio Grande basin and Edwards Plateau. There is also evidence of recent introductions to the Rio Grande, Pecos and South Canadian Rivers. Nonetheless, deeply divergent lineages have coexisted since the Pleistocene. PMID:26858464

  6. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers

    PubMed Central

    Tokita, Masayoshi; Yano, Wataru; James, Helen F.

    2017-01-01

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994122

  7. The mitochondrial phylogeny of an ancient lineage of ray-finned fishes (Polypteridae) with implications for the evolution of body elongation, pelvic fin loss, and craniofacial morphology in Osteichthyes

    PubMed Central

    2010-01-01

    Background The family Polypteridae, commonly known as "bichirs", is a lineage that diverged early in the evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic tree of Polypteridae. In fact, the interrelationships of polypterid species have never been subject to molecular phylogenetic analysis. Here, we infer the first molecular phylogeny of bichirs, including all 12 recognized species and multiple subspecies using Bayesian analyses of 16S and cyt-b mtDNA. We use this mitochondrial phylogeny, ancestral state reconstruction, and geometric morphometrics to test whether patterns of morphological evolution, including the evolution of body elongation, pelvic fin reduction, and craniofacial morphology, are shared throughout the osteichthyan tree of life. Results Our molecular phylogeny reveals 1) a basal divergence between Erpetoichthys and Polypterus, 2) polyphyly of P. endlicheri and P. palmas, and thus 3) the current taxonomy of Polypteridae masks its underlying genetic diversity. Ancestral state reconstructions suggest that pelvic fins were lost independently in Erpetoichthys, and unambiguously estimate multiple independent derivations of body elongation and shortening. Our mitochondrial phylogeny suggested species that have lower jaw protrusion and up-righted orbit are closely related to each other, indicating a single transformation of craniofacial morphology. Conclusion The mitochondrial phylogeny of polypterid fish provides a strongly-supported phylogenetic framework for future comparative evolutionary, physiological, ecological, and genetic analyses. Indeed, ancestral reconstruction and geometric morphometric analyses revealed that the patterns of morphological evolution in Polypteridae are similar to those seen in other osteichthyans, thus implying the underlying genetic and developmental mechanisms responsible for those patterns were established early in the evolutionary history of Osteichthyes. We propose developmental and genetic mechanisms to be tested under the light of this new phylogenetic framework. PMID:20100320

  8. Cryptic Species or Inadequate Taxonomy? Implementation of 2D Geometric Morphometrics Based on Integumental Organs as Landmarks for Delimitation and Description of Copepod Taxa.

    PubMed

    Karanovic, Tomislav; Djurakic, Marko; Eberhard, Stefan M

    2016-03-01

    Discovery of cryptic species using molecular tools has become common in many animal groups but it is rarely accompanied by morphological revision, creating ongoing problems in taxonomy and conservation. In copepods, cryptic species have been discovered in most groups where fast-evolving molecular markers were employed. In this study at Yeelirrie in Western Australia we investigate a subterranean species complex belonging to the harpacticoid genus Schizopera Sars, 1905, using both the barcoding mitochondrial COI gene and landmark-based two-dimensional geometric morphometrics. Integumental organs (sensilla and pores) are used as landmarks for the first time in any crustacean group. Complete congruence between DNA-based species delimitation and relative position of integumental organs in two independent morphological structures suggests the existence of three distinct evolutionary units. We describe two of them as new species, employing a condensed taxonomic format appropriate for cryptic species. We argue that many supposedly cryptic species might not be cryptic if researchers focus on analyzing morphological structures with multivariate tools that explicitly take into account geometry of the phenotype. A perceived supremacy of molecular methods in detecting cryptic species is in our view a consequence of disparity of investment and unexploited recent advancements in morphometrics among taxonomists. Our study shows that morphometric data alone could be used to find diagnostic morphological traits and gives hope to anyone studying small animals with a hard integument or shell, especially opening the door to assessing fossil diversity and rich museum collections. We expect that simultaneous use of molecular tools with geometry-oriented morphometrics may yield faster formal description of species. Decrypted species in this study are a good example for urgency of formal descriptions, as they display short-range endemism in small groundwater calcrete aquifers in a paleochannel, where their conservation may be threatened by proposed mining. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Predictive Modeling of Marine Mammal Density from Existing Survey Data and Model Validation Using Upcoming Surveys

    DTIC Science & Technology

    2009-05-01

    estimate to a geometric mean in the process (Finney 1941, Smith 1993). The ratio estimator was used to correct for this back-transformation bias...2007) Killer whales preying on a blue whale calf on the Costa Rica Dome: genetics, morphometrics , vocalizations and composition of the group. Journal

  10. A Biophysico-Computational Perspective of Breast Cancer Pathogenesis and Treatment Response

    DTIC Science & Technology

    2007-03-01

    be easily assessed by monitoring morphogenesis using immunofluoresence and morphometric assessment markers (Sections III.E.1 and III.E.2; Debnath et...Ingber, D. E. (1997). Geometric control of cell life and death. Science 5317, 1425–1428. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., and Ingber

  11. Design and Development of Peptides from the Anti-Angiogenic Pigment Epithelial-Derived Factor for the Therapy of Prostate Cancer

    DTIC Science & Technology

    2006-12-01

    to perform, but also re- quire substantial amounts of test compound and most rely on selective morphometric analysis (eg, vessel counts, vascular...Several geometric configurations (discoid, spheroid, and so forth) were tested before selecting a cylindrical shape generated by a section of silicone

  12. The evolution of cranial form and function in theropod dinosaurs: insights from geometric morphometrics.

    PubMed

    Brusatte, S L; Sakamoto, M; Montanari, S; Harcourt Smith, W E H

    2012-02-01

    Theropod dinosaurs, an iconic clade of fossil species including Tyrannosaurus and Velociraptor, developed a great diversity of body size, skull form and feeding habits over their 160+ million year evolutionary history. Here, we utilize geometric morphometrics to study broad patterns in theropod skull shape variation and compare the distribution of taxa in cranial morphospace (form) to both phylogeny and quantitative metrics of biting behaviour (function). We find that theropod skulls primarily differ in relative anteroposterior length and snout depth and to a lesser extent in orbit size and depth of the cheek region, and oviraptorosaurs deviate most strongly from the "typical" and ancestral theropod morphologies. Noncarnivorous taxa generally fall out in distinct regions of morphospace and exhibit greater overall disparity than carnivorous taxa, whereas large-bodied carnivores independently converge on the same region of morphospace. The distribution of taxa in morphospace is strongly correlated with phylogeny but only weakly correlated with functional biting behaviour. These results imply that phylogeny, not biting function, was the major determinant of theropod skull shape. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  13. Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae, Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings.

    PubMed

    Bonatti, Vanessa; Simões, Zilá Luz Paulino; Franco, Fernando Faria; Francoy, Tiago Mauricio

    2014-01-01

    Melipona subnitida, a tropical stingless bee, is an endemic species of the Brazilian northeast and exhibits great potential for honey and pollen production in addition to its role as one of the main pollinators of the Caatinga biome. To understand the genetic structure and better assist in the conservation of this species, we characterized the population variability of M. subnitida using geometric morphometrics of the forewing and cytochrome c oxidase I gene fragment sequencing. We collected workers from six localities in the northernmost distribution. Both methodologies indicated that the variability among the sampled populations is related both to the environment in which samples were collected and the geographical distance between the sampling sites, indicating that differentiation among the populations is due to the existence of at least evolutionary lineages. Molecular clock data suggest that this differentiation may have begun in the middle Pleistocene, approximately 396 kya. The conservation of all evolutionary lineages is important since they can present differential resistance to environmental changes, as resistance to drought and diseases.

  14. Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae, Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings

    NASA Astrophysics Data System (ADS)

    Bonatti, Vanessa; Simões, Zilá Luz Paulino; Franco, Fernando Faria; Francoy, Tiago Mauricio

    2014-01-01

    Melipona subnitida, a tropical stingless bee, is an endemic species of the Brazilian northeast and exhibits great potential for honey and pollen production in addition to its role as one of the main pollinators of the Caatinga biome. To understand the genetic structure and better assist in the conservation of this species, we characterized the population variability of M. subnitida using geometric morphometrics of the forewing and cytochrome c oxidase I gene fragment sequencing. We collected workers from six localities in the northernmost distribution. Both methodologies indicated that the variability among the sampled populations is related both to the environment in which samples were collected and the geographical distance between the sampling sites, indicating that differentiation among the populations is due to the existence of at least evolutionary lineages. Molecular clock data suggest that this differentiation may have begun in the middle Pleistocene, approximately 396 kya. The conservation of all evolutionary lineages is important since they can present differential resistance to environmental changes, as resistance to drought and diseases.

  15. Chincup treatment modifies the mandibular shape in children with prognathism.

    PubMed

    Alarcón, José Antonio; Bastir, Markus; Rosas, Antonio; Molero, Julia

    2011-07-01

    Although chincups are the preferred treatment for growing children with mandibular prognathism, the mechanism by which chincups improve this condition remains unclear. The aim of this study was to use geometric morphometrics to evaluate changes in the shape of the mandible of prognathic children treated with a chincup. Geometric morphometrics were used to evaluate the short-term mandibular shape changes in 50 prognathic children treated with chincups compared with 40 untreated matched controls. Twenty-one 2-dimensional mandibular landmarks from cephalograms taken before and after 36 months of treatment or observation were analyzed by Procrustes superimposition and thin plate spline. Permutation tests of the treated patients showed highly significant differences in the mandibular shapes before and after treatment, and compared with the control group after the observation period. The thin plate spline grid deformations indicated more rectangular mandibular configuration, forward condyle orientation, condyle neck compression, gonial area compression, and symphysis narrowing. Early chincup treatment widely modifies the mandibular shape of prognathic children to improve Class III malocclusion. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. Virtual reconstruction and geometric morphometrics as tools for paleopathology: a new approach to study rare developmental disorders of the skeleton.

    PubMed

    Milella, Marco; Zollikofer, Christoph P E; Ponce de León, Marcia S

    2015-02-01

    Survey studies of osteoarchaeological collections occasionally yield specimens exhibiting rare skeletal developmental disorders. Beyond paleopathological diagnosis, however, it is often difficult to gain insight into the processes, mechanisms, and consequences of the pathology, notably because archaeological specimens are often fragmentary. Here, we propose a combination of virtual reconstruction (VR) and geometric morphometrics (GM) to address these issues. As an example, we use VR to reconstruct the only known archaeological specimen exhibiting persistence of the pelvic triradiate cartilage and compare it via GM with a set of healthy pelvises representing both sexes and different ontogenetic stages. Our results evidence (i) a marked deviation of the pathological pelvis from the adult mean shape, (ii) the retention of typical male features, and (iii) the retention of a paedomorphic ratio between iliac and ischiopubic size. Altogether, such data offer new insights into the modularity and integration of pelvic ontogeny, while at the same time demonstrating the usefulness of a combined VR/GM approach as complement to classical methods of paleopathology. © 2014 Wiley Periodicals, Inc.

  17. Adult Neandertal clavicles from the El Sidrón site (Asturias, Spain) in the context of Homo pectoral girdle evolution.

    PubMed

    Rosas, Antonio; Rodriguez-Perez, Francisco Javier; Bastir, Markus; Estalrrich, Almudena; Huguet, Rosa; García-Tabernero, Antonio; Pastor, Juan Francisco; de la Rasilla, Marco

    2016-06-01

    We undertook a three-dimensional geometric morphometric (3DGM) analysis on 12 new Neandertal clavicle specimens from the El Sidrón site (Spain), dated to 49,000 years ago. The 3DGM methods were applied in a comparative framework in order to improve our understanding of trait polarity in features related to Homo pectoral girdle evolution, using other Neandertals, Homo sapiens, Pan, ATD6-50 (Homo antecessor), and KNM-WT 15000 (Homo ergaster/erectus) in the reference collection. Twenty-nine homologous landmarks were measured for each clavicle. Variation and morphological similarities were assessed through principal component analysis, conducted separately for the complete clavicle and the diaphysis. On average, Neandertal clavicles had significantly larger muscular entheses, double dorsal curvature, clavicle torsion, and cranial orientation of the acromial end than non-Neandertal clavicles; the El Sidrón clavicles fit this pattern. Variation within the samples was large, with extensive overlap between Homo species; only chimpanzee specimens clearly differed from the other specimens in morphometric terms. Taken together, our morphometric analyses are consistent with the following phylogenetic sequence. The primitive condition of the clavicle is manifest in the cranial orientation of both the acromial and sternal ends. The derived condition expressed in the H. sapiens + Neandertal clade is defined by caudal rotation of both the sternal and acromial ends, but with variation in the number of acromia remaining in a certain cranial orientation. Finally, the autapomorphic Neandertal condition is defined by secondarily acquired primitive cranial re-orientation of the acromial end, which varies from individual to individual. These results suggest that the pace of phylogenetic change in the pectoral girdle does not seem to follow that of other postcranial skeletal features. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Developmental and Evolutionary Significance of the Zygomatic Bone.

    PubMed

    Heuzé, Yann; Kawasaki, Kazuhiko; Schwarz, Tobias; Schoenebeck, Jeffrey J; Richtsmeier, Joan T

    2016-12-01

    The zygomatic bone is derived evolutionarily from the orbital series. In most modern mammals the zygomatic bone forms a large part of the face and usually serves as a bridge that connects the facial skeleton to the neurocranium. Our aim is to provide information on the contribution of the zygomatic bone to variation in midfacial protrusion using three samples; humans, domesticated dogs, and monkeys. In each case, variation in midface protrusion is a heritable trait produced by one of three classes of transmission: localized dysmorphology associated with single gene dysfunction, selective breeding, or long-term evolution from a common ancestor. We hypothesize that the shape of the zygomatic bone reflects its role in stabilizing the connection between facial skeleton and neurocranium and consequently, changes in facial protrusion are more strongly reflected by the maxilla and premaxilla. Our geometric morphometric analyses support our hypothesis suggesting that the shape of the zygomatic bone has less to do with facial protrusion. By morphometrically dissecting the zygomatic bone we have determined a degree of modularity among parts of the midfacial skeleton suggesting that these components have the ability to vary independently and thus can evolve differentially. From these purely morphometric data, we propose that the neural crest cells that are fated to contribute to the zygomatic bone experience developmental cues that distinguish them from the maxilla and premaxilla. The spatiotemporal and molecular identity of the cues that impart zygoma progenitors with their identity remains an open question that will require alternative data sets. Anat Rec, 299:1616-1630, 2016. © 2016 The Authors The Anatomical Record Published by Wiley Periodicals, Inc. © 2016 The Authors The Anatomical Record Published by Wiley Periodicals, Inc.

  19. A quantitative approach to determine the taxonomic identity and ontogeny of the pycnodontiform fish Pycnodus (Neopterygii, Actinopterygii) from the Eocene of Bolca Lagerstätte, Italy.

    PubMed

    Cawley, John Joseph; Marramà, Giuseppe; Carnevale, Giorgio; Kriwet, Jürgen

    2018-01-01

    The pycnodontiform fish Pycnodus is one of the representatives of the highly diverse actinopterygian fish fauna from the early Eocene Bolca Lagerstätte, representing one of the youngest and thus last occurrences of this extinct neopterygian clade. This genus has historically been used as a wastebasket taxon in regards to poorly known pycnodontiform fossils. Authors have argued over the specific status of the Bolca Lagerstätte Pycnodus in terms of how many species are contained within the genus with some arguing for multiple species and others suggesting lumping all Bolca specimens together into one species. Here, we use a quantitative approach performing biometric and geometric morphometric analyses on 52 specimens of Pycnodus in order to determine if the morphological variability within the sample might be related to inter- or intraspecific variation. The analyses revealed that the variations of body shape, morphometric and meristic characters cannot be used to distinguish different morphotypes. On the contrary, our results show a remarkable link between shape and size, related to ontogeny. Differences in body shape of small (juvenile) and large (adult) individuals is probably related to different microhabitats occupation on the Bolca reef with juveniles sheltering within crevices on the reef and adults being more powerful swimmers that swim above the coral. Taxonomically, we suggest that the Bolca Pycnodus should be referred to strictly as Pycnodus apodus as this was the name given to the holotype. Additionally, an overview of species assigned to Pycnodus is given.

  20. A quantitative approach to determine the taxonomic identity and ontogeny of the pycnodontiform fish Pycnodus (Neopterygii, Actinopterygii) from the Eocene of Bolca Lagerstätte, Italy

    PubMed Central

    Carnevale, Giorgio

    2018-01-01

    Background The pycnodontiform fish Pycnodus is one of the representatives of the highly diverse actinopterygian fish fauna from the early Eocene Bolca Lagerstätte, representing one of the youngest and thus last occurrences of this extinct neopterygian clade. This genus has historically been used as a wastebasket taxon in regards to poorly known pycnodontiform fossils. Authors have argued over the specific status of the Bolca Lagerstätte Pycnodus in terms of how many species are contained within the genus with some arguing for multiple species and others suggesting lumping all Bolca specimens together into one species. Methods Here, we use a quantitative approach performing biometric and geometric morphometric analyses on 52 specimens of Pycnodus in order to determine if the morphological variability within the sample might be related to inter- or intraspecific variation. Results The analyses revealed that the variations of body shape, morphometric and meristic characters cannot be used to distinguish different morphotypes. On the contrary, our results show a remarkable link between shape and size, related to ontogeny. Discussion Differences in body shape of small (juvenile) and large (adult) individuals is probably related to different microhabitats occupation on the Bolca reef with juveniles sheltering within crevices on the reef and adults being more powerful swimmers that swim above the coral. Taxonomically, we suggest that the Bolca Pycnodus should be referred to strictly as Pycnodus apodus as this was the name given to the holotype. Additionally, an overview of species assigned to Pycnodus is given. PMID:29796348

  1. Effects of freezing on white perch Morone americana (Gmelin, 1789): Implications for multivariate morphometrics

    USGS Publications Warehouse

    Kocovsky, Patrick

    2016-01-01

    This study tested the hypothesis that duration of freezing differentially affects whole-body morphometrics of a derived teleost. Whole-body morphometrics are frequently analyzed to test hypotheses of different species, or stocks within a species, of fishes. Specimens used for morphometric analyses are typically fixed or preserved prior to analysis, yet little research has been done on how fixation or preservation methods or duration of preservation of specimens might affect outcomes of multivariate statistical analyses of differences in shape. To determine whether whole-body morphometrics changed as a result of freezing, 23 whole-body morphometrics of age-1 white perch (Morone americana) from western Lake Erie (n = 211) were analyzed immediately after capture, after being held on ice overnight, and after freezing for 100 or 200 days. Discriminant function analysis revealed that all four groups differed significantly from one another (P < 0.0001). The first canonical axis reflected long-axis morphometrics, where there was a clear pattern of positive translation along this axis with duration of preservation. Re-classification analysis demonstrated fish were typically assigned to their original preservation class except for fish frozen 100 days, which assigned mostly to frozen 200 days. Morphometric comparisons using frozen fish must be done on fish frozen for identical periods of time to avoid biases related to the length of time they were frozen. Similar experiments should be conducted on other species and also using formalin- and alcohol-preserved specimens.

  2. Dysmorphometrics: the modelling of morphological abnormalities.

    PubMed

    Claes, Peter; Daniels, Katleen; Walters, Mark; Clement, John; Vandermeulen, Dirk; Suetens, Paul

    2012-02-06

    The study of typical morphological variations using quantitative, morphometric descriptors has always interested biologists in general. However, unusual examples of form, such as abnormalities are often encountered in biomedical sciences. Despite the long history of morphometrics, the means to identify and quantify such unusual form differences remains limited. A theoretical concept, called dysmorphometrics, is introduced augmenting current geometric morphometrics with a focus on identifying and modelling form abnormalities. Dysmorphometrics applies the paradigm of detecting form differences as outliers compared to an appropriate norm. To achieve this, the likelihood formulation of landmark superimpositions is extended with outlier processes explicitly introducing a latent variable coding for abnormalities. A tractable solution to this augmented superimposition problem is obtained using Expectation-Maximization. The topography of detected abnormalities is encoded in a dysmorphogram. We demonstrate the use of dysmorphometrics to measure abrupt changes in time, asymmetry and discordancy in a set of human faces presenting with facial abnormalities. The results clearly illustrate the unique power to reveal unusual form differences given only normative data with clear applications in both biomedical practice & research.

  3. 3D geometric morphometrics of thorax variation and allometry in Hominoidea.

    PubMed

    Bastir, Markus; García-Martínez, Daniel; Williams, Scott A; Recheis, Wolfgang; Torres-Sánchez, Isabel; García Río, Francisco; Oishi, Motoharu; Ogihara, Naomichi

    2017-12-01

    Ever since the seminal papers of Keith and Schultz, hominoid primate ribcages have been described as either "funnel-" or "barrel-shaped." Following this dichotomic typology, it is currently held that Homo sapiens and hylobatids (gibbons and siamangs) share a barrel-shaped ribcage and that they are more similar to each other than to the funnel-shaped thoraces of great apes (Gorilla, Pan, and Pongo). Other researchers hypothesized that thoracic width and the invagination of the thoracic spine into the thorax are related to allometry. However, analyses that take into account the complex three-dimensional (3D) shape of the ribcage are lacking. Here, we address hypotheses about thorax shape and evolution using 3D morphometrics of thoraces in anatomical connection obtained by computed tomography scans of 23 hominoid cadavers and 10 humans and examining thorax compartments composed of seven ribs (1-7 thorax) and of 11 ribs (1-11 thorax). In the 1-7 thorax analyses, the human thorax is uniquely flat because of torsion of the upper and central ribs, differing from all non-human hominoids including hylobatids. In the 1-11 thorax analyses, humans are markedly different from African great apes, with hylobatids and orangutans intermediate. In full shape space analyses, affinities between orangutans and humans on the one hand and between hylobatids and African great apes on the other are evident. Therefore, we reject the hypothesis that humans and hylobatids bear any special affinities in overall 3D thorax shape to each other. We find that larger thoraces are wider and flatter, with a more invaginated spine, supporting the allometric hypothesis. Hominoid thorax variation shows complex interactions between allometry, rib curves, torsion, and declination, and the morphology of the costo-vertebral joint and the thoracic vertebral column. When considering functional specializations alongside phylogenetic relationships, an overly simplistic dichotomy between funnel-shaped and barrel-shaped thoraces is not supported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Analysis of Surstylus and Aculeus Shape and Size Using Geometric Morphometrics to Discriminate Rhagoletis pomonella and Rhagoletis zephyria (Diptera: Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Rhagoletis pomonella (Walsh) and Rhagoletis zephyria Snow both occur in the Pacific Northwest of the U. S. and are frequently confused with one another due to their morphological similarity. The apple maggot, R. pomonella, is a threat to commercial apples in the Pacific Northwest, whereas R. zephyr...

  5. A computational framework to characterize and compare the geometry of coronary networks.

    PubMed

    Bulant, C A; Blanco, P J; Lima, T P; Assunção, A N; Liberato, G; Parga, J R; Ávila, L F R; Pereira, A C; Feijóo, R A; Lemos, P A

    2017-03-01

    This work presents a computational framework to perform a systematic and comprehensive assessment of the morphometry of coronary arteries from in vivo medical images. The methodology embraces image segmentation, arterial vessel representation, characterization and comparison, data storage, and finally analysis. Validation is performed using a sample of 48 patients. Data mining of morphometric information of several coronary arteries is presented. Results agree to medical reports in terms of basic geometric and anatomical variables. Concerning geometric descriptors, inter-artery and intra-artery correlations are studied. Data reported here can be useful for the construction and setup of blood flow models of the coronary circulation. Finally, as an application example, similarity criterion to assess vasculature likelihood based on geometric features is presented and used to test geometric similarity among sibling patients. Results indicate that likelihood, measured through geometric descriptors, is stronger between siblings compared with non-relative patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Unravelling the complexity of domestication: a case study using morphometrics and ancient DNA analyses of archaeological pigs from Romania

    PubMed Central

    Evin, Allowen; Flink, Linus Girdland; Bălăşescu, Adrian; Popovici, Dragomir; Andreescu, Radian; Bailey, Douglas; Mirea, Pavel; Lazăr, Cătălin; Boroneanţ, Adina; Bonsall, Clive; Vidarsdottir, Una Strand; Brehard, Stéphanie; Tresset, Anne; Cucchi, Thomas; Larson, Greger; Dobney, Keith

    2015-01-01

    Current evidence suggests that pigs were first domesticated in Eastern Anatolia during the ninth millennium cal BC before dispersing into Europe with Early Neolithic farmers from the beginning of the seventh millennium. Recent ancient DNA (aDNA) research also indicates the incorporation of European wild boar into domestic stock during the Neolithization process. In order to establish the timing of the arrival of domestic pigs into Europe, and to test hypotheses regarding the role European wild boar played in the domestication process, we combined a geometric morphometric analysis (allowing us to combine tooth size and shape) of 449 Romanian ancient teeth with aDNA analysis. Our results firstly substantiate claims that the first domestic pigs in Romania possessed the same mtDNA signatures found in Neolithic pigs in west and central Anatolia. Second, we identified a significant proportion of individuals with large molars whose tooth shape matched that of archaeological (likely) domestic pigs. These large ‘domestic shape’ specimens were present from the outset of the Romanian Neolithic (6100–5500 cal BC) through to later prehistory, suggesting a long history of admixture between introduced domestic pigs and local wild boar. Finally, we confirmed a turnover in mitochondrial lineages found in domestic pigs, possibly coincident with human migration into Anatolia and the Levant that occurred in later prehistory. PMID:25487340

  7. Morphofunctional Analysis of the Quadrate of Spinosauridae (Dinosauria: Theropoda) and the Presence of Spinosaurus and a Second Spinosaurine Taxon in the Cenomanian of North Africa.

    PubMed Central

    Hendrickx, Christophe; Mateus, Octávio; Buffetaut, Eric

    2016-01-01

    Six quadrate bones, of which two almost certainly come from the Kem Kem beds (Cenomanian, Upper Cretaceous) of south-eastern Morocco, are determined to be from juvenile and adult individuals of Spinosaurinae based on phylogenetic, geometric morphometric, and phylogenetic morphometric analyses. Their morphology indicates two morphotypes evidencing the presence of two spinosaurine taxa ascribed to Spinosaurus aegyptiacus and? Sigilmassasaurus brevicollis in the Cenomanian of North Africa, casting doubt on the accuracy of some recent skeletal reconstructions which may be based on elements from several distinct species. Morphofunctional analysis of the mandibular articulation of the quadrate has shown that the jaw mechanics was peculiar in Spinosauridae. In mature spinosaurids, the posterior parts of the two mandibular rami displaced laterally when the jaw was depressed due to a lateromedially oriented intercondylar sulcus of the quadrate. Such lateral movement of the mandibular ramus was possible due to a movable mandibular symphysis in spinosaurids, allowing the pharynx to be widened. Similar jaw mechanics also occur in some pterosaurs and living pelecanids which are both adapted to capture and swallow large prey items. Spinosauridae, which were engaged, at least partially, in a piscivorous lifestyle, were able to consume large fish and may have occasionally fed on other prey such as pterosaurs and juvenile dinosaurs. PMID:26734729

  8. Finite element modelling of squirrel, guinea pig and rat skulls: using geometric morphometrics to assess sensitivity.

    PubMed

    Cox, P G; Fagan, M J; Rayfield, E J; Jeffery, N

    2011-12-01

    Rodents are defined by a uniquely specialized dentition and a highly complex arrangement of jaw-closing muscles. Finite element analysis (FEA) is an ideal technique to investigate the biomechanical implications of these specializations, but it is essential to understand fully the degree of influence of the different input parameters of the FE model to have confidence in the model's predictions. This study evaluates the sensitivity of FE models of rodent crania to elastic properties of the materials, loading direction, and the location and orientation of the models' constraints. Three FE models were constructed of squirrel, guinea pig and rat skulls. Each was loaded to simulate biting on the incisors, and the first and the third molars, with the angle of the incisal bite varied over a range of 45°. The Young's moduli of the bone and teeth components were varied between limits defined by findings from our own and previously published tests of material properties. Geometric morphometrics (GMM) was used to analyse the resulting skull deformations. Bone stiffness was found to have the strongest influence on the results in all three rodents, followed by bite position, and then bite angle and muscle orientation. Tooth material properties were shown to have little effect on the deformation of the skull. The effect of bite position varied between species, with the mesiodistal position of the biting tooth being most important in squirrels and guinea pigs, whereas bilateral vs. unilateral biting had the greatest influence in rats. A GMM analysis of isolated incisor deformations showed that, for all rodents, bite angle is the most important parameter, followed by elastic properties of the tooth. The results here elucidate which input parameters are most important when defining the FE models, but also provide interesting glimpses of the biomechanical differences between the three skulls, which will be fully explored in future publications. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  9. Morphometric approach to thermodynamic quantities of solvation of complex molecules: Extension to multicomponent solvent

    NASA Astrophysics Data System (ADS)

    Kodama, Ryota; Roth, Roland; Harano, Yuichi; Kinoshita, Masahiro

    2011-07-01

    The morphometric approach (MA) is a powerful tool for calculating a solvation free energy (SFE) and related quantities of solvation thermodynamics of complex molecules. Here, we extend it to a solvent consisting of m components. In the integral equation theories, the SFE is expressed as the sum of m terms each of which comprises solute-component j correlation functions (j = 1, …, m). The MA is applied to each term in a formally separate manner: The term is expressed as a linear combination of the four geometric measures, excluded volume, solvent-accessible surface area, and integrated mean and Gaussian curvatures of the accessible surface, which are calculated for component j. The total number of the geometric measures or the coefficients in the linear combinations is 4m. The coefficients are determined in simple geometries, i.e., for spherical solutes with various diameters in the same multicomponent solvent. The SFE of the spherical solutes are calculated using the radial-symmetric integral equation theory. The extended version of the MA is illustrated for a protein modeled as a set of fused hard spheres immersed in a binary mixture of hard spheres. Several mixtures of different molecular-diameter ratios and compositions and 30 structures of the protein with a variety of radii of gyration are considered for the illustration purpose. The SFE calculated by the MA is compared with that by the direct application of the three-dimensional integral equation theory (3D-IET) to the protein. The deviations of the MA values from the 3D-IET values are less than 1.5%. The computation time required is over four orders of magnitude shorter than that in the 3D-IET. The MA thus developed is expected to be best suited to analyses concerning the effects of cosolvents such as urea on the structural stability of a protein.

  10. Anthropometric Measurements Usage in Medical Sciences

    PubMed Central

    Utkualp, Nevin; Ercan, Ilker

    2015-01-01

    Morphometry is introduced as quantitative approach to seek information concerning variations and changes in the forms of organisms that described the relationship between the human body and disease. Scientists of all civilization, who existed until today, examined the human body using anthropometric methods. For these reasons, anthropometric data are used in many contexts to screen for or monitor disease. Anthropometry, a branch of morphometry, is the study of the size and shape of the components of biological forms and their variations in populations. Morphometrics can also be defined as the quantitative analysis of biological forms. The field has developed rapidly over the last two decades to the extent that we now distinguish between traditional morphometrics and the more recent geometric morphometrics. Advances in imaging technology have resulted in the protection of a greater amount of morphological information and have permitted the analysis of this information. The oldest and most commonly used of these methods is radiography. With developments in this area, CT and MRI have also been started to be used in screening of the internal organs. Morphometric measurements that are used in medicine, are widely used in the diagnosis and the follow-up and the treatment of the disease, today. In addition, in cosmetology use of these new measurements is increasing every day. PMID:26413519

  11. 3D geometric morphometric analysis of the proximal epiphysis of the hominoid humerus

    PubMed Central

    Arias-Martorell, Julia; Potau, Josep Maria; Bello-Hellegouarch, Gaëlle; Pastor, Juan Francisco; Pérez-Pérez, Alejandro

    2012-01-01

    In this study we perform a three-dimensional geometric morphometric (3D GM) analysis of the proximal epiphysis of the humerus in extant great apes, including humans, in order to accurately describe the functional anatomical differences between these taxa. In addition, a fossil hominin specimen of Australopithecus afarensis was included in a multivariate GM analysis in order to test the potential of this methodological approach for making locomotor inferences from fossil remains. The results obtained show significant differences in proximal humeral morphology among the taxa studied, which had thus far largely remained unnoticed. Based on morphofunctional considerations, these anatomical differences can be correlated to differences in the locomotor repertoires of the taxa, thus confirming that the proximal humerus is suitable for constructing paleobiological inferences about locomotion. Modern humans display markedly divergent features, which set them apart from both the extant great apes and the fossil hominin A. afarensis. The morphology of the proximal epiphysis of the humerus of the latter more closely resembles that of the orangutans, thus suggesting that despite hindlimb adaptations to bipedalism, the forelimb of this taxon was still functionally involved in arboreal behaviors, such as climbing or suspension. PMID:22946496

  12. Geometric morphometrics analysis of the hind wing of leaf beetles: proximal and distal parts are separate modules.

    PubMed

    Ren, Jing; Bai, Ming; Yang, Xing-Ke; Zhang, Run-Zhi; Ge, Si-Qin

    2017-01-01

    The success of beetles is mainly attributed to the possibility to hide the hindwings under the sclerotised elytra. The acquisition of the transverse folding function of the hind wing is an important event in the evolutionary history of beetles. In this study, the morphological and functional variances in the hind wings of 94 leaf beetle species (Coleoptera: Chrysomelinae) is explored using geometric morphometrics based on 36 landmarks. Principal component analysis and Canonical variate analysis indicate that changes of apical area, anal area, and middle area are three useful phylogenetic features at a subtribe level of leaf beetles. Variances of the apical area are the most obvious, which strongly influence the entire venation variance. Partial least squares analysis indicates that the proximal and distal parts of hind wings are weakly associated. Modularity tests confirm that the proximal and distal compartments of hind wings are separate modules. It is deduced that for leaf beetles, or even other beetles, the hind wing possibly exhibits significant functional divergences that occurred during the evolution of transverse folding that resulted in the proximal and distal compartments of hind wings evolving into separate functional modules.

  13. Standing on the shoulders of apes: Analyzing the form and function of the hominoid scapula using geometric morphometrics and finite element analysis.

    PubMed

    Püschel, Thomas A; Sellers, William I

    2016-02-01

    The aim was to analyze the relationship between scapular form and function in hominoids by using geometric morphometrics (GM) and finite element analysis (FEA). FEA was used to analyze the biomechanical performance of different hominoid scapulae by simulating static postural scenarios. GM was used to quantify scapular shape differences and the relationship between form and function was analyzed by applying both multivariate-multiple regressions and phylogenetic generalized least-squares regressions (PGLS). Although it has been suggested that primate scapular morphology is mainly a product of function rather than phylogeny, our results showed that shape has a significant phylogenetic signal. There was a significant relationship between scapular shape and its biomechanical performance; hence at least part of the scapular shape variation is due to non-phylogenetic factors, probably related to functional demands. This study has shown that a combined approach using GM and FEA was able to cast some light regarding the functional and phylogenetic contributions in hominoid scapular morphology, thus contributing to a better insight of the association between scapular form and function. © 2015 Wiley Periodicals, Inc.

  14. HpQTL: a geometric morphometric platform to compute the genetic architecture of heterophylly.

    PubMed

    Sun, Lidan; Wang, Jing; Zhu, Xuli; Jiang, Libo; Gosik, Kirk; Sang, Mengmeng; Sun, Fengsuo; Cheng, Tangren; Zhang, Qixiang; Wu, Rongling

    2017-02-15

    Heterophylly, i.e. morphological changes in leaves along the axis of an individual plant, is regarded as a strategy used by plants to cope with environmental change. However, little is known of the extent to which heterophylly is controlled by genes and how each underlying gene exerts its effect on heterophyllous variation. We described a geometric morphometric model that can quantify heterophylly in plants and further constructed an R-based computing platform by integrating this model into a genetic mapping and association setting. The platform, named HpQTL, allows specific quantitative trait loci mediating heterophyllous variation to be mapped throughout the genome. The statistical properties of HpQTL were examined and validated via computer simulation. Its biological relevance was demonstrated by results from a real data analysis of heterophylly in a wood plant, mei (Prunus mume). HpQTL provides a powerful tool to analyze heterophylly and its underlying genetic architecture in a quantitative manner. It also contributes a new approach for genome-wide association studies aimed to dissect the programmed regulation of plant development and evolution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation

    PubMed Central

    Siriwut, Warut; Edgecombe, Gregory D.; Sutcharit, Chirasak; Panha, Somsak

    2015-01-01

    Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmüller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny. PMID:26270342

  16. The analysis of morphometric data on rocky mountain wolves and artic wolves using statistical method

    NASA Astrophysics Data System (ADS)

    Ammar Shafi, Muhammad; Saifullah Rusiman, Mohd; Hamzah, Nor Shamsidah Amir; Nor, Maria Elena; Ahmad, Noor’ani; Azia Hazida Mohamad Azmi, Nur; Latip, Muhammad Faez Ab; Hilmi Azman, Ahmad

    2018-04-01

    Morphometrics is a quantitative analysis depending on the shape and size of several specimens. Morphometric quantitative analyses are commonly used to analyse fossil record, shape and size of specimens and others. The aim of the study is to find the differences between rocky mountain wolves and arctic wolves based on gender. The sample utilised secondary data which included seven variables as independent variables and two dependent variables. Statistical modelling was used in the analysis such was the analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). The results showed there exist differentiating results between arctic wolves and rocky mountain wolves based on independent factors and gender.

  17. Avian egg shape: Form, function, and evolution.

    PubMed

    Stoddard, Mary Caswell; Yong, Ee Hou; Akkaynak, Derya; Sheard, Catherine; Tobias, Joseph A; Mahadevan, L

    2017-06-23

    Avian egg shape is generally explained as an adaptation to life history, yet we currently lack a global synthesis of how egg-shape differences arise and evolve. Here, we apply morphometric, mechanistic, and macroevolutionary analyses to the egg shapes of 1400 bird species. We characterize egg-shape diversity in terms of two biologically relevant variables, asymmetry and ellipticity, allowing us to quantify the observed morphologies in a two-dimensional morphospace. We then propose a simple mechanical model that explains the observed egg-shape diversity based on geometric and material properties of the egg membrane. Finally, using phylogenetic models, we show that egg shape correlates with flight ability on broad taxonomic scales, suggesting that adaptations for flight may have been critical drivers of egg-shape variation in birds. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Allometry and Interspecific Differences in the Facial Cranium of Two Closely Related Macaque Species

    PubMed Central

    Ito, Tsuyoshi; Nishimura, Takeshi; Takai, Masanaru

    2011-01-01

    Interpreting evolutionary history of macaque monkeys from fossil evidence is difficult, because their evolutionary fluctuations in body size might have removed or formed important morphological features differently in each lineage. We employed geometric morphometrics to explore allometric trajectories of craniofacial shape in two closely related species, Macaca fascicularis and M. fuscata. These two species exhibit a single shared allometric trajectory in superoinferior deflection of the anterior face, indicating that the differences in this feature can be explained by size variation. In contrast, two parallel trajectories are demonstrated in craniofacial protrusion, indicating that even if they are comparable in size, M. fuscata has a higher and shorter face than M. fascicularis. The degree of facial protrusion is most likely a critical feature for phyletic evaluation in the fascicularis group. Such analyses in various macaques would help to resolve controversies regarding phyletic interpretations of fossil macaques. PMID:22567301

  19. The ecological origins of snakes as revealed by skull evolution.

    PubMed

    Da Silva, Filipe O; Fabre, Anne-Claire; Savriama, Yoland; Ollonen, Joni; Mahlow, Kristin; Herrel, Anthony; Müller, Johannes; Di-Poï, Nicolas

    2018-01-25

    The ecological origin of snakes remains amongst the most controversial topics in evolution, with three competing hypotheses: fossorial; marine; or terrestrial. Here we use a geometric morphometric approach integrating ecological, phylogenetic, paleontological, and developmental data for building models of skull shape and size evolution and developmental rate changes in squamates. Our large-scale data reveal that whereas the most recent common ancestor of crown snakes had a small skull with a shape undeniably adapted for fossoriality, all snakes plus their sister group derive from a surface-terrestrial form with non-fossorial behavior, thus redirecting the debate toward an underexplored evolutionary scenario. Our comprehensive heterochrony analyses further indicate that snakes later evolved novel craniofacial specializations through global acceleration of skull development. These results highlight the importance of the interplay between natural selection and developmental processes in snake origin and diversification, leading first to invasion of a new habitat and then to subsequent ecological radiations.

  20. Multimethod Approach to the Early Postnatal Growth of the Mandible in Mice from a Zone of Robertsonian Polymorphism.

    PubMed

    Martínez-Vargas, Jessica; Muñoz-Muñoz, Francesc; López-Fuster, María José; Cubo, Jorge; Ventura, Jacint

    2018-04-18

    The western European house mouse (Mus musculus domesticus) shows high karyotypic diversity owing to Robertsonian translocations. Morphometric studies conducted with adult mice suggest that karyotype evolution due to these chromosomal reorganizations entails variation in the form and the patterns of morphological covariation of the mandible. However, information is much scarcer regarding the effect of these rearrangements on the growth pattern of the mouse mandible over early postnatal ontogeny. Here we compare mandible growth from the second to the eighth week of postnatal life between two ontogenetic series of mice from wild populations, with the standard karyotype and with Robertsonian translocations respectively, reared under the same conditions. A multi-method approach is used, including bone histology analyses of mandible surfaces and cross-sections, as well as geometric morphometric analyses of mandible form. The mandibles of both standard and Robertsonian mice display growth acceleration around weaning, anteroposterior direction of bone maturation, a predominance of bone deposition fields over ontogeny, and relatively greater expansion of the posterior mandible region correlated with the ontogenetic increase in mandible size. Nevertheless, differences exist between the two mouse groups regarding the timing of histological maturation of the mandible, the localization of certain bone remodeling fields, the temporospatial patterns of morphological variation, and the organization into two main modules. The dissimilarities in the process of mandible growth between the two groups of mice become more evident around sexual maturity, and could arise from alterations that Robertsonian translocations may exert on genes involved in the bone remodeling mechanism. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  1. Does skull morphology constrain bone ornamentation? A morphometric analysis in the Crocodylia.

    PubMed

    Clarac, F; Souter, T; Cubo, J; de Buffrénil, V; Brochu, C; Cornette, R

    2016-08-01

    Previous quantitative assessments of the crocodylians' dermal bone ornamentation (this ornamentation consists of pits and ridges) has shown that bone sculpture results in a gain in area that differs between anatomical regions: it tends to be higher on the skull table than on the snout. Therefore, a comparative phylogenetic analysis within 17 adult crocodylian specimens representative of the morphological diversity of the 24 extant species has been performed, in order to test if the gain in area due to ornamentation depends on the skull morphology, i.e. shape and size. Quantitative assessment of skull size and shape through geometric morphometrics, and of skull ornamentation through surface analyses, produced a dataset that was analyzed using phylogenetic least-squares regression. The analyses reveal that none of the variables that quantify ornamentation, be they on the snout or the skull table, is correlated with the size of the specimens. Conversely, there is more disparity in the relationships between skull conformations (longirostrine vs. brevirostrine) and ornamentation. Indeed, both parameters GApit (i.e. pit depth and shape) and OArelat (i.e. relative area of the pit set) are negatively correlated with snout elongation, whereas none of the values quantifying ornamentation on the skull table is correlated with skull conformation. It can be concluded that bone sculpture on the snout is influenced by different developmental constrains than on the skull table and is sensible to differences in the local growth 'context' (allometric processes) prevailing in distinct skull parts. Whatever the functional role of bone ornamentation on the skull, if any, it seems to be restricted to some anatomical regions at least for the longirostrine forms that tend to lose ornamentation on the snout. © 2016 Anatomical Society.

  2. A new high-resolution 3-D quantitative method for analysing small morphological features: an example using a Cambrian trilobite.

    PubMed

    Esteve, Jorge; Zhao, Yuan-Long; Maté-González, Miguel Ángel; Gómez-Heras, Miguel; Peng, Jin

    2018-02-12

    Taphonomic processes play an important role in the preservation of small morphological features such as granulation or pits. However, the assessment of these features may face the issue of the small size of the specimens and, sometimes, the destructiveness of these analyses, which makes impossible carrying them out in singular specimen, such as holotypes or lectotypes. This paper takes a new approach to analysing small-morphological features, by using an optical surface roughness (OSR) meter to create a high-resolution three-dimensional digital-elevation model (DEM). This non-destructive technique allows analysing quantitatively the DEM using geometric morphometric methods (GMM). We created a number of DEMs from three populations putatively belonging to the same species of trilobite (Oryctocephalus indicus) that present the same cranidial outline, but differ in the presence or absence of the second and third transglabellar furrows. Profile analysis of the DEMs demonstrate that all three populations show similar preservation variation in the glabellar furrows and lobes. The GMM shows that all populations exhibit the same range of variation. Differences in preservation are a consequence of different degrees of cementation and rates of dissolution. Fast cementation enhances the preservation of glabellar furrows and lobes, while fast dissolution hampers preservation of the same structures.

  3. [Automated morphometric evaluation of the chromatin structure of liver cell nuclei after vagotomy].

    PubMed

    Butusova, N N; Zhukotskiĭ, A V; Sherbo, I V; Gribkov, E N; Dubovaia, T K

    1989-05-01

    The morphometric analysis of the interphase chromatine structure of the hepatic cells nuclei was carried out on the automated TV installation for the quantitative analysis of images "IBAS-2" (by the OPTON firm, the FRG) according to 50 optical and geometric parameters during various periods (1.2 and 4 weeks) after the vagotomy operation. It is determined that upper-molecular organisation of chromatine undergoes the biggest changes one week after operation, and changes of granular component are more informative than changes of the nongranular component (with the difference 15-20%). It was also revealed that chromatine components differ in tinctorial properties, which are evidently dependent on physicochemical characteristics of the chromatine under various functional conditions of the cell. As a result of the correlation analysis the group of morphometric indices of chromatine structure was revealed, which are highly correlated with level of transcription activity of chromatine during various terms after denervation. The correlation quotient of these parameters is 0.85-0.97. The summing up: vagus denervation of the liver causes changes in the morphofunctional organisation of the chromatine.

  4. Metric and geometric morphometric analysis of new hominin fossils from Maba (Guangdong, China).

    PubMed

    Xiao, Dongfang; Bae, Christopher J; Shen, Guanjun; Delson, Eric; Jin, Jennie J H; Webb, Nicole M; Qiu, Licheng

    2014-09-01

    We present an analysis of a set of previously unreported hominin fossils from Maba (Guangdong, China), a cave site that is best known for the presence of a partial hominin cranium currently assigned as mid-Pleistocene Homo and that has been traditionally dated to around the Middle-Late Pleistocene transition. A more recent set of Uranium series dates indicate that the Maba travertine may date to >237 ka (thousands of years ago), as opposed to the original U-series date, which placed Maba at 135-129 ka. The fossils under study include five upper first and second molars and a partial left mandible with a socketed m3, all recovered from different parts of the site than the cranium or the dated sediments. The results of our metric and 2D geometric morphometric ('GM') study suggest that the upper first molars are likely from modern humans, suggesting a more recent origin. The upper second molars align more closely with modern humans, though the minimum spanning tree from the 2D GM analysis also connects Maba to Homo neanderthalensis. The patterning in the M2s is not as clear as with the M1s. The m3 and partial mandible are morphometrically intermediate between Holocene modern humans and older Homo sapiens. However, a minimum spanning tree indicates that both the partial mandible and m3 align most closely with Holocene modern humans, and they also may be substantially younger than the cranium. Because questions exist regarding the context and the relationship of the dated travertine with the hominin fossils, we suggest caution is warranted in interpreting the Maba specimens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A three-dimensional geometric morphometrics view of the cranial shape variation and population history in the New World.

    PubMed

    Galland, Manon; Friess, Martin

    2016-09-10

    Craniofacial variation in past and present Amerindians has been attributed to the effect of multiple founder events, or to one major migration followed by in situ differentiation and possibly recurrent contacts among Circum-Arctic groups. Our study aims to: (i) detect morphological differences that may indicate several migrations; (ii) test for the presence of genetic isolation; and (iii) test the correlation between shape data and competing settlement hypotheses by taking into account geography, chronology, climate effects, the presence of genetic isolation and recurrent gene flow. We analyzed a large sample of three-dimensional (3D) cranial surface scans (803 specimens) including past and modern groups from America and Australasia. Shape variation was investigated using geometric morphometrics. Differential external gene flow was evaluated by applying genetic concepts to morphometric data (Relethford-Blangero approach). Settlement hypotheses were tested using a matrix correlation approach (Mantel tests). Our results highlight the strong dichotomy between Circum-Arctic and continental Amerindians as well as the impact of climate adaptation, and possibly recurrent gene flow in the Circum-Arctic area. There is also evidence for the impact of genetic isolation on phenetic variation in Baja California. Several settlement hypotheses are correlated with our data. The three approaches used in this study highlight the importance of local processes especially in Baja California, and caution against the use of overly simplistic models when searching for the number of migration events. The results stress the complexity of the settlement of the Americas as well as the mosaic nature of the processes involved in this process. Am. J. Hum. Biol. 28:646-661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Using airborne LiDAR in geoarchaeological contexts: Assessment of an automatic tool for the detection and the morphometric analysis of grazing archaeological structures (French Massif Central).

    NASA Astrophysics Data System (ADS)

    Roussel, Erwan; Toumazet, Jean-Pierre; Florez, Marta; Vautier, Franck; Dousteyssier, Bertrand

    2014-05-01

    Airborne laser scanning (ALS) of archaeological regions of interest is nowadays a widely used and established method for accurate topographic and microtopographic survey. The penetration of the vegetation cover by the laser beam allows the reconstruction of reliable digital terrain models (DTM) of forested areas where traditional prospection methods are inefficient, time-consuming and non-exhaustive. The ALS technology provides the opportunity to discover new archaeological features hidden by vegetation and provides a comprehensive survey of cultural heritage sites within their environmental context. However, the post-processing of LiDAR points clouds produces a huge quantity of data in which relevant archaeological features are not easily detectable with common visualizing and analysing tools. Undoubtedly, there is an urgent need for automation of structures detection and morphometric extraction techniques, especially for the "archaeological desert" in densely forested areas. This presentation deals with the development of automatic detection procedures applied to archaeological structures located in the French Massif Central, in the western forested part of the Puy-de-Dôme volcano between 950 and 1100 m a.s.l.. These unknown archaeological sites were discovered by the March 2011 ALS mission and display a high density of subcircular depressions with a corridor access. The spatial organization of these depressions vary from isolated to aggregated or aligned features. Functionally, they appear to be former grazing constructions built from the medieval to the modern period. Similar grazing structures are known in other locations of the French Massif Central (Sancy, Artense, Cézallier) where the ground is vegetation-free. In order to develop a reliable process of automatic detection and mapping of these archaeological structures, a learning zone has been delineated within the ALS surveyed area. The grazing features were mapped and typical morphometric attributes were calculated based on 2 methods: (i) The mapping of the archaeological structures by a human operator using common visualisation tools (DTM, multi-direction hillshading & local relief models) within a GIS environment; (ii) The automatic detection and mapping performed by a recognition algorithm based on a user defined geometric pattern of the grazing structures. The efficiency of the automatic tool has been assessed by comparing the number of structures detected and the morphometric attributes calculated by the two methods. Our results indicate that the algorithm is efficient for the detection and the location of grazing structures. Concerning the morphometric results, there is still a discrepancy between automatic and expert calculations, due to both the expert mapping choices and the algorithm calibration.

  7. Use of morphometric soil aggregates parameters to evaluate the reclamation process in mined areas located at amazon forest - Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. I.; Fengler, F. H.; Longo, R. M.; Mello, G. F.; Damame, D. B.; Crowley, D. E.

    2015-12-01

    Brazil has a high mineral potential that have been explored over the years. A large fraction of these mineral resources are located in Amazon region, which is known for its large biodiversity and world climate importance. As the policies that control the Amazon preservation are relatively new, several mining activities have been exploring the Amazon territory, promoting a large process of degradation. Once the mining activities have a high potential of environmental changes the government created polices to restrain the mining in Amazon forests and obligate mining companies to reclaim theirs minded areas. However, the measurement of reclamation development still is a challenging task for the Professionals involved. The volume and complexity of the variables, allied to the difficulty in identifying the reclamation of ecosystem functionalities are still lack to ensure the reclamation success. In this sense this work aims to investigate the representativeness of morphometric soil aggregates parameters in the understanding of reclamation development. The study area is located in the National Forest of Jamari, State of Rondônia. In the past mining companies explored the region producing eight closed mines that are now in reclamation process. The soil aggregates morphometric measurements: geometric mean diameter (GMD), aggregate circularity index, and aggregate roundness, were choose based in its obtaining facility, and their association to biological activity. To achieve the proposed objective the aggregates of eight sites in reclamation, from different closed mines, where chosen and compared to Amazon forest and open mine soil aggregates. The results were analyzed to one way ANOVA to identifying differences between areas in reclamation, natural ecosystem, and open mine. It was obtained differences for GMD and circularity index. However, only the circularity index allowed to identifying differences between the reclamation sites. The results allowed concluding: (1) Morphometric aggregates measurements can represent the reclamation process in Amazon territory; (2) To validate the results more areas in reclamation process in different ecosystems must be investigated; (3) Roundness didn't represented any differences.Key words: circularity index, ecosystem, geometric mean diameter.

  8. Metatarsal Shape and Foot Type: A Geometric Morphometric Analysis.

    PubMed

    Telfer, Scott; Kindig, Matthew W; Sangeorzan, Bruce J; Ledoux, William R

    2017-03-01

    Planus and cavus foot types have been associated with an increased risk of pain and disability. Improving our understanding of the geometric differences between bones in different foot types may provide insights into injury risk profiles and have implications for the design of musculoskeletal and finite-element models. In this study, we performed a geometric morphometric analysis on the geometry of metatarsal bones from 65 feet, segmented from computed tomography (CT) scans. These were categorized into four foot types: pes cavus, neutrally aligned, asymptomatic pes planus, and symptomatic pes planus. Generalized procrustes analysis (GPA) followed by permutation tests was used to determine significant shape differences associated with foot type and sex, and principal component analysis was used to find the modes of variation for each metatarsal. Significant shape differences were found between foot types for all the metatarsals (p < 0.01), most notably in the case of the second metatarsal which showed significant pairwise differences across all the foot types. Analysis of the principal components of variation showed pes cavus bones to have reduced cross-sectional areas in the sagittal and frontal planes. The first (p = 0.02) and fourth metatarsals (p = 0.003) were found to have significant sex-based differences, with first metatarsals from females shown to have reduced width, and fourth metatarsals from females shown to have reduced frontal and sagittal plane cross-sectional areas. Overall, these findings suggest that metatarsal bones have distinct morphological characteristics that are associated with foot type and sex, with implications for our understanding of anatomy and numerical modeling of the foot.

  9. Identification, sexual dimorphism, and allometric effects of three psyllid species of the genus Psyllopsis by geometric morphometric analysis (Hemiptera, Liviidae)

    PubMed Central

    Gushki, Roghayeh Shamsi; Lashkari, Mohammadreza; Mirzaei, Saeid

    2018-01-01

    Abstract Jumping plant lice (Hemiptera: Psylloidea) are considered important vectors of plant diseases and also economically important pests in agriculture and forest ecosystems. Three psyllid species Psyllopsis repens Loginova, 1963, Psyllopsis securicola Loginova, 1963, and Psyllopsis machinosus Loginova, 1963 associated with the ash tree Fraxinus are morphologically very similar. So far, their distinction has been possible only by comparing their male and female genitalia. In this research, forewing shape and size characteristics, sexual dimorphism and their allometric effects, using geometric morphometric analysis, were examined for identification purposes. The results showed significant differences in wing shape and size between the species studied. Based on the results, two species P. machinosus and P. securicola can be differentiated with the vein M1+2, as in P. securicola the vein M1+2 is located between Rs and M3+4 veins, but the vein M1+2 is closer to the vein M3+4 in P. machinosus; also, P. repens can be differentiated from the two species P. machinosus and P. securicola by vein M. Hence, the veins M1+2, M3+4, Rs and M were the most important wing characters for discrimination of the three species, especially in the field. The analysis also showed significant differences in wing shape and size between male and female of the three species, and the allometric analysis showed that significant shape differences still remain in constant size in P. machinosus and P. repens. Geometric changes in the forewings of both sexes for the three species are illustrated. PMID:29674872

  10. Biostratigraphic and morphometric analyses of specimens from the calcareous nannofossil genus Tribrachiatus

    USGS Publications Warehouse

    Self-Trail, Jean; Seefelt, Ellen L.; Shepherd, Claire L.; Martin, Victoria A.

    2017-01-01

    Biostratigraphic and morphometric analyses of calcareous nannofossil assemblages from one outcrop and two cored sections of lower Eocene sediments reveal the presence of two new species: Tribrachiatus lunatus sp. nov., and Tribrachiatus absidatus sp. nov. Differences between the new species and Tribrachiatus orthostylus are discussed. The first occurrence of the two new species is just below the calcareous nannofossil Zone NP11/NP12 boundary, close to the Chron 24r/23n boundary, and thus they are globally useful biostratigraphic markers.

  11. Relative importance of modularity and other morphological attributes on different types of lithic point weapons: assessing functional variations.

    PubMed

    González-José, Rolando; Charlin, Judith

    2012-01-01

    The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as "near decomposable units" in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way.

  12. Relative Importance of Modularity and Other Morphological Attributes on Different Types of Lithic Point Weapons: Assessing Functional Variations

    PubMed Central

    González-José, Rolando; Charlin, Judith

    2012-01-01

    The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as “near decomposable units” in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way. PMID:23094104

  13. Host-based identification is not supported by morphometrics in natural populations of Gyrodactylus salaris and G. thymalli (Platyhelminthes, Monogenea).

    PubMed

    Olstad, K; Shinn, A P; Bachmann, L; Bakke, T A

    2007-12-01

    Gyrodactylus salaris is a serious pest of wild pre-smolt Atlantic salmon (Salmo salar) in Norway. The closely related G. thymalli, originally described from grayling (Thymallus thymallus), is assumed harmless to both grayling and salmon. The 2 species are difficult to distinguish using traditional, morphometric methods or molecular approaches. The aim of this study was to explore whether there is a consistent pattern of morphometrical variation between G. salaris and G. thymalli and to analyse the morphometric variation in the context of 'diagnostic realism' (in natural populations). Specimens from the type-material for the 2 species are also included. In total, 27 point-to-point measurements from the opisthaptoral hard parts were used and analysed by digital image processing and uni- and multivariate morphometry. All populations most closely resembled its respective type material, as expected from host species, with the exception of G. thymalli from the Norwegian river Trysilelva. We, therefore, did not find clear support in the morphometrical variation among G. salaris and G. thymalli for an a priori species delineation based on host. The present study also indicates an urgent need for more detailed knowledge on the influence of environmental factors on the phenotype of gyrodactylid populations.

  14. Towards the automated identification of Chrysomya blow flies from wing images.

    PubMed

    Macleod, N; Hall, M J R; Wardhana, A H

    2018-04-15

    The Old World screwworm fly (OWSF), Chrysomya bezziana (Diptera: Calliphoridae), is an important agent of traumatic myiasis and, as such, a major human and animal health problem. In the implementation of OWSF control operations, it is important to determine the geographical origins of such disease-causing species in order to establish whether they derive from endemic or invading populations. Gross morphological and molecular studies have demonstrated the existence of two distinct lineages of this species, one African and the other Asian. Wing morphometry is known to be of substantial assistance in identifying the geographical origin of individuals because it provides diagnostic markers that complement molecular diagnostics. However, placement of the landmarks used in traditional geometric morphometric analysis can be time-consuming and subject to error caused by operator subjectivity. Here we report results of an image-based approach to geometric morphometric analysis for delivering wing-based identifications. Our results indicate that this approach can produce identifications that are practically indistinguishable from more traditional landmark-based results. In addition, we demonstrate that the direct analysis of digital wing images can be used to discriminate between three Chrysomya species of veterinary and forensic importance and between C. bezziana genders. © 2018 The Trustees of the Natural History Museum, London. Medical and Veterinary Entomology © 2018 Royal Entomological Society.

  15. Palaeoecological inferences for the fossil Australian snakes Yurlunggur and Wonambi (Serpentes, Madtsoiidae)

    NASA Astrophysics Data System (ADS)

    Palci, Alessandro; Hutchinson, Mark N.; Caldwell, Michael W.; Scanlon, John D.; Lee, Michael S. Y.

    2018-03-01

    Madtsoiids are among the most basal snakes, with a fossil record dating back to the Upper Cretaceous (Cenomanian). Most representatives went extinct by the end of the Eocene, but some survived in Australia until the Late Cenozoic. Yurlunggur and Wonambi are two of these late forms, and also the best-known madtsoiids to date. A better understanding of the anatomy and palaeoecology of these taxa may shed light on the evolution and extinction of this poorly known group of snakes and on early snake evolution in general. A digital endocast of the inner ear of Yurlunggur was compared to those of 81 species of snakes and lizards with known ecological preferences using three-dimensional geometric morphometrics. The inner ear of Yurlunggur most closely resembles both that of certain semiaquatic snakes and that of some semifossorial snakes. Other cranial and postcranial features of this snake support the semifossorial interpretation. While the digital endocast of the inner ear of Wonambi is too incomplete to be included in a geometric morphometrics study, its preserved morphology is very different from that of Yurlunggur and suggests a more generalist ecology. Osteology, palaeoclimatic data and the palaeobiogeographic distribution of these two snakes are all consistent with these inferred ecological differences.

  16. Size and shape variations of the bony components of sperm whale cochleae.

    PubMed

    Schnitzler, Joseph G; Frédérich, Bruno; Früchtnicht, Sven; Schaffeld, Tobias; Baltzer, Johannes; Ruser, Andreas; Siebert, Ursula

    2017-04-25

    Several mass strandings of sperm whales occurred in the North Sea during January and February 2016. Twelve animals were necropsied and sampled around 48 h after their discovery on German coasts of Schleswig Holstein. The present study aims to explore the morphological variation of the primary sensory organ of sperm whales, the left and right auditory system, using high-resolution computerised tomography imaging. We performed a quantitative analysis of size and shape of cochleae using landmark-based geometric morphometrics to reveal inter-individual anatomical variations. A hierarchical cluster analysis based on thirty-one external morphometric characters classified these 12 individuals in two stranding clusters. A relative amount of shape variation could be attributable to geographical differences among stranding locations and clusters. Our geometric data allowed the discrimination of distinct bachelor schools among sperm whales that stranded on German coasts. We argue that the cochleae are individually shaped, varying greatly in dimensions and that the intra-specific variation observed in the morphology of the cochleae may partially reflect their affiliation to their bachelor school. There are increasing concerns about the impact of noise on cetaceans and describing the auditory periphery of odontocetes is a key conservation issue to further assess the effect of noise pollution.

  17. Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells.

    PubMed

    Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary

    2018-06-15

    The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Exploring Eucladoceros ecomorphology using geometric morphometrics.

    PubMed

    Curran, Sabrina C

    2015-01-01

    An increasingly common method for reconstructing paleoenvironmental parameters of hominin sites is ecological functional morphology (ecomorphology). This study provides a geometric morphometric study of cervid rearlimb morphology as it relates to phylogeny, size, and ecomorphology. These methods are then applied to an extinct Pleistocene cervid, Eucladoceros, which is found in some of the earliest hominin-occupied sites in Eurasia. Variation in cervid postcranial functional morphology associated with different habitats can be summarized as trade-offs between joint stability versus mobility and rapid movement versus power-generation. Cervids in open habitats emphasize limb stability to avoid joint dislocation during rapid flight from predators. Closed-adapted cervids require more joint mobility to rapidly switch directions in complex habitats. Two skeletal features (of the tibia and calcaneus) have significant phylogenetic signals, while two (the femur and third phalanx) do not. Additionally, morphology of two of these features (tibia and third phalanx) were correlated with body size. For the tibial analysis (but not the third phalanx) this correlation was ameliorated when phylogeny was taken into account. Eucladoceros specimens from France and Romania fall on the more open side of the habitat continuum, a result that is at odds with reconstructions of their diet as browsers, suggesting that they may have had a behavioral regime unlike any extant cervid. © 2014 Wiley Periodicals, Inc.

  19. Quantitative phase imaging of platelet: assessment of cell morphology and function

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina; Vlasova, Elizaveta; Metelin, Vladislav; Agadzhanjan, B.; Lyfenko, R.

    2017-02-01

    It is well known that platelets play a central role in hemostasis and thrombosis, they also mediate tumor cell growth, dissemination and angiogenesis. The purpose of the present experiment was to evaluate living platelet size, function and morphology simultaneously in unactivated and activated states using Phase-Interference Microscope "Cytoscan" (Moscow, Russia). We enrolled 30 healthy volunteers, who had no past history of aeteriosclerosis-related disorders, such as coronary heart disease, cerebrovascular disease, hypertention, diabetes or hyperlipidemia and 30 patients with oropharynx cancer. We observed the optic-geometrical parameters of each isolated living cell and the distribution of platelets by sizes have been analysed to detect the dynamics of cell population heterogeneity. Simultaneously we identified 4 platelet forms that have different morphological features and different parameters of size distribution. We noticed that morphological platelet types correlate with morphometric platelet parameters. The data of polymorphisms of platelet reactivity in tumor progression can be used to improve patient outcomes in the cancer prevention and treatment. Moreover morphometric and functional platelet parameters can serve criteria of the efficiency of the radio- and chemotherapy carried out. In conclusion the computer phase-interference microscope provides rapid and effective analysis of living platelet morphology and function at the same time. The use of the computer phase-interference microscope could be an easy and fast method to check the state of platelets in patients with changed platelet activation and to follow a possible pharmacological therapy to reduce this phenomenon.

  20. Implementation of novel statistical procedures and other advanced approaches to improve analysis of CASA data.

    PubMed

    Ramón, M; Martínez-Pastor, F

    2018-04-23

    Computer-aided sperm analysis (CASA) produces a wealth of data that is frequently ignored. The use of multiparametric statistical methods can help explore these datasets, unveiling the subpopulation structure of sperm samples. In this review we analyse the significance of the internal heterogeneity of sperm samples and its relevance. We also provide a brief description of the statistical tools used for extracting sperm subpopulations from the datasets, namely unsupervised clustering (with non-hierarchical, hierarchical and two-step methods) and the most advanced supervised methods, based on machine learning. The former method has allowed exploration of subpopulation patterns in many species, whereas the latter offering further possibilities, especially considering functional studies and the practical use of subpopulation analysis. We also consider novel approaches, such as the use of geometric morphometrics or imaging flow cytometry. Finally, although the data provided by CASA systems provides valuable information on sperm samples by applying clustering analyses, there are several caveats. Protocols for capturing and analysing motility or morphometry should be standardised and adapted to each experiment, and the algorithms should be open in order to allow comparison of results between laboratories. Moreover, we must be aware of new technology that could change the paradigm for studying sperm motility and morphology.

  1. Effects of Temperature, Photoperiod, and Rainfall on Morphometric Variation of Diaphorina citri (Hemiptera: Liviidae).

    PubMed

    Paris, Thomson M; Allan, Sandra A; Hall, David G; Hentz, Matthew G; Croxton, Scott D; Ainpudi, Niharika; Stansly, Philip A

    2017-02-01

    Phenotypic plasticity provides a mechanism by which an organism can adapt to new or changing environments. Earlier studies have demonstrated the variability of Diaphorina citri Kuwayama (Asian citrus psyllid) population dynamics, but no analysis of morphological changes induced by seasonal or artificial laboratory-induced conditions has yet been documented. Such morphometric variation has been found to correspond in dispersal capabilities in several insect taxa. In this study, the effects of temperature and photoperiod on morphometric variation of D. citri were examined through laboratory rearing of psyllids under controlled temperatures (20 °C, 28 °C, and 30 °C) and under a short photoperiod of 10.5:13.5 (L:D) h and a long photoperiod of 16:8 (L:D) h. Diaphorina citri were field-collected monthly from three citrus groves in Fort Pierce, Gainesville, and Immokalee, FL, to evaluate potential field-associated environmental effects. Both traditional and geometric morphometric data were used to analyze the correlation between environmental and morphometric variation. A strong correlation was found between temperature and shape change, with larger and broader wings at colder temperatures in the laboratory. Short day length resulted in shorter and narrower wings as well. From the field, temperature, rainfall, and photoperiod were moderately associated with shape parameters. Adult D. citri with blue/green abdomens collected in the laboratory and field studies were larger in size and shape than those with brown/gray abdomens. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  2. Morphometric differences and fluctuating asymmetry in Melipona subnitida Ducke 1910 (Hymenoptera: Apidae) in different types of housing.

    PubMed

    Lima, C B S; Nunes, L A; Carvalho, C A L; Ribeiro, M F; Souza, B A; Silva, C S B

    2016-01-01

    A geometric morphometrics approach was applied to evaluate differences in forewing patterns of the Jandaira bee (Melipona subnitida Ducke). For this, we studied the presence of fluctuating asymmetry (FA) in forewing shape and size of colonies kept in either rational hive boxes or natural tree trunks. We detected significant FA for wing size as well as wing shape independent of the type of housing (rational box or tree trunks), indicating the overall presence of stress during the development of the studied specimens. FA was also significant (p < 0.01) between rational boxes, possibly related to the use of various models of rational boxes used for keeping stingless bees. In addition, a Principal Component Analysis indicated morphometric variation between bee colonies kept in either rational hive boxes or in tree trunks, that may be related to the different origins of the bees: tree trunk colonies were relocated natural colonies while rational box colonies originated from multiplying other colonies. We conclude that adequate measures should be taken to reduce the amount of stress during bee handling by using standard models of rational boxes that cause the least disruption.

  3. The Morphometrics of “Masculinity” in Human Faces

    PubMed Central

    Mitteroecker, Philipp; Windhager, Sonja; Müller, Gerd B.; Schaefer, Katrin

    2015-01-01

    In studies of social inference and human mate preference, a wide but inconsistent array of tools for computing facial masculinity has been devised. Several of these approaches implicitly assumed that the individual expression of sexually dimorphic shape features, which we refer to as maleness, resembles facial shape features perceived as masculine. We outline a morphometric strategy for estimating separately the face shape patterns that underlie perceived masculinity and maleness, and for computing individual scores for these shape patterns. We further show how faces with different degrees of masculinity or maleness can be constructed in a geometric morphometric framework. In an application of these methods to a set of human facial photographs, we found that shape features typically perceived as masculine are wide faces with a wide inter-orbital distance, a wide nose, thin lips, and a large and massive lower face. The individual expressions of this combination of shape features—the masculinity shape scores—were the best predictor of rated masculinity among the compared methods (r = 0.5). The shape features perceived as masculine only partly resembled the average face shape difference between males and females (sexual dimorphism). Discriminant functions and Procrustes distances to the female mean shape were poor predictors of perceived masculinity. PMID:25671667

  4. The morphometrics of "masculinity" in human faces.

    PubMed

    Mitteroecker, Philipp; Windhager, Sonja; Müller, Gerd B; Schaefer, Katrin

    2015-01-01

    In studies of social inference and human mate preference, a wide but inconsistent array of tools for computing facial masculinity has been devised. Several of these approaches implicitly assumed that the individual expression of sexually dimorphic shape features, which we refer to as maleness, resembles facial shape features perceived as masculine. We outline a morphometric strategy for estimating separately the face shape patterns that underlie perceived masculinity and maleness, and for computing individual scores for these shape patterns. We further show how faces with different degrees of masculinity or maleness can be constructed in a geometric morphometric framework. In an application of these methods to a set of human facial photographs, we found that shape features typically perceived as masculine are wide faces with a wide inter-orbital distance, a wide nose, thin lips, and a large and massive lower face. The individual expressions of this combination of shape features--the masculinity shape scores--were the best predictor of rated masculinity among the compared methods (r = 0.5). The shape features perceived as masculine only partly resembled the average face shape difference between males and females (sexual dimorphism). Discriminant functions and Procrustes distances to the female mean shape were poor predictors of perceived masculinity.

  5. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.

  6. An Investigation into the Relationship between Human Cranial and Pelvic Sexual Dimorphism.

    PubMed

    Best, Kaleigh C; Garvin, Heather M; Cabo, Luis L

    2017-10-16

    When faced with commingled remains, it might be assumed that a more "masculine" pelvis is associated with a more "masculine" cranium, but this relationship has not been specifically tested. This study uses geometric morphometric analyses of pelvic and cranial landmarks to assess whether there is an intra-individual relationship between the degrees of sexual expression in these two skeletal regions. Principal component and discriminant function scores were used to assess sexual dimorphism in 113 U.S. Black individuals. Correlation values and partial least squares regression (PLS) were used to evaluate intra-individual relationships. Results indicate that the os coxae is more sexually dimorphic than the cranium, with element shape being more sexually dimorphic than size. PLS and correlation results suggest no significant intra-individual relationship between pelvic and cranial sexual size or shape expression. Thus, in commingled situations, associations between these skeletal elements cannot be inferred based on degree of "masculinity." © 2017 American Academy of Forensic Sciences.

  7. Structure-function covariation with nonfeeding ecological variables influences evolution of feeding specialization in Carnivora

    PubMed Central

    Tseng, Z. Jack; Flynn, John J.

    2018-01-01

    Skull shape convergence is pervasive among vertebrates. Although this is frequently inferred to indicate similar functional underpinnings, neither the specific structure-function linkages nor the selective environments in which the supposed functional adaptations arose are commonly identified and tested. We demonstrate that nonfeeding factors relating to sexual maturity and precipitation-related arboreality also can generate structure-function relationships in the skulls of carnivorans (dogs, cats, seals, and relatives) through covariation with masticatory performance. We estimated measures of masticatory performance related to ecological variables that covary with cranial shape in the mammalian order Carnivora, integrating geometric morphometrics and finite element analyses. Even after accounting for phylogenetic autocorrelation, cranial shapes are significantly correlated to both feeding and nonfeeding ecological variables, and covariation with both variable types generated significant masticatory performance gradients. This suggests that mechanisms of obligate shape covariation with nonfeeding variables can produce performance changes resembling those arising from feeding adaptations in Carnivora. PMID:29441363

  8. Allometric shell growth in infaunal burrowing bivalves: examples of the archiheterodonts Claibornicardia paleopatagonica (Ihering, 1903) and Crassatella kokeni Ihering, 1899.

    PubMed

    Perez, Damián Eduardo; Santelli, María Belén

    2018-01-01

    We present two cases of study of ontogenetic allometry in outlines of bivalves using longitudinal data, a rarity among fossils, based on the preserved post-larval record of shells. The examples are two infaunal burrowing bivalves of the southern South America, Claibornicardia paleopatagonica (Archiheterodonta: Carditidae) (early Paleocene) and Crassatella kokeni (Archiheterodonta: Crassatellidae) (late Oligocene-late Miocene). Outline analyses were conducted using a geometric morphometric approach (Elliptic Fourier Analysis), obtaining successive outlines from shells' growth lines, which were used to reconstruct ontogenetic trajectories. In both taxa, ontogenetic changes are characterized by the presence of positive allometry in the extension of posterior end, resulting in elongated adult shells. This particular allometric growth is known in others infaunal burrowing bivalves ( Claibornicardia alticostata and some Spissatella species) and the resulting adult morphology is present in representatives of several groups (e.g., Carditidae, Crassatellidae, Veneridae, Trigoniidae). Taxonomic, ecological and evolutionary implications of this allometric growth pattern are discussed.

  9. Stability of upper face sexual dimorphism in central European populations (Czech Republic) during the modern age.

    PubMed

    Bejdová, Šárka; Dupej, Ján; Krajíček, Václav; Velemínská, Jana; Velemínský, Petr

    2018-01-01

    One of the most fundamental issues in forensic anthropology is the determination of sex and population affinity based on various skeletal elements. Therefore, we compared the sexual dimorphism of the upper facial skeleton from a recent Czech population (twenty-first century) with that of a population from Early Modern Age Bohemia (sixteenth to eighteenth centuries). Methods of geometric morphometrics were applied. According to the results, sexual dimorphism in terms of size, shape, and form was statistically significant in both populations. The best results of sex estimation originated from analyses of form. Thus, both size and shape differences should be taken into account for determination of the sex. The accuracy of prediction achieved 91.1% for individuals in the recent population and 87.5% for individuals from the early modern population. Only minor differences were found between sexual dimorphism in the studied populations. We conclude that sexual dimorphism of the upper facial skeleton is stable during the relatively short time period.

  10. Blood platelets: computerized morphometry applied on optical images

    NASA Astrophysics Data System (ADS)

    Korobova, Farida V.; Ivanova, Tatyana V.; Gusev, Alexander A.; Shmarov, Dmitry A.; Kozinets, Gennady I.

    2000-11-01

    The new technology of computerized morphometric image analysis of platelets on blood smears was developed. In a basis of the device is included analysis of cytophotometric and morphometric parameters of platelets. Geometrical and optical parameters of platelets on 35 donors, platelet concentrates and 15 patients with haemorrhagic thrombocythaemia were investigated, average meanings for the area, diameter, its logarithms and optical density of platelets in norm were received. Distribution of the areas, diameters and optical densities of platelets of patients with haemorrhagic thrombocythaemia differed from those at the healthy people. After a course of treatment these meanings came nearer to normal. The important characteristics of platelets in platelet concentrates after three days of storage were in limits of normal meanings, but differed from those in whole blood platelets. Obtained data allow to enter the quantitative standards into investigation of platelets of the healthy people and at various alteration of thrombocytopoieses.

  11. Morphometric and molecular analyses of the sand fly species Lutzomyia shannoni (Diptera: Psychodidae: Phlebotominae) collected from seven different geographical areas in the southeastern United States.

    PubMed

    Florin, David A; Davies, Stephen J; Olsen, Cara; Lawyer, Phillip; Lipnick, Robert; Schultz, George; Rowton, Edgar; Wilkerson, Richard; Keep, Lisa

    2011-03-01

    A morphometric and molecular study of adult male and female Lutzomyia shannoni (Dyar 1929) collected at seven different locations within the southeastern United States was conducted to assess the degree of divergence between the grouped specimens from each location. The collection locations were as follows: Fort Bragg, NC; Fort Campbell, KY; Fort Rucker, AL; Ossabaw Island, GA; Patuxent National Wildlife Research Refuge, MD; Suwannee National Wildlife Refuge, FL; and Baton Rouge, LA. Forty males and forty females from each location were analyzed morphometrically from 54 and 49 character measurements, respectively. In addition, the molecular markers consisting of the partial cytochrome c oxidase subunit I (from 105 sand flies: 15 specimens/collection site) and the partial internal transcribed spacer 2 (from 42 sand flies: six specimens/collection site) were compared. Multivariate analyses indicate that the low degree of variation between the grouped specimens from each collection site prevents the separation of any collection site into an entity that could be interpreted as a distinct population. The molecular analyses were in concordance with the morphometric study as no collection location grouped into a separate population based on the two partial markers. The grouped specimens from each collection site appear to be within the normal variance of the species, indicating a single population in the southeast United States. It is recommended that additional character analyses of L. shannoni based on more molecular markers, behavioral, ecological, and physiological characteristics, be conducted before ruling out the possibility of populations or a cryptic species complex within the southeastern United States.

  12. Computerized morphometry as an aid in distinguishing recurrent versus nonrecurrent meningiomas.

    PubMed

    Noy, Shawna; Vlodavsky, Euvgeni; Klorin, Geula; Drumea, Karen; Ben Izhak, Ofer; Shor, Eli; Sabo, Edmond

    2011-06-01

    To use novel digital and morphometric methods to identify variables able to better predict the recurrence of intracranial meningiomas. Histologic images from 30 previously diagnosed meningioma tumors that recurred over 10 years of follow-up were consecutively selected from the Rambam Pathology Archives. Images were captured and morphometrically analyzed. Novel algorithms of digital pattern recognition using Fourier transformation and fractal and nuclear texture analyses were applied to evaluate the overall growth pattern complexity of the tumors, as well as the chromatin texture of individual tumor nuclei. The extracted parameters were then correlated with patient prognosis. Kaplan-Meier analyses revealed statistically significant associations between tumor morphometric parameters and recurrence times. Tumors with less nuclear orientation, more nuclear density, higher fractal dimension, and less regular chromatin textures tended to recur faster than those with a higher degree of nuclear order, less pattern complexity, lower density, and more homogeneous chromatin nuclear textures (p < 0.01). To our knowledge, these digital morphometric methods were used for the first time to accurately predict tumor recurrence in patients with intracranial meningiomas. The use of these methods may bring additional valuable information to the clinician regarding the optimal management of these patients.

  13. East Greenland and Barents Sea polar bears (Ursus maritimus): adaptive variation between two populations using skull morphometrics as an indicator of environmental and genetic differences.

    PubMed

    Pertoldi, Cino; Sonne, Christian; Wiig, Øystein; Baagøe, Hans J; Loeschcke, Volker; Bechshøft, Thea Østergaard

    2012-06-01

    A morphometric study was conducted on four skull traits of 37 male and 18 female adult East Greenland polar bears (Ursus maritimus) collected 1892-1968, and on 54 male and 44 female adult Barents Sea polar bears collected 1950-1969. The aim was to compare differences in size and shape of the bear skulls using a multivariate approach, characterizing the variation between the two populations using morphometric traits as an indicator of environmental and genetic differences. Mixture analysis testing for geographic differentiation within each population revealed three clusters for Barents Sea males and three clusters for Barents Sea females. East Greenland consisted of one female and one male cluster. A principal component analysis (PCA) conducted on the clusters defined by the mixture analysis, showed that East Greenland and Barents Sea polar bear populations overlapped to a large degree, especially with regards to females. Multivariate analyses of variance (MANOVA) showed no significant differences in morphometric means between the two populations, but differences were detected between clusters from each respective geographic locality. To estimate the importance of genetics and environment in the morphometric differences between the bears, a PCA was performed on the covariance matrix derived from the skull measurements. Skull trait size (PC1) explained approx. 80% of the morphometric variation, whereas shape (PC2) defined approx. 15%, indicating some genetic differentiation. Hence, both environmental and genetic factors seem to have contributed to the observed skull differences between the two populations. Overall, results indicate that many Barents Sea polar bears are morphometrically similar to the East Greenland ones, suggesting an exchange of individuals between the two populations. Furthermore, a subpopulation structure in the Barents Sea population was also indicated from the present analyses, which should be considered with regards to future management decisions. © 2012 The Authors.

  14. Planning surgical reconstruction in Treacher-Collins syndrome using virtual simulation.

    PubMed

    Nikkhah, Dariush; Ponniah, Allan; Ruff, Cliff; Dunaway, David

    2013-11-01

    Treacher-Collins syndrome is a rare autosomal dominant condition of varying phenotypic expression. The surgical correction in this syndrome is difficult, and the approach varies between craniofacial departments worldwide. The authors aimed to design standardized tools for planning orbitozygomatic and mandibular reconstruction in Treacher-Collins syndrome using geometric morphometrics. The Great Ormond Street Hospital database was retrospectively identified for patients with Treacher-Collins syndrome. Thirteen children (aged 2 to 15 years) who had suitable preoperative three-dimensional computed tomographic head scans were included. Six Treacher-Collins syndrome three-dimensional computed tomographic head scans were quantitatively compared using a template of 96 anatomically defined landmarks to 26 age-matched normal dry skulls. Thin-plate spline videos illustrated the characteristic deformities of retromicrognathia and maxillary and orbitozygomatic hypoplasia in the Treacher-Collins syndrome population. Geometric morphometrics was used in the virtual reconstruction of the orbitozygomatic and mandibular region in Treacher-Collins syndrome patients. Intrarater and interrater reliability of the landmarks was acceptable and within a standard deviation of less than 1 mm on 97 percent and 100 percent of 10 repeated scans, respectively. Virtual normalization of the Treacher-Collins syndrome skull effectively describes characteristic skeletal deformities and provides a useful guide to surgical reconstruction. Size-matched stereolithographic templates derived from thin-plate spline warps can provide effective intraoperative templates for zygomatic and mandibular reconstruction in the Treacher-Collins syndrome patient. Diagnostic, V.

  15. Can the contralateral limb be used as a control during the growing period in a rodent model?

    PubMed

    Mustafy, Tanvir; Londono, Irène; Villemure, Isabelle

    2018-05-12

    The contralateral limb is often used as a control in various clinical, forensic and anthropological studies. However, no studies have been performed to determine if the contra-lateral limb is a suitable control during the bone development period. The aim of this study was to determine the bilateral symmetry of growing rat tibiae in terms of geometric shape, mechanical strength and bone morphological parameters with developmental stages. Left and right tibias of 18 male Sprague-Dawley rats at 4, 8 and 12 weeks of age were scanned with micro-CT for bone-morphometric evaluation and for 3D deviation analysis to quantify the geometric shape variations between left and right tibiae. Overall tibial lengths and curvatures were also measured, and bone mechanical strength was investigated using three-point bending tests. Deviation distributions between bilateral tibiae remained below 0.5 mm for more than 80% of the geometry for all groups. Tibial lengths, longitudinal tibial curvatures, bone-morphometric parameters and mechanical strengths changed significantly during the growing period but kept a strong degree of symmetry between bilateral tibiae. These results suggest that bilateral tibiae can be considered symmetrical in nature and that contralateral limb can be used as a control during the growing period in different experimental scenarios. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Facial Orientation and Facial Shape in Extant Great Apes: A Geometric Morphometric Analysis of Covariation

    PubMed Central

    Neaux, Dimitri; Guy, Franck; Gilissen, Emmanuel; Coudyzer, Walter; Vignaud, Patrick; Ducrocq, Stéphane

    2013-01-01

    The organization of the bony face is complex, its morphology being influenced in part by the rest of the cranium. Characterizing the facial morphological variation and craniofacial covariation patterns in extant hominids is fundamental to the understanding of their evolutionary history. Numerous studies on hominid facial shape have proposed hypotheses concerning the relationship between the anterior facial shape, facial block orientation and basicranial flexion. In this study we test these hypotheses in a sample of adult specimens belonging to three extant hominid genera (Homo, Pan and Gorilla). Intraspecific variation and covariation patterns are analyzed using geometric morphometric methods and multivariate statistics, such as partial least squared on three-dimensional landmarks coordinates. Our results indicate significant intraspecific covariation between facial shape, facial block orientation and basicranial flexion. Hominids share similar characteristics in the relationship between anterior facial shape and facial block orientation. Modern humans exhibit a specific pattern in the covariation between anterior facial shape and basicranial flexion. This peculiar feature underscores the role of modern humans' highly-flexed basicranium in the overall integration of the cranium. Furthermore, our results are consistent with the hypothesis of a relationship between the reduction of the value of the cranial base angle and a downward rotation of the facial block in modern humans, and to a lesser extent in chimpanzees. PMID:23441232

  17. The utility of captive animals in actualistic research: A geometric morphometric exploration of the tooth row of Alligator mississippiensis suggesting ecophenotypic influences and functional constraints.

    PubMed

    Drumheller, Stephanie K; Wilberg, Eric W; Sadleir, Rudyard W

    2016-07-01

    Captive broad snouted crocodylians are generally thought to have wider, shorter rostra than their wild counterparts. Interpreted to reflect morphological change in response to the conditions of captivity, this qualitative pattern could affect the utility of these animals in a variety of fields of research. However, due to relative ease of access and availability of life history data, captive animals are often utilized in actualistic research. Thus, this issue should be addressed in more detail. Here we explore snout shape variation between captive and wild members of Alligator mississippiensis using two-dimensional (2D) morphometric techniques. Several landmark schemesare used to assess the utility of different aspects of morphology in distinguishing the groups. While statistical analyses consistently differentiated between the groups, the area of morphospace occupied by wild members of A. mississippiensis generally overlapped with the larger area encompassing the captive specimens. This indicates that the captive condition is not as uniform as previously thought and instead encompasses a large spectrum of morphologies, ranging from the stereotypical broad, shortened snouts to outlines that are indistinguishable from the wild morphotype. These results align well with the interpretation that this change reflects an extreme example of ecophenotypy, since ranched, farmed, or zoo organisms are held in an array of enclosures, ranging from indoor, climate controlled pens to outdoor, more natural areas. This variation in environments should be reflected in different reactions to the animals' surroundings, resulting in a broad spectrum of morphotypes. While wild specimens are still preferred, especially for fine scale analyses, these results indicate that not all captive members of A. mississippiensis exhibit the extreme morphological alterations often cited in the literature. Weighing the conditions in which the animals are held and exploring the possibility of morphological differences against the benefits of using captive specimens should be part of any actualistic study. J. Morphol. 277:866-878, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Long-term penile morphometric alterations in patients treated with robot-assisted versus open radical prostatectomy.

    PubMed

    Capogrosso, P; Ventimiglia, E; Cazzaniga, W; Stabile, A; Pederzoli, F; Boeri, L; Gandaglia, G; Dehò, F; Briganti, A; Montorsi, F; Salonia, A

    2018-01-01

    Neglected side effects after radical prostatectomy have been previously reported. In this context, the prevalence of penile morphometric alterations has never been assessed in robot-assisted radical prostatectomy series. We aimed to assess prevalence of and predictors of penile morphometric alterations (i.e. penile shortening or penile morphometric deformation) at long-term follow-up in patients submitted to either robot-assisted (robot-assisted radical prostatectomy) or open radical prostatectomy. Sexually active patients after either robot-assisted radical prostatectomy or open radical prostatectomy prospectively completed a 28-item questionnaire, with sensitive issues regarding sexual function, namely orgasmic functioning, climacturia and changes in morphometric characteristics of the penis. Only patients with a post-operative follow-up ≥ 24 months were included. Patients submitted to either adjuvant or salvage therapies or those who refused to comprehensively complete the questionnaire were excluded from the analyses. A propensity-score matching analysis was implemented to control for baseline differences between groups. Logistic regression models tested potential predictors of penile morphometric alterations at long-term post-operative follow-up. Overall, 67 (50%) and 67 (50%) patients were included after open radical prostatectomy or robot-assisted radical prostatectomy, respectively. Self-rated post-operative penile shortening and penile morphometric deformation were reported by 75 (56%) and 29 (22.8%) patients, respectively. Rates of penile shortening and penile morphometric deformation were not different after open radical prostatectomy and robot-assisted radical prostatectomy [all p > 0.5]. At univariable analysis, self-reported penile morphometric alterations (either penile shortening or penile morphometric deformation) were significantly associated with baseline international index of erectile function-erectile function scores, body mass index, post-operative erectile function recovery, year of surgery and type of surgery (all p < 0.05). At multivariable analysis, robot-assisted radical prostatectomy was independently associated with a lower risk of post-operative penile morphometric alterations (OR: 0.38; 95% CI: 0.16-0.93). Self-perceived penile morphometric alterations were reported in one of two patients after radical prostatectomy at long-term follow-up, with open surgery associated with a potential higher risk of this self-perception. © 2017 American Society of Andrology and European Academy of Andrology.

  19. Taxonomic revision of genus Ablattaria Reitter (Coleoptera, Silphidae) using geometric morphometrics

    PubMed Central

    Qubaiová, Jarin; Růžička, Jan; Šípková, Hana

    2015-01-01

    Abstract The genus Ablattaria Reitter, 1884 (Coleoptera: Silphidae: Silphinae) is revised. Four taxa are recognized as valid species: Ablattaria arenaria (Kraatz, 1876), Ablattaria cribrata (Ménétries, 1832), Ablattaria laevigata (Fabricius, 1775) and Ablattaria subtriangula Reitter, 1905. Ablattaria laevigata var. meridionalis Ganglbauer, 1899 is newly treated as a junior subjective synonym of Ablattaria laevigata. Lectotypes are designated for Phosphuga arenaria Kraatz, 1876, Ablattaria arenaria var. punctigera Reitter, 1884, Ablattaria arenaria var. alleoni Portevin, 1926, Silpha cribrata Ménétries, 1832, Silpha laevigata Fabricius, 1775, Silpha gibba Brullé, 1832, Ablattaria gibba var. costulata Portevin, 1926, Ablattaria gibba var. distinguenda Portevin, 1926, Ablattaria gibba var. punctata Portevin, 1926 and Ablattaria subtriangula Reitter, 1905. The distribution of all taxa is mapped, based on material examined. Geometric morphometric methods were used to evaluate shape variability in Ablattaria. Results indicated sexual dimorphism in all species. Shape inconsistency was found between the sexes of all taxa when tested independently. The first two relative warp axes indicated 65.17% shape variation in males and 65.72% in females. Canonical variate analysis separated the taxa studied. There was minimal overlap between some groups in both sexes. Differences in body shape between populations of Ablattaria laevigata from Central Europe, Italy and Greece + Turkey were also examined. Relative warps implied 58.01% shape variability on both axes in males and 64.78% in females. CVA revealed noticeable overlaps between the groups, although the Italian population demonstrated a higher separation in both sexes. PMID:25685005

  20. Dispelling dog dogma: an investigation of heterochrony in dogs using 3D geometric morphometric analysis of skull shape.

    PubMed

    Drake, Abby Grace

    2011-01-01

    Heterochrony is an evolutionary mechanism that generates diversity via perturbations of the rate or timing of development that requires very little genetic innovation. As such, heterochrony is thought to be a common evolutionary mechanism in the generation of diversity. Previous research has suggested that dogs evolved via heterochrony and are paedomorphic wolves. This study uses three-dimensional landmark-based coordinate data to investigate heterochronic patterns within the skull morphology of the domestic dog. A total of 677 adult dogs representing 106 different breeds were measured and compared with an ontogenetic series of 401 wolves. Geometric morphometric analysis reveals that the cranial shape of none of the modern breeds of dogs resembles the cranial shapes of adult or juvenile wolves. In addition, investigations of regional heterochrony in the face and neurocranium also reject the hypothesis of heterochrony. Throughout wolf cranial development the position of the face and the neurocranium remain in the same plane. Dogs, however, have a de novo cranial flexion in which the palate is tilted dorsally in brachycephalic and mesaticephalic breeds or tilted ventrally in dolichocephalic and down-face breeds. Dogs have evolved very rapidly into an incredibly morphologically diverse species with very little genetic variation. However, the genetic alterations to dog cranial development that have produced this vast range of phylogenetically novel skull shapes do not coincide with the expectations of the heterochronic model. Dogs are not paedomorphic wolves. © 2011 Wiley Periodicals, Inc.

  1. A geometric morphometric analysis of hominin upper second and third molars, with particular emphasis on European Pleistocene populations.

    PubMed

    Gómez-Robles, Aida; Bermúdez de Castro, José María; Martinón-Torres, María; Prado-Simón, Leyre; Arsuaga, Juan Luis

    2012-09-01

    The study of dental morphology by means of geometric morphometric methods allows for a detailed and quantitative comparison of hominin species that is useful for taxonomic assignment and phylogenetic reconstruction. Upper second and third molars have been studied in a comprehensive sample of Plio- and Pleistocene hominins from African, Asian and European sites in order to complete our analysis of the upper postcanine dentition. Intraspecific variation in these two molars is high, but some interspecific trends can be identified. Both molars exhibit a strong reduction of the distal cusps in recent hominin species, namely European Homo heidelbergensis, Homo neanderthalensis and Homo sapiens, but this reduction shows specific patterns and proportions in the three groups. Second molars tend to show four well developed cusps in earlier hominin species and their morphology is only marginally affected by allometric effects. Third molars can be incipiently reduced in earlier species and they evince a significant allometric component, identified both inter- and intraspecifically. European Middle Pleistocene fossils from Sima de los Huesos (SH) show a very strong reduction of these two molars, even more marked than the reduction observed in Neanderthals and in modern human populations. The highly derived shape of SH molars points to an early acquisition of typical Neanderthal dental traits by pre-Neanderthal populations and to a deviation of this population from mean morphologies of other European Middle Pleistocene groups. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Maternal environment and craniofacial growth: geometric morphometric analysis of mandibular shape changes with in utero thyroxine overexposure in mice.

    PubMed

    Kesterke, Matthew J; Judd, Margaret A; Mooney, Mark P; Siegel, Michael I; Elsalanty, Mohammed; Howie, R Nicole; Weinberg, Seth M; Cray, James J

    2018-07-01

    An estimated 3% of US pregnancies are affected by maternal thyroid dysfunction, with between one and three of every 1000 pregnancies being complicated by overactive maternal thyroid levels. Excess thyroid hormones are linked to neurological impairment and excessive craniofacial variation, affecting both endochondral and intramembranous bone. Using a geometric morphometric approach, this study evaluates the role of in utero thyroxine overexposure on the growth of offspring mandibles in a sample of 241 mice. Canonical variate analysis utilized 16 unilateral mandibular landmarks obtained from 3D micro-computed tomography to assess shape changes between unexposed controls (n = 63) and exposed mice (n = 178). By evaluating shape changes in the mandible among three age groups (15, 20 and 25 days postnatal) and different dosage levels (low, medium and high), this study found that excess maternal thyroxine alters offspring mandibular shape in both age- and dosage-dependent manners. Group differences in overall shape were significant (P < 0.001), and showed major changes in regions of the mandible associated with muscle attachment (coronoid process, gonial angle) and regions of growth largely governed by articulation with the cranial base (condyle) and occlusion (alveolus). These results compliment recent studies demonstrating that maternal thyroxine levels can alter the cranial base and cranial vault of offspring, contributing to a better understanding of both normal and abnormal mandibular development, as well as the medical implications of craniofacial growth and development. © 2018 Anatomical Society.

  3. Multivectored Superficial Muscular Aponeurotic System Suspension for Facial Paralysis.

    PubMed

    Leach, Garrison; Kurnik, Nicole; Joganic, Jessica; Joganic, Edward

    2017-06-01

    Facial paralysis is a devastating condition that may cause severe cosmetic and functional deformities. In this study we describe our technique for superficial muscular aponeurotic system (SMAS) suspension using barbed suture and compare the vectors of suspension in relation to the underlying musculature. This study also quantifies the improvements in postoperative symmetry using traditional anthropologic landmarks. The efficacy of this procedure for improving facial paralysis was determined by comparing anthropometric indices and using Procrustes distance between 4 groupings of homologous landmarks plotted on each patient's preoperative and postoperative photos. Geometric morphometrics was used to evaluate change in facial shape and improvement in symmetry postoperatively.To analyze the vector of suspension in relation to the underlying musculature, specific anthropologic landmarks were used to calculate the vector of the musculature in 3 facial hemispheres from cadaveric controls against the vector of repair in our patients. Ten patients were included in our study. Subjectively, great improvement in functional status was achieved. Geometric morphometric analysis demonstrated a statistically significant improvement in facial symmetry. Cadaveric dissection demonstrated that the suture should be placed in the SMAS in vectors parallel to the underlying musculature to achieve these results. There were no complications in our study to date. In conclusion, multivectored SMAS suture suspension is an effective method for restoring static suspension of the face after facial paralysis. This method has the benefit of producing quick, reliable results with improved function, low cost, and low morbidity.

  4. Effects of an herbicide on physiology, morphology, and fitness of the dung beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae).

    PubMed

    González-Tokman, Daniel; Martínez-Morales, Imelda; Farrera, Arodi; Del Rosario Ortiz-Zayas, María; Lumaret, Jean-Pierre

    2017-01-01

    Some agrochemical compounds threaten nontarget organisms and their functions in the ecosystem. The authors experimentally evaluated the effects of one of the most common herbicide mixtures used worldwide, containing 2,4-dichlorophenoxyacetic acid and picloram, on dung beetles, which play fundamental roles in the function of natural and managed ecosystems. The present study employed techniques of physiology and geometric morphometrics, besides including fitness measurements, to assess the effects of the herbicide in the introduced beetle Euoniticellus intermedius. Because herbicide components promote oxidative stress and affect survival in certain insects, the authors predicted negative effects on the beetles. Unexpectedly, no effect of herbicide concentration was found on clutch size, sex ratio, and fluctuating asymmetry, and it even increased physiological condition and body size in exposed beetles. Because the studied species presents 2 male morphs, the authors, for the first time, evaluated the effect of a pollutant on the ratio of these morphs. Contrary to the prediction, the herbicide mixture increased the proportion of major males. Thus, the herbicide does not threaten populations of the studied beetles. The present study discusses how both negative and positive effects of pollutants on wild animals modify natural and sexual selection processes occurring in nature, which ultimately impact population dynamics. The authors recommend the use of physiological and geometric morphometrics techniques to assess the impact of pollutants on nontarget animals. Environ Toxicol Chem 2017;36:96-102. © 2016 SETAC. © 2016 SETAC.

  5. Dentary Morphological Variation in Clevosaurus brasiliensis (Rhynchocephalia, Clevosauridae) from the Upper Triassic of Rio Grande do Sul, Brazil

    PubMed Central

    Romo de Vivar Martínez, Paula Rosario; Bento Soares, Marina

    2015-01-01

    Clevosaurus was a cosmopolitan rhynchocephalian genus, known from the Late Triassic to the Early Jurassic. In South America this genus is represented by C. brasiliensis, an important component of the Linha São Luiz taphocoenosis, on the top of the Norian Santa Maria 2 Sequence of Southern Brazil. The best preserved and most abundant bone elements of C. brasiliensis are dentaries, in which variations of shape and size are observed. The aim of this study is to describe and evaluate the variation, using geometric morphometrics methods. Geometric morphometric analysis of 10 specimens highlights variations in relative size of the dentary. Most of the variation observed for PC1 (83.3%) is likely related to ontogeny, and PC2 (10.0%) is likely related to taphonomic signatures. The development patterns observed, such as the growth of the dentary, consists of differential growth in length between the posterior portion of the dentary, that grows at a higher rate, regarding the anterior portion of the element. This allometric growth is similar to what is observed in other rhynchocephalians and is accompanied by the allometric skull growth, similar to the trend exhibited by clevosaurs. The taphocoenosis is bimodal (juveniles and adults) with a bias towards adult preservation. Some diagenetic influence is reflected in deformed skulls and this is observed in the tangent-plot. Finally, a strong correlation was detected between the taphonomic signatures and the PC2, regarding specially disarticulation and degree of fragmentation. PMID:25793754

  6. Male-biased predation of western green lizards by Eurasian kestrels

    NASA Astrophysics Data System (ADS)

    Costantini, David; Bruner, Emiliano; Fanfani, Alberto; Dell'Omo, Giacomo

    2007-12-01

    Selective predation can be an important force driving the evolution of organisms. In particular, sex-biased predation is expected to have implications for sexual selection, sex allocation and population dynamics. In this study, we analysed sex differences in the predation of the western green lizard ( Lacerta bilineata) by the Eurasian kestrel ( Falco tinnunculus) during the reproductive season. In addition, we investigated whether the rate of predation differed during the 8-year study period and among the three habitats studied. We collected lizard remains from nest boxes of kestrels. Freshly killed lizards were sexed by visual inspection, whilst the sex of head remains was assigned by analysing the cephalic scale morphology using geometric morphometrics. Our results show that the risk of being predated by a kestrel in our population was overall about 3.55 times higher for males than for females. To our knowledge this is the first study showing a male-biased predation in a lizard species. The selective predation of males was consistent between years over the 8-year study period (1999-2006) and also consistent between the three types of kestrel hunting habitat. Overall predation rates on lizards differed between habitats, depending on the year. We propose that the observed sex-biased predation is mainly due to sex differences in lizard behaviour.

  7. Morphometric Analysis of Chemoreception Organ in Male and Female Ticks (Acari: Ixodidae).

    PubMed

    Josek, Tanya; Allan, Brian F; Alleyne, Marianne

    2018-05-04

    The Haller's organ plays a crucial role in a tick's ability to detect hosts. Even though this sensory organ is vital to tick survival, the morphology of this organ is not well understood. The objective of this study was to characterize variation in the morphological components of the Haller's organ of three medically important tick species using quantitative methods. The Haller's organs of Ixodes scapularis Say (Ixodida: Ixodidae) (black-legged tick), Amblyomma americanum (L.) (Ixodida: Ixodidae) (lone star tick), and Dermacentor variabilis (Say) (Ixodida: Ixodidae) (American dog tick) were morphologically analyzed using environmental scanning electron microscopy and geometric morphometrics, and the results were statistically interpreted using canonical variate analysis. Our data reveal significant, quantitative differences in the morphology of the Haller's organ among all three tick species and that in D. variabilis the sensory structure is sexually dimorphic. Studies like this can serve as a quantitative basis for further studies on sensor physiology, behavior, and tick species life history, potentially leading to novel methods for the prevention of tick-borne disease.

  8. Craniofacial morphometric analysis of mandibular prognathism.

    PubMed

    Chang, H P; Liu, P H; Yang, Y H; Lin, H C; Chang, C H

    2006-03-01

    The purpose of this study was to provide more information about the morphological characteristics of the craniofacial complex in mandibular prognathism. Forty young adult males having mandibular prognathism were compared with 40 having normal occlusion. This was conducted to carry out geometric morphometric assessments to localize alterations, using Procrustes analysis and thin-plate spline analysis, in addition to conventional cephalometric techniques. Procrustes analysis indicated that the mean craniofacial, midfacial and mandibular morphology was significantly different in prognathic subjects compared with normal controls. This finding was corroborated by the multivariate Hotelling T(2)-test of cephalometric variables. Mandibular prognathism demonstrated a shorter and slightly retropositioned maxilla, a greater total length and anterior positioning of the mandible. Thin-plate spline analysis revealed a developmental diminution of the palatomaxillary region anteroposteriorly and a developmental elongation of the mandible anteroposteriorly, leading to the appearance of a prognathic mandibular profile. In conclusion, thin-plate spline analysis seems to provide a valuable supplement for conventional cephalometric analysis because the complex patterns of craniofacial shape change are visualized suggestive by means of grid deformations.

  9. Surface facial modelling and allometry in relation to sexual dimorphism.

    PubMed

    Velemínská, J; Bigoni, L; Krajíček, V; Borský, J; Šmahelová, D; Cagáňová, V; Peterka, M

    2012-04-01

    Sexual dimorphism is responsible for a substantial part of human facial variability, the study of which is essential for many scientific fields ranging from evolution to special biomedical topics. Our aim was to analyse the relationship between size variability and shape facial variability of sexual traits in the young adult Central European population and to construct average surface models of adult males and females. The method of geometric morphometrics allowed not only the identification of dimorphic traits, but also the evaluation of static allometry and the visualisation of sexual facial differences. Facial variability in the studied sample was characterised by a strong relationship between facial size and shape of sexual dimorphic traits. Large size of face was associated with facial elongation and vice versa. Regarding shape sexual dimorphic traits, a wide, vaulted and high forehead in combination with a narrow and gracile lower face were typical for females. Variability in shape dimorphic traits was smaller in females compared to males. For female classification, shape sexual dimorphic traits are more important, while for males the stronger association is with face size. Males generally had a closer inter-orbital distance and a deeper position of the eyes in relation to the facial plane, a larger and wider straight nose and nostrils, and more massive lower face. Using pseudo-colour maps to provide a detailed schematic representation of the geometrical differences between the sexes, we attempted to clarify the reasons underlying the development of such differences. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. A three-dimensional morphometric analysis of upper forelimb morphology in the enigmatic tapir (Perissodactyla: Tapirus) hints at subtle variations in locomotor ecology.

    PubMed

    MacLaren, Jamie A; Nauwelaerts, Sandra

    2016-11-01

    Forelimb morphology is an indicator for terrestrial locomotor ecology. The limb morphology of the enigmatic tapir (Perissodactyla: Tapirus) has often been compared to that of basal perissodactyls, despite the lack of quantitative studies comparing forelimb variation in modern tapirs. Here, we present a quantitative assessment of tapir upper forelimb osteology using three-dimensional geometric morphometrics to test whether the four modern tapir species are monomorphic in their forelimb skeleton. The shape of the upper forelimb bones across four species (T. indicus; T. bairdii; T. terrestris; T. pinchaque) was investigated. Bones were laser scanned to capture surface morphology and 3D landmark analysis was used to quantify shape. Discriminant function analyses were performed to reveal features which could be used for interspecific discrimination. Overall our results show that the appendicular skeleton contains notable interspecific differences. We demonstrate that upper forelimb bones can be used to discriminate between species (>91% accuracy), with the scapula proving the most diagnostic bone (100% accuracy). Features that most successfully discriminate between the four species include the placement of the cranial angle of the scapula, depth of the humeral condyle, and the caudal deflection of the olecranon. Previous studies comparing the limbs of T. indicus and T. terrestris are corroborated by our quantitative findings. Moreover, the mountain tapir T. pinchaque consistently exhibited the greatest divergence in morphology from the other three species. Despite previous studies describing tapirs as functionally mediportal in their locomotor style, we find osteological evidence suggesting a spectrum of locomotor adaptations in the tapirs. We conclude that modern tapir forelimbs are neither monomorphic nor are tapirs as conserved in their locomotor habits as previously described. J. Morphol. 277:1469-1485, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Beyond bilateral symmetry: geometric morphometric methods for any type of symmetry

    PubMed Central

    2011-01-01

    Background Studies of symmetric structures have made important contributions to evolutionary biology, for example, by using fluctuating asymmetry as a measure of developmental instability or for investigating the mechanisms of morphological integration. Most analyses of symmetry and asymmetry have focused on organisms or parts with bilateral symmetry. This is not the only type of symmetry in biological shapes, however, because a multitude of other types of symmetry exists in plants and animals. For instance, some organisms have two axes of reflection symmetry (biradial symmetry; e.g. many algae, corals and flowers) or rotational symmetry (e.g. sea urchins and many flowers). So far, there is no general method for the shape analysis of these types of symmetry. Results We generalize the morphometric methods currently used for the shape analysis of bilaterally symmetric objects so that they can be used for analyzing any type of symmetry. Our framework uses a mathematical definition of symmetry based on the theory of symmetry groups. This approach can be used to divide shape variation into a component of symmetric variation among individuals and one or more components of asymmetry. We illustrate this approach with data from a colonial coral that has ambiguous symmetry and thus can be analyzed in multiple ways. Our results demonstrate that asymmetric variation predominates in this dataset and that its amount depends on the type of symmetry considered in the analysis. Conclusions The framework for analyzing symmetry and asymmetry is suitable for studying structures with any type of symmetry in two or three dimensions. Studies of complex symmetries are promising for many contexts in evolutionary biology, such as fluctuating asymmetry, because these structures can potentially provide more information than structures with bilateral symmetry. PMID:21958045

  12. The massive fossil humerus from the Oldowan horizon of Gombore I, Melka Kunture (Ethiopia, >1.39 Ma)

    NASA Astrophysics Data System (ADS)

    Di Vincenzo, Fabio; Rodriguez, Laura; Carretero, José Miguel; Collina, Carmine; Geraads, Denis; Piperno, Marcello; Manzi, Giorgio

    2015-08-01

    A well-preserved distal portion of a left humerus was discovered in 1976 during excavations directed by J. Chavaillon at the Gombore I site, in the Melka Kunture area (Ethiopia). The specimen, labelled Gombore IB-7594 (formally Melka Kunture 3, or MK3), was found in situ within unit 2 of level B, which is dated to >1.39 Ma and includes a rich Oldowan Paleolithic assemblage. Although MK3 has never been described in detail, it appeared in the literature several times and, from a taxonomic point of view, has been alternatively regarded as Homo, Australopithecus or Paranthropus. According to our analysis, MK3 exhibits a suite of features that fit the variability of the genus Homo and does not display any clear Australopithecus/Paranthropus affinity. Nevertheless, MK3 adds a great deal of variability to the genus Homo, at least as far as the Early Pleistocene fossil record is concerned. In particular, our quantitative approach, which combines traditional morphometric analyses and geometric morphometrics, highlights traits that are uncommon among the Plio-Pleistocene fossil record, while affinities with Mid-to-Late Pleistocene representatives of Homo are observed. In addition, the large size of MK3 suggests that this humerus belonged to an individual whose body weight approached 90 kg, far from the range of body size known for Homo representatives in the Early Pleistocene and as big as those of extant humans or even gorillas. We suggest that such peculiar features are of interest when regarded from an ecological perspective; thus, dimension and morphology of MK3 may be considered as an exaptation that became useful when early humans dispersed to high altitudes such as those of the upper Awash basin on the Ethiopian plateau, at heights above 2000 m.

  13. Evolution of the snake body form reveals homoplasy in amniote Hox gene function.

    PubMed

    Head, Jason J; Polly, P David

    2015-04-02

    Hox genes regulate regionalization of the axial skeleton in vertebrates, and changes in their expression have been proposed to be a fundamental mechanism driving the evolution of new body forms. The origin of the snake-like body form, with its deregionalized pre-cloacal axial skeleton, has been explained as either homogenization of Hox gene expression domains, or retention of standard vertebrate Hox domains with alteration of downstream expression that suppresses development of distinct regions. Both models assume a highly regionalized ancestor, but the extent of deregionalization of the primaxial domain (vertebrae, dorsal ribs) of the skeleton in snake-like body forms has never been analysed. Here we combine geometric morphometrics and maximum-likelihood analysis to show that the pre-cloacal primaxial domain of elongate, limb-reduced lizards and snakes is not deregionalized compared with limbed taxa, and that the phylogenetic structure of primaxial morphology in reptiles does not support a loss of regionalization in the evolution of snakes. We demonstrate that morphometric regional boundaries correspond to mapped gene expression domains in snakes, suggesting that their primaxial domain is patterned by a normally functional Hox code. Comparison of primaxial osteology in fossil and modern amniotes with Hox gene distributions within Amniota indicates that a functional, sequentially expressed Hox code patterned a subtle morphological gradient along the anterior-posterior axis in stem members of amniote clades and extant lizards, including snakes. The highly regionalized skeletons of extant archosaurs and mammals result from independent evolution in the Hox code and do not represent ancestral conditions for clades with snake-like body forms. The developmental origin of snakes is best explained by decoupling of the primaxial and abaxial domains and by increases in somite number, not by changes in the function of primaxial Hox genes.

  14. Geographic variation in nasal cavity form among three human groups from the Japanese Archipelago: Ecogeographic and functional implications.

    PubMed

    Fukase, Hitoshi; Ito, Tsuyoshi; Ishida, Hajime

    2016-05-01

    Geographic variation in human nasal form has often been interpreted as a climatic adaptation, owing to the nasal air-conditioning function. The aim of this study was to further address morphofunctional issues of the nasal cavity, using three human groups from subarctic, temperate, and subtropical regions of the Japanese Archipelago: prehistoric Okhotsk, early-modern Honshu and Okinawa groups. Using three-dimensional coordinates of craniometric landmarks surrounding the nasal cavity, we compared linear measurements regarding nasal cavity form among the three groups and also conducted 3D geometric morphometrics. Both linear measurements and morphometric analyses corroborate the previously reported covariation pattern of nasal cavity shape with climate, where humans from a cold/dry climate tend to possess a relatively tall, narrow, and deep nasal cavity compared with those from a warm/humid environment. The northern Okhotsk group had overall larger cranial airways, which may be attributable to their large facial skeleton. However, the ratio of nasal/bimaxillary breadth was significantly lower in the Okhotsk group, indicating that maxillary size does not necessarily constrain the nasal breadth. In addition, despite the presence of obvious geographic clines in anterior nasal shape, posterior choanal shape lacked the north-south geographic cline. This suggests a certain level of morphofunctional independence between the anterior and posterior nasal openings. The observed geographic variations must, however, be partly considered as a reflection of different ancestral traits and population histories of the three groups. Nevertheless, the results indicate that intergroup variations in nasal cavity morphology can be largely explained by climatic conditions. Am. J. Hum. Biol. 28:343-351, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. The Relationship between Cranial Structure, Biomechanical Performance and Ecological Diversity in Varanoid Lizards

    PubMed Central

    McCurry, Matthew R.; Mahony, Michael; Clausen, Phillip D.; Quayle, Michelle R.; Walmsley, Christopher W.; Jessop, Tim S.; Wroe, Stephen; Richards, Heather; McHenry, Colin R.

    2015-01-01

    Skull structure is intimately associated with feeding ability in vertebrates, both in terms of specific performance measures and general ecological characteristics. This study quantitatively assessed variation in the shape of the cranium and mandible in varanoid lizards, and its relationship to structural performance (von Mises strain) and interspecific differences in feeding ecology. Geometric morphometric and linear morphometric analyses were used to evaluate morphological differences, and finite element analysis was used to quantify variation in structural performance (strain during simulated biting, shaking and pulling). This data was then integrated with ecological classes compiled from relevant scientific literature on each species in order to establish structure-function relationships. Finite element modelling results showed that variation in cranial morphology resulted in large differences in the magnitudes and locations of strain in biting, shaking and pulling load cases. Gracile species such as Varanus salvadorii displayed high strain levels during shaking, especially in the areas between the orbits. All models exhibit less strain during pull back loading compared to shake loading, even though a larger force was applied (pull =30N, shake = 20N). Relationships were identified between the morphology, performance, and ecology. Species that did not feed on hard prey clustered in the gracile region of cranial morphospace and exhibited significantly higher levels of strain during biting (P = 0.0106). Species that fed on large prey clustered in the elongate area of mandible morphospace. This relationship differs from those that have been identified in other taxonomic groups such as crocodiles and mammals. This difference may be due to a combination of the open ‘space-frame’ structure of the varanoid lizard skull, and the ‘pull back’ behaviour that some species use for processing large prey. PMID:26106889

  16. The morphology of the inner ear of squamate reptiles and its bearing on the origin of snakes

    NASA Astrophysics Data System (ADS)

    Palci, Alessandro; Hutchinson, Mark N.; Caldwell, Michael W.; Lee, Michael S. Y.

    2017-08-01

    The inner ear morphology of 80 snake and lizard species, representative of a range of ecologies, is here analysed and compared to that of the fossil stem snake Dinilysia patagonica, using three-dimensional geometric morphometrics. Inner ear morphology is linked to phylogeny (we find here a strong phylogenetic signal in the data that can complicate ecological correlations), but also correlated with ecology, with Dinilysia resembling certain semi-fossorial forms (Xenopeltis and Cylindrophis), consistent with previous reports. We here also find striking resemblances between Dinilysia and some semi-aquatic snakes, such as Myron (Caenophidia, Homalopsidae). Therefore, the inner ear morphology of Dinilysia is consistent with semi-aquatic as well as semi-fossorial habits: the most similar forms are either semi-fossorial burrowers with a strong affinity to water (Xenopeltis and Cylindrophis) or amphibious, intertidal forms which shelter in burrows (Myron). Notably, Dinilysia does not cluster as closely with snakes with exclusively terrestrial or obligate burrowing habits (e.g. scolecophidians and uropeltids). Moreover, despite the above similarities, Dinilysia also occupies a totally unique morphospace, raising issues with linking it with any particular ecological category.

  17. Environmental effects on the shape variation of male ultraviolet patterns in the Brimstone butterfly ( Gonepteryx rhamni, Pieridae, Lepidoptera)

    NASA Astrophysics Data System (ADS)

    Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel

    2014-12-01

    The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.

  18. [Morphometric evaluation of the lateral fossa during the pre-gyrus period].

    PubMed

    Varlam, H; Macovei, G N; Antohe, D St

    2002-09-01

    During edification of neocortex, the lateral fossa is involved in the process of development of cerebral hemispheres. It changes its shape and, from a shallow depression at the end of the 3rd month, it becomes a triangular surface with marked borders. Finally, in the same time with the appearance of circumvolutions the opercles that limit it come closer and give rise to the lateral sulcus. The evolution of the lateral fossa can be analysed by linear and surface parameters. Morphometric and statistic analyse of these parameters, compared with those of the cerebral hemisphere, allowed us to establish some original criteria for appreciating the growth of the foetal brain.

  19. Morphometric and landsliding analyses in chain domain: the Roccella basin, NE Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Rapisarda, Francesco

    2009-10-01

    The dynamic interaction of endogenic and exogenic processes in active geodynamic context leads to the deterioration of the physico-mechanical characteristics of the rocks, inducing slopes instability. In such context, the morphometric parameters and the analysis of landslide distribution contribute to appraise the evolutive state of hydrographic basins. The aim of the study is the morphometric characterization of the Roccella Torrent basin (Rtb) located in South Italy. Landsliding and tectonic structure dynamically interact with the drainage pattern that records these effects and permits the definition of the evolutive geomorphic stage of the basin. The Air Photograph Investigation and field surveys permitted to draw the main geomorphic features, the drainage pattern of the Rtb, to calculate the morphometric parameters and to delimit the landslides’ bodies. Detailed analysis about the landslide distribution within a test site 17 km2 wide were carried out to elaborate indicative indexes of the landslides type and to single out the lithotypes that are more involved in slope instability phenomena. The morphometric parameters indicate the rejuvenation state within the Rtb where the stream reaches show the effects of increased energy relief in agreement with the geological settings of this sector of the Apennine-Maghrebian Chain.

  20. Wing geometry of Phlebotomus stantoni and Sergentomyia hodgsoni from different geographical locations in Thailand.

    PubMed

    Sumruayphol, Suchada; Chittsamart, Boonruam; Polseela, Raxsina; Sriwichai, Patchara; Samung, Yudthana; Apiwathnasorn, Chamnarn; Dujardin, Jean-Pierre

    2017-01-01

    Geographic populations of the two main sandflies genera present in Thailand were studied for species and population identification. Size and shape of Phlebotomus stantoni and Sergentomyia hodgsoni from different island and mainland locations were examined by landmark-based geometric morphometrics. Intraspecific and interspecific wing comparison was carried out based on 12 anatomical landmarks. The wing centroid size of P. stantoni was generally larger than that of S. hodgsoni. Within both species, wings from the continent were significantly larger than those from island populations. Size variation could be significant between geographic locations, but could also overlap between genera. The wing venation geometry showed non-overlapping differences between two species. The within-species variation of geometric shape between different geographical locations was highly significant, but it could not interfere with the interspecies difference. The lack of species overlapping in shape, and the high discrimination between geographic populations, make geometric shape a promising character for future taxonomic and epidemiological studies. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Morphometric traits capture the climatically driven species turnover of 10 spruce taxa across China.

    PubMed

    Li, He; Wang, GuoHong; Zhang, Yun; Zhang, WeiKang

    2016-02-01

    This study explored the relative roles of climate and phylogenetic background in driving morphometric trait variation in 10 spruce taxa in China. The study further addressed the hypothesis that these variations are consistent with species turnover on climatic gradients. Nine morphometric traits of leaves, seed cones, and seeds for the 10 studied spruce taxa were measured at 504 sites. These data were analyzed in combination with species DNA sequences from NCBI GenBank. We detected the effects of phylogeny and climate through trait-variation-based K statistics and phylogenetic eigenvector regression (PVR) analyses. Multivariate analyses were performed to detect trait variation along climatic gradients with species replacement. The estimated K-values for the nine studied morphometric traits ranged from 0.19 to 0.68, and the studied environmental variables explained 39-83% of the total trait variation. Trait variation tended to be determined largely by a temperature gradient varying from wet-cool climates to dry-warm summers and, additionally, by a moisture gradient. As the climate became wetter and cooler, spruce species tended to be replaced by other spruces with smaller needle leaves and seeds but larger cones and seed scales. A regression analysis showed that spruce species tended to be successively replaced by other species, along the gradient, although the trends observed within species were not necessarily consistent with the overall trend. The climatically driven replacement of the spruces in question could be well indicated by the between-species variation in morphometric traits that carry lower phylogenetic signal. Between-species variation in these traits is driven primarily by climatic factors. These species demonstrate a narrower ecological amplitude in temperature but wider ranges on the moisture gradient.

  2. Histopathological and Digital Morphometrical Evaluation of Uterine Leiomyoma in Brazilian Women

    PubMed Central

    da Silva, Ana Paula Fernandes; Mello, Luciano de Albuquerque; dos Santos, Erlene Roberta Ribeiro; Paz, Silvania Tavares; Cavalcanti, Carmelita Lima Bezerra; de Melo-Junior, Mario Ribeiro

    2016-01-01

    The current study aims to evaluate histopathological and digital morphometrical aspects associated with uterine leiomyomas in one hundred and fifty (150) patients diagnosed with leiomyoma. Uterine tissues were subjected to the histopathological and digital morphometric analyses of the interstitial collagen distribution. The analysis of medical records indicates that most of the women diagnosed with uterine leiomyomas (68.7%) are between 37 and 48 years old. As for the anatomic location of the tumors, approximately 61.4% of the patients had intramural and subserosal lesions. In 50% of the studied cases, the patients developed uterine leiomyomatosis (with more than eight tumors). As for the morphometric study, the average size of the interstitial collagen distribution held approximately 28.53% of the capture area, whereas it was of 7.43% in the normal tissue adjacent to the tumor. Another important aspect observed in the current study was the high rate of young women subjected to total hysterectomy, a fact that resulted in early and definitive sterility. PMID:27293441

  3. Morphological variation among the inner ears of extinct and extant baleen whales (Cetacea: Mysticeti).

    PubMed

    Ekdale, Eric G

    2016-12-01

    Living mysticetes (baleen whales) and odontocetes (toothed whales) differ significantly in auditory function in that toothed whales are sensitive to high-frequency and ultrasonic sound vibrations and mysticetes to low-frequency and infrasonic noises. Our knowledge of the evolution and phylogeny of cetaceans, and mysticetes in particular, is at a point at which we can explore morphological and physiological changes within the baleen whale inner ear. Traditional comparative anatomy and landmark-based 3D-geometric morphometric analyses were performed to investigate the anatomical diversity of the inner ears of extinct and extant mysticetes in comparison with other cetaceans. Principal component analyses (PCAs) show that the cochlear morphospace of odontocetes is tangential to that of mysticetes, but odontocetes are completely separated from mysticetes when semicircular canal landmarks are combined with the cochlear data. The cochlea of the archaeocete Zygorhiza kochii and early diverging extinct mysticetes plot within the morphospace of crown mysticetes, suggesting that mysticetes possess ancestral cochlear morphology and physiology. The PCA results indicate variation among mysticete species, although no major patterns are recovered to suggest separate hearing or locomotor regimes. Phylogenetic signal was detected for several clades, including crown Cetacea and crown Mysticeti, with the most clades expressing phylogenetic signal in the semicircular canal dataset. Brownian motion could not be excluded as an explanation for the signal, except for analyses combining cochlea and semicircular canal datasets for Balaenopteridae. J. Morphol. 277:1599-1615, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Postnatal temporal bone ontogeny in Pan, Gorilla, and Homo, and the implications for temporal bone ontogeny in Australopithecus afarensis.

    PubMed

    Terhune, Claire E; Kimbel, William H; Lockwood, Charles A

    2013-08-01

    Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three-dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non-human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three-dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Copyright © 2013 Wiley Periodicals, Inc.

  5. Pig Domestication and Human-Mediated Dispersal in Western Eurasia Revealed through Ancient DNA and Geometric Morphometrics

    PubMed Central

    Ottoni, Claudio; Girdland Flink, Linus; Evin, Allowen; Geörg, Christina; De Cupere, Bea; Van Neer, Wim; Bartosiewicz, László; Linderholm, Anna; Barnett, Ross; Peters, Joris; Decorte, Ronny; Waelkens, Marc; Vanderheyden, Nancy; Ricaut, François-Xavier; Çakırlar, Canan; Çevik, Özlem; Hoelzel, A. Rus; Mashkour, Marjan; Mohaseb Karimlu, Azadeh Fatemeh; Sheikhi Seno, Shiva; Daujat, Julie; Brock, Fiona; Pinhasi, Ron; Hongo, Hitomi; Perez-Enciso, Miguel; Rasmussen, Morten; Frantz, Laurent; Megens, Hendrik-Jan; Crooijmans, Richard; Groenen, Martien; Arbuckle, Benjamin; Benecke, Nobert; Strand Vidarsdottir, Una; Burger, Joachim; Cucchi, Thomas; Dobney, Keith; Larson, Greger

    2013-01-01

    Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ∼8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages. PMID:23180578

  6. Genetic and Morphological Variation of the Forkbeard, Phycis phycis (Pisces, Phycidae): Evidence of Panmixia and Recent Population Expansion along Its Distribution Area

    PubMed Central

    Rodrigues, Ana Sofia B.; Sequeira, Vera; Neves, Ana; Paiva, Rafaela Barros

    2016-01-01

    The knowledge of population structure of a species is essential to effectively assess and manage fisheries. In the present study, genetics, by mitochondrial DNA cytochrome b sequence analysis, and body geometric morphometrics were used to evaluate the existence of distinct populations of the forkbeard (Phycis phycis), an important commercial species in several European countries, especially Portugal and Spain. For geometric morphometric analysis, specimens were collected in the Northeast Atlantic Ocean—Azores, Madeira and mainland Portugal, and for genetic analysis, these samples were complemented with samples collected in the Mediterranean Sea—Spain, Italy and Croatia, in order to cover the entire distribution area of the species. Body shape of the forkbeard from the Northeast Atlantic was found to be highly variable. This variation was probably associated with different environmental factors between the study areas. Despite morphological variation, a low genetic differentiation between samples from different areas was found, most likely due to gene flow that occurred in the past or with the demographic history of the species. Moreover, the presence of unique haplotypes in the Northeast Atlantic and in the Mediterranean suggests that recent gene flow between populations from these areas should be limited. Altogether, a high haplotype diversity, a low nucleotide diversity, a “star-like” network and the results of the mismatch distribution, indicate a possible signature of recent population expansions, which probably started during the end of the Last Glacial Maximum and led to the colonization of the Northeast Atlantic and the Mediterranean. PMID:27941988

  7. Host Plant-Associated Population Variation in the Carob Moth Ectomyelois ceratoniae in Iran: A Geometric Morphometric Analysis Suggests a Nutritional Basis.

    PubMed Central

    Mozaffarian, Fariba; Sarafrazi, Alimorad; Ganbalani, Gadir Nouri

    2007-01-01

    The carob moth, Ectomyelois ceratoniae (Zeller, 1839) (Lepidoptera: Pyralidae), is the most important pest of pomegranate in Iran. As it has been rarely recorded on other host plants, control methods have mostly been focused on its populations on pomegranate. In this study, shapes and sizes of wings were compared in populations on 4 host plants (pomegranate, fig, pistachio and walnut) using a landmark-based geometric morphometric method, and analysis of partial warp scores and centroid sizes. The results showed significantly smaller wing size in populations on pomegranate and a significant host plant-associated shape difference among populations as a consequence of allometric growth. This suggests that the wing size and shape differences among test populations may not have a genetic basis and could happen because of differences in the nutritional content of host plants. The results of the analysis suggest that the female carob moth lays her eggs on host plants that provide suitable conditions for hatching. The larger size of moths on hosts other than pomegranate showed that some host plants such as fig, pistachio and walnut can provide for increased stored nutritional reserves by larvae that may result in more successful over-wintering and higher fecundity in adults. This suggests that in spite of the more extensive activity of carob moth on pomegranate in Iran, populations on other host plants can have an important effect on expanding pest population sizes in following years which should be considered in control methods. PMID:20337550

  8. Ontogenetic scaling of caudal fin shape in Squalus acanthias (Chondrichthyes, Elasmobranchii): a geometric morphometric analysis with implications for caudal fin functional morphology.

    PubMed

    Reiss, Katie L; Bonnan, Matthew F

    2010-07-01

    The shark heterocercal caudal fin and its contribution to locomotion are of interest to biologists and paleontologists. Current hydrodynamic data show that the stiff dorsal lobe leads the ventral lobe, both lobes of the tail are synchronized during propulsion, and tail shape reflects its overall locomotor function. Given the difficulties surrounding the analysis of shark caudal fins in vivo, little is known about changes in tail shape related to ontogeny and sex in sharks. A quantifiable analysis of caudal fin shape may provide an acceptable proxy for inferring gross functional morphology where direct testing is difficult or impossible. We examined ontogenetic and sex-related shape changes in the caudal fins of 115 Squalus acanthias museum specimens, to test the hypothesis that significant shape changes in the caudal fin shape occur with increasing size and between the sexes. Using linear and geometric morphometrics, we examined caudal shape changes within the context of current hydrodynamic models. We found no statistically significant linear or shape difference between sexes, and near-isometric scaling trends for caudal dimensions. These results suggest that lift and thrust increase linearly with size and caudal span. Thin-plate splines results showed a significant allometric shape change associated with size and caudal span: the dorsal lobe elongates and narrows, whereas the ventral lobe broadens and expands ventrally. Our data suggest a combination of caudal fin morphology with other body morphology aspects, would refine, and better elucidate the hydrodynamic factors (if any) that underlie the significant shape changes we report here for S. acanthias.

  9. Three-dimensional geometric morphometric analysis of talar morphology in extant gorilla taxa from highland and lowland habitats.

    PubMed

    Knigge, Ryan P; Tocheri, Matthew W; Orr, Caley M; Mcnulty, Kieran P

    2015-01-01

    Western gorillas (Gorilla gorilla) are known to climb significantly more often than eastern gorillas (Gorilla beringei), a behavioral distinction attributable to major differences in their respective habitats (i.e., highland vs. lowland). Genetic evidence suggests that the lineages leading to these taxa began diverging from one another between approximately 1 and 3 million years ago. Thus, gorillas offer a special opportunity to examine the degree to which morphology of recently diverged taxa may be "fine-tuned" to differing ecological requirements. Using three-dimensional (3D) geometric morphometrics, we compared talar morphology in a sample of 87 specimens including western (lowland), mountain (highland), and grauer gorillas (lowland and highland populations). Talar shape was captured with a series of landmarks and semilandmarks superimposed by generalized Procrustes analysis. A between-group principal components analysis of overall talar shape separates gorillas by ecological habitat and by taxon. An analysis of only the trochlea and lateral malleolar facet identifies subtle variations in trochlear shape between western lowland and lowland grauer gorillas, potentially indicative of convergent evolution of arboreal adaptations in the talus. Lastly, talar shape scales differently with centroid size for highland and lowland gorillas, suggesting that ankle morphology may track body-size mediated variation in arboreal behaviors differently depending on ecological setting. Several of the observed shape differences are linked biomechanically to the facilitation of climbing in lowland gorillas and to stability and load-bearing on terrestrial substrates in the highland taxa, providing an important comparative model for studying morphological variation in groups known only from fossils (e.g., early hominins). © 2014 Wiley Periodicals, Inc.

  10. Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity.

    PubMed

    Windhager, Sonja; Schaefer, Katrin; Fink, Bernhard

    2011-01-01

    Evolutionary psychologists claim that women have adaptive preferences for specific male physical traits. Physical strength may be one of those traits, because recent research suggests that women rate faces of physically strong men as more masculine, dominant, and attractive. Yet, previous research has been limited in its ability to statistically map specific male facial shapes and features to corresponding physical measures (e.g., strength) and ratings (e.g., attractiveness). The association of handgrip strength (together with measures of shoulder width, body height, and body fat) and women's ratings of male faces (concerning dominance, masculinity, and attractiveness) were studied in a sample of 26 Caucasian men (aged 18-32 years). Geometric morphometrics was used to statistically assess the covariation of male facial shape with these measures. Statistical results were visualized with thin-plate spline deformation grids along with image unwarping and image averaging. Handgrip strength together with shoulder width, body fat, dominance, and masculinity loaded positively on the first dimension of covariation with facial shape (explaining 72.6%, P < 0.05). These measures were related to rounder faces with wider eyebrows and a prominent jaw outline while highly attractive and taller men had longer, narrower jaws and wider/fuller lips. Male physical strength was more strongly associated with changes in face shape that relate to perceived masculinity and dominance than to attractiveness. Our study adds to the growing evidence that attractiveness and dominance/masculinity may reflect different aspects of male mate quality. Copyright © 2011 Wiley-Liss, Inc.

  11. Whipworm diversity in West African rodents: a molecular approach and the description of Trichuris duplantieri n. sp. (Nematoda: Trichuridae).

    PubMed

    Ribas, Alexis; Diagne, Christophe; Tatard, Caroline; Diallo, Mamoudou; Poonlaphdecha, Srisupaph; Brouat, Carine

    2017-04-01

    Whipworms were collected from rodents (Muridae) from six West African countries: Burkina-Faso, the Islamic Republic of Mauritania, and the Republics of Benin, Guinea, Mali and Senegal. Molecular sequences (ITS-1, 5.8S and ITS-2 of the ribosomal DNA gene) and morphometric characters were analysed in Trichuris (Nematoda: Trichuridae) specimens found in seven host species: Arvicanthis niloticus, Gerbilliscus gambianus, Gerbillus gerbillus, G. tarabuli, Mastomys erythroleucus, M. huberti and M. natalensis. Phylogenetic analyses revealed three clades, one recognised as Trichuris mastomysi, previously recorded in M. natalensis from Tanzania, and the other two previously undescribed. A new species named Trichuris duplantieri n. sp., found in Gerbillus spp. from Mauritania, was characterised using molecular and morphometric methods.

  12. Morphometric and kinematic sperm subpopulations in split ejaculates of normozoospermic men

    PubMed Central

    Santolaria, Pilar; Soler, Carles; Recreo, Pilar; Carretero, Teresa; Bono, Araceli; Berné, José M; Yániz, Jesús L

    2016-01-01

    This study was designed to analyze the sperm kinematic and morphometric subpopulations in the different fractions of the ejaculate in normozoospermic men. Ejaculates from eight normozoospermic men were collected by masturbation in three fractions after 3–5 days of sexual abstinence. Analyses of sperm motility by computer-assisted sperm analysis (CASA-Mot), and of sperm morphometry by computer-assisted sperm morphometry analysis (CASA-Morph) using fluorescence were performed. Clustering and discriminant procedures were performed to identify sperm subpopulations in the kinematic and morphometric data obtained. Clustering procedures resulted in the classification of spermatozoa into three kinematic subpopulations (slow with low ALH [35.6% of all motile spermatozoa], with circular trajectories [32.0%], and rapid with high ALH [32.4%]), and three morphometric subpopulations (large-round [33.9% of all spermatozoa], elongated [32.0%], and small [34.10%]). The distribution of kinematic sperm subpopulations was different among ejaculate fractions (P < 0.001), with higher percentages of spermatozoa exhibiting slow movements with low ALH in the second and third portions, and with a more homogeneous distribution of kinematic sperm subpopulations in the first portion. The distribution of morphometric sperm subpopulations was also different among ejaculate fractions (P < 0.001), with more elongated spermatozoa in the first, and of small spermatozoa in the third, portion. It is concluded that important variations in the distribution of kinematic and morphometric sperm subpopulations exist between ejaculate fractions, with possible functional implications. PMID:27624985

  13. A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta.

    PubMed

    Bruse, Jan L; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N; Capelli, Claudio; Hsia, Tain-Yen; Sermesant, Maxime; Pennec, Xavier; Taylor, Andrew M; Schievano, Silvia

    2016-05-31

    Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover previously unknown 3D shape biomarkers from medical imaging data. Thus, it could contribute to improving diagnosis and risk stratification in complex cardiac disease.

  14. Genetic evidence and new morphometric data as essential tools to identify the Patagonian seahorse Hippocampus patagonicus (Pisces, Syngnathidae).

    PubMed

    González, R; Dinghi, P; Corio, C; Medina, A; Maggioni, M; Storero, L; Gosztonyi, A

    2014-02-01

    A genetic study to support morphometric analyses was used to improve the description and validate the Patagonian seahorse Hippocampus patagonicus (Syngnathidae) on the basis of a large number of specimens collected in the type locality (San Antonio Bay, Patagonia, Argentina). DNA sequence data (from the cytochrome b region of the mitochondrial genome) were used to differentiate this species from its relatives cited for the west Atlantic Ocean. Both phylogenetic and genetic distance analyses supported the hypothesis that H. patagonicus is a species clearly differentiated from others, in agreement with morphometric studies. Hippocampus patagonicus can be distinguished from Hippocampus erectus by the combination of the following morphometric characteristics: (1) in both sexes and all sizes of H. patagonicus, the snout length is always less than the postorbital length, whereas the snout length of H. erectus is not shorter than the postorbital length in the largest specimens; (2) in both sexes of H. patagonicus, the trunk length:total length (LTr :LT ) is lower than in H. erectus (in female H. patagonicus: 0·27-0·39, H. erectus: 0·36-0·40 and in male H. patagonicus: 0·24-0·34, H. erectus: 0·33-0·43) and (3) in both sexes, tail length:total length (LTa :LT ) in H. patagonicus is larger than in H. erectus (0·61-0·78 v. 0·54-0·64). © 2014 The Fisheries Society of the British Isles.

  15. Quantification of Runoff as Influenced by Morphometric Characteristics in a Rural Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Pradhan, Biswajeet; Sulaiman, Wan Nor Azmin; Jamil, Nor Rohaizah

    2018-05-01

    This study addresses the critical scientific question of assessing the relationship between morphometric features and the hydrological factors that increase the risk of flooding in Kelantan River basin, Malaysia. Two hypotheses were developed to achieve this aim, namely: the alternate hypothesis (runoff, is influenced by morphometric characteristics in the study watershed) and the null hypothesis (runoff is not influenced by morphometric characteristics). First, the watershed was delineated into four major catchments, namely: Galas, Pergau, Lebir, and Nenggiri. Next, quantitative morphometric characters such as linear aspects, areal aspects, and relief aspects were determined on each of these catchments. Furthermore, HEC-HMS and flood response analyses were employed to simulate the hydrological response of the catchments. From the results of morphometric analysis, profound spatial changes were observed between runoff features of Kelantan River and the morphometric characteristics. The length of overflow that was related to drainage density and constant channel maintenance was found to be 0.12 in Pergau, 0.04 in both Nenggiri and Lebir, and 0.03 in Galas. Drainage density as influenced by geology and vegetation density was found to be low in all the catchments (0.07-0.24). Results of hydrological response indicated that Lebir, Nenggiri, Galas, and Pergau recorded a flood response factor of 0.75, 0.63, 0.40, and 0.05, respectively. Therefore, Lebir and Nenggiri are more likely to be flooded during a rainstorm. There was no clear indication with regard to the catchment that emerged as the most prevailing in all the morphological features. Hence, the alternate hypothesis was affirmed. This study can be replicated in other catchments with different hydrologic setup.

  16. Quantification of Runoff as Influenced by Morphometric Characteristics in a Rural Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Pradhan, Biswajeet; Sulaiman, Wan Nor Azmin; Jamil, Nor Rohaizah

    2018-03-01

    This study addresses the critical scientific question of assessing the relationship between morphometric features and the hydrological factors that increase the risk of flooding in Kelantan River basin, Malaysia. Two hypotheses were developed to achieve this aim, namely: the alternate hypothesis (runoff, is influenced by morphometric characteristics in the study watershed) and the null hypothesis (runoff is not influenced by morphometric characteristics). First, the watershed was delineated into four major catchments, namely: Galas, Pergau, Lebir, and Nenggiri. Next, quantitative morphometric characters such as linear aspects, areal aspects, and relief aspects were determined on each of these catchments. Furthermore, HEC-HMS and flood response analyses were employed to simulate the hydrological response of the catchments. From the results of morphometric analysis, profound spatial changes were observed between runoff features of Kelantan River and the morphometric characteristics. The length of overflow that was related to drainage density and constant channel maintenance was found to be 0.12 in Pergau, 0.04 in both Nenggiri and Lebir, and 0.03 in Galas. Drainage density as influenced by geology and vegetation density was found to be low in all the catchments (0.07-0.24). Results of hydrological response indicated that Lebir, Nenggiri, Galas, and Pergau recorded a flood response factor of 0.75, 0.63, 0.40, and 0.05, respectively. Therefore, Lebir and Nenggiri are more likely to be flooded during a rainstorm. There was no clear indication with regard to the catchment that emerged as the most prevailing in all the morphological features. Hence, the alternate hypothesis was affirmed. This study can be replicated in other catchments with different hydrologic setup.

  17. Wing morphometrics as a possible tool for the diagnosis of the Ceratitis fasciventris, C. anonae, C. rosa complex (Diptera, Tephritidae).

    PubMed

    Van Cann, Joannes; Virgilio, Massimiliano; Jordaens, Kurt; De Meyer, Marc

    2015-01-01

    Previous attempts to resolve the Ceratitis FAR complex (Ceratitis fasciventris, Ceratitis anonae, Ceratitis rosa, Diptera, Tephritidae) showed contrasting results and revealed the occurrence of five microsatellite genotypic clusters (A, F1, F2, R1, R2). In this paper we explore the potential of wing morphometrics for the diagnosis of FAR morphospecies and genotypic clusters. We considered a set of 227 specimens previously morphologically identified and genotyped at 16 microsatellite loci. Seventeen wing landmarks and 6 wing band areas were used for morphometric analyses. Permutational multivariate analysis of variance detected significant differences both across morphospecies and genotypic clusters (for both males and females). Unconstrained and constrained ordinations did not properly resolve groups corresponding to morphospecies or genotypic clusters. However, posterior group membership probabilities (PGMPs) of the Discriminant Analysis of Principal Components (DAPC) allowed the consistent identification of a relevant proportion of specimens (but with performances differing across morphospecies and genotypic clusters). This study suggests that wing morphometrics and PGMPs might represent a possible tool for the diagnosis of species within the FAR complex. Here, we propose a tentative diagnostic method and provide a first reference library of morphometric measures that might be used for the identification of additional and unidentified FAR specimens.

  18. Morphometric information to reduce the semantic gap in the characterization of microscopic images of thyroid nodules.

    PubMed

    Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T

    2016-07-01

    The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Morphometric comparisons of plant-mimetic juvenile fish associated with plant debris observed in the coastal subtropical waters around Kuchierabu-jima Island, southern Japan

    PubMed Central

    2016-01-01

    The general morphological shape of plant-resembling fish and plant parts were compared using a geometric morphometrics approach. Three plant-mimetic fish species, Lobotes surinamensis (Lobotidae), Platax orbicularis (Ephippidae) and Canthidermis maculata (Balistidae), were compared during their early developmental stages with accompanying plant debris (i.e., leaves of several taxa) in the coastal subtropical waters around Kuchierabu-jima Island, closely facing the Kuroshio Current. The degree of similarity shared between the plant parts and co-occurring fish species was quantified, however fish remained morphologically distinct from their plant models. Such similarities were corroborated by analysis of covariance and linear discriminant analysis, in which relative body areas of fish were strongly related to plant models. Our results strengthen the paradigm that morphological clues can lead to ecological evidence to allow predictions of behavioural and habitat choice by mimetic fish, according to the degree of similarity shared with their respective models. The resemblance to plant parts detected in the three fish species may provide fitness advantages via convergent evolutionary effects. PMID:27547571

  20. Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil platyrrhines

    PubMed Central

    Nova Delgado, Mónica; Galbany, Jordi

    2016-01-01

    The phylogenetic position of many fossil platyrrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants, whereas the long lineage hypothesis argues for an evolutionary continuity of all fossil platyrrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-based configuration of platyrrhines’ first and second lower molars suggest that morphological stasis may explain the reduced molar shape variation observed. Platyrrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints throughout the radiation of the main platyrrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, Callicebus—like and Saguinus—like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also displayed new, derived molar patterns, Alouatta—like and Pitheciinae—like, thereby suggesting that despite the overall morphological stasis of molars, phenotypic diversification of molar shape was already settled during the Middle Miocene. PMID:27190704

  1. Sexual dimorphism and population variation in the adult mandible : Forensic applications of geometric morphometrics.

    PubMed

    Franklin, Daniel; O'Higgins, Paul; Oxnard, Charles E; Dadour, Ian

    2007-03-01

    This article forms part of an ongoing series of investigations designed to apply three-dimensional (3D) technology to problems in forensic anthropology. We report here on new morphometric data examining sexual dimorphism and population variation in the adult human mandible. The material is sourced from dissection hall subjects of South African and American origin consequently the sex and a statement of age are known for each individual. Thirty-eight bilateral 3D landmarks were designed and acquired using a Microscribe G2X portable digitizer. The shape analysis software morphologika (www.york.ac.uk/res/fme) is used to analyze the 3D coordinates of the landmarks. A selection of multivariate statistics is applied to visualize the pattern, and assess the significance of, shape variation between the sexes and populations. The determination of sex and identification of population affinity are two important aspects of forensic investigation. Our results indicate that the adult mandible can be used to identify both sex and population affinity with increased sensitivity and objectivity compared to standard analytical techniques.

  2. The First Morphometric Study of the Horn Morphological Pattern in a Geotrupidae: The Case of the Dor Beetle Ceratophyus rossii Jekel, 1865.

    PubMed

    Pizzo, Astrid; Mazzone, Fabio; Palestrini, Claudia

    2015-01-01

    Among beetles, thousands of species develop horns, the size of which is often extraordinarily disproportionate with respect to body size. The Scarabaeidae is the family in which horned species are most predominant, but other families, such as the Geotrupidae (dor beetles), also show remarkable horns, although in a more limited number of species. Horn expression mechanisms are well documented in Scarabaeidae but, despite the wealth of studies on this family, the horn morphological pattern of the Geotrupidae, to our knowledge, has never been investigated. In this paper, we describe for the first time the horn expression pattern in a dor beetle. As a study species, we chose Ceratophyus rossii, an Italian endemic dor beetle of the protected Mediterranean maquis in Tuscany, which shows remarkable head and pronotal horns in males and a notable cephalic horn in females. We identified and modeled shape and size horn patterns combining traditional and geometric morphometric approaches. We discuss the results in the wider landscape of developmental models described for other, more well-characterized, scarab beetles.

  3. The Principal Components of Adult Female Insole Shape Align Closely with Two of Its Classic Indicators.

    PubMed

    Bookstein, Fred L; Domjanic, Jacqueline

    2015-01-01

    The plantar surface of the human foot transmits the weight and dynamic force of the owner's lower limbs to the ground and the reaction forces back to the musculoskeletal system. Its anatomical variation is intensely studied in such fields as sports medicine and orthopedic dysmorphology. Yet, strangely, the shape of the insole that accommodates this surface and elastically buffers these forces is neither an aspect of the conventional anthropometrics of feet nor an informative label on the packet that markets supplementary insoles. In this paper we pursue an earlier suggestion that insole form in vertical view be quantified in terms of the shape of the foot not at the plane of support (the "footprint") but some two millimeters above that level. Using such sections extracted from laser scans of 158 feet of adult women from the University of Zagreb, in conjunction with an appropriate modification of today's standard geometric morphometrics (GMM), we find that the sectioned form can be described by its size together with two meaningful relative warps of shape. The pattern of this shape variation is not novel. It is closely aligned with two of the standard footprint measurements, the Chippaux-Šmiřák arch index and the Clarke arch angle, whose geometrical foci (the former in the ball of the foot, the latter in the arch) it apparently combines. Thus a strong contemporary analysis complements but does not supplant the simpler anthropometric analyses of half a century ago, with implications for applied anthropology.

  4. The Principal Components of Adult Female Insole Shape Align Closely with Two of Its Classic Indicators

    PubMed Central

    Bookstein, Fred L.; Domjanic, Jacqueline

    2015-01-01

    The plantar surface of the human foot transmits the weight and dynamic force of the owner’s lower limbs to the ground and the reaction forces back to the musculoskeletal system. Its anatomical variation is intensely studied in such fields as sports medicine and orthopedic dysmorphology. Yet, strangely, the shape of the insole that accommodates this surface and elastically buffers these forces is neither an aspect of the conventional anthropometrics of feet nor an informative label on the packet that markets supplementary insoles. In this paper we pursue an earlier suggestion that insole form in vertical view be quantified in terms of the shape of the foot not at the plane of support (the “footprint”) but some two millimeters above that level. Using such sections extracted from laser scans of 158 feet of adult women from the University of Zagreb, in conjunction with an appropriate modification of today’s standard geometric morphometrics (GMM), we find that the sectioned form can be described by its size together with two meaningful relative warps of shape. The pattern of this shape variation is not novel. It is closely aligned with two of the standard footprint measurements, the Chippaux-Šmiřák arch index and the Clarke arch angle, whose geometrical foci (the former in the ball of the foot, the latter in the arch) it apparently combines. Thus a strong contemporary analysis complements but does not supplant the simpler anthropometric analyses of half a century ago, with implications for applied anthropology. PMID:26308442

  5. Cryptic diversity: Two morphologically similar species of invasive apple snail in Peninsular Malaysia.

    PubMed

    Rama Rao, Suganiya; Liew, Thor-Seng; Yow, Yoon-Yen; Ratnayeke, Shyamala

    2018-01-01

    Invasive snails in the genus Pomacea have spread across Southeast Asia including Peninsular Malaysia. Their effects on natural and agricultural wetlands are appreciable, but species-specific effects are less clear because of morphological similarity among the species. Our objective was to establish diagnostic characteristics of Pomacea species in Malaysia using genetic and morphological criteria. The mitochondrial COI gene of 52 adult snails from eight localities in Peninsular Malaysia was amplified, sequenced, and analysed to verify species and phylogenetic relationships. Shells were compared using geometric morphometric and covariance analyses. Two monophyletic taxa, P. canaliculata and P. maculata, occurred in our samples. The mean ratio of shell height: aperture height (P = 0.042) and shell height: shell width (P = 0.007) was smaller in P. maculata. P. maculata co-occurred with P. canaliculata in five localities, but samples from three localities contained only P. canaliculata. This study is the first to confirm the presence of two of the most invasive species of Pomacea in Peninsular Malaysia using a molecular technique. P. canaliculata appears to be the more widespread species. Despite statistical differences, both quantitative and qualitative morphological characteristics demonstrated much interspecific overlap and intraspecific variability; thus, shell morphology alone cannot reliably verify species identity. Molecular techniques for distinguishing between these two highly invasive Pomacea species are needed to understand their specific ecological niches and to develop effective protocols for their management.

  6. Cryptic diversity: Two morphologically similar species of invasive apple snail in Peninsular Malaysia

    PubMed Central

    Liew, Thor-Seng; Yow, Yoon-Yen; Ratnayeke, Shyamala

    2018-01-01

    Invasive snails in the genus Pomacea have spread across Southeast Asia including Peninsular Malaysia. Their effects on natural and agricultural wetlands are appreciable, but species-specific effects are less clear because of morphological similarity among the species. Our objective was to establish diagnostic characteristics of Pomacea species in Malaysia using genetic and morphological criteria. The mitochondrial COI gene of 52 adult snails from eight localities in Peninsular Malaysia was amplified, sequenced, and analysed to verify species and phylogenetic relationships. Shells were compared using geometric morphometric and covariance analyses. Two monophyletic taxa, P. canaliculata and P. maculata, occurred in our samples. The mean ratio of shell height: aperture height (P = 0.042) and shell height: shell width (P = 0.007) was smaller in P. maculata. P. maculata co-occurred with P. canaliculata in five localities, but samples from three localities contained only P. canaliculata. This study is the first to confirm the presence of two of the most invasive species of Pomacea in Peninsular Malaysia using a molecular technique. P. canaliculata appears to be the more widespread species. Despite statistical differences, both quantitative and qualitative morphological characteristics demonstrated much interspecific overlap and intraspecific variability; thus, shell morphology alone cannot reliably verify species identity. Molecular techniques for distinguishing between these two highly invasive Pomacea species are needed to understand their specific ecological niches and to develop effective protocols for their management. PMID:29734361

  7. An evaluation of nasal bone and aperture shape among three South African populations.

    PubMed

    McDowell, Jennifer L; Kenyhercz, Michael W; L'Abbé, Ericka N

    2015-07-01

    Reliable and valid population specific standards are necessary to accurately develop a biological profile, which includes an estimation of peer-reported social identification (Hefner, 2009). During the last 300 years, colonialism, slavery and apartheid created geographic, physical and social divisions of population groups in South Africa. The purpose of this study was to evaluate variation in nasal bone and aperture shape in a modern population of black, white, and coloured South Africans using standard craniometric variables and geometric morphometrics, namely general Procrustes and elliptical Fourier analyses. Fourteen standard landmarks were digitally recorded or computationally derived from 310 crania using a 3D coordinate digitizer for discriminant function, principal components and generalized Procrustes analyses. For elliptical Fourier analysis, outlines of the nasal aperture were generated from standardized photographs. All classification accuracies were better than chance; the lowest accuracies were for coloured and the highest accuracies were for white South Africans. Most difficulties arose in distinguishing coloured and black South African groups from each other. Generally, misclassifications were noted between the sexes within each group rather than among groups, which suggests that sex has less influence on nasal bone and aperture shape than ancestry. Quantifiable variation in shape of the nasal aperture region between white and non-white South African groups was observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation

    PubMed Central

    Gómez, Giovan F.; Márquez, Edna J.; Gutiérrez, Lina A.; Conn, Jan E.; Correa, Margarita M.

    2015-01-01

    Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas wing shape was affected by these two variables and also by rainfall, latitude, temperature and eco-region. Significant differences in mean shape between populations and eco-regions were detected, but they were smaller than those at the intra-population level. Correct assignment based on wing shape was low at the population level (<58%) and only slightly higher (>70%) at the eco-regional level, supporting the low population structure inferred from microsatellite data. Wing size was similar among populations with no significant differences between eco-regions. Population relationships in the genetic tree did not agree with those from the morphometric data; however, both datasets consistently reinforced a panmictic population of An. albimanus. Overall, site-specific population differentiation is not strongly supported by wing traits or genotypic data. We hypothesize that the metapopulation structure of An. albimanus throughout these Colombian eco-regions is favoring plasticity in wing traits, a relevant characteristic of species living under variable environmental conditions and colonizing new habitats. PMID:24704285

  9. Two Algorithms for High-throughput and Multi-parametric Quantification of Drosophila Neuromuscular Junction Morphology.

    PubMed

    Castells-Nobau, Anna; Nijhof, Bonnie; Eidhof, Ilse; Wolf, Louis; Scheffer-de Gooyert, Jolanda M; Monedero, Ignacio; Torroja, Laura; van der Laak, Jeroen A W M; Schenck, Annette

    2017-05-03

    Synaptic morphology is tightly related to synaptic efficacy, and in many cases morphological synapse defects ultimately lead to synaptic malfunction. The Drosophila larval neuromuscular junction (NMJ), a well-established model for glutamatergic synapses, has been extensively studied for decades. Identification of mutations causing NMJ morphological defects revealed a repertoire of genes that regulate synapse development and function. Many of these were identified in large-scale studies that focused on qualitative approaches to detect morphological abnormalities of the Drosophila NMJ. A drawback of qualitative analyses is that many subtle players contributing to NMJ morphology likely remain unnoticed. Whereas quantitative analyses are required to detect the subtler morphological differences, such analyses are not yet commonly performed because they are laborious. This protocol describes in detail two image analysis algorithms "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton Morphometrics", available as Fiji-compatible macros, for quantitative, accurate and objective morphometric analysis of the Drosophila NMJ. This methodology is developed to analyze NMJ terminals immunolabeled with the commonly used markers Dlg-1 and Brp. Additionally, its wider application to other markers such as Hrp, Csp and Syt is presented in this protocol. The macros are able to assess nine morphological NMJ features: NMJ area, NMJ perimeter, number of boutons, NMJ length, NMJ longest branch length, number of islands, number of branches, number of branching points and number of active zones in the NMJ terminal.

  10. Repeatability, Reproducibility, Separative Power and Subjectivity of Different Fish Morphometric Analysis Methods

    PubMed Central

    Takács, Péter

    2016-01-01

    We compared the repeatability, reproducibility (intra- and inter-measurer similarity), separative power and subjectivity (measurer effect on results) of four morphometric methods frequently used in ichthyological research, the “traditional” caliper-based (TRA) and truss-network (TRU) distance methods and two geometric methods that compare landmark coordinates on the body (GMB) and scales (GMS). In each case, measurements were performed three times by three measurers on the same specimen of three common cyprinid species (roach Rutilus rutilus (Linnaeus, 1758), bleak Alburnus alburnus (Linnaeus, 1758) and Prussian carp Carassius gibelio (Bloch, 1782)) collected from three closely-situated sites in the Lake Balaton catchment (Hungary) in 2014. TRA measurements were made on conserved specimens using a digital caliper, while TRU, GMB and GMS measurements were undertaken on digital images of the bodies and scales. In most cases, intra-measurer repeatability was similar. While all four methods were able to differentiate the source populations, significant differences were observed in their repeatability, reproducibility and subjectivity. GMB displayed highest overall repeatability and reproducibility and was least burdened by measurer effect. While GMS showed similar repeatability to GMB when fish scales had a characteristic shape, it showed significantly lower reproducability (compared with its repeatability) for each species than the other methods. TRU showed similar repeatability as the GMS. TRA was the least applicable method as measurements were obtained from the fish itself, resulting in poor repeatability and reproducibility. Although all four methods showed some degree of subjectivity, TRA was the only method where population-level detachment was entirely overwritten by measurer effect. Based on these results, we recommend a) avoidance of aggregating different measurer’s datasets when using TRA and GMS methods; and b) use of image-based methods for morphometric surveys. Automation of the morphometric workflow would also reduce any measurer effect and eliminate measurement and data-input errors. PMID:27327896

  11. Life history dependent morphometric variation in stream-dwelling Atlantic salmon

    USGS Publications Warehouse

    Letcher, B.H.

    2003-01-01

    The time course of morphometric variation among life histories for stream-dwelling Atlantic salmon (Salmo salar L.) parr (age-0+ to age-2+) was analyzed. Possible life histories were combinations of parr maturity status in the autumn (mature or immature) and age at outmigration (smolt at age-2+ or later age). Actual life histories expressed with enough fish for analysis in the 1997 cohort were immature/age-2+ smolt, mature/age-2 +smolt, and mature/age-2+ non-smolt. Tagged fish were assigned to one of the three life histories and digital pictures from the field were analyzed using landmark-based geometric morphometrics. Results indicated that successful grouping of fish according to life history varied with fish age, but that fish could be grouped before the actual expression of the life histories. By March (age-1+), fish were successfully grouped using a descriptive discriminant function and successful assignment ranged from 84 to 97% for the remainder of stream residence. A jackknife of the discriminant function revealed an average life history prediction success of 67% from age-1+ summer to smolting. Low sample numbers for one of the life histories may have limited prediction success. A MANOVA on the shape descriptors (relative warps) also indicated significant differences in shape among life histories from age-1+ summer through to smolting. Across all samples, shape varied significantly with size. Within samples, shape did not vary significantly with size for samples from December (age-0+) to May (age-1+). During the age-1+ summer however, shape varied significantly with size, but the relationship between shape and size was not different among life histories. In the autumn (age-1+) and winter (age-2+), life history differences explained a significant portion of the change in shape with size. Life history dependent morphometric variation may be useful to indicate the timing of early expressions of life history variation and as a tool to explore temporal and spatial variation in life history expression.

  12. Morphometric and molecular differentiation between quetzal subspecies of Pharomachrus mocinno (Trogoniformes: Trogonidae).

    PubMed

    Solórzano, Sofía; Oyama, Ken

    2010-03-01

    The resplendent Quetzal (Pharomachrus mocinno) is an endemic Mesoamerican bird species of conservation concern. Within this species, the subspecies P. m. costaricensis and P. m. mocinno, have been recognized by apparent morphometric differences; however, presently there is no sufficient data for confirmation. We analyzed eight morphometric attributes of the body from 41 quetzals: body length, tarsus and cord wing, as well as the length, wide and depth of the bill, body weight; and in the case of the males, the length of the long upper-tail cover feathers. We used multivariate analyses to discriminate morphometric differences between subspecies and contrasted each morphometric attribute between and within subspecies with paired non-parametric Wilcoxon test. In order to review the intraspecific taxonomic status of this bird, we added phylogenetic analysis, and genetic divergence and differentiation based on nucleotide variations in four sequences of mtDNA. The nucleotide variation was estimated in control region, subunit NDH6, and tRNAGlu and tRNAPhe in 26 quetzals from eight localities distributed in five countries. We estimated the genetic divergence and differentiation between subspecies according to a mutation-drift equilibrium model. We obtained the best mutation nucleotide model following the procedure implemented in model test program. We constructed the phylogenetic relationships between subspecies by maximum parsimony and maximum likelihood using PAUP, as well as with Bayesian statistics. The multivariate analyses showed two different morphometric groups, and individuals clustered according to the subspecies that they belong. The paired comparisons between subspecies showed strong differences in most of the attributes analyzed. Along the four mtDNA sequences, we identified 32 nucleotide positions that have a particular nucleotide according to the quetzals subspecies. The genetic divergence and the differentiation was strong and markedly showed two groups within P. mocinno that corresponded to the quetzals subspecies. The model selected for our data was TVM+G. The three phylogenetic methods here used recovered two clear monophyletic clades corresponding to each subspecies, and evidenced a significant and true partition of P. mocinno species into two different genetic, morphometric and ecologic groups. Additionally, according to our calculations, the gene flow between subspecies is interrupted at least from three million years ago. Thus we propose that P. mocinno be divided in two independent species: P. mocinno (Northern species, from Mexico to Nicaragua) and in P. costaricensis (Southern species, Costa Rica and Panama). This new taxonomic classification of the quetzal subspecies allows us to get well conservation achievements because the evaluation about the kind and magnitude of the threats could be more precise.

  13. The evolution of modern human brain shape

    PubMed Central

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity. PMID:29376123

  14. Shape matters: animal colour patterns as signals of individual quality

    PubMed Central

    2017-01-01

    Colour patterns (e.g. irregular, spotted or barred forms) are widespread in the animal kingdom, yet their potential role as signals of quality has been mostly neglected. However, a review of the published literature reveals that pattern itself (irrespective of its size or colour intensity) is a promising signal of individual quality across species of many different taxa. We propose at least four main pathways whereby patterns may reliably reflect individual quality: (i) as conventional signals of status, (ii) as indices of developmental homeostasis, (iii) by amplifying cues of somatic integrity and (iv) by amplifying individual investment in maintenance activities. Methodological constraints have traditionally hampered research on the signalling potential of colour patterns. To overcome this, we report a series of tools (e.g. colour adjacency and pattern regularity analyses, Fourier and granularity approaches, fractal geometry, geometric morphometrics) that allow objective quantification of pattern variability. We discuss how information provided by these methods should consider the visual system of the model species and behavioural responses to pattern metrics, in order to allow biologically meaningful conclusions. Finally, we propose future challenges in this research area that will require a multidisciplinary approach, bringing together inputs from genetics, physiology, behavioural ecology and evolutionary-developmental biology. PMID:28228513

  15. The evolution of modern human brain shape.

    PubMed

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils ( N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.

  16. The last marine pelomedusoids (Testudines: Pleurodira): a new species of Bairdemys and the paleoecology of Stereogenyina

    PubMed Central

    Rincón, Ascanio D.; Solórzano, Andrés; Langer, Max C.

    2015-01-01

    The extinct Stereogenyina turtles form a relatively diverse Podocnemididae lineage, with twelve described and phylogenetically positioned species. They are characterized by a wide geographic and temporal range, from the Eocene of Africa to the Pleistocene of Southeast Asia, and a peculiar palate morphology, with a secondary palate that is unique among side-necked turtles. Here, we describe a new Stereogenyina species, based on an almost complete skull from the middle Miocene Capadare Formation, of Venezuela. A new phylogenetic analysis supports the assignment of the new species to the genus Bairdemys. Based on geometric morphometrics analyses, we related the development of the stereogenyin secondary palate with the acquisition of a durophagous diet. Based on a review of the sedimentary environments where their fossils are found, we also propose that stereogenyins were a marine radiation of podocnemidid turtles, as corroborated by previous studies of fossil eggs and limb morphology. These two inferences allowed us to hypothesize that stereogenyins occupied an ecological niche similar to that of the extant Carettini sea turtles, and that the rise of the latter group may be related to the Stereogenyina diversity fall in the end of the Miocene. PMID:26157628

  17. Wing morphology variations in a natural population of Phlebotomus tobbi Adler and Theodor 1930.

    PubMed

    Oguz, Gizem; Kasap, Ozge Erisoz; Alten, Bulent

    2017-12-01

    Cutaneous leishmaniasis (CL) is highly endemic in the Cukurova region, located on the crossroads of main refugee routes from the Middle East to Europe on the eastern Mediterranean part of Turkey. Our purpose was to investigate the phenotypic variation of Phlebotomus tobbi, the known vector of CL in the region, during one active season. Sand flies and microclimatic data were collected monthly from May to October, 2011, from five locations in six villages in the study area. A geometric morphometric approach was used to investigate wing morphology. Shape analyses revealed that males collected in May and June comprised one group, while specimens collected in August, September, and October formed a second group. Specimens from July were found to be distributed within these two groups. A similar distribution pattern was observed for females, but specimens from October were represented as the third district group. Significant size variation was detected for both sexes between months. Wing size and temperature were negatively correlated for females, but there was no temperature effect for males. Wing size of both sexes was increased in correlation to increasing relative humidity. Males were found to have smaller wings with increasing population density. © 2017 The Society for Vector Ecology.

  18. Hypersalinity drives physiological and morphological changes in Limia perugiae (Poeciliidae)

    PubMed Central

    Tello, Oscar; Krieger, Jonathan; Marmolejo, Arlen; Weaver, Kathleen F.; Garcia, Jerome V.; Cruz, Alexander

    2016-01-01

    ABSTRACT A fundamental question in biology is how an organism's morphology and physiology are shaped by its environment. Here, we evaluate the effects of a hypersaline environment on the morphology and physiology of a population of livebearing fish in the genus Limia (Poeciliidae). We sampled from two populations of Limia perugiae (one freshwater and one hypersaline) in the southwest Dominican Republic. We evaluated relative abundance of osmoregulatory proteins using western blot analyses and used a geometric morphometric approach to evaluate fine-scale changes to size and shape. Our data show that gill tissue isolated from hypersaline fish contained approximately two and a half times higher expression of Na+/K+ ATPase proteins. We also show evidence for mitochondrial changes within the gills, with eight times more complex I and four times higher expression of ATP synthase within the gill tissue from the hypersaline population. The energetic consequences to Limia living in saline and hypersaline environments may be a driver for phenotypic diversity, reducing the overall body size and changing the relative size and shape of the head, as well as impeding the growth of secondary sex features among the males. PMID:27402966

  19. Into the dark: patterns of middle ear adaptations in subterranean eulipotyphlan mammals

    NASA Astrophysics Data System (ADS)

    Koyabu, Daisuke; Hosojima, Misato; Endo, Hideki

    2017-09-01

    Evolution of the middle ear ossicles was a key innovation for mammals, enhancing the transmission of airborne sound. Radiation into various habitats from a terrestrial environment resulted in diversification of the auditory mechanisms among mammals. However, due to the paucity of phylogenetically controlled investigations, how middle ear traits have diversified with functional specialization remains unclear. In order to identify the respective patterns for various lifestyles and to gain insights into fossil forms, we employed a high-resolution tomography technique and compared the middle ear morphology of eulipotyphlan species (moles, shrews and hedgehogs), a group that has radiated into various environments, such as terrestrial, aquatic and subterranean habitats. Three-dimensional geometric morphometric analysis was conducted within a phylogenetically controlled framework. Quantitative shapes were found to strongly reflect the degree of subterranean lifestyle and weakly involve phylogeny. Our analyses demonstrate that subterranean adaptation should include a relatively shorter anterior process of the malleus, an enlarged incus, an enlarged stapes footplate and a reduction of the orbicular apophysis. These traits arguably allow improving low-frequency sound transmission at low frequencies and inhibiting the low-frequency noise which disturbs the subterranean animals in hearing airborne sounds.

  20. Does aquatic foraging impact head shape evolution in snakes?

    PubMed Central

    Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-01-01

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. PMID:27581887

  1. Morphometric variations of laelapine mite (Acari: Mesostigmata) populations infesting small mammals (Mammalia) in Brazil.

    PubMed

    Martins-Hatano, F; Gettinger, D; Manhães, M L; Bergallo, H G

    2012-08-01

    The goal of this study was to evaluate the morphometric variation of laelapine populations (Acari, Mesostigmata) associated with neotropical oryzomyine rodents at different geographic localities in Brazil. Three nominal mite species were selected for study, all infesting the pelage of small mammals at different localities in Rio de Janeiro, Espírito Santo, Bahia, and the Federal District, Brazil. To analyse morphometric characteristics, thirty-seven morphological characters distributed across the whole body of each specimen were measured. We use the Analysis of Principal Components, extracting the three first axes and projecting each mite in these axes. Major species level changes in the taxonomy of the host mammals allows an independent examination of morphometric variation of mites infesting a set of distinctly different host species at different geographic localities. Gigantolaelaps vitzthumi and Laelaps differens are associated with oryzomyine rodents of the genus Cerradomys, and consistently showed a tendency to cluster by host phylogeny. Laelaps manguinhosi associated with Nectomys rattus in central Brazil is morphometrically distinct from mites infesting N. squamipes in the coastal restingas of Rio de Janeiro and Espírito Santo. The results obtained here indicate that laelapine mite populations can vary among geographic areas and among phylogenetically related host species. Clearly, the study of these mites at the population level can be an important tool for clarifying the taxonomy of both mites and hosts.

  2. Cranial shape variation in jacarean caimanines (Crocodylia, Alligatoroidea) and its implications in the taxonomic status of extinct species: The case of Melanosuchus fisheri.

    PubMed

    Foth, Christian; Fernandez Blanco, María Victoria; Bona, Paula; Scheyer, Torsten M

    2018-02-01

    Melanosuchus niger (Crocodylia, Alligatoroidea) is one of the six living caimanine species widely distributed throughout the Amazon River basin today. Although there is only one extant species of Melanosuchus, fossil material assigned to this genus, represented by M. fisheri, has been reported from the late Miocene in South America. However, the validity of this taxon has been questioned and a recent investigation indicates that the referred specimen of M. fisheri (MCZ 4336) actually belongs to Globidentosuchus brachyrostris, while those diagnostic characters present in the holotype (MCNC 243) fall into the spectrum of intraspecific variation of M. niger. Here, we compare the skull shape of the holotype of M. fisheri with the ontogenetic series of the four jacarean species (M. niger, Caiman yacare, Caiman crocodilus, and Caiman latirostris) using 2D-geometric morphometric analyses in two different views. The analyses indicate that MCNC 243 falls into the morphospace of M. niger and C. latirostris. Despite strong shape similarities between juveniles of C. latirostris and MCNC 243, further anatomical comparisons reveal notable differences between them. In contrast, no concrete anatomical differences can be found between MCNC 243 and M. niger, although shape analyses indicate that MCNC 243 is relatively robust for its size. Thus, this study is able to confirm that the genus Melanosuchus was present in the late Miocene, but it still remains unclear if MCNC 243 should be treated as a junior synonym or probably a sister species of M. niger. Its Miocene age favors the second option, but as the shape analyses were also not able to extract any diagnostic characters, it should be retained as Melanosuchus cf. niger. © 2017 Wiley Periodicals, Inc.

  3. Integrative taxonomy of Afrotropical Ornithodoros (Ornithodoros) (Acari: Ixodida: Argasidae).

    PubMed

    Bakkes, Deon K; De Klerk, Daniel; Latif, Abdalla A; Mans, Ben J

    2018-05-01

    Afrotropical Ornithodoros (Ornithodoros) ticks are revised based on qualitative morphology of females and nymphs, as well as tarsus I shape outlines of females measured in a geometric morphometric framework. These lines of evidence corroborate lineages based on 16S rRNA nucleotide sequence data. Four previously unrecognized species are described, along with a revived nomen nudum that was previously considered a synonym. Afrotropical Ornithodoros (Ornithodoros) now comprise ten species. Ornithodoros moubata and Ornithodoros porcinus are separated from three other species in southern Africa (Ornithodoros compactus, Ornithodoros phacochoerusn. sp., Ornithodoros waterbergensisn. sp.), with O. porcinus restricted to central east Africa. Known species boundaries for Ornithodoros apertus and O. compactus are supported. Ornithodoros savignyi are separated from three other species in South Africa and Namibia, with O. savignyi restricted to north Africa. Neumann's Ornithodoros pavimentosusnom. rev. are resurrected from synonymy as a species that occur in Bushmanland, Namaqualand and Namibia, while Ornithodoros kalahariensisn. sp. occur in Kalahari thornveld, and Ornithodoros noorsveldensisn. sp. occur in Noorsveld thicket of South Africa. Detailed descriptions are given for each species along with high resolution images and point map distributions. Support is provided for speciation driven by riverine barriers, Pliocene uplift and differential arid tolerance. Exaggerated tarsus I shape in the O. savignyi group suggests adaptation to fossorial habits and soil type. Conversely, reduced tarsus I shape in the O. moubata group is suggested as an evolutionary consequence of the life history change from soil to warthog burrows. This study represents an integrative (iterative) approach to delimiting Afrotropical Ornithodoros (Ornithodoros) species, and provides the first application of tarsus I shape outlines in a geometric morphometric framework for testing species boundaries. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Social Complexification and Pig (Sus scrofa) Husbandry in Ancient China: A Combined Geometric Morphometric and Isotopic Approach.

    PubMed

    Cucchi, Thomas; Dai, Lingling; Balasse, Marie; Zhao, Chunqing; Gao, Jiangtao; Hu, Yaowu; Yuan, Jing; Vigne, Jean-Denis

    2016-01-01

    Pigs have played a major role in the economic, social and symbolic systems of China since the Early Neolithic more than 8,000 years ago. However, the interaction between the history of pig domestication and transformations in Chinese society since then, have not been fully explored. In this paper, we investigated the co-evolution from the earliest farming communities through to the new political and economic models of state-like societies, up to the Chinese Empire, using 5,000 years of archaeological records from the Xiawanggang (XWG) and Xinzhai (XZ) sites (Henan Province). To trace the changes of pig populations against husbandry practices, we combined the geometric morphometric analysis of dental traits with a study of the stable carbon and nitrogen isotope ratios from bone collagen. The domestication process intensified during the Neolithic Yangshao, prompted by greater selective pressure and/or better herd control against wild introgression. After that, pig farming, in XWG, relied on local livestock and a gradual change of husbandry practices overtime. This was characterized by a gentle increase in millet foddering and animal protein intake, until a complete change over to household management during the Han dynasty. The only rupture in this steady trend of husbandry occurred during the Longshan period, with the appearance of small sized and idiosyncratic pigs with specific feeding practices (relying on millet and household scraps). From three exploratory hypothesis, we explored the possibility of anti-elite pig production in XWG during the Longshan period, as a means to resist incorporation into a new economic model promoting intensified domestic production. This exploratory hypothesis is the most suitable to our dataset; however, numerous areas need to be explored further in order to adequately document the role of pigs in the rise of China's complex societies.

  5. Strong geographical variation in wing aspect ratio of a damselfly, Calopteryx maculata (Odonata: Zygoptera)

    PubMed Central

    2015-01-01

    Geographical patterns in body size have been described across a wide range of species, leading to the development of a series of fundamental biological rules. However, shape variables are less well-described despite having substantial consequences for organism performance. Wing aspect ratio (AR) has been proposed as a key shape parameter that determines function in flying animals, with high AR corresponding to longer, thinner wings that promote high manoeuvrability, low speed flight, and low AR corresponding to shorter, broader wings that promote high efficiency long distance flight. From this principle it might be predicted that populations living in cooler areas would exhibit low AR wings to compensate for reduced muscle efficiency at lower temperatures. I test this hypothesis using the riverine damselfly, Calopteryx maculata, sampled from 34 sites across its range margin in North America. Nine hundred and seven male specimens were captured from across the 34 sites (mean = 26.7 ± 2.9 SE per site), dissected and measured to quantify the area and length of all four wings. Geometric morphometrics were employed to investigate geographical variation in wing shape. The majority of variation in wing shape involved changes in wing aspect ratio, confirmed independently by geometric morphometrics and wing measurements. There was a strong negative relationship between wing aspect ratio and the maximum temperature of the warmest month which varies from west-east in North America, creating a positive relationship with longitude. This pattern suggests that higher aspect ratio may be associated with areas in which greater flight efficiency is required: regions of lower temperatures during the flight season. I discuss my findings in light of research of the functional ecology of wing shape across vertebrate and invertebrate taxa. PMID:26336648

  6. Functional aspects of metatarsal head shape in humans, apes, and Old World monkeys.

    PubMed

    Fernández, Peter J; Almécija, Sergio; Patel, Biren A; Orr, Caley M; Tocheri, Matthew W; Jungers, William L

    2015-09-01

    Modern human metatarsal heads are typically described as "dorsally domed," mediolaterally wide, and dorsally flat. Despite the apparent functional importance of these features in forefoot stability during bipedalism, the distinctiveness of this morphology has not been quantitatively evaluated within a broad comparative framework. In order to use these features to reconstruct fossil hominin locomotor behaviors with any confidence, their connection to human bipedalism should be validated through a comparative analysis of other primates with different locomotor behaviors and foot postures, including species with biomechanical demands potentially similar to those of bipedalism (e.g., terrestrial digitigrady). This study explores shape variation in the distal metatarsus among humans and other extant catarrhines using three-dimensional geometric morphometrics (3 DGM). Shape differences among species in metatarsal head morphology are well captured by the first two principal components of Procrustes shape coordinates, and these two components summarize most of the variance related to "dorsal doming" and "dorsal expansion." Multivariate statistical tests reveal significant differences among clades in overall shape, and humans are reliably distinguishable from other species by aspects of shape related to a greater degree of dorsal doming. Within quadrupeds, terrestrial species also trend toward more domed metatarsal heads, but not to the extent seen in humans. Certain aspects of distal metatarsus shape are likely related to habitual dorsiflexion of the metatarsophalangeal joints, but the total morphological pattern seen in humans is distinct. These comparative results indicate that this geometric morphometric approach is useful to characterize the complexity of metatarsal head morphology and will help clarify its relationship with function in fossil primates, including early hominins. Published by Elsevier Ltd.

  7. Intraspecific scaling of the minimum metabolic cost of transport in leghorn chickens (Gallus gallus domesticus): links with limb kinematics, morphometrics and posture.

    PubMed

    Rose, Kayleigh A; Nudds, Robert L; Codd, Jonathan R

    2015-04-01

    The minimum metabolic cost of transport (CoTmin; J kg(-1) m(-1)) scales negatively with increasing body mass (∝Mb (-1/3)) across species from a wide range of taxa associated with marked differences in body plan. At the intraspecific level, or between closely related species, however, CoTmin does not always scale with Mb. Similarity in physiology, dynamics of movement, skeletal geometry and posture between closely related individuals is thought to be responsible for this phenomenon, despite the fact that energetic, kinematic and morphometric data are rarely collected together. We examined the relationship between these integrated components of locomotion in leghorn chickens (Gallus gallus domesticus) selectively bred for large and bantam (miniature) varieties. Interspecific allometry predicts a CoTmin ∼16% greater in bantams compared with the larger variety. However, despite 38% and 23% differences in Mb and leg length, respectively, the two varieties shared an identical walking CoTmin, independent of speed and equal to the allometric prediction derived from interspecific data for the larger variety. Furthermore, the two varieties moved with dynamic similarity and shared geometrically similar appendicular and axial skeletons. Hip height, however, did not scale geometrically and the smaller variety had more erect limbs, contrary to interspecific scaling trends. The lower than predicted CoTmin in bantams for their Mb was associated with both the more erect posture and a lower cost per stride (J kg(-1) stride(-1)). Therefore, our findings are consistent with the notion that a more erect limb is associated with a lower CoTmin and with the previous assumption that similarity in skeletal shape, inherently linked to walking dynamics, is associated with similarity in CoTmin. © 2015. Published by The Company of Biologists Ltd.

  8. Intraspecific scaling of the minimum metabolic cost of transport in leghorn chickens (Gallus gallus domesticus): links with limb kinematics, morphometrics and posture

    PubMed Central

    Rose, Kayleigh A.; Nudds, Robert L.; Codd, Jonathan R.

    2015-01-01

    ABSTRACT The minimum metabolic cost of transport (CoTmin; J kg−1 m−1) scales negatively with increasing body mass (∝Mb−1/3) across species from a wide range of taxa associated with marked differences in body plan. At the intraspecific level, or between closely related species, however, CoTmin does not always scale with Mb. Similarity in physiology, dynamics of movement, skeletal geometry and posture between closely related individuals is thought to be responsible for this phenomenon, despite the fact that energetic, kinematic and morphometric data are rarely collected together. We examined the relationship between these integrated components of locomotion in leghorn chickens (Gallus gallus domesticus) selectively bred for large and bantam (miniature) varieties. Interspecific allometry predicts a CoTmin ∼16% greater in bantams compared with the larger variety. However, despite 38% and 23% differences in Mb and leg length, respectively, the two varieties shared an identical walking CoTmin, independent of speed and equal to the allometric prediction derived from interspecific data for the larger variety. Furthermore, the two varieties moved with dynamic similarity and shared geometrically similar appendicular and axial skeletons. Hip height, however, did not scale geometrically and the smaller variety had more erect limbs, contrary to interspecific scaling trends. The lower than predicted CoTmin in bantams for their Mb was associated with both the more erect posture and a lower cost per stride (J kg−1 stride−1). Therefore, our findings are consistent with the notion that a more erect limb is associated with a lower CoTmin and with the previous assumption that similarity in skeletal shape, inherently linked to walking dynamics, is associated with similarity in CoTmin. PMID:25657211

  9. Geometric morphometric analysis of allometric variation in the mandibular morphology of the hominids of Atapuerca, Sima de los Huesos site.

    PubMed

    Rosas, Antonio; Bastir, Markus

    2004-06-01

    Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. Copyright 2004 Wiley-Liss, Inc.

  10. Estimating the magnitude of morphoscapes: how to measure the morphological component of biodiversity in relation to habitats using geometric morphometrics

    NASA Astrophysics Data System (ADS)

    Fontaneto, Diego; Panisi, Martina; Mandrioli, Mauro; Montardi, Dario; Pavesi, Maurizio; Cardini, Andrea

    2017-08-01

    Ecological indicators are currently developed to account for the different facets of loss of biological diversity due to direct or indirect effects of human activities. Most ecological indicators include species richness as a metric. Others, such as functional traits and phylogenetic diversity, account for differences in species, even when species richness is the same. Here, we describe and apply a different indicator, called morphoscape dimension, accounting for morphological variability across habitats in a geographical region. We use the case of ground beetles (Coleoptera: Carabidae) in four different habitats in the Po Plain in Northern Italy to exemplify how to quantify the magnitude of the morphological space (i.e. the dimension of the morphoscape) occupied by the species in each habitat using geometric morphometrics. To this aim, we employed a variety of metrics of morphological disparity related to univariate size, and more complex multivariate shape and form. Our `proof of concept' suggests that metrics assessing size and form might largely tend to simply mirror the information provided by species richness, whereas shape morphoscape disparity may be able to account for non-trivial differences in species traits amongst habitats. This is indicated by the woodland morphoscape being on average bigger than that of crops, the most species-rich habitat, despite having almost 20% less species. We conclude suggesting that the analysis of morphoscape dimension has the potential to become a new additional and complimentary tool in the hands of conservation biologists and ecologists to explore and quantify habitat complexity and inform decisions on management and conservation based on a wide set of ecological indicators.

  11. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape

    PubMed Central

    Sheets, H David; Covino, Kristen M; Panasiewicz, Joanna M; Morris, Sara R

    2006-01-01

    Background Geometric morphometric methods of capturing information about curves or outlines of organismal structures may be used in conjunction with canonical variates analysis (CVA) to assign specimens to groups or populations based on their shapes. This methodological paper examines approaches to optimizing the classification of specimens based on their outlines. This study examines the performance of four approaches to the mathematical representation of outlines and two different approaches to curve measurement as applied to a collection of feather outlines. A new approach to the dimension reduction necessary to carry out a CVA on this type of outline data with modest sample sizes is also presented, and its performance is compared to two other approaches to dimension reduction. Results Two semi-landmark-based methods, bending energy alignment and perpendicular projection, are shown to produce roughly equal rates of classification, as do elliptical Fourier methods and the extended eigenshape method of outline measurement. Rates of classification were not highly dependent on the number of points used to represent a curve or the manner in which those points were acquired. The new approach to dimensionality reduction, which utilizes a variable number of principal component (PC) axes, produced higher cross-validation assignment rates than either the standard approach of using a fixed number of PC axes or a partial least squares method. Conclusion Classification of specimens based on feather shape was not highly dependent of the details of the method used to capture shape information. The choice of dimensionality reduction approach was more of a factor, and the cross validation rate of assignment may be optimized using the variable number of PC axes method presented herein. PMID:16978414

  12. Clavicular curvature and locomotion in anthropoid primates: A 3D geometric morphometric analysis.

    PubMed

    Squyres, Nicole; DeLeon, Valerie Burke

    2015-08-04

    As a component of the primate shoulder, the clavicle is expected to reflect locomotor adaptations. Whereas previous work has generally focused on clavicular length and torsion, the shape of clavicular curvature may better distinguish taxa and provide additional information about upper limb use in locomotion. This study uses three-dimensional geometric morphometrics to analyze shape differences in the curvatures of the clavicle in different locomotor groups of anthropoid primates. Sliding semi-landmarks were placed on clavicles of 10 Anthropoid primate species (total n = 85) that display a range of locomotor behaviors. Landmarks (k = 39) were chosen to capture the overall curvature of the clavicle in three dimensions. The degree of ventral curvature in the clavicle represents a gradient from most-curved in suspensory genera (e.g., Ateles, Hylobates, and Pongo) to least-curved in genera that are rarely suspensory (e.g., Papio and Gorilla). This curvature may allow an increased range of craniodorsal movement without the clavicle impinging on the thoracic outlet. An inferior curvature of the medial clavicle is found in hominoids and brachiators. This curvature could help stabilize the shoulder and prevent superior dislocation of the clavicle in suspension. Finally, a superior curvature in the lateral part of the clavicle, most pronounced in quadrupedal monkeys, may be related to the relative position of the scapula and sternum. Patterns of clavicular curvature in anthropoid primates reflect locomotor behavior and successfully distinguished among taxonomic and locomotor groups. In the future, this method could be used to assess locomotor behavior in fossil primates. Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Aerodynamic Parameters of a UK City Derived from Morphological Data

    NASA Astrophysics Data System (ADS)

    Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.

    2013-03-01

    Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.

  14. Geometric morphometric evaluation of cervical vertebrae shape and its relationship to skeletal maturation.

    PubMed

    Chatzigianni, Athina; Halazonetis, Demetrios J

    2009-10-01

    Cervical vertebrae shape has been proposed as a diagnostic factor for assessing skeletal maturation in orthodontic patients. However, evaluation of vertebral shape is mainly based on qualitative criteria. Comprehensive quantitative measurements of shape and assessments of its predictive power have not been reported. Our aims were to measure vertebral shape by using the tools of geometric morphometrics and to evaluate the correlation and predictive power of vertebral shape on skeletal maturation. Pretreatment lateral cephalograms and corresponding hand-wrist radiographs of 98 patients (40 boys, 58 girls; ages, 8.1-17.7 years) were used. Skeletal age was estimated from the hand-wrist radiographs. The first 4 vertebrae were traced, and 187 landmarks (34 fixed and 153 sliding semilandmarks) were used. Sliding semilandmarks were adjusted to minimize bending energy against the average of the sample. Principal components analysis in shape and form spaces was used for evaluating shape patterns. Shape measures, alone and combined with centroid size and age, were assessed as predictors of skeletal maturation. Shape alone could not predict skeletal maturation better than chronologic age. The best prediction was achieved with the combination of form space principal components and age, giving 90% prediction intervals of approximately 200 maturation units in the girls and 300 units in the boys. Similar predictive power could be obtained by using centroid size and age. Vertebrae C2, C3, and C4 gave similar results when examined individually or combined. C1 showed lower correlations, signifying lower integration with hand-wrist maturation. Vertebral shape is strongly correlated to skeletal age but does not offer better predictive value than chronologic age.

  15. Shape change in the atlas with congenital midline non-union of its posterior arch: a morphometric geometric study.

    PubMed

    Ríos, Luis; Palancar, Carlos; Pastor, Francisco; Llidó, Susana; Sanchís-Gimeno, Juan Alberto; Bastir, Markus

    2017-10-01

    The congenital midline non-union of the posterior arch of the atlas is a developmental variant present at a frequency ranging from 0.7% to 3.9%. Most of the reported cases correspond to incidental findings during routine medical examination. In cases of posterior non-union, hypertrophy of the anterior arch and cortical bone thickening of the posterior arches have been observed and interpreted as adaptive responses of the atlas to increased mechanical stress. We sought to determine if the congenital non-union of the posterior arch results in a change in the shape of the atlas. This study is an analysis of the first cervical vertebrae from osteological collections through morphometric geometric techniques. A total of 21 vertebrae were scanned with a high-resolution three-dimensional scanner (Artec Space Spider, Artec Group, Luxembourg). To capture vertebral shape, 19 landmarks and 100 semilandmarks were placed on the vertebrae. Procrustes superimposition was applied to obtain size and shape data (MorphoJ 1.02; Klingenberg, 2011), which were analyzed through principal component analysis (PCA) and mean shape comparisons. The PCA resulted in two components explaining 22.32% and 18.8% of the total shape variance. The graphic plotting of both components indicates a clear shape difference between the control atlas and the atlas with posterior non-union. This observation was supported by statistically significant differences in mean shape comparisons between both types of vertebra (p<.0001). Changes in shape were observed in the superior and inferior articular facets, the transverse processes, and the neural canal between the control and non-union vertebrae. Non-union of the posterior arch of the atlas is associated with significant changes in the shape of the vertebra. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Eco-geographic adaptations in the human ribcage throughout a 3D geometric morphometric approach.

    PubMed

    García-Martínez, Daniel; Nalla, Shahed; Ferreira, Maria Teresa; Guichón, Ricardo A; D'Angelo Del Campo, Manuel D; Bastir, Markus

    2018-06-01

    According to eco-geographic rules, humans from high latitude areas present larger and wider trunks than their low-latitude areas counterparts. This issue has been traditionally addressed on the pelvis but information on the thorax is largely lacking. We test whether ribcages are larger in individuals inhabiting high latitudes than in those from low latitudes and explored the correlation of rib size with latitude. We also test whether a common morphological pattern is exhibited in the thorax of different cold-adapted populations, contributing to their hypothetical widening of the trunk. We used 3D geometric morphometrics to quantify rib morphology of three hypothetically cold-adapted populations, viz. Greenland (11 individuals), Alaskan Inuit (8 individuals) and people from Tierra del Fuego (8 individuals), in a comparative framework with European (Spain, Portugal and Austria; 24 individuals) and African populations (South African and sub-Saharan African; 20 individuals). Populations inhabiting high latitudes present longer ribs than individuals inhabiting areas closer to the equator, but a correlation (p < 0.05) between costal size and latitude is only found in ribs 7-11. Regarding shape, the only cold adapted population that was different from the non-cold-adapted populations were the Greenland Inuit, who presented ribs with less curvature and torsion. Size results from the lower ribcage are consistent with the hypothesis of larger trunks in cold-adapted populations. The fact that only Greenland Inuit present a differential morphological pattern, linked to a widening of their ribcage, could be caused by differences in latitude. However, other factors such as genetic drift or specific cultural adaptations cannot be excluded and should be tested in future studies. © 2018 Wiley Periodicals, Inc.

  17. Comparing Multiple Criteria for Species Identification in Two Recently Diverged Seabirds

    PubMed Central

    Militão, Teresa; Gómez-Díaz, Elena; Kaliontzopoulou, Antigoni; González-Solís, Jacob

    2014-01-01

    Correct species identification is a crucial issue in systematics with key implications for prioritising conservation effort. However, it can be particularly challenging in recently diverged species due to their strong similarity and relatedness. In such cases, species identification requires multiple and integrative approaches. In this study we used multiple criteria, namely plumage colouration, biometric measurements, geometric morphometrics, stable isotopes analysis (SIA) and genetics (mtDNA), to identify the species of 107 bycatch birds from two closely related seabird species, the Balearic (Puffinus mauretanicus) and Yelkouan (P. yelkouan) shearwaters. Biometric measurements, stable isotopes and genetic data produced two stable clusters of bycatch birds matching the two study species, as indicated by reference birds of known origin. Geometric morphometrics was excluded as a species identification criterion since the two clusters were not stable. The combination of plumage colouration, linear biometrics, stable isotope and genetic criteria was crucial to infer the species of 103 of the bycatch specimens. In the present study, particularly SIA emerged as a powerful criterion for species identification, but temporal stability of the isotopic values is critical for this purpose. Indeed, we found some variability in stable isotope values over the years within each species, but species differences explained most of the variance in the isotopic data. Yet this result pinpoints the importance of examining sources of variability in the isotopic data in a case-by-case basis prior to the cross-application of the SIA approach to other species. Our findings illustrate how the integration of several methodological approaches can help to correctly identify individuals from recently diverged species, as each criterion measures different biological phenomena and species divergence is not expressed simultaneously in all biological traits. PMID:25541978

  18. Elastic fibers in human skin: quantitation of elastic fibers by computerized digital image analyses and determination of elastin by radioimmunoassay of desmosine.

    PubMed

    Uitto, J; Paul, J L; Brockley, K; Pearce, R H; Clark, J G

    1983-10-01

    The elastic fibers in the skin and other organs can be affected in several disease processes. In this study, we have developed morphometric techniques that allow accurate quantitation of the elastic fibers in punch biopsy specimens of skin. In this procedure, the elastic fibers, visualized by elastin-specific stains, are examined through a camera unit attached to the microscope. The black and white images sensing various gray levels are then converted to binary images after selecting a threshold with an analog threshold selection device. The binary images are digitized and the data analyzed by a computer program designed to express the properties of the image, thus allowing determination of the volume fraction occupied by the elastic fibers. As an independent measure of the elastic fibers, alternate tissue sections were used for assay of desmosine, an elastin-specific cross-link compound, by a radioimmunoassay. The clinical applicability of the computerized morphometric analyses was tested by examining the elastic fibers in the skin of five patients with pseudoxanthoma elasticum or Buschke-Ollendorff syndrome. In the skin of 10 healthy control subjects, the elastic fibers occupied 2.1 +/- 1.1% (mean +/- SD) of the dermis. The volume fractions occupied by the elastic fibers in the lesions of pseudoxanthoma elasticum or Buschke-Ollendorff syndrome were increased as much as 6-fold, whereas the values in the unaffected areas of the skin in the same patients were within normal limits. A significant correlation between the volume fraction of elastic fibers, determined by computerized morphometric analyses, and the concentration of desmosine, quantitated by radioimmunoassay, was noted in the total material. These results demonstrate that computerized morphometric techniques are helpful in characterizing disease processes affecting skin. This methodology should also be applicable to other tissues that contain elastic fibers and that are affected in various heritable and acquired diseases.

  19. Morphometric convergence between Proterozoic and post-vegetation rivers

    PubMed Central

    Ielpi, Alessandro; Rainbird, Robert H.; Ventra, Dario; Ghinassi, Massimiliano

    2017-01-01

    Proterozoic rivers flowed through barren landscapes, and lacked interactions with macroscopic organisms. It is widely held that, in the absence of vegetation, fluvial systems featured barely entrenched channels that promptly widened over floodplains during floods. This hypothesis has never been tested because of an enduring lack of Precambrian fluvial-channel morphometric data. Here we show, through remote sensing and outcrop sedimentology, that deep rivers were developed in the Proterozoic, and that morphometric parameters for large fluvial channels might have remained within a narrow range over almost 2 billion years. Our data set comprises fluvial-channel forms deposited a few tens to thousands of kilometres from their headwaters, likely the record of basin- to craton-scale systems. Large Proterozoic channel forms present width:thickness ranges matching those of Phanerozoic counterparts, suggesting closer parallels between their fluvial dynamics. This outcome may better inform analyses of extraterrestrial planetary surfaces and related comparisons with pre-vegetation Earth landscapes. PMID:28548109

  20. Morphometric convergence between Proterozoic and post-vegetation rivers.

    PubMed

    Ielpi, Alessandro; Rainbird, Robert H; Ventra, Dario; Ghinassi, Massimiliano

    2017-05-26

    Proterozoic rivers flowed through barren landscapes, and lacked interactions with macroscopic organisms. It is widely held that, in the absence of vegetation, fluvial systems featured barely entrenched channels that promptly widened over floodplains during floods. This hypothesis has never been tested because of an enduring lack of Precambrian fluvial-channel morphometric data. Here we show, through remote sensing and outcrop sedimentology, that deep rivers were developed in the Proterozoic, and that morphometric parameters for large fluvial channels might have remained within a narrow range over almost 2 billion years. Our data set comprises fluvial-channel forms deposited a few tens to thousands of kilometres from their headwaters, likely the record of basin- to craton-scale systems. Large Proterozoic channel forms present width:thickness ranges matching those of Phanerozoic counterparts, suggesting closer parallels between their fluvial dynamics. This outcome may better inform analyses of extraterrestrial planetary surfaces and related comparisons with pre-vegetation Earth landscapes.

  1. Disentangling diatom species complexes: does morphometry suffice?

    PubMed Central

    Borrego-Ramos, María; Olenici, Adriana

    2017-01-01

    Accurate taxonomic resolution in light microscopy analyses of microalgae is essential to achieve high quality, comparable results in both floristic analyses and biomonitoring studies. A number of closely related diatom taxa have been detected to date co-occurring within benthic diatom assemblages, sharing many morphological, morphometrical and ecological characteristics. In this contribution, we analysed the hypothesis that, where a large sample size (number of individuals) is available, common morphometrical parameters (valve length, width and stria density) are sufficient to achieve a correct identification to the species level. We focused on some common diatom taxa belonging to the genus Gomphonema. More than 400 valves and frustules were photographed in valve view and measured using Fiji software. Several statistical tools (mixture and discriminant analysis, k-means clustering, classification trees, etc.) were explored to test whether mere morphometry, independently of other valve features, leads to correct identifications, when compared to identifications made by experts. In view of the results obtained, morphometry-based determination in diatom taxonomy is discouraged. PMID:29250472

  2. JMorph: Software for performing rapid morphometric measurements on digital images of fossil assemblages

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter G.; Grey, Melissa

    2017-08-01

    Quantitative morphometric analyses of form are widely used in palaeontology, especially for taxonomic and evolutionary research. These analyses can involve several measurements performed on hundreds or even thousands of samples. Performing measurements of size and shape on large assemblages of macro- or microfossil samples is generally infeasible or impossible with traditional instruments such as vernier calipers. Instead, digital image processing software is required to perform measurements via suitable digital images of samples. Many software packages exist for morphometric analyses but there is not much available for the integral stage of data collection, particularly for the measurement of the outlines of samples. Some software exists to automatically detect the outline of a fossil sample from a digital image. However, automatic outline detection methods may perform inadequately when samples have incomplete outlines or images contain poor contrast between the sample and staging background. Hence, a manual digitization approach may be the only option. We are not aware of any software packages that are designed specifically for efficient digital measurement of fossil assemblages with numerous samples, especially for the purposes of manual outline analysis. Throughout several previous studies, we have developed a new software tool, JMorph, that is custom-built for that task. JMorph provides the means to perform many different types of measurements, which we describe in this manuscript. We focus on JMorph's ability to rapidly and accurately digitize the outlines of fossils. JMorph is freely available from the authors.

  3. Morphometric discrimination of two sympatric sibling species in the Palaearctic region, Culicoides obsoletus Meigen and C. scoticus Downes & Kettle (Diptera: Ceratopogonidae), vectors of bluetongue and Schmallenberg viruses.

    PubMed

    Kluiters, G; Pagès, N; Carpenter, S; Gardès, L; Guis, H; Baylis, M; Garros, C

    2016-05-04

    Some Palaearctic biting midge species (subgenus Avaritia) have been implicated as vectors of bluetongue virus in northern Europe. Separation of two species (C. obsoletus and C. scoticus) is considered difficult morphologically and, often, these female specimens are grouped in entomological studies. However, species-specific identification is desirable to understand their life history characteristics, assess their roles in disease transmission or measure their abundance during arboviral outbreaks. This study aims to investigate whether morphometric identification techniques can be applied to female C. obsoletus and C. scoticus individuals trapped at different geographical regions and time periods during the vector season. C. obsoletus and C. scoticus were collected using light-suction traps from the UK, France and Spain, with two geographical locations sampled per country. A total of 759 C. obsoletus/C. scoticus individuals were identified using a molecular assay based on the cytochrome c oxidase subunit I gene. Fifteen morphometric measurements were taken from the head, wings and abdomen of slide-mounted specimens, and ratios calculated between these measurements. Multivariate analyses explored whether a combination of morphometric variables could lead to accurate species identification. Finally, Culicoides spp. collected in France at the start, middle and end of the adult vector season were compared, to determine whether seasonal variation exists in any of the morphometric measurements. The principal component analyses revealed that abdominal characteristics: length and width of the smaller and larger spermathecae, and the length of the chitinous plates and width between them, are the most reliable morphometric characteristics to differentiate between the species. Seasonal variation in the size of each species was observed for head and wing measurements, but not abdominal measurements. Geographical variation in the size of Culicoides spp. was also observed and is likely to be related to temperature at the trapping sites, with smaller individuals trapped at more southern latitudes. Our results suggest that female C. obsoletus and C. scoticus individuals can be separated under a stereomicroscope using abdominal measurements. Although we show the length and width of the spermathecae can be used to differentiate between the species, this can be time-consuming, so we recommend undertaking this using standardized subsampling of catches.

  4. Outline-based morphometrics, an overlooked method in arthropod studies?

    PubMed

    Dujardin, Jean-Pierre; Kaba, D; Solano, P; Dupraz, M; McCoy, K D; Jaramillo-O, N

    2014-12-01

    Modern methods allow a geometric representation of forms, separating size and shape. In entomology, as well as in many other fields involving arthropod studies, shape variation has proved useful for species identification and population characterization. In medical entomology, it has been applied to very specific questions such as population structure, reinfestation of insecticide-treated areas and cryptic species recognition. For shape comparisons, great importance is given to the quality of landmarks in terms of comparability. Two conceptually and statistically separate approaches are: (i) landmark-based morphometrics, based on the relative position of a few anatomical "true" or "traditional" landmarks, and (ii) outline-based morphometrics, which captures the contour of forms through a sequence of close "pseudo-landmarks". Most of the studies on insects of medical, veterinary or economic importance make use of the landmark approach. The present survey makes a case for the outline method, here based on elliptic Fourier analysis. The collection of pseudo-landmarks may require the manual digitization of many points and, for this reason, might appear less attractive. It, however, has the ability to compare homologous organs or structures having no landmarks at all. This strength offers the possibility to study a wider range of anatomical structures and thus, a larger range of arthropods. We present a few examples highlighting its interest for separating close or cryptic species, or characterizing conspecific geographic populations, in a series of different vector organisms. In this simple application, i.e. the recognition of close or cryptic forms, the outline approach provided similar scores as those obtained by the landmark-based approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi

    NASA Astrophysics Data System (ADS)

    Edmunds, Richard C.; Gill, J. A.; Baldwin, David H.; Linbo, Tiffany L.; French, Barbara L.; Brown, Tanya L.; Esbaugh, Andrew J.; Mager, Edward M.; Stieglitz, John; Hoenig, Ron; Benetti, Daniel; Grosell, Martin; Scholz, Nathaniel L.; Incardona, John P.

    2015-12-01

    Crude oils from distinct geological sources worldwide are toxic to developing fish hearts. When oil spills occur in fish spawning habitats, natural resource injury assessments often rely on conventional morphometric analyses of heart form and function. The extent to which visible indicators correspond to molecular markers for cardiovascular stress is unknown for pelagic predators from the Gulf of Mexico. Here we exposed mahi (Coryphaena hippurus) embryos to field-collected crude oil samples from the 2010 Deepwater Horizon disaster. We compared visible heart defects (edema, abnormal looping, reduced contractility) to changes in expression of cardiac-specific genes that are diagnostic of heart failure in humans or associated with loss-of-function zebrafish cardiac mutants. Mahi exposed to crude oil during embryogenesis displayed typical symptoms of cardiogenic syndrome as larvae. Contractility, looping, and circulatory defects were evident, but larval mahi did not exhibit downstream craniofacial and body axis abnormalities. A gradation of oil exposures yielded concentration-responsive changes in morphometric and molecular responses, with relative sensitivity being influenced by age. Our findings suggest that 1) morphometric analyses of cardiac function are more sensitive to proximal effects of crude oil-derived chemicals on the developing heart, and 2) molecular indicators reveal a longer-term adverse shift in cardiogenesis trajectory.

  6. Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi

    PubMed Central

    Edmunds, Richard C.; Gill, J. A.; Baldwin, David H.; Linbo, Tiffany L.; French, Barbara L.; Brown, Tanya L.; Esbaugh, Andrew J.; Mager, Edward M.; Stieglitz, John; Hoenig, Ron; Benetti, Daniel; Grosell, Martin; Scholz, Nathaniel L.; Incardona, John P.

    2015-01-01

    Crude oils from distinct geological sources worldwide are toxic to developing fish hearts. When oil spills occur in fish spawning habitats, natural resource injury assessments often rely on conventional morphometric analyses of heart form and function. The extent to which visible indicators correspond to molecular markers for cardiovascular stress is unknown for pelagic predators from the Gulf of Mexico. Here we exposed mahi (Coryphaena hippurus) embryos to field-collected crude oil samples from the 2010 Deepwater Horizon disaster. We compared visible heart defects (edema, abnormal looping, reduced contractility) to changes in expression of cardiac-specific genes that are diagnostic of heart failure in humans or associated with loss-of-function zebrafish cardiac mutants. Mahi exposed to crude oil during embryogenesis displayed typical symptoms of cardiogenic syndrome as larvae. Contractility, looping, and circulatory defects were evident, but larval mahi did not exhibit downstream craniofacial and body axis abnormalities. A gradation of oil exposures yielded concentration-responsive changes in morphometric and molecular responses, with relative sensitivity being influenced by age. Our findings suggest that 1) morphometric analyses of cardiac function are more sensitive to proximal effects of crude oil-derived chemicals on the developing heart, and 2) molecular indicators reveal a longer-term adverse shift in cardiogenesis trajectory. PMID:26658479

  7. Phenotypic Divergence among West European Populations of Reed Bunting Emberiza schoeniclus: The Effects of Migratory and Foraging Behaviours

    PubMed Central

    Neto, Júlio M.; Gordinho, Luís; Belda, Eduardo J.; Marín, Marcial; Monrós, Juan S.; Fearon, Peter; Crates, Ross

    2013-01-01

    Divergent selection and local adaptation are responsible for many phenotypic differences between populations, potentially leading to speciation through the evolution of reproductive barriers. Here we evaluated the morphometric divergence among west European populations of Reed Bunting in order to determine the extent of local adaptation relative to two important selection pressures often associated with speciation in birds: migration and diet. We show that, as expected by theory, migratory E. s. schoeniclus had longer and more pointed wings and a slightly smaller body mass than the resident subspecies, with the exception of E. s. lusitanica, which despite having rounder wings was the smallest of all subspecies. Tail length, however, did not vary according to the expectation (shorter tails in migrants) probably because it is strongly correlated with wing length and might take longer to evolve. E. s. witherbyi, which feed on insects hiding inside reed stems during the winter, had a very thick, stubby bill. In contrast, northern populations, which feed on seeds, had thinner bills. Despite being much smaller, the southern E. s. lusitanica had a significantly thicker, longer bill than migratory E. s. schoeniclus, whereas birds from the UK population had significantly shorter, thinner bills. Geometric morphometric analyses revealed that the southern subspecies have a more convex culmen than E. s. schoeniclus, and E. s. lusitanica differs from the nominate subspecies in bill shape to a greater extent than in linear bill measurements, especially in males. Birds with a more convex culmen are thought to exert a greater strength at the bill tip, which is in agreement with their feeding technique. Overall, the three subspecies occurring in Western Europe differ in a variety of traits following the patterns predicted from their migratory and foraging behaviours, strongly suggesting that these birds have became locally adapted through natural selection. PMID:23667594

  8. An Ecometric Study of Recent Microfossils using High-throughput Imaging

    NASA Astrophysics Data System (ADS)

    Elder, L. E.; Hull, P. M.; Hsiang, A. Y.; Kahanamoku, S.

    2016-02-01

    The era of Big Data has ushered in the potential to collect population level information in a manageable time frame. Taxon-free morphological trait analysis, referred to as ecometrics, can be used to examine and compare ecological dynamics between communities with entirely different species compositions. Until recently population level studies of morphology were difficult because of the time intensive task of collecting measurements. To overcome this, we implemented advances in imaging technology and created software to automate measurements. This high-throughput set of methods collects assemblage-scale data, with methods tuned to foraminiferal samples (e.g., light objects on a dark background). Methods include serial focused dark-field microscopy, custom software (Automorph) to batch process images, extract 2D and 3D shape parameters and frames, and implement landmark-free geometric morphometric analyses. Informatics pipelines were created to store, catalog and share images through the Yale Peabody Museum(YPM; peabody.yale.edu). We openly share software and images to enhance future data discovery. In less than a year we have generated over 25TB of high resolution semi 3D images for this initial study. Here, we take the first step towards developing ecometric approaches for open ocean microfossil communities with a calibration study of community shape in recent sediments. We will present an overview of the `shape' of modern planktonic foraminiferal communities from 25 Atlantic core top samples (23 sites in the North and Equatorial Atlantic; 2 sites in the South Atlantic). In total, more than 100,000 microfossils and fragments were imaged from these sites' sediment cores, an unprecedented morphometric sample set. Correlates of community shape, including diversity, temperature, and latitude, will be discussed. These methods have also been applied to images of limpets and fish teeth to date, and have the potential to be used on modern taxa to extract meaningful information on community responses to changing climate.

  9. Surfing among species, populations and morphotypes: Inferring boundaries between two species of new world silversides (Atherinopsidae).

    PubMed

    González-Castro, Mariano; Rosso, Juan José; Mabragaña, Ezequiel; Díaz de Astarloa, Juan Martín

    2016-01-01

    Atherinopsidae are widespread freshwater and shallow marine fish with singular economic importance. Morphological, genetical and life cycles differences between marine and estuarine populations were already reported in this family, suggesting ongoing speciation. Also, coexistence and interbreeding between closely related species were documented. The aim of this study was to infer boundaries among: (A) Odontesthes bonariensis and O. argentinensis at species level, and intermediate morphs; (B) the population of O. argentinensis of Mar Chiquita Lagoon and its marine conspecifics. To achieve this, we integrated, meristic, Geometrics Morphometrics and DNA Barcode approaches. Four groups were discriminated and subsequently characterized according to their morphological traits, shape and meristic characters. No shared haplotypes between O. bonariensis and O. argentinensis were found. Significative-meristic and body shape differences between the Mar Chiquita and marine individuals of O. argentinensis were found, suggesting they behave as well differentiated populations, or even incipient ecological species. The fact that the Odontesthes morphotypes shared haplotypes with both, O. argentinensis and O. bonariensis, but also possess meristic and morphometric distinctive traits open new questions related to the origin of this morphogroup. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Morphometric assessment of pterosaur jaw disparity

    NASA Astrophysics Data System (ADS)

    Navarro, Charlie A.; Martin-Silverstone, Elizabeth; Stubbs, Thomas L.

    2018-04-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple `rod-shaped' jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape.

  11. Morphometric assessment of pterosaur jaw disparity.

    PubMed

    Navarro, Charlie A; Martin-Silverstone, Elizabeth; Stubbs, Thomas L

    2018-04-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple 'rod-shaped' jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape.

  12. Shape similarities and differences in the skulls of scavenging raptors.

    PubMed

    Guangdi, S I; Dong, Yiyi; Ma, Yujun; Zhang, Zihui

    2015-04-01

    Feeding adaptations are a conspicuous feature of avian evolution. Bill and cranial shape as well as the jaw muscles are closely related to diet choice and feeding behaviors. Diurnal raptors of Falconiformes exhibit a wide range of foraging behaviors and prey preferences, and are assigned to seven dietary groups in this study. Skulls of 156 species are compared from the dorsal, lateral and ventral views, by using geometric morphometric techniques with those landmarks capturing as much information as possible on the overall shape of cranium, bill, orbits, nostrils and attachment area for different jaw muscles. The morphometric data showed that the skull shape of scavengers differ significantly from other raptors, primarily because of different feeding adaptations. As a result of convergent evolution, different scavengers share generalized common morphology, possessing relatively slender and lower skulls, longer bills, smaller and more sideward orbits, and more caudally positioned quadrates. Significant phylogenetic signals suggested that phylogeny also played important role in shape variation within scavengers. New World vultures can be distinguished by their large nostrils, narrow crania and small orbits; Caracaras typically show large palatines, crania and orbits, as well as short, deep and sharp bill.

  13. Morphometric Variation of the Aedes albifasciatus (Diptera: Culicidae) Wings in Three Populations From Different Ecoregions of Argentina.

    PubMed

    Garzón, Maximiliano J; Schweigmann, Nicolás

    2018-06-23

    Shape variability among individuals is important to understand some ecological relationships, since it provides the nexus between the genotype and the environment. Geometric morphometrics based on generalized procrustes analysis was applied on 17 landmarks of the wings of Aedes albifasciatus (Macquart 1838) (Diptera: Culicidae) females collected from three ecoregions of Argentina (Delta and islands of the Paraná River, Pampa, and Patagonian steppe). This methodology was used to discriminate the shapes of individuals belonging to different regions. The population of the Patagonian steppe, which was the most geographically distant, showed the most dissimilar shape. Different local variations in wing shape could have been selected according to the environmental characteristics and maintained by geographic isolation. The individuals of the two ecoregions closest to each other (Delta and islands of the Paraná River and Pampa) showed differences in shape that can be explained by a lower gene flow due to the effect of geographic isolation (by the Paraná River) and the limited dispersive capacity of Ae. albifasciatus. The results allow concluding that both environmental diversity and geographic barriers could contribute to local variations in wing shape.

  14. Morphometric assessment of pterosaur jaw disparity

    PubMed Central

    Navarro, Charlie A.; Martin-Silverstone, Elizabeth

    2018-01-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple ‘rod-shaped’ jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape. PMID:29765665

  15. Differentiation of subspecies and sexes of Beringian Dunlins using morphometric measures

    USGS Publications Warehouse

    Gates, H. River; Yezerinac, Stephen; Powell, Abby N.; Tomkovich, Pavel S.; Valchuk, Olga P.; Lanctot, Richard B.

    2013-01-01

    Five subspecies of Dunlins (Calidris alpina) that breed in Beringia are potentially sympatric during the non-breeding season. Studying their ecology during this period requires techniques to distinguish individuals by subspecies. Our objectives were to determine (1) if five morphometric measures (body mass, culmen, head, tarsus, and wing chord) differed between sexes and among subspecies (C. a. actites, arcticola, kistchinski, pacifica, and sakhalina), and (2) if these differences were sufficient to allow for correct classification of individuals using equations derived from discriminant function analyses. We conducted analyses using morphometric data from 10 Dunlin populations breeding in northern Russia and Alaska, USA. Univariate tests revealed significant differences between sexes in most morphometric traits of all subspecies, and discriminant function equations predicted the sex of individuals with an accuracy of 83–100% for each subspecies. We provide equations to determine sex and subspecies of individuals in mixed subspecies groups, including the (1) Western Alaska group of arcticola and pacifica (known to stage together in western Alaska) and (2) East Asia group of arcticola, actites, kistchinski, and sakhalina (known to winter together in East Asia). Equations that predict the sex of individuals in mixed groups had classification accuracies between 75% and 87%, yielding reliable classification equations. We also provide equations that predict the subspecies of individuals with an accuracy of 22–96% for different mixed subspecies groups. When the sex of individuals can be predetermined, the accuracy of these equations is increased substantially. Investigators are cautioned to consider limitations due to age and feather wear when using these equations during the non-breeding season. These equations will allow determination of sexual and subspecies segregation in non-breeding areas, allowing implementation of taxonomic-specific conservation actions.

  16. Quantitative pathology in virtual microscopy: history, applications, perspectives.

    PubMed

    Kayser, Gian; Kayser, Klaus

    2013-07-01

    With the emerging success of commercially available personal computers and the rapid progress in the development of information technologies, morphometric analyses of static histological images have been introduced to improve our understanding of the biology of diseases such as cancer. First applications have been quantifications of immunohistochemical expression patterns. In addition to object counting and feature extraction, laws of thermodynamics have been applied in morphometric calculations termed syntactic structure analysis. Here, one has to consider that the information of an image can be calculated for separate hierarchical layers such as single pixels, cluster of pixels, segmented small objects, clusters of small objects, objects of higher order composed of several small objects. Using syntactic structure analysis in histological images, functional states can be extracted and efficiency of labor in tissues can be quantified. Image standardization procedures, such as shading correction and color normalization, can overcome artifacts blurring clear thresholds. Morphometric techniques are not only useful to learn more about biological features of growth patterns, they can also be helpful in routine diagnostic pathology. In such cases, entropy calculations are applied in analogy to theoretical considerations concerning information content. Thus, regions with high information content can automatically be highlighted. Analysis of the "regions of high diagnostic value" can deliver in the context of clinical information, site of involvement and patient data (e.g. age, sex), support in histopathological differential diagnoses. It can be expected that quantitative virtual microscopy will open new possibilities for automated histological support. Automated integrated quantification of histological slides also serves for quality assurance. The development and theoretical background of morphometric analyses in histopathology are reviewed, as well as their application and potential future implementation in virtual microscopy. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Global biogeography and evolution of Cuvierina pteropods.

    PubMed

    Burridge, Alice K; Goetze, Erica; Raes, Niels; Huisman, Jef; Peijnenburg, Katja T C A

    2015-03-12

    Shelled pteropods are planktonic gastropods that are potentially good indicators of the effects of ocean acidification. They also have high potential for the study of zooplankton evolution because they are metazoan plankton with a good fossil record. We investigated phenotypic and genetic variation in pteropods belonging to the genus Cuvierina in relation to their biogeographic distribution across the world's oceans. We aimed to assess species boundaries and to reconstruct their evolutionary history. We distinguished six morphotypes based on geometric morphometric analyses of shells from 926 museum and 113 fresh specimens. These morphotypes have distinct geographic distributions across the Atlantic, Pacific and Indian oceans, and belong to three major genetic clades based on COI and 28S DNA sequence data. Using a fossil-calibrated phylogeny, we estimated that these clades separated in the Late Oligocene and Early to Middle Miocene. We found evidence for ecological differentiation among all morphotypes based on ecological niche modelling with sea surface temperature, salinity and phytoplankton biomass as primary determinants. Across all analyses, we found highly congruent patterns of differentiation suggesting species level divergences between morphotypes. However, we also found distinct morphotypes (e.g. in the Atlantic Ocean) that were ecologically, but not genetically differentiated. Given the distinct ecological and phenotypic specializations found among both described and undescribed Cuvierina taxa, they may not respond equally to future ocean changes and may not be equally sensitive to ocean acidification. Our findings support the view that ecological differentiation may be an important driving force in the speciation of zooplankton.

  18. Study of morphological variation of northern Neotropical Ariidae reveals conservatism despite macrohabitat transitions.

    PubMed

    Stange, Madlen; Aguirre-Fernández, Gabriel; Salzburger, Walter; Sánchez-Villagra, Marcelo R

    2018-03-27

    Morphological convergence triggered by trophic adaptations is a common pattern in adaptive radiations. The study of shape variation in an evolutionary context is usually restricted to well-studied fish models. We take advantage of the recently revised systematics of New World Ariidae and investigate skull shape evolution in six genera of northern Neotropical Ariidae. They constitute a lineage that diversified in the marine habitat but repeatedly adapted to freshwater habitats. 3D geometric morphometrics was applied for the first time in catfish skulls and phylogenetically informed statistical analyses were performed to test for the impact of habitat on skull diversification after habitat transition in this lineage. We found that skull shape is conserved throughout phylogeny. A morphospace analysis revealed that freshwater and marine species occupy extreme ends of the first principal component axis and that they exhibit similar Procrustes variances. Yet freshwater species occupy the smallest shape space compared to marine and brackish species (based on partial disparity), and marine and freshwater species have the largest Procrustes distance to each other. We observed a single case of shape convergence as derived from 'C-metrics', which cannot be explained by the occupation of the same habitat. Although Ariidae occupy such a broad spectrum of different habitats from sea to freshwater, the morphospace analysis and analyses of shape and co-variation with habitat in a phylogenetic context shows that conservatism dominates skull shape evolution among ariid genera.

  19. Revision of the Malagasy Camponotus edmondi species group (Hymenoptera, Formicidae, Formicinae): integrating qualitative morphology and multivariate morphometric analysis.

    PubMed

    Rakotonirina, Jean Claude; Csősz, Sándor; Fisher, Brian L

    2016-01-01

    The Malagasy Camponotus edmondi species group is revised based on both qualitative morphological traits and multivariate analysis of continuous morphometric data. To minimize the effect of the scaling properties of diverse traits due to worker caste polymorphism, and to achieve the desired near-linearity of data, morphometric analyses were done only on minor workers. The majority of traits exhibit broken scaling on head size, dividing Camponotus workers into two discrete subcastes, minors and majors. This broken scaling prevents the application of algorithms that uses linear combination of data to the entire dataset, hence only minor workers were analyzed statistically. The elimination of major workers resulted in linearity and the data meet required assumptions. However, morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. Prior species hypotheses and the goodness of clusters were tested on raw data by confirmatory linear discriminant analysis. Due to the small sample size available for some species, a factor known to reduce statistical reliability, hypotheses generated by exploratory analyses were tested with extreme care and species delimitations were inferred via the combined evidence of both qualitative (morphology and biology) and quantitative data. Altogether, fifteen species are recognized, of which 11 are new to science: Camponotus alamaina sp. n. , Camponotus androy sp. n. , Camponotus bevohitra sp. n. , Camponotus galoko sp. n. , Camponotus matsilo sp. n. , Camponotus mifaka sp. n. , Camponotus orombe sp. n. , Camponotus tafo sp. n. , Camponotus tratra sp. n. , Camponotus varatra sp. n. , and Camponotus zavo sp. n. Four species are redescribed: Camponotus echinoploides Forel, Camponotus edmondi André, Camponotus ethicus Forel, and Camponotus robustus Roger. Camponotus edmondi ernesti Forel, syn. n. is synonymized under Camponotus edmondi . This revision also includes an identification key to species for both minor and major castes, information on geographic distribution and biology, taxonomic discussions, and descriptions of intraspecific variation. Traditional taxonomy and multivariate morphometric analysis are independent sources of information which, in combination, allow more precise species delimitation. Moreover, quantitative characters included in identification keys improve accuracy of determination in difficult cases.

  20. Revision of the Malagasy Camponotus edmondi species group (Hymenoptera, Formicidae, Formicinae): integrating qualitative morphology and multivariate morphometric analysis

    PubMed Central

    Rakotonirina, Jean Claude; Csősz, Sándor; Fisher, Brian L.

    2016-01-01

    Abstract The Malagasy Camponotus edmondi species group is revised based on both qualitative morphological traits and multivariate analysis of continuous morphometric data. To minimize the effect of the scaling properties of diverse traits due to worker caste polymorphism, and to achieve the desired near-linearity of data, morphometric analyses were done only on minor workers. The majority of traits exhibit broken scaling on head size, dividing Camponotus workers into two discrete subcastes, minors and majors. This broken scaling prevents the application of algorithms that uses linear combination of data to the entire dataset, hence only minor workers were analyzed statistically. The elimination of major workers resulted in linearity and the data meet required assumptions. However, morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. Prior species hypotheses and the goodness of clusters were tested on raw data by confirmatory linear discriminant analysis. Due to the small sample size available for some species, a factor known to reduce statistical reliability, hypotheses generated by exploratory analyses were tested with extreme care and species delimitations were inferred via the combined evidence of both qualitative (morphology and biology) and quantitative data. Altogether, fifteen species are recognized, of which 11 are new to science: Camponotus alamaina sp. n., Camponotus androy sp. n., Camponotus bevohitra sp. n., Camponotus galoko sp. n., Camponotus matsilo sp. n., Camponotus mifaka sp. n., Camponotus orombe sp. n., Camponotus tafo sp. n., Camponotus tratra sp. n., Camponotus varatra sp. n., and Camponotus zavo sp. n. Four species are redescribed: Camponotus echinoploides Forel, Camponotus edmondi André, Camponotus ethicus Forel, and Camponotus robustus Roger. Camponotus edmondi ernesti Forel, syn. n. is synonymized under Camponotus edmondi. This revision also includes an identification key to species for both minor and major castes, information on geographic distribution and biology, taxonomic discussions, and descriptions of intraspecific variation. Traditional taxonomy and multivariate morphometric analysis are independent sources of information which, in combination, allow more precise species delimitation. Moreover, quantitative characters included in identification keys improve accuracy of determination in difficult cases. PMID:28050160

  1. No association between hair cortisol or cortisone and brain morphology in children.

    PubMed

    Chen, Ruoqing; Muetzel, Ryan L; El Marroun, Hanan; Noppe, Gerard; van Rossum, Elisabeth F C; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Fang, Fang; Tiemeier, Henning

    2016-12-01

    Little is known about the relationship between the long-term hypothalamic-pituitary-adrenal (HPA) axis functioning and brain structure in children. Glucocorticoid in hair has emerged as an important biomarker of HPA activity. In this study, we investigated the associations of hair cortisol and cortisone concentrations with brain morphology in young children. We included 219 children aged 6-10 years from the Generation R Study in Rotterdam, the Netherlands. We examined cortisol and cortisone concentrations by hair analysis using liquid chromatography-tandem mass spectrometry, and assessed brain morphometric measures with structural magnetic resonance imaging. The relationships of hair cortisol and cortisone concentrations with brain volumetrics, cortical thickness, cortical surface area and gyrification were analyzed separately after adjustment for several potential confounding factors. We observed a positive association between cortisol concentrations and cortical surface area in the parietal lobe, positive associations of cortisone concentrations with thalamus volume, occipital lobe volume and cortical surface area in the parietal lobe, and a negative association between cortisone concentrations and cortical surface area in the temporal lobe in the regions of interest analyses. A negative association between cortisol or cortisone concentrations and hippocampal volume was observed in children with behavioral problems. The whole brain vertex-wise analyses did however not show any association between cortisol or cortisone concentration and brain morphometric measures after correction for multiple testing. Although some associations are noted in region of interest analyses, we do not observe clear association of hair cortisol or cortisone with brain morphometric measures in typically developing young children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Morphometric and magmatic evolution at the Boset-Bericha Volcanic Complex in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Siegburg, Melanie; Gernon, Thomas; Bull, Jonathan; Keir, Derek; Taylor, Rex; Nixon, Casey; Abebe, Bekele; Ayele, Atalay

    2017-04-01

    Tectono-magmatic interactions are an intrinsic feature of continental rifting and break up in the Main Ethiopian Rift (MER). The Boset-Bericha volcanic complex (BBVC) is one of the largest stratovolcanoes in the MER (with a total area of ˜870 km2), with volcanism largely occurring over the last ˜2 Myr. Despite the fact that 4 million people live within 100 km of the volcano, little is known about its eruptive history and how the volcanic system interacts with rift valley tectonics. Here, we present a detailed relative eruption chronology combined with morphometric analyses of different elements of the volcanic complex and petrological analyses to constrain morphometric and magmatic evolution at the BBVC. Additionally, tectonic activity has been characterised around the BBVC, all based on field observations and mapping using high-resolution digital elevation data. The BBVC consists of the Gudda Volcano and the younger Bericha Volcano, two silicic eruption centres located along the NNE-SSW trending rift axis. The fault population predominantly comprises distributed extensional faults parallel to the rift axis, as well as localised discrete faults with displacements of up to 50 m in the rift centre, and up to 200 m in the NE-SW trending border fault system. Multiple cones, craters and fissure systems are also oriented parallel to the rift axis, i.e. perpendicular to the minimum compressive stress. The eruption history of BBVC can be differentiated into 5 main eruption stages, subdivided into at least 12 eruptive phases with a total of 128 mappable lava flows. Crosscutting relationships of lava flows provide a relative chronology of the eruptive history of the BBVC, starting with pre-BBVC rift floor basalts, pre-caldera and caldera activity, three post-caldera phases at the Gudda Volcano and two phases forming the Bericha Volcano. At least four fissure eruption phases occurred along the rift axis temporally in between the main eruptive phases. Morphometric analyses indicate a total corrected volume of eruptive material at the BBVC of ˜36 km3. The magmatic and morphometric evolution of the BBVC is spatially and temporally complex, showing a bimodal distribution of effusive basalts towards explosive peralkaline trachytic and rhyolitic lavas for the Gudda and Bericha Volcano, respectively, with rare intermediate lavas from fissure eruptions. Preliminary geochemical data suggest that fractional crystallisation may have played an important role in driving magmatic evolution the BBVC. This study emphasises the important role of tectono-magmatic interactions in the evolution of a continental rift system.

  3. The Rediscovery of a Long Described Species Reveals Additional Complexity in Speciation Patterns of Poeciliid Fishes in Sulfide Springs

    PubMed Central

    Palacios, Maura; Arias-Rodriguez, Lenin; Plath, Martin; Eifert, Constanze; Lerp, Hannes; Lamboj, Anton; Voelker, Gary; Tobler, Michael

    2013-01-01

    The process of ecological speciation drives the evolution of locally adapted and reproductively isolated populations in response to divergent natural selection. In Southern Mexico, several lineages of the freshwater fish species of the genus Poecilia have independently colonized toxic, hydrogen sulfide-rich springs. Even though ecological speciation processes are increasingly well understood in this system, aligning the taxonomy of these fish with evolutionary processes has lagged behind. While some sulfide spring populations are classified as ecotypes of Poecilia mexicana, others, like P. sulphuraria, have been described as highly endemic species. Our study particularly focused on elucidating the taxonomy of the long described sulfide spring endemic, Poecilia thermalis Steindachner 1863, and investigates if similar evolutionary patterns of phenotypic trait divergence and reproductive isolation are present as observed in other sulfidic species of Poecilia. We applied a geometric morphometric approach to assess body shape similarity to other sulfidic and non-sulfidic fish of the genus Poecilia. We also conducted phylogenetic and population genetic analyses to establish the phylogenetic relationships of P. thermalis and used a population genetic approach to determine levels of gene flow among Poecilia from sulfidic and non-sulfidic sites. Our results indicate that P. thermalis' body shape has evolved in convergence with other sulfide spring populations in the genus. Phylogenetic analyses placed P. thermalis as most closely related to one population of P. sulphuraria, and population genetic analyses demonstrated that P. thermalis is genetically isolated from both P. mexicana ecotypes and P. sulphuraria. Based on these findings, we make taxonomic recommendations for P. thermalis. Overall, our study verifies the role of hydrogen sulfide as a main factor shaping convergent, phenotypic evolution and the emergence of reproductive isolation between Poecilia populations residing in adjacent sulfidic and non-sulfidic environments. PMID:23976979

  4. Comparison of corneal endothelial image analysis by Konan SP8000 noncontact and Bio-Optics Bambi systems.

    PubMed

    Benetz, B A; Diaconu, E; Bowlin, S J; Oak, S S; Laing, R A; Lass, J H

    1999-01-01

    Compare corneal endothelial image analysis by Konan SP8000 and Bio-Optics Bambi image-analysis systems. Corneal endothelial images from 98 individuals (191 eyes), ranging in age from 4 to 87 years, with a normal slit-lamp examination and no history of ocular trauma, intraocular surgery, or intraocular inflammation were obtained by the Konan SP8000 noncontact specular microscope. One observer analyzed these images by using the Konan system and a second observer by using the Bio-Optics Bambi system. Three methods of analyses were used: a fixed-frame method to obtain cell density (for both Konan and Bio-Optics Bambi) and a "dot" (Konan) or "corners" (Bio-Optics Bambi) method to determine morphometric parameters. The cell density determined by the Konan fixed-frame method was significantly higher (157 cells/mm2) than the Bio-Optics Bambi fixed-frame method determination (p<0.0001). However, the difference in cell density, although still statistically significant, was smaller and reversed comparing the Konan fixed-frame method with both Konan dot and Bio-Optics Bambi comers method (-74 cells/mm2, p<0.0001; -55 cells/mm2, p<0.0001, respectively). Small but statistically significant morphometric analyses differences between Konan and Bio-Optics Bambi were seen: cell density, +19 cells/mm2 (p = 0.03); cell area, -3.0 microm2 (p = 0.008); and coefficient of variation, +1.0 (p = 0.003). There was no statistically significant difference between these two methods in the percentage of six-sided cells detected (p = 0.55). Cell densities measured by the Konan fixed-frame method were comparable with Konan and Bio-Optics Bambi's morphometric analysis, but not with the Bio-Optics Bambi fixed-frame method. The two morphometric analyses were comparable with minimal or no differences for the parameters that were studied. The Konan SP8000 endothelial image-analysis system may be useful for large-scale clinical trials determining cell loss; its noncontact system has many clinical benefits (including patient comfort, safety, ease of use, and short procedure time) and provides reliable cell-density calculations.

  5. A minimally invasive methodology based on morphometric parameters for day 2 embryo quality assessment.

    PubMed

    Molina, Inmaculada; Lázaro-Ibáñez, Elisa; Pertusa, Jose; Debón, Ana; Martínez-Sanchís, Juan Vicente; Pellicer, Antonio

    2014-10-01

    The risk of multiple pregnancy to maternal-fetal health can be minimized by reducing the number of embryos transferred. New tools for selecting embryos with the highest implantation potential should be developed. The aim of this study was to evaluate the ability of morphological and morphometric variables to predict implantation by analysing images of embryos. This was a retrospective study of 135 embryo photographs from 112 IVF-ICSI cycles carried out between January and March 2011. The embryos were photographed immediately before transfer using Cronus 3 software. Their images were analysed using the public program ImageJ. Significant effects (P < 0.05), and higher discriminant power to predict implantation were observed for the morphometric embryo variables compared with morphological ones. The features for successfully implanted embryos were as follows: four cells on day 2 of development; all blastomeres with circular shape (roundness factor greater than 0.9), an average zona pellucida thickness of 13 µm and an average of 17695.1 µm² for the embryo area. Embryo size, which is described by its area and the average roundness factor for each cell, provides two objective variables to consider when predicting implantation. This approach should be further investigated for its potential ability to improve embryo scoring. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Computer vision approach to morphometric feature analysis of basal cell nuclei for evaluating malignant potentiality of oral submucous fibrosis.

    PubMed

    Muthu Rama Krishnan, M; Pal, Mousumi; Paul, Ranjan Rashmi; Chakraborty, Chandan; Chatterjee, Jyotirmoy; Ray, Ajoy K

    2012-06-01

    This research work presents a quantitative approach for analysis of histomorphometric features of the basal cell nuclei in respect to their size, shape and intensity of staining, from surface epithelium of Oral Submucous Fibrosis showing dysplasia (OSFD) to that of the Normal Oral Mucosa (NOM). For all biological activity, the basal cells of the surface epithelium form the proliferative compartment and therefore their morphometric changes will spell the intricate biological behavior pertaining to normal cellular functions as well as in premalignant and malignant status. In view of this, the changes in shape, size and intensity of staining of the nuclei in the basal cell layer of the NOM and OSFD have been studied. Geometric, Zernike moments and Fourier descriptor (FD) based as well as intensity based features are extracted for histomorphometric pattern analysis of the nuclei. All these features are statistically analyzed along with 3D visualization in order to discriminate the groups. Results showed increase in the dimensions (area and perimeter), shape parameters and decreasing mean nuclei intensity of the nuclei in OSFD in respect to NOM. Further, the selected features are fed to the Bayesian classifier to discriminate normal and OSFD. The morphometric and intensity features provide a good sensitivity of 100%, specificity of 98.53% and positive predicative accuracy of 97.35%. This comparative quantitative characterization of basal cell nuclei will be of immense help for oral onco-pathologists, researchers and clinicians to assess the biological behavior of OSFD, specially relating to their premalignant and malignant potentiality. As a future direction more extensive study involving more number of disease subjects is observed.

  7. Sperm subpopulations in avian species: a comparative study between the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris).

    PubMed

    García-Herreros, Manuel

    2016-01-01

    The main aims of this research were to study possible differences in objective morphometric sperm characteristics, establish normative sperm morphometry standards, and evaluate the presumed different subpopulation distribution of avian spermatozoa from the rooster (Gallus domesticus ) and Guinea fowl (Numida meleagris ) as model avian species. Seventy-two ejaculates (36 per species studied) were obtained manually, following a training period involving gently combined dorso-abdominal and lumbo-sacral massage of the birds. Ejaculates were processed for volume, sperm concentration, viability, motility, and morphology. Moreover, samples were submitted for sperm morphometric assessment using objective Computer-Assisted Semen Analysis for Morphometry (CASA-Morph) methods, with sperm morphometric descriptors evaluated by Principal Component Analysis (PCA) and multivariate clustering analyses. There were several differences observed between the avian species in values obtained for ejaculate volume and sperm concentration (P < 0.001). Irrespective of species, PCA revealed two Principal Components (PCs) explaining more than 80% of the variance. In addition, the number of subpopulations differed with species (three and five subpopulations for rooster and Guinea fowl, respectively). Moreover, the distribution of the sperm subpopulations was found to be structurally different between species. In conclusion, our findings from using CASA-Morph methods indicate pronounced sperm morphometric variation between these two avian species. Because of the strong differences observed in morphometric parameter values and their subpopulation distribution, these results suggest that application of objective analytical methods such as CASA-Morph could substantially improve the reliability of comparative studies and help establish valid normative sperm morphological values for avian species.

  8. Sperm subpopulations in avian species: a comparative study between the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris)

    PubMed Central

    García-Herreros, Manuel

    2016-01-01

    The main aims of this research were to study possible differences in objective morphometric sperm characteristics, establish normative sperm morphometry standards, and evaluate the presumed different subpopulation distribution of avian spermatozoa from the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris) as model avian species. Seventy-two ejaculates (36 per species studied) were obtained manually, following a training period involving gently combined dorso-abdominal and lumbo-sacral massage of the birds. Ejaculates were processed for volume, sperm concentration, viability, motility, and morphology. Moreover, samples were submitted for sperm morphometric assessment using objective Computer-Assisted Semen Analysis for Morphometry (CASA-Morph) methods, with sperm morphometric descriptors evaluated by Principal Component Analysis (PCA) and multivariate clustering analyses. There were several differences observed between the avian species in values obtained for ejaculate volume and sperm concentration (P < 0.001). Irrespective of species, PCA revealed two Principal Components (PCs) explaining more than 80% of the variance. In addition, the number of subpopulations differed with species (three and five subpopulations for rooster and Guinea fowl, respectively). Moreover, the distribution of the sperm subpopulations was found to be structurally different between species. In conclusion, our findings from using CASA-Morph methods indicate pronounced sperm morphometric variation between these two avian species. Because of the strong differences observed in morphometric parameter values and their subpopulation distribution, these results suggest that application of objective analytical methods such as CASA-Morph could substantially improve the reliability of comparative studies and help establish valid normative sperm morphological values for avian species. PMID:27751988

  9. Morphometric Analysis of the Occipital Condyle and Its Surgical Importance

    PubMed Central

    Das, Sushant Swaroop; Vasudeva, Neelam

    2016-01-01

    Introduction The Occipital Condyle (OC) is an integral component of craniovertebral region which is predisposed to a wide array of traumatic, degenerative and neoplastic diseases. Frequent surgical interventions of OC are required for successful management of these conditions. Hence a meticulous anatomical knowledge of the OC is vital but variability in morphometric dimensions exist amongst different races and hinder the standardization of measurements. Aim The aim of this study was to present a morphometric reference database for OC of the Indian population and enable comparisons with other populations. Materials and Methods The study was performed on 228 OC of 114 adult human skulls. Linear measurements of the OC were taken with the help of digital Vernier’s Calliper and angular measurements were determined with software Image J. Statistical Analysis Mean and standard deviation of the morphometric parameters taken into account were analysed. The comparison of morphometric dimensions of the right and left sides was carried out using Student’s t-test and p-value was calculated. Results The morphometric analysis of the OC established that mean width was larger (12.97 mm) in Indians population when compared to other races. The anterior and posterior intercondylar distances as well as the distances between the tips of OC and opisthion and basion were observed to be shorter in Indians. We found a significant difference (p=0.01) among the distance between Posterior tip of Occipital Condyle (POC) and basion of the right and left sides. The sagittal condylar angle and sagittal intercondylar angle were found to be greater in our study when compared to other researchers. There existed a highly significant difference (p=0.001) between the sagittal condylar angles of the right and left sides. Conclusion The present morphometric study would be valuable for the successful instrumentation of the OC as wider and ventrally oriented OC as well as smaller intercondylar distances may pose challenge to the surgeons during condylectomy. The data of present study offer anatomical reference to the surgeons and would be helpful in designing implants for the OC. PMID:28050351

  10. A test for paedomorphism in domestic pig cranial morphology

    PubMed Central

    Owen, Joseph; Vidarsdottir, Una Strand; Dobney, Keith

    2017-01-01

    Domestic animals are often described as paedomorphic, meaning that they retain juvenile characteristics into adulthood. Through a three-dimensional landmark-based geometric morphometric analysis of cranial morphology at three growth stages, we demonstrate that wild boar (n = 138) and domestic pigs (n = 106) (Sus scrofa) follow distinct ontogenetic trajectories. With the exception of the size ratio between facial and neurocranial regions, paedomorphism does not appear to be the primary pattern describing the observed differences between wild and domestic pig cranial morphologies. The cranial phenotype of domestic pigs instead involves developmental innovation during domestication. This result questions the long-standing assumption that domestic animal phenotypes are paedomorphic forms of their wild counterparts. PMID:28794276

  11. Unappreciated diversification of stem archosaurs during the Middle Triassic predated the dominance of dinosaurs.

    PubMed

    Foth, Christian; Ezcurra, Martín D; Sookias, Roland B; Brusatte, Stephen L; Butler, Richard J

    2016-09-15

    Archosauromorpha originated in the middle-late Permian, radiated during the Triassic, and gave rise to the crown group Archosauria, a highly successful clade of reptiles in terrestrial ecosystems over the last 250 million years. However, scientific attention has mainly focused on the diversification of archosaurs, while their stem lineage (i.e. non-archosaurian archosauromorphs) has often been overlooked in discussions of the evolutionary success of Archosauria. Here, we analyse the cranial disparity of late Permian to Early Jurassic archosauromorphs and make comparisons between non-archosaurian archosauromorphs and archosaurs (including Pseudosuchia and Ornithodira) on the basis of two-dimensional geometric morphometrics. Our analysis recovers previously unappreciated high morphological disparity for non-archosaurian archosauromorphs, especially during the Middle Triassic, which abruptly declined during the early Late Triassic (Carnian). By contrast, cranial disparity of archosaurs increased from the Middle Triassic into the Late Triassic, declined during the end-Triassic extinction, but re-expanded towards the end of the Early Jurassic. Our study indicates that non-archosaurian archosauromorphs were highly diverse components of terrestrial ecosystems prior to the major radiation of archosaurs, including dinosaurs, while disparity patterns of the Ladinian and Carnian indicate a gradual faunal replacement of stem archosaurs by the crown group, including a short interval of partial overlap in morphospace during the Ladinian.

  12. Facial patterns in a tropical social wasp correlate with colony membership

    NASA Astrophysics Data System (ADS)

    Baracchi, David; Turillazzi, Stefano; Chittka, Lars

    2016-10-01

    Social insects excel in discriminating nestmates from intruders, typically relying on colony odours. Remarkably, some wasp species achieve such discrimination using visual information. However, while it is universally accepted that odours mediate a group level recognition, the ability to recognise colony members visually has been considered possible only via individual recognition by which wasps discriminate `friends' and `foes'. Using geometric morphometric analysis, which is a technique based on a rigorous statistical theory of shape allowing quantitative multivariate analyses on structure shapes, we first quantified facial marking variation of Liostenogaster flavolineata wasps. We then compared this facial variation with that of chemical profiles (generated by cuticular hydrocarbons) within and between colonies. Principal component analysis and discriminant analysis applied to sets of variables containing pure shape information showed that despite appreciable intra-colony variation, the faces of females belonging to the same colony resemble one another more than those of outsiders. This colony-specific variation in facial patterns was on a par with that observed for odours. While the occurrence of face discrimination at the colony level remains to be tested by behavioural experiments, overall our results suggest that, in this species, wasp faces display adequate information that might be potentially perceived and used by wasps for colony level recognition.

  13. Does morphology predict trophic niche differentiation? Relationship between feeding habits and body shape in four co-occurring juvenile species (Pisces: Perciformes, Sparidae)

    NASA Astrophysics Data System (ADS)

    Ventura, Daniele; Bonhomme, Vincent; Colangelo, Paolo; Bonifazi, Andrea; Jona Lasinio, Giovanna; Ardizzone, Giandomenico

    2017-05-01

    Feeding habits, diet overlap and morphological correlates of four juvenile species of the genus Diplodus were investigated during their settlement periods, along the Tyrrhenian coast. Stomach content analysis showed that the diets of D. sargus and D. puntazzo mainly comprised benthic prey such as harpacticoid copepods, amphipods and polychaetes. On the other hand, D. vulgaris and D. annularis fed mainly on planktonic prey such as ciclopoids, calanoids copepods and fish larvae. A biologically significant diet overlap, calculated using the Schoener index, was recorded between D. sargus and D. puntazzo and between D. vulgaris and D. annularis. Morphological characters related to feeding such as gape height and gut length with their relative growth patterns suggested that different trophic preferences have led to a morphological diversification of feeding structures. Therefore, a geometric morphometric outline method, namely Elliptic Fourier Analysis (EFA) was used to examine shape modification of the head and body regions. The multivariate analyses performed on shape descriptors demonstrated that the four species were morphologically distinct due to different feeding habits: the two species which feed mainly on benthic prey presented a discoidal shape, with broad profiles and rounded head; by contrast, the other two species which relied mostly on planktonic prey, presented a streamlined and more elongated body shape.

  14. Diet and body shape changes of pāroko Kelloggella disalvoi (Gobiidae) from intertidal pools of Easter Island.

    PubMed

    Vera-Duarte, J; Bustos, C A; Landaeta, M F

    2017-11-01

    This study assesses seasonal variation in the morphology and diet of juveniles and adults of the Easter Island endemic goby Kelloggella disalvoi from intertidal pools during September-October 2015 (spring) and June-July 2016 (winter), utilizing geometric morphometric and gut-content analyses. A set of 16 landmarks was digitized in 128 individuals. Shape changes related to size changes (i.e. allometry) were low (18·6%) and were seasonally similar. Body shape changes were mainly dorsoventral (44·2% of variance) and comprised posteroventral displacement of the premaxilla and bending of the body. The latter included vertical displacement of the anterior portion of the first and second dorsal fins and the entire base of the caudal fin. Diets mainly comprised developmental stages of harpacticoid copepods (from eggs to adults), ostracods, isopods, gastropods and bivalves. Also, trophic niche breadth remained constant throughout development and did not vary between seasons. Nonetheless, significant dietary differences were detected in specimens collected during spring (main prey items: harpacticoid copepods and copepod eggs) and winter (harpacticoid copepods and copepod nauplii). Finally, there was weak but significant covariation between diet and morphology: molluscivores were characterized by having an inferior mouth gape, whereas planktivores had an anteriorly directed premaxilla. © 2017 The Fisheries Society of the British Isles.

  15. Does nasal echolocation influence the modularity of the mammal skull?

    PubMed

    Santana, S E; Lofgren, S E

    2013-11-01

    In vertebrates, changes in cranial modularity can evolve rapidly in response to selection. However, mammals have apparently maintained their pattern of cranial integration throughout their evolutionary history and across tremendous morphological and ecological diversity. Here, we use phylogenetic, geometric morphometric and comparative analyses to test the hypothesis that the modularity of the mammalian skull has been remodelled in rhinolophid bats due to the novel and critical function of the nasal cavity in echolocation. We predicted that nasal echolocation has resulted in the evolution of a third cranial module, the 'nasal dome', in addition to the braincase and rostrum modules, which are conserved across mammals. We also test for similarities in the evolution of skull shape in relation to habitat across rhinolophids. We find that, despite broad variation in the shape of the nasal dome, the integration of the rhinolophid skull is highly consistent with conserved patterns of modularity found in other mammals. Across their broad geographical distribution, cranial shape in rhinolophids follows two major divisions that could reflect adaptations to dietary and environmental differences in African versus South Asian distributions. Our results highlight the potential of a relatively simple modular template to generate broad morphological and functional variation in mammals. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  16. Go big or go fish: morphological specializations in carnivorous bats.

    PubMed

    Santana, Sharlene E; Cheung, Elena

    2016-05-11

    Specialized carnivory is relatively uncommon across mammals, and bats constitute one of the few groups in which this diet has evolved multiple times. While size and morphological adaptations for carnivory have been identified in other taxa, it is unclear what phenotypic traits characterize the relatively recent evolution of carnivory in bats. To address this gap, we apply geometric morphometric and phylogenetic comparative analyses to elucidate which characters are associated with ecological divergence of carnivorous bats from insectivorous ancestors, and if there is morphological convergence among independent origins of carnivory within bats, and with other carnivorous mammals. We find that carnivorous bats are larger and converged to occupy a subset of the insectivorous morphospace, characterized by skull shapes that enhance bite force at relatively wide gapes. Piscivorous bats are morphologically distinct, with cranial shapes that enable high bite force at narrow gapes, which is necessary for processing fish prey. All animal-eating species exhibit positive allometry in rostrum elongation with respect to skull size, which could allow larger bats to take relatively larger prey. The skull shapes of carnivorous bats share similarities with generalized carnivorans, but tend to be more suited for increased bite force production at the expense of gape, when compared with specialized carnivorans. © 2016 The Author(s).

  17. Go big or go fish: morphological specializations in carnivorous bats

    PubMed Central

    Santana, Sharlene E.; Cheung, Elena

    2016-01-01

    Specialized carnivory is relatively uncommon across mammals, and bats constitute one of the few groups in which this diet has evolved multiple times. While size and morphological adaptations for carnivory have been identified in other taxa, it is unclear what phenotypic traits characterize the relatively recent evolution of carnivory in bats. To address this gap, we apply geometric morphometric and phylogenetic comparative analyses to elucidate which characters are associated with ecological divergence of carnivorous bats from insectivorous ancestors, and if there is morphological convergence among independent origins of carnivory within bats, and with other carnivorous mammals. We find that carnivorous bats are larger and converged to occupy a subset of the insectivorous morphospace, characterized by skull shapes that enhance bite force at relatively wide gapes. Piscivorous bats are morphologically distinct, with cranial shapes that enable high bite force at narrow gapes, which is necessary for processing fish prey. All animal-eating species exhibit positive allometry in rostrum elongation with respect to skull size, which could allow larger bats to take relatively larger prey. The skull shapes of carnivorous bats share similarities with generalized carnivorans, but tend to be more suited for increased bite force production at the expense of gape, when compared with specialized carnivorans. PMID:27170718

  18. Does aquatic foraging impact head shape evolution in snakes?

    PubMed

    Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-08-31

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. © 2016 The Author(s).

  19. Localized Misfolding Within Broca's Area as a Distinctive Feature of Autistic Disorder.

    PubMed

    Brun, Lucile; Auzias, Guillaume; Viellard, Marine; Villeneuve, Nathalie; Girard, Nadine; Poinso, François; Da Fonseca, David; Deruelle, Christine

    2016-03-01

    Recent neuroimaging studies suggest that autism spectrum disorder results from abnormalities in the cortical folding pattern. Usual morphometric measurements have failed to provide reliable neuroanatomic markers. Here, we propose that sulcal pits, which are the deepest points in each fold, are suitable candidates to uncover this atypical cortical folding. Sulcal pits were extracted from a magnetic resonance imaging database of 102 children (1.5-10 years old) distributed in three groups: children with autistic disorder (n = 59), typically developing children (n = 22), and children with pervasive developmental disorder not otherwise specified (n = 21). The geometrical properties of sulcal pits were compared between these three groups. Fold-level analyses revealed a reduced pit depth in the left ascending ramus of the Sylvian fissure in children with autistic disorder only. The depth of this central fold of Broca's area was correlated with the social communication impairments that are characteristic of the pathology. Our findings support an atypical gyrogenesis of this specific fold in autistic disorder that could be used for differential diagnosis. Sulcal pits constitute valuable markers of the cortical folding dynamics and could help for the early detection of atypical brain maturation. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Application of thin-plate spline transformations to finite element models, or, how to turn a bog turtle into a spotted turtle to analyze both.

    PubMed

    Stayton, C Tristan

    2009-05-01

    Finite element (FE) models are popular tools that allow biologists to analyze the biomechanical behavior of complex anatomical structures. However, the expense and time required to create models from specimens has prevented comparative studies from involving large numbers of species. A new method is presented for transforming existing FE models using geometric morphometric methods. Homologous landmark coordinates are digitized on the FE model and on a target specimen into which the FE model is being transformed. These coordinates are used to create a thin-plate spline function and coefficients, which are then applied to every node in the FE model. This function smoothly interpolates the location of points between landmarks, transforming the geometry of the original model to match the target. This new FE model is then used as input in FE analyses. This procedure is demonstrated with turtle shells: a Glyptemys muhlenbergii model is transformed into Clemmys guttata and Actinemys marmorata models. Models are loaded and the resulting stresses are compared. The validity of the models is tested by crushing actual turtle shells in a materials testing machine and comparing those results to predictions from FE models. General guidelines, cautions, and possibilities for this procedure are also presented.

  1. Pleistocene climatic oscillations in Neotropical open areas: Refuge isolation in the rodent Oxymycterus nasutus endemic to grasslands

    PubMed Central

    Peçanha, Willian T.; Althoff, Sergio L.; Galiano, Daniel; Quintela, Fernando M.; Maestri, Renan; Freitas, Thales R. O.

    2017-01-01

    Pleistocene climatic oscillations favoured the expansion of grassland ecosystems and open vegetation landscapes throughout the Neotropics, and influenced the evolutionary history of species adapted to such environments. In this study, we sampled populations of the rodent Oxymycterus nasutus endemic to open areas in the Pampas and Atlantic Forest biomes to assess the tempo and mode of population divergence using an integrative approach, including coalescence theory, ecological niche models, and morphometry. Our results indicated that these O. nasutus populations exhibited high levels of genetic structure. Six major mtDNA clades were found, structuring these biomes into distinct groups. Estimates of their divergence times was indicated to be 0.571 myr. The high degree of genetic structure is reflected in the analyses of geometric morphometric; skull differences between lineages in the two ecoregions were detected. During the last glacial maximum, there was a strong increase in suitable abiotic conditions for O. nasutus. Distinct molecular markers revealed a population expansion over time, with a possible demographic retraction during the post-glacial period. Considering that all clades coalesce with the last interglacial maximum, our results indicated that reduction in suitable conditions during this period may have resulted in a possible vicariance associated with refuge isolation. PMID:29176839

  2. Wing shape variation associated with mimicry in butterflies.

    PubMed

    Jones, Robert T; Le Poul, Yann; Whibley, Annabel C; Mérot, Claire; ffrench-Constant, Richard H; Joron, Mathieu

    2013-08-01

    Mimetic resemblance in unpalatable butterflies has been studied by evolutionary biologists for over a century, but has largely focused on the convergence in wing color patterns. In Heliconius numata, discrete color-pattern morphs closely resemble comimics in the distantly related genus Melinaea. We examine the possibility that the shape of the butterfly wing also shows adaptive convergence. First, simple measures of forewing dimensions were taken of individuals in a cross between H. numata morphs, and showed quantitative differences between two of the segregating morphs, f. elegans and f. silvana. Second, landmark-based geometric morphometric and elliptical Fourier outline analyses were used to more fully characterize these shape differences. Extension of these techniques to specimens from natural populations suggested that, although many of the coexisting morphs could not be discriminated by shape, the differences we identified between f. elegans and f. silvana hold in the wild. Interestingly, despite extensive overlap, the shape variation between these two morphs is paralleled in their respective Melinaea comimics. Our study therefore suggests that wing-shape variation is associated with mimetic resemblance, and raises the intriguing possibility that the supergene responsible for controlling the major switch in color pattern between morphs also contributes to wing shape differences in H. numata. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  3. A unique Middle Miocene European hominoid and the origins of the great ape and human clade

    PubMed Central

    Moyà-Solà, Salvador; Alba, David M.; Almécija, Sergio; Casanovas-Vilar, Isaac; Köhler, Meike; De Esteban-Trivigno, Soledad; Robles, Josep M.; Galindo, Jordi; Fortuny, Josep

    2009-01-01

    The great ape and human clade (Primates: Hominidae) currently includes orangutans, gorillas, chimpanzees, bonobos, and humans. When, where, and from which taxon hominids evolved are among the most exciting questions yet to be resolved. Within the Afropithecidae, the Kenyapithecinae (Kenyapithecini + Equatorini) have been proposed as the sister taxon of hominids, but thus far the fragmentary and scarce Middle Miocene fossil record has hampered testing this hypothesis. Here we describe a male partial face with mandible of a previously undescribed fossil hominid, Anoiapithecus brevirostris gen. et sp. nov., from the Middle Miocene (11.9 Ma) of Spain, which enables testing this hypothesis. Morphological and geometric morphometrics analyses of this material show a unique facial pattern for hominoids. This taxon combines autapomorphic features—such as a strongly reduced facial prognathism—with kenyapithecine (more specifically, kenyapithecin) and hominid synapomorphies. This combination supports a sister-group relationship between kenyapithecins (Griphopithecus + Kenyapithecus) and hominids. The presence of both groups in Eurasia during the Middle Miocene and the retention in kenyapithecins of a primitive hominoid postcranial body plan support a Eurasian origin of the Hominidae. Alternatively, the two extant hominid clades (Homininae and Ponginae) might have independently evolved in Africa and Eurasia from an ancestral, Middle Miocene stock, so that the supposed crown-hominid synapomorphies might be homoplastic. PMID:19487676

  4. Three-dimensional morphology of first molars in relation to ethnicity and the occurrence of cleft lip and palate.

    PubMed

    Echtermeyer, Sandra; Metelmann, Philine H; Hemprich, Alexander; Dannhauer, Karl-Heinz; Krey, Karl-Friedrich

    2017-01-01

    This study aims to describe morphological peculiarities of maxillary and mandibular first molars in Europeans, Asians and Europeans with cleft lip and palate. Reflex microscopy was used to obtain three-dimensional morphometric landmarks from 40 models (11 Europeans and 13 Asians without cleft lip and palate, 16 Europeans with unilateral cleft lip and palate). The cases were examined using traditional morphometry and geometric morphometry, and visualized using thin-plate splines. Classic morphometry showed no right/left differences in the study groups and no significant differences with regard to the cleft side in patients with cleft lip and palate. In Asians, a significantly greater mesiodistal width was found. Geometric morphometry showed an enlarged centroid size in Asians (maxilla and mandible). In cleft patients, the cleft site did not appear to impact the morphology of first molars. Unilateral clefting did not affect the size and shape of molars; however, characteristic ethnicity-based differences were in fact identified. The results are relevant for orthodontic treatment with preadjusted appliances, and prosthetic CAD/CAM restorations.

  5. a Morphometric Analysis of HYLARANA SIGNATA Group (previously Known as RANA SIGNATA and RANA PICTURATA) of Malaysia

    NASA Astrophysics Data System (ADS)

    Zainudin, Ramlah; Sazali, Siti Nurlydia

    A study on morphometrical variations of Malaysian Hylarana signata group was conducted to reveal the morphological relationships within the species group. Twenty-seven morphological characters from 18 individuals of H. signata and H. picturata were measured and recorded. The numerical data were analysed using Discriminant Function Analysis in SPSS program version 16.0 and UPGMA Cluster Analysis in Minitab program version 14.0. The results show the complexity clustering between the examined species that might be due to ancient polymorphism of the lineages or cryptic species within the group. Hence, further study should include more representatives in order to fully elucidate the morphological relationships of H. signata group.

  6. Status, distribution and morphometric/meristic characteristics of Cobitis elongata Heckel et Kner 1858 from Slovenia.

    PubMed

    Povz, Meta; Sumer, Suzana

    2003-01-01

    Cobitis elongata Heckel et Kner inhabits the rivers Sava, Kolpa, Krka, Gracnica and Hudinja (the Danube river basin). The species is common in its distribution area. In the Red List of endangered Pisces and Cyclostomata in Slovenia, it is classified as endangered. Status and distribution data of the species from previous reports and recent research were summarized. A total of 31 specimens from the river Kolpa were morphologically studied. Sixteen morphometric and four meristic characteristics were analysed using standard numerical taxonomic techniques. 99.8% of the total variation of standard length was explained by preanal distance, dorsal and ventral fin lengths as well as minimum body height.

  7. A New Fiji-Based Algorithm That Systematically Quantifies Nine Synaptic Parameters Provides Insights into Drosophila NMJ Morphometry

    PubMed Central

    Wolf, Louis; Scheffer-de Gooyert, Jolanda M.; Monedero, Ignacio; Torroja, Laura; Coromina, Lluis; van der Laak, Jeroen A. W. M.; Schenck, Annette

    2016-01-01

    The morphology of synapses is of central interest in neuroscience because of the intimate relation with synaptic efficacy. Two decades of gene manipulation studies in different animal models have revealed a repertoire of molecules that contribute to synapse development. However, since such studies often assessed only one, or at best a few, morphological features at a given synapse, it remained unaddressed how different structural aspects relate to one another. Furthermore, such focused and sometimes only qualitative approaches likely left many of the more subtle players unnoticed. Here, we present the image analysis algorithm ‘Drosophila_NMJ_Morphometrics’, available as a Fiji-compatible macro, for quantitative, accurate and objective synapse morphometry of the Drosophila larval neuromuscular junction (NMJ), a well-established glutamatergic model synapse. We developed this methodology for semi-automated multiparametric analyses of NMJ terminals immunolabeled for the commonly used markers Dlg1 and Brp and showed that it also works for Hrp, Csp and Syt. We demonstrate that gender, genetic background and identity of abdominal body segment consistently and significantly contribute to variability in our data, suggesting that controlling for these parameters is important to minimize variability in quantitative analyses. Correlation and principal component analyses (PCA) were performed to investigate which morphometric parameters are inter-dependent and which ones are regulated rather independently. Based on nine acquired parameters, we identified five morphometric groups: NMJ size, geometry, muscle size, number of NMJ islands and number of active zones. Based on our finding that the parameters of the first two principal components hardly correlated with each other, we suggest that different molecular processes underlie these two morphometric groups. Our study sets the stage for systems morphometry approaches at the well-studied Drosophila NMJ. PMID:26998933

  8. Effects of environmental disturbance on phenotypic variation: an integrated assessment of canalization, developmental stability, modularity, and allometry in lizard head shape.

    PubMed

    Lazić, Marko M; Carretero, Miguel A; Crnobrnja-Isailović, Jelka; Kaliontzopoulou, Antigoni

    2015-01-01

    When populations experience suboptimal conditions, the mechanisms involved in the regulation of phenotypic variation can be challenged, resulting in increased phenotypic variance. This kind of disturbance can be diagnosed by using morphometric tools to study morphological patterns at different hierarchical levels and evaluate canalization, developmental stability, integration, modularity, and allometry. We assess the effect of urbanization on phenotypic variation in the common wall lizard (Podarcis muralis) by using geometric morphometrics to assess disturbance to head shape development. The head shapes of urban lizards were more variable and less symmetric, suggesting that urban living is more likely to disturb development. Head shape variation was congruent within and across individuals, which indicated that canalization and developmental stability are two related phenomena in these organisms. Furthermore, urban lizards exhibited smaller mean head sizes, divergent size-shape allometries, and increased deviation from within-group allometric lines. This suggests that mechanisms regulating head shape allometry may also be disrupted. The integrated evaluation of several measures of developmental instability at different hierarchical levels, which provided in this case congruent results, can be a powerful methodological guide for future studies, as it enhances the detection of environmental disturbances on phenotypic variation and aids biological interpretation of the results.

  9. The study of craniofacial growth patterns using 3D laser scanning and geometric morphometrics

    NASA Astrophysics Data System (ADS)

    Friess, Martin

    2006-02-01

    Throughout childhood, braincase and face grow at different rates and therefore exhibit variable proportions and positions relative to each other. Our understanding of the direction and magnitude of these growth patterns is crucial for many ergonomic applications and can be improved by advanced 3D morphometrics. The purpose of this study is to investigate this known growth allometry using 3D imaging techniques. The geometry of the head and face of 840 children, aged 2 to 19, was captured with a laser surface scanner and analyzed statistically. From each scan, 18 landmarks were extracted and registered using General Procrustes Analysis (GPA). GPA eliminates unwanted variation due to position, orientation and scale by applying a least-squares superimposition algorithm to individual landmark configurations. This approach provides the necessary normalization for the study of differences in size, shape, and their interaction (allometry). The results show that throughout adolescence, boys and girls follow a different growth trajectory, leading to marked differences not only in size but also in shape, most notably in relative proportions of the braincase. These differences can be observed during early childhood, but become most noticeable after the age of 13 years, when craniofacial growth in girls slows down significantly, whereas growth in boys continues for at least 3 more years.

  10. Craniofacial form and function in Metriorhynchidae (Crocodylomorpha: Thalattosuchia): modelling phenotypic evolution with maximum-likelihood methods.

    PubMed

    Young, Mark T; Bell, Mark A; Brusatte, Stephen L

    2011-12-23

    Metriorhynchid crocodylomorphs were the only group of archosaurs to fully adapt to a pelagic lifestyle. During the Jurassic and Early Cretaceous, this group diversified into a variety of ecological and morphological types, from large super-predators with a broad short snout and serrated teeth to specialized piscivores/teuthophages with an elongate tubular snout and uncarinated teeth. Here, we use an integrated repertoire of geometric morphometric (form), biomechanical finite-element analysis (FEA; function) and phylogenetic data to examine the nature of craniofacial evolution in this clade. FEA stress values significantly correlate with morphometric values representing skull length and breadth, indicating that form and function are associated. Maximum-likelihood methods, which assess which of several models of evolution best explain the distribution of form and function data on a phylogenetic tree, show that the two major metriorhynchid subclades underwent different evolutionary modes. In geosaurines, both form and function are best explained as evolving under 'random' Brownian motion, whereas in metriorhynchines, the form metrics are best explained as evolving under stasis and the function metric as undergoing a directional change (towards most efficient low-stress piscivory). This suggests that the two subclades were under different selection pressures, and that metriorhynchines with similar skull shape were driven to become functionally divergent.

  11. Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae).

    PubMed

    Paris, Thomson M; Allan, Sandra A; Hall, David G; Hentz, Matthew G; Hetesy, Gabriella; Stansly, Philip A

    2016-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most serious citrus pests worldwide due to its role as vector of huanglongbing or citrus greening disease. While some optimal plant species for ACP oviposition and development have been identified, little is known of the influence of host plants on ACP size and shape. Our goal was to determine how size and shape of ACP wing and body size varies when development occurs on different host plants in a controlled rearing environment. ACP were reared on six different rutaceous species; Bergera koenigii , Citrus aurantifolia , Citrus macrophylla , Citrus maxima , Citrus taiwanica and Murraya paniculata . Adults were examined for morphometric variation using traditional and geometric analysis based on 12 traits or landmarks. ACP reared on C. taiwanica were consistently smaller than those reared on the other plant species. Wing aspect ratio also differed between C. maxima and C. taiwanica . Significant differences in shape were detected with those reared on M. paniculata having narrower wings than those reared on C. macrophylla . This study provides evidence of wing size and shape differences of ACP based on host plant species which potentially may impact dispersal. Further study is needed to determine if behavioral and physiological differences are associated with the observed phenotypic differences.

  12. Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae)

    PubMed Central

    Paris, Thomson M.; Hall, David G.; Hentz, Matthew G.; Hetesy, Gabriella; Stansly, Philip A.

    2016-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most serious citrus pests worldwide due to its role as vector of huanglongbing or citrus greening disease. While some optimal plant species for ACP oviposition and development have been identified, little is known of the influence of host plants on ACP size and shape. Our goal was to determine how size and shape of ACP wing and body size varies when development occurs on different host plants in a controlled rearing environment. ACP were reared on six different rutaceous species; Bergera koenigii, Citrus aurantifolia, Citrus macrophylla, Citrus maxima, Citrus taiwanica and Murraya paniculata. Adults were examined for morphometric variation using traditional and geometric analysis based on 12 traits or landmarks. ACP reared on C. taiwanica were consistently smaller than those reared on the other plant species. Wing aspect ratio also differed between C. maxima and C. taiwanica. Significant differences in shape were detected with those reared on M. paniculata having narrower wings than those reared on C. macrophylla. This study provides evidence of wing size and shape differences of ACP based on host plant species which potentially may impact dispersal. Further study is needed to determine if behavioral and physiological differences are associated with the observed phenotypic differences. PMID:27833820

  13. Geometric morphometric analysis of intratrackway variability: a case study on theropod and ornithopod dinosaur trackways from Münchehagen (Lower Cretaceous, Germany).

    PubMed

    Lallensack, Jens N; van Heteren, Anneke H; Wings, Oliver

    2016-01-01

    A profound understanding of the influence of trackmaker anatomy, foot movements and substrate properties is crucial for any interpretation of fossil tracks. In this case study we analyze variability of footprint shape within one large theropod (T3), one medium-sized theropod (T2) and one ornithopod (I1) trackway from the Lower Cretaceous of Münchehagen (Lower Saxony, Germany) in order to determine the informativeness of individual features and measurements for ichnotaxonomy, trackmaker identification, and the discrimination between left and right footprints. Landmark analysis is employed based on interpretative outline drawings derived from photogrammetric data, allowing for the location of variability within the footprint and the assessment of covariation of separate footprint parts. Objective methods to define the margins of a footprint are tested and shown to be sufficiently accurate to reproduce the most important results. The lateral hypex and the heel are the most variable regions in the two theropod trackways. As indicated by principal component analysis, a posterior shift of the lateral hypex is correlated with an anterior shift of the margin of the heel. This pattern is less pronounced in the ornithopod trackway, indicating that variation patterns can differ in separate trackways. In all trackways, hypices vary independently from each other, suggesting that their relative position a questionable feature for ichnotaxonomic purposes. Most criteria commonly employed to differentiate between left and right footprints assigned to theropods are found to be reasonably reliable. The described ornithopod footprints are asymmetrical, again allowing for a left-right differentiation. Strikingly, 12 out of 19 measured footprints of the T2 trackway are stepped over the trackway midline, rendering the trackway pattern a misleading left-right criterion for this trackway. Traditional measurements were unable to differentiate between the theropod and the ornithopod trackways. Geometric morphometric analysis reveals potential for improvement of existing discriminant methods.

  14. Sexual dimorphism in multiple aspects of 3D facial symmetry and asymmetry defined by spatially dense geometric morphometrics.

    PubMed

    Claes, Peter; Walters, Mark; Shriver, Mark D; Puts, David; Gibson, Greg; Clement, John; Baynam, Gareth; Verbeke, Geert; Vandermeulen, Dirk; Suetens, Paul

    2012-08-01

    Accurate measurement of facial sexual dimorphism is useful to understanding facial anatomy and specifically how faces influence, and have been influenced by, sexual selection. An important facial aspect is the display of bilateral symmetry, invoking the need to investigate aspects of symmetry and asymmetry separately when examining facial shape. Previous studies typically employed landmarks that provided only a sparse facial representation, where different landmark choices could lead to contrasting outcomes. Furthermore, sexual dimorphism is only tested as a difference of sample means, which is statistically the same as a difference in population location only. Within the framework of geometric morphometrics, we partition facial shape, represented in a spatially dense way, into patterns of symmetry and asymmetry, following a two-factor anova design. Subsequently, we investigate sexual dimorphism in symmetry and asymmetry patterns separately, and on multiple aspects, by examining (i) population location differences as well as differences in population variance-covariance; (ii) scale; and (iii) orientation. One important challenge in this approach is the proportionally high number of variables to observations necessitating the implementation of permutational and computationally feasible statistics. In a sample of gender-matched young adults (18-25 years) with self-reported European ancestry, we found greater variation in male faces than in women for all measurements. Statistically significant sexual dimorphism was found for the aspect of location in both symmetry and asymmetry (directional asymmetry), for the aspect of scale only in asymmetry (magnitude of fluctuating asymmetry) and, in contrast, for the aspect of orientation only in symmetry. Interesting interplays with hypotheses in evolutionary and developmental biology were observed, such as the selective nature of the force underpinning sexual dimorphism and the genetic independence of the structural patterns of fluctuating asymmetry. Additionally, insights into growth patterns of the soft tissue envelope of the face and underlying skull structure can also be obtained from the results. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  15. Sexual dimorphism in multiple aspects of 3D facial symmetry and asymmetry defined by spatially dense geometric morphometrics

    PubMed Central

    Claes, Peter; Walters, Mark; Shriver, Mark D; Puts, David; Gibson, Greg; Clement, John; Baynam, Gareth; Verbeke, Geert; Vandermeulen, Dirk; Suetens, Paul

    2012-01-01

    Accurate measurement of facial sexual dimorphism is useful to understanding facial anatomy and specifically how faces influence, and have been influenced by, sexual selection. An important facial aspect is the display of bilateral symmetry, invoking the need to investigate aspects of symmetry and asymmetry separately when examining facial shape. Previous studies typically employed landmarks that provided only a sparse facial representation, where different landmark choices could lead to contrasting outcomes. Furthermore, sexual dimorphism is only tested as a difference of sample means, which is statistically the same as a difference in population location only. Within the framework of geometric morphometrics, we partition facial shape, represented in a spatially dense way, into patterns of symmetry and asymmetry, following a two-factor anova design. Subsequently, we investigate sexual dimorphism in symmetry and asymmetry patterns separately, and on multiple aspects, by examining (i) population location differences as well as differences in population variance-covariance; (ii) scale; and (iii) orientation. One important challenge in this approach is the proportionally high number of variables to observations necessitating the implementation of permutational and computationally feasible statistics. In a sample of gender-matched young adults (18–25 years) with self-reported European ancestry, we found greater variation in male faces than in women for all measurements. Statistically significant sexual dimorphism was found for the aspect of location in both symmetry and asymmetry (directional asymmetry), for the aspect of scale only in asymmetry (magnitude of fluctuating asymmetry) and, in contrast, for the aspect of orientation only in symmetry. Interesting interplays with hypotheses in evolutionary and developmental biology were observed, such as the selective nature of the force underpinning sexual dimorphism and the genetic independence of the structural patterns of fluctuating asymmetry. Additionally, insights into growth patterns of the soft tissue envelope of the face and underlying skull structure can also be obtained from the results. PMID:22702244

  16. Social Complexification and Pig (Sus scrofa) Husbandry in Ancient China: A Combined Geometric Morphometric and Isotopic Approach

    PubMed Central

    Balasse, Marie; Zhao, Chunqing; Gao, Jiangtao; Hu, Yaowu; Yuan, Jing; Vigne, Jean-Denis

    2016-01-01

    Pigs have played a major role in the economic, social and symbolic systems of China since the Early Neolithic more than 8,000 years ago. However, the interaction between the history of pig domestication and transformations in Chinese society since then, have not been fully explored. In this paper, we investigated the co-evolution from the earliest farming communities through to the new political and economic models of state-like societies, up to the Chinese Empire, using 5,000 years of archaeological records from the Xiawanggang (XWG) and Xinzhai (XZ) sites (Henan Province). To trace the changes of pig populations against husbandry practices, we combined the geometric morphometric analysis of dental traits with a study of the stable carbon and nitrogen isotope ratios from bone collagen. The domestication process intensified during the Neolithic Yangshao, prompted by greater selective pressure and/or better herd control against wild introgression. After that, pig farming, in XWG, relied on local livestock and a gradual change of husbandry practices overtime. This was characterized by a gentle increase in millet foddering and animal protein intake, until a complete change over to household management during the Han dynasty. The only rupture in this steady trend of husbandry occurred during the Longshan period, with the appearance of small sized and idiosyncratic pigs with specific feeding practices (relying on millet and household scraps). From three exploratory hypothesis, we explored the possibility of anti-elite pig production in XWG during the Longshan period, as a means to resist incorporation into a new economic model promoting intensified domestic production. This exploratory hypothesis is the most suitable to our dataset; however, numerous areas need to be explored further in order to adequately document the role of pigs in the rise of China’s complex societies. PMID:27384523

  17. Geometric morphometric analysis of intratrackway variability: a case study on theropod and ornithopod dinosaur trackways from Münchehagen (Lower Cretaceous, Germany)

    PubMed Central

    van Heteren, Anneke H.; Wings, Oliver

    2016-01-01

    A profound understanding of the influence of trackmaker anatomy, foot movements and substrate properties is crucial for any interpretation of fossil tracks. In this case study we analyze variability of footprint shape within one large theropod (T3), one medium-sized theropod (T2) and one ornithopod (I1) trackway from the Lower Cretaceous of Münchehagen (Lower Saxony, Germany) in order to determine the informativeness of individual features and measurements for ichnotaxonomy, trackmaker identification, and the discrimination between left and right footprints. Landmark analysis is employed based on interpretative outline drawings derived from photogrammetric data, allowing for the location of variability within the footprint and the assessment of covariation of separate footprint parts. Objective methods to define the margins of a footprint are tested and shown to be sufficiently accurate to reproduce the most important results. The lateral hypex and the heel are the most variable regions in the two theropod trackways. As indicated by principal component analysis, a posterior shift of the lateral hypex is correlated with an anterior shift of the margin of the heel. This pattern is less pronounced in the ornithopod trackway, indicating that variation patterns can differ in separate trackways. In all trackways, hypices vary independently from each other, suggesting that their relative position a questionable feature for ichnotaxonomic purposes. Most criteria commonly employed to differentiate between left and right footprints assigned to theropods are found to be reasonably reliable. The described ornithopod footprints are asymmetrical, again allowing for a left–right differentiation. Strikingly, 12 out of 19 measured footprints of the T2 trackway are stepped over the trackway midline, rendering the trackway pattern a misleading left–right criterion for this trackway. Traditional measurements were unable to differentiate between the theropod and the ornithopod trackways. Geometric morphometric analysis reveals potential for improvement of existing discriminant methods. PMID:27330855

  18. Taxonomic Approach to the Tachinid Flies Dinera carinifrons (Fallén) (Diptera: Tachinidae) and Dinera fuscata Zhang and Shima using Molecular and Morphometric Data

    PubMed Central

    Lutovinovas, Erikas; Malenovský, Igor; Tóthová, Andrea; Ziegler, Joachim; Vaňhara, Jaromír

    2013-01-01

    Molecular phylogenetic and traditional morphometric methods were applied to examine six Palaearctic taxa of the taxonomically difficult tachinid fly genus Dinera Robineau-Desvoidy (Diptera: Tachinidae), with particular reference to D. carinifrons (Fallén) and D. fuscata Zhang and Shima. Results of a phylogenetic analysis based on the mitochondrial markers 12S and 16S rDNA and multivariate statistical analyses of 19 morphometric characters were used to delimit both species. A lectotype was designated for D. carinifrons to stabilize the nomenclature in the group. Dinera carinifrons has a transpalaearctic distribution and is present in Central Europe, especially in high altitudes of the Alps. It differs from the similar and closely related D. fuscata in that it has a slightly larger body size, a dense greyish microtrichosity on the body, and different head proportions. Dinera fuscata, as delimited here, is widespread in the Palaearctic region, including Europe. Slight differences in both molecular and morphometric characters were found between western (Europe and Iran) and eastern (China and Japan) populations of D. fuscata, which are interpreted as an intraspecific variation. Differential diagnosis between D. carinifrons and D. fuscata is provided in the form of a revised portion of the determination key to the Palaearctic Dinera by Zhang and Shima (2006). PMID:24787238

  19. Morphometric magnetic resonance imaging and genetic testing in cerebellar abiotrophy in Arabian horses

    PubMed Central

    2013-01-01

    Background Cerebellar abiotrophy (CA) is a rare but significant disease in Arabian horses caused by progressive death of the Purkinje cells resulting in cerebellar ataxia characterized by a typical head tremor, jerky head movements and lack of menace response. The specific role of magnetic resonance imaging (MRI) to support clinical diagnosis has been discussed. However, as yet MR imaging has only been described in one equine CA case. The role of MR morphometry in this regard is currently unknown. Due to the hereditary nature of the disease, genetic testing can support the diagnosis of CA. Therefore, the objective of this study was to perform MR morphometric analysis and genetic testing in four CA-affected Arabian horses and one German Riding Pony with purebred Arabian bloodlines in the third generation. Results CA was diagnosed pathohistologically in the five affected horses (2 months - 3 years) supported by clinical signs, necropsy, and genetic testing which confirmed the TOE1:g.2171G>A SNP genotype A/A in all CA-affected horses. On MR images morphometric analysis of the relative cerebellar size and relative cerebellar cerebrospinal fluid (CSF) space were compared to control images of 15 unaffected horses. It was demonstrated that in MR morphometric analyses, CA affected horses displayed a relatively smaller cerebellum compared to the entire brain mass than control animals (P = 0.0088). The relative cerebellar CSF space was larger in affected horses (P = 0.0017). Using a cut off value of 11.0% for relative cerebellar CSF space, the parameter differentiated between CA-affected horses and controls with a sensitivity of 100% and a specificity of 93.3%. Conclusions In conclusion, morphometric MRI and genetic analysis could be helpful to support the diagnosis of CA in vivo. PMID:23702154

  20. Aneurysms of the anterior and posterior cerebral circulation: comparison of the morphometric features.

    PubMed

    Tykocki, Tomasz; Kostkiewicz, Bogusław

    2014-09-01

    Intracranial aneurysms (IAs) located in the posterior circulation are considered to have higher annual bleed rates than those in the anterior circulation. The aim of the study was to compare the morphometric factors differentiating between IAs located in the anterior and posterior cerebral circulation. A total number of 254 IAs diagnosed between 2009 and 2012 were retrospectively analyzed. All patients qualified for diagnostic, three-dimensional rotational angiography. IAs were assigned to either the anterior or posterior cerebral circulation subsets for the analysis. Means were compared with a t-test. The univariate and stepwise logistic regression analyses were used to determine the predictors of morphometric differences between the groups. For the defined predictors, ROC (receiver-operating characteristic) curves and interactive dot diagrams were calculated with the cutoff values of the morphometric factors. The number of anterior cerebral circulation IAs was 179 (70.5 %); 141 (55.5 %) aneurysms were ruptured. Significant differences between anterior and posterior circulation IAs were found for: the parent artery size (5.08 ± 1.8 mm vs. 3.95 ± 1.5 mm; p < 0.05), size ratio (2.22 ± 0.9 vs. 3.19 ± 1.8; p < 0.045) and aspect ratio (AR) (1.91 ± 0.8 vs. 2.75 ± 1.8; p = 0.02). Predicting factors differentiating anterior and posterior circulation IAs were: the AR (OR = 2.20; 95 % CI 1.80-270; Is 270 correct or should it be 2.70 and parent artery size (OR = 0.44; 95 % CI 0.38-0.54). The cutoff point in the ROC curve was 2.185 for the AR and 4.89 mm for parent artery size. Aspect ratio and parent artery size were found to be predictive morphometric factors in differentiating between anterior and posterior cerebral IAs.

  1. Ejaculate fractioning effect on llama sperm head morphometry as assessed by the ISAS(®) CASA system.

    PubMed

    Soler, C; Sancho, M; García, A; Fuentes, Mc; Núñez, J; Cucho, H

    2014-02-01

    South American camelid sperm characteristics are poorly known compared with those of other domestic animals. The long-term duration of ejaculation makes difficult to gather all the seminal fluid, implying possible ejaculation portion losses. Thus, the aim of this research was to evaluate the characteristics of the morphology and morphometry of the spermatozoa change during ejaculation. The morphometric characterization was tested on nine specimens of the Lanuda breed, using a special artificial vagina. In five of the animals, a fractioning of the ejaculate was performed by taking samples every 5 min. for a total of 20 min. Air-dried seminal smears were stained with Hemacolor and mounted permanently with Eukitt. Morphometric analysis was carried out with the morphometry module of the ISAS(®) CASA system. Almost 350 cells were analysed per sample, with a total number of 3207 spermatozoa. Mean values were given as follows: length: 5.51 μm; width: 3.38 μm; area: 17.75 μm(2) ; perimeter: 14.8 μm; ellipticity: 0.24; elongation: 0.56; rugosity: 0.87; regularity: 1.07; and shape factor: 1.41. Different animals showed differences in their morphometric values. When we compared the values from different fractions, only two samples showed differences in morphometric parameter values and four samples showed differences in shape parameters. Multivariate analysis allowed the size classification of the cells into three classes and five classes of shapes. The distribution of classes among fractions showed no differences. Despite the individual morphometric differences observed in some fractions, the characteristics of the sperm head morphometry can be considered constant along the ejaculatory period in the llama. © 2013 Blackwell Verlag GmbH.

  2. Morphological analyses suggest a new taxonomic circumscription for Hymenaea courbaril L. (Leguminosae, Caesalpinioideae)

    PubMed Central

    Souza, Isys Mascarenhas; Funch, Ligia Silveira; de Queiroz, Luciano Paganucci

    2014-01-01

    Abstract Hymenaea is a genus of the Resin-producing Clade of the tribe Detarieae (Leguminosae: Caesalpinioideae) with 14 species. Hymenaea courbaril is the most widespread species of the genus, ranging from southern Mexico to southeastern Brazil. As currently circumscribed, Hymenaea courbaril is a polytypic species with six varieties: var. altissima, var. courbaril, var. longifolia, var. stilbocarpa, var. subsessilis, and var. villosa. These varieties are distinguishable mostly by traits related to leaflet shape and indumentation, and calyx indumentation. We carried out morphometric analyses of 14 quantitative (continuous) leaf characters in order to assess the taxonomy of Hymenaea courbaril under the Unified Species Concept framework. Cluster analysis used the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on Bray-Curtis dissimilarity matrices. Principal Component Analyses (PCA) were carried out based on the same morphometric matrix. Two sets of Analyses of Similarity and Non Parametric Multivariate Analysis of Variance were carried out to evaluate statistical support (1) for the major groups recovered using UPGMA and PCA, and (2) for the varieties. All analyses recovered three major groups coincident with (1) var. altissima, (2) var. longifolia, and (3) all other varieties. These results, together with geographical and habitat information, were taken as evidence of three separate metapopulation lineages recognized here as three distinct species. Nomenclatural adjustments, including reclassifying formerly misapplied types, are proposed. PMID:25009440

  3. Morphological analyses suggest a new taxonomic circumscription for Hymenaea courbaril L. (Leguminosae, Caesalpinioideae).

    PubMed

    Souza, Isys Mascarenhas; Funch, Ligia Silveira; de Queiroz, Luciano Paganucci

    2014-01-01

    Hymenaea is a genus of the Resin-producing Clade of the tribe Detarieae (Leguminosae: Caesalpinioideae) with 14 species. Hymenaea courbaril is the most widespread species of the genus, ranging from southern Mexico to southeastern Brazil. As currently circumscribed, Hymenaea courbaril is a polytypic species with six varieties: var. altissima, var. courbaril, var. longifolia, var. stilbocarpa, var. subsessilis, and var. villosa. These varieties are distinguishable mostly by traits related to leaflet shape and indumentation, and calyx indumentation. We carried out morphometric analyses of 14 quantitative (continuous) leaf characters in order to assess the taxonomy of Hymenaea courbaril under the Unified Species Concept framework. Cluster analysis used the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on Bray-Curtis dissimilarity matrices. Principal Component Analyses (PCA) were carried out based on the same morphometric matrix. Two sets of Analyses of Similarity and Non Parametric Multivariate Analysis of Variance were carried out to evaluate statistical support (1) for the major groups recovered using UPGMA and PCA, and (2) for the varieties. All analyses recovered three major groups coincident with (1) var. altissima, (2) var. longifolia, and (3) all other varieties. These results, together with geographical and habitat information, were taken as evidence of three separate metapopulation lineages recognized here as three distinct species. Nomenclatural adjustments, including reclassifying formerly misapplied types, are proposed.

  4. Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae).

    PubMed

    Bueno-Silva, Marlus; Boeger, Walter A; Pie, Marcio R

    2011-05-01

    We investigated how Gyrodactylus corydoriBueno-Silva and Boeger, 2009 exploits two sympatric host species, Corydoras paleatus (Jenyns, 1842) and Corydoras ehrhardti Steindachner, 1910. Specimens of G. corydori were collected from the Piraquara and Miringuava Rivers, State of Paraná, Brazil, between 2005 and 2006. A total of 167 parasites was measured from both host species. Nine morphometric features of the haptoral sclerites were measured and analyzed by discriminant analysis, cluster analysis and multivariate analysis of variance. A fragment of the mitochondrial cytochrome oxidase I gene (COI) (∼740 bp) and the rDNA internal transcribed spacers (ITS) (∼1200 bp) of G. corydori were sequenced. Bayesian and parsimony analyses of COI recognized two genetically structured clades of G. corydori, which corresponded closely with the two species of Corydoras. Twenty-eight haplotypes were detected (18 were exclusive to C. ehrhardti and seven were exclusive to C. paleatus). The same general pattern between parasites and host species was observed in the morphometric analyses. Nevertheless, poor correlation of genetic and morphometric variation strongly supports the plastic nature of the morphological variation of haptoral sclerites. The existence of two clades with limited gene flow would suggest that G. corydori already represents two cryptic species. However, the morphometric and molecular data showed that there is insufficient evidence to support two valid species. The low COI (0.1-6.2%) and ITS (0.09-3.5%) divergence within G. corydori suggest a recent separation of the lineages between distinct host species (less than 1 million years). As the hypothesis of secondary contact of the parasite demographic history was rejected, our results point to the possibility of sympatric incipient ongoing speciation of G. corydori to form distinct parasite lineages adapted to C. ehrhardti and C. paleatus. This may be a common event within the Gyrodactylidae, adding a yet unreported mode of adaptive speciation that helps to understand its rate of diversification. Copyright © 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Distribution and predictors of wing shape and size variability in three sister species of solitary bees

    PubMed Central

    Prunier, Jérôme G.; Dewulf, Alexandre; Kuhlmann, Michael; Michez, Denis

    2017-01-01

    Morphological traits can be highly variable over time in a particular geographical area. Different selective pressures shape those traits, which is crucial in evolutionary biology. Among these traits, insect wing morphometry has already been widely used to describe phenotypic variability at the inter-specific level. On the contrary, fewer studies have focused on intra-specific wing morphometric variability. Yet, such investigations are relevant to study potential convergences of variation that could highlight micro-evolutionary processes. The recent sampling and sequencing of three solitary bees of the genus Melitta across their entire species range provides an excellent opportunity to jointly analyse genetic and morphometric variability. In the present study, we first aim to analyse the spatial distribution of the wing shape and centroid size (used as a proxy for body size) variability. Secondly, we aim to test different potential predictors of this variability at both the intra- and inter-population levels, which includes genetic variability, but also geographic locations and distances, elevation, annual mean temperature and precipitation. The comparison of spatial distribution of intra-population morphometric diversity does not reveal any convergent pattern between species, thus undermining the assumption of a potential local and selective adaptation at the population level. Regarding intra-specific wing shape differentiation, our results reveal that some tested predictors, such as geographic and genetic distances, are associated with a significant correlation for some species. However, none of these predictors are systematically identified for the three species as an important factor that could explain the intra-specific morphometric variability. As a conclusion, for the three solitary bee species and at the scale of this study, our results clearly tend to discard the assumption of the existence of a common pattern of intra-specific signal/structure within the intra-specific wing shape and body size variability. PMID:28273178

  6. Thin-plate spline analysis of the cranial base in African, Asian and European populations and its relationship with different malocclusions.

    PubMed

    Rosas, Antonio; Bastir, Markus; Alarcón, Jose Antonio; Kuroe, Kazuto

    2008-09-01

    To test the hypothesis that midline basicranial orientation and posterior cranial base length are discriminating factors between adults of different populations and its potential maxillo/mandibular disharmonies. Twenty-nine 2D landmarks of the midline cranial base, the face and the mandible of dry skull X-rays from three major populations (45 Asians, 34 Africans, 64 Europeans) were digitized and analysed by geometric morphometrics. We used, first, MANOVA to test for mean shape differences between populations; then, principal components analysis (PCA) to assess the overall variation in the sample and finally, canonical variate analysis (CVA) with jack-knife validations (N=1000) to analyse the anatomical features that best distinguished among populations. Significant mean shapes differences were shown between populations (P<0.001). CVA revealed two significant axes of discrimination (P<0.001). Jack-knife validation correctly identified 92% of 15,000 unknowns. In Africans the whole cranial base is rotated into a forward-downward position, while in Asians it is rotated in the opposite way. The Europeans occupied an intermediate position. African and Asian samples showed a maxillo/mandibular prognathism. African prognathism was produced by an anterior positioned maxilla, Asian prognathism by retruded anterior cranial base and increase of the posterior cranial base length. Europeans showed a trend towards retracted mandibles with relatively shorter posterior cranial bases. The results supported the hypothesis that basicranial orientation and posterior cranial base length are valid factors to distinguish between geographic groups. The whole craniofacial configuration underlying a particular maxillo-facial disharmony must be considered in diagnosis, growth predictions and resulting treatment planning.

  7. Virtual reconstruction of modern and fossil hominoid crania: consequences of reference sample choice.

    PubMed

    Senck, Sascha; Bookstein, Fred L; Benazzi, Stefano; Kastner, Johann; Weber, Gerhard W

    2015-05-01

    Most hominin cranial fossils are incomplete and require reconstruction prior to subsequent analyses. Missing data can be estimated by geometric morphometrics using information from complete specimens, for example, by using thin-plate splines. In this study, we estimate missing data in several virtually fragmented models of hominoid crania (Homo, Pan, Pongo) and fossil hominins (e.g., Australopithecus africanus, Homo heidelbergensis). The aim is to investigate in which way different references influence estimations of cranial shape and how this information can be employed in the reconstruction of fossils. We used a sample of 64 three-dimensional digital models of complete human, chimpanzee, and orangutan crania and a set of 758 landmarks and semilandmarks. The virtually knocked out neurocranial and facial areas that were reconstructed corresponded to those of a real case found in A.L. 444-2 (A. afarensis) cranium. Accuracy of multiple intraspecies and interspecies reconstructions was computed as the maximum square root of the mean squared difference between the original and the reconstruction (root mean square). The results show that the uncertainty in reconstructions is a function of both the geometry of the knockout area and the dissimilarity between the reference sample and the specimen(s) undergoing reconstruction. We suggest that it is possible to estimate large missing cranial areas if the shape of the reference is similar enough to the shape of the specimen reconstructed, though caution must be exercised when employing these reconstructions in subsequent analyses. We provide a potential guide for the choice of the reference by means of bending energy. © 2015 Wiley Periodicals, Inc.

  8. Calcified cartilage shape in archosaur long bones reflects overlying joint shape in stress-bearing elements: Implications for nonavian dinosaur locomotion.

    PubMed

    Bonnan, Matthew F; Sandrik, Jennifer L; Nishiwaki, Takahiko; Wilhite, D Ray; Elsey, Ruth M; Vittore, Christopher

    2010-12-01

    In nonavian dinosaur long bones, the once-living chondroepiphysis (joint surface) overlay a now-fossilized calcified cartilage zone. Although the shape of this zone is used to infer nonavian dinosaur locomotion, it remains unclear how much it reflects chondroepiphysis shape. We tested the hypothesis that calcified cartilage shape reflects the overlying chondroepiphysis in extant archosaurs. Long bones with intact epiphyses from American alligators (Alligator mississippiensis), helmeted guinea fowl (Numida meleagris), and juvenile ostriches (Struthio camelus) were measured and digitized for geometric morphometric (GM) analyses before and after chondroepiphysis removal. Removal of the chondroepiphysis resulted in significant element truncation in all examined taxa, but the amount of truncation decreased with increasing size. GM analyses revealed that Alligator show significant differences between chondroepiphysis shape and the calcified cartilage zone in the humerus, but display nonsignificant differences in femora of large individuals. In Numida, GM analysis shows significant shape differences in juvenile humeri, but humeri of adults and the femora of all guinea fowl show no significant shape difference. The juvenile Struthio sample showed significant differences in both long bones, which diminish with increasing size, a pattern confirmed with magnetic resonance imaging scans in an adult. Our data suggest that differences in extant archosaur long bone shape are greater in elements not utilized in locomotion and related stress-inducing activities. Based on our data, we propose tentative ranges of error for nonavian dinosaur long bone dimensional measurements. We also predict that calcified cartilage shape in adult, stress-bearing nonavian dinosaur long bones grossly reflects chondroepiphysis shape.

  9. Comparative multivariate analysis of biometric traits of West African Dwarf and Red Sokoto goats.

    PubMed

    Yakubu, Abdulmojeed; Salako, Adebowale E; Imumorin, Ikhide G

    2011-03-01

    The population structure of 302 randomly selected West African Dwarf (WAD) and Red Sokoto (RS) goats was examined using multivariate morphometric analyses. This was to make the case for conservation, rational management and genetic improvement of these two most important Nigerian goat breeds. Fifteen morphometric measurements were made on each individual animal. RS goats were superior (P<0.05) to the WAD for the body size and skeletal proportions investigated. The phenotypic variability between the two breeds was revealed by their mutual responses in the principal components. While four principal components were extracted for WAD goats, three components were obtained for their RS counterparts with variation in the loading traits of each component for each breed. The Mahalanobis distance of 72.28 indicated a high degree of spatial racial separation in morphology between the genotypes. The Ward's option of the cluster analysis consolidated the morphometric distinctness of the two breeds. Application of selective breeding to genetic improvement would benefit from the detected phenotypic differentiation. Other implications for management and conservation of the goats are highlighted.

  10. Phenotypes of intermediate forms of Fasciola hepatica and F. gigantica in buffaloes from Central Punjab, Pakistan.

    PubMed

    Afshan, K; Valero, M A; Qayyum, M; Peixoto, R V; Magraner, A; Mas-Coma, S

    2014-12-01

    Fascioliasis is an important food-borne parasitic disease caused by the two trematode species, Fasciola hepatica and Fasciola gigantica. The phenotypic features of fasciolid adults and eggs infecting buffaloes inhabiting the Central Punjab area, Pakistan, have been studied to characterize fasciolid populations involved. Morphometric analyses were made with a computer image analysis system (CIAS) applied on the basis of standardized measurements. Since it is the first study of this kind undertaken in Pakistan, the results are compared to pure fasciolid populations: (a) F. hepatica from the European Mediterranean area; and (b) F. gigantica from Burkina Faso; i.e. geographical areas where both species do not co-exist. Only parasites obtained from bovines were used. The multivariate analysis showed that the characteristics, including egg morphometrics, of fasciolids from Central Punjab, Pakistan, are between F. hepatica and F. gigantica standard populations. Similarly, the morphometric measurements of fasciolid eggs from Central Punjab are also between F. hepatica and F. gigantica standard populations. These results demonstrate the existence of fasciolid intermediate forms in endemic areas in Pakistan.

  11. Estimating the use of morphometric measurements from museum specimens for sex determination in Mountain Plovers (Charadrius montanus)

    USGS Publications Warehouse

    Iko, W.M.; Dinsmore, S.J.; Knopf, F.L.

    2004-01-01

    The Mountain Plover (Charadrius montanus) is a shorebird species endemic to the dry, terrestrial ecosystems of the Great Plains and southwestern United States. Breeding Bird Survey data suggest that Mountain Plover populations have declined by >60% in the last 30 years. A better understanding of the population dynamics of the Mountain Plover is important in determining future management goals for this species. However, this effort is hampered by the inability to determine the sex of Mountain Plovers accurately under field conditions. In an effort to develop a simple method for sexing plovers in the hand, we measured external morphometric characteristics from 190 museum specimens of adult Mountain Plovers in alternate (breeding) plumage. Logistic regression and discriminant function analyses were performed on 10 external morphometric measurements (lengths of unflattened wing chord, 10th primary, central rectrix, outer rectrix, total head length, exposed culmen, culmen, bill depth, bill width, and tarsus). The results of these analyses indicated that Mountain Plover sexes were similar for all measures except culmen length. However, further analysis determined that culmen length accurately predicted sex in less than two-thirds of the specimens, suggesting that this measure is a poor predictor of sex in Mountain Plovers. Structurally, Mountain Plovers appear to be nearly identical between the sexes, and other methods of sexing birds (e.g., plumage characteristics, behavioral observations, or molecular markers) should be further assessed for devising a simple method for sexing Mountain Plovers under field conditions.

  12. A revision of chiggers of the minuta species-group (Acari: Trombiculidae: Neotrombicula Hirst, 1925) using multivariate morphometrics.

    PubMed

    Stekolnikov, Alexandr A; Klimov, Pavel B

    2010-09-01

    We revise chiggers belonging to the minuta-species group (genus Neotrombicula Hirst, 1925) from the Palaearctic using size-free multivariate morphometrics. This approach allowed us to resolve several diagnostic problems. We show that the widely distributed Neotrombicula scrupulosa Kudryashova, 1993 forms three spatially and ecologically isolated groups different from each other in size or shape (morphometric property) only: specimens from the Caucasus are distinct from those from Asia in shape, whereas the Asian specimens from plains and mountains are different from each other in size. We developed a multivariate classification model to separate three closely related species: N. scrupulosa, N. lubrica Kudryashova, 1993 and N. minuta Schluger, 1966. This model is based on five shape variables selected from an initial 17 variables by a best subset analysis using a custom size-correction subroutine. The variable selection procedure slightly improved the predictive power of the model, suggesting that it not only removed redundancy but also reduced 'noise' in the dataset. The overall classification accuracy of this model is 96.2, 96.2 and 95.5%, as estimated by internal validation, external validation and jackknife statistics, respectively. Our analyses resulted in one new synonymy: N. dimidiata Stekolnikov, 1995 is considered to be a synonym of N. lubrica. Both N. scrupulosa and N. lubrica are recorded from new localities. A key to species of the minuta-group incorporating results from our multivariate analyses is presented.

  13. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism.

    PubMed

    Fernández, Peter J; Holowka, Nicholas B; Demes, Brigitte; Jungers, William L

    2016-07-28

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as "dorsal doming" are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2-5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism.

  14. A Morphometric Assessment of the Intended Function of Cached Clovis Points

    PubMed Central

    Buchanan, Briggs; Kilby, J. David; Huckell, Bruce B.; O'Brien, Michael J.; Collard, Mark

    2012-01-01

    A number of functions have been proposed for cached Clovis points. The least complicated hypothesis is that they were intended to arm hunting weapons. It has also been argued that they were produced for use in rituals or in connection with costly signaling displays. Lastly, it has been suggested that some cached Clovis points may have been used as saws. Here we report a study in which we morphometrically compared Clovis points from caches with Clovis points recovered from kill and camp sites to test two predictions of the hypothesis that cached Clovis points were intended to arm hunting weapons: 1) cached points should be the same shape as, but generally larger than, points from kill/camp sites, and 2) cached points and points from kill/camp sites should follow the same allometric trajectory. The results of the analyses are consistent with both predictions and therefore support the hypothesis. A follow-up review of the fit between the results of the analyses and the predictions of the other hypotheses indicates that the analyses support only the hunting equipment hypothesis. We conclude from this that cached Clovis points were likely produced with the intention of using them to arm hunting weapons. PMID:22348012

  15. Noninvasive imaging of bone microarchitecture

    PubMed Central

    Patsch, Janina M.; Burghardt, Andrew J.; Kazakia, Galateia; Majumdar, Sharmila

    2015-01-01

    The noninvasive quantification of peripheral compartment-specific bone microarchitecture is feasible with high-resolution peripheral quantitative computed tomography (HR-pQCT) and high-resolution magnetic resonance imaging (HR-MRI). In addition to classic morphometric indices, both techniques provide a suitable basis for virtual biomechanical testing using finite element (FE) analyses. Methodical limitations, morphometric parameter definition, and motion artifacts have to be considered to achieve optimal data interpretation from imaging studies. With increasing availability of in vivo high-resolution bone imaging techniques, special emphasis should be put on quality control including multicenter, cross-site validations. Importantly, conclusions from interventional studies investigating the effects of antiosteoporotic drugs on bone microarchitecture should be drawn with care, ideally involving imaging scientists, translational researchers, and clinicians. PMID:22172043

  16. Toward Understanding the Mammalian Zygoma: Insights From Comparative Anatomy, Growth and Development, and Morphometric Analysis.

    PubMed

    Márquez, Samuel; Pagano, Anthony S; Schwartz, Jeffrey H; Curtis, Abigail; Delman, Bradley N; Lawson, William; Laitman, Jeffrey T

    2017-01-01

    The zygoma, or jugum, is a cranial element that was present in Mesozoic tetrapods, well before the appearance of mammals. Although as an entity the zygoma is a primitive retention among mammals, it has assumed myriad configurations as this group diversified. As the zygoma is located at the intersection of the visual, respiratory, and masticatory apparatuses, it is potentially of great importance in systematic, phylogenetic, and functional studies focused on this region. For example, the facial component of the zygoma and its contribution to a postorbital bar (POB) appear to be relevant to the systematics of a number of mammalian subclades, and the formation of a bony postorbital septum (POS) that separates the orbit from the infratemporal fossa is unique to, and thus potentially phylogenetically significant for uniting anthropoid primates, while the zygoma itself appears to serve to resist tension and bending forces during mastication. In order to better understand the zygoma in the context of its contributions to the circumorbital region, we documented its morphological expression in specimens representing 10 orders of mammals. Since the presence of a POB and of a POS has long been used to justify uniting extant primates and anthropoid primates as respective clades, and because postorbital closure (POC) is morphologically more complex than a POB, we provide detail necessary to address these claims. Our taxically broad overview also allowed us to provide for the first time definitions of configurations that can be applied to future studies. Using a different, but also taxically broad sample of mammals, and of primates in particular, we performed two geometric morphometric analyses that were geared toward testing long-held interpretations of the functional role of the zygoma, especially with regard to mastication and in the context of orbital frontation (to which the zygoma contributes). Further, overall, zygomatic morphology tends not to scale with allometry, sexual dimorphism, or angle of orbital convergence, but it does contribute to unique patterns of intraspecies variation. Anat Rec, 300:76-151, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Sost deficiency does not alter bone's lacunar or vascular porosity in mice

    NASA Astrophysics Data System (ADS)

    Mosey, Henry; Núñez, Juan A.; Goring, Alice; Clarkin, Claire E.; Staines, Katherine A.; Lee, Peter D.; Pitsillides, Andrew A.; Javaheri, Behzad

    2017-09-01

    SCLEROSTIN (Sost) is expressed predominantly in osteocytes acting as a negative regulator of bone formation. In humans, mutations in the SOST gene lead to skeletal overgrowth and increased bone mineral density, suggesting that SCLEROSTIN is a key regulator of bone mass. The function of SCLEROSTIN as an inhibitor of bone formation is further supported by Sost knockout (KO) mice which display a high bone mass with elevated bone formation. Previous studies have indicated that Sost exerts its effect on bone formation through Wnt-mediated regulation of osteoblast differentiation, proliferation and activity. Recent in vitro studies have also suggested that SCLEROSTIN regulates angiogenesis and osteoblast-to-osteocyte transition. Despite this wealth of knowledge of the mechanisms responsible for SCLEROSTIN action, no previous studies have examined whether SCLEROSTIN regulates osteocyte and vascular configuration in cortices of mouse tibia. Herein, we image tibiae from Sost KO mice and their wild-type (WT) counterparts with high resolution CT to examine whether lack of SCLEROSTIN influences the morphometric properties of lacunae and vascular canal porosity relating to osteocytes and vessels within cortical bone. Male Sost KO and WT mice (n = 6 /group) were sacrificed at 12 weeks of age. Fixed tibiae were analysed using microCT to examine cortical bone mass and architecture. Then, samples were imaged by using benchtop and synchrotron nanoCT at the tibiofibular junction. Our data, consistent with previous studies show that, Sost deficiency leads to significant enhancement of bone mass by cortical thickening and bigger cross-sectional area and we find that this occurs without modifications of tibial ellipticity, a measure of bone shape. In addition, our data show that there are no significant differences in any lacunar or vascular morphometric or geometric parameters between Sost KO mouse tibia and WT counterparts. We therefore conclude that the significant increases in bone mass induced by Sost deficiency are not accompanied by any significant modification in the density, organisation or shape of osteocyte lacunae or vascular content within the cortical bone. These data may imply that SCLEROSTIN does not modify the frequency of osteocytogenic recruitment of osteoblasts to initiate terminal osteocytic differentiation in mice.

  18. Cytogenetic and morphologic approaches of hybrids from experimental crosses between Triatoma lenti Sherlock & Serafim, 1967 and T. sherlocki Papa et al., 2002 (Hemiptera: Reduviidae).

    PubMed

    Mendonça, Vagner José; Alevi, Kaio Cesar Chaboli; Medeiros, Lívia Maria de Oliveira; Nascimento, Juliana Damieli; de Azeredo-Oliveira, Maria Tercília Vilela; da Rosa, João Aristeu

    2014-08-01

    The reproductive capacity between Triatoma lenti and Triatoma sherlocki was observed in order to verify the fertility and viability of the offspring. Cytogenetic, morphological and morphometric approaches were used to analyze the differences that were inherited. Experimental crosses were performed in both directions. The fertility rate of the eggs in crosses involving T. sherlocki females was 65% and 90% in F1 and F2 offspring, respectively. In reciprocal crosses, it was 7% and 25% in F1 and F2 offspring, respectively. The cytogenetic analyses of the male meiotic process of the hybrids were performed using lacto-acetic orcein, C-banding and Feulgen techniques. The male F1 offspring presented normal chromosome behavior, a finding that was similar to those reported in parental species. However, cytogenetic analysis of F2 offspring showed errors in chromosome pairing. This post-zygotic isolation, which prevents hybrids in nature, may represent the collapse of the hybrid. This phenomenon is due to a genetic dysregulation that occurs in the chromosomes of F1. The results were similar in the hybrids from both crosses. Morphological features, such as color and size of connexive and the presence of red-orange rings on the femora, were similar to T. sherlocki, while wins size was similar to T. lenti in F1 offspring. The eggshells showed characteristics that were similar to species of origin, whereas the median process of the pygophore resulted in intermediate characteristics in the F1 and a segregating pattern in F2 offspring. Geometric morphometric techniques used on the wings showed that both F1 and F2 offspring were similar to T. lenti. These studies on the reproductive capacity between T. lenti and T. sherlocki confirm that both species are evolutionarily closed; hence, they are included in the brasiliensis subcomplex. The extremely reduced fertility observed in the F2 hybrids confirmed the specific status of the species that were analyzed. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Morphometric comparisons of Diaphorina citri (Hemiptera: Liviidae) populations from Iran, USA and Pakistan

    PubMed Central

    Lashkari, Mohammadreza; Hentz, Matthew G.

    2015-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), vector of citrus greening disease pathogen, Huanglongbing (HLB), is considered the most serious pest of citrus in the world. Prior molecular based studies have hypothesized a link between the D. citri in Iran and the USA (Florida). The purpose of this study was to collect morphometric data from D. citri populations from Iran (mtCOI haplotype-1), Florida (mtCOI haplotype-1), and Pakistan (mtCOI haplotype-6), to determine whether different mtCOI haplotypes have a relationship to a specific morphometric variation. 240 samples from 6 ACP populations (Iran—Jiroft, Chabahar; Florida—Ft. Pierce, Palm Beach Gardens, Port St. Lucie; and Pakistan—Punjab) were collected for comparison. Measurements of 20 morphological characters were selected, measured and analysed using ANOVA and MANOVA. The results indicate differences among the 6 ACP populations (Wilks’ lambda = 0.0376, F = 7.29, P < 0.0001). The body length (BL), circumanal ring length (CL), antenna length (AL), forewing length (WL) and Rs vein length of forewing (RL) were the most important characters separating the populations. The cluster analysis showed that the Iran and Florida populations are distinct from each other but separate from the Pakistan population. Thus, three subgroups can be morphologically discriminated within D. citri species in this study, (1) Iran, (2) USA (Florida) and (3) Pakistan population. Morphometric comparisons provided further resolution to the mtCOI haplotypes and distinguished the Florida and Iranian populations. PMID:26038715

  20. Morphometric comparisons of Diaphorina citri (Hemiptera: Liviidae) populations from Iran, USA and Pakistan.

    PubMed

    Lashkari, Mohammadreza; Hentz, Matthew G; Boykin, Laura M

    2015-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), vector of citrus greening disease pathogen, Huanglongbing (HLB), is considered the most serious pest of citrus in the world. Prior molecular based studies have hypothesized a link between the D. citri in Iran and the USA (Florida). The purpose of this study was to collect morphometric data from D. citri populations from Iran (mtCOI haplotype-1), Florida (mtCOI haplotype-1), and Pakistan (mtCOI haplotype-6), to determine whether different mtCOI haplotypes have a relationship to a specific morphometric variation. 240 samples from 6 ACP populations (Iran-Jiroft, Chabahar; Florida-Ft. Pierce, Palm Beach Gardens, Port St. Lucie; and Pakistan-Punjab) were collected for comparison. Measurements of 20 morphological characters were selected, measured and analysed using ANOVA and MANOVA. The results indicate differences among the 6 ACP populations (Wilks' lambda = 0.0376, F = 7.29, P < 0.0001). The body length (BL), circumanal ring length (CL), antenna length (AL), forewing length (WL) and Rs vein length of forewing (RL) were the most important characters separating the populations. The cluster analysis showed that the Iran and Florida populations are distinct from each other but separate from the Pakistan population. Thus, three subgroups can be morphologically discriminated within D. citri species in this study, (1) Iran, (2) USA (Florida) and (3) Pakistan population. Morphometric comparisons provided further resolution to the mtCOI haplotypes and distinguished the Florida and Iranian populations.

  1. Effects of environmental enrichment on blood vessels in the optic tract of malnourished rats: A morphological and morphometric analysis.

    PubMed

    Barbosa, Everton Horiquini; Soares, Roberto Oliveira; Braga, Natália Nassif; Almeida, Sebastião de Sousa; Lachat, João-José

    2016-06-01

    This study aimed to compare the effects of environmental enrichment in nourished (on a diet containing 16% protein) and malnourished (on a diet containing 6% protein) rats during the critical period of brain development, specifically focusing on the optic nerve. By means of morphologic and morphometric assessment of the optic nerve, we analyzed the changes caused by diet and stimulation (environmental enrichment) on postnatal day 35, a time point ideal for such morphological analysis since developmental processes are considered complete at this age. Malnourished animals presented low body and brain weights and high body-to-brain weight ratio compared to well-nourished rats. Furthermore, malnourished animals showed morphological changes in the optic nerve such as edema and vacuolization characterized by increased interstitial space. The malnourished-stimulated group presented lesions characteristic of early protein malnutrition but were milder than lesions exhibited by malnourished-non-stimulated group. The morphometric analysis revealed no difference in glial cell density between groups, but there was significantly higher blood vessel density in the stimulated rats, independent of their nutritional condition. Our data indicate that protein malnutrition imposed during the critical period of brain development alters the cytoarchitecture of the optic nerve. In addition, we affirm that a 1-hour exposure to an enriched environment everyday was sufficient for tissue preservation in rats maintained on a low-protein diet. This protective effect might be related to angiogenesis, as confirmed by the increased vascular density observed in morphometric analyses.

  2. Liver transplantation in man: morphometric analysis of the parenchymal alterations following cold ischaemia and warm ischaemia/reperfusion

    PubMed Central

    VIZZOTTO, LAURA; VERTEMATI, MAURIZIO; DEGNA, CARLO TOMMASINI; ASENI, PAOLO

    2001-01-01

    Ischaemia and reperfusion phases represent critical events during liver transplantation. The purpose of this study was to describe morphological alterations of both vascular and parenchymal compartments after ischaemia and reperfusion and to evaluate the possible relationship between morphometric parameters and biochemical/clinical data. Three needle biopsies were drawn from 20 patients who underwent orthotopic liver transplantation. The first biopsy was taken before flushing with preservation solution, and the second and the third to evaluate respectively the effects of cold ischaemia and of warm ischaemia/reperfusion. Biopsies were examined by an image analyser and morphometric parameters related to the liver parenchyma were evaluated. At the second biopsy we observed a decrease of the endothelium volume fraction while the same parameter referred to the sinusoidal lumen achieved a peak value. The hepatocytes showed a lower surface parenchymal/vascular sides ratio. This parameter was reversed at the end of the reperfusion phase; furthermore the third biopsy revealed endothelial swelling and a decreased volume fraction of the sinusoidal lumen. The results quantify the damage to the sinusoidal bed which, as already known, is one of the main targets of cold ischaemia; warm ischaemia and reperfusion accentuate endothelial damage. The end of transplantation is characterised by damage chiefly to parenchymal cells. Hepatocytes show a rearrangement of their surface sides, probably related to the alterations of the sinusoidal bed. In addition, the fluctuations of morphometric parameters during ischaemia/reperfusion correlate positively with biochemical data and clinical course of the patients. PMID:11430699

  3. Sensitivity analysis of static resistance of slender beam under bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valeš, Jan

    2016-06-08

    The paper deals with statical and sensitivity analyses of resistance of simply supported I-beams under bending. The resistance was solved by geometrically nonlinear finite element method in the programme Ansys. The beams are modelled with initial geometrical imperfections following the first eigenmode of buckling. Imperfections were, together with geometrical characteristics of cross section, and material characteristics of steel, considered as random quantities. The method Latin Hypercube Sampling was applied to evaluate statistical and sensitivity resistance analyses.

  4. Can skull form predict the shape of the temporomandibular joint? A study using geometric morphometrics on the skulls of wolves and domestic dogs.

    PubMed

    Curth, Stefan; Fischer, Martin S; Kupczik, Kornelius

    2017-11-01

    The temporomandibular joint (TMJ) conducts and restrains masticatory movements between the mammalian cranium and the mandible. Through this functional integration, TMJ morphology in wild mammals is strongly correlated with diet, resulting in a wide range of TMJ variations. However, in artificially selected and closely related domestic dogs, dietary specialisations between breeds can be ruled out as a diversifying factor although they display an enormous variation in TMJ morphology. This raises the question of the origin of this variation. Here we hypothesise that, even in the face of reduced functional demands, TMJ shape in dogs can be predicted by skull form; i.e. that the TMJ is still highly integrated in the dog skull. If true, TMJ variation in the dog would be a plain by-product of the enormous cranial variation in dogs and its genetic causes. We addressed this hypothesis using geometric morphometry on a data set of 214 dog and 60 wolf skulls. We digitized 53 three-dimensional landmarks of the skull and the TMJ on CT-based segmentations and compared (1) the variation between domestic dog and wolf TMJs (via principal component analysis) and (2) the pattern of covariation of skull size, flexion and rostrum length with TMJ shape (via regression of centroid size on shape and partial least squares analyses). We show that the TMJ in domestic dogs is significantly more diverse than in wolves: its shape covaries significantly with skull size, flexion and rostrum proportions in patterns which resemble those observed in primates. Similar patterns in canids, which are carnivorous, and primates, which are mostly frugivorous imply the existence of basic TMJ integration patterns which are independent of dietary adaptations. However, only limited amounts of TMJ variation in dogs can be explained by simple covariation with overall skull geometry. This implies that the final TMJ shape is gained partially independently of the rest of the skull. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Variation in the shape and mechanical performance of the lower jaws in ceratopsid dinosaurs (Ornithischia, Ceratopsia).

    PubMed

    Maiorino, Leonardo; Farke, Andrew A; Kotsakis, Tassos; Teresi, Luciano; Piras, Paolo

    2015-11-01

    Ceratopsidae represents a group of quadrupedal herbivorous dinosaurs that inhabited western North America and eastern Asia during the Late Cretaceous. Although horns and frills of the cranium are highly variable across species, the lower jaw historically has been considered to be relatively conservative in morphology. Here, the lower jaws from 58 specimens representing 21 ceratopsoid taxa were sampled, using geometric morphometrics and 2D finite element analysis (FEA) to explore differences in morphology and mechanical performance across Ceratopsoidea (the clade including Ceratopsidae, Turanoceratops and Zuniceratops). Principal component analyses and non-parametric permuted manovas highlight Triceratopsini as a morphologically distinct clade within the sample. A relatively robust and elongate dentary, a larger and more elongated coronoid process, and a small and dorso-ventrally compressed angular characterize this clade, as well as the absolutely larger size. By contrast, non-triceratopsin chasmosaurines, Centrosaurini and Pachyrhinosaurini have similar morphologies to each other. Zuniceratops and Avaceratops are distinct from other taxa. No differences in size between Pachyrhinosaurini and Centrosaurini are recovered using non-parametric permuted anovas. Structural performance, as evaluated using a 2D FEA, is similar across all groups as measured by overall stress, with the exception of Triceratopsini. Shape, size and stress are phylogenetically constrained. A longer dentary as well as a long coronoid process result in a lower jaw that is reconstructed as relatively much more stressed in triceratopsins. © 2015 Anatomical Society.

  6. Continuous Morphological Variation Correlated with Genome Size Indicates Frequent Introgressive Hybridization among Diphasiastrum Species (Lycopodiaceae) in Central Europe

    PubMed Central

    Hanušová, Kristýna; Ekrt, Libor; Vít, Petr; Kolář, Filip; Urfus, Tomáš

    2014-01-01

    Introgressive hybridization is an important evolutionary process frequently contributing to diversification and speciation of angiosperms. Its extent in other groups of land plants has only rarely been studied, however. We therefore examined the levels of introgression in the genus Diphasiastrum, a taxonomically challenging group of Lycopodiophytes, using flow cytometry and numerical and geometric morphometric analyses. Patterns of morphological and cytological variation were evaluated in an extensive dataset of 561 individuals from 57 populations of six taxa from Central Europe, the region with the largest known taxonomic complexity. In addition, genome size values of 63 individuals from Northern Europe were acquired for comparative purposes. Within Central European populations, we detected a continuous pattern in both morphological variation and genome size (strongly correlated together) suggesting extensive levels of interspecific gene flow within this region, including several large hybrid swarm populations. The secondary character of habitats of Central European hybrid swarm populations suggests that man-made landscape changes might have enhanced unnatural contact of species, resulting in extensive hybridization within this area. On the contrary, a distinct pattern of genome size variation among individuals from other parts of Europe indicates that pure populations prevail outside Central Europe. All in all, introgressive hybridization among Diphasiastrum species in Central Europe represents a unique case of extensive interspecific gene flow among spore producing vascular plants that cause serious complications of taxa delimitation. PMID:24932509

  7. The distal tibia of Hispanopithecus laietanus: more evidence for mosaic evolution in Miocene apes.

    PubMed

    Tallman, Melissa; Almécija, Sergio; Reber, Samantha L; Alba, David M; Moyà-Solà, Salvador

    2013-05-01

    IPS18800 is a partial skeleton attributed to the fossil great ape Hispanopithecus laietanus, and dated to 9.6 Ma (millions of years ago). Previous studies on the postcranial anatomy of this taxon have shown that it displayed a derived, extant great ape-like orthograde body plan with suspensory adaptations, uniquely coupled with adaptations for above-branch pronograde locomotion. Here, for the first time, we describe and analyze in detail the distal tibia of the IPS18800 skeleton of Hispanopithecus with the aid of three-dimensional geometric morphometrics based on 53 landmarks and semilandmarks collected on a broad sample of extant catarrhines and fossil hominoids. Results of principal components and canonical variate analyses reveal that the distal tibia of Hispanopithecus occupies a unique position in the morphospace, similar in some respects to pronograde monkeys, and in other respects to extant apes. The IPS18800 distal tibia combines adaptations for above branch quadrupedalism, such as a keeled trochlear surface and strong intercollicular groove, with adaptations for vertical climbing, such as an anteroposteriorly flattened shaft, enlarged fibular facet and a tibial stop. These results on the distal tibia agree with those from other anatomical regions, indicating that this taxon displayed a locomotor repertoire unlike any extant ape, combining vertical climbing and clambering with above-branch quadrupedalism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effects of ornamentation and phylogeny on the evolution of wing shape in stalk-eyed flies (Diopsidae).

    PubMed

    Husak, J F; Ribak, G; Baker, R H; Rivera, G; Wilkinson, G S; Swallow, J G

    2013-06-01

    Exaggerated male ornaments are predicted to be costly to their bearers, but these negative effects may be offset by the correlated evolution of compensatory traits. However, when locomotor systems, such as wings in flying species, evolve to decrease such costs, it remains unclear whether functional changes across related species are achieved via the same morphological route or via alternate changes that have similar function. We conducted a comparative analysis of wing shape in relation to eye-stalk elongation across 24 species of stalk-eyed flies, using geometric morphometrics to determine how species with increased eye span, a sexually selected trait, have modified wing morphology as a compensatory mechanism. Using traditional and phylogenetically informed multivariate analyses of shape in combination with phenotypic trajectory analysis, we found a strong phylogenetic signal in wing shape. However, dimorphic species possessed shifted wing veins with the result of lengthening and narrowing wings compared to monomorphic species. Dimorphic species also had changes that seem unrelated to wing size, but instead may govern wing flexion. Nevertheless, the lack of a uniform, compensatory pattern suggests that stalk-eyed flies used alternative modifications in wing structure to increase wing area and aspect ratio, thus taking divergent morphological routes to compensate for exaggerated eye stalks. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  9. Ancient remains and the first peopling of the Americas: Reassessing the Hoyo Negro skull.

    PubMed

    de Azevedo, Soledad; Bortolini, Maria C; Bonatto, Sandro L; Hünemeier, Tábita; Santos, Fabrício R; González-José, Rolando

    2015-11-01

    A noticeably well-preserved ∼12.500 years-old skeleton from the Hoyo Negro cave, Yucatán, México, was recently reported, along with its archaeological, genetic and skeletal characteristics. Based exclusively on an anatomical description of the skull (HN5/48), Chatters and colleagues stated that this specimen can be assigned to a set of ancient remains that differ from modern Native Americans, the so called "Paleoamericans". Here, we aim to further explore the morphological affinities of this specimen with a set of comparative cranial samples covering ancient and modern periods from Asia and the Americas. Images published in the original article were analyzed using geometric morphometrics methods. Shape variables were used to perform Principal Component and Discriminant analysis against the reference samples. Even thought the Principal Component Analysis suggests that the Hoyo Negro skull falls in a subregion of the morphospace occupied by both "Paleoamericans" and some modern Native Americans, the Discriminant analyses suggest greater affinity with a modern Native American sample. These results reinforce the idea that the original population that first occupied the New World carried high levels of within-group variation, which we have suggested previously on a synthetic model for the settlement of the Americas. Our results also highlight the importance of developing formal classificatory test before deriving settlement hypothesis purely based on macroscopic descriptions. © 2015 Wiley Periodicals, Inc.

  10. Morphological integration in the gorilla, chimpanzee, and human neck.

    PubMed

    Arlegi, Mikel; Gómez-Robles, Aida; Gómez-Olivencia, Asier

    2018-06-01

    Although integration studies are important to understand the evolution of organisms' traits across phylogenies, vertebral integration in primates is still largely unexplored. Here we describe and quantify patterns of morphological integration and modularity in the subaxial cervical vertebrae (C3-C7) in extant hominines incorporating the potential influence of size. Three-dimensional landmarks were digitized on 546 subaxial cervical vertebrae from 141 adult individuals of Gorilla gorilla, Pan troglodytes, and Homo sapiens. Integration and modularity, and the influence of size effects, were quantified using geometric morphometric approaches. All subaxial cervical vertebrae from the three species show a strong degree of integration. Gorillas show the highest degree of integration; conversely, humans have the lowest degree of integration. Analyses of allometric regression residuals show that size is an important factor promoting integration in gorillas, with lesser influence in chimpanzees and almost no effect in humans. Results point to a likely ancestral pattern of integration in non-human hominines, whereby the degree of integration decreases from cranial to caudal positions. Humans deviate from this pattern in the cranialmost (C3) and, to a lesser extent, in the caudalmost (C7) vertebrae, which are less integrated. These differences can be tentatively related to the emergence of bipedalism due to the presence of modern human-like C3 in australopiths, which still preserve a more chimpanzee-like C7. © 2018 Wiley Periodicals, Inc.

  11. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe.

    PubMed

    Vicente, José L; Sousa, Carla A; Alten, Bulent; Caglar, Selim S; Falcutá, Elena; Latorre, José M; Toty, Celine; Barré, Hélène; Demirci, Berna; Di Luca, Marco; Toma, Luciano; Alves, Ricardo; Salgueiro, Patrícia; Silva, Teresa L; Bargues, Maria D; Mas-Coma, Santiago; Boccolini, Daniela; Romi, Roberto; Nicolescu, Gabriela; do Rosário, Virgílio E; Ozer, Nurdan; Fontenille, Didier; Pinto, João

    2011-01-11

    There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004

  12. New insight on the anatomy and architecture of the avian neurocranium.

    PubMed

    Marugán-Lobón, Jesús; Buscalioni, Angela D

    2009-03-01

    This study aims to disentangle the main features of the avian neurocranium at high taxonomic scales using geometric morphometric tools. When surveying the variation across 60% of avian orders (sampled among 72 individuals), our results verify that the central nervous system has an important influence upon the architecture of the avian neurocranium, as in other very encephalized vertebrates such as mammals. When the avian brain expands relative to the cranial base it causes more "reptilian-like" neurocranial configurations to shape into rounder ones. This rounder appearance is achieved because the cranial base becomes relatively shorter and turns its flexure from concave to convex, at the same time forcing the foramen magnum to reorient ventrally instead of caudally. However, our analyses have also revealed that an important morphological difference between birds resides between the occiput and the cranial roof. This variation was unexpected since it had not been reported thus far, and entertains two plausible interpretations. Although it could be due to a trade-off between the relative sizes of the supraoccipital and the parietal bones, the presence of an additional bone (the intra- or post-parietal) between the latter two bones could also explain the variation congruently. This descriptive insight stresses the need for further developmental studies focused in understanding the evolutionary disparity of the avian neurocranium. (c) 2009 Wiley-Liss, Inc.

  13. Hybridization between invasive populations of Dalmatian toadflax (Linaria dalmatica) and yellow toadflax (Linaria vulgaris)

    Treesearch

    Sarah M. Ward; Caren E. Fleischmann; Marie F. Turner; Sharlene E. Sing

    2009-01-01

    Although there is evidence that interspecific hybridization can initiate invasion by nonnative plants, there are few documented examples of novel hybridization events between introduced plant species already exhibiting invasive behavior. We conducted morphometric and molecular analyses of toadflax plants with intermediate morphology found at two sites in Montana, which...

  14. Morphometric variation between two morphotypes within the Astyanax Baird and Girard, 1854 (Actinopterygii: Characidae) genus, from a Mexican tropical lake.

    PubMed

    Ornelas-García, Claudia P; Bastir, Markus; Doadrio, Ignacio

    2014-07-01

    Phenotypic variation is important for evolutionary processes because it can allow local adaptation, promote genetic segregation, and ultimately give rise to speciation. Lacustrine systems provide a unique opportunity to study the mechanisms by which sister species can co-occur by means of ecological segregation. The fish genus Astyanax is characterized by high levels of phenotypic variability, providing an excellent model for the study of local specialization. Here, we analyze the morphological specializations through geometric morphometrics of two sympatric species described as different genera: Bramocharax caballeroi endemic to Lake Catemaco, and the widely distributed Astyanax aeneus. Additionally, we assess the correlation between phenotypic and genetic structure, and the phylogenetic signal of morphological variation. We examined body size and shape variation in 196 individuals and analyzed mitochondrial cytochrome b sequences in 298 individuals. Our results confirm the striking morphological divergence among the sympatric characids. Differences between them were mainly found in the body depth and profile and orientation of the head, where B. caballeroi in contrast with the A. aeneus, presented a fusiform body and an upward mouth. Moreover, different growth trajectories were observed among morphotypes, suggesting that a heterochronic process could be involved in the diversification of our study system. Morphological differences did not correspond with the molecular differentiation, suggesting high levels of homoplasy among the lineages of B. caballeroi morphs. © 2014 Wiley Periodicals, Inc.

  15. Craniofacial morphometric analysis of individuals with X-linked hypohidrotic ectodermal dysplasia.

    PubMed

    Goodwin, Alice F; Larson, Jacinda R; Jones, Kyle B; Liberton, Denise K; Landan, Maya; Wang, Zhifeng; Boekelheide, Anne; Langham, Margaret; Mushegyan, Vagan; Oberoi, Snehlata; Brao, Rosalie; Wen, Timothy; Johnson, Ramsey; Huttner, Kenneth; Grange, Dorothy K; Spritz, Richard A; Hallgrímsson, Benedikt; Jheon, Andrew H; Klein, Ophir D

    2014-09-01

    Hypohidrotic ectodermal dysplasia (HED) is the most prevalent type of ectodermal dysplasia (ED). ED is an umbrella term for a group of syndromes characterized by missing or malformed ectodermal structures, including skin, hair, sweat glands, and teeth. The X-linked recessive (XL), autosomal recessive (AR), and autosomal dominant (AD) types of HED are caused by mutations in the genes encoding ectodysplasin (EDA1), EDA receptor (EDAR), or EDAR-associated death domain (EDARADD). Patients with HED have a distinctive facial appearance, yet a quantitative analysis of the HED craniofacial phenotype using advanced three-dimensional (3D) technologies has not been reported. In this study, we characterized craniofacial morphology in subjects with X-linked hypohidrotic ectodermal dysplasia (XLHED) by use of 3D imaging and geometric morphometrics (GM), a technique that uses defined landmarks to quantify size and shape in complex craniofacial morphologies. We found that the XLHED craniofacial phenotype differed significantly from controls. Patients had a smaller and shorter face with a proportionally longer chin and midface, prominent midfacial hypoplasia, a more protrusive chin and mandible, a narrower and more pointed nose, shorter philtrum, a narrower mouth, and a fuller and more rounded lower lip. Our findings refine the phenotype of XLHED and may be useful both for clinical diagnosis of XLHED and to extend understanding of the role of EDA in craniofacial development.

  16. In situ Compressive Loading and Correlative Noninvasive Imaging of the Bone-periodontal Ligament-tooth Fibrous Joint

    PubMed Central

    Jang, Andrew T.; Lin, Jeremy D.; Seo, Youngho; Etchin, Sergey; Merkle, Arno; Fahey, Kevin; Ho, Sunita P.

    2014-01-01

    This study demonstrates a novel biomechanics testing protocol. The advantage of this protocol includes the use of an in situ loading device coupled to a high resolution X-ray microscope, thus enabling visualization of internal structural elements under simulated physiological loads and wet conditions. Experimental specimens will include intact bone-periodontal ligament (PDL)-tooth fibrous joints. Results will illustrate three important features of the protocol as they can be applied to organ level biomechanics: 1) reactionary force vs. displacement: tooth displacement within the alveolar socket and its reactionary response to loading, 2) three-dimensional (3D) spatial configuration and morphometrics: geometric relationship of the tooth with the alveolar socket, and 3) changes in readouts 1 and 2 due to a change in loading axis, i.e. from concentric to eccentric loads. Efficacy of the proposed protocol will be evaluated by coupling mechanical testing readouts to 3D morphometrics and overall biomechanics of the joint. In addition, this technique will emphasize on the need to equilibrate experimental conditions, specifically reactionary loads prior to acquiring tomograms of fibrous joints. It should be noted that the proposed protocol is limited to testing specimens under ex vivo conditions, and that use of contrast agents to visualize soft tissue mechanical response could lead to erroneous conclusions about tissue and organ-level biomechanics. PMID:24638035

  17. Pre-pharyngeal swallow effects of recurrent laryngeal nerve lesion on bolus shape and airway protection in an infant pig model

    PubMed Central

    Gould, Francois D. H.; Yglesias, B.; Ohlemacher, J.; German, R. Z.

    2016-01-01

    Recurrent laryngeal nerve (RLN) damage in infants leads to increased dysphagia and aspiration pneumonia. Recent work has shown that intra oral transport and swallow kinematics change following RLN lesion, suggesting potential changes in bolus formation prior to the swallow. In this study we used geometric morphometrics to understand the effect of bolus shape on penetration and aspiration in infants with and without RLN lesion. We hypothesized 1) that geometric bolus properties are related to airway protection outcomes and 2) that in infants with RLN lesion, the relationship between geometric bolus properties and dysphagia is changed. In five infant pigs, dysphagia in 188 swallows was assessed using the Infant Mammalian Penetration Aspiration Score (IMPAS). Using images from high-speed VFSS, bolus shape, bolus area, and tongue outline were quantified digitally. Bolus shape was analyzed using elliptical Fourier analysis, and tongue outline using polynomial curve fitting. Despite large inter-individual differences, significant within individual effects of bolus shape and bolus area on airway protection exist. The relationship between penetration-aspiration score and both bolus area and shape changed post lesion. Tongue shape differed between pre and post lesion swallows, and between swallows with different IMPAS scores. Bolus shape and area affect airway protection outcomes. RLN lesion changes that relationship, indicating that proper bolus formation and control by the tongue requires intact laryngeal sensation. The impact of RLN lesion on dysphagia is pervasive. PMID:27873091

  18. Pre-pharyngeal Swallow Effects of Recurrent Laryngeal Nerve Lesion on Bolus Shape and Airway Protection in an Infant Pig Model.

    PubMed

    Gould, Francois D H; Yglesias, B; Ohlemacher, J; German, R Z

    2017-06-01

    Recurrent laryngeal nerve (RLN) damage in infants leads to increased dysphagia and aspiration pneumonia. Recent work has shown that intraoral transport and swallow kinematics change following RLN lesion, suggesting potential changes in bolus formation prior to the swallow. In this study, we used geometric morphometrics to understand the effect of bolus shape on penetration and aspiration in infants with and without RLN lesion. We hypothesized (1) that geometric bolus properties are related to airway protection outcomes and (2) that in infants with RLN lesion, the relationship between geometric bolus properties and dysphagia is changed. In five infant pigs, dysphagia in 188 swallows was assessed using the Infant Mammalian Penetration-Aspiration Scale (IMPAS). Using images from high-speed VFSS, bolus shape, bolus area, and tongue outline were quantified digitally. Bolus shape was analyzed using elliptical Fourier analysis, and tongue outline using polynomial curve fitting. Despite large inter-individual differences, significant within individual effects of bolus shape and bolus area on airway protection exist. The relationship between penetration-aspiration score and both bolus area and shape changed post lesion. Tongue shape differed between pre- and post-lesion swallows, and between swallows with different IMPAS scores. Bolus shape and area affect airway protection outcomes. RLN lesion changes that relationship, indicating that proper bolus formation and control by the tongue require intact laryngeal sensation. The impact of RLN lesion on dysphagia is pervasive.

  19. Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyun; Grout, Randall W.; Hoffman, Eric A.; Saha, Punam K.

    2012-02-01

    Diseases like pulmonary embolism and pulmonary hypertension are associated with vascular dystrophy. Identifying such pulmonary artery/vein (A/V) tree dystrophy in terms of quantitative measures via CT imaging significantly facilitates early detection of disease or a treatment monitoring process. A tree structure, consisting of nodes and connected arcs, linked to the volumetric representation allows multi-level geometric and volumetric analysis of A/V trees. Here, a new theory and method is presented to generate multi-level A/V tree representation of volumetric data and to compute quantitative measures of A/V tree geometry and topology at various tree hierarchies. The new method is primarily designed on arc skeleton computation followed by a tree construction based topologic and geometric analysis of the skeleton. The method starts with a volumetric A/V representation as input and generates its topologic and multi-level volumetric tree representations long with different multi-level morphometric measures. A new recursive merging and pruning algorithms are introduced to detect bad junctions and noisy branches often associated with digital geometric and topologic analysis. Also, a new notion of shortest axial path is introduced to improve the skeletal arc joining two junctions. The accuracy of the multi-level tree analysis algorithm has been evaluated using computer generated phantoms and pulmonary CT images of a pig vessel cast phantom while the reproducibility of method is evaluated using multi-user A/V separation of in vivo contrast-enhanced CT images of a pig lung at different respiratory volumes.

  20. Does weather shape rodents? Climate related changes in morphology of two heteromyid species

    NASA Astrophysics Data System (ADS)

    Wolf, Mosheh; Friggens, Michael; Salazar-Bravo, Jorge

    2009-01-01

    Geographical variation in morphometric characters in heteromyid rodents has often correlated with climate gradients. Here, we used the long-term database of rodents trapped in the Sevilleta National Wildlife Refuge in New Mexico, USA to test whether significant annual changes in external morphometric characters are observed in a region with large variations in temperature and precipitation. We looked at the relationships between multiple temperature and precipitation variables and a number of morphological traits (body mass, body, tail, hind leg, and ear length) for two heteromyid rodents, Dipodomys merriami and Perognathus flavescens. Because these rodents can live multiple years in the wild, the climate variables for the year of the capture and the previous 2 years were included in the analyses. Using multiple linear regressions, we found that all of our morphometric traits, with the exception of tail length in D. merriami, had a significant relationship with one or more of the climate variables used. Our results demonstrate that effects of climate change on morphological traits occur over short periods, even in noninsular mammal populations. It is unclear, though, whether these changes are the result of morphological plasticity or natural selection.

  1. Anatomic parameters of the sacral lamina for osteosynthesis in transverse sacral fractures.

    PubMed

    Katsuura, Yoshihiro; Lorenz, Eileen; Gardner, Warren

    2018-05-01

    To analyze the morphometric parameters of the dorsal sacral lamina and pedicles to determine if there is adequate bony architecture to support plate osteosynthesis. Two reviewers performed measurements on 98 randomly selected high-resolution CT scans of the pelvis to quantify the bony anatomy of the sacral lamina. Measurements included the depths of the lamina at each sacral level, the trajectory and depth of the sacral pedicles from the sacral lamina, and the width of the sacral canal. A bone mineral density analysis was performed on the sacral lamina using Hounsfield units (HU) and compared to the L1 and S1 vertebral bodies. The sacral lamina were found to form peaks and troughs which we refered to as major and minor sections. On average, the thickness was > 4 mm at all major screw starting points, indicating adequate geometry for screw fixation. The sacral pedicle depths were 27, 18, 16, and 14 mm at S2-S5, respectively. The average angulation from midline of this screw path directed laterally to avoid the sacral canal was 20°, 17°, 8°, and - 8° for the S2-5 pedicles, respectively. Average sacral canal diameter was 11 mm for S2 and 8 mm for S3-5. The sacral lamina had an average bone mineral density of 635 HU, which was significantly different from the density of the L5 (220 HU) and S1 (165 HU) vertebral bodies (p < 0.005). This morphometric data was used to pilot a new plating technique. The sacral lamina offers a novel target for screw fixation and meets the basic geometric and compositional criteria for screw purchase. To our knowledge, this study represents the first morphometric analysis performed on the sacral lamina and pedicles for plate application.

  2. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism

    PubMed Central

    Fernández, Peter J.; Holowka, Nicholas B.; Demes, Brigitte; Jungers, William L.

    2016-01-01

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as “dorsal doming” are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2–5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism. PMID:27464580

  3. Cheek tooth morphology and ancient mitochondrial DNA of late Pleistocene horses from the western interior of North America: Implications for the taxonomy of North American Late Pleistocene Equus

    PubMed Central

    Rodrigues, Antonia T.; Theodor, Jessica M.; Kooyman, Brian P.; Yang, Dongya Y.; Speller, Camilla F.

    2017-01-01

    Horses were a dominant component of North American Pleistocene land mammal communities and their remains are well represented in the fossil record. Despite the abundant material available for study, there is still considerable disagreement over the number of species of Equus that inhabited the different regions of the continent and on their taxonomic nomenclature. In this study, we investigated cheek tooth morphology and ancient mtDNA of late Pleistocene Equus specimens from the Western Interior of North America, with the objective of clarifying the species that lived in this region prior to the end-Pleistocene extinction. Based on the morphological and molecular data analyzed, a caballine (Equus ferus) and a non-caballine (E. conversidens) species were identified from different localities across most of the Western Interior. A second non-caballine species (E. cedralensis) was recognized from southern localities based exclusively on the morphological analyses of the cheek teeth. Notably the separation into caballine and non-caballine species was observed in the Bayesian phylogenetic analysis of ancient mtDNA as well as in the geometric morphometric analyses of the upper and lower premolars. Teeth morphologically identified as E. conversidens that yielded ancient mtDNA fall within the New World stilt-legged clade recognized in previous studies and this is the name we apply to this group. Geographic variation in morphology in the caballine species is indicated by statistically different occlusal enamel patterns in the specimens from Bluefish Caves, Yukon Territory, relative to the specimens from the other geographic regions. Whether this represents ecomorphological variation and/or a certain degree of geographic and genetic isolation of these Arctic populations requires further study. PMID:28817644

  4. Wing shape of four new bee fossils (Hymenoptera: Anthophila) provides insights to bee evolution.

    PubMed

    Dehon, Manuel; Michez, Denis; Nel, André; Engel, Michael S; De Meulemeester, Thibaut

    2014-01-01

    Bees (Anthophila) are one of the major groups of angiosperm-pollinating insects and accordingly are widely studied in both basic and applied research, for which it is essential to have a clear understanding of their phylogeny, and evolutionary history. Direct evidence of bee evolutionary history has been hindered by a dearth of available fossils needed to determine the timing and tempo of their diversification, as well as episodes of extinction. Here we describe four new compression fossils of bees from three different deposits (Miocene of la Cerdanya, Spain; Oligocene of Céreste, France; and Eocene of the Green River Formation, U.S.A.). We assess the similarity of the forewing shape of the new fossils with extant and fossil taxa using geometric morphometrics analyses. Predictive discriminant analyses show that three fossils share similar forewing shapes with the Apidae [one of uncertain tribal placement and perhaps near Euglossini, one definitive bumble bee (Bombini), and one digger bee (Anthophorini)], while one fossil is more similar to the Andrenidae. The corbiculate fossils are described as Euglossopteryx biesmeijeri De Meulemeester, Michez, & Engel, gen. nov. sp. nov. (type species of Euglossopteryx Dehon & Engel, n. gen.) and Bombus cerdanyensis Dehon, De Meulemeester, & Engel, sp. nov. They provide new information on the distribution and timing of particular corbiculate groups, most notably the extension into North America of possible Eocene-Oligocene cooling-induced extinctions. Protohabropoda pauli De Meulemeester & Michez, gen. nov. sp. nov. (type species of Protohabropoda Dehon & Engel, n. gen.) reinforces previous hypotheses of anthophorine evolution in terms of ecological shifts by the Oligocene from tropical to mesic or xeric habitats. Lastly, a new fossil of the Andreninae, Andrena antoinei Michez & De Meulemeester, sp. nov., further documents the presence of the today widespread genus Andrena Fabricius in the Late Oligocene of France.

  5. Cheek tooth morphology and ancient mitochondrial DNA of late Pleistocene horses from the western interior of North America: Implications for the taxonomy of North American Late Pleistocene Equus.

    PubMed

    Barrón-Ortiz, Christina I; Rodrigues, Antonia T; Theodor, Jessica M; Kooyman, Brian P; Yang, Dongya Y; Speller, Camilla F

    2017-01-01

    Horses were a dominant component of North American Pleistocene land mammal communities and their remains are well represented in the fossil record. Despite the abundant material available for study, there is still considerable disagreement over the number of species of Equus that inhabited the different regions of the continent and on their taxonomic nomenclature. In this study, we investigated cheek tooth morphology and ancient mtDNA of late Pleistocene Equus specimens from the Western Interior of North America, with the objective of clarifying the species that lived in this region prior to the end-Pleistocene extinction. Based on the morphological and molecular data analyzed, a caballine (Equus ferus) and a non-caballine (E. conversidens) species were identified from different localities across most of the Western Interior. A second non-caballine species (E. cedralensis) was recognized from southern localities based exclusively on the morphological analyses of the cheek teeth. Notably the separation into caballine and non-caballine species was observed in the Bayesian phylogenetic analysis of ancient mtDNA as well as in the geometric morphometric analyses of the upper and lower premolars. Teeth morphologically identified as E. conversidens that yielded ancient mtDNA fall within the New World stilt-legged clade recognized in previous studies and this is the name we apply to this group. Geographic variation in morphology in the caballine species is indicated by statistically different occlusal enamel patterns in the specimens from Bluefish Caves, Yukon Territory, relative to the specimens from the other geographic regions. Whether this represents ecomorphological variation and/or a certain degree of geographic and genetic isolation of these Arctic populations requires further study.

  6. Wing Shape of Four New Bee Fossils (Hymenoptera: Anthophila) Provides Insights to Bee Evolution

    PubMed Central

    Dehon, Manuel; Michez, Denis; Nel, André; Engel, Michael S.; De Meulemeester, Thibaut

    2014-01-01

    Bees (Anthophila) are one of the major groups of angiosperm-pollinating insects and accordingly are widely studied in both basic and applied research, for which it is essential to have a clear understanding of their phylogeny, and evolutionary history. Direct evidence of bee evolutionary history has been hindered by a dearth of available fossils needed to determine the timing and tempo of their diversification, as well as episodes of extinction. Here we describe four new compression fossils of bees from three different deposits (Miocene of la Cerdanya, Spain; Oligocene of Céreste, France; and Eocene of the Green River Formation, U.S.A.). We assess the similarity of the forewing shape of the new fossils with extant and fossil taxa using geometric morphometrics analyses. Predictive discriminant analyses show that three fossils share similar forewing shapes with the Apidae [one of uncertain tribal placement and perhaps near Euglossini, one definitive bumble bee (Bombini), and one digger bee (Anthophorini)], while one fossil is more similar to the Andrenidae. The corbiculate fossils are described as Euglossopteryx biesmeijeri De Meulemeester, Michez, & Engel, gen. nov. sp. nov. (type species of Euglossopteryx Dehon & Engel, n. gen.) and Bombus cerdanyensis Dehon, De Meulemeester, & Engel, sp. nov. They provide new information on the distribution and timing of particular corbiculate groups, most notably the extension into North America of possible Eocene-Oligocene cooling-induced extinctions. Protohabropoda pauli De Meulemeester & Michez, gen. nov. sp. nov. (type species of Protohabropoda Dehon & Engel, n. gen.) reinforces previous hypotheses of anthophorine evolution in terms of ecological shifts by the Oligocene from tropical to mesic or xeric habitats. Lastly, a new fossil of the Andreninae, Andrena antoinei Michez & De Meulemeester, sp. nov., further documents the presence of the today widespread genus Andrena Fabricius in the Late Oligocene of France. PMID:25354170

  7. Diversity and evolution of the Confuciusornithidae: Evidence from a new 131-million-year-old specimen from the Huajiying Formation in NE China

    NASA Astrophysics Data System (ADS)

    Navalón, Guillermo; Meng, Qingjin; Marugán-Lobón, Jesús; Zhang, Yuguang; Wang, Baopeng; Xing, Hai; Liu, Di; Chiappe, Luis M.

    2018-02-01

    The Huajiying Formation contains the earliest deposits of the Jehol Biota, representing the world's second oldest avifauna. This avifauna includes the early confuciusornithid Eoconfuciusornis zhengi, the oldest occurrence of this clade and one of the earliest divergences of pygostylian birds. Although E. zhengi shows unique traits, the holotype's immature age makes comparisons with the better known Confuciusornis sanctus problematic. As a result, the taxonomic validity of E. zhengi is controversial. We describe a small, osteologically adult confuciusornithid from the same deposits as E. zhengi. The new fossil is most similar to E. zhengi but also shares traits with the stratigraphically younger Confuciusornis. The humerus of the new fossil is straighter and more slender, and bears a less dorsally-developed deltopectoral crest compared with similarly-sized and smaller specimens of Confuciusornis. The morphology of the humerus is intermediate between E. zhengi and Confuciusornis and its proximal portion is pierced by a small deltopectoral foramen, absent in the holotype of E. zhengi. However, this foramen is much smaller than in any other confuciusornithid. Shape analyses (geometric morphometrics) of the humerus of confuciusornithids of different ages and representatives of other basal avians and closely-related non-avian theropods supports our observations and indicate that the humeral differences between the holotype of E. zhengi and the new specimen are not easily explained as ontogenetic variation within a single species. However, the limited number of early confuciursornithids does not allow us to confidently interpret such differences as interspecific. Nonetheless, these analyses support the morphological distinctiveness of the early confuciusornithids from the Huajiying Formation and suggest a stepwise acquisition of the unique humeral morphology of Confuciusornithidae.

  8. Exploring phylogenetic and functional signals in complex morphologies: the hamate of extant anthropoids as a test-case study.

    PubMed

    Almécija, Sergio; Orr, Caley M; Tocheri, Matthew W; Patel, Biren A; Jungers, William L

    2015-01-01

    Three-dimensional geometric morphometrics (3DGM) is a powerful tool for capturing and visualizing the "pure" shape of complex structures. However, these shape differences are sometimes difficult to interpret from a functional viewpoint, unless specific approaches (mostly based on biomechanical modeling) are employed. Here, we use 3DGM to explore the complex shape variation of the hamate, the disto-ulnar wrist bone, in anthropoid primates. Major trends of shape variation are explored using principal components analysis along with analyses of shape and size covariation. We also evaluate the phylogenetic patterning of hamate shape by plotting an anthropoid phylogenetic tree onto the shape space (i.e., phylomorphospace) and test against complete absence of phylogenetic signal using posterior permutation. Finally, the covariation of hamate shape and locomotor categories is explored by means of 2-block partial least squares (PLS) using shape coordinates and a matrix of data on arboreal locomotor behavior. Our results show that 3DGM is a valuable and versatile tool for characterizing the shape of complex structures such as wrist bones in anthropoids. For the hamate, a significant phylogenetic pattern is found in both hamate shape and size, indicating that closely related taxa are typically the most similar in hamate form. Our allometric analyses show that major differences in hamate shape among taxa are not a direct consequence of differences in hamate size. Finally, our PLS indicates a significant covariation of hamate shape and different types of arboreal locomotion, highlighting the relevance of this approach in future 3DGM studies seeking to capture a functional signal from complex biological structures. © 2014 Wiley Periodicals, Inc.

  9. Facial skeleton asymmetry and its relationship to mastication in the Early Medieval period (Great Moravian Empire, Mikulčice, 9th-10th century).

    PubMed

    Ibrová, Alexandra; Dupej, Ján; Stránská, Petra; Velemínský, Petr; Poláček, Lumír; Velemínská, Jana

    2017-12-01

    The aim of this study was to analyse the relationship of mastication and directional asymmetry (DA) of upper facial skeleton in Early Medieval sample from the Mikulčice settlement (Czech Republic). The settlement is divided into two burial areas of presumably different socioeconomic status: the castle and the sub-castle. The material consisted of 193 individuals (125 castle, 68 sub-castle). The relationship of facial skeleton DA and mastication was analysed by examining tooth wear and mandibular shape by means of 3D geometric morphometrics. Tooth wear of premolars and molars was evaluated using appropriate scoring systems. 3D coordinates of 35 mandibular landmarks were scanned using MicroScribe G2X digitizing system. The results did not reveal any significant differences in tooth wear DA or mandible DA values between burial areas or sexes. Mandibular shape, however, differed significantly between burial areas and sexes. Directional changes of mandibular landmarks supported a right chewing side preference in the sample. Significant relationship between upper facial skeleton DA and mandible DA was recorded. Differences in subsistence between burial areas and sexes did not translate into differences in mandible DA and dental wear. However, mandibular shape analysis revealed prominence of areas affected by masticatory muscles in individuals from the castle. Higher consumption of tough material, such as meat, has been proposed as possible explanation. The right side was found to be preferential for chewing. The relationship between upper facial skeleton DA and mandible DA was concluded to be the result of the compensatory and adaptive function of mandible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mandibular ramus shape variation and ontogeny in Homo sapiens and Homo neanderthalensis.

    PubMed

    Terhune, Claire E; Ritzman, Terrence B; Robinson, Chris A

    2018-04-27

    As the interface between the mandible and cranium, the mandibular ramus is functionally significant and its morphology has been suggested to be informative for taxonomic and phylogenetic analyses. In primates, and particularly in great apes and humans, ramus morphology is highly variable, especially in the shape of the coronoid process and the relationship of the ramus to the alveolar margin. Here we compare ramus shape variation through ontogeny in Homo neanderthalensis to that of modern and fossil Homo sapiens using geometric morphometric analyses of two-dimensional semilandmarks and univariate measurements of ramus angulation and relative coronoid and condyle height. Results suggest that ramus, especially coronoid, morphology varies within and among subadult and adult modern human populations, with the Alaskan Inuit being particularly distinct. We also identify significant differences in overall anterosuperior ramus and coronoid shapes between H. sapiens and H. neanderthalensis, both in adults and throughout ontogeny. These shape differences are subtle, however, and we therefore suggest caution when using ramus morphology to diagnose group membership for individual specimens of these taxa. Furthermore, we argue that these morphologies are unlikely to be representative of differences in masticatory biomechanics and/or paramasticatory behaviors between Neanderthals and modern humans, as has been suggested by previous authors. Assessments of ontogenetic patterns of shape change reveal that the typical Neanderthal ramus morphology is established early in ontogeny, and there is little evidence for divergent postnatal ontogenetic allometric trajectories between Neanderthals and modern humans as a whole. This analysis informs our understanding of intraspecific patterns of mandibular shape variation and ontogeny in H. sapiens and can shed further light on overall developmental and life history differences between H. sapiens and H. neanderthalensis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. What's in a Name: Voxel-Based Morphometric Analyses of MRI and Naming Difficulty in Alzheimer's Disease, Frontotemporal Dementia and Corticobasal Degeneration

    ERIC Educational Resources Information Center

    Grossman, Murray; McMillan, Corey; Moore, Peachie; Ding, Lijun; Glosser, Guila; Work, Melissa; Gee, James

    2004-01-01

    Confrontation naming is impaired in neurodegenerative conditions like Alzheimer's disease (AD), frontotemporal dementia (FTD) and corticobasal degeneration (CBD). Some behavioural observations suggest a common source of impaired naming across these patient groups, while others find partially unique patterns of naming difficulty. We hypothesized…

  12. High School Students' Knowledge of a Square as a Basis for Developing a Geometric Learning Progression

    ERIC Educational Resources Information Center

    Seah, Rebecca; Horne, Marj; Berenger, Adrian

    2016-01-01

    This study surveyed and analysed four secondary school students' writing about a square. Sfard's discursive approach to understanding mathematical discourse was used to analyse the responses collected from 214 Australian secondary school students. The results showed that geometric knowledge was developed experientially and not developmentally.…

  13. Three-dimensional quantitative analysis of healthy foot shape: a proof of concept study.

    PubMed

    Stanković, Kristina; Booth, Brian G; Danckaers, Femke; Burg, Fien; Vermaelen, Philippe; Duerinck, Saartje; Sijbers, Jan; Huysmans, Toon

    2018-01-01

    Foot morphology has received increasing attention from both biomechanics researches and footwear manufacturers. Usually, the morphology of the foot is quantified by 2D footprints. However, footprint quantification ignores the foot's vertical dimension and hence, does not allow accurate quantification of complex 3D foot shape. The shape variation of healthy 3D feet in a population of 31 adult women and 31 adult men who live in Belgium was studied using geometric morphometric methods. The effect of different factors such as sex, age, shoe size, frequency of sport activity, Body Mass Index (BMI), foot asymmetry, and foot loading on foot shape was investigated. Correlation between these factors and foot shape was examined using multivariate linear regression. The complex nature of a foot's 3D shape leads to high variability in healthy populations. After normalizing for scale, the major axes of variation in foot morphology are (in order of decreasing variance): arch height, combined ball width and inter-toe distance, global foot width, hallux bone orientation (valgus-varus), foot type (e.g. Egyptian, Greek), and midfoot width. These first six modes of variation capture 92.59% of the total shape variation. Higher BMI results in increased ankle width, Achilles tendon width, heel width and a thicker forefoot along the dorsoplantar axis. Age was found to be associated with heel width, Achilles tendon width, toe height and hallux orientation. A bigger shoe size was found to be associated with a narrow Achilles tendon, a hallux varus, a narrow heel, heel expansion along the posterior direction, and a lower arch compared to smaller shoe size. Sex was found to be associated with differences in ankle width, Achilles tendon width, and heel width. Frequency of sport activity was associated with Achilles tendon width and toe height. A detailed analysis of the 3D foot shape, allowed by geometric morphometrics, provides insights in foot variations in three dimensions that can not be obtained from 2D footprints. These insights could be applied in various scientific disciplines, including orthotics and shoe design.

  14. Morphometric variability among the species of the Sordida subcomplex (Hemiptera: Reduviidae: Triatominae): evidence for differentiation across the distribution range of Triatoma sordida.

    PubMed

    Nattero, Julieta; Piccinali, Romina Valeria; Macedo Lopes, Catarina; Hernández, María Laura; Abrahan, Luciana; Lobbia, Patricia Alejandra; Rodríguez, Claudia Susana; Carbajal de la Fuente, Ana Laura

    2017-09-06

    The Sordida subcomplex (Triatominae) comprises four species, Triatoma garciabesi, T. guasayana, T. patagonica and T. sordida, which differ in epidemiological importance and adaptations to human environments. Some morphological similarities among species make taxonomic identification, population differentiation and species delimitation controversial. Triatoma garciabesi and T. sordida are the most similar species, having been considered alternatively two and a single species until T. garciabesi was re-validated, mostly based on the morphology of male genitalia. More recently, T. sordida from Argentina has been proposed as a new cryptic species distinguishable from T. sordida from Brazil, Bolivia and Paraguay by cytogenetics. We studied linear and geometric morphometry of the head, wings and pronotum in populations of these species aiming to find phenotypic markers for their discrimination, especially between T. sordida and T. garciabesi, and if any set of variables that validates T. sordida from Argentina as a new species. Head width and pronotum length were the linear variables that best differentiated species. Geometric morphometry revealed significant Mahalanobis distances in wing shape between all pairwise comparisons. Triatoma patagonica exhibited the best discrimination and T. garciabesi overlapped the distribution of the other species in the morphometric space of the first two DFA axes. Head shape showed differentiation between all pairs of species except for T. garciabesi and T. sordida. Pronotum shape did not differentiate T. garciabesi from T. guasayana. The comparison between T. garciabesi and T. sordida from Argentina and T. sordida from Brazil and Bolivia revealed low differentiation based on head and pronotum linear measurements. Pronotum and wing shape were different between T. garciabesi and T. sordida from Brazil and Bolivia and T. sordida from Argentina. Head shape did not differentiate T. garciabesi from T. sordida from Argentina. Wing shape best delimited the four species phenotypically. The proposed cryptic species, T. sordida from Argentina, differed from T. sordida from Brazil and Bolivia in all measured shape traits, suggesting that the putative new species may not be cryptic. Additional studies integrating cytogenetic, phenotypic and molecular markers, as well as cross-breeding experiments are needed to confirm if these three entities represent true biological species.

  15. Brain cortical thickness in male adolescents with serious substance use and conduct problems.

    PubMed

    Chumachenko, Serhiy Y; Sakai, Joseph T; Dalwani, Manish S; Mikulich-Gilbertson, Susan K; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K; Banich, Marie T; Crowley, Thomas J

    2015-01-01

    Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right > left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches.

  16. Brain cortical thickness in male adolescents with serious substance use and conduct problems

    PubMed Central

    Chumachenko, Serhiy Y.; Sakai, Joseph T.; Dalwani, Manish S.; Mikulich-Gilbertson, Susan K.; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K.; Banich, Marie T.; Crowley, Thomas J.

    2016-01-01

    Background Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. Objectives To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. Methods We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Results Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right>left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Conclusion Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches. PMID:26337200

  17. Morphometric Variations in the Skin Layers of Frogs: An Exploration Into Their Relation With Ecological Parameters in Leptodactylus (Anura, Leptodactylidae), With an Emphasis on the Eberth-Kastschenko Layer.

    PubMed

    Ponssa, María Laura; Barrionuevo, J Sebastián; Pucci Alcaide, Franco; Pucci Alcaide, Ana

    2017-10-01

    Leptodactylus is a genus of frogs known to live in diverse habitats and to show both aquatic and terrestrial breeding habits. We studied 21 species of Leptodactylus to explore whether skin structure specialization relates to habitats and habit variation. Morphometric analyses of the skin thickness revealed that phylogeny has a strong influence on variations in the thickness of the epidermis, stratum spongiosum, Eberth-Kastschenko layer, and stratum compactum, while habitat and habits display no significant correlation. The optimization of the phylogenetic hypothesis suggested that a pattern of intermediate values for skin layer thickness are plesiomorphic for this group. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1895-1909, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Striatal and Hippocampal Atrophy in Idiopathic Parkinson's Disease Patients without Dementia: A Morphometric Analysis.

    PubMed

    Tanner, Jared J; McFarland, Nikolaus R; Price, Catherine C

    2017-01-01

    Analyses of subcortical gray structure volumes in non-demented idiopathic Parkinson's disease (PD) often, but not always, show volume loss of the putamen, caudate nucleus, nucleus accumbens, and hippocampus. There is building evidence that structure morphometry might be more sensitive to disease-related processes than volume. To assess morphometric differences of subcortical structures (putamen, caudate nucleus, thalamus, globus pallidus, nucleus accumbens, and amygdala) as well as the hippocampus in non-demented individuals with PD relative to age and education matched non-PD peers. Prospective recruitment of idiopathic no-dementia PD and non-PD peers as part of a federally funded investigation. T1-weighted isovoxel metrics acquired via 3-T Siemens Verio for all individuals [PD n  = 72 (left side onset n  = 27, right side onset n  = 45); non-PD n  = 48]. FIRST (FMRIB Software Library) applications provided volumetric and vertex analyses on group differences for structure size and morphometry. Group volume differences were observed only for putamen and hippocampi (PD < non-PD) with hippocampal volume significantly associating with disease duration. Group shape differences were observed for bilateral putamen, caudate nucleus, and hippocampus with greater striatal atrophy contralateral to side of motor symptom onset. Hippocampal shape differences disappeared when removing the effects of volume. The putamen was the primary structure to show both volume and shape differences in PD, indicating that the putamen is the predominant site of basal ganglia atrophy in early- to mid-stage PD. Side of PD symptom onset associates with contralateral striatal atrophy. Left-onset PD might experience more extensive striatal atrophy than right-onset PD. Hippocampus morphometric results suggest possible primary atrophy of CA3/4 and dentate gyrus.

  19. Patterns of genetic and morphometric diversity in baobab (Adansonia digitata) populations across different climatic zones of Benin (West Africa).

    PubMed

    Assogbadjo, A E; Kyndt, T; Sinsin, B; Gheysen, G; van Damme, P

    2006-05-01

    Baobab (Adansonia digitata) is a multi-purpose tree used daily by rural African communities. The present study aimed at investigating the level of morphometric and genetic variation and spatial genetic structure within and between threatened baobab populations from the three climatic zones of Benin. A total of 137 individuals from six populations were analysed using morphometric data as well as molecular marker data generated using the AFLP technique. Five primer pairs resulted in a total of 217 scored bands with 78.34 % of them being polymorphic. A two-level AMOVA of 137 individuals from six baobab populations revealed 82.37 % of the total variation within populations and 17.63 % among populations (P < 0.001). Analysis of population structure with allele-frequency based F-statistics revealed a global F(ST) of 0.127 +/- 0.072 (P < 0.001). The mean gene diversity within populations (H(S)) and the average gene diversity between populations (D(ST)) were estimated at 0.309 +/- 0.000 and 0.045 +/- 0.072, respectively. Baobabs in the Sudanian and Sudan-Guinean zones of Benin were short and produced the highest yields of pulp, seeds and kernels, in contrast to the ones in the Guinean zone, which were tall and produced only a small number of fruits with a low pulp, seed and kernel productivity. A statistically significant correlation with the observed patterns of genetic diversity was observed for three morphological characteristics: height of the trees, number of branches and thickness of the capsules. The results indicate some degree of physical isolation of the populations collected in the different climatic zones and suggest a substantial amount of genetic structuring between the analysed populations of baobab. Sampling options of the natural populations are suggested for in or ex situ conservation.

  20. Virtual Assessment of Sex: Linear and Angular Traits of the Mandibular Ramus Using Three-Dimensional Computed Tomography.

    PubMed

    Inci, Ercan; Ekizoglu, Oguzhan; Turkay, Rustu; Aksoy, Sema; Can, Ismail Ozgur; Solmaz, Dilek; Sayin, Ibrahim

    2016-10-01

    Morphometric analysis of the mandibular ramus (MR) provides highly accurate data to discriminate sex. The objective of this study was to demonstrate the utility and accuracy of MR morphometric analysis for sex identification in a Turkish population.Four hundred fifteen Turkish patients (18-60 y; 201 male and 214 female) who had previously had multidetector computed tomography scans of the cranium were included in the study. Multidetector computed tomography images were obtained using three-dimensional reconstructions and a volume-rendering technique, and 8 linear and 3 angular values were measured. Univariate, bivariate, and multivariate discriminant analyses were performed, and the accuracy rates for determining sex were calculated.Mandibular ramus values produced high accuracy rates of 51% to 95.6%. Upper ramus vertical height had the highest rate at 95.6%, and bivariate analysis showed 89.7% to 98.6% accuracy rates with the highest ratios of mandibular flexure upper border and maximum ramus breadth. Stepwise discrimination analysis gave a 99% accuracy rate for all MR variables.Our study showed that the MR, in particular morphometric measures of the upper part of the ramus, can provide valuable data to determine sex in a Turkish population. The method combines both anthropological and radiologic studies.

  1. Morphometric differences of Microgramma squamulosa (Kaulf.) de la Sota (Polypodiaceae) leaves in environments with distinct atmospheric air quality.

    PubMed

    Rocha, Ledyane D; da Costa, Gustavo M; Gehlen, Günther; Droste, Annette; Schmitt, Jairo L

    2014-09-01

    Plants growing in environments with different atmospheric conditions may present changes in the morphometric parameters of their leaves. Microgramma squamulosa (Kaulf.) de la Sota is a neotropical epiphytic fern found in impacted environments. The aims of this study were to quantitatively compare structural characteristics of leaves in areas with different air quality conditions, and to identify morphometric parameters that are potential indicators of the effects of pollution on these plants. Fertile and sterile leaves growing on isolated trees were collected from an urban (Estância Velha) and a rural (Novo Hamburgo) environment, in Rio Grande do Sul, Brazil. For each leaf type, macroscopic and microscopic analyses were performed on 192 samples collected in each environment. The sterile and fertile leaves showed significantly greater thickness of the midrib and greater vascular bundle and leaf blade areas in the rural environment, which is characterized by less air pollution. The thickness of the hypodermis and the stomatal density of the fertile leaves were greater in the urban area, which is characterized by more air pollution. Based on the fact that significant changes were found in the parameters of both types of leaves, which could possibly be related to air pollutants, M. squamulosa may be a potential bioindicator.

  2. A web system of virtual morphometric globes for Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Florinsky, I. V.; Garov, A. S.; Karachevtseva, I. P.

    2018-09-01

    We developed a web system of virtual morphometric globes for Mars and the Moon. As the initial data, we used 15-arc-minutes gridded global digital elevation models (DEMs) extracted from the Mars Orbiter Laser Altimeter (MOLA) and the Lunar Orbiter Laser Altimeter (LOLA) gridded archives. We derived global digital models of sixteen morphometric variables including horizontal, vertical, minimal, and maximal curvatures, as well as catchment area and topographic index. The morphometric models were integrated into the web system developed as a distributed application consisting of a client front-end and a server back-end. The following main functions are implemented in the system: (1) selection of a morphometric variable; (2) two-dimensional visualization of a calculated global morphometric model; (3) 3D visualization of a calculated global morphometric model on the sphere surface; (4) change of a globe scale; and (5) globe rotation by an arbitrary angle. Free, real-time web access to the system is provided. The web system of virtual morphometric globes can be used for geological and geomorphological studies of Mars and the Moon at the global, continental, and regional scales.

  3. Revision of Gymnotus (Gymnotiformes: Gymnotidae) from the Upper Madeira Basin of Bolivia and Peru, with descriptions of two new species.

    PubMed

    Craig, Jack M; Correa-roldÁn, Vanessa; Ortega, HernÁn; Crampton, William G R; Albert, James S

    2018-04-20

    Banded Knifefishes (Gymnotus, Gymnotidae) comprise the most species-rich genus of Neotropical electric fishes, with 41 species currently described from throughout the humid Neotropics, from Mexico to Argentina. Despite substantial alpha-taxonomic work in recent years, the diversity of Gymnotus in some regions remains poorly understood. Here we describe the Gymnotus fauna of the Upper Madeira basin of Bolivia and Peru from examination of more than 240 adult specimens. Species are delimited and described using body proportions (traditional morphometrics), fin-ray, squamation and laterosensory-pore counts (meristics), quantitative shape differences (geometric morphometrics), osteological traits, and color patterns. Comparisons of standardized linear measures as well as multivariate statistical methods validate the presence in the Upper Madeira basin of three previously described species, two with wide-spread geographic distributions throughout Greater Amazonia (G. carapo and G. coropinae), and one (G. chaviro) endemic to southwestern Amazonia. We also diagnose and describe two new species that are endemic to the Upper Madeira basin: G. eyra n. sp., morphologically most similar to G. mamiraua from lowland Amazonia, and G. riberalta n. sp., morphologically most similar to G. pantanal from the Paraguay-Paraná basin. The five Gymnotus species from the Upper Madeira basin are not monophyletic, each species being more closely related to a different species from another region; i.e. the Gymnotus species from the Upper Madeira represents a polyphyletic assemblage. These descriptions to 43 the number of valid Gymnotus species.

  4. Hepatic Hemangiomas Alter Morphometry and Impair Hemodynamics of the Abdominal Aorta and Primary Branches From Computer Simulations.

    PubMed

    Yin, Xiaoping; Huang, Xu; Li, Qiao; Li, Li; Niu, Pei; Cao, Minglu; Guo, Fei; Li, Xuechao; Tan, Wenchang; Huo, Yunlong

    2018-01-01

    Background: The formation of hepatic hemangiomas (HH) is associated with VEGF and IL-7 that alter conduit arteries and small arterioles. To our knowledge, there are no studies to investigate the effects of HH on the hemodynamics in conduit arteries. The aim of the study is to perform morphometric and hemodynamic analysis in abdominal conduit arteries and bifurcations of HH patients and controls. Methods: Based on morphometry reconstructed from CT images, geometrical models were meshed with prismatic elements for the near wall region and tetrahedral and hexahedral elements for the core region. Simulations were performed for computation of the non-Newtonian blood flow using the Carreau-Yasuda model, based on which multiple hemodynamic parameters were determined. Results: There was an increase of the lumen size, diameter ratio, and curvature in the abdominal arterial tree of HH patients as compared with controls. This significantly increased the surface area ratio of low time-averaged wall shear stress (i.e., SAR-TAWSS [Formula: see text] 100%) (24.1 ± 7.9 vs. 5 ± 6%, 11.6 ± 12.8 vs. < 0.1%, and 44.5 ± 9.2 vs. 21 ± 24% at hepatic bifurcations, common hepatic arteries, and abdominal aortas, respectively, between HH and control patients). Conclusions: Morphometric changes caused by HH significantly deteriorated the hemodynamic environment in abdominal conduit arteries and bifurcations, which could be an important risk factor for the incidence and progression of vascular diseases.

  5. Evaluating causes of error in landmark-based data collection using scanners

    PubMed Central

    Shearer, Brian M.; Cooke, Siobhán B.; Halenar, Lauren B.; Reber, Samantha L.; Plummer, Jeannette E.; Delson, Eric

    2017-01-01

    In this study, we assess the precision, accuracy, and repeatability of craniodental landmarks (Types I, II, and III, plus curves of semilandmarks) on a single macaque cranium digitally reconstructed with three different surface scanners and a microCT scanner. Nine researchers with varying degrees of osteological and geometric morphometric knowledge landmarked ten iterations of each scan (40 total) to test the effects of scan quality, researcher experience, and landmark type on levels of intra- and interobserver error. Two researchers additionally landmarked ten specimens from seven different macaque species using the same landmark protocol to test the effects of the previously listed variables relative to species-level morphological differences (i.e., observer variance versus real biological variance). Error rates within and among researchers by scan type were calculated to determine whether or not data collected by different individuals or on different digitally rendered crania are consistent enough to be used in a single dataset. Results indicate that scan type does not impact rate of intra- or interobserver error. Interobserver error is far greater than intraobserver error among all individuals, and is similar in variance to that found among different macaque species. Additionally, experience with osteology and morphometrics both positively contribute to precision in multiple landmarking sessions, even where less experienced researchers have been trained in point acquisition. Individual training increases precision (although not necessarily accuracy), and is highly recommended in any situation where multiple researchers will be collecting data for a single project. PMID:29099867

  6. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

    PubMed

    Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

    2014-04-01

    Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

  7. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading.

    PubMed

    Celi, Simona; Berti, Sergio

    2014-10-01

    Optical coherence tomography (OCT) is a catheter-based medical imaging technique that produces cross-sectional images of blood vessels. This technique is particularly useful for studying coronary atherosclerosis. In this paper, we present a new framework that allows a segmentation and quantification of OCT images of coronary arteries to define the plaque type and stenosis grading. These analyses are usually carried out on-line on the OCT-workstation where measuring is mainly operator-dependent and mouse-based. The aim of this program is to simplify and improve the processing of OCT images for morphometric investigations and to present a fast procedure to obtain 3D geometrical models that can also be used for external purposes such as for finite element simulations. The main phases of our toolbox are the lumen segmentation and the identification of the main tissues in the artery wall. We validated the proposed method with identification and segmentation manually performed by expert OCT readers. The method was evaluated on ten datasets from clinical routine and the validation was performed on 210 images randomly extracted from the pullbacks. Our results show that automated segmentation of the vessel and of the tissue components are possible off-line with a precision that is comparable to manual segmentation for the tissue component and to the proprietary-OCT-console for the lumen segmentation. Several OCT sections have been processed to provide clinical outcome. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Pelvic form and locomotor adaptation in strepsirrhine primates.

    PubMed

    Lewton, Kristi L

    2015-01-01

    The pelvic girdle is a complex structure with a critical role in locomotion, but efforts to model the mechanical effects of locomotion on its shape remain difficult. Traditional approaches to understanding form and function include univariate adaptive hypothesis-testing derived from mechanical models. Geometric morphometric (GM) methods can yield novel insight into overall three-dimensional shape similarities and differences across groups, although the utility of GM in assessing functional differences has been questioned. This study evaluates the contributions of both univariate and GM approaches to unraveling the trait-function associations between pelvic form and locomotion. Three-dimensional landmarks were collected on a phylogenetically-broad sample of 180 pelves from nine primate taxa. Euclidean interlandmark distances were calculated to facilitate testing of biomechanical hypotheses, and a principal components (PC) analysis was performed on Procrustes coordinates to examine overall shape differences. Both linear dimensions and PC scores were subjected to phylogenetic ANOVA. Many of the null hypotheses relating linear dimensions to locomotor loading were not rejected. Although both analytical approaches suggest that ilium width and robusticity differ among locomotor groups, the GM analysis also suggests that ischiopubic shape differentiates groups. Although GM provides additional quantitative results beyond the univariate analyses, this study highlights the need for new GM methods to more specifically address functional shape differences among species. Until these methods are developed, it would be prudent to accompany tests of directional biomechanical hypotheses with current GM methods for a more nuanced understanding of shape and function. © 2014 Wiley Periodicals, Inc.

  9. Morphology and function of Neandertal and modern human ear ossicles

    PubMed Central

    David, Romain; Gunz, Philipp; Schmidt, Tobias; Spoor, Fred; Hublin, Jean-Jacques

    2016-01-01

    The diminutive middle ear ossicles (malleus, incus, stapes) housed in the tympanic cavity of the temporal bone play an important role in audition. The few known ossicles of Neandertals are distinctly different from those of anatomically modern humans (AMHs), despite the close relationship between both human species. Although not mutually exclusive, these differences may affect hearing capacity or could reflect covariation with the surrounding temporal bone. Until now, detailed comparisons were hampered by the small sample of Neandertal ossicles and the unavailability of methods combining analyses of ossicles with surrounding structures. Here, we present an analysis of the largest sample of Neandertal ossicles to date, including many previously unknown specimens, covering a wide geographic and temporal range. Microcomputed tomography scans and 3D geometric morphometrics were used to quantify shape and functional properties of the ossicles and the tympanic cavity and make comparisons with recent and extinct AMHs as well as African apes. We find striking morphological differences between ossicles of AMHs and Neandertals. Ossicles of both Neandertals and AMHs appear derived compared with the inferred ancestral morphology, albeit in different ways. Brain size increase evolved separately in AMHs and Neandertals, leading to differences in the tympanic cavity and, consequently, the shape and spatial configuration of the ossicles. Despite these different evolutionary trajectories, functional properties of the middle ear of AMHs and Neandertals are largely similar. The relevance of these functionally equivalent solutions is likely to conserve a similar auditory sensitivity level inherited from their last common ancestor. PMID:27671643

  10. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans

    PubMed Central

    Fabre, Anne-Claire; Cornette, Raphael; Goswami, Anjali; Peigné, Stéphane

    2015-01-01

    Convergence in morphology can result from evolutionary adaptations in species living in environments with similar selective pressures. Here, we investigate whether the shape of the forelimb long bones has converged in environments imposing similar functional constraints, using musteloid carnivores as a model. The limbs of quadrupeds are subjected to many factors that may influence their shape. They need to support body mass without collapsing or breaking, yet at the same time resist the stresses and strains induced by locomotion. This likely imposes strong constraints on their morphology. Our geometric morphometric analyses show that locomotion, body mass and phylogeny all influence the shape of the forelimb. Furthermore, we find a remarkable convergence between: (i) aquatic and semi-fossorial species, both displaying a robust forelimb, with a shape that improves stability and load transfer in response to the physical resistance imposed by the locomotor environment; and (ii) aquatic and arboreal/semi-arboreal species, with both groups displaying a broad capitulum. This augments the degree of pronation/supination, an important feature for climbing as well as grasping and manipulation ability, behaviors common to aquatic and arboreal species. In summary, our results highlight how musteloids with different locomotor ecologies show differences in the anatomy of their forelimb bones. Yet, functional demands for limb movement through dense media also result in convergence in forelimb long-bone shape between diverse groups, for example, otters and badgers. PMID:25994128

  11. Shape Ontogeny of the Distal Femur in the Hominidae with Implications for the Evolution of Bipedality

    PubMed Central

    Tallman, Melissa

    2016-01-01

    Heterochrony has been invoked to explain differences in the morphology of modern humans as compared to other great apes. The distal femur is one area where heterochrony has been hypothesized to explain morphological differentiation among Plio-Pleistocene hominins. This hypothesis is evaluated here using geometric morphometric data to describe the ontogenetic shape trajectories of extant hominine distal femora and place Plio-Pleistocene hominins within that context. Results of multivariate statistical analyses showed that in both Homo and Gorilla, the shape of the distal femur changes significantly over the course of development, whereas that of Pan changes very little. Development of the distal femur of Homo is characterized by an elongation of the condyles, and a greater degree of enlargement of the medial condyle relative to the lateral condyle, whereas Gorilla are characterized by a greater degree of enlargement of the lateral condyle, relative to the medial. Early Homo and Australopithecus africanus fossils fell on the modern human ontogenetic shape trajectory and were most similar to either adult or adolescent modern humans while specimens of Australopithecus afarensis were more similar to Gorilla/Pan. These results indicate that shape differences among the distal femora of Plio-Pleistocene hominins and humans cannot be accounted for by heterochrony alone; heterochrony could explain a transition from the distal femoral shape of early Homo/A. africanus to modern Homo, but not a transition from A. afarensis to Homo. That change could be the result of genetic or epigenetic factors. PMID:26886416

  12. Detection of a population replacement at the Classic–Postclassic transition in Mexico

    PubMed Central

    González-José, Rolando; Martínez-Abadías, Neus; González-Martín, Antonio; Bautista-Martínez, Josefina; Gómez-Valdés, Jorge; Quinto, Mirsha; Hernández, Miquel

    2006-01-01

    The Mexica Empire reached an outstanding social, economic and politic organization among Mesoamerican civilizations. Even though archaeology and history provide substantial information about their past, their biological origin and the demographic consequences of their settlement in the Central Valley of Mexico remain unsolved. Two main hypotheses compete to explain the Mexica origin: a social reorganization of the groups already present in the Central Valley after the fall of the Classic centres or a population replacement of the Mesoamerican groups by migrants from the north and the consequent setting up of the Mexica society. Here, we show that the main changes in the facial phenotype occur during the Classic–Postclassic transition, rather than in the rise of the Mexica. Furthermore, Mexica facial morphology seems to be already present in the early phases of the Postclassic epoch and is not related to the northern facial pattern. A combination of geometric morphometrics with Relethford–Blangero analyses of within- versus among-group variation indicates that Postclassic groups are more variable than expected. This result suggests that intense gene exchange was likely after the fall of the Classic and maybe responsible for the Postclassic facial phenotype. The source population for the Postclassic groups could be located somewhere in western Mesoamerica, since North Mexico and Central Mesoamerican Preclassic and Classic groups are clearly divergent from the Postclassic ones. Similarity among Preclassic and Classic groups and those from Aridoamerica could be reflecting the ancestral phenotypic pattern characteristic of the groups that first settled Mesoamerica. PMID:17254992

  13. How many landmarks are enough to characterize shape and size variation?

    PubMed

    Watanabe, Akinobu

    2018-01-01

    Accurate characterization of morphological variation is crucial for generating reliable results and conclusions concerning changes and differences in form. Despite the prevalence of landmark-based geometric morphometric (GM) data in the scientific literature, a formal treatment of whether sampled landmarks adequately capture shape variation has remained elusive. Here, I introduce LaSEC (Landmark Sampling Evaluation Curve), a computational tool to assess the fidelity of morphological characterization by landmarks. This task is achieved by calculating how subsampled data converge to the pattern of shape variation in the full dataset as landmark sampling is increased incrementally. While the number of landmarks needed for adequate shape variation is dependent on individual datasets, LaSEC helps the user (1) identify under- and oversampling of landmarks; (2) assess robustness of morphological characterization; and (3) determine the number of landmarks that can be removed without compromising shape information. In practice, this knowledge could reduce time and cost associated with data collection, maintain statistical power in certain analyses, and enable the incorporation of incomplete, but important, specimens to the dataset. Results based on simulated shape data also reveal general properties of landmark data, including statistical consistency where sampling additional landmarks has the tendency to asymptotically improve the accuracy of morphological characterization. As landmark-based GM data become more widely adopted, LaSEC provides a systematic approach to evaluate and refine the collection of shape data--a goal paramount for accumulation and analysis of accurate morphological information.

  14. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans.

    PubMed

    Fabre, Anne-Claire; Cornette, Raphael; Goswami, Anjali; Peigné, Stéphane

    2015-06-01

    Convergence in morphology can result from evolutionary adaptations in species living in environments with similar selective pressures. Here, we investigate whether the shape of the forelimb long bones has converged in environments imposing similar functional constraints, using musteloid carnivores as a model. The limbs of quadrupeds are subjected to many factors that may influence their shape. They need to support body mass without collapsing or breaking, yet at the same time resist the stresses and strains induced by locomotion. This likely imposes strong constraints on their morphology. Our geometric morphometric analyses show that locomotion, body mass and phylogeny all influence the shape of the forelimb. Furthermore, we find a remarkable convergence between: (i) aquatic and semi-fossorial species, both displaying a robust forelimb, with a shape that improves stability and load transfer in response to the physical resistance imposed by the locomotor environment; and (ii) aquatic and arboreal/semi-arboreal species, with both groups displaying a broad capitulum. This augments the degree of pronation/supination, an important feature for climbing as well as grasping and manipulation ability, behaviors common to aquatic and arboreal species. In summary, our results highlight how musteloids with different locomotor ecologies show differences in the anatomy of their forelimb bones. Yet, functional demands for limb movement through dense media also result in convergence in forelimb long-bone shape between diverse groups, for example, otters and badgers. © 2015 Anatomical Society.

  15. The presence of accessory cusps in chimpanzee lower molars is consistent with a patterning cascade model of development

    PubMed Central

    Skinner, Matthew M; Gunz, Philipp

    2010-01-01

    Tooth crown morphology is of primary importance in fossil primate systematics and understanding the developmental basis of its variation facilitates phenotypic analyses of fossil teeth. Lower molars of species in the chimp/human clade (including fossil hominins) possess between four and seven cusps and this variability has been implicated in alpha taxonomy and phylogenetic systematics. What is known about the developmental basis of variation in cusp number – based primarily on experimental studies of rodent molars – suggests that cusps form under a morphodynamic, patterning cascade model involving the iterative formation of enamel knots. In this study we test whether variation in cusp 6 (C6) presence in common chimpanzee and bonobo lower molars (n = 55) is consistent with predictions derived from the patterning cascade model. Using microcomputed tomography we imaged the enamel-dentine junction of lower molars and used geometric morphometrics to examine shape variation in the molar crown correlated with variation in C6 presence (in particular the size and spacing of the dentine horns). Results indicate that C6 presence is consistent with predictions of a patterning cascade model, with larger molars exhibiting a higher frequency of C6 and with the location and size of later-forming cusps correlated with C6 variation. These results demonstrate that a patterning cascade model is appropriate for interpreting cusp variation in Pan and have implications for cusp nomenclature and the use of accessory cusp morphology in primate systematics. PMID:20629983

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milani, Gabriele, E-mail: milani@stru.polimi.it, E-mail: gabriele.milani@polimi.it; Valente, Marco

    This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. Onmore » the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/− and Y+/− directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend.« less

  17. Taxonomic and systematic revisions to the North American Nimravidae (Mammalia, Carnivora)

    PubMed Central

    2016-01-01

    The Nimravidae is a family of extinct carnivores commonly referred to as “false saber-tooth cats.” Since their initial discovery, they have prompted difficulty in taxonomic assignments and number of valid species. Past revisions have only examined a handful of genera, while recent advances in cladistic and morphometric analyses have granted us additional avenues to answering questions regarding our understanding of valid nimravid taxa and their phylogenetic relationships. To resolve issues of specific validity, the phylogenetic species concept (PSC) was utilized to maintain consistency in diagnosing valid species, while simultaneously employing character and linear morphometric analyses for confirming the validity of taxa. Determined valid species and taxonomically informative characters were then employed in two differential cladistic analyses to create competing hypotheses of interspecific relationships. The results suggest the validity of twelve species and six monophyletic genera. The first in depth reviews of Pogonodon and Dinictis returned two valid species (P. platycopis, P. davisi) for the former, while only one for the latter (D. felina). The taxonomic validity of Nanosmilus is upheld. Two main clades with substantial support were returned for all cladistic analyses, the Hoplophoneini and Nimravini, with ambiguous positions relative to these main clades for the European taxa: Eofelis, Dinailurictis bonali, and Quercylurus major; and the North American taxa Dinictis and Pogonodon. Eusmilus is determined to represent a non-valid genus for North American taxa, suggesting non-validity for Old World nimravid species as well. Finally, Hoplophoneus mentalis is found to be a junior synonym of Hoplophoneus primaevus, while the validity of Hoplophoneus oharrai is reinstated. PMID:26893959

  18. Comparative morphometric and chemical analyses of phenotypes of two invasive ambrosia beetles (Euwallacea spp.) in the United States

    Treesearch

    Yigen Chen; Paul L. Dallara; Lori J. Nelson; Tom W. Coleman; Stacy M. Hishinuma; Daniel Carrillo; Steven J. Seybold

    2016-01-01

    The polyphagous shot hole borer (PSHB), Euwallacea sp., was first detected in 2003 in Los Angeles County, California, USA. Recently, this invasive species has become a major pest of many hardwood trees in urban and wildland forests throughout southern California. PSHB is nearly identical in morphology and life history to the tea shot hole borer (...

  19. Watershed-based Morphometric Analysis: A Review

    NASA Astrophysics Data System (ADS)

    Sukristiyanti, S.; Maria, R.; Lestiana, H.

    2018-02-01

    Drainage basin/watershed analysis based on morphometric parameters is very important for watershed planning. Morphometric analysis of watershed is the best method to identify the relationship of various aspects in the area. Despite many technical papers were dealt with in this area of study, there is no particular standard classification and implication of each parameter. It is very confusing to evaluate a value of every morphometric parameter. This paper deals with the meaning of values of the various morphometric parameters, with adequate contextual information. A critical review is presented on each classification, the range of values, and their implications. Besides classification and its impact, the authors also concern about the quality of input data, either in data preparation or scale/the detail level of mapping. This review paper hopefully can give a comprehensive explanation to assist the upcoming research dealing with morphometric analysis.

  20. IPAC-Inlet Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1997-01-01

    A series of analyses have been developed which permit the calculation of the performance of common inlet designs. The methods presented are useful for determining the inlet weight flows, total pressure recovery, and aerodynamic drag coefficients for given inlet geometric designs. Limited geometric input data is required to use this inlet performance prediction methodology. The analyses presented here may also be used to perform inlet preliminary design studies. The calculated inlet performance parameters may be used in subsequent engine cycle analyses or installed engine performance calculations for existing uninstalled engine data.

  1. Computation of Femoral Canine Morphometric Parameters in Three-Dimensional Geometrical Models.

    PubMed

    Savio, Gianpaolo; Baroni, Teresa; Concheri, Gianmaria; Baroni, Ermenegildo; Meneghello, Roberto; Longo, Federico; Isola, Maurizio

    2016-11-01

    To define and validate a method for the measurement of 3-dimensional (3D) morphometric parameters in polygonal mesh models of canine femora. Ex vivo/computerized model. Sixteen femora from 8 medium to large-breed canine cadavers (mean body weight 28.3 kg, mean age 5.3 years). Femora were measured with a 3D scanner, obtaining 3D meshes. A computer-aided design-based (CAD) software tool was purposely developed, which allowed automatic calculation of morphometric parameters on a mesh model. Anatomic and mechanical lateral proximal femoral angles (aLPFA and mLPFA), anatomic and mechanical lateral distal femoral angles (aLDFA and mLDFA), femoral neck angle (FNA), femoral torsion angle (FTA), and femoral varus angle (FVA) were measured in 3D space. Angles were also measured onto projected planes and radiographic images. Mean (SD) femoral angles (degrees) measured in 3D space were: aLPFA 115.2 (3.9), mLPFA 105.5 (4.2), aLDFA 88.6 (4.5), mLDFA 93.4 (3.9), FNA 129.6 (4.3), FTA 45 (4.5), and FVA -1.4 (4.5). Onto projection planes, aLPFA was 103.7 (5.9), mLPFA 98.4 (5.3), aLDFA 88.3 (5.5), mLDFA 93.6 (4.2), FNA 132.1 (3.5), FTA 19.1 (5.7), and FVA -1.7 (5.5). With radiographic imaging, aLPFA was 109.6 (5.9), mLPFA 105.3 (5.2), aLDFA 92.6 (3.8), mLDFA 96.9 (2.9), FNA 120.2 (8.0), FTA 30.2 (5.7), and FVA 2.6 (3.8). The proposed method gives reliable and consistent information about 3D bone conformation. Results are obtained automatically and depend only on femur morphology, avoiding any operator-related bias. Angles in 3D space are different from those measured with standard radiographic methods, mainly due to the different definition of femoral axes. © Copyright 2016 by The American College of Veterinary Surgeons.

  2. Nuclear markers reveal that inter-lake cichlids' similar morphologies do not reflect similar genealogy.

    PubMed

    Kassam, Daud; Seki, Shingo; Horic, Michio; Yamaoka, Kosaku

    2006-08-01

    The apparent inter-lake morphological similarity among East African Great Lakes' cichlid species/genera has left evolutionary biologists asking whether such similarity is due to sharing of common ancestor or mere convergent evolution. In order to answer such question, we first used Geometric Morphometrics, GM, to quantify morphological similarity and then subsequently used Amplified Fragment Length Polymorphism, AFLP, to determine if similar morphologies imply shared ancestry or convergent evolution. GM revealed that not all presumed morphological similar pairs were indeed similar, and the dendrogram generated from AFLP data indicated distinct clusters corresponding to each lake and not inter-lake morphological similar pairs. Such results imply that the morphological similarity is due to convergent evolution and not shared ancestry. The congruency of GM and AFLP generated dendrograms imply that GM is capable of picking up phylogenetic signal, and thus GM can be potential tool in phylogenetic systematics.

  3. Adaptation to suspensory locomotion in Australopithecus sediba.

    PubMed

    Rein, Thomas R; Harrison, Terry; Carlson, Kristian J; Harvati, Katerina

    2017-03-01

    Australopithecus sediba is represented by well-preserved fossilized remains from the locality of Malapa, South Africa. Recent work has shown that the combination of features in the limb skeleton of A. sediba was distinct from that of earlier species of Australopithecus, perhaps indicating that this species moved differently. The bones of the arm and forearm indicate that A. sediba was adapted to suspensory and climbing behaviors. We used a geometric morphometric approach to examine ulnar shape, potentially identifying adaptations to forelimb suspensory locomotion in A. sediba. Results indicated suspensory capabilities in this species and a stronger forelimb suspensory signal than has been documented in Australopithecus afarensis. Our study confirms the adaptive significance of functional morphological traits for arboreal movements in the locomotor repertoire of A. sediba and provides important insight into the diversity and mosaic nature of locomotor adaptations among early hominins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids

    PubMed Central

    Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2015-01-01

    Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution. PMID:25948565

  5. Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids.

    PubMed

    Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2015-05-01

    Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution.

  6. In vivo investigation on the chronic hepatotoxicity induced by sertraline.

    PubMed

    Almansour, Mansour I; Jarrar, Yazun B; Jarrar, Bashir M

    2018-05-30

    Although sertraline is widely prescribed as relatively safe antidepressant drug, hepatic toxicity was reported in some patients with sertraline treatment. The present study was conducted to investigate the morphometric, hepatotoxicity, and change in gene expression of drug metabolizing enzymes. Male healthy adult rabbits (Oryctolagus cuniculus) ranging from 1050 to 1100 g were exposed to oral daily doses of sertraline (0, 1, 2, 4, 8 mg/kg) for 9 weeks. The animals were subjected to morphometric, hepatohistological, histochemical and quantitative real-time polymerase chain reaction analyses. Sertraline chronic exposure induced morphometric changes and provoked histological and histochemical alterations including: hepatocytes hydropic degeneration, necrosis, nuclear alteration, sinusoidal dilation, bile duct hyperplasia, inflammatory cells infiltration, portal vessel congestion, Kupffer cells hyperplasia, portal fibrosis and glycogen depletion. In addition, the gene expression of drug and arachidonic acid metabolizing enzymes were reduced significantly (p value <0.05). The most affected genes were cyp4a12, ephx2, cyp2d9 and cyp1a2, demonstrating 5 folds or more down-regulation. These findings suggest that chronic sertraline treatment induced toxic histological alterations in the hepatic tissues and reduced the gene expression of drug metabolizing enzymes. Patients on chronic sertraline treatment may be on risk of hepatotoxicity with reduced capacity to metabolize drugs and fatty acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Genetic and Morphometric Evidence for the Conspecific Status of the Bumble Bees, Bombus melanopygus and Bombus edwardsii

    PubMed Central

    Owen, Robin E.; Whidden, Troy L.; Plowright, R.C.

    2010-01-01

    The taxonomic status of closely related bumble bee species is often unclear. The relationship between the two nominate taxa, Bombus melanopygus Nylander (Hymenoptera: Apidae) and Bombus edwardsii Cresson (Hymenoptera: Apidae), was investigated using genetic (enzyme electrophoretic) and morphometric analyses. The taxa differ in the color of the abdominal terga two and three, being ferruginous in B. melanopygus and black in B. edwardsii. B. edwardsii occurs throughout California, while B. melanopygus extends north through Oregon, to Alaska and Canada. They are sympatric only in southern Oregon and northern California. The taxonomic status of these taxa was questioned when Owen and Plowright (1980) reared colonies from queens collected in the area of sympatry, and discovered that pile coloration was due to a single, biallelic Mendelian gene, with the red (R) allele dominant to the black (r). Here it is shown that all the taxa, whether from California, Oregon, or Alberta, have the same electrophoretic profile and cannot be reliably distinguished by wing morphometrics. This strongly supports the conclusion that B. melanopygus and B. edwardsii are conspecific and should be synonymized under the name B. melanopygus. Hence, there is a gene frequency cline running from north to south, where the red allele is completely replaced by the black allele over a distance of about 600 km. PMID:20874396

  8. Morphology delimits more species than molecular genetic clusters of invasive Pilosella.

    PubMed

    Moffat, Chandra E; Ensing, David J; Gaskin, John F; De Clerck-Floate, Rosemarie A; Pither, Jason

    2015-07-01

    • Accurate assessments of biodiversity are paramount for understanding ecosystem processes and adaptation to change. Invasive species often contribute substantially to local biodiversity; correctly identifying and distinguishing invaders is thus necessary to assess their potential impacts. We compared the reliability of morphology and molecular sequences to discriminate six putative species of invasive Pilosella hawkweeds (syn. Hieracium, Asteraceae), known for unreliable identifications and historical introgression. We asked (1) which morphological traits dependably discriminate putative species, (2) if genetic clusters supported morphological species, and (3) if novel hybridizations occur in the invaded range.• We assessed 33 morphometric characters for their discriminatory power using the randomForest classifier and, using AFLPs, evaluated genetic clustering with the program structure and subsequently with an AMOVA. The strength of the association between morphological and genotypic dissimilarity was assessed with a Mantel test.• Morphometric analyses delimited six species while genetic analyses defined only four clusters. Specifically, we found (1) eight morphological traits could reliably distinguish species, (2) structure suggested strong genetic differentiation but for only four putative species clusters, and (3) genetic data suggest both novel hybridizations and multiple introductions have occurred.• (1) Traditional floristic techniques may resolve more species than molecular analyses in taxonomic groups subject to introgression. (2) Even within complexes of closely related species, relatively few but highly discerning morphological characters can reliably discriminate species. (3) By clarifying patterns of morphological and genotypic variation of invasive Pilosella, we lay foundations for further ecological study and mitigation. © 2015 Botanical Society of America, Inc.

  9. Transformation (normalization) of slope gradient and surface curvatures, automated for statistical analyses from DEMs

    NASA Astrophysics Data System (ADS)

    Csillik, O.; Evans, I. S.; Drăguţ, L.

    2015-03-01

    Automated procedures are developed to alleviate long tails in frequency distributions of morphometric variables. They minimize the skewness of slope gradient frequency distributions, and modify the kurtosis of profile and plan curvature distributions toward that of the Gaussian (normal) model. Box-Cox (for slope) and arctangent (for curvature) transformations are tested on nine digital elevation models (DEMs) of varying origin and resolution, and different landscapes, and shown to be effective. Resulting histograms are illustrated and show considerable improvements over those for previously recommended slope transformations (sine, square root of sine, and logarithm of tangent). Unlike previous approaches, the proposed method evaluates the frequency distribution of slope gradient values in a given area and applies the most appropriate transform if required. Sensitivity of the arctangent transformation is tested, showing that Gaussian-kurtosis transformations are acceptable also in terms of histogram shape. Cube root transformations of curvatures produced bimodal histograms. The transforms are applicable to morphometric variables and many others with skewed or long-tailed distributions. By avoiding long tails and outliers, they permit parametric statistics such as correlation, regression and principal component analyses to be applied, with greater confidence that requirements for linearity, additivity and even scatter of residuals (constancy of error variance) are likely to be met. It is suggested that such transformations should be routinely applied in all parametric analyses of long-tailed variables. Our Box-Cox and curvature automated transformations are based on a Python script, implemented as an easy-to-use script tool in ArcGIS.

  10. Neotropical Monogenoidea. 53. Gyrodactylus corydori sp. n. and redescription of Gyrodactylus anisopharynx (Gyrodactylidea: Gyrodactylidae), parasites of Corydoras spp. (Siluriformes: Callichthyidae) from southern Brazil.

    PubMed

    Bueno-Silva, Marlus; Boeger, Walter A

    2009-03-01

    Morphometric analyses are used to evaluate the taxonomic status of two sympatric variants of Gyrodactylus anisopharynx Popazoglo et Boeger, 2000 (forma "large-pharynx" and forma "small-pharynx"). The parasites were collected from the Piraquara River and the Miringuava River, State of Paraná, Brazil, between February 2005 and May 2006. A total of 132 parasites were measured from two hosts, Corydoras ehrhardti Steindachner and Corydoras paleatus (Jenyns). Eleven morphological features of the haptoral sclerites and pharynx were measured and analysed by discriminant analysis and principal components analysis. The results indicate that the observed morphological variation cannot be associated to intraspecific variation or phenotypic plasticity (P < 0.0001). Consequently, the two variants previously allocated in G. anisopharynx represent two independent species. Since the holotype was defined as the variant "large-pharynx", Gyrodactylus corydori sp. n. is proposed to accommodate specimens previously reported as "small-pharynx" variant of G. anisopharynx. Morphometric analyses showed that the hook, the anchor, and the pharyngeal bulb are significantly distinct (P < 0.0001) between G. corydori sp. n. and G. anisopharynx (s.s.). The new species is characterized by having hooks with point moderately curved, robust convex heel, convex shelf, toe concave moderately pointed with depression; deep bar with two submedial, posterior projections; anchors with robust superficial root; superficial bar with two small anterolateral projections; and male copulatory organ armed with two rows of spinelets.

  11. Morphometricity as a measure of the neuroanatomical signature of a trait.

    PubMed

    Sabuncu, Mert R; Ge, Tian; Holmes, Avram J; Smoller, Jordan W; Buckner, Randy L; Fischl, Bruce

    2016-09-27

    Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer's disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques.

  12. Morphometricity as a measure of the neuroanatomical signature of a trait

    PubMed Central

    Sabuncu, Mert R.; Ge, Tian; Holmes, Avram J.; Smoller, Jordan W.; Buckner, Randy L.; Fischl, Bruce

    2016-01-01

    Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer’s disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques. PMID:27613854

  13. Divergence of Lutzomyia (Psathyromyia) shannoni (Diptera: Psychodidae: Phlebotominae) is indicated by morphometric and molecular analyses when examined between taxa from the southeastern United States and southern Mexico.

    PubMed

    Florin, David A; Rebollar-Téllez, Eduardo A

    2013-11-01

    The medically important sand fly Lutzomyia shannoni (Dyar 1929) was collected at eight different sites: seven within the southeastern United States and one in the state of Quintana Roo, Mexico. A canonical discriminant analysis was conducted on 40 female L. shannoni specimens from each of the eight collection sites (n = 320) using 49 morphological characters. Four L. shannoni specimens from each of the eight collection sites (n = 32) were sent to the Barcode of Life Data systems where a 654-base pair segment of the cytochrome c oxidase subunit 1 (CO1) genetic marker was sequenced from each sand fly. Phylogeny estimation based on the COI segments, in addition to genetic distance, divergence, and differentiation values were calculated. Results of both the morphometric and molecular analyses indicate that the species has undergone divergence when examined between the taxa of the United States and Quintana Roo, Mexico. Although purely speculative, the arid or semiarid expanse from southern Texas to Mexico City could be an allopatric barrier that has impeded migration and hence gene flow, resulting in different morphology and genetic makeup between the two purported populations. A high degree of intragroup variability was noted in the Quintana Roo sand flies.

  14. Low Genetic Diversity and High Invasion Success of Corbicula fluminea (Bivalvia, Corbiculidae) (Müller, 1774) in Portugal

    PubMed Central

    Gomes, Cidália; Sousa, Ronaldo; Mendes, Tito; Borges, Rui; Vilares, Pedro; Vasconcelos, Vitor; Guilhermino, Lúcia; Antunes, Agostinho

    2016-01-01

    The Asian clam, Corbicula fluminea, is an invasive alien species (IAS) originally from Asia that has spread worldwide causing major ecological and economic impacts in aquatic ecosystems. Here, we evaluated C. fluminea genetic (using COI mtDNA, CYTb mtDNA and 18S rDNA gene markers), morphometric and sperm morphology variation in Portuguese freshwater ecosystems. The COI marker revealed a single haplotype, which belongs to the Asian FW5 invasive lineage, suggesting a common origin for all the 13 Portuguese C. fluminea populations analysed. Morphometric analyses showed differences between the populations colonizing the North (with the exception of the Lima River) and the Centre/South ecosystems. The sperm morphology examination revealed the presence of biflagellate sperm, a distinctive character of the invasive androgenetic lineages. The low genetic variability of the Portuguese C. fluminea populations and the pattern of sperm morphology have been illuminating for understanding the demographic history of this invasive species. We hypothesize that these populations were derived from a unique introductory event of a Corbicula fluminea FW5 invasive androgenic lineage in the Tejo River, which subsequently dispersed to other Portuguese freshwater ecosystems. The C. fluminea asexual reproductive mode may have assisted these populations to become highly invasive despite the low genetic diversity. PMID:27391333

  15. Health effects of sulfur-related environmental air pollution. V. Lung structure.

    PubMed

    Takenaka, S; Godleski, J J; Heini, A; Karg, E; Kreyling, W G; Ritter, B; Schulz, H; Ziesenis, A; Heyder, J

    1999-05-01

    The lungs of 8 male beagle dogs were examined morphologically and morphometrically after exposure for 13 mo to a respirable sulfur(IV) aerosol at a mass concentration of 1.53 mg m(-3) (16.5 h/day), and to an acidic sulfate aerosol carrying 15.2 micromol m(-3) hydrogen ions into the lungs (6 h/day). An additional eight dogs served as unexposed controls. Standard morphometric analyses of both the surface epithelia of the conducting airways and the alveolar region were performed. These analyses showed no difference between the exposure group and control group. However, there was a tendency to an increase in the volume density of bronchial glands in the exposure group. Five of eight exposed animals showed thickened ridges (knob-like structures) at the entrance to alveoli in the alveolar duct and alveolar sac. Transmission electron microscopy revealed that the thickening was mainly due to type II cell proliferation. As the previous experiment using sulfite aerosol only showed no alterations in the proximal alveolar regions, the changes observed may be considered as effects of acidic sulfate aerosol alone or in combination with sulfite. These findings suggest that sulfur aerosols have the potential to induce epithelial alterations in the proximal alveolar region, which is a primary target for air pollutants.

  16. Terrestrial laser scanning in monitoring of anthropogenic objects

    NASA Astrophysics Data System (ADS)

    Zaczek-Peplinska, Janina; Kowalska, Maria

    2017-12-01

    The registered xyz coordinates in the form of a point cloud captured by terrestrial laser scanner and the intensity values (I) assigned to them make it possible to perform geometric and spectral analyses. Comparison of point clouds registered in different time periods requires conversion of the data to a common coordinate system and proper data selection is necessary. Factors like point distribution dependant on the distance between the scanner and the surveyed surface, angle of incidence, tasked scan's density and intensity value have to be taken into consideration. A prerequisite for running a correct analysis of the obtained point clouds registered during periodic measurements using a laser scanner is the ability to determine the quality and accuracy of the analysed data. The article presents a concept of spectral data adjustment based on geometric analysis of a surface as well as examples of geometric analyses integrating geometric and physical data in one cloud of points: cloud point coordinates, recorded intensity values, and thermal images of an object. The experiments described here show multiple possibilities of usage of terrestrial laser scanning data and display the necessity of using multi-aspect and multi-source analyses in anthropogenic object monitoring. The article presents examples of multisource data analyses with regard to Intensity value correction due to the beam's incidence angle. The measurements were performed using a Leica Nova MS50 scanning total station, Z+F Imager 5010 scanner and the integrated Z+F T-Cam thermal camera.

  17. Morphometric analysis of chameleon fossil fragments from the Early Pliocene of South Africa: a new piece of the chamaeleonid history.

    PubMed

    Dollion, Alexis Y; Cornette, Raphaël; Tolley, Krystal A; Boistel, Renaud; Euriat, Adelaïde; Boller, Elodie; Fernandez, Vincent; Stynder, Deano; Herrel, Anthony

    2015-02-01

    The evolutionary history of chameleons has been predominantly studied through phylogenetic approaches as the fossil register of chameleons is limited and fragmented. The poor state of preservation of these fossils has moreover led to the origin of numerous nomen dubia, and the identification of many chameleon fossils remains uncertain. We here examine chameleon fossil fragments from the Early Pliocene Varswater formation, exposed at the locality of Langebaanweg "E" Quarry along the southwestern coast of South Africa. Our aim was to explore whether these fossil fragments could be assigned to extant genera. To do so, we used geometric morphometric approaches based on microtomographic imaging of extant chameleons as well as the fossil fragments themselves. Our study suggests that the fossils from this deposit most likely represent at least two different forms that may belong to different genera. Most fragments are phenotypically dissimilar from the South African endemic genus Bradypodion and are more similar to other chameleon genera such as Trioceros or Kinyongia. However, close phenetic similarities between some of the fragments and the Seychelles endemic Archaius or the Madagascan genus Furcifer suggest that some of these fragments may not contain enough genus-specific information to allow correct identification. Other fragments such as the parietal fragments appear to contain more genus-specific information, however. Although our data suggest that the fossil diversity of chameleons in South Africa was potentially greater than it is today, this remains to be verified based on other and more complete fragments.

  18. Evolution of skull shape in the family Salamandridae (Amphibia: Caudata).

    PubMed

    Ivanović, Ana; Arntzen, Jan W

    2018-03-01

    We carried out a comparative morphometric analysis of 56 species of salamandrid salamanders, representing 19 out of 21 extant genera, with the aim of uncovering the major patterns of skull shape diversification, and revealing possible trends and directions of evolutionary change. To do this we used micro-computed tomography scanning and three-dimensional geometric morphometrics, along with a well-resolved molecular phylogeny. We found that allometry explains a relatively small amount of shape variation across taxa. Congeneric species of salamandrid salamanders are more similar to each other and cluster together producing distinct groups in morphospace. We detected a strong phylogenetic signal and little homoplasy. The most pronounced changes in the skull shape are related to the changes of the frontosquamosal arch, a unique feature of the cranial skeleton for the family Salamandridae, which is formed by processes arising from the frontal and squamosal bones that arch over the orbits. By mapping character states over the phylogeny, we found that a reduction of the frontosquamosal arch occurs independently in three lineages of the subfamily Pleurodelinae. This reduction can probably be attributed to changes in the development and ossification rates of the frontosquamosal arch. In general, our results are similar to those obtained for caecilian amphibians, with an early expansion into the available morphospace and a complex history characterizing evolution of skull shape in both groups. To evaluate the specificity of the inferred evolutionary trajectories and Caudata-wide trends in the diversity of skull morphology, information from additional groups of tailed amphibians is needed. © 2017 Anatomical Society.

  19. Spatially dense morphometrics of craniofacial sexual dimorphism in 1-year-olds.

    PubMed

    Matthews, Harold; Penington, Tony; Saey, Ine; Halliday, Jane; Muggli, Evelyn; Claes, Peter

    2016-10-01

    Recent advances in the field of geometric morphometrics allow for powerful statistical hypothesis testing for effects of biological and environmental variables on anatomical shape. This study used partial least-squares regression (PLSR) and the recently developed bootstrapped response-based imputation modelling (BRIM) algorithm to test for sexual dimorphism in the craniofacial shape of 1-year-old humans. We observed a recession of the forehead in boys relative to girls, and differences in the nose, consistent with adult dimorphism. Results also suggest that the degree to which individuals express dimorphic traits is continuous throughout the population. This is also seen in adult dimorphism but in 1-year-olds the amount of overlap between groups is much higher, indicating the strength of dimorphism between sexes is lower. Our results demonstrate early sexual dimorphism that is not attributable to the influx of sex hormones at puberty. This highlights the need to look at very early ontogeny for the origins of sexual dimorphism. We suggest that future work look at potential mediating effects of this early dimorphism on the later impact of puberty. The subtle shape differences we have detected, may also be applied to sexing fossilised crania. A common artefact in 3D images of faces of young children is that they often have their mouths open to varying degrees, introducing variability in the data unrelated to anatomy. We describe two PLSR-based methods of correcting this. These methods may facilitate surgical planning and assessment of young children based on 3D images. © 2016 Anatomical Society.

  20. Morphometric analysis of chameleon fossil fragments from the Early Pliocene of South Africa: a new piece of the chamaeleonid history

    NASA Astrophysics Data System (ADS)

    Dollion, Alexis Y.; Cornette, Raphaël; Tolley, Krystal A.; Boistel, Renaud; Euriat, Adelaïde; Boller, Elodie; Fernandez, Vincent; Stynder, Deano; Herrel, Anthony

    2015-02-01

    The evolutionary history of chameleons has been predominantly studied through phylogenetic approaches as the fossil register of chameleons is limited and fragmented. The poor state of preservation of these fossils has moreover led to the origin of numerous nomen dubia, and the identification of many chameleon fossils remains uncertain. We here examine chameleon fossil fragments from the Early Pliocene Varswater formation, exposed at the locality of Langebaanweg "E" Quarry along the southwestern coast of South Africa. Our aim was to explore whether these fossil fragments could be assigned to extant genera. To do so, we used geometric morphometric approaches based on microtomographic imaging of extant chameleons as well as the fossil fragments themselves. Our study suggests that the fossils from this deposit most likely represent at least two different forms that may belong to different genera. Most fragments are phenotypically dissimilar from the South African endemic genus Bradypodion and are more similar to other chameleon genera such as Trioceros or Kinyongia. However, close phenetic similarities between some of the fragments and the Seychelles endemic Archaius or the Madagascan genus Furcifer suggest that some of these fragments may not contain enough genus-specific information to allow correct identification. Other fragments such as the parietal fragments appear to contain more genus-specific information, however. Although our data suggest that the fossil diversity of chameleons in South Africa was potentially greater than it is today, this remains to be verified based on other and more complete fragments.

  1. Validation of Morphometric Analyses of Small-Intestinal Biopsy Readouts in Celiac Disease

    PubMed Central

    Taavela, Juha; Koskinen, Outi; Huhtala, Heini; Lähdeaho, Marja-Leena; Popp, Alina; Laurila, Kaija; Collin, Pekka; Kaukinen, Katri; Kurppa, Kalle; Mäki, Markku

    2013-01-01

    Background Assessment of the gluten-induced small-intestinal mucosal injury remains the cornerstone of celiac disease diagnosis. Usually the injury is evaluated using grouped classifications (e.g. Marsh groups), but this is often too imprecise and ignores minor but significant changes in the mucosa. Consequently, there is a need for validated continuous variables in everyday practice and in academic and pharmacological research. Methods We studied the performance of our standard operating procedure (SOP) on 93 selected biopsy specimens from adult celiac disease patients and non-celiac disease controls. The specimens, which comprised different grades of gluten-induced mucosal injury, were evaluated by morphometric measurements. Specimens with tangential cutting resulting from poorly oriented biopsies were included. Two accredited evaluators performed the measurements in blinded fashion. The intraobserver and interobserver variations for villus height and crypt depth ratio (VH:CrD) and densities of intraepithelial lymphocytes (IELs) were analyzed by the Bland-Altman method and intraclass correlation. Results Unevaluable biopsies according to our SOP were correctly identified. The intraobserver analysis of VH:CrD showed a mean difference of 0.087 with limits of agreement from −0.398 to 0.224; the standard deviation (SD) was 0.159. The mean difference in interobserver analysis was 0.070, limits of agreement −0.516 to 0.375, and SD 0.227. The intraclass correlation coefficient in intraobserver variation was 0.983 and that in interobserver variation 0.978. CD3+ IEL density countings in the paraffin-embedded and frozen biopsies showed SDs of 17.1% and 16.5%; the intraclass correlation coefficients were 0.961 and 0.956, respectively. Conclusions Using our SOP, quantitative, reliable and reproducible morphometric results can be obtained on duodenal biopsy specimens with different grades of gluten-induced injury. Clinically significant changes were defined according to the error margins (2SD) of the analyses in VH:CrD as 0.4 and in CD3+-stained IELs as 30%. PMID:24146832

  2. Patterns of Genetic and Morphometric Diversity in Baobab (Adansonia digitata) Populations Across Different Climatic Zones of Benin (West Africa)

    PubMed Central

    ASSOGBADJO, A. E.; KYNDT, T.; SINSIN, B.; GHEYSEN, G.; VAN DAMME, P.

    2006-01-01

    • Background and Aims Baobab (Adansonia digitata) is a multi-purpose tree used daily by rural African communities. The present study aimed at investigating the level of morphometric and genetic variation and spatial genetic structure within and between threatened baobab populations from the three climatic zones of Benin. • Methods A total of 137 individuals from six populations were analysed using morphometric data as well as molecular marker data generated using the AFLP technique. • Key Results Five primer pairs resulted in a total of 217 scored bands with 78·34 % of them being polymorphic. A two-level AMOVA of 137 individuals from six baobab populations revealed 82·37 % of the total variation within populations and 17·63 % among populations (P < 0·001)· Analysis of population structure with allele-frequency based F-statistics revealed a global FST of 0·127 ± 0·072 (P < 0·001). The mean gene diversity within populations (HS) and the average gene diversity between populations (DST) were estimated at 0·309 ± 0·000 and 0·045 ± 0·072, respectively. Baobabs in the Sudanian and Sudan-Guinean zones of Benin were short and produced the highest yields of pulp, seeds and kernels, in contrast to the ones in the Guinean zone, which were tall and produced only a small number of fruits with a low pulp, seed and kernel productivity. A statistically significant correlation with the observed patterns of genetic diversity was observed for three morphological characteristics: height of the trees, number of branches and thickness of the capsules. • Conclusions The results indicate some degree of physical isolation of the populations collected in the different climatic zones and suggest a substantial amount of genetic structuring between the analysed populations of baobab. Sampling options of the natural populations are suggested for in or ex situ conservation. PMID:16520343

  3. A desktop system of virtual morphometric globes for Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Florinsky, I. V.; Filippov, S. V.

    2017-03-01

    Global morphometric models can be useful for earth and planetary studies. Virtual globes - programs implementing interactive three-dimensional (3D) models of planets - are increasingly used in geo- and planetary sciences. We describe the development of a desktop system of virtual morphometric globes for Mars and the Moon. As the initial data, we used 15'-gridded global digital elevation models (DEMs) extracted from the Mars Orbiter Laser Altimeter (MOLA) and the Lunar Orbiter Laser Altimeter (LOLA) gridded archives. For two celestial bodies, we derived global digital models of several morphometric attributes, such as horizontal curvature, vertical curvature, minimal curvature, maximal curvature, and catchment area. To develop the system, we used Blender, the free open-source software for 3D modeling and visualization. First, a 3D sphere model was generated. Second, the global morphometric maps were imposed to the sphere surface as textures. Finally, the real-time 3D graphics Blender engine was used to implement rotation and zooming of the globes. The testing of the developed system demonstrated its good performance. Morphometric globes clearly represent peculiarities of planetary topography, according to the physical and mathematical sense of a particular morphometric variable.

  4. Genetic admixture and lineage separation in a southern Andean plant

    PubMed Central

    Morello, Santiago; Sede, Silvana M.

    2016-01-01

    Mountain uplifts have generated new ecologic opportunities for plants, and triggered evolutionary processes, favouring an increase on the speciation rate in all continents. Moreover, mountain ranges may act as corridors or barriers for plant lineages and populations. In South America a high rate of diversification has been linked to Andean orogeny during Pliocene/Miocene. More recently, Pleistocene glacial cycles have also shaped species distribution and demography. The endemic genus Escallonia is known to have diversified in the Andes. Species with similar morphology obscure species delimitation and plants with intermediate characters occur naturally. The aim of this study is to characterize genetic variation and structure of two widespread species of Escallonia: E. alpina and E. rubra. We analyzed the genetic variation of populations of the entire distribution range of the species and we also included those with intermediate morphological characters; a total of 94 accessions from 14 populations were used for the Amplified Fragment Length Polymorphism (AFLP) analysis. Plastid DNA sequences (trnS-trnG, 3′trnV-ndhC intergenic spacers and the ndhF gene) from sixteen accessions of Escallonia species were used to construct a Statistical Parsimony network. Additionally, we performed a geometric morphometrics analysis on 88 leaves from 35 individuals of the two E. alpina varieties to further study their differences. Wright’s Fst and analysis of molecular variance tests performed on AFLP data showed a significant level of genetic structure at the species and population levels. Intermediate morphology populations showed a mixed genetic contribution from E. alpina var. alpina and E. rubra both in the Principal Coordinates Analysis (PCoA) and STRUCTURE. On the other hand, E. rubra and the two varieties of E. alpina are well differentiated and assigned to different genetic clusters. Moreover, the Statistical Parsimony network showed a high degree of divergence between the varieties of E. alpina: var. alpina is more closely related to E. rubra and other species than to its own counterpart E. alpina var. carmelitana. Geometric morphometrics analysis (Elliptic Fourier descriptors) revealed significant differences in leaf shape between varieties. We found that diversity in Escallonia species analyzed here is geographically structured and deep divergence between varieties of E. alpina could be associated to ancient evolutionary events like orogeny. Admixture in southern populations could be the result of hybridization at the margins of the parental species’ distribution range. PMID:27179539

  5. Using GIS to appraise structural control of the river bottom morphology near hydrotechnical objects on Alluvial rivers

    NASA Astrophysics Data System (ADS)

    Habel, Michal; Babinski, Zygmunt; Szatten, Dawid

    2017-11-01

    The paper presents the results of analyses of structural changes of the Vistula River bottom, in a section of direct influence of the bridge in Torun (Northern Poland) fitted with one pier in the form of a central island. The pier limits a free water flow by reducing the active width of the riverbed by 12%. In 2011, data on the bottom morphology was collected, i.e. before commencing bridge construction works, throughout the whole building period - 38 measurements. Specific river depth measurements are carried out with SBES and then bathymetric maps are drawn up every two months. The tests cover the active Vistula river channel of 390 - 420 metres in width, from 730+40 to 732+30 river kilometre. The paper includes the results of morphometric analyses of vertical and horizontal changes of the river bottom surrounded by the bridge piers. The seasonality of scour holes and inclination of accumulative forms (sand bars) in the relevant river reach was analysed. Morphometric analyses were performed on raster bases with GIS tools, including the Map Algebra algorithm. The obtained results shown that scour holes/pools of up to 10 metres in depth and exceeding 1200 metres in length are formed in the tested river segment. Scour holes within the pier appeared in specific periods. Constant scour holes were found at the riverbank, and the rate of their movement down the river was 0.6 to 1.3 m per day. The tests are conducted as part of a project ordered by the City of Torun titled `Monitoring Hydrotechniczny Inwestycji Mostowej 2011 - 2014' (Hydrotechnical Monitoring of the Bridge Investment, period 2011 - 2014).

  6. Galilean generalized Robertson-Walker spacetimes: A new family of Galilean geometrical models

    NASA Astrophysics Data System (ADS)

    de la Fuente, Daniel; Rubio, Rafael M.

    2018-02-01

    We introduce a new family of Galilean spacetimes, the Galilean generalized Robertson-Walker spacetimes. This new family is relevant in the context of a generalized Newton-Cartan theory. We study its geometrical structure and analyse the completeness of its inextensible free falling observers. This sort of spacetimes constitutes the local geometric model of a much wider family of spacetimes admitting certain conformal symmetry. Moreover, we find some sufficient geometric conditions which guarantee a global splitting of a Galilean spacetime as a Galilean generalized Robertson-Walker spacetime.

  7. Analyser-based phase contrast image reconstruction using geometrical optics.

    PubMed

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 microm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  8. Improved method for in vitro secondary amastigogenesis of Trypanosoma cruzi: morphometrical and molecular analysis of intermediate developmental forms.

    PubMed

    Hernández-Osorio, L A; Márquez-Dueñas, C; Florencio-Martínez, L E; Ballesteros-Rodea, G; Martínez-Calvillo, S; Manning-Cela, R G

    2010-01-01

    Trypanosoma cruzi undergoes a biphasic life cycle that consists of four alternate developmental stages. In vitro conditions to obtain a synchronic transformation and efficient rates of pure intermediate forms (IFs), which are indispensable for further biochemical, biological, and molecular studies, have not been reported. In the present study, we established an improved method to obtain IFs from secondary amastigogenesis. During the transformation kinetics, we observed progressive decreases in the size of the parasite body, undulating membrane and flagellum that were concomitant with nucleus remodeling and kinetoplast displacement. In addition, a gradual reduction in parasite movement and acquisition of the amastigote-specific Ssp4 antigen were observed. Therefore, our results showed that the in vitro conditions used obtained large quantities of highly synchronous and pure IFs that were clearly distinguished by morphometrical and molecular analyses. Obtaining these IFs represents the first step towards an understanding of the molecular mechanisms involved in amastigogenesis.

  9. Fluorescence Imaging of Posterior Spiracles from Second and Third Instars of Forensically-important Chrysomya rufifacies (Diptera: Calliphoridae)*

    PubMed Central

    Flores, Danielle; Miller, Amy L.; Showman, Angelique; Tobita, Caitlyn; Shimoda, Lori M.N.; Sung, Carl; Stokes, Alexander J.; Tomberlin, Jeffrey K.; Carter, David O.; Turner, Helen

    2016-01-01

    Entomological protocols for aging blow fly (Diptera: Calliphoridae) larvae to estimate the time of colonization (TOC) are commonly used to assist in death investigations. While the methodologies for analysing fly larvae differ, most rely on light microscopy, genetic analysis or, more rarely, electron microscopy. This pilot study sought to improve resolution of larval stage in the forensically-important blow fly Chrysomya rufifacies using high-content fluorescence microscopy and biochemical measures of developmental marker proteins. We established fixation and mounting protocols, defined a set of measurable morphometric criteria and captured developmental transitions of 2nd instar to 3rd instar using both fluorescence microscopy and anti-ecdysone receptor Western blot analysis. The data show that these instars can be distinguished on the basis of robust, non-bleaching, autofluorescence of larval posterior spiracles. High content imaging techniques using confocal microscopy, combined with morphometric and biochemical techniques, may therefore aid forensic entomologists in estimating TOC. PMID:27706817

  10. Quantifying Traces of Tool Use: A Novel Morphometric Analysis of Damage Patterns on Percussive Tools

    PubMed Central

    Caruana, Matthew V.; Carvalho, Susana; Braun, David R.; Presnyakova, Darya; Haslam, Michael; Archer, Will; Bobe, Rene; Harris, John W. K.

    2014-01-01

    Percussive technology continues to play an increasingly important role in understanding the evolution of tool use. Comparing the archaeological record with extractive foraging behaviors in nonhuman primates has focused on percussive implements as a key to investigating the origins of lithic technology. Despite this, archaeological approaches towards percussive tools have been obscured by a lack of standardized methodologies. Central to this issue have been the use of qualitative, non-diagnostic techniques to identify percussive tools from archaeological contexts. Here we describe a new morphometric method for distinguishing anthropogenically-generated damage patterns on percussive tools from naturally damaged river cobbles. We employ a geomatic approach through the use of three-dimensional scanning and geographical information systems software to statistically quantify the identification process in percussive technology research. This will strengthen current technological analyses of percussive tools in archaeological frameworks and open new avenues for translating behavioral inferences of early hominins from percussive damage patterns. PMID:25415303

  11. Karstic terrain in the equatorial layered deposits within a crater in northern Sinus Meridiani, Mars.

    NASA Astrophysics Data System (ADS)

    Baioni, Davide

    2017-04-01

    This work investigates the equatorial layered deposits (ELDs) located within a crater located in northern Sinus Meridiani, Mars (4.430 N, 3.320 W), which display traits that are consistent with formation by karst-driven processes. Here, shallow depressions showing a variety of plan forms ranging from rounded, circular, elongated, polygonal and drop-like to elliptical can be observed. The morphologic and morphometric analyses performed, highlight that these depressions display strong morphometric (sizes) and morphologic (shapes, bottoms, walls) similarities with the karst depressions that are common on limestone and evaporite terrains on the Earth and other regions on Mars. On the basis of the characteristics of the investigated landforms and the similarities of features on Earth and Mars, and after discarding other possible origins such as, aeolian, periglacial, volcanic or impact related processes, it has been inferred that the depressions are karstic dolines formed polygenetically by corrosion and solution-related intra-crater processes.

  12. Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs.

    PubMed

    Foth, Christian; Hedrick, Brandon P; Ezcurra, Martin D

    2016-01-01

    Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis, to short and box-shaped skulls, such as in the sauropod Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as an important factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we analysed five ontogenetic trajectories using two-dimensional geometric morphometrics in a phylogenetic framework. This allowed for the comparative investigation of main ontogenetic shape changes and the evaluation of how heterochrony affected skull shape through both ontogenetic and phylogenetic trajectories. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories and evaluate them for evidence of heterochronic events allowing testing of previous hypotheses on cranial heterochrony in saurischians. We found that the skull shape of the hypothetical ancestor of Saurischia likely led to basal Sauropodomorpha through paedomorphosis, and to basal Theropoda mainly through peramorphosis. Paedomorphosis then led from Orionides to Avetheropoda, indicating that the paedomorphic trend found by previous authors in advanced coelurosaurs may extend back into the early evolution of Avetheropoda. Not only are changes in saurischian skull shape complex due to the large number of factors that affected it, but heterochrony itself is complex, with a number of possible reversals throughout non-avian saurischian evolution. In general, the sampling of complete ontogenetic trajectories including early juveniles is considerably lower than the sampling of single adult or subadult individuals, which is a major impediment to the study of heterochrony on non-avian dinosaurs. Thus, the current work represents an exploratory analysis. To better understand the cranial ontogeny and the impact of heterochrony on skull evolution in saurischians, the data set that we present here must be expanded and complemented with further sampling from future fossil discoveries, especially of juvenile individuals.

  13. Allometric scaling of infraorbital surface topography in Homo.

    PubMed

    Maddux, Scott D; Franciscus, Robert G

    2009-02-01

    Infraorbital morphology is often included in phylogenetic and functional analyses of Homo. The inclusion of distinct infraorbital configurations, such as the "canine fossa" in Homo sapiens or the "inflated" maxilla in Neandertals, is generally based on either descriptive or qualitative assessments of this morphology, or simple linear chord and subtense measurements. However, the complex curvilinear surface of the infraorbital region has proven difficult to quantify through these traditional methods. In this study, we assess infraorbital shape and its potential allometric scaling in fossil Homo (n=18) and recent humans (n=110) with a geometric morphometric method well-suited for quantifying complex surface topographies. Our results indicate that important aspects of infraorbital shape are correlated with overall infraorbital size across Homo. Specifically, individuals with larger infraorbital areas tend to exhibit relatively flatter infraorbital surface topographies, taller and narrower infraorbital areas, sloped inferior orbital rims, anteroinferiorly oriented maxillary body facies, posteroinferiorly oriented maxillary processes of the zygomatic, and non-everted lateral nasal margins. In contrast, individuals with smaller infraorbital regions generally exhibit relatively depressed surface topographies, shorter and wider infraorbital areas, projecting inferior orbital rims, posteroinferiorly oriented maxillary body facies, anteroinferiorly oriented maxillary processes, and everted lateral nasal margins. These contrasts form a continuum and only appear dichotomized at the ends of the infraorbital size spectrum. In light of these results, we question the utility of incorporating traditionally polarized infraorbital morphologies in phylogenetic and functional analyses without due consideration of continuous infraorbital and facial size variation in Homo. We conclude that the essentially flat infraorbital surface topography of Neandertals is not unique and can be explained, in part, as a function of possessing large infraorbital regions, the ancestral condition for Homo. Furthermore, it appears likely that the diminutive infraorbital region of anatomically modern Homo sapiens is a primary derived trait, with related features such as depressed infraorbital surface topography expressed as correlated secondary characters.

  14. Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study.

    PubMed

    Fitton, L C; Shi, J F; Fagan, M J; O'Higgins, P

    2012-07-01

    Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recorded experimentally for different individuals during different feeding tasks are frequently substituted. This study uses finite element analysis (FEA) to examine the sensitivity of the mechanical response of a Macaca fascicularis cranium to varying muscle activation patterns predicted via multibody dynamic analysis. Relative to the effects of varying bite location, the consequences of simulated variations in muscle activation patterns and of the inclusion/exclusion of whole muscle groups were investigated. The resulting cranial deformations were compared using two approaches; strain maps and geometric morphometric analyses. The results indicate that, with bite force magnitude controlled, the variations among the mechanical responses of the cranium to bite location far outweigh those observed as a consequence of varying muscle activations. However, zygomatic deformation was an exception, with the activation levels of superficial masseter being most influential in this regard. The anterior portion of temporalis deforms the cranial vault, but the remaining muscles have less profound effects. This study for the first time systematically quantifies the sensitivity of an FEA model of a primate skull to widely varying masticatory muscle activations and finds that, with the exception of the zygomatic arch, reasonable variants of muscle loading for a second molar bite have considerably less effect on cranial deformation and the resulting strain map than does varying molar bite point. The implication is that FEA models of biting crania will generally produce acceptable estimates of deformation under load as long as muscle activations and forces are reasonably approximated. In any one FEA study, the biological significance of the error in applied muscle forces is best judged against the magnitude of the effect that is being investigated. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  15. Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study

    PubMed Central

    Fitton, L C; Shi, J F; Fagan, M J; O’Higgins, P

    2012-01-01

    Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recorded experimentally for different individuals during different feeding tasks are frequently substituted. This study uses finite element analysis (FEA) to examine the sensitivity of the mechanical response of a Macaca fascicularis cranium to varying muscle activation patterns predicted via multibody dynamic analysis. Relative to the effects of varying bite location, the consequences of simulated variations in muscle activation patterns and of the inclusion/exclusion of whole muscle groups were investigated. The resulting cranial deformations were compared using two approaches; strain maps and geometric morphometric analyses. The results indicate that, with bite force magnitude controlled, the variations among the mechanical responses of the cranium to bite location far outweigh those observed as a consequence of varying muscle activations. However, zygomatic deformation was an exception, with the activation levels of superficial masseter being most influential in this regard. The anterior portion of temporalis deforms the cranial vault, but the remaining muscles have less profound effects. This study for the first time systematically quantifies the sensitivity of an FEA model of a primate skull to widely varying masticatory muscle activations and finds that, with the exception of the zygomatic arch, reasonable variants of muscle loading for a second molar bite have considerably less effect on cranial deformation and the resulting strain map than does varying molar bite point. The implication is that FEA models of biting crania will generally produce acceptable estimates of deformation under load as long as muscle activations and forces are reasonably approximated. In any one FEA study, the biological significance of the error in applied muscle forces is best judged against the magnitude of the effect that is being investigated. PMID:22690885

  16. MOLA Topography and Morphometry of Rampart and Pedestal Craters, Mars

    NASA Technical Reports Server (NTRS)

    Mitchell, D. E.; Sakimoto, S. E. H.; Garvin, J. B.

    2002-01-01

    Martian rampart and pedestal craters have characteristic geometric parameter ranges that are significantly different than fresh craters. Combined MOLA geometric measurements and MOC analyses can be used to constrain their modification. Additional information is contained in the original extended abstract.

  17. Patterns of morphological variation in enamel–dentin junction and outer enamel surface of human molars

    PubMed Central

    Morita, Wataru; Yano, Wataru; Nagaoka, Tomohito; Abe, Mikiko; Ohshima, Hayato; Nakatsukasa, Masato

    2014-01-01

    Tooth crown patterning is governed by the growth and folding of the inner enamel epithelium (IEE) and the following enamel deposition forms outer enamel surface (OES). We hypothesized that overall dental crown shape and covariation structure are determined by processes that configurate shape at the enamel–dentine junction (EDJ), the developmental vestige of IEE. This this hypothesis was tested by comparing patterns of morphological variation between EDJ and OES in human permanent maxillary first molar (UM1) and deciduous second molar (um2). Using geometric morphometric methods, we described morphological variation and covariation between EDJ and OES, and evaluated the strength of two components of phenotypic variability, canalization and morphological integration, in addition to the relevant evolutionary flexibility, i.e. the ability to respond to selective pressure. The strength of covariation between EDJ and OES was greater in um2 than in UM1, and the way that multiple traits covary between EDJ and OES was different between these teeth. The variability analyses showed that EDJ had less shape variation and a higher level of morphological integration than OES, which indicated that canalization and morphological integration acted as developmental constraints. These tendencies were greater in UM1 than in um2. On the other hand, EDJ and OES had a comparable level of evolvability in these teeth. Amelogenesis could play a significant role in tooth shape and covariation structure, and its influence was not constant among teeth, which may be responsible for the differences in the rate and/or period of enamel formation. PMID:24689536

  18. Palatal growth in complete unilateral cleft lip and palate patients following neonatal cheiloplasty: Classic and geometric morphometric assessment.

    PubMed

    Hoffmannova, Eva; Bejdová, Šárka; Borský, Jiri; Dupej, Ján; Cagáňová, Veronika; Velemínská, Jana

    2016-11-01

    A new method of early neonatal cheiloplasty has recently been employed on patients having complete unilateral cleft lip and palate (cUCLP). We aimed to investigate (1) their detailed palatal morphology before surgery and growth during the 10 months after neonatal cheiloplasty, (2) the growth of eight dimensions of the maxilla in these patients, (3) the development of these dimensions compared with published data on noncleft controls and on cUCLP patients operated using later operation protocol (LOP; 6 months of age). Sixty-six virtual dental models of 33 longitudinally evaluated cUCLP patients were analysed using metric analysis, a dense correspondence model, and multivariate statistics. We compared the palatal surfaces before neonatal cheiloplasty (mean age, 4 days) and before palatoplasty (mean age, 10 months). The palatal form variability of 10-month-old children was considerably reduced during the observed period thanks to their undisturbed growth, that is, the palate underwent the same growth changes following neonatal cheiloplasty. A detailed colour-coded map identified the most marked growth at the anterior and posterior ends of both segments. The maxilla of cUCLP patients after neonatal cheiloplasty had a growth tendency similar to noncleft controls (unlike LOP). Both methodological approaches showed that early neonatal cheiloplasty in cUCLP patients did not prevent forward growth of the upper jaw segments and did not reduce either the length or width of the maxilla during the first 10 months of life. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Different Cranial Ontogeny in Europeans and Southern Africans

    PubMed Central

    Sardi, Marina L.; Ramírez Rozzi, Fernando V.

    2012-01-01

    Modern human populations differ in developmental processes and in several phenotypic traits. However, the link between ontogenetic variation and human diversification has not been frequently addressed. Here, we analysed craniofacial ontogenies by means of geometric-morphometrics of Europeans and Southern Africans, according to dental and chronological ages. Results suggest that different adult cranial morphologies between Southern Africans and Europeans arise by a combination of processes that involve traits modified during the prenatal life and others that diverge during early postnatal ontogeny. Main craniofacial changes indicate that Europeans differ from Southern Africans by increasing facial developmental rates and extending the attainment of adult size and shape. Since other studies have suggested that native subsaharan populations attain adulthood earlier than Europeans, it is probable that facial ontogeny is linked with other developmental mechanisms that control the timing of maturation in other variables. Southern Africans appear as retaining young features in adulthood. Facial ontogeny in Europeans produces taller and narrower noses, which seems as an adaptation to colder environments. The lack of these morphological traits in Neanderthals, who lived in cold environments, seems a paradox, but it is probably the consequence of a warm-adapted faces together with precocious maturation. When modern Homo sapiens migrated into Asia and Europe, colder environments might establish pressures that constrained facial growth and development in order to depart from the warm-adapted morphology. Our results provide some answers about how cranial growth and development occur in two human populations and when developmental shifts take place providing a better adaptation to environmental constraints. PMID:22558270

  20. Analysis of Hyoid-Larynx Complex Using 3D Geometric Morphometrics.

    PubMed

    Loth, Anthony; Corny, Julien; Santini, Laure; Dahan, Laurie; Dessi, Patrick; Adalian, Pascal; Fakhry, Nicolas

    2015-06-01

    The aim of this study was to obtain a quantitative anatomical description of the hyoid bone-larynx complex using modern 3D reconstruction tools. The study was conducted on 104 bones from CT scan images of living adult subjects. Three-dimensional reconstructions were created from CT scan images using AVIZO 6.2 software package. A study of this complex was carried out using metric and morphological analyses. Characteristics of the hyoid bone and larynx were highly heterogeneous and were closely linked with the sex, height, and weight of the individuals. Height and width of larynx were significantly greater in men than in women (24.99 vs. 17.3 mm, p ≤ 0.05 and 46.75 vs. 41.07, p ≤ 0.05), whereas the thyroid angle was larger in females (81.12° vs. 74.48°, p ≤ 0.05). There was a significant correlation between the height and weight of subjects and different measurements of the hyoid-larynx complex. (Pearson's coefficient correlation r = 0.42, p ≤ 0.05 between the height of thyroid ala and the height of subjects and r = 0.1, p ≤ 0.05 between the height of thyroid ala and the weight of subjects). Shape and size analysis of the hyoid-larynx complex showed the existence of a significant sexual dimorphism and high interindividual heterogeneity depending to patient morphology. These results encourage us to go further with functional and imaging correlations.

  1. The ecological and genetic basis of convergent thick-lipped phenotypes in cichlid fishes.

    PubMed

    Colombo, Marco; Diepeveen, Eveline T; Muschick, Moritz; Santos, M Emilia; Indermaur, Adrian; Boileau, Nicolas; Barluenga, Marta; Salzburger, Walter

    2013-02-01

    The evolution of convergent phenotypes is one of the most interesting outcomes of replicate adaptive radiations. Remarkable cases of convergence involve the thick-lipped phenotype found across cichlid species flocks in the East African Great Lakes. Unlike most other convergent forms in cichlids, which are restricted to East Africa, the thick-lipped phenotype also occurs elsewhere, for example in the Central American Midas Cichlid assemblage. Here, we use an ecological genomic approach to study the function, the evolution and the genetic basis of this phenotype in two independent cichlid adaptive radiations on two continents. We applied phylogenetic, demographic, geometric morphometric and stomach content analyses to an African (Lobochilotes labiatus) and a Central American (Amphilophus labiatus) thick-lipped species. We found that similar morphological adaptations occur in both thick-lipped species and that the 'fleshy' lips are associated with hard-shelled prey in the form of molluscs and invertebrates. We then used comparative Illumina RNA sequencing of thick vs. normal lip tissue in East African cichlids and identified a set of 141 candidate genes that appear to be involved in the morphogenesis of this trait. A more detailed analysis of six of these genes led to three strong candidates: Actb, Cldn7 and Copb. The function of these genes can be linked to the loose connective tissue constituting the fleshy lips. Similar trends in gene expression between African and Central American thick-lipped species appear to indicate that an overlapping set of genes was independently recruited to build this particular phenotype in both lineages. © 2012 Blackwell Publishing Ltd.

  2. Morphological evidence for discrete stocks of yellow perch in Lake Erie

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Knight, Carey T.

    2012-01-01

    Identification and management of unique stocks of exploited fish species are high-priority management goals in the Laurentian Great Lakes. We analyzed whole-body morphometrics of 1430 yellow perch Perca flavescens captured during 2007–2009 from seven known spawning areas in Lake Erie to determine if morphometrics vary among sites and management units to assist in identification of spawning stocks of this heavily exploited species. Truss-based morphometrics (n = 21 measurements) were analyzed using principal component analysis followed by ANOVA of the first three principal components to determine whether yellow perch from the several sampling sites varied morphometrically. Duncan's multiple range test was used to determine which sites differed from one another to test whether morphometrics varied at scales finer than management unit. Morphometrics varied significantly among sites and annually, but differences among sites were much greater. Sites within the same management unit typically differed significantly from one another, indicating morphometric variation at a scale finer than management unit. These results are largely congruent with recently-published studies on genetic variation of yellow perch from many of the same sampling sites. Thus, our results provide additional evidence that there are discrete stocks of yellow perch in Lake Erie and that management units likely comprise multiple stocks.

  3. A Sunken Ship of the Desert at the River Danube in Tulln, Austria

    PubMed Central

    Galik, Alfred; Mohandesan, Elmira; Forstenpointner, Gerhard; Scholz, Ute Maria; Ruiz, Emily; Krenn, Martin; Burger, Pamela

    2015-01-01

    Rescue excavations recovered a skeleton that resurrect the contemporary dramatic history of Austria in the 17th century as troops besieged Vienna in the second Osmanic-Habsburg war. Unique for Central Europe is the evidence of a completely preserved camel skeleton uncovered in a large refuse pit. The male individual of slender stature indicates a few but characteristic pathological changes revealing not a beast of burden but probably a valuable riding animal. Anatomical and morphometrical analyses suggest a hybrid confirmed by the ancient DNA analyses resulting in the presence of a dromedary in the maternal and a Bactrian camel in the paternal line. PMID:25831121

  4. Dual nozzle aerodynamic and cooling analysis study. [dual throat and dual expander nozzles

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1980-01-01

    Geometric, aerodynamic flow field, performance prediction, and heat transfer analyses are considered for two advanced chamber nozzle concepts applicable to Earth-to-orbit engine systems. Topics covered include improvements to the dual throat aerodynamic and performance prediction program; geometric and flow field analyses of the dual expander concept; heat transfer analysis of both concepts, and engineering analysis of data from the NASA/MSFC hot-fire testing of a dual throat thruster model thrust chamber assembly. Preliminary results obtained are presented in graphs.

  5. Morphometric Modifications in Canthon quinquemaculatus Castelnau 1840 (Coleoptera: Scarabaeinae): Sublethal Effects of Transgenic Maize?

    PubMed Central

    Alves, Victor Michelon; Hernández, Malva Isabel Medina

    2017-01-01

    The effects of transgenic compounds on non-target organisms remain poorly understood, especially in native insect species. Morphological changes (e.g., changes in body size and shape) may reflect possible responses to environmental stressors, like transgenic toxins. The dung beetle Canthon quinquemaculatus (Coleoptera: Scarabaeinae) is a non-target species found in transgenic crops. We evaluated whether C. quinquemaculatus individuals inhabiting corn fields cultivated with different seed types (conventional, creole and transgenic) present modifications in body shape compared to individuals inhabiting adjacent native forest fragments. We collected C. quinquemaculatus specimens across an agricultural landscape in southern Brazil, during the summer of 2015. Six populations were sampled: three maize crop populations each under a different seed type, and three populations of adjacent forests. After sampling, specimens were subjected to morphometric analyses to discover differences in body shape. We chose fifteen landmarks to describe body shape, and morphometric data were tested with Procrustes ANOVA and Discriminant Analysis. We found that body shape did not differ between individuals collected in conventional and creole crops with their respective adjacent forests (p > 0.05); however, transgenic crop populations differed significantly from those collected in adjacent forests (p < 0.05). Insects in transgenic maize are more oval and have a retraction in the abdominal region, compared with the respective adjacent forest, this result shows the possible effect of transgenic crops on non-target species. This may have implications for the ecosystem service of organic matter removal, carried out by these organisms. PMID:29065452

  6. Histological and morphometric analyses for rat carotid balloon injury model.

    PubMed

    Tulis, David A

    2007-01-01

    Experiments aimed at analyzing the response of blood vessels to mechanical injury and ensuing remodeling responses often employ the highly characterized carotid artery balloon injury model in laboratory rats. This approach utilizes luminal insertion of a balloon embolectomy catheter into the common carotid artery with inflation and withdrawal resulting in an injury characterized by vascular endothelial cell (EC) denudation and medial wall distension. The adaptive response to this injury is typified by robust vascular smooth muscle cell (SMC) replication and migration, SMC apoptosis and necrosis, enhanced synthesis and deposition of extracellular matrix (ECM) components, partial vascular EC regeneration from the border zones, luminal narrowing, and establishment of a neointima in time-dependent fashion. Evaluation of these adaptive responses to blood vessel injury can include acute and longer term qualitative and quantitative measures including expression analyses, activity assays, immunostaining for a plethora of factors and signals, and morphometry of neointima formation and gross mural remodeling. This chapter presents a logical continuation of Chapter 1 that offers details for performing the rat carotid artery balloon injury model in a standard laboratory setting by providing commonly used protocols for performing histological and morphometric analyses in such studies. Moreover, procedures, caveats, and considerations included in this chapter are highly relevant for alternative animal vascular physiology/pathophysiology studies and in particular those related to mechanisms of vascular injury and repair. Included in this chapter are specifics for in situ perfusion-fixation, tissue harvesting and processing for both snap-frozen and paraffin-embedded protocols, specimen embedding and sectioning, slide preparation, several standard histological staining steps, and routine morphological assessment.

  7. Secrets in the eyes of Black Oystercatchers: A new sexing technique

    USGS Publications Warehouse

    Guzzetti, B.M.; Talbot, S.L.; Tessler, D.F.; Gill, V.A.; Murphy, E.C.

    2008-01-01

    Sexing oystercatchers in the field is difficult because males and females have identical plumage and are similar in size. Although Black Oystercatchers (Haematopus bachmani) are sexually dimorphic, using morphology to determine sex requires either capturing both pair members for comparison or using discriminant analyses to assign sex probabilistically based on morphometric traits. All adult Black Oystercatchers have bright yellow eyes, but some of them have dark specks, or eye flecks, in their irides. We hypothesized that this easily observable trait was sex-linked and could be used as a novel diagnostic tool for identifying sex. To test this, we compared data for oystercatchers from genetic molecular markers (CHD-W/CHD-Z and HINT-W/HINT-Z), morphometric analyses, and eye-fleck category (full eye flecks, slight eye flecks, and no eye flecks). Compared to molecular markers, we found that discriminant analyses based on morphological characteristics yielded variable results that were confounded by geographical differences in morphology. However, we found that eye flecks were sex-linked. Using an eye-fleck model where all females have full eye flecks and males have either slight eye flecks or no eye flecks, we correctly assigned the sex of 117 of 125 (94%) oystercatchers. Using discriminant analysis based on morphological characteristics, we correctly assigned the sex of 105 of 119 (88%) birds. Using the eye-fleck technique for sexing Black Oystercatchers may be preferable for some investigators because it is as accurate as discriminant analysis based on morphology and does not require capturing the birds. ??2008 Association of Field Ornithologists.

  8. Morphometric synaptology of a whole neuron profile using a semiautomatic interactive computer system.

    PubMed

    Saito, K; Niki, K

    1983-07-01

    We propose a new method of dealing with morphometric synaptology that processes all synapses and boutons around the HRP marked neuron on a large composite electron micrograph, rather than a qualitative or a piecemeal quantitative study of a particular synapse and/or bouton that is not positioned on the surface of the neuron. This approach requires the development of both neuroanatomical procedures, by which a specific whole neuronal profile is identified, and valuable specialized tools, which support the collection and analysis of a great volume of morphometric data from composite electron micrographs, in order to reduce the burden of the morphologist. The present report is also concerned with the total and reliable semi-automatic interactive computer system for gathering and analyzing morphometric data that has been under development in our laboratory. A morphologist performs the pattern recognition portion by using a large-sized tablet digitizer and a menu-sheet command, and the system registers the various morphometric values of many different neurons and performs statistical analysis. Some examples of morphometric measurements and analysis show the usefulness and efficiency of the proposed system and method.

  9. Buckling Analysis of a Honeycomb-Core Composite Cylinder with Initial Geometric Imperfections

    NASA Technical Reports Server (NTRS)

    Cha, Gene; Schultz, Marc R.

    2013-01-01

    Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.

  10. The Morphological Anatomy of the Menisci of the Knee Joint in Human Fetuses

    PubMed Central

    Koyuncu, Esra; Özgüner, Gülnur; Öztürk, Kenan; Bilkay, Cemil; Dursun, Ahmet; Sulak, Osman

    2017-01-01

    Background: Development of the foetal period of the meniscus has been reported in different studies. Aims: Evaluation of lateral and medial meniscus development, typing and the relationship of the tibia during the foetal period. Study Design: Anatomical dissection. Methods: We evaluated 210 knee menisci obtained from 105 human foetuses ranging in age from 9 to 40 weeks’ gestation. Foetuses were divided into four groups, and the intra-articular structure was exposed. We subsequently acquired images (Samsung WB 100 26X Optical Zoom Wide, Beijing, China) of the intra-articular structures with the aid of a millimetric ruler. The images were digitized for morphometric analyses and analysed by using Netcad 5.1 Software (Ak Mühendislik, Ankara, Turkey). Results: The lateral and medial meniscal areas as well as the lateral and the medial articular surface areas of the tibia increased throughout gestation. We found that the medial articular surface areas were larger than the lateral articular surface areas, and the difference was statistically significant. The ratios of the mean lateral and medial meniscal areas to the lateral and medial articular surface areas, respectively, of the tibia decreased gradually from the first trimester to full term. The most common shape of the medial meniscus was crescentic (50%), and that of the lateral meniscus was C-shaped (61%). Conclusion: This study reveals the development of morphological changes and morphometric measurements of the menisci. PMID:28832324

  11. Morphometric divergence in populations of Anastrepha obliqua (Diptera, Tephritidae) from Colombia and some Neotropical locations

    PubMed Central

    Castañeda, Maria R.; Selivon, Denise; Hernández-Ortiz, Vicente; Soto, Alberto; Canal, Nelson A.

    2015-01-01

    Abstract The West Indian fruit fly, Anastrepha obliqua, is one of seven species of quarantine importance of its genus and is one of the most economically important fruit fly pests in Colombia. The taxonomic status of this species is a key issue for further implementation of any pest management program. Several molecular studies have shown enough variability within Anastrepha obliqua to suggest its taxonomic status could be revised; however, there are no morphological studies supporting this hypothesis. The aim of this work was to describe the morphological variability of Colombian populations of Anastrepha obliqua, comparing this variability with that of other samples from the Neotropics. Measurements were performed on individuals from 11 populations collected from different geographic Colombian localities and were compared with populations from Mexico (2), Dominica Island (1), Peru (1) and Brazil (2). Linear morphometric analyses were performed using 23 female morphological traits, including seven variables of the aculeus, three of the thorax, and six of the wing; seven ratios among them were also considered. Discriminant function analyses showed significant morphological differentiation among the Colombian populations, separating them into two groups. Furthermore, in the comparisons between Colombian samples with those from other countries, three clusters were observed. The possibility of finding more than one species within the nominal Anastrepha obliqua population is discussed. PMID:26798254

  12. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature.

    PubMed

    Kong, Li; Herold, Christina J; Zöllner, Frank; Salat, David H; Lässer, Marc M; Schmid, Lena A; Fellhauer, Iven; Thomann, Philipp A; Essig, Marco; Schad, Lothar R; Erickson, Kirk I; Schröder, Johannes

    2015-02-28

    Grey matter volume and cortical thickness are the two most widely used measures for detecting grey matter morphometric changes in various diseases such as schizophrenia. However, these two measures only share partial overlapping regions in identifying morphometric changes. Few studies have investigated the contributions of the potential factors to the differences of grey matter volume and cortical thickness. To investigate this question, 3T magnetic resonance images from 22 patients with schizophrenia and 20 well-matched healthy controls were chosen for analyses. Grey matter volume and cortical thickness were measured by VBM and Freesurfer. Grey matter volume results were then rendered onto the surface template of Freesurfer to compare the differences from cortical thickness in anatomical locations. Discrepancy regions of the grey matter volume and thickness where grey matter volume significantly decreased but without corresponding evidence of cortical thinning involved the rostral middle frontal, precentral, lateral occipital and superior frontal gyri. Subsequent region-of-interest analysis demonstrated that changes in surface area, grey/white matter intensity contrast and curvature accounted for the discrepancies. Our results suggest that the differences between grey matter volume and thickness could be jointly driven by surface area, grey/white matter intensity contrast and curvature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Three-dimensional morphometrics of thoracic vertebrae in Neandertals and the fossil evidence from El Sidrón (Asturias, Northern Spain).

    PubMed

    Bastir, Markus; García Martínez, Daniel; Rios, Luis; Higuero, Antonio; Barash, Alon; Martelli, Sandra; García Tabernero, Antonio; Estalrrich, Almudena; Huguet, Rosa; de la Rasilla, Marco; Rosas, Antonio

    2017-07-01

    Well preserved thoracic vertebrae of Neandertals are rare. However, such fossils are important as their three-dimensional (3D) spatial configuration can contribute to the understanding of the size and shape of the thoracic spine and the entire thorax. This is because the vertebral body and transverse processes provide the articulation and attachment sites for the ribs. Dorsal orientation of the transverse processes relative to the vertebral body also rotates the attached ribs in a way that could affect thorax width. Previous research indicates possible evidence for greater dorsal orientation of the transverse processes and small vertebral body heights in Neandertals, but their 3D vertebral structure has not yet been addressed. Here we present 15 new vertebral remains from the El Sidrón Neandertals (Asturias, Northern Spain) and used 3D geometric morphometrics to address the above issues by comparing two particularly well preserved El Sidrón remains (SD-1619, SD-1641) with thoracic vertebrae from other Neandertals and a sample of anatomically modern humans. Centroid sizes of El Sidrón vertebrae are within the human range. Neandertals have larger T1 and probably also T2. The El Sidrón vertebrae are similar in 3D shape to those of other Neandertals, which differ from Homo sapiens particularly in central-lower regions (T6-T10) of the thoracic spine. Differences include more dorsally and cranially oriented transverse processes, less caudally oriented spinous processes, and vertebral bodies that are anteroposteriorly and craniocaudally short. The results fit with current reconstructions of Neandertal thorax morphology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cryptic genetic diversity in the mottled rabbitfish Siganus fuscescens with mitochondrial introgression at a contact zone in the South China Sea.

    PubMed

    Ravago-Gotanco, Rachel; de la Cruz, Talna Lorena; Pante, Ma Josefa; Borsa, Philippe

    2018-01-01

    The taxonomy of the mottled rabbitfish Siganus fuscescens species complex has long been challenging. In this study, we analyzed microsatellite genotypes, mitochondrial lineages, and morphometric data from 373 S. fuscescens individuals sampled from the northern Philippines and Hong Kong (South China Sea, Philippine Sea and Sulu Sea basins), to examine putative species boundaries in samples comprising three co-occurring mitochondrial lineages previously reported to characterize S. fuscescens (Clade A and Clade B) or S. canaliculatus (Clade C). We report the existence of two cryptic species within S. fuscescens in the northeast region of the South China Sea and northern Philippine Sea, supported by genetic and morphological differences. Individual-based assignment methods recovered concordant groupings of individuals into two nuclear genotype clusters (Cluster 1, Cluster 2) with (1) limited gene flow, if any, between them (FST = 0.241; P < 0.001); (2) low frequency of later-generation hybrids; (3) significant association with mitochondrial Clade A and Clade B, respectively; and (4) subtle yet significant body shape differences as inferred from geometric morphometric analysis. The divergence between mitochondrial Clade C and the two other clades was not matched by genetic differences at microsatellite marker loci. The occurrence of discordant mitonuclear combinations (20.5% of the total number of individuals) is thought to result from mitochondrial introgression, consistent with a scenario of demographic, and presumably spatial, post-Pleistocene expansion of populations from northern regions into a secondary contact zone in the South China Sea. Mitonuclear discordance due to introgression obscures phylogenetic relationships for recently-diverged lineages, and cautions against the use of mitochondrial markers alone for species identification within the mottled rabbitfish species complex in the South China Sea region.

  15. Associations of physical strength with facial shape in an African pastoralist society, the Maasai of Northern Tanzania.

    PubMed

    Butovskaya, Marina L; Windhager, Sonja; Karelin, Dimitri; Mezentseva, Anna; Schaefer, Katrin; Fink, Bernhard

    2018-01-01

    Previous research has documented associations of physical strength and facial morphology predominantly in men of Western societies. Faces of strong men tend to be more robust, are rounder and have a prominent jawline compared with faces of weak men. Here, we investigate whether the morphometric patterns of strength-face relationships reported for members of industrialized societies can also be found in members of an African pastoralist society, the Maasai of Northern Tanzania. Handgrip strength (HGS) measures and facial photographs were collected from a sample of 185 men and 120 women of the Maasai in the Ngorongoro Conservation Area. In young-adults (20-29 years; n = 95) and mid-adults (30-50 years; n = 114), we digitized 71 somatometric landmarks and semilandmarks to capture variation in facial morphology and performed shape regressions of landmark coordinates upon HGS. Results were visualized in the form of thin-plate plate spline deformation grids and geometric morphometric morphs. Individuals with higher HGS tended to have wider faces with a lower and broader forehead, a wider distance between the medial canthi of the eyes, a wider nose, fuller lips, and a larger, squarer lower facial outline compared with weaker individuals of the same age-sex group. In mid-adult men, these associations were weaker than in the other age-sex groups. We conclude that the patterns of HGS relationships with face shape in the Maasai are similar to those reported from related investigations in samples of industrialized societies. We discuss differences between the present and related studies with regard to knowledge about the causes for age- and sex-related facial shape variation and physical strength associations.

  16. Supercomputer use in orthopaedic biomechanics research: focus on functional adaptation of bone.

    PubMed

    Hart, R T; Thongpreda, N; Van Buskirk, W C

    1988-01-01

    The authors describe two biomechanical analyses carried out using numerical methods. One is an analysis of the stress and strain in a human mandible, and the other analysis involves modeling the adaptive response of a sheep bone to mechanical loading. The computing environment required for the two types of analyses is discussed. It is shown that a simple stress analysis of a geometrically complex mandible can be accomplished using a minicomputer. However, more sophisticated analyses of the same model with dynamic loading or nonlinear materials would require supercomputer capabilities. A supercomputer is also required for modeling the adaptive response of living bone, even when simple geometric and material models are use.

  17. A three-dimensional comparison of a morphometric and conventional cephalometric midsagittal planes for craniofacial asymmetry.

    PubMed

    Damstra, Janalt; Fourie, Zacharias; De Wit, Marnix; Ren, Yijin

    2012-02-01

    Morphometric methods are used in biology to study object symmetry in living organisms and to determine the true plane of symmetry. The aim of this study was to determine if there are clinical differences between three-dimensional (3D) cephalometric midsagittal planes used to describe craniofacial asymmetry and a true symmetry plane derived from a morphometric method based on visible facial features. The sample consisted of 14 dry skulls (9 symmetric and 5 asymmetric) with metallic markers which were imaged with cone-beam computed tomography. An error study and statistical analysis were performed to validate the morphometric method. The morphometric and conventional cephalometric planes were constructed and compared. The 3D cephalometric planes constructed as perpendiculars to the Frankfort horizontal plane resembled the morphometric plane the most in both the symmetric and asymmetric groups with mean differences of less than 1.00 mm for most variables. However, the standard deviations were often large and clinically significant for these variables. There were clinically relevant differences (>1.00 mm) between the different 3D cephalometric midsagittal planes and the true plane of symmetry determined by the visible facial features. The difference between 3D cephalometric midsagittal planes and the true plane of symmetry determined by the visible facial features were clinically relevant. Care has to be taken using cephalometric midsagittal planes for diagnosis and treatment planning of craniofacial asymmetry as they might differ from the true plane of symmetry as determined by morphometrics.

  18. A web-system of virtual morphometric globes

    NASA Astrophysics Data System (ADS)

    Florinsky, Igor; Garov, Andrei; Karachevtseva, Irina

    2017-04-01

    Virtual globes — programs implementing interactive three-dimensional (3D) models of planets — are increasingly used in geo- and planetary sciences. We develop a web-system of virtual morphometric globes. As the initial data, we used the following global digital elevation models (DEMs): (1) a DEM of the Earth extracted from SRTM30_PLUS database; (2) a DEM of Mars extracted from the Mars Orbiter Laser Altimeter (MOLA) gridded data record archive; and (3) A DEM of the Moon extracted from the Lunar Orbiter Laser Altimeter (LOLA) gridded data record archive. From these DEMs, we derived global digital models of the following 16 local, nonlocal, and combined morphometric variables: horizontal curvature, vertical curvature, mean curvature, Gaussian curvature, minimal curvature, maximal curvature, unsphericity curvature, difference curvature, vertical excess curvature, horizontal excess curvature, ring curvature, accumulation curvature, catchment area, dispersive area, topographic index, and stream power index (definitions, formulae, and interpretations can be found elsewhere [1]). To calculate local morphometric variables, we applied a finite-difference method intended for spheroidal equal angular grids [1]. Digital models of a nonlocal and combined morphometric variables were derived by a method of Martz and de Jong adapted to spheroidal equal angular grids [1]. DEM processing was performed in the software LandLord [1]. The calculated morphometric models were integrated into the testing version of the system. The following main functions are implemented in the system: (1) selection of a celestial body; (2) selection of a morphometric variable; (3) 2D visualization of a calculated global morphometric model (a map in equirectangular projection); (4) 3D visualization of a calculated global morphometric model on the sphere surface (a globe by itself); (5) change of a globe scale (zooming); and (6) globe rotation by an arbitrary angle. The testing version of the system represents morphometric models with the resolution of 15'. In the final version of the system, we plan to implement a multiscale 3D visualization for models of 17 morphometric variables with the resolution from 15' to 30". The web-system of virtual morphometric globes is designed as a separate unit of a 3D web GIS for storage, processing, and access to planetary data [2], which is currently developed as an extension of an existing 2D web GIS (http://cartsrv.mexlab.ru/geoportal). Free, real-time web access to the system of virtual globes will be provided. The testing version of the system is available at: http://cartsrv.mexlab.ru/virtualglobe. The study is supported by the Russian Foundation for Basic Research, grant 15-07-02484. References 1. Florinsky, I.V., 2016. Digital Terrain Analysis in Soil Science and Geology. 2nd ed. Academic Press, Amsterdam, 486 p. 2. Garov, A.S., Karachevtseva, I.P., Matveev, E.V., Zubarev, A.E., and Florinsky, I.V., 2016. Development of a heterogenic distributed environment for spatial data processing using cloud technologies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41(B4): 385-390.

  19. Distortion in fingerprints: a statistical investigation using shape measurement tools.

    PubMed

    Sheets, H David; Torres, Anne; Langenburg, Glenn; Bush, Peter J; Bush, Mary A

    2014-07-01

    Friction ridge impression appearance can be affected due to the type of surface touched and pressure exerted during deposition. Understanding the magnitude of alterations, regions affected, and systematic/detectable changes occurring would provide useful information. Geometric morphometric techniques were used to statistically characterize these changes. One hundred and fourteen prints were obtained from a single volunteer and impressed with heavy, normal, and light pressure on computer paper, soft gloss paper, 10-print card stock, and retabs. Six hundred prints from 10 volunteers were rolled with heavy, normal, and light pressure on soft gloss paper and 10-print card stock. Results indicate that while different substrates/pressure levels produced small systematic changes in fingerprints, the changes were small in magnitude: roughly the width of one ridge. There were no detectable changes in the degree of random variability of prints associated with either pressure or substrate. In conclusion, the prints transferred reliably regardless of pressure or substrate. © 2014 American Academy of Forensic Sciences.

  20. The Current Status of the Distribution Range of the Western Pine Beetle, Dendroctonus brevicomis (Curculionidae: Scolytinae) in Northern Mexico

    PubMed Central

    Valerio-Mendoza, O; Armendáriz-Toledano, F; Cuéllar-Rodríguez, G; Negrón, José F

    2017-01-01

    Abstract The distribution range of the western pine beetle Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae) is supported only by scattered records in the northern parts of Mexico, suggesting that its populations may be marginal and rare in this region. In this study, we review the geographical distribution of D. brevicomis in northern Mexico and perform a geometric morphometric analysis of seminal rod shape to evaluate its reliability for identifying this species with respect to other members of the Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae) complex. Our results provide 30 new records, with 26 distributed in the Sierra Madre Occidental and 4 in the Sierra Madre Oriental. These records extend the known distribution range of D. brevicomis to Durango and Tamaulipas states in northern Mexico. Furthermore, we find high geographic variation in size and shape of the seminal rod, with conspicous differences among individuals from different geographical regions, namely west and east of the Great Basin and between mountain systems in Mexico. PMID:28922899

Top