Sample records for geometric optics method

  1. Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.

    PubMed

    Liu, Yichao; Sun, Fei; He, Sailing

    2018-01-11

    In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.

  2. Geometrical optics analysis of the structural imperfection of retroreflection corner cubes with a nonlinear conjugate gradient method.

    PubMed

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho

    2008-12-01

    Geometrical optics analysis of the structural imperfection of retroreflection corner cubes is described. In the analysis, a geometrical optics model of six-beam reflection patterns generated by an imperfect retroreflection corner cube is developed, and its structural error extraction is formulated as a nonlinear optimization problem. The nonlinear conjugate gradient method is employed for solving the nonlinear optimization problem, and its detailed implementation is described. The proposed method of analysis is a mathematical basis for the nondestructive optical inspection of imperfectly fabricated retroreflection corner cubes.

  3. Stress measurement in thin films by geometrical optics

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Gilstrap, P.; Rujkorakarn, R.

    1982-01-01

    A variation of Newton's rings experiment is proposed for measuring film stress. The procedure described, the geometrical optics method, is used to measure radii of curvature for a series of film depositions with Ta, Al, and Mo films. The method has a sensitivity of 1 x 10 to the 9th dyn/sq cm, corresponding to the practical radius limit of about 50 m, and a repeatability usually within five percent. For the purposes of comparison, radii are also measured by Newton's rings method and the Talysurf method; all results are found to be in general agreement. Measurement times are also compared: the geometrical optics method requires only 1/2-1 minute. It is concluded that the geometrical optics method provides an inexpensive, fast, and a reasonably correct technique with which to measure stresses in film.

  4. Geometric errors in 3D optical metrology systems

    NASA Astrophysics Data System (ADS)

    Harding, Kevin; Nafis, Chris

    2008-08-01

    The field of 3D optical metrology has seen significant growth in the commercial market in recent years. The methods of using structured light to obtain 3D range data is well documented in the literature, and continues to be an area of development in universities. However, the step between getting 3D data, and getting geometrically correct 3D data that can be used for metrology is not nearly as well developed. Mechanical metrology systems such as CMMs have long established standard means of verifying the geometric accuracies of their systems. Both local and volumentric measurments are characterized on such system using tooling balls, grid plates, and ball bars. This paper will explore the tools needed to characterize and calibrate an optical metrology system, and discuss the nature of the geometric errors often found in such systems, and suggest what may be a viable standard method of doing characterization of 3D optical systems. Finally, we will present a tradeoff analysis of ways to correct geometric errors in an optical systems considering what can be gained by hardware methods versus software corrections.

  5. Adaptive imaging through far-field turbulence

    NASA Astrophysics Data System (ADS)

    Troxel, Steven E.; Welsh, Byron M.; Roggemann, Michael C.

    1993-11-01

    This paper presents a new method for calculating the field angle dependent average OTF of an adaptive optic system and compares this method to calculations based on geometric optics. Geometric optics calculations are shown to be inaccurate due to the diffraction effects created by far-field turbulence and the approximations made in the atmospheric parameters. Our analysis includes diffraction effects and properly accounts for the effect of the atmospheric turbulence scale sizes. We show that for any atmospheric C(superscript 2)(subscript n) profile, the actual OTF is always better than the OTF calculated using geometric optics. The magnitude of the difference between the calculation methods is shown to be dependent on the amount of far- field turbulence and the values of the outer scale dimension.

  6. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  7. Technical note: Comparison of metal-on-metal hip simulator wear measured by gravimetric, CMM and optical profiling methods

    NASA Astrophysics Data System (ADS)

    Alberts, L. Russell; Martinez-Nogues, Vanesa; Baker Cook, Richard; Maul, Christian; Bills, Paul; Racasan, R.; Stolz, Martin; Wood, Robert J. K.

    2018-03-01

    Simulation of wear in artificial joint implants is critical for evaluating implant designs and materials. Traditional protocols employ the gravimetric method to determine the loss of material by measuring the weight of the implant components before and after various test intervals and after the completed test. However, the gravimetric method cannot identify the location, area coverage or maximum depth of the wear and it has difficulties with proportionally small weight changes in relatively heavy implants. In this study, we compare the gravimetric method with two geometric surface methods; an optical light method (RedLux) and a coordinate measuring method (CMM). We tested ten Adept hips in a simulator for 2 million cycles (MC). Gravimetric and optical methods were performed at 0.33, 0.66, 1.00, 1.33 and 2 MC. CMM measurements were done before and after the test. A high correlation was found between the gravimetric and optical methods for both heads (R 2  =  0.997) and for cups (R 2  =  0.96). Both geometric methods (optical and CMM) measured more volume loss than the gravimetric method (for the heads, p  =  0.004 (optical) and p  =  0.08 (CMM); for the cups p  =  0.01 (optical) and p  =  0.003 (CMM)). Two cups recorded negative wear at 2 MC by the gravimetric method but none did by either the optical method or by CMM. The geometric methods were prone to confounding factors such as surface deformation and the gravimetric method could be confounded by protein absorption and backside wear. Both of the geometric methods were able to show the location, area covered and depth of the wear on the bearing surfaces, and track their changes during the test run; providing significant advantages to solely using the gravimetric method.

  8. A Practical Guide to Experimental Geometrical Optics

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.

    2017-12-01

    Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.

  9. Comparisons between geometrical optics and Lorenz-Mie theory

    NASA Technical Reports Server (NTRS)

    Ungut, A.; Grehan, G.; Gouesbet, G.

    1981-01-01

    Both the Lorenz-Mie and geometrical optics theories are used in calculating the scattered light patterns produced by transparent spherical particles over a wide range of diameters, between 1.0 and 100 microns, and for the range of forward scattering angles from zero to 20 deg. A detailed comparison of the results shows the greater accuracy of the geometrical optics theory in the forward direction. Emphasis is given to the simultaneous sizing and velocimetry of particles by means of pedestal calibration methods.

  10. Advanced Geometric Optics on a Programmable Pocket Calculator.

    ERIC Educational Resources Information Center

    Nussbaum, Allen

    1979-01-01

    Presents a ray-tracing procedure based on some ideas of Herzberger and the matrix approach to geometrical optics. This method, which can be implemented on a programmable pocket calculator, applies to any conic surface, including paraboloids, spheres, and planes. (Author/GA)

  11. Geometrical calibration of an AOTF hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.

  12. Resonant inelastic scattering by use of geometrical optics.

    PubMed

    Schulte, Jörg; Schweiger, Gustav

    2003-02-01

    We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.

  13. Algorithm for lens calculations in the geometrized Maxwell theory

    NASA Astrophysics Data System (ADS)

    Kulyabov, Dmitry S.; Korolkova, Anna V.; Sevastianov, Leonid A.; Gevorkyan, Migran N.; Demidova, Anastasia V.

    2018-04-01

    Nowadays the geometric approach in optics is often used to find out media parameters based on propagation paths of the rays because in this case it is a direct problem. However inverse problem in the framework of geometrized optics is usually not given attention. The aim of this work is to demonstrate the work of the proposed the algorithm in the framework of geometrized approach to optics for solving the problem of finding the propagation path of the electromagnetic radiation depending on environmental parameters. The methods of differential geometry are used for effective metrics construction for isotropic and anisotropic media. For effective metric space ray trajectories are obtained in the form of geodesic curves. The introduced algorithm is applied to well-known objects, Maxwell and Luneburg lenses. The similarity of results obtained by classical and geometric approach is demonstrated.

  14. Calculation of far-field scattering from nonspherical particles using a geometrical optics approach

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1991-01-01

    A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.

  15. Scattering from a cylindrical reflector: modified theory of physical optics solution.

    PubMed

    Yalçin, Ugur

    2007-02-01

    The problem of scattering from a perfectly conducting cylindrical reflector is examined with the method of the modified theory of physical optics. In this technique the physical optics currents are modified by using a variable unit vector on the scatterer's surface. These current components are obtained for the reflector, which is fed by an offset electric line source. The scattering integral is expressed by using these currents and evaluated asymptotically with the stationary phase method. The results are compared numerically by using physical optics theory, geometrical optics diffraction theory, and the exact solution of the Helmholtz equation. It is found that the modified theory of physical optics scattering field equations agrees with the geometrical optics diffraction theory and the exact solution of the Helmholtz equation.

  16. Physical-geometric optics method for large size faceted particles.

    PubMed

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Zhang, Xiaodong

    2017-10-02

    A new physical-geometric optics method is developed to compute the single-scattering properties of faceted particles. It incorporates a general absorption vector to accurately account for inhomogeneous wave effects, and subsequently yields the relevant analytical formulas effective and computationally efficient for absorptive scattering particles. A bundle of rays incident on a certain facet can be traced as a single beam. For a beam incident on multiple facets, a systematic beam-splitting technique based on computer graphics is used to split the original beam into several sub-beams so that each sub-beam is incident only on an individual facet. The new beam-splitting technique significantly reduces the computational burden. The present physical-geometric optics method can be generalized to arbitrary faceted particles with either convex or concave shapes and with a homogeneous or an inhomogeneous (e.g., a particle with a core) composition. The single-scattering properties of irregular convex homogeneous and inhomogeneous hexahedra are simulated and compared to their counterparts from two other methods including a numerically rigorous method.

  17. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  18. Simple and practical approach for computing the ray Hessian matrix in geometrical optics.

    PubMed

    Lin, Psang Dain

    2018-02-01

    A method is proposed for simplifying the computation of the ray Hessian matrix in geometrical optics by replacing the angular variables in the system variable vector with their equivalent cosine and sine functions. The variable vector of a boundary surface is similarly defined in such a way as to exclude any angular variables. It is shown that the proposed formulations reduce the computation time of the Hessian matrix by around 10 times compared to the previous method reported by the current group in Advanced Geometrical Optics (2016). Notably, the method proposed in this study involves only polynomial differentiation, i.e., trigonometric function calls are not required. As a consequence, the computation complexity is significantly reduced. Five illustrative examples are given. The first three examples show that the proposed method is applicable to the determination of the Hessian matrix for any pose matrix, irrespective of the order in which the rotation and translation motions are specified. The last two examples demonstrate the use of the proposed Hessian matrix in determining the axial and lateral chromatic aberrations of a typical optical system.

  19. Geometrical-optics approximation of forward scattering by gradient-index spheres.

    PubMed

    Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen

    2007-08-01

    By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.

  20. A new approach for shaping of dual-reflector antennas

    NASA Technical Reports Server (NTRS)

    Lee, Teh-Hong; Burnside, W. D.; Rudduck, Roger C.

    1987-01-01

    The shaping of 2-D dual-reflector antenna systems to generate a prescribed distribution with uniform phase at the aperture of the second reflector is examined. This method is based on the geometrical nature of Cassegrain and Gregorian dual-reflector antennas. The method of syntheses satisfies the principles of geometrical optics which are the foundations of dual-reflector designs. Instead of setting up differential equations or heuristically designing the subreflector, a set of algebraic equations is formulated and solved numerically to obtain the desired surfaces. The caustics of the reflected rays from the subreflector can be obtained and examined. Several examples of 2-D dual-reflector shaping are shown to validate the study. Geometrical optics and physical optics are used to calculate the scattered fields from the reflectors.

  1. Geometrical-optics code for computing the optical properties of large dielectric spheres.

    PubMed

    Zhou, Xiaobing; Li, Shusun; Stamnes, Knut

    2003-07-20

    Absorption of electromagnetic radiation by absorptive dielectric spheres such as snow grains in the near-infrared part of the solar spectrum cannot be neglected when radiative properties of snow are computed. Thus a new, to our knowledge, geometrical-optics code is developed to compute scattering and absorption cross sections of large dielectric particles of arbitrary complex refractive index. The number of internal reflections and transmissions are truncated on the basis of the ratio of the irradiance incident at the nth interface to the irradiance incident at the first interface for a specific optical ray. Thus the truncation number is a function of the angle of incidence. Phase functions for both near- and far-field absorption and scattering of electromagnetic radiation are calculated directly at any desired scattering angle by using a hybrid algorithm based on the bisection and Newton-Raphson methods. With these methods a large sphere's absorption and scattering properties of light can be calculated for any wavelength from the ultraviolet to the microwave regions. Assuming that large snow meltclusters (1-cm order), observed ubiquitously in the snow cover during summer, can be characterized as spheres, one may compute absorption and scattering efficiencies and the scattering phase function on the basis of this geometrical-optics method. A geometrical-optics method for sphere (GOMsphere) code is developed and tested against Wiscombe's Mie scattering code (MIE0) and a Monte Carlo code for a range of size parameters. GOMsphere can be combined with MIE0 to calculate the single-scattering properties of dielectric spheres of any size.

  2. On the geometric analysis and adjustment of optical satellite observations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tsimis, E.

    1972-01-01

    Satellite geodesy methods were catagorized into three divisions: geometric, dynamic, and mixed. These catagories furnish the basis for distinction between geometric and dynamic satellite geodesy. The dual adjustment, geometric analysis, and Cartesian coodinate determination are examined for two observing stations. Similar illustrations are given when more than two observing stations are used.

  3. Scattering from very rough layers under the geometric optics approximation: further investigation.

    PubMed

    Pinel, Nicolas; Bourlier, Christophe

    2008-06-01

    Scattering from very rough homogeneous layers is studied in the high-frequency limit (under the geometric optics approximation) by taking the shadowing effect into account. To do so, the iterated Kirchhoff approximation, recently developed by Pinel et al. [Waves Random Complex Media17, 283 (2007)] and reduced to the geometric optics approximation, is used and investigated in more detail. The contributions from the higher orders of scattering inside the rough layer are calculated under the iterated Kirchhoff approximation. The method can be applied to rough layers of either very rough or perfectly flat lower interfaces, separating either lossless or lossy media. The results are compared with the PILE (propagation-inside-layer expansion) method, recently developed by Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)], and accelerated by the forward-backward method with spectral acceleration. They highlight that there is very good agreement between the developed method and the reference numerical method for all scattering orders and that the method can be applied to root-mean-square (RMS) heights at least down to 0.25lambda.

  4. Application of complex geometrical optics to determination of thermal, transport, and optical parameters of thin films by the photothermal beam deflection technique.

    PubMed

    Korte, Dorota; Franko, Mladen

    2015-01-01

    In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.

  5. Automatic design of optical systems by digital computer

    NASA Technical Reports Server (NTRS)

    Casad, T. A.; Schmidt, L. F.

    1967-01-01

    Computer program uses geometrical optical techniques and a least squares optimization method employing computing equipment for the automatic design of optical systems. It evaluates changes in various optical parameters, provides comprehensive ray-tracing, and generally determines the acceptability of the optical system characteristics.

  6. A scattering database of marine particles and its application in optical analysis

    NASA Astrophysics Data System (ADS)

    Xu, G.; Yang, P.; Kattawar, G.; Zhang, X.

    2016-12-01

    In modeling the scattering properties of marine particles (e.g. phytoplankton), the laboratory studies imply a need to properly account for the influence of particle morphology, in addition to size and composition. In this study, a marine particle scattering database is constructed using a collection of distorted hexahedral shapes. Specifically, the scattering properties of each size bin and refractive index are obtained by the ensemble average associated with distorted hexahedra with randomly tilted facets and selected aspect ratios (from elongated to flattened). The randomness degree in shape-generation process defines the geometric irregularity of the particles in the group. The geometric irregularity and particle aspect ratios constitute a set of "shape factors" to be accounted for (e.g. in best-fit analysis). To cover most of the marine particle size range, we combine the Invariant Imbedding T-matrix (II-TM) method and the Physical-Geometric Optics Hybrid (PGOH) method in the calculations. The simulated optical properties are shown and compared with those obtained from Lorenz-Mie Theory. Using the scattering database, we present a preliminary optical analysis of laboratory-measured optical properties of marine particles.

  7. Geometrical-optics approximation of forward scattering by coated particles.

    PubMed

    Xu, Feng; Cai, Xiaoshu; Ren, Kuanfang

    2004-03-20

    By means of geometrical optics we present an approximation algorithm with which to accelerate the computation of scattering intensity distribution within a forward angular range (0 degrees-60 degrees) for coated particles illuminated by a collimated incident beam. Phases of emerging rays are exactly calculated to improve the approximation precision. This method proves effective for transparent and tiny absorbent particles with size parameters larger than 75 but fails to give good approximation results at scattering angles at which refractive rays are absent. When the absorption coefficient of a particle is greater than 0.01, the geometrical optics approximation is effective only for forward small angles, typically less than 10 degrees or so.

  8. Geometrical-optics solution to light scattering by droxtal ice crystals.

    PubMed

    Zhang, Zhibo; Yang, Ping; Kattawar, George W; Tsay, Si-Chee; Baum, Bryan A; Hu, Yongxiang; Heymsfield, Andrew J; Reichardt, Jens

    2004-04-20

    We investigate the phase matrices of droxtals at wavelengths of 0.66 and 11 microm by using an improved geometrical-optics method. An efficient method is developed to specify the incident rays and the corresponding impinging points on the particle surface necessary to initialize the ray-tracing computations. At the 0.66-microm wavelength, the optical properties of droxtals are different from those of hexagonal ice crystals. At the 11-microm wavelength, the phase functions for droxtals are essentially featureless because of strong absorption within the particles, except for ripple structures that are caused by the phase interference of the diffracted wave.

  9. A numerical study of electromagnetic scattering from ocean like surfaces

    NASA Technical Reports Server (NTRS)

    Lentz, R. R.

    1972-01-01

    The integral equations describing electromagnetic scattering from one dimensional conducting surfaces are formulated and numerical results are presented. The results are compared with those obtained using approximate methods such as physical optics, geometrical optics, and perturbation theory. The integral equation solutions show that the surface radius of curvature must be greater than 2.5 wavelengths for either the physical optics or geometric optics to give satisfactory results. It has also been shown that perturbation theory agrees with the exact fields as long as the root mean square surface roughness is less than one-tenth of a wavelength.

  10. Nonimaging optical concentrators using graded-index dielectric.

    PubMed

    Zitelli, M

    2014-04-01

    A new generation of inhomogeneous nonimaging optical concentrators is proposed, able to achieve simultaneously high optical efficiency and acceptance solid angle at a given geometrical concentration factor. General design methods are given, and concentrators are numerically investigated and optimized.

  11. Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics.

    PubMed

    Kim, Seokhan; Na, Jihoon; Kim, Myoung Jin; Lee, Byeong Ha

    2008-04-14

    We propose and demonstrate novel methods that enable simultaneous measurements of the phase index, the group index, and the geometrical thickness of an optically transparent object by combining optical low-coherence interferometer and confocal optics. The low-coherence interferometer gives information relating the group index with the thickness, while the confocal optics allows access to the phase index related with the thickness of the sample. To relate these, two novel methods were devised. In the first method, the dispersion-induced broadening of the low-coherence envelop signal was utilized, and in the second method the frequency derivative of the phase index was directly obtained by taking the confocal measurements at several wavelengths. The measurements were made with eight different samples; B270, CaF2, two of BK7, two of fused silica, cover glass, and cigarette cover film. The average measurement errors of the first and the second methods were 0.123% and 0.061% in the geometrical thickness, 0.133% and 0.066% in the phase index, and 0.106% and 0.057% in the group index, respectively.

  12. Accurate single-scattering simulation of ice cloud using the invariant-imbedding T-matrix method and the physical-geometric optics method

    NASA Astrophysics Data System (ADS)

    Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.

    2017-12-01

    The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.

  13. Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps.

    PubMed

    Schut, T C; Hesselink, G; de Grooth, B G; Greve, J

    1991-01-01

    We have developed a computer program based on the geometrical optics approach proposed by Roosen to calculate the forces on dielectric spheres in focused laser beams. We have explicitly taken into account the polarization of the laser light and thd divergence of the laser beam. The model can be used to evaluate the stability of optical traps in a variety of different optical configurations. Our calculations explain the experimental observation by Ashkin that a stable single-beam optical trap, without the help of the gravitation force, can be obtained with a strongly divergent laser beam. Our calculations also predict a different trap stability in the directions orthogonal and parallel to the polarization direction of the incident light. Different experimental methods were used to test the predictions of the model for the gravity trap. A new method for measuring the radiation force along the beam axis in both the stable and instable regions is presented. Measurements of the radiation force on polystyrene spheres with diameters of 7.5 and 32 microns in a TEM00-mode laser beam showed a good qualitative correlation with the predictions and a slight quantitative difference. The validity of the geometrical approximations involved in the model will be discussed for spheres of different sizes and refractive indices.

  14. Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect.

    PubMed

    Bliokh, K Yu; Bliokh, Yu P

    2004-08-01

    We present a modification of the geometrical optics method, which allows one to properly separate the complex amplitude and the phase of the wave solution. Appling this modification to a smoothly inhomogeneous isotropic medium, we show that in the first geometrical optics approximation the medium is weakly anisotropic. The refractive index, being dependent on the direction of the wave vector, contains the correction, which is proportional to the Berry geometric phase. Two independent eigenmodes of right-hand and left-hand circular polarizations exist in the medium. Their group velocities and phase velocities differ. The difference in the group velocities results in the shift of the rays of different polarizations (the optical Magnus effect). The difference in the phase velocities causes an increase of the Berry phase along with the interference of two modes leading to the familiar Rytov law about the rotation of the polarization plane of a wave. The theory developed suggests that both the optical Magnus effect and the Berry phase are accompanying nonlocal topological effects. In this paper the Hamilton ray equations giving a unified description for both of these phenomena have been derived and also a novel splitting effect for a ray of noncircular polarization has been predicted. Specific examples are also discussed.

  15. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, Sheng; Young, Jack P.

    1998-01-01

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  16. Spectrodirectional Investigation of a Geometric-Optical Canopy Reflectance Model by Laboratory Simulation

    NASA Astrophysics Data System (ADS)

    Stanford, Adam Christopher

    Canopy reflectance models (CRMs) can accurately estimate vegetation canopy biophysical-structural information such as Leaf Area Index (LAI) inexpensively using satellite imagery. The strict physical basis which geometric-optical CRMs employ to mathematically link canopy bidirectional reflectance and structure allows for the tangible replication of a CRM's geometric abstraction of a canopy in the laboratory, enabling robust CRM validation studies. To this end, the ULGS-2 goniometer was used to obtain multiangle, hyperspectral (Spectrodirectional) measurements of a specially-designed tangible physical model forest, developed based upon the Geometric-Optical Mutual Shadowing (GOMS) CRM, at three different canopy cover densities. GOMS forward-modelled reflectance values had high levels of agreement with ULGS-2 measurements, with obtained reflectance RMSE values ranging from 0.03% to 0.1%. Canopy structure modelled via GOMS Multiple-Forward-Mode (MFM) inversion had varying levels of success. The methods developed in this thesis can potentially be extended to more complex CRMs through the implementation of 3D printing.

  17. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, S.; Young, J.P.

    1998-10-13

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.

  18. Geometrical optics approach in liquid crystal films with three-dimensional director variations.

    PubMed

    Panasyuk, G; Kelly, J; Gartland, E C; Allender, D W

    2003-04-01

    A formal geometrical optics approach (GOA) to the optics of nematic liquid crystals whose optic axis (director) varies in more than one dimension is described. The GOA is applied to the propagation of light through liquid crystal films whose director varies in three spatial dimensions. As an example, the GOA is applied to the calculation of light transmittance for the case of a liquid crystal cell which exhibits the homeotropic to multidomainlike transition (HMD cell). Properties of the GOA solution are explored, and comparison with the Jones calculus solution is also made. For variations on a smaller scale, where the Jones calculus breaks down, the GOA provides a fast, accurate method for calculating light transmittance. The results of light transmittance calculations for the HMD cell based on the director patterns provided by two methods, direct computer calculation and a previously developed simplified model, are in good agreement.

  19. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  20. SAR Polarimetry

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  1. The use of photostimulable phosphor systems for periodic quality assurance in radiotherapy.

    PubMed

    Conte, L; Bianchi, C; Cassani, E; Monciardini, M; Mordacchini, C; Novario, R; Strocchi, S; Stucchi, P; Tanzi, F

    2008-03-01

    The fusion of radiological and optical images can be achieved through charging a photostimulable phosphor plate (PSP) with an exposure to a field of X- or gamma-rays, followed by exposure to an optical image which discharges the plate in relation to the amount of incident light. According to this PSP characteristic, we developed a simple method for periodic quality assurance (QA) of light/radiation field coincidence, distance indicator, field size indicators, crosshair centering, coincidence of radiation and mechanical isocenter for linear accelerators. The geometrical accuracy of radiological units can be subjected to the same QA method. Further, the source position accuracy for an HDR remote afterloader can be checked by taking an autoradiography of the radioactive source and simultaneously an optical image of a reference geometrical system.

  2. Shooting and bouncing rays - Calculating the RCS of an arbitrarily shaped cavity

    NASA Technical Reports Server (NTRS)

    Ling, Hao; Chou, Ri-Chee; Lee, Shung-Wu

    1989-01-01

    A ray-shooting approach is presented for calculating the interior radar cross section (RCS) from a partially open cavity. In the problem considered, a dense grid of rays is launched into the cavity through the opening. The rays bounce from the cavity walls based on the laws of geometrical optics and eventually exit the cavity via the aperture. The ray-bouncing method is based on tracking a large number of rays launched into the cavity through the opening and determining the geometrical optics field associated with each ray by taking into consideration (1) the geometrical divergence factor, (2) polarization, and (3) material loading of the cavity walls. A physical optics scheme is then applied to compute the backscattered field from the exit rays. This method is so simple in concept that there is virtually no restriction on the shape or material loading of the cavity. Numerical results obtained by this method are compared with those for the modal analysis for a circular cylinder terminated by a PEC plate. RCS results for an S-bend circular cylinder generated on the Cray X-MP supercomputer show significant RCS reduction. Some of the limitations and possible extensions of this technique are discussed.

  3. Isogyres - Manifestation of Spin-orbit interaction in uniaxial crystal: A closed-fringe Fourier analysis of conoscopic interference

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2016-09-01

    Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.

  4. Isogyres - Manifestation of Spin-orbit interaction in uniaxial crystal: A closed-fringe Fourier analysis of conoscopic interference.

    PubMed

    Samlan, C T; Naik, Dinesh N; Viswanathan, Nirmal K

    2016-09-14

    Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.

  5. Geometrical optics modeling of the grating-slit test.

    PubMed

    Liang, Chao-Wen; Sasian, Jose

    2007-02-19

    A novel optical testing method termed the grating-slit test is discussed. This test uses a grating and a slit, as in the Ronchi test, but the grating-slit test is different in that the grating is used as the incoherent illuminating object instead of the spatial filter. The slit is located at the plane of the image of a sinusoidal intensity grating. An insightful geometrical-optics model for the grating-slit test is presented and the fringe contrast ratio with respect to the slit width and object-grating period is obtained. The concept of spatial bucket integration is used to obtain the fringe contrast ratio.

  6. Efficient level set methods for constructing wavefronts in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Tien

    2007-10-01

    Wavefront construction in geometrical optics has long faced the twin difficulties of dealing with multi-valued forms and resolution of wavefront surfaces. A recent change in viewpoint, however, has demonstrated that working in phase space on bicharacteristic strips using eulerian methods can bypass both difficulties. The level set method for interface dynamics makes a suitable choice for the eulerian method. Unfortunately, in three-dimensional space, the setting of interest for most practical applications, the advantages of this method are largely offset by a new problem: the high dimension of phase space. In this work, we present new types of level set algorithms that remove this obstacle and demonstrate their abilities to accurately construct wavefronts under high resolution. These results propel the level set method forward significantly as a competitive approach in geometrical optics under realistic conditions.

  7. [Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle (UAV) remotely sensed imagery based on geometric-optical model].

    PubMed

    Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long

    2015-05-01

    This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest.

  8. Ray tracing the Wigner distribution function for optical simulations

    NASA Astrophysics Data System (ADS)

    Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results in the presence of aberrations. The cause of these anomalies is explained using an analytical model.

  9. A method for generating double-ring-shaped vector beams

    NASA Astrophysics Data System (ADS)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  10. Additive manufacturing of reflective optics: evaluating finishing methods

    NASA Astrophysics Data System (ADS)

    Leuteritz, G.; Lachmayer, R.

    2018-02-01

    Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.

  11. Modeling Optical Properties of Mineral Aerosol Particles by Using Nonsymmetric Hexahedra

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Kahn, Ralph

    2010-01-01

    We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the "equivalent sphere" model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

  12. Optical versus tactile geometry measurement: alternatives or counterparts

    NASA Astrophysics Data System (ADS)

    Lehmann, Peter

    2003-05-01

    This contribution deals with measuring strategies and methods for the determination of several geometrical features, covering the surface micro-topography and the form of mechanical objects. The measuring principles used in optical surface metrology include optical focusing profilers, confocal point measuring and areal measuring sensors as well as interferometrical principles such as white light interferometry and speckle techniques. In comparison with stylus instruments optical techniques provide certain advantages such as a fast data acquisition, in-process applicability or contactless measurement. However, the frequency response characteristics of optical and tactile measurement differ significantly. In addition, optical sensors are commonly more influenced by critical geometrical conditions and optical properties of an object. For precise form measurement mechanical instruments dominate till now. One reason for this may be, that commonly the complete 360 degrees geometry of the measuring object has to be analyzed. Another point is that optical principles such as form measuring interferometry fail in cases of complex object geometry or rougher object surfaces. Other methods, e.g. fringe projection or digital holography, till now do not meet the accuracy demands of precision engineered workpieces. Hence, a combination of mechanical concepts and optical sensors represents an interesting potential for current and future measuring tasks, which require high accuracy and maximum flexibility.

  13. Active Learning Environment with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  14. Radiative Transfer and Satellite Remote Sensing of Cirrus Clouds Using FIRE-2-IFO Data

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under the support of the NASA grant, we have developed a new geometric-optics model (GOM2) for the calculation of the single-scattering and polarization properties for arbitrarily oriented hexagonal ice crystals. From comparisons with the results computed by the finite difference time domain (FDTD) method, we show that the novel geometric-optics can be applied to the computation of the extinction cross section and single-scattering albedo for ice crystals with size parameters along the minimum dimension as small as approximately 6. We demonstrate that the present model converges to the conventional ray tracing method for large size parameters and produces single-scattering results close to those computed by the FDTD method for size parameters along the minimum dimension smaller than approximately 20. We demonstrate that neither the conventional geometric optics method nor the Lorenz-Mie theory can be used to approximate the scattering, absorption, and polarization features for hexagonal ice crystals with size parameters from approximately 5 to 20. On the satellite remote sensing algorithm development and validation, we have developed a numerical scheme to identify multilayer cirrus cloud systems using AVHRR data. We have applied this scheme to the satellite data collected over the FIRE-2-IFO area during nine overpasses within seven observation dates. Determination of the threshold values used in the detection scheme are based on statistical analyses of these satellite data.

  15. Analyser-based phase contrast image reconstruction using geometrical optics.

    PubMed

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 microm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  16. Geometrical optics in the near field: local plane-interface approach with evanescent waves.

    PubMed

    Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari

    2015-01-12

    We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.

  17. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  18. Incoherent optical generalized Hough transform: pattern recognition and feature extraction applications

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Ferrari, José A.

    2017-05-01

    Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.

  19. Holonomic Quantum Control by Coherent Optical Excitation in Diamond.

    PubMed

    Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D

    2017-10-06

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  20. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  1. Measurement system and model for simultaneously measuring 6DOF geometric errors.

    PubMed

    Zhao, Yuqiong; Zhang, Bin; Feng, Qibo

    2017-09-04

    A measurement system to simultaneously measure six degree-of-freedom (6DOF) geometric errors is proposed. The measurement method is based on a combination of mono-frequency laser interferometry and laser fiber collimation. A simpler and more integrated optical configuration is designed. To compensate for the measurement errors introduced by error crosstalk, element fabrication error, laser beam drift, and nonparallelism of two measurement beam, a unified measurement model, which can improve the measurement accuracy, is deduced and established using the ray-tracing method. A numerical simulation using the optical design software Zemax is conducted, and the results verify the correctness of the model. Several experiments are performed to demonstrate the feasibility and effectiveness of the proposed system and measurement model.

  2. Comparison of matrix method and ray tracing in the study of complex optical systems

    NASA Astrophysics Data System (ADS)

    Anterrieu, Eric; Perez, Jose-Philippe

    2000-06-01

    In the context of the classical study of optical systems within the geometrical Gauss approximation, the cardinal elements are efficiently obtained with the aid of the transfer matrix between the input and output planes of the system. In order to take into account the geometrical aberrations, a ray tracing approach, using the Snell- Descartes laws, has been implemented in an interactive software. Both methods are applied for measuring the correction to be done to a human eye suffering from ametropia. This software may be used by optometrists and ophthalmologists for solving the problems encountered when considering this pathology. The ray tracing approach gives a significant improvement and could be very helpful for a better understanding of an eventual surgical act.

  3. Thomas Young's contributions to geometrical optics.

    PubMed

    Atchison, David A; Charman, W Neil

    2011-07-01

    In addition to his work on physical optics, Thomas Young (1773-1829) made several contributions to geometrical optics, most of which received little recognition in his time or since. We describe and assess some of these contributions: Young's construction (the basis for much of his geometric work), paraxial refraction equations, oblique astigmatism and field curvature, and gradient-index optics. © 2011 The Authors. Clinical and Experimental Optometry © 2011 Optometrists Association Australia.

  4. Geometrical effect characterization of femtosecond-laser manufactured glass microfluidic chips based on optical manipulation of submicroparticles

    NASA Astrophysics Data System (ADS)

    Kotsifaki, Domna G.; Mackenzie, Mark D.; Polydefki, Georgia; Kar, Ajoy K.; Makropoulou, Mersini; Serafetinides, Alexandros A.

    2017-12-01

    Microfluidic devices provide a platform with wide ranging applications from environmental monitoring to disease diagnosis. They offer substantive advantages but are often not optimized or designed to be used by nonexpert researchers. Microchannels of a microanalysis platform and their geometrical characterization are of eminent importance when designing such devices. We present a method that is used to optimize each microchannel within a device using high-throughput particle manipulation. For this purpose, glass-based microfluidic devices, with three-dimensional channel networks of several geometrical sizes, were fabricated by employing laser fabrication techniques. The effect of channel geometry was investigated by employing an optical tweezer. The optical trapping force depends on the flow velocity that is associated with the dimensions of the microchannel. We observe a linear dependence of the trapping efficiency and of the fluid flow velocity, with the channel dimensions. We determined that the highest trapping efficiency was achieved for microchannels with aspect ratio equal to one. Numerical simulation validated the impact of the device design dimensions on the trapping efficiency. This investigation indicates that the geometrical characteristics, the flow velocity, and trapping efficiency are crucial and should be considered when fabricating microfluidic devices for cell studies.

  5. Frozen Gaussian approximation based domain decomposition methods for the linear Schrödinger equation beyond the semi-classical regime

    NASA Astrophysics Data System (ADS)

    Lorin, E.; Yang, X.; Antoine, X.

    2016-06-01

    The paper is devoted to develop efficient domain decomposition methods for the linear Schrödinger equation beyond the semiclassical regime, which does not carry a small enough rescaled Planck constant for asymptotic methods (e.g. geometric optics) to produce a good accuracy, but which is too computationally expensive if direct methods (e.g. finite difference) are applied. This belongs to the category of computing middle-frequency wave propagation, where neither asymptotic nor direct methods can be directly used with both efficiency and accuracy. Motivated by recent works of the authors on absorbing boundary conditions (Antoine et al. (2014) [13] and Yang and Zhang (2014) [43]), we introduce Semiclassical Schwarz Waveform Relaxation methods (SSWR), which are seamless integrations of semiclassical approximation to Schwarz Waveform Relaxation methods. Two versions are proposed respectively based on Herman-Kluk propagation and geometric optics, and we prove the convergence and provide numerical evidence of efficiency and accuracy of these methods.

  6. Geometric Theory of Moving Grid Wavefront Sensor

    DTIC Science & Technology

    1977-06-30

    Identify by block numbot) Adaptive Optics WaVefront Sensor Geometric Optics Analysis Moving Ronchi Grid "ABSTRACT (Continue an revere sdde If nooessaY...ad Identify by block nucber)A geometric optics analysis is made for a wavefront sensor that uses a moving Ronchi grid. It is shown that by simple data... optical systems being considered or being developed -3 for imaging an object through a turbulent atmosphere. Some of these use a wavefront sensor to

  7. The effects of a geometrical size, external electric fields and impurity on the optical gain of a quantum dot laser with a semi-parabolic spherical well potential

    NASA Astrophysics Data System (ADS)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2017-03-01

    In this paper, a GaAs / Alx Ga1-x As quantum dot laser with a semi-parabolic spherical well potential is assumed. By using Runge-Kutta method the eigenenergies and the eigenstates of valence and conduct bands are obtained. The effects of geometrical sizes, external electric fields and hydrogen impurity on the different electronic transitions of the optical gain are studied. The results show that the optical gain peak increases and red-shifts, by increasing the width of well or barrier, while more increasing of the width causes blue-shift and decreases it. The hydrogen impurity decreases the optical gain peak and blue-shifts it. Also, the increasing of the external electric fields cause to increase the peak of the optical gain, and (blue) red shift it. Finally, the optical gain for 1s-1s and 2s-1s transitions is prominent, while it is so weak for other transitions.

  8. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.

    PubMed

    Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan

    2014-08-25

    Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

  9. Multiple Lens Experiment.

    ERIC Educational Resources Information Center

    Waring, Richard C.

    1980-01-01

    Describes an experiment which makes use of a number of concepts from geometrical optics. The apparatus and method which is intended for students in elementary college physics classes are included. (HM)

  10. Cartesian oval representation of freeform optics in illumination systems.

    PubMed

    Michaelis, D; Schreiber, P; Bräuer, A

    2011-03-15

    The geometrical method for constructing optical surfaces for illumination purpose developed by Oliker and co-workers [Trends in Nonlinear Analysis (Springer, 2003)] is generalized in order to obtain freeform designs in arbitrary optical systems. The freeform is created by a set of primitive surface elements, which are generalized Cartesian ovals adapted to the given optical system. Those primitives are determined by Hamiltonian theory of ray optics. The potential of this approach is demonstrated by some examples, e.g., freeform lenses with collimating front elements.

  11. Empfangsleistung in Abhängigkeit von der Zielentfernung bei optischen Kurzstrecken-Radargeräten.

    PubMed

    Riegl, J; Bernhard, M

    1974-04-01

    The dependence of the received optical power on the range in optical short-distance radar range finders is calculated by means of the methods of geometrical optics. The calculations are based on a constant intensity of the transmitter-beam cross section and on an ideal thin lens for the receiver optics. The results are confirmed by measurements. Even measurements using a nonideal thick lens system for the receiver optics are in reasonable agreement with the calculations.

  12. A robust correspondence matching algorithm of ground images along the optic axis

    NASA Astrophysics Data System (ADS)

    Jia, Fengman; Kang, Zhizhong

    2013-10-01

    Facing challenges of nontraditional geometry, multiple resolutions and the same features sensed from different angles, there are more difficulties of robust correspondence matching for ground images along the optic axis. A method combining SIFT algorithm and the geometric constraint of the ratio of coordinate differences between image point and image principal point is proposed in this paper. As it can provide robust matching across a substantial range of affine distortion addition of change in 3D viewpoint and noise, we use SIFT algorithm to tackle the problem of image distortion. By analyzing the nontraditional geometry of ground image along the optic axis, this paper derivates that for one correspondence pair, the ratio of distances between image point and image principal point in an image pair should be a value not far from 1. Therefore, a geometric constraint for gross points detection is formed. The proposed approach is tested with real image data acquired by Kodak. The results show that with SIFT and the proposed geometric constraint, the robustness of correspondence matching on the ground images along the optic axis can be effectively improved, and thus prove the validity of the proposed algorithm.

  13. Direction-dependent waist-shift-difference of Gaussian beam in a multiple-pass zigzag slab amplifier and geometrical optics compensation method.

    PubMed

    Li, Zhaoyang; Kurita, Takashi; Miyanaga, Noriaki

    2017-10-20

    Zigzag and non-zigzag beam waist shifts in a multiple-pass zigzag slab amplifier are investigated based on the propagation of a Gaussian beam. Different incident angles in the zigzag and non-zigzag planes would introduce a direction-dependent waist-shift-difference, which distorts the beam quality in both the near- and far-fields. The theoretical model and analytical expressions of this phenomenon are presented, and intensity distributions in the two orthogonal planes are simulated and compared. A geometrical optics compensation method by a beam with 90° rotation is proposed, which not only could correct the direction-dependent waist-shift-difference but also possibly average the traditional thermally induced wavefront-distortion-difference between the horizontal and vertical beam directions.

  14. Freeform lens design for LED collimating illumination.

    PubMed

    Chen, Jin-Jia; Wang, Te-Yuan; Huang, Kuang-Lung; Liu, Te-Shu; Tsai, Ming-Da; Lin, Chin-Tang

    2012-05-07

    We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0 mm × 1.0 mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.

  15. The Individual Virtual Eye: a Computer Model for Advanced Intraocular Lens Calculation

    PubMed Central

    Einighammer, Jens; Oltrup, Theo; Bende, Thomas; Jean, Benedikt

    2010-01-01

    Purpose To describe the individual virtual eye, a computer model of a human eye with respect to its optical properties. It is based on measurements of an individual person and one of its major application is calculating intraocular lenses (IOLs) for cataract surgery. Methods The model is constructed from an eye's geometry, including axial length and topographic measurements of the anterior corneal surface. All optical components of a pseudophakic eye are modeled with computer scientific methods. A spline-based interpolation method efficiently includes data from corneal topographic measurements. The geometrical optical properties, such as the wavefront aberration, are simulated with real ray-tracing using Snell's law. Optical components can be calculated using computer scientific optimization procedures. The geometry of customized aspheric IOLs was calculated for 32 eyes and the resulting wavefront aberration was investigated. Results The more complex the calculated IOL is, the lower the residual wavefront error is. Spherical IOLs are only able to correct for the defocus, while toric IOLs also eliminate astigmatism. Spherical aberration is additionally reduced by aspheric and toric aspheric IOLs. The efficient implementation of time-critical numerical ray-tracing and optimization procedures allows for short calculation times, which may lead to a practicable method integrated in some device. Conclusions The individual virtual eye allows for simulations and calculations regarding geometrical optics for individual persons. This leads to clinical applications like IOL calculation, with the potential to overcome the limitations of those current calculation methods that are based on paraxial optics, exemplary shown by calculating customized aspheric IOLs.

  16. Theoretical analysis for scaling law of thermal blooming based on optical phase deference

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie

    2016-10-01

    In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.

  17. Geometrical optical illusionists.

    PubMed

    Wade, Nicholas J

    2014-01-01

    Geometrical optical illusions were given this title by Oppel in 1855. Variants on such small distortions of visual space were illustrated thereafter, many of which bear the names of those who first described them. Some original forms of the geometrical optical illusions are shown together with 'perceptual portraits' of those who described them. These include: Roget, Chevreul, Fick, Zöllner, Poggendorff, Hering, Kundt, Delboeuf Mach, Helmholtz, Hermann, von Bezold, Müller-Lyer, Lipps, Thiéry, Wundt, Münsterberg, Ebbinghaus, Titchener, Ponzo, Luckiesh, Sander, Ehrenstein, Gregory, Heard, White, Shepard, and. Lingelbach. The illusions are grouped under the headings of orientation, size, the combination of size and orientation, and contrast. Early theories of illusions, before geometrical optical illusions were so named, are mentioned briefly.

  18. Methods for estimating the optical constants of atmospheric hazes based on complex optical measurements

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Kostin, B. S.; Naats, I. E.

    1986-01-01

    The methods of multifrequency laser sounding (MLS) are the most effective remote methods for investigating the atmospheric aerosols, since it is possible to obtain complete information on aerosol microstructure and the effective methods for estimating the aerosol optical constants can be developed. The MLS data interpretation consists in the solution of the set of equations containing those of laser sounding and equations for polydispersed optical characteristics. As a rule, the laser sounding equation is written in the approximation of single scattering and the equations for optical characteristics are written assuming that the atmospheric aerosol is formed by spherical and homogeneous particles. To remove the indeterminacy of equations, the method of optical sounding of atmospheric aerosol, consisting in a joint use of a mutifrequency lidar and a spectral photometer in common geometrical scheme of the optical experiment was suggested. The method is used for investigating aerosols in the cases when absorption by particles is small and indicates the minimum necessary for interpretation of a series of measurements.

  19. High frequency scattering from a thin lossless dielectric slab. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Burgener, K. W.

    1979-01-01

    A solution for scattering from a thin dielectric slab is developed based on geometrical optics and the geometrical theory of diffraction with the intention of developing a model for a windshield of a small private aircraft for incorporation in an aircraft antenna code. Results of the theory are compared with experimental measurements and moment method calculations showing good agreement. Application of the solution is also addressed.

  20. Backscattering from a Gaussian distributed, perfectly conducting, rough surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.

    1977-01-01

    The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.

  1. Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence.

    PubMed

    Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu; Shen, Jianqi

    2006-07-10

    On the basis of our previous work on the extension of the geometrical-optics approximation to Gaussian beam scattering by a spherical particle, we present a further extension of the method to the scattering of a transparent or absorbing spheroidal particle with the same symmetric axis as the incident beam. As was done for the spherical particle, the phase shifts of the emerging rays due to focal lines, optical path, and total reflection are carefully considered. The angular position of the geometric rainbow of primary order is theoretically predicted. Compared with our results, the Möbius prediction of the rainbow angle has a discrepancy of less than 0.5 degrees for a spheroidal droplet of aspect radio kappa within 0.95 and 1.05 and less than 2 degrees for kappa within 0.89 and 1.11. The flux ratio index F, which qualitatively indicates the effect of a surface wave, is also studied and found to be dependent on the size, refractive index, and surface curvature of the particle.

  2. Methods of Stimulating the Students' Creativity in the Study of Geometrical Optics

    ERIC Educational Resources Information Center

    Florian, Gabriel; Trocaru, Sorin; Florian, Aurelia-Daniela; Bâna, Alexandru-Dumitru

    2015-01-01

    The aim of the present article is to focus on the operational aspects referring to the actions--strategies and on the defined modalities of establishing educational objectives/competences. In the achievement of our work a special attention has been paid to the operational aspects of the learning process of the optical phenomena. There were carried…

  3. Studies of geometrical profiling in fabricated tapered optical fibers using whispering gallery modes spectroscopy

    NASA Astrophysics Data System (ADS)

    Kavungal, Vishnu; Farrell, Gerald; Wu, Qiang; Kumar Mallik, Arun; Semenova, Yuliya

    2018-03-01

    This paper experimentally demonstrates a method for geometrical profiling of asymmetries in fabricated thin microfiber tapers with waist diameters ranging from ∼10 to ∼50 μm with submicron accuracy. The method is based on the analysis of whispering gallery mode resonances excited in cylindrical fiber resonators as a result of evanescent coupling of light propagating through the fiber taper. The submicron accuracy of the proposed method has been verified by SEM studies. The method can be applied as a quality control tool in fabrication of microfiber based devices and sensors or for fine-tuning of microfiber fabrication set-ups.

  4. Geometric calibration of Colour and Stereo Surface Imaging System of ESA's Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Tulyakov, Stepan; Ivanov, Anton; Thomas, Nicolas; Roloff, Victoria; Pommerol, Antoine; Cremonese, Gabriele; Weigel, Thomas; Fleuret, Francois

    2018-01-01

    There are many geometric calibration methods for "standard" cameras. These methods, however, cannot be used for the calibration of telescopes with large focal lengths and complex off-axis optics. Moreover, specialized calibration methods for the telescopes are scarce in literature. We describe the calibration method that we developed for the Colour and Stereo Surface Imaging System (CaSSIS) telescope, on board of the ExoMars Trace Gas Orbiter (TGO). Although our method is described in the context of CaSSIS, with camera-specific experiments, it is general and can be applied to other telescopes. We further encourage re-use of the proposed method by making our calibration code and data available on-line.

  5. Objective measurement of the optical image quality in the human eye

    NASA Astrophysics Data System (ADS)

    Navarro, Rafael M.

    2001-05-01

    This communication reviews some recent studies on the optical performance of the human eye. Although the retinal image cannot be recorded directly, different objective methods have been developed, which permit to determine optical quality parameters, such as the Point Spread Function (PSF), the Modulation Transfer Function (MTF), the geometrical ray aberrations or the wavefront distortions, in the living human eye. These methods have been applied in both basic and applied research. This includes the measurement of the optical performance of the eye across visual field, the optical quality of eyes with intraocular lens implants, the aberrations induced by LASIK refractive surgery, or the manufacture of customized phase plates to compensate the wavefront aberration in the eye.

  6. Induction of optical vortex in the crystals subjected to bending stresses.

    PubMed

    Skab, Ihor; Vasylkiv, Yurij; Vlokh, Rostyslav

    2012-08-20

    We describe a method for generation of optical vortices that relies on bending of transparent parallelepiped-shaped samples fabricated from either glass or crystalline solid materials. It is shown that the induced singularity of optical indicatrix rotation leads in general to appearance of a mixed screw-edge dislocation of the phase front of outgoing optical beam. At the same time, some specified geometrical parameters of the sample can ensure generation of a purely screw dislocation of the phase front and, as a result, a singly charged canonical optical vortex.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binotti, M.; Zhu, G.; Gray, A.

    An analytical approach, as an extension of one newly developed method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is proposed to treat the geometrical impact of three-dimensional (3-D) effects on parabolic trough optical performance. The mathematical steps of this analytical approach are presented and implemented numerically as part of the suite of FirstOPTIC code. In addition, the new code has been carefully validated against ray-tracing simulation results and available numerical solutions. This new analytical approach to treating 3-D effects will facilitate further understanding and analysis of the optical performance of trough collectors as a function of incidence angle.

  8. Geometrically complex 3D-printed phantoms for diffuse optical imaging.

    PubMed

    Dempsey, Laura A; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C

    2017-03-01

    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution.

  9. Geometrically complex 3D-printed phantoms for diffuse optical imaging

    PubMed Central

    Dempsey, Laura A.; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C.

    2017-01-01

    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution. PMID:28663863

  10. Framework for computing the spatial coherence effects of polycapillary x-ray optics

    PubMed Central

    Zysk, Adam M.; Schoonover, Robert W.; Xu, Qiaofeng; Anastasio, Mark A.

    2012-01-01

    Despite the extensive use of polycapillary x-ray optics for focusing and collimating applications, there remains a significant need for characterization of the coherence properties of the output wavefield. In this work, we present the first quantitative computational method for calculation of the spatial coherence effects of polycapillary x-ray optical devices. This method employs the coherent mode decomposition of an extended x-ray source, geometric optical propagation of individual wavefield modes through a polycapillary device, output wavefield calculation by ray data resampling onto a uniform grid, and the calculation of spatial coherence properties by way of the spectral degree of coherence. PMID:22418154

  11. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    PubMed Central

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  12. Observations of the Geometry of Horizon-Based Optical Navigation

    NASA Technical Reports Server (NTRS)

    Christian, John; Robinson, Shane

    2016-01-01

    NASA's Orion Project has sparked a renewed interest in horizon-based optical navigation(OPNAV) techniques for spacecraft in the Earth-Moon system. Some approaches have begun to explore the geometry of horizon-based OPNAV and exploit the fact that it is a conic section problem. Therefore, the present paper focuses more deeply on understanding and leveraging the various geometric interpretations of horizon-based OPNAV. These results provide valuable insight into the fundamental workings of OPNAV solution methods, their convergence properties, and associated estimate covariance. Most importantly, the geometry and transformations uncovered in this paper lead to a simple and non-iterative solution to the generic horizon-based OPNAV problem. This represents a significant theoretical advancement over existing methods. Thus, we find that a clear understanding of geometric relationships is central to the prudent design, use, and operation of horizon-based OPNAV techniques.

  13. Combination of Thin Lenses--A Computer Oriented Method.

    ERIC Educational Resources Information Center

    Flerackers, E. L. M.; And Others

    1984-01-01

    Suggests a method treating geometric optics using a microcomputer to do the calculations of image formation. Calculations are based on the connection between the composition of lenses and the mathematics of fractional linear equations. Logic of the analysis and an example problem are included. (JM)

  14. Non-destructive geometric and refractive index characterization of single and multi-element lenses using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Tao, Yuankai K.

    2018-02-01

    Design of optical imaging systems requires careful balancing of lens aberrations to optimize the point-spread function (PSF) and minimize field distortions. Aberrations and distortions are a result of both lens geometry and glass material. While most lens manufacturers provide optical models to facilitate system-level simulation, these models are often not reflective of true system performance because of manufacturing tolerances. Optical design can be further confounded when achromatic or proprietary lenses are employed. Achromats are ubiquitous in systems that utilize broadband sources due to their superior performance in balancing chromatic aberrations. Similarly, proprietary lenses may be custom-designed for optimal performance, but lens models are generally not available. Optical coherence tomography (OCT) provides non-contact, depth-resolved imaging with high axial resolution and sensitivity. OCT has been previously used to measure the refractive index of unknown materials. In a homogenous sample, the group refractive index is obtained as the ratio between the measured optical and geometric thicknesses of the sample. In heterogenous samples, a method called focus-tracking (FT) quantifies the effect of focal shift introduced by the sample. This enables simultaneous measurement of the thickness and refractive index of intermediate sample layers. Here, we extend the mathematical framework of FT to spherical surfaces, and describe a method based on OCT and FT for full characterization of lens geometry and refractive index. Finally, we validate our characterization method on commercially available singlet and doublet lenses.

  15. A uniform geometrical optics and an extended uniform geometrical theory of diffraction for evaluating high frequency EM fields near smooth caustics and composite shadow boundaries

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1994-01-01

    A uniform geometrical optics (UGO) and an extended uniform geometrical theory of diffraction (EUTD) are developed for evaluating high frequency electromagnetic (EM) fields within transition regions associated with a two and three dimensional smooth caustic of reflected rays and a composite shadow boundary formed by the caustic termination or the confluence of the caustic with the reflection shadow boundary (RSB). The UGO is a uniform version of the classic geometrical optics (GO). It retains the simple ray optical expressions of classic GO and employs a new set of uniform reflection coefficients. The UGO also includes a uniform version of the complex GO ray field that exists on the dark side of the smooth caustic. The EUTD is an extension of the classic uniform geometrical theory of diffraction (UTD) and accounts for the non-ray optical behavior of the UGO reflected field near caustics by using a two-variable transition function in the expressions for the edge diffraction coefficients. It also uniformly recovers the classic UTD behavior of the edge diffracted field outside the composite shadow boundary transition region. The approach employed for constructing the UGO/EUTD solution is based on a spatial domain physical optics (PO) radiation integral representation for the fields which is then reduced using uniform asymptotic procedures. The UGO/EUTD analysis is also employed to investigate the far-zone RCS problem of plane wave scattering from two and three dimensional polynomial defined surfaces, and uniform reflection, zero-curvature, and edge diffraction coefficients are derived. Numerical results for the scattering and diffraction from cubic and fourth order polynomial strips are also shown and the UGO/EUTD solution is validated by comparison to an independent moment method (MM) solution. The UGO/EUTD solution is also compared with the classic GO/UTD solution. The failure of the classic techniques near caustics and composite shadow boundaries is clearly demonstrated and it is shown that the UGO/EUTD results remain valid and uniformly reduce to the classic results away from the transition regions. Mathematical details on the asymptotic properties and efficient numerical evaluation of the canonical functions involved in the UGO/EUTD expressions are also provided.

  16. New teaching methods in use at UC Irvine's optical engineering and instrument design programs

    NASA Astrophysics Data System (ADS)

    Silberman, Donn M.; Rowe, T. Scott; Jo, Joshua; Dimas, David

    2012-10-01

    New teaching methods reach geographically dispersed students with advances in Distance Education. Capabilities include a new "Hybrid" teaching method with an instructor in a classroom and a live WebEx simulcast for remote students. Our Distance Education Geometric and Physical Optics courses include Hands-On Optics experiments. Low cost laboratory kits have been developed and YouTube type video recordings of the instructor using these tools guide the students through their labs. A weekly "Office Hour" has been developed using WebEx and a Live Webcam the instructor uses to display his live writings from his notebook for answering students' questions.

  17. Theory of electronic and optical properties for different shapes of InAs/In0.52Al0.48As quantum wires

    NASA Astrophysics Data System (ADS)

    Bouazra, A.; Nasrallah, S. Abdi-Ben; Said, M.

    2016-01-01

    In this work, we propose an efficient method to investigate optical properties as well as their dependence on geometrical parameters in InAs/InAlAs quantum wires. The used method is based on the coordinate transformation and the finite difference method. It provides sufficient accuracy, stability and flexibility with respect to the size and shape of the quantum wire. The electron and hole energy levels as well as their corresponding wave functions are investigated for different shape of quantum wires. The optical transition energies, the emission wavelengths and the oscillator strengths are also studied.

  18. Mechanisms of Intraductal Tumor Spread

    DTIC Science & Technology

    2004-08-01

    59 (2): 119-127, 2002. "• "A geometric model for image analysis in cytology" Ortiz de Solorzano C., R . Malladi , Lockett S. In: Geometric methods in...gland tissue sections". Fernandez-Gonzalez R ., Deschamps T., Idica A.K., Malladi R ., Ortiz de Solorzano C. Journal of Biomedical Optics 9(3):445-453...normal and neoplastic mammary gland tissue sections". Fernandez-Gonzalez R ., Deschamps T., Idica A.K., Malladi R ., Ortiz de Solorzano C., Proceedings

  19. Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens.

    PubMed

    Rosales, Patricia; Marcos, Susana

    2009-05-01

    To implement geometrical and optical distortion correction methods for anterior segment Scheimpflug images obtained with a commercially available system (Pentacam, Oculus Optikgeräte GmbH). Ray tracing algorithms were implemented to obtain corrected ocular surface geometry from the original images captured by the Pentacam's CCD camera. As details of the optical layout were not fully provided by the manufacturer, an iterative procedure (based on imaging of calibrated spheres) was developed to estimate the camera lens specifications. The correction procedure was tested on Scheimpflug images of a physical water cell model eye (with polymethylmethacrylate cornea and a commercial IOL of known dimensions) and of a normal human eye previously measured with a corrected optical and geometrical distortion Scheimpflug camera (Topcon SL-45 [Topcon Medical Systems Inc] from the Vrije University, Amsterdam, Holland). Uncorrected Scheimpflug images show flatter surfaces and thinner lenses than in reality. The application of geometrical and optical distortion correction algorithms improves the accuracy of the estimated anterior lens radii of curvature by 30% to 40% and of the estimated posterior lens by 50% to 100%. The average error in the retrieved radii was 0.37 and 0.46 mm for the anterior and posterior lens radii of curvature, respectively, and 0.048 mm for lens thickness. The Pentacam Scheimpflug system can be used to obtain quantitative information on the geometry of the crystalline lens, provided that geometrical and optical distortion correction algorithms are applied, within the accuracy of state-of-the art phakometry and biometry. The techniques could improve with exact knowledge of the technical specifications of the instrument, improved edge detection algorithms, consideration of aspheric and non-rotationally symmetrical surfaces, and introduction of a crystalline gradient index.

  20. Some experiments with thin prisms

    NASA Astrophysics Data System (ADS)

    Fernando, P. C. B.

    1980-11-01

    In most attempts at modernizing the college physics curriculum one of the first branches of physics to be eliminated is geometrical optics. However, in developing countries where the curriculum must give emphasis to applied areas (if physics is to survive at all!), geometrical optics has a role to play, especially in its relationship to the professional course ''Optometry.'' The author presents a few experiments in geometrical optics with an ophthalmic opitics bias, which could be introduced into the college physics laboratory.

  1. Comparison of measured and computed phase functions of individual tropospheric ice crystals

    NASA Astrophysics Data System (ADS)

    Stegmann, Patrick G.; Tropea, Cameron; Järvinen, Emma; Schnaiter, Martin

    2016-07-01

    Airplanes passing the incuda (lat. anvils) regions of tropical cumulonimbi-clouds are at risk of suffering an engine power-loss event and engine damage due to ice ingestion (Mason et al., 2006 [1]). Research in this field relies on optical measurement methods to characterize ice crystals; however the design and implementation of such methods presently suffer from the lack of reliable and efficient means of predicting the light scattering from ice crystals. The nascent discipline of direct measurement of phase functions of ice crystals in conjunction with particle imaging and forward modelling through geometrical optics derivative- and Transition matrix-codes for the first time allow us to obtain a deeper understanding of the optical properties of real tropospheric ice crystals. In this manuscript, a sample phase function obtained via the Particle Habit Imaging and Polar Scattering (PHIPS) probe during a measurement campaign in flight over Brazil will be compared to three different light scattering codes. This includes a newly developed first order geometrical optics code taking into account the influence of the Gaussian beam illumination used in the PHIPS device, as well as the reference ray tracing code of Macke and the T-matrix code of Kahnert.

  2. Impact of Simulator-Based Instruction on Diagramming in Geometrical Optics by Introductory Physics Students.

    ERIC Educational Resources Information Center

    Reiner, Miriam; And Others

    1995-01-01

    Observations of high school physics students in an instructional experiment with an interactive learning environment in geometrical optics indicated that students in the Optics Dynagrams Project went through major conceptual developments as reflected in the diagrams they constructed. (Author/MKR)

  3. Fiber optic pressure sensors in skin-friction measurements

    NASA Technical Reports Server (NTRS)

    Cuomo, F. W.

    1986-01-01

    A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.

  4. Dynamic frequency tuning of electric and magnetic metamaterial response

    DOEpatents

    O'Hara, John F; Averitt, Richard; Padilla, Willie; Chen, Hou-Tong

    2014-09-16

    A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.

  5. A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals

    NASA Astrophysics Data System (ADS)

    Basko, Mikhail M.; Tsygvintsev, Ilia P.

    2017-05-01

    The hybrid model of laser energy deposition is a combination of the geometrical-optics ray-tracing method with the one-dimensional (1D) solution of the Helmholtz wave equation in regions where the geometrical optics becomes inapplicable. We propose an improved version of this model, where a new physically consistent criterion for transition to the 1D wave optics is derived, and a special rescaling procedure of the wave-optics deposition profile is introduced. The model is intended for applications in large-scale two- and three-dimensional hydrodynamic codes. Comparison with exact 1D solutions demonstrates that it can fairly accurately reproduce the absorption fraction in both the s- and p-polarizations on arbitrarily steep density gradients, provided that a sufficiently accurate algorithm for gradient evaluation is used. The accuracy of the model becomes questionable for long laser pulses simulated on too fine grids, where the hydrodynamic self-focusing instability strongly manifests itself.

  6. Efficient numerical method for analyzing optical bistability in photonic crystal microcavities.

    PubMed

    Yuan, Lijun; Lu, Ya Yan

    2013-05-20

    Nonlinear optical effects can be enhanced by photonic crystal microcavities and be used to develop practical ultra-compact optical devices with low power requirements. The finite-difference time-domain method is the standard numerical method for simulating nonlinear optical devices, but it has limitations in terms of accuracy and efficiency. In this paper, a rigorous and efficient frequency-domain numerical method is developed for analyzing nonlinear optical devices where the nonlinear effect is concentrated in the microcavities. The method replaces the linear problem outside the microcavities by a rigorous and numerically computed boundary condition, then solves the nonlinear problem iteratively in a small region around the microcavities. Convergence of the iterative method is much easier to achieve since the size of the problem is significantly reduced. The method is presented for a specific two-dimensional photonic crystal waveguide-cavity system with a Kerr nonlinearity, using numerical methods that can take advantage of the geometric features of the structure. The method is able to calculate multiple solutions exhibiting the optical bistability phenomenon in the strongly nonlinear regime.

  7. Characteristics of the annular beam using a single axicon and a pair of lens

    NASA Astrophysics Data System (ADS)

    Ji, Ke; Lei, Ming; Yao, Baoli; Yan, Shaohui; Yang, Yanlong; Li, Ze; Dan, Dan; Menke, Neimule

    2012-10-01

    In optical trapping, annular beam as a kind of hollow beam is used to increase the axial trapping efficiency as well as the trapping stability. In this paper, a method for producing an annular beam by a system consisting of a single axicon and a pair of lens is proposed. The generated beam was also used as the optical tweezers. We use the geometrical optics to describe the propagation of light in the system. The calculated intensity distribution in three-dimensional space after the system shows a good agreement with the experimental results. The advantages of this method are simplicity of operation, good stability, and high transmittance, having possible applications in fields like optical microscopic, optical manipulation and electronic acceleration, etc.

  8. Polishing mechanism of light-initiated dental composite: Geometric optics approach.

    PubMed

    Chiang, Yu-Chih; Lai, Eddie Hsiang-Hua; Kunzelmann, Karl-Heinz

    2016-12-01

    For light-initiated dental hybrid composites, reinforcing particles are much stiffer than the matrix, which makes the surface rugged after inadequate polish and favors bacterial adhesion and biofilm redevelopment. The aim of the study was to investigate the polishing mechanism via the geometric optics approach. We defined the polishing abilities of six instruments using the obtained gloss values through the geometric optics approach (micro-Tri-gloss with 20°, 60°, and 85° measurement angles). The surface texture was validated using a field emission scanning electron microscope (FE-SEM). Based on the gloss values, we sorted polishing tools into three abrasive levels, and proposed polishing sequences to test the hypothesis that similar abrasive levels would leave equivalent gloss levels on dental composites. The three proposed, tested polishing sequences included: S1, Sof-Lex XT coarse disc, Sof-Lex XT fine disc, and OccluBrush; S2, Sof-Lex XT coarse disc, Prisma Gloss polishing paste, and OccluBrush; and S3, Sof-Lex XT coarse disc, Enhance finishing cups, and OccluBrush. S1 demonstrated significantly higher surface gloss than the other procedures (p < 0.05). The surface textures (FE-SEM micrographs) correlated well with the obtained gloss values. Nominally similar abrasive abilities did not result in equivalent polish levels, indicating that the polishing tools must be evaluated and cannot be judged based on their compositions or abrasive sizes. The geometric optic approach is an efficient and nondestructive method to characterize the polished surface of dental composites. Copyright © 2015. Published by Elsevier B.V.

  9. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  10. Fundamentals and techniques of nonimaging optics research

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J.

    1987-07-01

    Nonimaging Optics differs from conventional approaches in its relaxation of unnecessary constraints on energy transport imposed by the traditional methods for optimizing image formation and its use of more broadly based analytical techniques such as phase space representations of energy flow, radiative transfer analysis, thermodynamic arguments, etc. Based on these means, techniques for designing optical elements which approach and in some cases attain the maximum concentration permitted by the Second Law of Thermodynamics were developed. The most widely known of these devices are the family of Compound Parabolic Concentrators (CPC's) and their variants and the so called Flow-Line or trumpet concentrator derived from the geometric vector flux formalism developed under this program. Applications of these and other such ideal or near-ideal devices permits increases of typically a factor of four (though in some cases as much as an order of magnitude) in the concentration above that possible with conventional means. Present efforts can be classed into two main areas: (1) classical geometrical nonimaging optics, and (2) logical extensions of nonimaging concepts to the physical optics domain.

  11. Fundamentals and techniques of nonimaging optics research at the University of Chicago

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J.

    1986-11-01

    Nonimaging Optics differs from conventional approaches in its relaxation of unnecessary constraints on energy transport imposed by the traditional methods for optimizing image formation and its use of more broadly based analytical techniques such as phase space representations of energy flow, radiative transfer analysis, thermodynamic arguments, etc. Based on these means, techniques for designing optical elements which approach and in some cases attain the maximum concentration permitted by the Second Law of Thermodynamics were developed. The most widely known of these devices are the family of Compound Parabolic Concentrators (CPC's) and their variants and the so called Flow-Line concentrator derived from the geometric vector flux formalism developed under this program. Applications of these and other such ideal or near-ideal devices permits increases of typically a factor of four (though in some cases as much as an order of magnitude) in the concentration above that possible with conventional means. In the most recent phase, our efforts can be classed into two main areas; (a) ''classical'' geometrical nonimaging optics; and (b) logical extensions of nonimaging concepts to the physical optics domain.

  12. Full range line-field parallel swept source imaging utilizing digital refocusing

    NASA Astrophysics Data System (ADS)

    Fechtig, Daniel J.; Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-12-01

    We present geometric optics-based refocusing applied to a novel off-axis line-field parallel swept source imaging (LPSI) system. LPSI is an imaging modality based on line-field swept source optical coherence tomography, which permits 3-D imaging at acquisition speeds of up to 1 MHz. The digital refocusing algorithm applies a defocus-correcting phase term to the Fourier representation of complex-valued interferometric image data, which is based on the geometrical optics information of the LPSI system. We introduce the off-axis LPSI system configuration, the digital refocusing algorithm and demonstrate the effectiveness of our method for refocusing volumetric images of technical and biological samples. An increase of effective in-focus depth range from 255 μm to 4.7 mm is achieved. The recovery of the full in-focus depth range might be especially valuable for future high-speed and high-resolution diagnostic applications of LPSI in ophthalmology.

  13. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    ERIC Educational Resources Information Center

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  14. Development of the local magnification method for quantitative evaluation of endoscope geometric distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Cheng, Wei-Chung; Suresh, Nitin; Hua, Hong

    2016-05-01

    With improved diagnostic capabilities and complex optical designs, endoscopic technologies are advancing. As one of the several important optical performance characteristics, geometric distortion can negatively affect size estimation and feature identification related diagnosis. Therefore, a quantitative and simple distortion evaluation method is imperative for both the endoscopic industry and the medical device regulatory agent. However, no such method is available yet. While the image correction techniques are rather mature, they heavily depend on computational power to process multidimensional image data based on complex mathematical model, i.e., difficult to understand. Some commonly used distortion evaluation methods, such as the picture height distortion (DPH) or radial distortion (DRAD), are either too simple to accurately describe the distortion or subject to the error of deriving a reference image. We developed the basic local magnification (ML) method to evaluate endoscope distortion. Based on the method, we also developed ways to calculate DPH and DRAD. The method overcomes the aforementioned limitations, has clear physical meaning in the whole field of view, and can facilitate lesion size estimation during diagnosis. Most importantly, the method can facilitate endoscopic technology to market and potentially be adopted in an international endoscope standard.

  15. Computer modeling of electromagnetic problems using the geometrical theory of diffraction

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.

    1976-01-01

    Some applications of the geometrical theory of diffraction (GTD), a high frequency ray optical solution to electromagnetic problems, are presented. GTD extends geometric optics, which does not take into account the diffractions occurring at edges, vertices, and various other discontinuities. Diffraction solutions, analysis of basic structures, construction of more complex structures, and coupling using GTD are discussed.

  16. Unpolarized emissivity with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band.

    PubMed

    Bourlier, Christophe

    2006-08-20

    The emissivity from a stationary random rough surface is derived by taking into account the multiple reflections and the shadowing effect. The model is applied to the ocean surface. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In particular, the emissivity with zero, single, and double reflections are analytically calculated, and each contribution is studied numerically by considering a 1D sea surface observed in the near infrared band. The model is also compared with results computed from a Monte Carlo ray-tracing method.

  17. Radar cross section fundamentals for the aircraft designer

    NASA Technical Reports Server (NTRS)

    Stadmore, H. A.

    1979-01-01

    Various aspects of radar cross-section (RCS) techniques are summarized, with emphasis placed on fundamental electromagnetic phenomena, such as plane and spherical wave formulations, and the definition of RCS is given in the far-field sense. The basic relationship between electronic countermeasures and a signature level is discussed in terms of the detectability range of a target vehicle. Fundamental radar-signature analysis techniques, such as the physical-optics and geometrical-optics approximations, are presented along with examples in terms of aircraft components. Methods of analysis based on the geometrical theory of diffraction are considered and various wave-propagation phenomena are related to local vehicle geometry. Typical vehicle components are also discussed, together with their contribution to total vehicle RCS and their individual signature sensitivities.

  18. Geometric diffusion of quantum trajectories

    PubMed Central

    Yang, Fan; Liu, Ren-Bao

    2015-01-01

    A quantum object can acquire a geometric phase (such as Berry phases and Aharonov–Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects. PMID:26178745

  19. Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, G.

    2015-01-01

    Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…

  20. Life Science-Related Physics Laboratory on Geometrical Optics

    ERIC Educational Resources Information Center

    Edwards, T. H.; And Others

    1975-01-01

    Describes a laboratory experiment on geometrical optics designed for life science majors in a noncalculus introductory physics course. The thin lens equation is used by the students to calculate the focal length of the lens necessary to correct a myopic condition in an optical bench simulation of a human eye. (Author/MLH)

  1. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems

    PubMed Central

    Munro, Peter R.T.; Ignatyev, Konstantin; Speller, Robert D.; Olivo, Alessandro

    2013-01-01

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation. PMID:20389424

  2. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems.

    PubMed

    Munro, Peter R T; Ignatyev, Konstantin; Speller, Robert D; Olivo, Alessandro

    2010-03-01

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.

  3. In My Opinion. A New Sign Conversion for Geometrical Optics.

    ERIC Educational Resources Information Center

    Ditteon, Richard

    1993-01-01

    Introduces a new sign convention for the object and image distances involving mirrors and lenses. Proposes that the method is easier for students to understand and remember and that it helps clarify the physics concepts involved. (MDH)

  4. Flow line asymmetric nonimaging concentrating optics

    NASA Astrophysics Data System (ADS)

    Jiang, Lun; Winston, Roland

    2016-09-01

    Nonimaging Optics has shown that it achieves the theoretical limits by utilizing thermodynamic principles rather than conventional optics. Hence in this paper the condition of the "best" design are both defined and fulfilled in the framework of thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems, even illumination and optical communication tasks. This new way of looking at the problem of efficient concentration depends on probabilities, geometric flux field and radiative heat transfer while "optics" in the conventional sense recedes into the background. Some of the new development of flow line designs will be introduced and the connection between the thermodynamics and flow line design will be officially formulated in the framework of geometric flux field. A new way of using geometric flux to design nonimaging optics will be introduced. And finally, we discuss the possibility of 3D ideal nonimaing optics.

  5. A comparison between GO/aperture-field and physical-optics methods for offset reflectors

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1984-01-01

    Both geometrical optics (GO)/aperture-field and physical-optics (PO) methods are used extensively in the diffraction analysis of offset parabolic and dual reflectors. An analytical/numerical comparative study is performed to demonstrate the limitations of the GO/aperture-field method for accurately predicting the sidelobe and null positions and levels. In particular, it is shown that for offset parabolic reflectors and for feeds located at the focal point, the predicted far-field patterns (amplitude) by the GO/aperture-field method will always be symmetric even in the offset plane. This, of course, is inaccurate for the general case and it is shown that the physical-optics method can result in asymmetric patterns for cases in which the feed is located at the focal point. Representative numerical data are presented and a comparison is made with available measured data.

  6. Plasmon resonance enhanced optical transmission and magneto-optical Faraday effects in nanohole arrays blocked by metal antenna

    NASA Astrophysics Data System (ADS)

    Lei, Chengxin; Tang, Zhixiong; Wang, Sihao; Li, Daoyong; Chen, Leyi; Tang, Shaolong; Du, Youwei

    2017-07-01

    The properties of the optical and magneto-optical effects of an improved plasmonic nanohole arrays blocked by gold mushroom caps are investigated by using the finite difference time domain (FDTD) method. It is most noteworthy that the strongly enhanced Faraday rotation along with high transmittance has been achieved simultaneously by optimizing the parameters of nanostructure in a broad spectrum spanning visible to near-infrared frequencies, which is very important in practical application for designing novel optical and magneto-optical devices. In our designed structure, we obtained two extraordinary optical transmission (EOT) resonant peaks along with enhanced Faraday rotation and two peaks of the figure of merit (FOM). By optimizing the geometrical parameters of the structure, we can obtain an almost 10-fold enhancement of Faraday rotation with a corresponding transmittance 50%, and the FOM of 0.752 at the same wavelength. As expected, the optical and magneto-optical effects sensitively depends on the geometrical parameters of our structure, which can be simply tailored by the height of pillar, the diameter of mushroom cap, and the period of the structure, and so on. The physical mechanism of these physical phenomena in the paper has been explained in detail. These research findings are of great theoretical significance in developing the novel magneto-optical devices in the future.

  7. Towards standardized assessment of endoscope optical performance: geometric distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Desai, Viraj N.; Ngo, Ying Z.; Cheng, Wei-Chung; Pfefer, Joshua

    2013-12-01

    Technological advances in endoscopes, such as capsule, ultrathin and disposable devices, promise significant improvements in safety, clinical effectiveness and patient acceptance. Unfortunately, the industry lacks test methods for preclinical evaluation of key optical performance characteristics (OPCs) of endoscopic devices that are quantitative, objective and well-validated. As a result, it is difficult for researchers and developers to compare image quality and evaluate equivalence to, or improvement upon, prior technologies. While endoscope OPCs include resolution, field of view, and depth of field, among others, our focus in this paper is geometric image distortion. We reviewed specific test methods for distortion and then developed an objective, quantitative test method based on well-defined experimental and data processing steps to evaluate radial distortion in the full field of view of an endoscopic imaging system. Our measurements and analyses showed that a second-degree polynomial equation could well describe the radial distortion curve of a traditional endoscope. The distortion evaluation method was effective for correcting the image and can be used to explain other widely accepted evaluation methods such as picture height distortion. Development of consensus standards based on promising test methods for image quality assessment, such as the method studied here, will facilitate clinical implementation of innovative endoscopic devices.

  8. Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle.

    PubMed

    Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu

    2006-07-10

    The geometrical-optics approximation of light scattering by a transparent or absorbing spherical particle is extended from plane wave to Gaussian beam incidence. The formulas for the calculation of the phase of each ray and the divergence factor are revised, and the interference of all the emerging rays is taken into account. The extended geometrical-optics approximation (EGOA) permits one to calculate the scattering diagram in all directions from 0 degrees to 180 degrees. The intensities of the scattered field calculated by the EGOA are compared with those calculated by the generalized Lorenz-Mie theory, and good agreement is found. The surface wave effect in Gaussian beam scattering is also qualitatively analyzed by introducing a flux ratio factor. The approach proposed is particularly important to the further extension of the geometrical-optics approximation to the scattering of large spheroidal particles.

  9. Effects of Corrugated Temperature Sheets on Optical Propagation along Quasi-Horizontal Paths in the Stably Stratified Atmosphere

    DTIC Science & Technology

    2015-12-11

    diameter) are consistent with theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short...theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short-term (less than a few seconds... turbulent , quasi-horizontal interfaces, or “sheets”. Collocated in- situ and optical field measurements conducted in the atmospheric surface layer

  10. Geometric and potential dynamics interpretation of the optic ring resonator bistability

    NASA Astrophysics Data System (ADS)

    Chiangga, S.; Chittha, T.; Frank, T. D.

    2015-07-01

    The optical bistability is a fundamental nonlinear feature of the ring resonator. A geometric and potential dynamics interpretation of the bistability is given. Accordingly, the bistability of the nonlinear system is shown to be a consequence of geometric laws of vector calculus describing the resonator ring. In contrast, the so-called transcendental relations that have been obtained in the literature in order to describe the optical wave are interpreted in terms of potential dynamical systems. The proposed novel interpretation provides new insights into the nature of the ring resonator optical bistability. The fundamental work by Rukhlenko, Premaratne and Agrawal (2010) as well as a more recent study by Chiangga, Pitakwongsaporn, Frank and Yupapin (2013) are considered.

  11. Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poludniowski, Gavin G.; Evans, Philip M.

    2013-04-15

    Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii)more » suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size and emission wavelength. For a phosphor screen structure with a distribution in grain sizes and a spectrum of emission, only the average trend of Mie theory is likely to be important. This average behavior is well predicted by the more sophisticated of the geometrical optics models (GODM+) and in approximate agreement for the simplest (GODM). The root-mean-square differences obtained between predicted MTF and experimental measurements, using all three models (GODM, GODM+, Mie), were within 0.03 for both Lanex screens in all cases. This is excellent agreement in view of the uncertainties in screen composition and optical properties. Conclusions: If Mie theory is used for calculating transport parameters for light scattering and absorption in powdered-phosphor screens, care should be taken to average out the fine-structure in the parameter predictions. However, for visible emission wavelengths ({lambda} < 1.0 {mu}m) and grain radii (a > 0.5 {mu}m), geometrical optics models for transport parameters are an alternative to Mie theory. These geometrical optics models are simpler and lead to no substantial loss in accuracy.« less

  12. A New (?) Physiological Effect in a Demonstration Experiment in Geometrical Optics

    ERIC Educational Resources Information Center

    Ganci, S.

    2018-01-01

    A surprising phenomenology from a traditional demonstration experiment in Geometrical Optics reveals here an interesting matter of discussion and analysis. Hence, the main focus of this paper is to observe and discuss such an innovative phenomenology.

  13. Pattern recognition and feature extraction with an optical Hough transform

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2016-09-01

    Pattern recognition and localization along with feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for the recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital- only methods. Starting from the integral representation of the GHT, it is possible to device an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a rotating pupil mask for orientation variation, implemented on a high-contrast spatial light modulator (SLM). Real-time (as limited by the frame rate of the device used to capture the GHT) can also be achieved, allowing for the processing of video sequences. Besides, by thresholding of the GHT (with the aid of another SLM) and inverse transforming (which is optically achieved in the incoherent system under appropriate focusing setting), the previously detected features of interest can be extracted.

  14. Applicability of geometrical optics to in-plane liquid-crystal configurations.

    PubMed

    Sluijter, M; Xu, M; Urbach, H P; de Boer, D K G

    2010-02-15

    We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices n(o)=1.5 and n(e)=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations of the propagation of an incident plane wave to a special anisotropic configuration. Based on the results, we conclude that for a good agreement between ray and wave optics, a maximum change in optical properties should occur over a distance of at least 20 wavelengths.

  15. Waves and rays in plano-concave laser cavities: I. Geometric modes in the paraxial approximation

    NASA Astrophysics Data System (ADS)

    Barré, N.; Romanelli, M.; Lebental, M.; Brunel, M.

    2017-05-01

    Eigenmodes of laser cavities are studied theoretically and experimentally in two companion papers, with the aim of making connections between undulatory and geometric properties of light. In this first paper, we focus on macroscopic open-cavity lasers with localized gain. The model is based on the wave equation in the paraxial approximation; experiments are conducted with a simple diode-pumped Nd:YAG laser with a variable cavity length. After recalling fundamentals of laser beam optics, we consider plano-concave cavities with on-axis or off-axis pumping, with emphasis put on degenerate cavity lengths, where modes of different order resonate at the same frequency, and combine to form surprising transverse beam profiles. Degeneracy leads to the oscillation of so-called geometric modes whose properties can be understood, to a certain extent, also within a ray optics picture. We first provide a heuristic description of these modes, based on geometric reasoning, and then show more rigorously how to derive them analytically by building wave superpositions, within the framework of paraxial wave optics. The numerical methods, based on the Fox-Li approach, are described in detail. The experimental setup, including the imaging system, is also detailed and relatively simple to reproduce. The aim is to facilitate implementation of both the numerics and of the experiments, and to show that one can have access not only to the common higher-order modes but also to more exotic patterns.

  16. Optical and biometric relationships of the isolated pig crystalline lens.

    PubMed

    Vilupuru, A S; Glasser, A

    2001-07-01

    To investigate the interrelationships between optical and biometric properties of the porcine crystalline lens, to compare these findings with similar relationships found for the human lens and to attempt to fit this data to a geometric model of the optical and biometric properties of the pig lens. Weight, focal length, spherical aberration, surface curvatures, thickness and diameters of 20 isolated pig lenses were measured and equivalent refractive index was calculated. These parameters were compared and used to geometrically model the pig lens. Linear relationships were identified between many of the lens biometric and optical properties. The existence of these relationships allowed a simple geometrical model of the pig lens to be calculated which offers predictions of the optical properties. The linear relationships found and the agreement observed between measured and modeled results suggest that the pig lens confirms to a predictable, preset developmental pattern and that the optical and biometric properties are predictably interrelated.

  17. Asymmetric design for Compound Elliptical Concentrators (CEC) and its geometric flux implications

    NASA Astrophysics Data System (ADS)

    Jiang, Lun; Winston, Roland

    2015-08-01

    The asymmetric compound elliptical concentrator (CEC) has been a less discussed subject in the nonimaging optics society. The conventional way of understanding an ideal concentrator is based on maximizing the concentration ratio based on a uniformed acceptance angle. Although such an angle does not exist in the case of CEC, the thermodynamic laws still hold and we can produce concentrators with the maximum concentration ratio allowed by them. Here we restate the problem and use the string method to solve this general problem. Built on the solution, we can discover groups of such ideal concentrators using geometric flux field, or flowline method.

  18. Field of view of limitations in see-through HMD using geometric waveguides.

    PubMed

    DeHoog, Edward; Holmstedt, Jason; Aye, Tin

    2016-08-01

    Geometric waveguides are being integrated into head-mounted display (HMD) systems, where having see-through capability in a compact, lightweight form factor is required. We developed methods for determining the field of view (FOV) of such waveguide HMD systems and have analytically derived the FOV for waveguides using planar and curved geometries. By using real ray-tracing methods, we are able to show how the geometry and index of refraction of the waveguide, as well as the properties of the coupling optics, impact the FOV. Use of this analysis allows one to determine the maximum theoretical FOV of a planar or curved waveguide-based system.

  19. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  20. Backscatter analysis of dihedral corner reflectors using physical optics and the physical theory of diffraction

    NASA Technical Reports Server (NTRS)

    Griesser, Timothy; Balanis, Constantine A.

    1987-01-01

    The backscatter cross-sections of dihedral corner reflectors in the azimuthal plane are presently determined by both physical optics (PO) and the physical theory of diffraction (PTD), yielding results for the vertical and horizontal polarizations. In the first analysis method used, geometrical optics is used in place of PO at initial reflections in order to maintain the planar character of the reflected wave and reduce the complexity of the analysis. In the second method, PO is used at almost every reflection in order to maximize the accuracy of the PTD solution at the expense of a rapid increase in complexity. Induced surface current densities and resulting cross section patterns are illustrated for the two methods.

  1. Accurate geometrical optics model for single-lens stereovision system using a prism.

    PubMed

    Cui, Xiaoyu; Lim, Kah Bin; Guo, Qiyong; Wang, DaoLei

    2012-09-01

    In this paper, we proposed a new method for analyzing the image formation of a prism. The prism was considered as a single optical system composed of some planes. By analyzing each plane individually and then combining them together, we derived a transformation matrix which can express the relationship between an object point and its image by the refraction of a prism. We also explained how to use this matrix for epipolar geometry and three-dimensional point reconstruction. Our method is based on optical geometry and could be used in a multiocular prism. Experimentation results are presented to prove the accuracy of our method is better than former researchers' and is comparable with that of the multicamera stereovision system.

  2. Variational principles for dissipative (sub)systems, with applications to the theory of linear dispersion and geometrical optics

    DOE PAGES

    Dodin, I. Y.; Zhmoginov, A. I.; Ruiz, D. E.

    2017-02-24

    Applications of variational methods are typically restricted to conservative systems. Some extensions to dissipative systems have been reported too but require ad hoc techniques such as the artificial doubling of the dynamical variables. We propose a different approach. Here, we show that for a broad class of dissipative systems of practical interest, variational principles can be formulated using constant Lagrange multipliers and Lagrangians nonlocal in time, which allow treating reversible and irreversible dynamics on the same footing. A general variational theory of linear dispersion is formulated as an example. Particularly, we present a variational formulation for linear geometrical optics inmore » a general dissipative medium, which is allowed to be nonstationary, inhomogeneous, anisotropic, and exhibit both temporal and spatial dispersion simultaneously.« less

  3. Radius of Curvature of the Cornea--An Experiment for the Life-Science Physics Lab

    ERIC Educational Resources Information Center

    MacLatchy, C. S.

    1978-01-01

    Presents a quantitative laboratory experiment in geometrical optics. It involves the student in the measurement of the radius of curvature of the cornea and is based on an old method devised by Kohlrausch in 1839. (Author/GA)

  4. Optical rectification using geometrical field enhancement in gold nano-arrays

    NASA Astrophysics Data System (ADS)

    Piltan, S.; Sievenpiper, D.

    2017-11-01

    Conversion of photons to electrical energy has a wide variety of applications including imaging, solar energy harvesting, and IR detection. A rectenna device consists of an antenna in addition to a rectifying element to absorb the incident radiation within a certain frequency range. We designed, fabricated, and measured an optical rectifier taking advantage of asymmetrical field enhancement for forward and reverse currents due to geometrical constraints. The gold nano-structures as well as the geometrical parameters offer enhanced light-matter interaction at 382 THz. Using the Taylor expansion of the time-dependent current as a function of the external bias and oscillating optical excitation, we obtained responsivities close to quantum limit of operation. This geometrical approach can offer an efficient, broadband, and scalable solution for energy conversion and detection in the future.

  5. Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories.

    PubMed

    Miyazaki, Hideki T; Miyazaki, Hiroshi; Miyano, Kenjiro

    2003-09-01

    We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40 degrees to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by simple two-wave interference models.

  6. 3D geometric modeling and simulation of laser propagation through turbulence with plenoptic functions

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Nelson, William; Davis, Christopher C.

    2014-10-01

    Plenoptic functions are functions that preserve all the necessary light field information of optical events. Theoretical work has demonstrated that geometric based plenoptic functions can serve equally well in the traditional wave propagation equation known as the "scalar stochastic Helmholtz equation". However, in addressing problems of 3D turbulence simulation, the dominant methods using phase screen models have limitations both in explaining the choice of parameters (on the transverse plane) in real-world measurements, and finding proper correlations between neighboring phase screens (the Markov assumption breaks down). Though possible corrections to phase screen models are still promising, the equivalent geometric approach based on plenoptic functions begins to show some advantages. In fact, in these geometric approaches, a continuous wave problem is reduced to discrete trajectories of rays. This allows for convenience in parallel computing and guarantees conservation of energy. Besides the pairwise independence of simulated rays, the assigned refractive index grids can be directly tested by temperature measurements with tiny thermoprobes combined with other parameters such as humidity level and wind speed. Furthermore, without loss of generality one can break the causal chain in phase screen models by defining regional refractive centers to allow rays that are less affected to propagate through directly. As a result, our work shows that the 3D geometric approach serves as an efficient and accurate method in assessing relevant turbulence problems with inputs of several environmental measurements and reasonable guesses (such as Cn 2 levels). This approach will facilitate analysis and possible corrections in lateral wave propagation problems, such as image de-blurring, prediction of laser propagation over long ranges, and improvement of free space optic communication systems. In this paper, the plenoptic function model and relevant parallel algorithm computing will be presented, and its primary results and applications are demonstrated.

  7. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    PubMed

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  8. On the wavelength dependence of the effects of turbulence on average refraction angles in occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.; Eshleman, V. R.

    1979-01-01

    The dependence of the effects of planetary atmospheric turbulence on radio or optical wavelength in occultation experiments is discussed, and the analysis of Hubbard and Jokipii (1977) is criticized. It is argued that in deriving a necessary condition for the applicability of their method, Hubbard and Jokipii neglect a factor proportional to the square of the ratio of atmospheric or local Fresnel zone radius and the inner scale of turbulence, and fail to establish sufficient conditions, thereby omitting the square of the ratio of atmospheric scale height and the local Fresnel zone radius. The total discrepancy is said to mean that the results correspond to geometrical optics instead of wave optics, as claimed, thus being inapplicable in a dicussion of wavelength dependence. Calculations based on geometrical optics show that the bias in the average bending angle depends on the wavelength in the same way as does the bias in phase path caused by turbulence in a homogeneous atmosphere. Hubbard and Jokipii comment that the criterion of Haugstad and Eshleman is incorrect and show that there is a large wave optical domain where the results are independent of wavelength.

  9. Coloured Shadows.

    ERIC Educational Resources Information Center

    Olivieri, G.; And Others

    1988-01-01

    Investigates the relationship between knowledge of geometrical optics and the understanding of the phenomenon of colored shadows through adult interviews. Reports that the knowledge of geometrical optics facilitates the pinpointing of the color problem while experience with the mixing of paints may act as a barrier. (Author/YP)

  10. Investigation of the geometrical barrier in Bi-2212 using the magneto-optical technique

    NASA Astrophysics Data System (ADS)

    Lin, Z. W.; Gu, G. D.; Russell, G. J.

    2000-08-01

    It has been found that the penetration of vortices into a weak pinning crystal is governed by a geometrical barrier and they form a dome-shaped flux profile across the crystal. Using the powerful magneto-optical technique, we investigated this geometrical barrier in a high-purity Bi2Sr2CaCu2O8+x single-crystal platelet. Our results show that over the temperature range 20-70 K the dome-shaped profile is observed. Also, the influences of the edge shape and the roughness on the geometrical barrier are discussed.

  11. Stress Measurement by Geometrical Optics

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Rossnagel, S. M.

    1986-01-01

    Fast, simple technique measures stresses in thin films. Sample disk bowed by stress into approximately spherical shape. Reflected image of disk magnified by amount related to curvature and, therefore, stress. Method requires sample substrate, such as cheap microscope cover slide, two mirrors, laser light beam, and screen.

  12. Implementation of the FDTD method in cylindrical coordinates for dispersive materials: Modal study of C-shaped nano-waveguides

    NASA Astrophysics Data System (ADS)

    kebci, Zahia; Belkhir, Abderrahmane; Mezeghrane, Abdelaziz; Lamrous, Omar; Baida, Fadi Issam

    2018-03-01

    The objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters.

  13. Fast calculation of the light differential scattering cross section of optically soft and convex bodies

    NASA Astrophysics Data System (ADS)

    Gruy, Frédéric

    2014-02-01

    Depending on the range of size and the refractive index value, an optically soft particle follows Rayleigh-Debye-Gans or RDG approximation or Van de Hulst approximation. Practically the first one is valid for small particles whereas the second one works for large particles. Klett and Sutherland (Klett JD, Sutherland RA. App. Opt. 1992;31:373) proved that the Wentzel-Kramers-Brillouin or WKB approximation leads to accurate values of the differential scattering cross section of sphere and cylinder over a wide range of size. In this paper we extend the work of Klett and Sutherland by proposing a method allowing a fast calculation of the differential scattering cross section for any shape of particle with a given orientation and illuminated by unpolarized light. Our method is based on a geometrical approximation of the particle by replacing each geometrical cross section by an ellipse and then by exactly evaluating the differential scattering cross section of the newly generated body. The latter one contains only two single integrals.

  14. Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes.

    PubMed

    Niu, Ye; Qi, Lin; Zhang, Fen; Zhao, Yi

    2018-07-30

    Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Geometrical Optics of Dense Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, amore » critical result for controlled focusing. __________________________________________________« less

  16. Geometrical optics of dense aerosols: forming dense plasma slabs.

    PubMed

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  17. The Master level optics laboratory at the Institute of Optics

    NASA Astrophysics Data System (ADS)

    Adamson, Per

    2017-08-01

    The master level optics laboratory is a biannual, intensive laboratory course in the fields of geometrical, physical and modern optics. This course is intended for the master level student though Ph.D. advisors which often recommend it to their advisees. The students are required to complete five standard laboratory experiments and an independent project during a semester. The goals of the laboratory experiments are for the students to get hands-on experience setting up optical laboratory equipment, collecting and analyzing data, as well as to communicate key results. The experimental methods, analysis, and results of the standard experiments are submitted in a journal style report, while an oral presentation is given for the independent project.

  18. A theoretical study of radar return and radiometric emission from the sea

    NASA Technical Reports Server (NTRS)

    Peake, W. H.

    1972-01-01

    The applicability of the various electromagnetic models of scattering from the ocean are reviewed. These models include the small perturbation method, the geometric optics solution, the composite model, and the exact integral equation solution. The restrictions on the electromagnetic models are discussed.

  19. Propagation in Striated Media

    DTIC Science & Technology

    1976-05-01

    random walk photon scattering, geometric optics refraction at a thin phase screen, plane wave scattering from a thin screen in the Fraunhofer limit and...significant cases. In the geometric optics regime the distribution of density of allowable multipath rays is gsslanly distributed and the power...3.1 Random Walk Approach to Scattering 10 3.2 Phase Screen Approximation to Strong Scattering 13 3.3 Ray Optics and Stationary Phase Analysis 21 3,3,1

  20. Virtual Ray Tracing as a Conceptual Tool for Image Formation in Mirrors and Lenses

    ERIC Educational Resources Information Center

    Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku

    2016-01-01

    The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…

  1. Vergence, Vision, and Geometric Optics

    ERIC Educational Resources Information Center

    Keating, Michael P.

    1975-01-01

    Provides a definition of vergence in terms of the curvature of the wave fronts, and gives examples to illustrate the advantages of this approach. The vergence treatment of geometrical optics provides both conceptual and algebraic advantages, particularly for the life science student, over the traditional object distance-image distance-focal length…

  2. The Zoom Lens: A Case Study in Geometrical Optics.

    ERIC Educational Resources Information Center

    Cheville, Alan; Scepanovic, Misa

    2002-01-01

    Introduces a case study on a motion picture company considering the purchase of a newly developed zoom lens in which students act as the engineers designing the zoom lens based on the criteria of company's specifications. Focuses on geometrical optics. Includes teaching notes and classroom management strategies. (YDS)

  3. Tackling Misconceptions in Geometrical Optics

    ERIC Educational Resources Information Center

    Ceuppens, S.; Deprez, J.; Dehaene, W.; De Cock, M.

    2018-01-01

    To improve the teaching and learning materials for a curriculum it is important to incorporate the findings from educational research. In light of this, we present creative exercises and experiments to elicit, confront and resolve misconceptions in geometrical optics. Since ray diagrams can be both the cause and the solution for many…

  4. The use of 2D and 3D WA-BPM models to analyze total-internal-reflection-based integrated optical switches

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Zheng, Jie; Farrell, Gerald

    2011-08-01

    The well known beam propagation method (BPM) has become one of the most useful, robust and effective numerical simulation tools for the investigation of guided-wave optics, for example integrated optical waveguides and fiber optic devices. In this paper we examine the use of the 2D and 3D wide angle-beam propagation method (WA-BPM) combined with the well known perfectly matched layer (PML) boundary conditions as a tool to analyze TIR based optical switches, in particular the relationship between light propagation and the geometrical parameters of a TIR based optical switch. To analyze the influence of the length and the width of the region in which the refractive index can be externally controlled, the 3D structure of a 2x2 TIR optical switch is firstly considered in 2D using the effective index method (EIM). Then the influence of the etching depth and the tilt angle of the reflection facet on the switch performance are investigated with a 3D model.

  5. Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber

    NASA Astrophysics Data System (ADS)

    Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2017-10-01

    Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.

  6. Geometrical shape design of nanophotonic surfaces for thin film solar cells.

    PubMed

    Nam, W I; Yoo, Y J; Song, Y M

    2016-07-11

    We present the effect of geometrical parameters, particularly shape, on optical absorption enhancement for thin film solar cells based on crystalline silicon (c-Si) and gallium arsenide (GaAs) using a rigorous coupled wave analysis (RCWA) method. It is discovered that the "sweet spot" that maximizes efficiency of solar cells exists for the design of nanophotonic surfaces. For the case of ultrathin, rod array is practical due to the effective optical resonances resulted from the optimum geometry whereas parabola array is viable for relatively thicker cells owing to the effective graded index profile. A specific value of thickness, which is the median value of other two devices tailored by rod and paraboloid, is optimized by truncated shape structure. It is therefore worth scanning the optimum shape of nanostructures in a given thickness in order to achieve high performance.

  7. Nontraditional method for determining unperturbed orbits of unknown space objects using incomplete optical observational data

    NASA Astrophysics Data System (ADS)

    Perov, N. I.

    1985-02-01

    A physical-geometrical method for computing the orbits of earth satellites on the basis of an inadequate number of angular observations (N3) was developed. Specifically, a new method has been developed for calculating the elements of Keplerian orbits of unidentified artificial satellites using two angular observations (alpha sub k, S sub k, k = 1). The first section gives procedures for determining the topocentric distance to AES on the basis of one optical observation. This is followed by description of a very simple method for determining unperturbed orbits using two satellite position vectors and a time interval which is applicable even in the case of antiparallel AED position vectors, a method designated the R sub 2 iterations method.

  8. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics

    PubMed Central

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D.; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-01-01

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that “Electron Tracking Compton Camera” (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics. PMID:28155870

  9. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.

    PubMed

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-02-03

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

  10. Multi-function diamond film fiber optic probe and measuring system employing same

    DOEpatents

    Young, J.P.

    1998-11-24

    A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.

  11. Nonlinear unitary transformations of space-variant polarized light fields from self-induced geometric-phase optical elements

    NASA Astrophysics Data System (ADS)

    Kravets, Nina; Brasselet, Etienne

    2018-01-01

    We propose to couple the optical orientational nonlinearities of liquid crystals with their ability to self-organize to tailor them to control space-variant-polarized optical fields in a nonlinear manner. Experimental demonstration is made using a liquid crystal light valve that behaves like a light-driven geometric phase optical element. We also unveil two original nonlinear optical processes, namely self-induced separability and nonseparability. These results contribute to the advancement of nonlinear singular optics that is still in its infancy despite 25 years of effort, which may foster the development of nonlinear protocols to manipulate high-dimensional optical information both in the classical and quantum regimes.

  12. A simple method for characterizing and engineering thermal relaxation of an optical microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weijian; Zhu, Jiangang; Özdemir, Şahin Kaya

    2016-08-08

    Thermal properties of a photonic resonator are determined not only by intrinsic properties of materials, such as thermo-optic coefficient, but also by the geometry and structure of the resonator. Techniques for characterization and measurement of thermal properties of individual photonic resonator will benefit numerous applications. In this work, we demonstrate a method to optically measure the thermal relaxation time and effective thermal conductance of a whispering gallery mode microcavity using optothermal effect. Two nearby optical modes within the cavity are optically probed, which allows us to quantify the thermal relaxation process of the cavity by analyzing changes in the transmissionmore » spectra induced by optothermal effect. We show that the effective thermal conductance can be experimentally deduced from the thermal relaxation measurement, and it can be tailored by changing the geometric parameters of the cavity. The experimental observations are in good agreement with the proposed analytical modeling. This method can be applied to various resonators in different forms.« less

  13. Assessment of the Accuracy of the Conventional Ray-Tracing Technique: Implications in Remote Sensing and Radiative Transfer Involving Ice Clouds.

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical thickness and effective diameter. In the MODIS infrared window bands centered at 8.5, 11, and 12 micrometers biases in the optical thickness and effective diameter are up to 12% and 10%, respectively. The CGOM-based simulation errors in ice cloud radiative forcing calculations are on the order of 10Wm(exp 2).

  14. Optical flows method for lightweight agile remote sensor design and instrumentation

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Xing, Fei; Wang, Hongjian; You, Zheng

    2013-08-01

    Lightweight agile remote sensors have become one type of the most important payloads and were widely utilized in space reconnaissance and resource survey. These imaging sensors are designed to obtain the high spatial, temporary and spectral resolution imageries. Key techniques in instrumentation include flexible maneuvering, advanced imaging control algorithms and integrative measuring techniques, which are closely correlative or even acting as the bottle-necks for each other. Therefore, mutual restrictive problems must be solved and optimized. Optical flow is the critical model which to be fully represented in the information transferring as well as radiation energy flowing in dynamic imaging. For agile sensors, especially with wide-field-of view, imaging optical flows may distort and deviate seriously when they perform large angle attitude maneuvering imaging. The phenomena are mainly attributed to the geometrical characteristics of the three-dimensional earth surface as well as the coupled effects due to the complicated relative motion between the sensor and scene. Under this circumstance, velocity fields distribute nonlinearly, the imageries may badly be smeared or probably the geometrical structures are changed since the image velocity matching errors are not having been eliminated perfectly. In this paper, precise imaging optical flow model is established for agile remote sensors, for which optical flows evolving is factorized by two forms, which respectively due to translational movement and image shape changing. Moreover, base on that, agile remote sensors instrumentation was investigated. The main techniques which concern optical flow modeling include integrative design with lightweight star sensors along with micro inertial measurement units and corresponding data fusion, the assemblies of focal plane layout and control, imageries post processing for agile remote sensors etc. Some experiments show that the optical analyzing method is effective to eliminate the limitations for the performance indexes, and succeeded to be applied for integrative system design. Finally, a principle prototype of agile remote sensor designed by the method is discussed.

  15. Axiomatic Geometrical Optics, Abraham-Minkowski Controversy, and Photon Properties Derived Classically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.Y. Dodin and N.J. Fisch

    2012-06-18

    By restating geometrical optics within the eld-theoretical approach, the classical concept of a photon in arbitrary dispersive medium is introduced, and photon properties are calculated unambiguously. In particular, the canonical and kinetic momenta carried by a photon, as well as the two corresponding energy-momentum tensors of a wave, are derived straightforwardly from rst principles of Lagrangian mechanics. The Abraham-Minkowski controversy pertaining to the de nitions of these quantities is thereby resolved for linear waves of arbitrary nature, and corrections to the traditional formulas for the photon kinetic quantities are found. An application of axiomatic geometrical optics to electromagnetic waves ismore » also presented as an example.« less

  16. Index of Refraction without Geometry

    ERIC Educational Resources Information Center

    Farkas, N.; Henriksen, P. N.; Ramsier, R. D.

    2006-01-01

    This article presents several activities that permit students to determine the index of refraction of transparent solids and liquids using simple equipment without the need for geometrical relationships, special lighting or optical instruments. Graphical analysis of the measured data is shown to be a useful method for determining the index of…

  17. Interferometric reflection moire

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Combell, Olivier

    1995-06-01

    A new reflection moire technique is introduced in this paper. The basic equations that relate the measurement of slopes to the basic geometric and optical parameters of the system are derived. The sensitivity and accuracy of the method are discussed. Examples of application to the study of silicon wafers and electronic chips are given.

  18. geometric optics and WKB method for electromagnetic wave propagation in an inhomogeneous plasma near cutoff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, Max Eugene

    This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density n e(r), which will modify the wave propagation in the direction of the gradient rn e(r).

  19. Designing and Using an Open Graphic Interface for Instruction in Geometrical Optics.

    ERIC Educational Resources Information Center

    Ronen, Miky; And Others

    1993-01-01

    Discusses conceptual difficulties in the field of geometrical optics and describes RAY, a microcomputer-based graphic interface that was designed to serve as a teaching aid and as a learning environment. The ability to combine theory and formal representations with real demonstrations and experiments is discussed. (Contains seven references.) (LRW)

  20. Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties

    DOEpatents

    Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian

    2000-01-01

    Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.

  1. Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1993-01-01

    The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.

  2. Optical distortion correction of a liquid-gas interface and contact angle in cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Darzi, Milad; Park, Chanwoo

    2017-05-01

    Objects inside cylindrical tubes appear distorted as seen outside the tube due to the refraction of the light passing through different media. Such an optical distortion may cause significant errors in geometrical measurements using optical observations of objects (e.g., liquid-gas interfaces, solid particles, gas bubbles) inside the tubes. In this study, an analytical method using a point-by-point correction of the optical distortion was developed. For an experimental validation, the method was used to correct the apparent profiles of the water-air interfaces (menisci) in cylindrical glass tubes with different tube diameters and wall thicknesses. Then, the corrected meniscus profiles were used to calculate the corrected static contact angles. The corrected contact angle shows an excellent agreement with the reference contact angles as compared to the conventional contact angle measurement using apparent meniscus profiles.

  3. An efficient hybrid technique in RCS predictions of complex targets at high frequencies

    NASA Astrophysics Data System (ADS)

    Algar, María-Jesús; Lozano, Lorena; Moreno, Javier; González, Iván; Cátedra, Felipe

    2017-09-01

    Most computer codes in Radar Cross Section (RCS) prediction use Physical Optics (PO) and Physical theory of Diffraction (PTD) combined with Geometrical Optics (GO) and Geometrical Theory of Diffraction (GTD). The latter approaches are computationally cheaper and much more accurate for curved surfaces, but not applicable for the computation of the RCS of all surfaces of a complex object due to the presence of caustic problems in the analysis of concave surfaces or flat surfaces in the far field. The main contribution of this paper is the development of a hybrid method based on a new combination of two asymptotic techniques: GTD and PO, considering the advantages and avoiding the disadvantages of each of them. A very efficient and accurate method to analyze the RCS of complex structures at high frequencies is obtained with the new combination. The proposed new method has been validated comparing RCS results obtained for some simple cases using the proposed approach and RCS using the rigorous technique of Method of Moments (MoM). Some complex cases have been examined at high frequencies contrasting the results with PO. This study shows the accuracy and the efficiency of the hybrid method and its suitability for the computation of the RCS at really large and complex targets at high frequencies.

  4. Laser-based study of geometrical optics at school level

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Dhingra, Vishal; Sharma, Reena; Mittal, Ankit; Tiwadi, Raman; Chakravarty, Pratik

    2011-10-01

    Students at the school level from grade 7 to 12 are taught various concepts of geometrical optics but with little hands-on activities. Light propagation through different media, image formation using lenses and mirrors under different conditions and application of basic principles to characterization of lenses, mirrors and other instruments has been a subject which although fascinates students but due to lack of suitable demonstrating setups, students find difficulty in understanding these concepts and hence unable to appreciate the importance of such concepts in various useful scientific apparatus, day to day life, instruments and devices. Therefore, students tend to cram various concepts related to geometrical optics instead of understanding them. As part of the extension activity in the University Grants Commission major research project "Investigating science hands-on to promote innovation and research at undergraduate level" and University of Delhi at Acharya Narendra Dev College SPIE student chapter, students working under this optics outreach programme have demonstrated various experiments on geometrical optics using a five beam laser ray box and various optical components like different types of mirrors, lenses, prisms, optical fibers etc. The various hands-on activities includes demonstrations on laws of reflection, image formation using plane, concave and convex mirrors, mirror formula, total internal reflection, light propagation in an optical fiber, laws of refraction, image formation using concave and convex lenses and combination of these lenses, lens formula, light propagation through prisms, dispersion in prism, defects in eye- Myopia and hypermetropia. Subjects have been evaluated through pre and post tests in order to measure the improvement in their level of understanding.

  5. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.

    PubMed

    Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang

    2016-10-31

    Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.

  6. Rayleigh's hypothesis and the geometrical optics limit.

    PubMed

    Elfouhaily, Tanos; Hahn, Thomas

    2006-09-22

    The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.

  7. Capturing Revolute Motion and Revolute Joint Parameters with Optical Tracking

    NASA Astrophysics Data System (ADS)

    Antonya, C.

    2017-12-01

    Optical tracking of users and various technical systems are becoming more and more popular. It consists of analysing sequence of recorded images using video capturing devices and image processing algorithms. The returned data contains mainly point-clouds, coordinates of markers or coordinates of point of interest. These data can be used for retrieving information related to the geometry of the objects, but also to extract parameters for the analytical model of the system useful in a variety of computer aided engineering simulations. The parameter identification of joints deals with extraction of physical parameters (mainly geometric parameters) for the purpose of constructing accurate kinematic and dynamic models. The input data are the time-series of the marker’s position. The least square method was used for fitting the data into different geometrical shapes (ellipse, circle, plane) and for obtaining the position and orientation of revolute joins.

  8. The Geometrical Optics PSF with Third Order Aberrations

    NASA Astrophysics Data System (ADS)

    Díaz-Uribe, Rufino; Campos-García, Manuel

    2008-04-01

    In this paper the calculation of the GPSF from the Geometrical Optics Irradiance Law (GOIL) is recalled, including some details not found in other references. Also it is explored an alternative solution based on the Irradiance Transport Equation (ITE). Some simulations of images of an extended object produced by an image forming instrument affected by spherical aberration are shown.

  9. Geometric optics for a coupling model of electromagnetic and gravitational fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Jiliang, E-mail: jljing@hunnu.edu.cn; Chen, Songbai; Pan, Qiyuan

    2016-04-15

    The coupling between the electromagnetic and gravitational fields results in “faster than light” photons, and then the first and third laws of geometric optics are invalid in usual spacetime. By introducing an effective spacetime, we find that the wave vector can be casted into null and then it obeys the geodesic equation, the polarization vector is perpendicular to the rays, and the number of photons is conserved. That is to say, the laws of geometric optics are valid for the modified theory in the effective spacetime. We also show that the focusing theorem of light rays for the modified theorymore » in the effective spacetime can be cast into the usual form.« less

  10. Microfocusing of the FERMI@Elettra FEL beam with a K-B active optics system: Spot size predictions by application of the WISE code

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Svetina, C.; Mahne, N.; Cocco, D.; Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M.; De Ninno, G.; Zeitoun, P.; Dovillaire, G.; Lambert, G.; Boutu, W.; Merdji, H.; Gonzalez, A. I.; Gauthier, D.; Zangrando, M.

    2013-05-01

    FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10-100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens-Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.

  11. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in six case studies located in Austria, Cyprus, Spain, Switzerland and Turkey, using optical data from different sensors and with the purpose to monitor forest with different geometric characteristics. The validation run on Cyprus dataset is reported and commented.

  12. International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.N.

    1990-01-01

    The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less

  13. Physics education through computational tools: the case of geometrical and physical optics

    NASA Astrophysics Data System (ADS)

    Rodríguez, Y.; Santana, A.; Mendoza, L. M.

    2013-09-01

    Recently, with the development of more powerful and accurate computational tools, the inclusion of new didactic materials in the classroom is known to have increased. However, the form in which these materials can be used to enhance the learning process is still under debate. Many different methodologies have been suggested for constructing new relevant curricular material and, among them, just-in-time teaching (JiTT) has arisen as an effective and successful way to improve the content of classes. In this paper, we will show the implemented pedagogic strategies for the courses of geometrical and optical physics for students of optometry. Thus, the use of the GeoGebra software for the geometrical optics class and the employment of new in-house software for the physical optics class created using the high-level programming language Python is shown with the corresponding activities developed for each of these applets.

  14. Geometric metasurface enabling polarization independent beam splitting.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-21

    A polarization independent holographic beam splitter that generates equal-intensity beams based on geometric metasurface is demonstrated. Although conventional geometric metasurfaces have the advantages of working over a broad frequency range and having intuitive design principles, geometric metasurfaces have the limitation that they only work for circular polarization. In this work, Fourier holography is used to overcome this limitation. A perfect overlap resulting from the origin-symmetry of the encoded image enables polarization independent operation of geometric metasurfaces. The designed metasurface beam splitter is experimentally demonstrated by using hydrogenated amorphous silicon, and the device performs consistent beam splitting regardless of incident polarizations as well as wavelengths. Our device can be applied to generate equal-intensity beams for entangled photon light sources in quantum optics, and the design approach provides a way to develop ultra-thin broadband polarization independent components for modern optics.

  15. Comparison of Optic Disc Margin Identified by Color Disc Photography and High-Speed Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Manassakorn, Anita; Ishikawa, Hiroshi; Kim, Jong S.; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Gabriele, Michelle L.; Sung, Kyung Rim; Mumcuoglu, Tarkan; Duker, Jay S.; Fujimoto, James G.; Schuman, Joel S.

    2009-01-01

    Objective To determine the correspondence between optic disc margins evaluated using disc photography (DP) and optical coherence tomography (OCT). Methods From May 1, 2005, through November 10, 2005, 17 healthy volunteers (17 eyes) had raster scans (180 frames, 501 samplings per frame) centered on the optic disc taken with stereo-optic DP and high-speed ultrahigh-resolution OCT (hsUHR-OCT). Two image outputs were derived from the hsUHR-OCT data set: an en face hsUHR-OCT fundus image and a set of 180 frames of cross-sectional images. Three ophthalmologists independently and in a masked, randomized fashion marked the disc margin on the DP, hsUHR-OCT fundus, and cross-sectional images using custom software. Disc size (area and horizontal and vertical diameters) and location of the geometric disc center were compared among the 3 types of images. Results The hsUHR-OCT fundus image definition showed a significantly smaller disc size than the DP definition (P<.001, mixed-effects analysis). The hsUHR-OCT cross-sectional image definition showed a significantly larger disc size than the DP definition (P<.001). The geometric disc center location was similar among the 3 types of images except for the y-coordinate, which was significantly smaller in the hsUHR-OCT fundus images than in the DP images. Conclusion The optic disc margin as defined by hsUHR-OCT was significantly different than the margin defined by DP. PMID:18195219

  16. [The development of a finger joint phantom for the optical simulation of early inflammatory rheumatic changes].

    PubMed

    Prapavat, V; Runge, W; Mans, J; Krause, A; Beuthan, J; Müller, G

    1997-11-01

    In the field of rheumatology, conventional diagnostic methods permit the detection only of advanced stages of the disease, which is at odds with the current clinical demand for the early diagnosis of inflammatory rheumatic diseases. Prompted by current needs, we developed a finger joint phantom that enables the optical and geometrical simulation of an early stage of rheumatoid arthritis (RA). The results presented here form the experimental basis for an evaluation of new RA diagnostic systems based on near infrared light. The early stage of RA is characterised mainly by a vigorous proliferation of the synovial membrane and clouding of the synovial fluid. Using a double-integrating-sphere technique, the absorption and scattering coefficients (mua, mus') are experimentally determined for healthy and pathologically altered synovial fluid and capsule tissue. Using a variable mixture of Intralipid Indian ink and water as a scattering/absorption medium, the optical properties of skin, synovial fluid or capsule can be selected individually. Since the optical and geometrical properties of bone tissue remain constant in early-stage RA, a solid material is used for its simulation. Using the finger joint phantom described herein, the optical properties of joint regions can be adjusted specifically, enabling an evaluation of their effects on an optical signal--for example, during fluorography--and the investigation of these effects for diagnostically useful information. The experimental foundation for the development of a new optical system for the early diagnosis of RA has now been laid.

  17. The single-scattering properties of black carbon aggregates determined from the geometric-optics surface-wave approach and the T-matrix method

    NASA Astrophysics Data System (ADS)

    Takano, Y.; Liou, K. N.; Kahnert, M.; Yang, P.

    2013-08-01

    The single-scattering properties of eight black carbon (BC, soot) fractal aggregates, composed of primary spheres from 7 to 600, computed by the geometric-optics surface-wave (GOS) approach coupled with the Rayleigh-Gans-Debye (RGD) adjustment for size parameters smaller than approximately 2, are compared with those determined from the superposition T-matrix method. We show that under the condition of random orientation, the results from GOS/RGD are in general agreement with those from T-matrix in terms of the extinction and absorption cross-sections, the single-scattering co-albedo, and the asymmetry factor. When compared with the specific absorption (m2/g) measured in the laboratory, we illustrate that using the observed radii of primary spheres ranging from 3.3 to 25 nm, the theoretical values determined from GOS/RGD for primary sphere numbers of 100-600 are within the range of measured values. The GOS approach can be effectively applied to aggregates composed of a large number of primary spheres (e.g., >6000) and large size parameters (≫2) in terms of computational efforts.

  18. A Wafer-Bonded, Floating Element Shear-Stress Sensor Using a Geometric Moire Optical Transduction Technique

    NASA Technical Reports Server (NTRS)

    Horowitz, Stephen; Chen, Tai-An; Chandrasekaran, Venkataraman; Tedjojuwono, Ken; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark

    2004-01-01

    This paper presents a geometric Moir optical-based floating-element shear stress sensor for wind tunnel turbulence measurements. The sensor was fabricated using an aligned wafer-bond/thin-back process producing optical gratings on the backside of a floating element and on the top surface of the support wafer. Measured results indicate a static sensitivity of 0.26 microns/Pa, a resonant frequency of 1.7 kHz, and a noise floor of 6.2 mPa/(square root)Hz.

  19. An Accurate Projector Calibration Method Based on Polynomial Distortion Representation

    PubMed Central

    Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua

    2015-01-01

    In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247

  20. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  1. Nonimaging optics for nonuniform brightness distributions

    NASA Astrophysics Data System (ADS)

    Jenkins, David G.; Winston, Roland

    1995-08-01

    We present a general design method of nonimaging optics that obtains the highest possible concentration for a given absorber shape. This technique, which uses a complimentary edge ray to simplify the geometrical formulism, recovers familiar designs for flat phase space distributions, such as trumpets, and (theta) 1-(theta) 2 concentrators. This method is easy to use and handles diverse boundary conditions, such as reflection, satisfying total internal reflection or design within a material of graded index. Presented is a novel two-stage 2D solar collector with a fixed circular primary mirror and nonimaging secondary. This newly developed secondary gives a 25% improvement over conventional nonimaging concentrators.

  2. Optical gain for the interband optical transition in InAsP/InP quantum well wire in the influence of laser field intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, S.; Peter, A. John, E-mail: a.john.peter@gmail.com

    Intense high frequency laser field induced electronic and optical properties of heavy hole exciton in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire is studied taking into account the geometrical confinement effect. Laser field related exciton binding energies and the optical band gap in the InAs{sub 0.8}P{sub 0.2}/InP quantum well wire are investigated. The optical gain, for the interband optical transition, as a function of photon energy, in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The obtained optical gain in group III-Vmore » narrow quantum wire can be applied for achieving the preferred telecommunication wavelength.« less

  3. Active learning in optics and photonics: Fraunhofer diffraction

    NASA Astrophysics Data System (ADS)

    Ghalila, H.; Ben Lakhdar, Z.; Lahmar, S.; Dhouaidi, Z.; Majdi, Y.

    2014-07-01

    "Active Learning in Optics and Photonics" (ALOP), funded by UNESCO within its Physics Program framework with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE (Society of Photo-Optical Instrumentation Engineers), aimed to helps and promotes a friendly and interactive method in teaching optics using simple and inexpensive equipment. Many workshops were organized since 2005 the year when Z. BenLakhdar, whom is part of the creators of ALOP, proposed this project to STO (Société Tunisienne d'Optique). These workshops address several issues in optics, covering geometrical optics, wave optics, optical communication and they are dedicated to both teachers and students. We focus this lecture on Fraunhofer diffraction emphasizing the facility to achieve this mechanism in classroom, using small laser and operating a slit in a sheet of paper. We accompany this demonstration using mobile phone and numerical modeling to assist in the analysis of the diffraction pattern figure.

  4. On-Ground Processing of Yaogan-24 Remote Sensing Satellite Attitude Data and Verification Using Geometric Field Calibration

    PubMed Central

    Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun

    2016-01-01

    Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite’s on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%. PMID:27483287

  5. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    NASA Astrophysics Data System (ADS)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  6. A Didactic Sequence of Elementary Geometric Optics Informed by History and Philosophy of Science

    ERIC Educational Resources Information Center

    Maurício, Paulo; Valente, Bianor; Chagas, Isabel

    2017-01-01

    The concepts and instruments required for the teaching and learning of geometric optics are introduced in the didactic process without a proper didactic transposition. This claim is secured by the ample evidence of both wide- and deep-rooted alternative concepts on the topic. Didactic transposition is a theory that comes from a reflection on the…

  7. On the simulation and mitigation of anisoplanatic optical turbulence for long range imaging

    NASA Astrophysics Data System (ADS)

    Hardie, Russell C.; LeMaster, Daniel A.

    2017-05-01

    We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an excellent match between the simulation statistics and the theoretical predictions. The simulation tool is also used here to quantitatively evaluate a recently proposed block- matching and Wiener filtering (BMWF) method for turbulence mitigation. In this method block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames are then averaged and processed with a Wiener filter for restoration. A novel aspect of the proposed BMWF method is that the PSF model used for restoration takes into account the level of geometric correction achieved during image registration. This way, the Wiener filter is able fully exploit the reduced blurring achieved by registration. The BMWF method is relatively simple computationally, and yet, has excellent performance in comparison to state-of-the-art benchmark methods.

  8. Automatic low-order aberration correction based on geometrical optics for slab lasers.

    PubMed

    Yu, Xin; Dong, Lizhi; Lai, Boheng; Yang, Ping; Liu, Yong; Kong, Qingfeng; Yang, Kangjian; Tang, Guomao; Xu, Bing

    2017-02-20

    In this paper, we present a method based on geometry optics to simultaneously correct low-order aberrations and reshape the beams of slab lasers. A coaxial optical system with three lenses is adapted. The positions of the three lenses are directly calculated based on the beam parameters detected by wavefront sensors. The initial sizes of the input beams are 1.8  mm×11  mm, and peak-to-valley (PV) values of the wavefront range up to several tens of microns. After automatic correction, the dimensions may reach nearly 22  mm×22  mm as expected, and PV values of the wavefront are less than 2 μm. The effectiveness and precision of this method are verified with experiments.

  9. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  10. Optimization of fiber-optic evanescent wave spectroscopy: a Monte Carlo approach.

    PubMed

    Mann, M P; Mark, S; Raichlin, Y; Katzir, A; Mordechai, S

    2009-09-01

    The absorbance of the evanescent waves of infrared radiation transmitted through an optical fiber depends on the geometry of the fiber in addition to the wavelength of the electromagnetic radiation. The signal can thus be enhanced by flattening the midsection of the fiber. While the dependence of the absorbance on the thickness of the midsection has already been studied and experimented upon, we demonstrate that similar results are obtained using Monte Carlo methods based simply on geometrical optics, given the dimensions of the fiber and the power distribution of the fired rays. The optimization can be extended to fibers with more complex geometries of the sensor.

  11. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces.

    PubMed

    Hyde, M W; Schmidt, J D; Havrilla, M J

    2009-11-23

    A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.

  12. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Kamali, Seyedeh Mahsa; Arbabi, Amir; Arbabi, Ehsan; Horie, Yu; Faraon, Andrei

    2016-05-01

    Physical geometry and optical properties of objects are correlated: cylinders focus light to a line, spheres to a point and arbitrarily shaped objects introduce optical aberrations. Multi-functional components with decoupled geometrical form and optical function are needed when specific optical functionalities must be provided while the shapes are dictated by other considerations like ergonomics, aerodynamics or aesthetics. Here we demonstrate an approach for decoupling optical properties of objects from their physical shape using thin and flexible dielectric metasurfaces which conform to objects' surface and change their optical properties. The conformal metasurfaces are composed of silicon nano-posts embedded in a polymer substrate that locally modify near-infrared (λ=915 nm) optical wavefronts. As proof of concept, we show that cylindrical lenses covered with metasurfaces can be transformed to function as aspherical lenses focusing light to a point. The conformal metasurface concept is highly versatile for developing arbitrarily shaped multi-functional optical devices.

  13. Diffractive flat panel solar concentrators of a novel design.

    PubMed

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

  14. Enhancing microscopic cascading contributions to higher-order nonlinear-optical responses through forced geometric constraints

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael

    2012-10-01

    We review a model that was developed to take into account all possible microscopic cascading schemes in a single species system out to the fifth order using a self-consistent field approach. This model was designed to study the effects of boundaries in mesoscopic systems with constrained boundaries. These geometric constraints on the macroscopic structure show how the higher-ordered susceptibilities are manipulated by increasing the surface to volume ratio, while the microscopic structure influences the local field from all other molecules in the system. In addition to the review, we discuss methods of modeling real systems of molecules, where efforts are currently underway.

  15. Experimental Analysis of Diffraction Effects from a Segmented MEMS Deformable Mirror for a Closed Loop Adaptive Optics System

    DTIC Science & Technology

    2010-06-01

    different approaches were used to model MEMS OM as a grating in Zemax software. First, a 2D grating was directly modeled as a combination of two ID...method of modeling ~IEMS DM in Zemax was implemented by combining two ID gratings. Due to the fact that ZEl\\’IAX allows to easily use ID physical...optics shows thc far field diffractioll pattcrn, which in Zemax geometrical model shows up as distinct spots. each one corresponding to a specific

  16. Spatial super-resolution of colored images by micro mirrors

    NASA Astrophysics Data System (ADS)

    Dahan, Daniel; Yaacobi, Ami; Pinsky, Ephraim; Zalevsky, Zeev

    2018-06-01

    In this paper, we present two methods of dealing with the geometric resolution limit of color imaging sensors. It is possible to overcome the pixel size limit by adding a digital micro-mirror device component on the intermediate image plane of an optical system, and adapting its pattern in a computerized manner before sampling each frame. The full RGB image can be reconstructed from the Bayer camera by building a dedicated optical design, or by adjusting the demosaicing process to the special format of the enhanced image.

  17. Fresnel Lens

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Scott, Steve; Lamb, David; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Fresnel lenses span the full range of sizes from lens a few micrometers in diameter to lens several meters in diameter. These lenses are utilized in various fields including optical communication, theatrical lighting, office equipment, video entertainment systems, solar concentrators, and scientific research instruments. These lenses function either as diffractive or refractive optical elements depending on the geometrical feature size of the lens. The basic functions of these lenses is described followed by an overview of fabrication methods. A summary of applications is then provided illustrating the rich variety of applications for which fresnel lenses may be designed to fulfill.

  18. Thickness Measurement, Rate Control And Automation In Thin Film Coating Technology

    NASA Astrophysics Data System (ADS)

    Pulker, H. K.

    1983-11-01

    There are many processes known for fabricating thin films/1, 2.Among them the group of physical vapor deposition processes comprising evaporation, sputtering and ion plating has received special attention.Especially evaporation but also the other PVD techniques are widely used to deposit various single and multilayer coatings for optical and electrical thin film applications/3,4/.A large number of parameters is important in obtaining the required film properties in a reproducible manner when depositing thin films by such processes.Amongst the many are the film thickness, the condensation rate,the substrate temperature,as well as the qualitative and the quantitative composition of the residual gas of primary importance.First of all the film thickness is a dimension which enters in practically all equations used to characterize a thin film. However,when discussing film thickness,definitions are required since there one has to distinguish between various types of thicknesses e.g.geometrical thickness,mass thickness and optical thickness.The geometrical thickness,often also called physical thickness,is defined as the step height between the substrate surface and the film surface.This step height multiplied by the refractive index of the film is termed the optical thickness and is expressed generally in integer multiples of fractional parts of a desired wavelength.The mass thickness finally is defined as the film mass per unit area obtained by weighing.Knowing the density and the optical data of a thin film its mass thickness can be converted into the corresponding geometrical as well as optical thickness.However,with ultrathin films ranging between a few and several atomic or molecular "layers"the concept of a film thickness may become senseless since often no closed film exists of such minor deposits.Although film thickness is a length,the measurement of it can,obviously,not be accomplished with conventional methods for length determinations but requires special methods.The great efforts made to overcome this problem led to a remarkable number of different,often highly sophisticated film thickness measuring methods reviewed in various articles such ase.g./5,6/.With some of the methods,it is possible to carry out measurement under vacuum during and after the film formation other determinations have to be undertaken outside the deposition chamber only after the film has been produced.Many of the methods cannot be employed for all film substances,and there are varying limits as regards the range of thickness and measuring accuracy.Furthermore, with these methods the film to be measured is often specially prepared or dissolved during measurement and therefore becomes useless for additional investigations or applications.If only those methods which can be employed during the film deposition are considered,then the very large number of methods is considerably reduced.Insitu measurements,however,are highly desired since many basic investigations and practically all industrial applications require a precise knowledge of thefilm thickness at any instant to enable termination of the deposition process at the predetermined right moment.Apartfrom few exceptions in practical film deposition only optical measuring units andmass determination monitors are used.

  19. Optical frequency selective surface design using a GPU accelerated finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Ashbach, Jason A.

    Periodic metallodielectric frequency selective surface (FSS) designs have historically seen widespread use in the microwave and radio frequency spectra. By scaling the dimensions of an FSS unit cell for use in a nano-fabrication process, these concepts have recently been adapted for use in optical applications as well. While early optical designs have been limited to wellunderstood geometries or optimized pixelated screens, nano-fabrication, lithographic and interconnect technology has progressed to a point where it is possible to fabricate metallic screens of arbitrary geometries featuring curvilinear or even three-dimensional characteristics that are only tens of nanometers wide. In order to design an FSS featuring such characteristics, it is important to have a robust numerical solver that features triangular elements in purely two-dimensional geometries and prismatic or tetrahedral elements in three-dimensional geometries. In this dissertation, a periodic finite element method code has been developed which features prismatic elements whose top and bottom boundaries are truncated by numerical integration of the boundary integral as opposed to an approximate representation found in a perfectly matched layer. However, since no exact solution exists for the calculation of triangular elements in a boundary integral, this process can be time consuming. To address this, these calculations were optimized for parallelization such that they may be done on a graphics processor, which provides a large increase in computational speed. Additionally, a simple geometrical representation using a Bezier surface is presented which provides generality with few variables. With a fast numerical solver coupled with a lowvariable geometric representation, a heuristic optimization algorithm has been used to develop several optical designs such as an absorber, a circular polarization filter, a transparent conductive surface and an enhanced, optical modulator.

  20. Local motion compensation in image sequences degraded by atmospheric turbulence: a comparative analysis of optical flow vs. block matching methods

    NASA Astrophysics Data System (ADS)

    Huebner, Claudia S.

    2016-10-01

    As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).

  1. Full vector modal analysis of microstructured optical fiber propagation characteristics

    NASA Astrophysics Data System (ADS)

    Zghal, Mourad; Bahloul, Faouzi; Chatta, Rihab; Attia, Rabah; Pagnoux, Dominique; Roy, Philippe; Melin, Gilles; Gasca, Laurent

    2004-10-01

    Microstructured optical fibers (MOFs) are optical fibers having a periodic air-silica cross-section. The air holes extend along the axis of the fiber for its entire length. The core of the fiber is formed by a missing hole in the periodic structure. Remarkable properties of MOFs have recently been reported. This paper presents new work in the modeling of the propagation characteristics of MOFs using the Finite Element Method (FEM) and the Galerkin Method (GM). This efficient electromagnetic simulation package provides a vectorial description of the electromagnetic fields and of the associated effective index. This information includes accurate determination of the spectral extent of the modes, cutoff properties and mode-field distributions. We show that FEM is well adapted for describing the fields at abrupt transitions of the refractive index while GM has the advantage to accurately analyze MOFs of significant complexity using only modest computational resources. This presentation will focus on the specific techniques required to determine single mode operation, dispersion properties and effective area through careful choice of the geometrical parameters of the fibers. We demonstrate that with suitable geometrical parameters, the zero dispersion wavelength can be shifted. This tool can also provide design criteria for fabricating MOFs and a corresponding map of effective area. This approach is validated by comparison with experimental results and measurements on actual MOFs fabricated at IRCOM and at Alcatel Research and Innovation Center.

  2. Focal plane AIT sequence: evolution from HRG-Spot 5 to Pleiades HR

    NASA Astrophysics Data System (ADS)

    Le Goff, Roland; Pranyies, Pascal; Toubhans, Isabelle

    2017-11-01

    Optical and geometrical image qualities of Focal Planes, for "push-broom" high resolution remote sensing satellites, require the implementation of specific means and methods for the AIT sequence. Indeed the geometric performances of the focal plane mainly axial focusing and transverse registration, are duly obtained on the basis of adjustment, setting and measurement of optical and CCD components with an accuracy of a few microns. Since the end of the 1970s, EADS-SODERN has developed a series of detection units for earth observation instruments like SPOT and Helios. And EADS-SODERN is now responsible for the development of the Pleiades High Resolution Focal Plane assembly. This paper presents the AIT sequences. We introduce all the efforts, innovative solutions and improvements made on the assembly facilities to match the technical evolutions and breakthrough of the Pleiades HR FP concept in comparison with the previous High Resolution Geometric SPOT 5 Focal Plane. The main evolution drivers are the implementation of strip filters and the realization of 400 mm continuous retinas. For Pleiades HR AIT sequence, three specific integration and measuring benches, corresponding with the different assembly stages, are used: a 3-D non-contact measurement machine for the assembly of detection module, a 3-D measurement machine for mirror integration on the main Focal Plane SiC structure, and a 3-D geometric coordinates control bench to focus detection module lines and to ensure they are well registered together.

  3. A generalized method for determining radiation patterns of aperture antennas and its application to reflector antennas. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Paknys, J. R.

    1982-01-01

    The reflector antenna may be thought of as an aperture antenna. The classical solution for the radiation pattern of such an antenna is found by the aperture integration (AI) method. Success with this method depends on how accurately the aperture currents are known beforehand. In the past, geometrical optics (GO) has been employed to find the aperture currents. This approximation is suitable for calculating the main beam and possibly the first few sidelobes. A better approximation is to use aperture currents calculated from the geometrical theory of diffraction (GTD). Integration of the GTD currents over and extended aperture yields more accurate results for the radiation pattern. This approach is useful when conventional AI and GTD solutions have no common region of validity. This problem arises in reflector antennas. Two dimensional models of parabolic reflectors are studied; however, the techniques discussed can be applied to any aperture antenna.

  4. A method for the geometric and densitometric standardization of intraoral radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, J.E.; Judy, P.F.; Goodson, J.M.

    1983-07-01

    The interpretation of dental radiographs for the diagnosis of periodontal disease conditions poses several difficulties. These include the inability to adequately reproduce the projection geometry and optical density of the exposures. In order to improve the ability to extract accurate quantitative information from a radiographic survey of periodontal status, a method was developed which provided for consistent reproduction of both geometric and densitometric exposure parameters. This technique employed vertical bitewing projections in holders customized to individual segments of the dentition. A copper stepwedge was designed to provide densitometric standardization, and wire markers were included to permit measurement of angular variation.more » In a series of 53 paired radiographs, measurement of alveolar crest heights was found to be reproducible within approximately 0.1 mm. This method provided a full mouth radiographic survey using seven films, each complete with internal standards suitable for computer-based image processing.« less

  5. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOEpatents

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  6. Primary chromatic aberration elimination via optimization work with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao

    2008-09-01

    Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.

  7. Analysis and testing of a new method for drop size measurement using laser scatter interferometry

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Research was conducted on a laser light scatter detection method for measuring the size and velocity of spherical particles. The method is based upon the measurement of the interference fringe pattern produced by spheres passing through the intersection of two laser beams. A theoretical analysis of the method was carried out using the geometrical optics theory. Experimental verification of the theory was obtained by using monodisperse droplet streams. Several optical configurations were tested to identify all of the parametric effects upon the size measurements. Both off-axis forward and backscatter light detection were utilized. Simulated spray environments and fuel spray nozzles were used in the evaluation of the method. The measurements of the monodisperse drops showed complete agreement with the theoretical predictions. The method was demonstrated to be independent of the beam intensity and extinction resulting from the surrounding drops. Signal processing concepts were considered and a method was selected for development.

  8. A method of determining the refractive index of a prismatic lens.

    PubMed

    Buckley, John G

    2010-01-01

    A new method of measuring lens refractive index requiring immersion in solution and measuring lens power in air and in solution is extended. Prompted by a clinical need, the new method using lens power can be extended by applying it to prismatic power as well. This article provides a theoretical basis explaining why this can be done. The prismatic power of a prism is derived from first principles. Snell's Law and geometrical optics provide the framework for demonstrating the validity of the resulting formula. The sameness in formula derived using lens power or prism is shown, both from a paraxial and non-paraxial optics perspective. The effect of varying lens material and amount of prism is considered. The prismatic method described provides a useful alternative method of determining the refractive index of any lens. In some cases, it may be the only method available. Practitioners should consider when each method will provide optimal results.

  9. Photometric correction for an optical CCD-based system based on the sparsity of an eight-neighborhood gray gradient.

    PubMed

    Zhang, Yuzhong; Zhang, Yan

    2016-07-01

    In an optical measurement and analysis system based on a CCD, due to the existence of optical vignetting and natural vignetting, photometric distortion, in which the intensity falls off away from the image center, affects the subsequent processing and measuring precision severely. To deal with this problem, an easy and straightforward method used for photometric distortion correction is presented in this paper. This method introduces a simple polynomial fitting model of the photometric distortion function and employs a particle swarm optimization algorithm to get these model parameters by means of a minimizing eight-neighborhood gray gradient. Compared with conventional calibration methods, this method can obtain the profile information of photometric distortion from only a single common image captured by the optical CCD-based system, with no need for a uniform luminance area source used as a standard reference source and relevant optical and geometric parameters in advance. To illustrate the applicability of this method, numerical simulations and photometric distortions with different lens parameters are evaluated using this method in this paper. Moreover, the application example of temperature field correction for casting billets also demonstrates the effectiveness of this method. The experimental results show that the proposed method is able to achieve the maximum absolute error for vignetting estimation of 0.0765 and the relative error for vignetting estimation from different background images of 3.86%.

  10. Optics. Observation of optical polarization Möbius strips.

    PubMed

    Bauer, Thomas; Banzer, Peter; Karimi, Ebrahim; Orlov, Sergej; Rubano, Andrea; Marrucci, Lorenzo; Santamato, Enrico; Boyd, Robert W; Leuchs, Gerd

    2015-02-27

    Möbius strips are three-dimensional geometrical structures, fascinating for their peculiar property of being surfaces with only one "side"—or, more technically, being "nonorientable" surfaces. Despite being easily realized artificially, the spontaneous emergence of these structures in nature is exceedingly rare. Here, we generate Möbius strips of optical polarization by tightly focusing the light beam emerging from a q-plate, a liquid crystal device that modifies the polarization of light in a space-variant manner. Using a recently developed method for the three-dimensional nanotomography of optical vector fields, we fully reconstruct the light polarization structure in the focal region, confirming the appearance of Möbius polarization structures. The preparation of such structured light modes may be important for complex light beam engineering and optical micro- and nanofabrication. Copyright © 2015, American Association for the Advancement of Science.

  11. Optical assessment of nonimaging concentrators.

    PubMed

    Timinger, A; Kribus, A; Ries, H; Smith, T; Walther, M

    2000-11-01

    An optical measurement method for nonimaging radiation concentrators is proposed. A Lambertian light source is placed in the exit aperture of the concentrator. Looking into the concentrator's entrance aperture from a remote position, one can photograph the transmission patterns. The patterns show the transmission of radiation through the concentrator with the full resolution of the four-dimensional phase space of geometric optics. By matching ray-tracing simulations to the measurement, one can achieve detailed and accurate information about the geometry of the concentrator. This is a remote, noncontact measurement and can be performed in situ for installed concentrators. Additional information regarding small-scale reflector waviness and surface reflectivity can also be obtained from the same measurement with additional analysis.

  12. Fabrication technology

    NASA Astrophysics Data System (ADS)

    1988-05-01

    Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.

  13. Microcomputers in an Undergraduate Optics Laboratory.

    ERIC Educational Resources Information Center

    Tomaselli, V. P.; And Others

    1990-01-01

    Describes a junior-level, one-year optics laboratory course for physics and engineering students. The course offers a range of experiments from conventional geometric optics to contemporary spatial filtering and fiber optics. Presents an example of an experiment with pictures. (Author/YP)

  14. Eyeglasses in the Classroom

    ERIC Educational Resources Information Center

    Huang, Ding-wei; Huang, Wei-neng; Tseng, Hsiang-chi

    2010-01-01

    Optical phenomena can be divided into two categories: ray optics and wave optics. The former is also known as "geometrical optics", and examples are reflection and refraction, while the latter is also known as "physical optics" and includes interference and diffraction. In most textbooks, these two topics are presented in…

  15. Three-dimensional ray tracing for refractive correction of human eye ametropies

    NASA Astrophysics Data System (ADS)

    Jimenez-Hernandez, J. A.; Diaz-Gonzalez, G.; Trujillo-Romero, F.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.; Santiago-Alvarado, A.

    2016-09-01

    Ametropies of the human eye, are refractive defects hampering the correct imaging on the retina. The most common ways to correct them is by means of spectacles, contact lenses, and modern methods as laser surgery. However, in any case it is very important to identify the ametropia grade for designing the optimum correction action. In the case of laser surgery, it is necessary to define a new shape of the cornea in order to obtain the wanted refractive correction. Therefore, a computational tool to calculate the focal length of the optical system of the eye versus variations on its geometrical parameters is required. Additionally, a clear and understandable visualization of the evaluation process is desirable. In this work, a model of the human eye based on geometrical optics principles is presented. Simulations of light rays coming from a punctual source at six meter from the cornea are shown. We perform a ray-tracing in three dimensions in order to visualize the focusing regions and estimate the power of the optical system. The common parameters of ametropies can be easily modified and analyzed in the simulation by an intuitive graphic user interface.

  16. Modeling the focusing efficiency of lobster-eye optics for image shifting depending on the soft x-ray wavelength.

    PubMed

    Su, Luning; Li, Wei; Wu, Mingxuan; Su, Yun; Guo, Chongling; Ruan, Ningjuan; Yang, Bingxin; Yan, Feng

    2017-08-01

    Lobster-eye optics is widely applied to space x-ray detection missions and x-ray security checks for its wide field of view and low weight. This paper presents a theoretical model to obtain spatial distribution of focusing efficiency based on lobster-eye optics in a soft x-ray wavelength. The calculations reveal the competition mechanism of contributions to the focusing efficiency between the geometrical parameters of lobster-eye optics and the reflectivity of the iridium film. In addition, the focusing efficiency image depending on x-ray wavelengths further explains the influence of different geometrical parameters of lobster-eye optics and different soft x-ray wavelengths on focusing efficiency. These results could be beneficial to optimize parameters of lobster-eye optics in order to realize maximum focusing efficiency.

  17. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    PubMed

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  18. Predicting silicon pore optics

    NASA Astrophysics Data System (ADS)

    Vacanti, Giuseppe; Barriére, Nicolas; Bavdaz, Marcos; Chatbi, Abdelhakim; Collon, Maximilien; Dekker, Danielle; Girou, David; Günther, Ramses; van der Hoeven, Roy; Landgraf, Boris; Sforzini, Jessica; Vervest, Mark; Wille, Eric

    2017-09-01

    Continuing improvement of Silicon Pore Optics (SPO) calls for regular extension and validation of the tools used to model and predict their X-ray performance. In this paper we present an updated geometrical model for the SPO optics and describe how we make use of the surface metrology collected during each of the SPO manufacturing runs. The new geometrical model affords the user a finer degree of control on the mechanical details of the SPO stacks, while a standard interface has been developed to make use of any type of metrology that can return changes in the local surface normal of the reflecting surfaces. Comparisons between the predicted and actual performance of samples optics will be shown and discussed.

  19. Physical optics-based diffraction coefficient for a wedge with different face impedances.

    PubMed

    Umul, Yusuf Ziya

    2018-03-20

    A new diffraction field expression is introduced with the aid of the modified theory of physical optics for a wedge with different face impedances. First, the scattered geometrical optics fields are determined when both faces of the wedge are illuminated by the incident wave. The geometrical optics waves are then expressed in terms of the sum of two different fields that occur for different impedance wedges. The diffracted fields are determined for the two cases separately, and the total diffracted field is obtained as a sum of these waves. Lastly, the uniform field expressions are obtained, and the resultant fields are numerically compared with the solution of Maliuzhinets.

  20. Analysis methods for polarization state and energy transmission of rays propagating in optical systems

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Qiangsheng; Cen, Zhaofeng; Li, Xiaotong

    2010-11-01

    Polarization state of only completely polarized light can be analyzed by some software, ZEMAX for example. Based on principles of geometrical optics, novel descriptions of the light with different polarization state are provided in this paper. Differential calculus is well used for saving the polarization state and amplitudes of sampling rays when ray tracing. The polarization state changes are analyzed in terms of several typical circumstances, such as Brewster incidence, total reflection. Natural light and partially polarized light are discussed as an important aspect. Further more, a computing method including composition and decomposition of sampling rays at each surface is also set up to analyze the energy transmission of the rays for optical systems. Adopting these analysis methods mentioned, not only the polarization state changes of the incident rays can be obtained, but also the energy distributions can be calculated. Since the energy distributions are obtained, the surface with the most energy loss will be found in the optical system. The energy value and polarization state of light reaching the image surface will also be available. These analysis methods are very helpful for designing or analyzing optical systems, such as analyzing the energy of stray light in high power optical systems, researching the influences of optical surfaces to rays' polarization state in polarization imaging systems and so on.

  1. Inexpensive demonstration set for teaching geometrical optics made by 3D printer

    NASA Astrophysics Data System (ADS)

    Havlíček, Karel; Ryston, Matěj

    2018-03-01

    Good sets for teaching geometric optics are relatively expensive to buy and difficult to make on your own, which often forces teachers to use less than ideal instruments and methods. This is a great shame, since this is a visually appealing topic that can motivate students. For this reason, we have designed a set that is relatively cheap, easy to use and can therefore (in some cases) remedy this situation. Our set is manufactured using 3D printing technology, which limits its users to those that have access to it; however, 3D printing technology is becoming more and more accessible every day (even in schools). On the other hand, 3D printing allows us to let the machines do the majority of the manufacturing work, making the process of building the set almost as simple as ‘download and press print’. This article presents this set, what it consists of, how it is done and where can you find all the necessary files and instructions.

  2. Parallel Arrays of Geometric Nanowells for Assembling Curtains of DNA with Controlled Lateral Dispersion

    PubMed Central

    Visnapuu, Mari-Liis; Fazio, Teresa; Wind, Shalom; Greene, Eric C.

    2009-01-01

    The analysis of individual molecules is evolving into an important tool for biological research, and presents conceptually new ways of approaching experimental design strategies. However, more robust methods are required if these technologies are to be made broadly available to the biological research community. To help achieve this goal we have combined nanofabrication techniques with single-molecule optical microscopy for assembling and visualizing curtains comprised of thousands of individual DNA molecules organized at engineered diffusion barriers on a lipid bilayer-coated surface. Here we present an important extension of this technology that implements geometric barrier patterns comprised of thousands of nanoscale wells that can be loaded with single molecules of DNA. We show that these geometric nanowells can be used to precisely control the lateral distribution of the individual DNA molecules within curtains assembled along the edges of the engineered barrier patterns. The individual molecules making up the DNA curtain can be separated from one another by a user-defined distance dictated by the dimensions of the nanowells. We demonstrate the broader utility of these patterned DNA curtains in a novel, real time restriction assay that we refer to as dynamic optical restriction mapping, which can be used to rapidly identify entire sets of cleavage sites within a large DNA molecule. PMID:18788761

  3. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces

    DOE PAGES

    Kamali, Seyedeh Mahsa; Arbabi, Amir; Arbabi, Ehsan; ...

    2016-05-19

    Physical geometry and optical properties of objects are correlated: cylinders focus light to a line, spheres to a point and arbitrarily shaped objects introduce optical aberrations. Multifunctional components with decoupled geometrical form and optical function are needed when specific optical functionalities must be provided while the shapes are dictated by other considerations like ergonomics, aerodynamics or aesthetics. Here we demonstrate an approach for decoupling optical properties of objects from their physical shape using thin and flexible dielectric metasurfaces which conform to objects' surface and change their optical properties. The conformal metasurfaces are composed of silicon nano-posts embedded in a polymermore » substrate that locally modify near-infrared (λ = 915 nm) optical wavefronts. As proof of concept, we show that cylindrical lenses covered with metasurfaces can be transformed to function as aspherical lenses focusing light to a point. Lastly, the conformal metasurface concept is highly versatile for developing arbitrarily shaped multi-functional optical devices.« less

  4. Controlling geometric phase optically in a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Yale, Christopher G.

    Geometric phase, or Berry phase, is an intriguing quantum mechanical phenomenon that arises from the cyclic evolution of a quantum state. Unlike dynamical phases, which rely on the time and energetics of the interaction, the geometric phase is determined solely by the geometry of the path travelled in parameter space. As such, it is robust to certain types of noise that preserve the area enclosed by the path, and shows promise for the development of fault-tolerant logic gates. Here, we demonstrate the optical control of geometric phase within a solid-state spin qubit, the nitrogen-vacancy center in diamond. Using stimulated Raman adiabatic passage (STIRAP), we evolve a coherent dark state along `tangerine slice' trajectories on the Bloch sphere and probe these paths through time-resolved state tomography. We then measure the accumulated geometric phase through phase reference to a third ground spin state. In addition, we examine the limits of this control due to adiabatic breakdown as well as the longer timescale effect of far-detuned optical fields. Finally, we intentionally introduce noise into the experimental control parameters, and measure the distributions of the resulting phases to probe the resilience of the phase to differing types of noise. We also examine this robustness as a function of traversal time as well as the noise amplitude. Through these studies, we demonstrate that geometric phase is a promising route toward fault-tolerant quantum information processing. This work is supported by the AFOSR, the NSF, and the German Research Foundation.

  5. Homogenous isotropic invisible cloak based on geometrical optics.

    PubMed

    Sun, Jingbo; Zhou, Ji; Kang, Lei

    2008-10-27

    Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.

  6. Experimentally validated modification to Cook-Torrance BRDF model for improved accuracy

    NASA Astrophysics Data System (ADS)

    Butler, Samuel D.; Ethridge, James A.; Nauyoks, Stephen E.; Marciniak, Michael A.

    2017-09-01

    The BRDF describes optical scatter off realistic surfaces. The microfacet BRDF model assumes geometric optics but is computationally simple compared to wave optics models. In this work, MERL BRDF data is fitted to the original Cook-Torrance microfacet model, and a modified Cook-Torrance model using the polarization factor in place of the mathematically problematic cross section conversion and geometric attenuation terms. The results provide experimental evidence that this modified Cook-Torrance model leads to improved fits, particularly for large incident and scattered angles. These results are expected to lead to more accurate BRDF modeling for remote sensing.

  7. T-matrix method in plasmonics: An overview

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Nikolai G.

    2013-07-01

    Optical properties of isolated and coupled plasmonic nanoparticles (NPs) are of great interest for many applications in nanophotonics, nanobiotechnology, and nanomedicine owing to rapid progress in fabrication, characterization, and surface functionalization technologies. To simulate optical responses from plasmonic nanostructures, various electromagnetic analytical and numerical methods have been adapted, tested, and used during the past two decades. Currently, the most popular numerical techniques are those that do not suffer from geometrical and composition limitations, e.g., the discrete dipole approximation (DDA), the boundary (finite) element method (BEM, FEM), the finite difference time domain method (FDTDM), and others. However, the T-matrix method still has its own niche in plasmonic science because of its great numerical efficiency, especially for systems with randomly oriented particles and clusters. In this review, I consider the application of the T-matrix method to various plasmonic problems, including dipolar, multipolar, and anisotropic properties of metal NPs; sensing applications; surface enhanced Raman scattering; optics of 1D-3D nanoparticle assemblies; plasmonic particles and clusters near and on substrates; and manipulation of plasmonic NPs with laser tweezers.

  8. Probing interactions of thermal Sr Rydberg atoms using simultaneous optical and ion detection

    NASA Astrophysics Data System (ADS)

    Hanley, Ryan K.; Bounds, Alistair D.; Huillery, Paul; Keegan, Niamh C.; Faoro, Riccardo; Bridge, Elizabeth M.; Weatherill, Kevin J.; Jones, Matthew P. A.

    2017-06-01

    We demonstrate a method for probing interaction effects in a thermal beam of strontium atoms using simultaneous measurements of Rydberg EIT and spontaneously created ions or electrons. We present a Doppler-averaged optical Bloch equation model that reproduces the optical signals and allows us to connect the optical coherences and the populations. We use this to determine that the spontaneous ionization process in our system occurs due to collisions between Rydberg and ground state atoms in the EIT regime. We measure the cross section of this process to be 0.6+/- 0.2 {σ }{geo}, where {σ }{geo} is the geometrical cross section of the Rydberg atom. This result adds complementary insight to a range of recent studies of interacting thermal Rydberg ensembles.

  9. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yidong, E-mail: yidongyang@med.miami.edu; Wang, Ken Kang-Hsin; Wong, John W.

    2015-04-15

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is tomore » develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.« less

  10. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    PubMed Central

    Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.; Wong, John W.

    2015-01-01

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems. PMID:25832060

  11. ZY3-02 Laser Altimeter Footprint Geolocation Prediction

    PubMed Central

    Xie, Junfeng; Tang, Xinming; Mo, Fan; Li, Guoyuan; Zhu, Guangbin; Wang, Zhenming; Fu, Xingke; Gao, Xiaoming; Dou, Xianhui

    2017-01-01

    Successfully launched on 30 May 2016, ZY3-02 is the first Chinese surveying and mapping satellite equipped with a lightweight laser altimeter. Calibration is necessary before the laser altimeter becomes operational. Laser footprint location prediction is the first step in calibration that is based on ground infrared detectors, and it is difficult because the sample frequency of the ZY3-02 laser altimeter is 2 Hz, and the distance between two adjacent laser footprints is about 3.5 km. In this paper, we build an on-orbit rigorous geometric prediction model referenced to the rigorous geometric model of optical remote sensing satellites. The model includes three kinds of data that must be predicted: pointing angle, orbit parameters, and attitude angles. The proposed method is verified by a ZY3-02 laser altimeter on-orbit geometric calibration test. Five laser footprint prediction experiments are conducted based on the model, and the laser footprint prediction accuracy is better than 150 m on the ground. The effectiveness and accuracy of the on-orbit rigorous geometric prediction model are confirmed by the test results. The geolocation is predicted precisely by the proposed method, and this will give a reference to the geolocation prediction of future land laser detectors in other laser altimeter calibration test. PMID:28934160

  12. ZY3-02 Laser Altimeter Footprint Geolocation Prediction.

    PubMed

    Xie, Junfeng; Tang, Xinming; Mo, Fan; Li, Guoyuan; Zhu, Guangbin; Wang, Zhenming; Fu, Xingke; Gao, Xiaoming; Dou, Xianhui

    2017-09-21

    Successfully launched on 30 May 2016, ZY3-02 is the first Chinese surveying and mapping satellite equipped with a lightweight laser altimeter. Calibration is necessary before the laser altimeter becomes operational. Laser footprint location prediction is the first step in calibration that is based on ground infrared detectors, and it is difficult because the sample frequency of the ZY3-02 laser altimeter is 2 Hz, and the distance between two adjacent laser footprints is about 3.5 km. In this paper, we build an on-orbit rigorous geometric prediction model referenced to the rigorous geometric model of optical remote sensing satellites. The model includes three kinds of data that must be predicted: pointing angle, orbit parameters, and attitude angles. The proposed method is verified by a ZY3-02 laser altimeter on-orbit geometric calibration test. Five laser footprint prediction experiments are conducted based on the model, and the laser footprint prediction accuracy is better than 150 m on the ground. The effectiveness and accuracy of the on-orbit rigorous geometric prediction model are confirmed by the test results. The geolocation is predicted precisely by the proposed method, and this will give a reference to the geolocation prediction of future land laser detectors in other laser altimeter calibration test.

  13. Spin and wavelength multiplexed nonlinear metasurface holography

    NASA Astrophysics Data System (ADS)

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  14. Spin and wavelength multiplexed nonlinear metasurface holography

    PubMed Central

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-01-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam–Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption. PMID:27306147

  15. Light distribution in diffractive multifocal optics and its optimization.

    PubMed

    Portney, Valdemar

    2011-11-01

    To expand a geometrical model of diffraction efficiency and its interpretation to the multifocal optic and to introduce formulas for analysis of far and near light distribution and their application to multifocal intraocular lenses (IOLs) and to diffraction efficiency optimization. Medical device consulting firm, Newport Coast, California, USA. Experimental study. Application of a geometrical model to the kinoform (single focus diffractive optical element) was expanded to a multifocal optic to produce analytical definitions of light split between far and near images and light loss to other diffraction orders. The geometrical model gave a simple interpretation of light split in a diffractive multifocal IOL. An analytical definition of light split between far, near, and light loss was introduced as curve fitting formulas. Several examples of application to common multifocal diffractive IOLs were developed; for example, to light-split change with wavelength. The analytical definition of diffraction efficiency may assist in optimization of multifocal diffractive optics that minimize light loss. Formulas for analysis of light split between different foci of multifocal diffractive IOLs are useful in interpreting diffraction efficiency dependence on physical characteristics, such as blaze heights of the diffractive grooves and wavelength of light, as well as for optimizing multifocal diffractive optics. Disclosure is found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Model of the vertical structure of the optical parameters of the Neptune atmosphere.

    NASA Astrophysics Data System (ADS)

    Morozhenko, A. V.

    Analyzes the wavelength dependence of the geometric albedo of Neptune's disk and estimates some parameters of the planet's atmosphere by the method based on the determination of deviations of the vertical structure of the cloud layer from the homogeneity condition. The ratio between the methane and gas scale heights is found to be about 0.4. For the upper atmosphere, components of methane, aerosol, the mean geometric radius of particles, the turbulent mixing coefficient are determined. Two solutions were found for deeper atmospheric layers. The first one suggests a rather dense cloud; in the second solution the lower cloud layer is an extension of the upper aerosol layer.

  17. An analytical method for predicting the geometrical and optical properties of the human lens under accommodation

    PubMed Central

    Sheil, Conor J.; Bahrami, Mehdi; Goncharov, Alexander V.

    2014-01-01

    We present an analytical method to describe the accommodative changes in the human crystalline lens. The method is based on the geometry-invariant lens model, in which the gradient-index (GRIN) iso-indicial contours are coupled to the external shape. This feature ensures that any given number of iso-indicial contours does not change with accommodation, which preserves the optical integrity of the GRIN structure. The coupling also enables us to define the GRIN structure if the radii and asphericities of the external lens surfaces are known. As an example, the accommodative changes in lenticular radii and central thickness were taken from the literature, while the asphericities of the external surfaces were derived analytically by adhering to the basic physical conditions of constant lens volume and its axial position. The resulting changes in lens geometry are consistent with experimental data, and the optical properties are in line with expected values for optical power and spherical aberration. The aim of the paper is to provide an anatomically and optically accurate lens model that is valid for 3 mm pupils and can be used as a new tool for better understanding of accommodation. PMID:24877022

  18. A Comparison of High Spectral Resolution Infrared Cloud-Top Pressure Altitude Algorithms Using S-HIS Measurements

    NASA Technical Reports Server (NTRS)

    Holz, Robert E.; Ackerman, Steve; Antonelli, Paolo; Nagle, Fred; McGill, Matthew; Hlavka, Dennis L.; Hart, William D.

    2005-01-01

    This paper presents a comparison of cloud-top altitude retrieval methods applied to S-HIS (Scanning High Resolution Interferometer Sounder) measurements. Included in this comparison is an improvement to the traditional CO2 Slicing method. The new method, CO2 Sorting, determines optimal channel pairs to apply the CO2 Slicing. Measurements from collocated samples of the Cloud Physics Lidar (CPL) and Modis Airborne Simulator (MAS) instruments assist in the comparison. For optically thick clouds good correlation between the S-HIS and lidar cloud-top retrievals are found. For tenuous ice clouds there can be large differences between lidar (CPL) and S-HIS retrieved cloud-tops. It is found that CO2 Sorting significantly reduces the cloud height biases for the optically thin cloud (total optical depths less then 1.0). For geometrically thick but optically thin cirrus clouds large differences between the S-HIS infrared cloud top retrievals and the CPL detected cloud top where found. For these cases the cloud height retrieved by the S-HIS cloud retrievals correlated closely with the level the CPL integrated cloud optical depth was approximately 1.0.

  19. An analytical method for predicting the geometrical and optical properties of the human lens under accommodation.

    PubMed

    Sheil, Conor J; Bahrami, Mehdi; Goncharov, Alexander V

    2014-05-01

    We present an analytical method to describe the accommodative changes in the human crystalline lens. The method is based on the geometry-invariant lens model, in which the gradient-index (GRIN) iso-indicial contours are coupled to the external shape. This feature ensures that any given number of iso-indicial contours does not change with accommodation, which preserves the optical integrity of the GRIN structure. The coupling also enables us to define the GRIN structure if the radii and asphericities of the external lens surfaces are known. As an example, the accommodative changes in lenticular radii and central thickness were taken from the literature, while the asphericities of the external surfaces were derived analytically by adhering to the basic physical conditions of constant lens volume and its axial position. The resulting changes in lens geometry are consistent with experimental data, and the optical properties are in line with expected values for optical power and spherical aberration. The aim of the paper is to provide an anatomically and optically accurate lens model that is valid for 3 mm pupils and can be used as a new tool for better understanding of accommodation.

  20. Nonimaging optics

    NASA Astrophysics Data System (ADS)

    Winston, Roland

    1991-03-01

    Various uses of nonimaging concentrators and advances in the field of nonimaging optics are discussed. A nonimaging concentrator acts as a type of funnel for light by collecting and intensifying radiation far better than a lens or mirror would. It thus has found useful applications in fields ranging from high-energy physics to solar energy. The history of the field of nonimaging optics is traced, beginning with the design of the first compound parabolic concentrators in the mid-1960s. It is noted that at present there are two known ways to design nonimaging concentrators: the edge-ray method and the geometric vector flux approach. The use of nonimaging optical devices in the design of nontracking solar concentrators is traced. It is noted that the upper limit of concentration turns out to be about 46,000 times the intensity of sunlight at the surface of the earth. Methods used to maximize this concentration are discussed. The development and use of a solar-pumped laser which would have applications in satellite communications are discussed.

  1. Super-Gaussian laser intensity output formation by means of adaptive optics

    NASA Astrophysics Data System (ADS)

    Cherezova, T. Y.; Chesnokov, S. S.; Kaptsov, L. N.; Kudryashov, A. V.

    1998-10-01

    An optical resonator using an intracavity adaptive mirror with three concentric rings of controlling electrodes, which produc low loss and large beamwidth super-Gaussian output of order 4, 6, 8, is analyzed. An inverse propagation method is used to determine the appropriate shape of the adaptive mirror. The mirror reproduces the shape with minimal RMS error by combining weights of experimentally measured response functions of the mirror sample. The voltages applied to each mirror electrode are calculated. Practical design parameters such as construction of an adaptive mirror, Fresnel numbers, and geometric factor are discussed.

  2. Multilaser Herriott Cell for Planetary Tunable Laser Spectrometers

    NASA Technical Reports Server (NTRS)

    Tarsitano, Christopher G.; Webster, Christopher R.

    2007-01-01

    Geometric optics and matrix methods are used to mathematically model multilaser Herriott cells for tunable laser absorption spectrometers for planetary missions. The Herriott cells presented accommodate several laser sources that follow independent optical paths but probe a single gas cell. Strategically placed output holes located in the far mirrors of the Herriott cells reduce the size of the spectrometers. A four-channel Herriott cell configuration is presented for the specific application as the sample cell of the tunable laser spectrometer instrument selected for the sample analysis at Mars analytical suite on the 2009 Mars Science Laboratory mission.

  3. Optical conformal mapping.

    PubMed

    Leonhardt, Ulf

    2006-06-23

    An invisibility device should guide light around an object as if nothing were there, regardless of where the light comes from. Ideal invisibility devices are impossible, owing to the wave nature of light. This study develops a general recipe for the design of media that create perfect invisibility within the accuracy of geometrical optics. The imperfections of invisibility can be made arbitrarily small to hide objects that are much larger than the wavelength. With the use of modern metamaterials, practical demonstrations of such devices may be possible. The method developed here can also be applied to escape detection by other electromagnetic waves or sound.

  4. Binary optical filters for scale invariant pattern recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Downie, John D.; Hine, Butler P.

    1992-01-01

    Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.

  5. VIRTOPSY--scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning.

    PubMed

    Thali, Michael J; Braun, Marcel; Buck, Ursula; Aghayev, Emin; Jackowski, Christian; Vock, Peter; Sonnenschein, Martin; Dirnhofer, Richard

    2005-03-01

    Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.

  6. Depth estimation of laser glass drilling based on optical differential measurements of acoustic response

    NASA Astrophysics Data System (ADS)

    Gorodesky, Niv; Ozana, Nisan; Berg, Yuval; Dolev, Omer; Danan, Yossef; Kotler, Zvi; Zalevsky, Zeev

    2016-09-01

    We present the first steps of a device suitable for characterization of complex 3D micro-structures. This method is based on an optical approach allowing extraction and separation of high frequency ultrasonic sound waves induced to the analyzed samples. Rapid, non-destructive characterization of 3D micro-structures are limited in terms of geometrical features and optical properties of the sample. We suggest a method which is based on temporal tracking of secondary speckle patterns generated when illuminating a sample with a laser probe while applying known periodic vibration using an ultrasound transmitter. In this paper we investigated lasers drilled through glass vias. The large aspect ratios of the vias possess a challenge for traditional microscopy techniques in analyzing depth and taper profiles of the vias. The correlation of the amplitude vibrations to the vias depths is experimentally demonstrated.

  7. Virtual Images: Going Through the Looking Glass

    NASA Astrophysics Data System (ADS)

    Mota, Ana Rita; dos Santos, João Lopes

    2017-01-01

    Virtual images are often introduced through a "geometric" perspective, with little conceptual or qualitative illustrations, hindering a deeper understanding of this physical concept. In this paper, we present two rather simple observations that force a critical reflection on the optical nature of a virtual image. This approach is supported by the reflect-view, a useful device in geometrical optics classes because it allows a visual confrontation between virtual images and real objects that seemingly occupy the same region of space.

  8. Application of semiclassical and geometrical optics theories to resonant modes of a coated sphere.

    PubMed

    Bambino, Túlio M; Breitschaft, Ana Maria S; Barbosa, Valmar C; Guimarães, Luiz G

    2003-03-01

    This work deals with some aspects of the resonant scattering of electromagnetic waves by a metallic sphere covered by a dielectric layer, in the weak-absorption approximation. We carry out a geometrical optics treatment of the scattering and develop semiclassical formulas to determine the positions and widths of the system resonances. In addition, we show that the mean lifetime of broad resonances is strongly dependent on the polarization of the incident light.

  9. New perspectives on an old problem: The bending of light in Yang-Mills gravity

    NASA Astrophysics Data System (ADS)

    Cottrell, Kazuo Ota; Hsu, Jong-Ping

    Yang-Mills gravity with electromagnetism predicts, in the geometric optics limit, a value for the deflection of light by the sun which agrees closely with the reanalysis of Eddington's 1919 optical measurements done in 1979. Einstein's General Theory of Relativity, on the other hand, agrees very closely with measurements of the deflection of electromagnetic waves made in the range of radio frequencies. Since both General Relativity and Yang-Mills gravity with electromagnetism in the geometric optics limit make predictions for the optical region which fall within experimental uncertainty, it becomes important to consider the possibility of the existence of a frequency dependence in the measurement results for the deflection of light, in order to determine which theory more closely describes nature...

  10. Generation of three-dimensional optical cusp beams with ultrathin metasurfaces.

    PubMed

    Liu, Weiwei; Zhang, Yuchao; Gao, Jie; Yang, Xiaodong

    2018-06-22

    Cusp beams are one type of complex structured beams with unique multiple self-accelerating channels and needle-like field structures owning great potentials to advance applications such as particle micromanipulation and super-resolution imaging. The traditional method to generate optical catastrophe is based on cumbrous reflective diffraction optical elements, which makes optical system complicated and hinders the nanophotonics integration. Here we design geometric phase based ultrathin plasmonic metasurfaces made of nanoslit antennas to produce three-dimensional (3D) optical cusp beams with variable numbers of self-accelerating channels in a broadband wavelength range. The entire beam propagation profiles of the cusp beams generated from the metasurfaces are mapped theoretically and experimentally. The special self-accelerating behavior and caustics concentration property of the cups beams are also demonstrated. Our results provide great potentials for promoting metasurface-enabled compact photonic devices used in wide applications of light-matter interactions.

  11. Design and analysis of a curved cylindrical Fresnel lens that produces high irradiance uniformity on the solar cell.

    PubMed

    González, Juan C

    2009-04-10

    A new type of convex Fresnel lens for linear photovoltaic concentration systems is presented. The lens designed with this method reaches 100% of geometrical optical efficiency, and the ratio (Aperture area)/(Receptor area) is up to 75% of the theoretical limit. The main goal of the design is high uniformity of the radiation on the cell surface for each input angle inside the acceptance. The ratio between the maximum and the minimum irradiance on points of the solar cell is less than 2. The lens has been designed with the simultaneous multiple surfaces (SMS) method of nonimaging optics, and ray tracing techniques have been used to characterize its performance for linear symmetry systems.

  12. Geometric Methods for Infinite-Dimensional Dynamical Systems

    DTIC Science & Technology

    2012-08-27

    singular perturbation theory , nonlinear optic and traveling waves. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...participants, but no registration fee was charged. The 14 (long) plenary talks and the eight (short) topical talks were held in the lecture hall of...afternoon about open problems and important mathematical techniques, as well as a reception Friday evening, both of which were attended by all

  13. Fluctuations of pulsed laser radiation in the case of thermal self-defocusing under conditions of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Vorob'ev, V. V.; Krasil'Nikova, T. G.; Tikhonova, N. S.

    1989-09-01

    The spectra and structure functions of log-amplitude and phase fluctuations of laser radiation under thermal blooming are calculated on the basis of a smooth perturbation method. The spectrum dynamics is investigated in a wide range of spatial frequencies. The applicability of geometrical-optics and diffraction asymptotics to the calculation of the fluctuations is studied.

  14. Geometrical optics-based ray field tracing method for complex source beam applications

    NASA Astrophysics Data System (ADS)

    Gao, Min; Yang, Feng; Cui, Xue-Wu; Wang, Rui

    2018-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61301056 and 61231001), the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2014J012), the Fok Ying Tung Education Foundation, China (Grant No. 141062), the Aero-Science Fund, China (Grant No. 20142580012), and the “111” Project (Grant No. B07046).

  15. Effects of coating on the optical trapping efficiency of microspheres via geometrical optics approximation.

    PubMed

    Park, Bum Jun; Furst, Eric M

    2014-09-23

    We present the optical trapping forces that are generated when a single laser beam strongly focuses on a coated dielectric microsphere. On the basis of geometrical optics approximation (GOA), in which a particle intercepts all of the rays that make up a single laser beam, we calculate the trapping forces with varying coating thickness and refractive index values. To increase the optical trapping efficiency, the refractive index (n(b)) of the coating is selected such that n(a) < n(b) < n(c), where na and nc are the refractive indices of the medium and the core material, respectively. The thickness of the coating also increases trapping efficiency. Importantly, we find that trapping forces for the coated particles are predominantly determined by two rays: the incident ray and the first refracted ray to the medium.

  16. The radiation from slots in truncated dielectric-covered surfaces

    NASA Technical Reports Server (NTRS)

    Hwang, Y. M.; Kouyoumjian, R. G.; Pathak, P. H.

    1974-01-01

    A theoretical approach based on the geometrical theory of diffraction is used to study the electromagnetic radiation from a narrow slot in a dielectric-covered perfectly-conducting surface terminated at an edge. The total far-zone field is composed of a geometrical optics field and a diffracted field. The geometrical optics field is the direct radiation from the slot to the field point. The slot also generates surface waves which are incident at the termination of the dielectric cover, where singly-diffracted rays and reflected surface waves are excited. The diffraction and reflection coefficients are obtained from the canonical problem of the diffraction of a surface wave by a right-angle wedge where the dielectric-covered surface is approximated by an impedance surface. This approximation is satisfactory for a very thin cover; however, the radiation from its vertical and faces cannot be neglected in treating the thicker dielectric cover. This is taken into account by using a Kirchhoff-type approximation, which contributes a second term to the diffraction coefficient previously obtained. The contributions from the geometrical optics field, the singly-diffracted rays and all significant multiply-diffracted rays are summed to give the total radiation. Calculated and measured patterns are found to be in good agreement.

  17. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    PubMed

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  18. Full-Field Stress Determination Around Circular Discontinuity in a Tensile-Loaded Plate using x-displacements Only

    NASA Astrophysics Data System (ADS)

    Baek, Tae Hyun; Chung, Tae Jin; Panganiban, Henry

    The significant effects of stress raisers demand well-defined evaluation techniques to accurately determine the stress along the geometric boundary. A simple and accurate method for the determination of stress concentration around circular geometric discontinuity in a tensile-loaded plate is illustrated. The method is based on the least-squares technique, mapping functions, and a complex power series representation (Laurent series) of the stress functions for the calculation of tangential stress around the hole. Traction-free conditions were satisfied at the geometric discontinuity using conformal mapping and analytic continuation. In this study, we use only a relatively small amount of x-component displacement data of points away from the discontinuity of concern with their respective coordinates. Having this information we can easily obtain full-field stresses at the edge of the geometric discontinuity. Excellent results were obtained when the number of terms of the power series expansions, m=1. The maximum stress concentration calculation results using the present method and FEM using ANSYS agree well by less than one per cent difference. Experimental advantage of the method underscores the use of relatively small amount of data which are conveniently determined being away from the edge. Moreover, the small amount of measured input data needed affords the approach suitable for applications such as the multi-parameter concept used to obtain stress intensity factors from measured data. The use of laser speckle interferometry and moiré interferometry are also potential future related fields since the optical system for one-directional measurement is much simple.

  19. Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang

    We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.

  20. Geometric optics-based multiband cloaking of large objects with the wave phase and amplitude preservation.

    PubMed

    Duan, Ran; Semouchkina, Elena; Pandey, Ravi

    2014-11-03

    The geometric optics principles are used to develop a unidirectional transmission cloak for hiding objects with dimensions substantially exceeding the incident radiation wavelengths. Invisibility of both the object and the cloak is achieved without metamaterials, so that significant widths of the cloaking bands are provided. For the preservation of wave phases, the λ-multiple delays of waves passing through the cloak are realized. Suppression of reflection losses is achieved by using half-λ multiple thicknesses of optical elements. Due to periodicity of phase delay and reflection suppression conditions, the cloak demonstrates efficient multiband performance confirmed by full-wave simulations.

  1. Broadband full-color multichannel hologram with geometric metasurface.

    PubMed

    Qin, F F; Liu, Z Z; Zhang, Z; Zhang, Q; Xiao, J J

    2018-04-30

    Due to the abilities of manipulating the wavefront of light with well-controlled amplitude, and phase and polarization, optical metasurfaces are very suitable for optical holography, enabling applications with multiple functionalities and high data capacity. Here, we demonstrate encoding two- and three-dimensional full-color holographic images by an ultrathin metasurface hologram whose unit cells are subwavelength nanoslits with spatially varying orientations. We further show that it is possible to achieve full-color holographic multiplexing with such kind of geometric metasurfaces, realized by a synthetic spectrum holographic algorithm. Our results provide an efficient way to design multi-color optical display elements that are ready for fabrication.

  2. Optical analysis of time-averaged multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens.

    PubMed

    McLeod, Euan; Arnold, Craig B

    2008-07-10

    Current methods for generating Bessel beams are limited to fixed beam sizes or, in the case of conventional adaptive optics, relatively long switching times between beam shapes. We analyze the multiscale Bessel beams created using an alternative rapidly switchable device: a tunable acoustic gradient index (TAG) lens. The shape of the beams and their nondiffracting, self-healing characteristics are studied experimentally and explained theoretically using both geometric and Fourier optics. By adjusting the electrical driving signal, we can tune the ring spacings, the size of the central spot, and the working distance of the lens. The results presented here will enable researchers to employ dynamic Bessel beams generated by TAG lenses.

  3. Evanescent field characteristics of eccentric core optical fiber for distributed sensing.

    PubMed

    Liu, Jianxia; Yuan, Libo

    2014-03-01

    Fundamental core-mode cutoff and evanescent field are considered for an eccentric core optical fiber (ECOF). A method has been proposed to calculate the core-mode cutoff by solving the eigenvalue equations of an ECOF. Using conformal mapping, the asymmetric geometrical structure can be transformed into a simple, easily solved axisymmetric optical fiber with three layers. The variation of the fundamental core-mode cut-off frequency (V(c)) is also calculated with different eccentric distances, wavelengths, core radii, and coating refractive indices. The fractional power of evanescent fields for ECOF is also calculated with the eccentric distances and coating refractive indices. These calculations are necessary to design the structural parameters of an ECOF for long-distance, single-mode distributed evanescent field absorption sensors.

  4. Tailoring optical complex field with spiral blade plasmonic vortex lens

    PubMed Central

    Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2015-01-01

    Optical complex fields have attracted increasing interests because of the novel effects and phenomena arising from the spatially inhomogeneous state of polarizations and optical singularities of the light beam. In this work, we propose a spiral blade plasmonic vortex lens (SBPVL) that offers unique opportunities to manipulate these novel fields. The strong interaction between the SBPVL and the optical complex fields enable the synthesis of highly tunable plasmonic vortex. Through theoretical derivations and numerical simulations we demonstrated that the characteristics of the plasmonic vortex are determined by the angular momentum (AM) of the light, and the geometrical topological charge of the SBPVL, which is govern by the nonlinear superposition of the pitch and the number of blade element. In addition, it is also shown that by adjusting the geometric parameters, SBPVL can be utilized to focus and manipulate optical complex field with fractional AM. This miniature plasmonic device may find potential applications in optical trapping, optical data storage and many other related fields. PMID:26335894

  5. Application of Shack-Hartmann wavefront sensing technology to transmissive optic metrology

    NASA Astrophysics Data System (ADS)

    Rammage, Ron R.; Neal, Daniel R.; Copland, Richard J.

    2002-11-01

    Human vision correction optics must be produced in quantity to be economical. At the same time every human eye is unique and requires a custom corrective solution. For this reason the vision industries need fast, versatile and accurate methodologies for characterizing optics for production and research. Current methods for measuring these optics generally yield a cubic spline taken from less than 10 points across the surface of the lens. As corrective optics have grown in complexity this has become inadequate. The Shack-Hartmann wavefront sensor is a device that measures phase and irradiance of light in a single snapshot using geometric properties of light. Advantages of the Shack-Hartmann sensor include small size, ruggedness, accuracy, and vibration insensitivity. This paper discusses a methodology for designing instruments based on Shack-Hartmann sensors. The method is then applied to the development of an instrument for accurate measurement of transmissive optics such as gradient bifocal spectacle lenses, progressive addition bifocal lenses, intrarocular devices, contact lenses, and human corneal tissue. In addition, this instrument may be configured to provide hundreds of points across the surface of the lens giving improved spatial resolution. Methods are explored for extending the dynamic range and accuracy to meet the expanding needs of the ophthalmic and optometric industries. Data is presented demonstrating the accuracy and repeatability of this technique for the target optics.

  6. Statistics of optical and geometrical properties of cirrus cloud over tibetan plateau measured by lidar and radiosonde

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Wu, Songhua; Song, Xiaoquan; Zhai, Xiaochun

    2018-04-01

    Cirrus clouds affect the energy budget and hydrological cycle of the earth's atmosphere. The Tibetan Plateau (TP) plays a significant role in the global and regional climate. Optical and geometrical properties of cirrus clouds in the TP were measured in July-August 2014 by lidar and radiosonde. The statistics and temperature dependences of the corresponding properties are analyzed. The cirrus cloud formations are discussed with respect to temperature deviation and dynamic processes.

  7. Geometrical aspects in optical wave-packet dynamics.

    PubMed

    Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto

    2006-12-01

    We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.

  8. Camera Optics.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1982-01-01

    The camera presents an excellent way to illustrate principles of geometrical optics. Basic camera optics of the single-lens reflex camera are discussed, including interchangeable lenses and accessories available to most owners. Several experiments are described and results compared with theoretical predictions or manufacturer specifications.…

  9. Computer programs simplify optical system analysis

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The optical ray-trace computer program performs geometrical ray tracing. The energy-trace program calculates the relative monochromatic flux density on a specific target area. This program uses the ray-trace program as a subroutine to generate a representation of the optical system.

  10. Problems in Geometrical Optics

    ERIC Educational Resources Information Center

    Joyce, L. S.

    1973-01-01

    Ten laboratory exercises on optics are described to clarify concepts involving point objects and converging lenses producing real images. Mathematical treatment is kept to a minimum to stress concepts involved. (PS)

  11. Techniques for the characterization of sub-10-fs optical pulses: a comparison

    NASA Astrophysics Data System (ADS)

    Gallmann, L.; Sutter, D. H.; Matuschek, N.; Steinmeyer, G.; Keller, U.

    Several methods have been proposed for the phase and amplitude characterization of sub-10-fs pulses with nJ energies. An overview of these techniques is presented, with a focus on the comparison of second-harmonic generation frequency-resolved optical gating (SHG-FROG) and spectral phase interferometry for direct electric-field reconstruction (SPIDER). We describe a collinear FROG variant based on type-II phase-matching that completely avoids the geometrical blurring artifact and use both this and SPIDER for the characterization of sub-10-fs Ti:sapphire laser pulses. The results of both methods are compared in an extensive statistical analysis. From this first direct experimental comparison of FROG and SPIDER, guidelines for accurate measurements of sub-10-fs pulses are derived. We point out limitations of both methods for pulses in this ultrashort pulse regime.

  12. A hybrid method for X-ray optics simulation: combining geometric ray-tracing and wavefront propagation

    DOE PAGES

    Shi, Xianbo; Reininger, Ruben; Sanchez del Rio, Manuel; ...

    2014-05-15

    A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The 'Hybrid Method' computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of figure errors on the image is compared withSHADOWresults pointing to the limitations of the latter. The code has been benchmarked against the multi-electron version ofSRWin one dimension to show its validity in the case of fully, partially and non-coherent beams. The results demonstrate that the codemore » is considerably faster than the multi-electron version ofSRWand is therefore a useful tool for beamline design and optimization.« less

  13. Alignment of sensor arrays in optical instruments using a geometric approach.

    PubMed

    Sawyer, Travis W

    2018-02-01

    Alignment of sensor arrays in optical instruments is critical to maximize the instrument's performance. While many commercial systems use standardized mounting threads for alignment, custom systems require specialized equipment and alignment procedures. These alignment procedures can be time-consuming, dependent on operator experience, and have low repeatability. Furthermore, each alignment solution must be considered on a case-by-case basis, leading to additional time and resource cost. Here I present a method to align a sensor array using geometric analysis. By imaging a grid pattern of dots, I show that it is possible to calculate the misalignment for a sensor in five degrees of freedom simultaneously. I first test the approach by simulating different cases of misalignment using Zemax before applying the method to experimentally acquired data of sensor misalignment for an echelle spectrograph. The results show that the algorithm effectively quantifies misalignment in five degrees of freedom for an F/5 imaging system, accurate to within ±0.87  deg in rotation and ±0.86  μm in translation. Furthermore, the results suggest that the method can also be applied to non-imaging systems with a small penalty to precision. This general approach can potentially improve the alignment of sensor arrays in custom instruments by offering an accurate, quantitative approach to calculating misalignment in five degrees of freedom simultaneously.

  14. Were optical projections used in early Renaissance painting? A geometric image analysis of Jan van Eyck's "Arnolfini Portrait" and Robert Campin's "Merode Altarpiece"

    NASA Astrophysics Data System (ADS)

    Stork, David G.

    2004-04-01

    It has recently been claimed that some painters in the early Renaissance employed optical devices, specifically concave mirrors, to project images onto their canvas or other support (paper, oak panel, etc.) which they then traced or painted over. In this way, according to the theory, artists achieved their newfound heightened realism. We apply geometric image analysis to the parts of two paintings specifically adduced as evidence supporting this bold theory: the splendid, meticulous chandelier in Jan van Eyck's "Portrait of Arnolfini and his wife," and the trellis in the right panel of Robert Campin's "Merode Altarpiece." It has further been claimed that this trellis is the earliest surviving image captured using the projection of any optical device - a claim that, if correct, would have profound import for the histories of art, science and optical technology. Our analyses show that the Arnolfini chandelier fails standard tests of perspective coherence that would indicate an optical projection. Or more specifically, for the physical Arnolfini chandelier to be consistent with an optical projection, that chandelier would have to be implausibly irregular, as judged in comparison to surviving chandeliers and candelabras from the same 15th-century European schools. We find that had Campin painted the trellis using projections, he would have performed an extraordinarily precise and complex procedure using the most sophisticated optical system of his day (for which there is no documentary evidence), a conclusion supported by an attempted "re-enactment." We provide a far more simple, parsimonious and plausible explanation, which we demonstrate by a simple experiment. Our analyses lead us to reject the optical projection theory for these paintings, a conclusion that comports with the vast scholarly consensus on Renaissance working methods and the lack of documentary evidence for optical projections onto a screen.

  15. A content-based image retrieval method for optical colonoscopy images based on image recognition techniques

    NASA Astrophysics Data System (ADS)

    Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro

    2015-03-01

    This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.

  16. Application of optical longitudinal tomography for dental introscopy

    NASA Astrophysics Data System (ADS)

    Levin, Gennady G.; Burgansky, Alexander A.; Levandovski, Alexei G.

    1997-08-01

    A new method of dental introscopy in-vitro is suggested by the authors. This method implies the usage of longitudinal tomography techniques and is characterized by non-invasive and non-harmful diagnostics features, as well as interactive regime of image reconstruction which lets an operator (doctor) to control the diagnostics process in real time. He-Ne laser emission is used for obtaining of the projections. By the means of longitudinal tomography, images of different sections of an object (tooth) can be reconstructed. An experiment was held by the authors in which 100 projections of a tooth (premolar) were obtained and images of 10 different sections were reconstructed. These images were later compared to real sections of the tooth. This experiment proved that optical longitudinal tomography can be successfully used for dental introscopy. Authors claim that optical tomographic methods can be used for diagnostics of other biological objects as well. Such objects are characterized by spatial geometrical anisotropy (tubular bones, phalanxes of fingers, penis, etc.). It is especially promising to use this method for children's dentistry. the authors discuss some features of the data acquisition system for optical longitudinal tomography. Reconstruction algorithms are described. The results of experimental reconstruction are presented and advantages of this diagnostics method are discussed.

  17. Generalized design of a zero-geometric-loss, astigmatism-free, modified four-objective multipass matrix system.

    PubMed

    Guo, Yin; Sun, LiQun; Yang, Zheng; Liu, Zilong

    2016-02-20

    During this study we constructed a generalized parametric modified four-objective multipass matrix system (MMS). We used an optical system comprising four asymmetrical spherical mirrors to improve the alignment process. The use of a paraxial equation for the design of the front transfer optics yielded the initial condition for modeling our MMS. We performed a ray tracing simulation to calculate the significant aberration of the system (astigmatism). Based on the calculated meridional and sagittal focus positions, the complementary focusing mirror was easily designed to provide an output beam free of astigmatism. We have presented an example of a 108-transit multipass system (5×7 matrix arrangement) with a relatively larger numerical aperture source (xenon light source). The whole system exhibits zero theoretical geometrical loss when simulated with Zemax software. The MMS construction strategy described in this study provides an anastigmatic output beam and the generalized approach to design a controllable matrix spot pattern on the field mirrors. Asymmetrical reflective mirrors aid in aligning the whole system with high efficiency. With the generalized design strategy in terms of optics configuration and asymmetrical fabrication method in this paper, other kinds of multipass matrix system coupled with different sources and detector systems also can be achieved.

  18. Remote sensing with intense filaments enhanced by adaptive optics

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Kamali, Y.; Châteauneuf, M.; Tremblay, G.; Théberge, F.; Dubois, J.; Roy, G.; Chin, S. L.

    2009-11-01

    A method involving a closed loop adaptive optic system is investigated as a tool to significantly enhance the collected optical emissions, for remote sensing applications involving ultrafast laser filamentation. The technique combines beam expansion and geometrical focusing, assisted by an adaptive optics system to correct the wavefront aberrations. Targets, such as a gaseous mixture of air and hydrocarbons, solid lead and airborne clouds of contaminated aqueous aerosols, were remotely probed with filaments generated at distances up to 118 m after the focusing beam expander. The integrated backscattered signals collected by the detection system (15-28 m from the filaments) were increased up to a factor of 7, for atmospheric N2 and solid lead, when the wavefronts were corrected by the adaptive optic system. Moreover, an extrapolation based on a simplified version of the LIDAR equation showed that the adaptive optic system improved the detection distance for N2 molecular fluorescence, from 45 m for uncorrected wavefronts to 125 m for corrected.

  19. Experimental study on performance verification tests for coordinate measuring systems with optical distance sensors

    NASA Astrophysics Data System (ADS)

    Carmignato, Simone

    2009-01-01

    Optical sensors are increasingly used for dimensional and geometrical metrology. However, the lack of international standards for testing optical coordinate measuring systems is currently limiting the traceability of measurements and the easy comparison of different optical systems. This paper presents an experimental investigation on artefacts and procedures for testing coordinate measuring systems equipped with optical distance sensors. The work is aimed at contributing to the standardization of testing methods. The VDI/VDE 2617-6.2:2005 guideline, which is probably the most complete document available at the state of the art for testing systems with optical distance sensors, is examined with specific experiments. Results from the experiments are discussed, with particular reference to the tests used for determining the following characteristics: error of indication for size measurement, probing error and structural resolution. Particular attention is given to the use of artefacts alternative to gauge blocks for determining the error of indication for size measurement.

  20. Diffraction and geometrical optical transfer functions: calculation time comparison

    NASA Astrophysics Data System (ADS)

    Díaz, José Antonio; Mahajan, Virendra N.

    2017-08-01

    In a recent paper, we compared the diffraction and geometrical optical transfer functions (OTFs) of an optical imaging system, and showed that the GOTF approximates the DOTF within 10% when a primary aberration is about two waves or larger [Appl. Opt., 55, 3241-3250 (2016)]. In this paper, we determine and compare the times to calculate the DOTF by autocorrelation or digital autocorrelation of the pupil function, and by a Fourier transform (FT) of the point-spread function (PSF); and the GOTF by a FT of the geometrical PSF and its approximation, the spot diagram. Our starting point for calculating the DOTF is the wave aberrations of the system in its pupil plane, and the ray aberrations in the image plane for the GOTF. The numerical results for primary aberrations and a typical imaging system show that the direct integrations are slow, but the calculation of the DOTF by a FT of the PSF is generally faster than the GOTF calculation by a FT of the spot diagram.

  1. On the Geometrical Optics Approach in the Theory of Freely-Localized Microwave Gas Breakdown

    NASA Astrophysics Data System (ADS)

    Shapiro, Michael; Schaub, Samuel; Hummelt, Jason; Temkin, Richard; Semenov, Vladimir

    2015-11-01

    Large filamentary arrays of high pressure gas microwave breakdown have been experimentally studied at MIT using a 110 GHz, 1.5 MW pulsed gyrotron. The experiments have been modeled by other groups using numerical codes. The plasma density distribution in the filaments can be as well analytically calculated using the geometrical optics approach neglecting plasma diffusion. The field outside the filament is a solution of an inverse electromagnetic problem. The solutions are found for the cylindrical and spherical filaments and for the multi-layered planar filaments with a finite plasma density at the boundaries. We present new results of this theory showing a variety of filaments with complex shapes. The solutions for plasma density distribution are found with a zero plasma density at the boundary of the filament. Therefore, to solve the inverse problem within the geometrical optics approximation, it can be assumed that there is no reflection from the filament. The results of this research are useful for modeling future MIT experiments.

  2. Secondary and compound concentrators for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Poon, P. T.

    1981-01-01

    A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat.

  3. Lagrangian geometrical optics of nonadiabatic vector waves and spin particles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-07-29

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less

  4. Optics education in an optometric setting

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Vasudevan; Raghuram, Aparna

    2003-10-01

    We discuss optics education within the context of an Optometric professional program leading to a degree of Doctor of Optometry (O.D.). Basic course work in Geometric, Physical, Ophthalmic and Visual Optics will be described and we will discuss how basic optical phenomena can be made relevant to the Optometric student with different academic backgrounds.

  5. Cepheids Geometrical Distances Using Space Interferometry

    NASA Astrophysics Data System (ADS)

    Marengo, M.; Karovska, M.; Sasselov, D. D.; Sanchez, M.

    2004-05-01

    A space based interferometer with a sub-milliarcsecond resolution in the UV-optical will provide a new avenue for the calibration of primary distance indicators with unprecedented accuracy, by allowing very accurate and stable measurements of Cepheids pulsation amplitudes at wavelengths not accessible from the ground. Sasselov & Karovska (1994) have shown that interferometers allow very accurate measurements of Cepheids distances by using a ``geometric'' variant of the Baade-Wesselink method. This method has been succesfully applied to derive distances and radii of nearby Cepheids using ground-based near-IR and optical interferometers, within a 15% accuracy level. Our study shows that the main source of error in these measurements is due to the perturbing effects of the Earth atmosphere, which is the limiting factor in the interferometer stability. A space interferometer will not suffer from this intrinsic limitations, and can potentially lead to improve astronomical distance measurements by an order of magnitude in precision. We discuss here the technical requirements that a space based facility will need to carry out this project, allowing distance measurements within a few percent accuracy level. We will finally discuss how a sub-milliarcsecond resolution will allow the direct distance determination for hundreds of galactic sources, and provide a substantial improvement in the zero-point of the Cepheid distance scale.

  6. Accuracy Validation of Large-scale Block Adjustment without Control of ZY3 Images over China

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    2016-06-01

    Mapping from optical satellite images without ground control is one of the goals of photogrammetry. Using 8802 three linear array stereo images (a total of 26406 images) of ZY3 over China, we propose a large-scale and non-control block adjustment method of optical satellite images based on the RPC model, in which a single image is regarded as an adjustment unit to be organized. To overcome the block distortion caused by unstable adjustment without ground control and the excessive accumulation of errors, we use virtual control points created by the initial RPC model of the images as the weighted observations and add them into the adjustment model to refine the adjustment. We use 8000 uniformly distributed high precision check points to evaluate the geometric accuracy of the DOM (Digital Ortho Model) and DSM (Digital Surface Model) production, for which the standard deviations of plane and elevation are 3.6 m and 4.2 m respectively. The geometric accuracy is consistent across the whole block and the mosaic accuracy of neighboring DOM is within a pixel, thus, the seamless mosaic could take place. This method achieves the goal of an accuracy of mapping without ground control better than 5 m for the whole China from ZY3 satellite images.

  7. Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.

    PubMed

    Lu, Jia; Zhou, Huaichun

    2017-07-01

    The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.

  8. Vibrational properties of gold nanoparticles obtained by green synthesis

    NASA Astrophysics Data System (ADS)

    Alvarez, Ramón A. B.; Cortez-Valadez, M.; Bueno, L. Oscar Neira; Britto Hurtado, R.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Serrano-Corrales, Luis Ivan; Arizpe-Chávez, H.; Flores-Acosta, M.

    2016-10-01

    This study reports the synthesis and characterization of gold nanoparticles through an ecological method to obtain nanostructures from the extract of the plant Opuntia ficus-indica. Colloidal nanoparticles show sizes that vary between 10-20 nm, and present various geometric morphologies. The samples were characterized through optical absorption, Raman Spectroscopy and Transmission Electron Microscopy (TEM). Additionally, low energy metallic clusters of Aun (n=2-20 atoms) were modeled by computational quantum chemistry. The theoretical results were obtained with Density Functional Theory (DFT). The predicted results of Au clusters show a tendency and are correlated with the experimental results concerning the optical absorption bands and Raman spectroscopy in gold nanoparticles.

  9. Tunable plasmon-induced transparency based on graphene nanoring coupling with graphene nanostrips

    NASA Astrophysics Data System (ADS)

    Liao, Chang-Long; Fu, Guang-Lai; Xia, Sheng-Xuan; Li, Hong-Ju; Zhai, Xiang; Wang, Ling-Ling

    2018-02-01

    We numerically and theoretically demonstrate a plasmon-induced transparency (PIT) at the mid-infrared region with finite-difference time-domain method. The system consists of an optically bright dipole mode and a dark quadrupole mode, which are supported by the graphene nanoring and graphene nanostrips, respectively. The coupling between the two modes introduces transparency window and large group delays. The pronounced PIT resonance can be easily modified by adjusting the geometric parameters and the Fermi level of graphene nanostructure. Our results suggest that the demonstrated PIT effect may be applicated in the slow-light device, active plasmonic switching, and optical sensing.

  10. Measurement of deformations of models in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Charpin, F.; Armand, C.; Selvaggini, R.

    Techniques used at the ONERA Modane Center to monitor geometric variations in scale-models in wind tunnel trials are described. The methods include: photography of reflections from mirrors embedded in the model surface; laser-based torsiometry with polarized mirrors embedded in the model surface; predictions of the deformations using numerical codes for the model surface mechanical characteristics and the measured surface stresses; and, use of an optical detector to monitor the position of luminous fiber optic sources emitting from the model surfaces. The data enhance the confidence that the wind tunnel aerodynamic data will correspond with the in-flight performance of full scale flight surfaces.

  11. Electronic and optical properties of exciton, trions and biexciton in II-VI parabolic quantum dot

    NASA Astrophysics Data System (ADS)

    Sujanah, P.; John Peter, A.; Woo Lee, Chang

    2015-08-01

    Binding energies of exciton, trions and biexciton and their interband optical transition energies are studied in a CdTe/ZnTe quantum dot nanostructure taking into consideration the geometrical confinement effect. The radial spread of the wavefunctions, binding energies, optical transition energies, oscillator strength, radiative life time and the absorption coefficients of exciton, positively and negatively charged excitons and biexciton are carried out. It is found that the ratio of the radiative life time of exciton with the trions and biexciton enhances with the reduction of geometrical confinement. The results show that (i) the binding energies of exciton, positive and negative trions and the biexciton have strong influence on the reduction of geometrical confinement effect, (ii) the binding energy is found to decrease from the binding energies of exciton to positive trion through biexciton and negative trion binding energies, (iii) the oscillator strength of trions is found to be lesser than exciton and the biexciton and (iv) the electronic and optical properties of exciton, trions and the biexciton are considerably dependent on the spatial confinement, incident photon energy and the radiative life time. The obtained results are in good agreement with the other existing literature.

  12. Two-dimensional fast marching for geometrical optics.

    PubMed

    Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore

    2014-11-03

    We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.

  13. Design and construction of an Offner spectrometer based on geometrical analysis of ring fields.

    PubMed

    Kim, Seo Hyun; Kong, Hong Jin; Lee, Jong Ung; Lee, Jun Ho; Lee, Jai Hoon

    2014-08-01

    A method to obtain an aberration-corrected Offner spectrometer without ray obstruction is proposed. A new, more efficient spectrometer optics design is suggested in order to increase its spectral resolution. The derivation of a new ring equation to eliminate ray obstruction is based on geometrical analysis of the ring fields for various numerical apertures. The analytical design applying this equation was demonstrated using the optical design software Code V in order to manufacture a spectrometer working in wavelengths of 900-1700 nm. The simulation results show that the new concept offers an analytical initial design taking the least time of calculation. The simulated spectrometer exhibited a modulation transfer function over 80% at Nyquist frequency, root-mean-square spot diameters under 8.6 μm, and a spectral resolution of 3.2 nm. The final design and its realization of a high resolution Offner spectrometer was demonstrated based on the simulation result. The equation and analytical design procedure shown here can be applied to most Offner systems regardless of the wavelength range.

  14. Newton's Experimentum Crucis Reconsidered

    ERIC Educational Resources Information Center

    Holtsmark, Torger

    1970-01-01

    Certain terminological inconsistencies in the teaching of optical theory at the elementary level are traced back to Newton who derived them from Euclidean geometrical optics. Discusses this terminological ambiguity which influenced later textbooks. (LS)

  15. Accounting for optical errors in microtensiometry.

    PubMed

    Hinton, Zachary R; Alvarez, Nicolas J

    2018-09-15

    Drop shape analysis (DSA) techniques measure interfacial tension subject to error in image analysis and the optical system. While considerable efforts have been made to minimize image analysis errors, very little work has treated optical errors. There are two main sources of error when considering the optical system: the angle of misalignment and the choice of focal plane. Due to the convoluted nature of these sources, small angles of misalignment can lead to large errors in measured curvature. We demonstrate using microtensiometry the contributions of these sources to measured errors in radius, and, more importantly, deconvolute the effects of misalignment and focal plane. Our findings are expected to have broad implications on all optical techniques measuring interfacial curvature. A geometric model is developed to analytically determine the contributions of misalignment angle and choice of focal plane on measurement error for spherical cap interfaces. This work utilizes a microtensiometer to validate the geometric model and to quantify the effect of both sources of error. For the case of a microtensiometer, an empirical calibration is demonstrated that corrects for optical errors and drastically simplifies implementation. The combination of geometric modeling and experimental results reveal a convoluted relationship between the true and measured interfacial radius as a function of the misalignment angle and choice of focal plane. The validated geometric model produces a full operating window that is strongly dependent on the capillary radius and spherical cap height. In all cases, the contribution of optical errors is minimized when the height of the spherical cap is equivalent to the capillary radius, i.e. a hemispherical interface. The understanding of these errors allow for correct measure of interfacial curvature and interfacial tension regardless of experimental setup. For the case of microtensiometry, this greatly decreases the time for experimental setup and increases experiential accuracy. In a broad sense, this work outlines the importance of optical errors in all DSA techniques. More specifically, these results have important implications for all microscale and microfluidic measurements of interface curvature. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    PubMed

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  17. Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles.

    PubMed

    Reddy, Naveen Krishna; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Lang, Peter R; Dhont, Jan K G; Liz-Marzán, Luis M; Vermant, Jan

    2011-06-28

    Particle shape plays an important role in controlling the optical, magnetic, and mechanical properties of nanoparticle suspensions as well as nanocomposites. However, characterizing the size, shape, and the associated polydispersity of nanoparticles is not straightforward. Electron microscopy provides an accurate measurement of the geometric properties, but sample preparation can be laborious, and to obtain statistically relevant data many particles need to be analyzed separately. Moreover, when the particles are suspended in a fluid, it is important to measure their hydrodynamic properties, as they determine aspects such as diffusion and the rheological behavior of suspensions. Methods that evaluate the dynamics of nanoparticles such as light scattering and rheo-optical methods accurately provide these hydrodynamic properties, but do necessitate a sufficient optical response. In the present work, three different methods for characterizing nonspherical gold nanoparticles are critically compared, especially taking into account the complex optical response of these particles. The different methods are evaluated in terms of their versatility to asses size, shape, and polydispersity. Among these, the rheo-optical technique is shown to be the most reliable method to obtain hydrodynamic aspect ratio and polydispersity for nonspherical gold nanoparticles for two reasons. First, the use of the evolution of the orientation angle makes effects of polydispersity less important. Second, the use of an external flow field gives a mathematically more robust relation between particle motion and aspect ratio, especially for particles with relatively small aspect ratios.

  18. Invisibility Cloaking Based on Geometrical Optics for Visible Light

    NASA Astrophysics Data System (ADS)

    Ichikawa, H.; Oura, M.; Taoda, T.

    2013-06-01

    Optical cloaking has been one of unattainable dreams and just a subject in fiction until recently. Several different approaches to cloaking have been proposed and demonstrated: stealth technology, active camouflage and transformation optics. The last one would be the most formal approach modifying electromagnetic field around an object to be cloaked with metamaterials. While cloaking based on transformation optics, though valid only at single frequency, is experimentally demonstrated in microwave region, its operation in visible spectrum is still distant from realisation mainly owing to difficulty in fabricating metamaterial structure whose elements are much smaller than wavelength of light. Here we show that achromatic optical cloaking in visible spectrum is possible with the mere principle based on geometrical optics. In combining a pair of polarising beam splitters and right-angled prisms, rays of light to be obstructed by an object can make a detour to an observer, while unobstructed rays go straight through two polarising beam splitters. What is observed eventually through the device is simply background image as if nothing exists in between.

  19. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Caucci, Luca

    2014-08-17

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.

  20. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Caucci, Luca

    2016-01-01

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon. PMID:27478293

  1. Correcting geometric and photometric distortion of document images on a smartphone

    NASA Astrophysics Data System (ADS)

    Simon, Christian; Williem; Park, In Kyu

    2015-01-01

    A set of document image processing algorithms for improving the optical character recognition (OCR) capability of smartphone applications is presented. The scope of the problem covers the geometric and photometric distortion correction of document images. The proposed framework was developed to satisfy industrial requirements. It is implemented on an off-the-shelf smartphone with limited resources in terms of speed and memory. Geometric distortions, i.e., skew and perspective distortion, are corrected by sending horizontal and vertical vanishing points toward infinity in a downsampled image. Photometric distortion includes image degradation from moiré pattern noise and specular highlights. Moiré pattern noise is removed using low-pass filters with different sizes independently applied to the background and text region. The contrast of the text in a specular highlighted area is enhanced by locally enlarging the intensity difference between the background and text while the noise is suppressed. Intensive experiments indicate that the proposed methods show a consistent and robust performance on a smartphone with a runtime of less than 1 s.

  2. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    PubMed

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  3. Education in applied and instrumental optics at the University of Helsinki

    NASA Astrophysics Data System (ADS)

    Stenman, Folke

    1997-12-01

    The teaching of applied and instrumental optics at the University of Helsinki Department of Physics originally grew out of the needs of the research group of molecular physics as a basis for the experimental work in the group. The training program starts with a one-year course for senior undergraduates and graduates comprising geometrical optics, eikonal theory, image forming components, matrix methods, optical instruments, the optics of laser beams, radiometry and photometry, ray tracing methods, optics of anisotropic media, diffraction theory, general image formation theory and Fourier optics. The course starts from fundamentals, but the mathematical level is kept adequate for serious work. Further applications are treated in courses on molecular spectroscopy, where ruled and holographic diffraction gratings (both plane and spherical), interferometric spectroscopy and imaging properties of spectral equipment are treated. Aspects of image analysis, information in optics, signal-to-noise ratio, etc. are treated in separate courses on Fourier method and digital spectral analysis. The applicability of optical techniques to various fields of physics and engineering and the analogies with them are especially brought out. Experimental and calculational and skills are stressed throughout. Computer programming is introduced as an indispensable tool for the optics practitioner, and the students are required to write programs of their own. The students gain practical experience, e.g., by working in the molecular physics group. Close cooperation is maintained with other research groups in laser physics, ultrasonics and physical chemistry. The training in optics has proved very useful, with students frequently ending up working in the industry on optics and spectroscopy problems. Parts of these courses have also been given at other universities and to engineers and scientists working in the industry.

  4. Characterization of anisotropically shaped silver nanoparticle arrays via spectroscopic ellipsometry supported by numerical optical modeling

    NASA Astrophysics Data System (ADS)

    Gkogkou, Dimitra; Shaykhutdinov, Timur; Oates, Thomas W. H.; Gernert, Ulrich; Schreiber, Benjamin; Facsko, Stefan; Hildebrandt, Peter; Weidinger, Inez M.; Esser, Norbert; Hinrichs, Karsten

    2017-11-01

    The present investigation aims to study the optical response of anisotropic Ag nanoparticle arrays deposited on rippled silicon substrates by performing a qualitative comparison between experimental and theoretical results. Spectroscopic ellipsometry was used along with numerical calculations using finite-difference time-domain (FDTD) method and rigorous coupled wave analysis (RCWA) to reveal trends in the optical and geometrical properties of the nanoparticle array. Ellipsometric data show two resonances, in the orthogonal x and y directions, that originate from localized plasmon resonances as demonstrated by the calculated near-fields from FDTD calculations. The far-field calculations by RCWA point to decoupled resonances in x direction and possible coupling effects in y direction, corresponding to the short and long axis of the anisotropic nanoparticles, respectively.

  5. Molecular modeling of the process of reversible dissolution of the collagen protein under the action of tissue-clearing agents

    NASA Astrophysics Data System (ADS)

    Dvoretsky, K. N.; Berezin, K. V.; Chernavina, M. L.; Likhter, A. M.; Shagautdinova, I. T.; Antonova, E. M.; Rybakov, A. V.; Grechukhina, O. N.; Tuchin, V. V.

    2018-04-01

    The interaction of glycerol immersion agent with collagen mimetic peptide ((GPH)9)3 and a fragment of the microfibril 5((GPH)12)3 was studied by the classical molecular dynamics method using the GROMACS software. The change in geometric parameters of collagen α-chains at various concentrations of an aqueous solution of glycerol is analyzed. It is shown that these changes nonlinearly depend on the concentration and are limited to a certain level, which correlates with the experimental data on optical clearing efficiency of human skin. A hypothesis on the cause of the decreased efficiency of optical skin clearing at high immersion agent concentrations is put forward. The molecular mechanism of immersion optical clearing of biological tissues is discussed.

  6. Arbitrary spin-to-orbital angular momentum conversion of light

    NASA Astrophysics Data System (ADS)

    Devlin, Robert C.; Ambrosio, Antonio; Rubin, Noah A.; Mueller, J. P. Balthasar; Capasso, Federico

    2017-11-01

    Optical elements that convert the spin angular momentum (SAM) of light into vortex beams have found applications in classical and quantum optics. These elements—SAM-to-orbital angular momentum (OAM) converters—are based on the geometric phase and only permit the conversion of left- and right-circular polarizations (spin states) into states with opposite OAM. We present a method for converting arbitrary SAM states into total angular momentum states characterized by a superposition of independent OAM. We designed a metasurface that converts left- and right-circular polarizations into states with independent values of OAM and designed another device that performs this operation for elliptically polarized states. These results illustrate a general material-mediated connection between SAM and OAM of light and may find applications in producing complex structured light and in optical communication.

  7. Compact collimators designed with a modified point approximation for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Luo, Tao; Wang, Gang

    2017-09-01

    We present a novel freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a compact collimated lenses with Aspect Ratio = 0.219 is presented. Moreover, the utility efficiency (UE) inside the angle defined by ideal concentrator hypothesis with different lens-to-LED size ratios for both this lens and TIR lens are presented. A prototype of the collimator lens is also made to verify the practical performance of the lens, which has light distribution very compatible with the simulation results.

  8. Heuristic algorithm for optical character recognition of Arabic script

    NASA Astrophysics Data System (ADS)

    Yarman-Vural, Fatos T.; Atici, A.

    1996-02-01

    In this paper, a heuristic method is developed for segmentation, feature extraction and recognition of the Arabic script. The study is part of a large project for the transcription of the documents in Ottoman Archives. A geometrical and topological feature analysis method is developed for segmentation and feature extraction stages. Chain code transformation is applied to main strokes of the characters which are then classified by the hidden Markov model (HMM) in the recognition stage. Experimental results indicate that the performance of the proposed method is impressive, provided that the thinning process does not yield spurious branches.

  9. Modelling the excitation field of an optical resonator

    NASA Astrophysics Data System (ADS)

    Romanini, Daniele

    2014-06-01

    Assuming the paraxial approximation, we derive efficient recursive expressions for the projection coefficients of a Gaussian beam over the Gauss--Hermite transverse electro-magnetic (TEM) modes of an optical cavity. While previous studies considered cavities with cylindrical symmetry, our derivation accounts for "simple" astigmatism and ellipticity, which allows to deal with more realistic optical systems. The resulting expansion of the Gaussian beam over the cavity TEM modes provides accurate simulation of the excitation field distribution inside the cavity, in transmission, and in reflection. In particular, this requires including counter-propagating TEM modes, usually neglected in textbooks. As an illustrative application to a complex case, we simulate reentrant cavity configurations where Herriott spots are obtained at cavity output. We show that the case of an astigmatic cavity is also easily modelled. To our knowledge, such relevant applications are usually treated under the simplified geometrical optics approximation, or using heavier numerical methods.

  10. Free-form illumination optics

    NASA Astrophysics Data System (ADS)

    Mohedano, Rubén; Chaves, Julio; Hernández, Maikel

    2016-04-01

    In many illumination problems, the beam pattern needed and/or some geometrical constraints lead to very asymmetric design conditions. These asymmetries have been solved in the past by means of arrangements of rotationally symmetric or linear lamps aimed in different directions whose patterns overlap to provide the asymmetric prescriptions or by splitting one single lamp into several sections, each one providing a part of the pattern. The development of new design methods yielding smooth continuous free-form optical surfaces to solve these challenging design problems, combined with the proper CAD modeling tools plus the development of multiple axes diamond turn machines, give birth to a new generation of optics. These are able to offer the performance and other advanced features, such as efficiency, compactness, or aesthetical advantages, and can be manufactured at low cost by injection molding. This paper presents two examples of devices with free-form optical surfaces, a camera flash, and a car headlamp.

  11. A Technique for Evaluating the Uncertainties in Path Loss Predictions Caused by Sparsely Sampled Terrain Data

    DTIC Science & Technology

    2013-06-26

    Diomedi, thank you for providing support in getting through the writing. To my parents and Suzanne’s, thank you for tolerating the time we’ve spent here...the caustic distance idea from geometric optics, and will be shown to slightly improve the results. Following those results, antenna patterns will be...change in the caustic in the 3rd dimension, while MOMI has already accounted for it in the x-z plane. In geometric optics, the caustic is the point of

  12. Calculation of 3D Coordinates of a Point on the Basis of a Stereoscopic System

    NASA Astrophysics Data System (ADS)

    Mussabayev, R. R.; Kalimoldayev, M. N.; Amirgaliyev, Ye. N.; Tairova, A. T.; Mussabayev, T. R.

    2018-05-01

    The solution of three-dimensional (3D) coordinate calculation task for a material point is considered. Two flat images (a stereopair) which correspond to the left and to the right viewpoints of a 3D scene are used for this purpose. The stereopair is obtained using two cameras with parallel optical axes. The analytical formulas for calculating 3D coordinates of a material point in the scene were obtained on the basis of analysis of the stereoscopic system optical and geometrical schemes. The detailed presentation of the algorithmic and hardware realization of the given method was discussed with the the practical. The practical module was recommended for the determination of the optical system unknown parameters. The series of experimental investigations were conducted for verification of theoretical results. During these experiments the minor inaccuracies were occurred by space distortions in the optical system and by it discrecity. While using the high quality stereoscopic system, the existing calculation inaccuracy enables to apply the given method for the wide range of practical tasks.

  13. Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces.

    PubMed

    D' Archangel, Jeffrey; Tucker, Eric; Kinzel, Ed; Muller, Eric A; Bechtel, Hans A; Martin, Michael C; Raschke, Markus B; Boreman, Glenn

    2013-07-15

    Optical metamaterials have unique properties which result from geometric confinement of the optical conductivity. We developed a series of infrared metasurfaces based on an array of metallic square loop antennas. The far-field absorption spectrum can be designed with resonances across the infrared by scaling the geometric dimensions. We measure the amplitude and phase of the resonant mode as standing wave patterns within the square loops using scattering-scanning near-field optical microscopy (s-SNOM). Further, using a broad-band synchrotron-based FTIR microscope and s-SNOM at the Advanced Light Source, we are able to correlate far-field spectra to near-field modes of the metasurface as the resonance is tuned between samples. The results highlight the importance of multi-modal imaging for the design and characterization of optical metamaterials.

  14. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    NASA Astrophysics Data System (ADS)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (<80%) of the cirrus have values less than 0.1. Optical depth shows a strong dependence with cirrus geometrical thickness and mid-cloud height. The monthly mean cirrus extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  15. An Innovative Context-Based Module to Introduce Students to the Optical Properties of Materials

    ERIC Educational Resources Information Center

    Testa, I.; Lombardi, S.; Monroy, G.; Sassi, E.

    2011-01-01

    A context-based module to introduce secondary school students to the study of the optical properties of materials and geometric optics is presented. The module implements an innovative teaching approach in which the behaviour of the chosen application, in this article, the optical fibre, is iteratively explored and modelled by means of a…

  16. A Circumzenithal Arc to Study Optics Concepts with Geometrical Optics

    ERIC Educational Resources Information Center

    Isik, Hakan

    2017-01-01

    This paper describes the formation of a circumzenithal arc for the purpose of teaching light and optics. A circumzenithal arc, an optic formation rarely witnessed by people, is formed in this study using a water-filled cylindrical glass illuminated by sunlight. Sunlight refracted at the top and side surfaces of the glass of water is dispersed into…

  17. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn; Lomonosov, Alexey M.

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  18. Non-contact measurement of helicopter device position in wind tunnels with the use of optical videogrammetry method

    NASA Astrophysics Data System (ADS)

    Kuruliuk, K. A.; Kulesh, V. P.

    2016-10-01

    An optical videogrammetry method using one digital camera for non-contact measurements of geometric shape parameters, position and motion of models and structural elements of aircraft in experimental aerodynamics was developed. The tests with the use of this method for measurement of six components (three linear and three angular ones) of real position of helicopter device in wind tunnel flow were conducted. The distance between camera and test object was 15 meters. It was shown in practice that, in the conditions of aerodynamic experiment instrumental measurement error (standard deviation) for angular and linear displacements of helicopter device does not exceed 0,02° and 0.3 mm, respectively. Analysis of the results shows that at the minimum rotor thrust deviations are systematic and generally are within ± 0.2 degrees. Deviations of angle values grow with the increase of rotor thrust.

  19. Quantum computation with trapped ions in an optical cavity.

    PubMed

    Pachos, Jiannis; Walther, Herbert

    2002-10-28

    Two-qubit logical gates are proposed on the basis of two atoms trapped in a cavity setup and commonly addressed by laser fields. Losses in the interaction by spontaneous transitions are efficiently suppressed by employing adiabatic transitions and the quantum Zeno effect. Dynamical and geometrical conditional phase gates are suggested. This method provides fidelity and a success rate of its gates very close to unity. Hence, it is suitable for performing quantum computation.

  20. Energy conservation - A test for scattering approximations

    NASA Technical Reports Server (NTRS)

    Acquista, C.; Holland, A. C.

    1980-01-01

    The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.

  1. WebTOP: A 3D Interactive System for Teaching and Learning Optics

    ERIC Educational Resources Information Center

    Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.

    2007-01-01

    WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…

  2. Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2018-07-01

    Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.

  3. On the optical path length in refracting media

    NASA Astrophysics Data System (ADS)

    Hasbun, Javier E.

    2018-04-01

    The path light follows as it travels through a substance depends on the substance's index of refraction. This path is commonly known as the optical path length (OPL). In geometrical optics, the laws of reflection and refraction are simple examples for understanding the path of light travel from source to detector for constant values of the traveled substances' refraction indices. In more complicated situations, the Euler equation can be quite useful and quite important in optics courses. Here, the well-known Euler differential equation (EDE) is used to obtain the OPL for several index of refraction models. For pedagogical completeness, the OPL is also obtained through a modified Monte Carlo (MC) method, versus which the various results obtained through the EDE are compared. The examples developed should be important in projects involving undergraduate as well as graduate students in an introductory optics course. A simple matlab script (program) is included that can be modified by students who wish to pursue the subject further.

  4. Ice Cloud Backscatter Study and Comparison with CALIPSO and MODIS Satellite Data

    NASA Technical Reports Server (NTRS)

    Ding, Jiachen; Yang, Ping; Holz, Robert E.; Platnick, Steven; Meyer, Kerry G.; Vaughan, Mark A.; Hu, Yongxiang; King, Michael D.

    2016-01-01

    An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6 percent and 9 percent for tropical and mid-latitude ice clouds, respectively.

  5. Subreflector extension for improved efficiencies in Cassegrain antennas - GTD/PO analysis. [Geometrical Theory of Diffraction/Physical Optics

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya

    1986-01-01

    Both offset and symmetric Cassegrain reflector antennas are used in satellite and ground communication systems. It is known that the subreflector diffraction can degrade the performance of these reflectors. A geometrical theory of diffraction/physical optics analysis technique is used to investigate the effects of the extended subreflector, beyond its optical rim, on the reflector efficiency and far-field patterns. Representative numerical results are shown for an offset Cassegrain reflector antenna with different feed illumination tapers and subreflector extensions. It is observed that for subreflector extensions as small as one wavelength, noticeable improvements in the overall efficiencies can be expected. Useful design data are generated for the efficiency curves and far-field patterns.

  6. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    NASA Astrophysics Data System (ADS)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  7. Registration of Aerial Optical Images with LiDAR Data Using the Closest Point Principle and Collinearity Equations.

    PubMed

    Huang, Rongyong; Zheng, Shunyi; Hu, Kun

    2018-06-01

    Registration of large-scale optical images with airborne LiDAR data is the basis of the integration of photogrammetry and LiDAR. However, geometric misalignments still exist between some aerial optical images and airborne LiDAR point clouds. To eliminate such misalignments, we extended a method for registering close-range optical images with terrestrial LiDAR data to a variety of large-scale aerial optical images and airborne LiDAR data. The fundamental principle is to minimize the distances from the photogrammetric matching points to the terrestrial LiDAR data surface. Except for the satisfactory efficiency of about 79 s per 6732 × 8984 image, the experimental results also show that the unit weighted root mean square (RMS) of the image points is able to reach a sub-pixel level (0.45 to 0.62 pixel), and the actual horizontal and vertical accuracy can be greatly improved to a high level of 1/4⁻1/2 (0.17⁻0.27 m) and 1/8⁻1/4 (0.10⁻0.15 m) of the average LiDAR point distance respectively. Finally, the method is proved to be more accurate, feasible, efficient, and practical in variety of large-scale aerial optical image and LiDAR data.

  8. Wide-field-of-view millimeter-wave telescope design with ultra-low cross-polarization

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David; Hatchell, Brian; Valdez, Patrick; Tedeschi, Jonathan; Hall, Thomas; McMakin, Douglas

    2012-06-01

    As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degrees of freedom that offer larger fields of view than possible with single-reflector designs. Dragone's graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone's geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone's design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low cross-polarization and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.

  9. Generation of optical vortices in an integrated optical circuit

    NASA Astrophysics Data System (ADS)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  10. Electromagnetic fields backscattered from an s-shaped inlet cavity with an absorber coating on its inner walls

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Chuang, C. W.; Pathak, P. H.

    1987-01-01

    The EM backscatter from a two-dimensional S-shaped inlet cavity is analyzed using three different techniques, namely a hybrid combination of asymptotic high frequency and modal methods, an integral equation method, and the geometrical optics ray method, respectively. This inlet has a thin absorber coating on its perfectly conducting inner walls and the planar interior termination is made perfectly conducting. The effect of the absorber on the inner wall is treated via a perturbation scheme in the hybrid approach where it is assumed that the loss is sufficiently small for the method to be valid. The results are compared with the backscatter from a straight inlet cavity to evaluate the effect of offsetting the termination in the S-bend configuration such that it is not visible from the open end of the inlet. The envelope of the backscatter pattern for the straight inlet is always seen to peak around the forward axis due to the large return from the directly visible termination, and the pattern envelope tapers off away from the forward axis. Offsetting the termination causes the envelope of the backscatter pattern to flatten out, thereby reducing the return near the forward axis by several dB. The absorber coating reduces the pattern level of the straight inlet in directions away from the forward axis but has little effect on the peak near the axis; furthermore, the absorber coating is seen to consistently reduce the backscatter from the S-bend inlet for almost all incidence angles. The hybrid method gives excellent agreement with experimental data and with the integral equation solution, whereas, the geometrical optics ray tracing method is able to generally predict the average of the bachscatter pattern but not the pattern details.

  11. Metasurface Freeform Nanophotonics.

    PubMed

    Zhan, Alan; Colburn, Shane; Dodson, Christopher M; Majumdar, Arka

    2017-05-10

    Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their size. Unfortunately, these high curvatures and complex forms are often difficult to manufacture with current technologies, especially at the micron scale. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a silicon nitride based metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 micron along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm corresponding to a change in optical power of ~1600 diopters with 100 micron of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for further miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.

  12. Perspective Imagery in Synthetic Scenes used to Control and Guide Aircraft during Landing and Taxi: Some Issues and Concerns

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Kaiser, Mary K.

    2003-01-01

    Perspective synthetic displays that supplement, or supplant, the optical windows traditionally used for guidance and control of aircraft are accompanied by potentially significant human factors problems related to the optical geometric conformality of the display. Such geometric conformality is broken when optical features are not in the location they would be if directly viewed through a window. This often occurs when the scene is relayed or generated from a location different from the pilot s eyepoint. However, assuming no large visual/vestibular effects, a pilot cad often learn to use such a display very effectively. Important problems may arise, however, when display accuracy or consistency is compromised, and this can usually be related to geometrical discrepancies between how the synthetic visual scene behaves and how the visual scene through a window behaves. In addition to these issues, this paper examines the potentially critical problem of the disorientation that can arise when both a synthetic display and a real window are present in a flight deck, and no consistent visual interpretation is available.

  13. Hyperbolic geometrical optics: Hyperbolic glass

    NASA Astrophysics Data System (ADS)

    De Micheli, Enrico; Scorza, Irene; Viano, Giovanni Alberto

    2006-02-01

    We study the geometrical optics generated by a refractive index of the form n (x,y)=1/y (y>0), where y is the coordinate of the vertical axis in an orthogonal reference frame in R2. We thus obtain what we call "hyperbolic geometrical optics" since the ray trajectories are geodesics in the Poincaré-Lobachevsky half-plane H2. Then we prove that the constant phase surface are horocycles and obtain the horocyclic waves, which are closely related to the classical Poisson kernel and are the analogs of the Euclidean plane waves. By studying the transport equation in the Beltrami pseudosphere, we prove (i) the conservation of the flow in the entire strip 0

  14. High precision optomechanical assembly using threads as mechanical reference

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Bergeron, Guy; Cantin, Mario

    2016-09-01

    A convenient method to assemble optomechanical components is to use threaded interface. For example, lenses are often secured inside barrels using threaded rings. In other cases, multiple optical sub-assemblies such as lens barrels can be threaded to each other. Threads have the advantage to provide a simple assembly method, to be easy to manufacture, and to offer a compact mechanical design. On the other hand, threads are not considered to provide accurate centering between parts because of the assembly clearance between the inner and outer threads. For that reason, threads are often used in conjunction with precision cylindrical surfaces to limit the radial clearance between the parts to be centered. Therefore, tight manufacturing tolerances are needed on these pilot diameters, which affect the cost of the optical assembly. This paper presents a new optomechanical approach that uses threads as mechanical reference. This innovative method relies on geometric principles to auto-center parts to each other with a very low centering error that is usually less than 5 μm. The method allows to auto-center an optical group in a main barrel, to perform an axial adjustment of an optical group inside a main barrel, and to perform stacking of multiple barrels. In conjunction with the lens auto-centering method that also used threads as a mechanical reference, this novel solution opens new possibilities to realize a variety of different high precision optomechanical assemblies at lower cost.

  15. TH-CD-201-05: Characterization of a Novel Light-Collimating Tank Optical-CT System for 3D Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, D; Yoon, S; Adamovics, J

    Purpose: Comprehensive 3D dosimetry is highly desirable for advanced clinical QA, but costly optical readout techniques have hindered widespread implementation. Here, we present the first results from a cost-effective Integrated-lens Dry-tank Optical Scanner (IDOS), designed for convenient 3D dosimetry readout of radiochromic plastic dosimeters (e.g. PRESAGE). Methods: The scanner incorporates a novel transparent light-collimating tank, which collimates a point light source into parallel-ray CT geometry. The tank was designed using an in-house Monte-Carlo optical ray-tracing simulation, and was cast in polyurethane using a 3D printed mould. IDOS spatial accuracy was evaluated by imaging a set of custom optical phantoms, withmore » comparison to x-ray CT images. IDOS dose measurement performance was assessed by imaging PRESAGE dosimeters irradiated with simple known dose distributions (e.g., 4 field box 6MV treatment with Varian Linac). Direct comparisons were made to images from our gold standard DLOS scanner and calculated dose distributions from a commissioned Eclipse planning system. Results: All optical CT images were reconstructed at 1mm isotropic resolution. Comparison of IDOS and x-ray CT images of the geometric phantom demonstrated excellent IDOS geometric accuracy (sub-mm) throughout the dosimeter. IDOS measured 3D dose distribution agreed well with prediction from Eclipse, with 95% gamma pass rate at 3%/3mm. Cross-scanner dose measurement gamma analysis shows >90% of pixels passing at 3%/3mm. Conclusion: The first prototype of the IDOS system has demonstrated promising performance, with accurate dosimeter readout and negligible spatial distortion. The use of optical simulations and 3D printing to create a light collimating-tank has dramatically increased convenience and reduced costs by removing the need for expensive lenses and large volumes of refractive matching fluids.« less

  16. Some Experiments with Thin Prisms.

    ERIC Educational Resources Information Center

    Fernando, P. C. B.

    1980-01-01

    Described are several experiments, for a course in geometrical optics or for a college physics laboratory, which have a bearing on ophthalmic optics. Experiments include the single thin prism, crossed prisms, and the prismatic power of a lens. (Author/DS)

  17. Modelling acceptance of sunlight in high and low photovoltaic concentration

    NASA Astrophysics Data System (ADS)

    Leutz, Ralf

    2014-09-01

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  18. Geometrical analysis of an optical fiber bundle displacement sensor

    NASA Astrophysics Data System (ADS)

    Shimamoto, Atsushi; Tanaka, Kohichi

    1996-12-01

    The performance of a multifiber optical lever was geometrically analyzed by extending the Cook and Hamm model [Appl. Opt. 34, 5854-5860 (1995)] for a basic seven-fiber optical lever. The generalized relationships between sensitivity and the displacement detection limit to the fiber core radius, illumination irradiance, and coupling angle were obtained by analyses of three various types of light source, i.e., a parallel beam light source, an infinite plane light source, and a point light source. The analysis of the point light source was confirmed by a measurement that used the light source of a light-emitting diode. The sensitivity of the fiber-optic lever is inversely proportional to the fiber core radius, whereas the receiving light power is proportional to the number of illuminating and receiving fibers. Thus, the bundling of the finer fiber with the larger number of illuminating and receiving fibers is more effective for improving sensitivity and the displacement detection limit.

  19. Geometric & radiometric vignetting associated with a 72-facet, off-axis, polygon mirror for swept source optical coherence tomography (SS-OCT)

    NASA Astrophysics Data System (ADS)

    Everson, Michael; Duma, Virgil-Florin; Dobre, George

    2017-01-01

    Optical Coherence Tomography (OCT) has a broad range of applications in 2D and volumetric imaging of micron scale structures typically used on inaccessible objects such as the retina of the eye. This report focuses on Swept Source OCT (SS-OCT), favoured for its faster scanning speeds and therefore faster data acquisition (highly favourable when imaging live patients). SS-OCT relies on the scanning of a narrow laser line at speeds typically in excess of 100 kHz. We have employed ZemaxTM ray tracing software to simulate one method of splitting the spectrum of a broadband, near-infrared source, into its component wavelengths by reflecting the spectrum from an off-axis, 72-facet polygon mirror at a frequency of 48 kHz. We specifically addressed the geometric and radiometric vignetting associated with the reflected spectrum off an individual mirrored facet and how this may impose limitations to the incident beam size and hence lead to a loss in the power available from the source. It was found that for certain configurations up to 44% of the light was lost at the edges of the spectrum due to both radiometric and geometric vignetting, which may result in an effective swept range of <50 nm from an initial bandwidth of 100 nm. Our simulations account for real refractive errors and losses in the beam caused by lens aberrations, and produce a model of the sampling function of wavelength against time.

  20. A new approach to geometrical measurements in an animal model of vocal fold scar.

    PubMed

    Jabbour, Noel; Krishna, Priya D; Osborne, James; Rosen, Clark A

    2009-01-01

    A standard method for quantifying the geometric properties of vocal folds has not been widely adopted. An ideal method of geometrical measurement should effectively quantify the dimensions of the medial vibratory portion of the vocal fold, should be easily performed, should yield consistent results, and should be readily available at little to no cost. We have developed a new approach for geometrical measurements to meet these goals. The objective of this study is to describe this new approach and to assess its effectiveness in a canine model of vocal fold scar. One hundred thirty-five mid-membranous coronal sections of vocal folds from 10 canines (five with unilateral surgical scarring) were examined by light microscopy; digital images were captured. ImageJ was used to measure a variety of described parameters. Comparison between scarred vocal folds and control vocal folds was made. At least 20% of the slides for each vocal fold were randomly selected (n=42) for repeat measurements of interrater and intrarater reliability. A statistically significant difference between scarred and control vocal folds was obtained for horizontal distance (P<0.001), vertical distance (P=0.005), area (P<0.001), mean optical density (OD) (P<0.001), and OD at defined points along the length of the vocal fold (P< or =0.009). Reliability calculations for intrarater and interrater measurements ranged from r=0.845 to r=0.994 and from r=0.734 to r=0.976, respectively. The proposed approach for geometrical measurements meets the intended objectives in a canine model of vocal fold scar. Future work is needed to apply this approach to other model systems.

  1. Study and characterization of a MEMS micromirror device

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2004-08-01

    In this paper, advances in our study and characterization of a MEMS micromirror device are presented. The micromirror device, of 510 mm characteristic length, operates in a dynamic mode with a maximum displacement on the order of 10 mm along its principal optical axis and oscillation frequencies of up to 1.3 kHz. Developments are carried on by analytical, computational, and experimental methods. Analytical and computational nonlinear geometrical models are developed in order to determine the optimal loading-displacement operational characteristics of the micromirror. Due to the operational mode of the micromirror, the experimental characterization of its loading-displacement transfer function requires utilization of advanced optical metrology methods. Optoelectronic holography (OEH) methodologies based on multiple wavelengths that we are developing to perform such characterization are described. It is shown that the analytical, computational, and experimental approach is effective in our developments.

  2. A high efficiency dual-junction solar cell implemented as a nanowire array.

    PubMed

    Yu, Shuqing; Witzigmann, Bernd

    2013-01-14

    In this work, we present an innovative design of a dual-junction nanowire array solar cell. Using a dual-diameter nanowire structure, the solar spectrum is separated and absorbed in the core wire and the shell wire with respect to the wavelength. This solar cell provides high optical absorptivity over the entire spectrum due to an electromagnetic concentration effect. Microscopic simulations were performed in a three-dimensional setup, and the optical properties of the structure were evaluated by solving Maxwell's equations. The Shockley-Queisser method was employed to calculate the current-voltage relationship of the dual-junction structure. Proper design of the geometrical and material parameters leads to an efficiency of 39.1%.

  3. Using Two Models in Optics: Students' Difficulties and Suggestions for Teaching.

    ERIC Educational Resources Information Center

    Colin, P.; Viennot, L.

    2001-01-01

    Focuses on difficulties linked to situations in physics involving two models--geometrical optics and wave optics. Presents content analysis underlining two important features required for addressing such situations: (1) awareness of the status of the drawings; and (2) the 'backward selection' of paths of light. (Contains 24 references.)…

  4. Random fluctuations of optical signal path delay in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kral, L.; Prochazka, I.; Hamal, K.

    2006-09-01

    Atmospheric turbulence induces random delay fluctuations to any optical signal transmitted through the air. These fluctuations can influence for example the measurement precision of laser rangefinders. We have found an appropriate theoretical model based on geometrical optics that allows us to predict the amplitude of the random delay fluctuations for different observing conditions. We have successfully proved the applicability of this model by a series of experiments, directly determining the amplitude of the turbulence-induced pulse delay fluctuations by analysis of a high precision laser ranging data. Moreover, we have also shown that a standard theoretical approach based on diffractive propagation of light through inhomogeneous media and implemented using the GLAD software is not suitable for modeling of the optical signal delay fluctuations caused by the atmosphere. These models based on diffractive propagation predict the turbulence-induced optical path length fluctuations of the order of micrometers, whereas the fluctuations predicted by the geometrical optics model (in agreement with our experimental data) are generally larger by two orders of magnitude, i.e. in the submillimeter range. The reason of this discrepancy is a subject to discussion.

  5. Geometric facial comparisons in speed-check photographs.

    PubMed

    Buck, Ursula; Naether, Silvio; Kreutz, Kerstin; Thali, Michael

    2011-11-01

    In many cases, it is not possible to call the motorists to account for their considerable excess in speeding, because they deny being the driver on the speed-check photograph. An anthropological comparison of facial features using a photo-to-photo comparison can be very difficult depending on the quality of the photographs. One difficulty of that analysis method is that the comparison photographs of the presumed driver are taken with a different camera or camera lens and from a different angle than for the speed-check photo. To take a comparison photograph with exactly the same camera setup is almost impossible. Therefore, only an imprecise comparison of the individual facial features is possible. The geometry and position of each facial feature, for example the distances between the eyes or the positions of the ears, etc., cannot be taken into consideration. We applied a new method using 3D laser scanning, optical surface digitalization, and photogrammetric calculation of the speed-check photo, which enables a geometric comparison. Thus, the influence of the focal length and the distortion of the objective lens are eliminated and the precise position and the viewing direction of the speed-check camera are calculated. Even in cases of low-quality images or when the face of the driver is partly hidden, good results are delivered using this method. This new method, Geometric Comparison, is evaluated and validated in a prepared study which is described in this article.

  6. A novel method for correction of temporally- and spatially-variant optical distortion in planar particle image velocimetry

    DOE PAGES

    Zha, Kan; Busch, Stephen; Park, Cheolwoong; ...

    2016-06-24

    In-cylinder flow measurements are necessary to gain a fundamental understanding of swirl-supported, light-duty Diesel engine processes for high thermal efficiency and low emissions. Planar particle image velocimetry (PIV) can be used for non-intrusive, in situ measurement of swirl-plane velocity fields through a transparent piston. In order to keep the flow unchanged from all-metal engine operation, the geometry of the transparent piston must adapt the production-intent metal piston geometry. As a result, a temporally- and spatially-variant optical distortion is introduced to the particle images. Here, to ensure reliable measurement of particle displacements, this work documents a systematic exploration of optical distortionmore » quantification and a hybrid back-projection procedure that combines ray-tracing-based geometric and in situ manual back-projection approaches.« less

  7. Role of coherence in microsphere-assisted nanoscopy

    NASA Astrophysics Data System (ADS)

    Perrin, Stephane; Lecler, Sylvain; Leong-Hoi, Audrey; Montgomery, Paul C.

    2017-06-01

    The loss of the information, due to the diffraction and the evanescent waves, limits the resolving power of classical optical microscopy. In air, the lateral resolution of an optical microscope can approximated at half of the wavelength using a low-coherence illumination. Recently, several methods have been developed in order to overcome this limitation and, in 2011, a new far-field and full-field imaging technique was proposed where a sub-diffraction-limit resolution has been achieved using a transparent microsphere. In this article, the phenomenon of super-resolution using microsphere-assisted microscopy is analysed through rigorous electro-magnetic simulations. The performances of the imaging technique are estimated as function of optical and geometrical parameters. Furthermore, the role of coherence is introduced through the temporal coherence of the light source and the phase response of the object.

  8. Multi-function diamond film fiberoptic probe and measuring system employing same

    DOEpatents

    Young, Jack P.

    1998-01-01

    A fused fiberoptic probe having a protective cover, a fiberoptic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  9. Refraction at a curved dielectric interface - Geometrical optics solution

    NASA Technical Reports Server (NTRS)

    Lee, S.-W.; Sheshadri, M. S.; Mittra, R.; Jamnejad, V.

    1982-01-01

    The transmission of a spherical or plane wave through an arbitrarily curved dielectric interface is solved by the geometrical optics theory. The transmitted field is proportional to the product of the conventional Fresnel's transmission coefficient and a divergence factor (DF), which describes the cross-sectional variation (convergence or divergence) of a ray pencil as the latter propagates in the transmitted region. The factor DF depends on the incident wavefront, the curvatures of the interface, and the relative indices of the two media. Explicit matrix formulas for calculating DF are given, and its physical significance is illustrated via examples.

  10. Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays.

    PubMed

    Anttu, Nicklas

    2013-03-01

    Semiconductor nanowire arrays have shown promise for next-generation photovoltaics and photodetection, but enhanced understanding of the light-nanowire interaction is still needed. Here, we study theoretically the absorption of light in an array of vertical InP nanowires by moving continuously, first from the electrostatic limit to the nanophotonic regime and then to the geometrical optics limit. We show how the absorption per volume of semiconductor material in the array can be varied by a factor of 200, ranging from 10 times weaker to 20 times stronger than in a bulk semiconductor sample.

  11. Geometrical optics and optimal transport.

    PubMed

    Rubinstein, Jacob; Wolansky, Gershon

    2017-10-01

    The Fermat principle is generalized to a system of rays. It is shown that all the ray mappings that are compatible with two given intensities of a monochromatic wave, measured at two planes, are stationary points of a canonical functional, which is the weighted average of the actions of all the rays. It is further shown that there exist at least two stationary points for this functional, implying that in the geometrical optics regime the phase from intensity problem has inherently more than one solution. The caustic structures of all the possible ray mappings are analyzed. A number of simulations illustrate the theoretical considerations.

  12. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    PubMed

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  13. The molten glass sewing machine

    PubMed Central

    Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri

    2017-01-01

    We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model—and a methodology—to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications’. PMID:28373379

  14. Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy

    PubMed Central

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-01-01

    We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930

  15. The undergraduate optics course at Millersville University

    NASA Astrophysics Data System (ADS)

    Gilani, Tariq H.; Dushkina, Natalia M.

    2009-06-01

    For many years, there was no stand alone course in optics at Millersville University (MU). In the fall of 2007, the Physics Department offered for the first time PHYS 331: Fundamentals in Optics, a discovery based lab course in geometrical, physical and modern optics. This 300-level, 2 credits course consists of four contact hours per week including one-hour lecture and three hours laboratory. This course is required for BS in physics majors, but is open also to other science majors, who have the appropriate background and have met the prerequisites. This course deals with fundamental optics and optical techniques in greater depth so that the student is abreast of the activities in the forefront of the field. The goal of the course is to provide hands-on experience and in-depth preparation of our students for graduate programs in optics or as a workforce for new emerging high-tech local industries. Students learn applied optics through sequence of discovery based laboratory experiments chosen from a broad range of topics in optics and lasers, as the emphasis is on geometrical optics, geometrical aberrations in optical systems, wave optics, microscopy, spectroscopy, polarization, birefringence, laser generation, laser properties and applications, and optical standards. The peer-guided but open-ended approach provides excellent practice for the academic model of science research. Solving problems is embedded in the laboratory part as an introduction to or a conclusion of the experiment performed during the lab period. The homework problems are carefully chosen to reflect the most important relations from the covered material. Important part of the student learning strategy is the individual work on a final mini project which is presented in the class and is included in the final grading. This new course also impacted the department's undergraduate research and training programs. Some of the individual projects were extended to senior research projects in optics as part of the senior research and seminar courses, PHYS 492 and PHYS 498, which are required for graduation for all physics majors. The optics course also provides basic resources for both research and training in the classical and modern optics of high-school students and K-12 teachers. The successful implementation of the optics course was secured by a budget of about $60,000.

  16. Reconstruction of Mammary Gland Structure Using Three-Dimensional Computer-Based Microscopy

    DTIC Science & Technology

    2004-08-01

    for image analysis in cytology" Ortiz de Solorzano C., R . Malladi , Lockett S. In: Geometric methods in bio-medical image processing. Ravikanth Malladi ...Deschamps T., Idica A.K., Malladi R ., Ortiz de Solorzano C. Journal of Biomedical Optics 9(3):445-453, 2004.. Manuscripts (in preparation): "* "Three...Deschamps T., Idica A.K., 16 Malladi R ., Ortiz de Solorzano C., Proceedings of Photonics West 2003, Vol. 4964, 2003 "* "Automatic and segmentation

  17. Simulation of synthetic discriminant function optical implementation

    NASA Astrophysics Data System (ADS)

    Riggins, J.; Butler, S.

    1984-12-01

    The optical implementation of geometrical shape and synthetic discriminant function matched filters is computer modeled. The filter implementation utilizes the Allebach-Keegan computer-generated hologram algorithm. Signal-to-noise and efficiency measurements were made on the resultant correlation planes.

  18. Surface defects evaluation system based on electromagnetic model simulation and inverse-recognition calibration method

    NASA Astrophysics Data System (ADS)

    Yang, Yongying; Chai, Huiting; Li, Chen; Zhang, Yihui; Wu, Fan; Bai, Jian; Shen, Yibing

    2017-05-01

    Digitized evaluation of micro sparse defects on large fine optical surfaces is one of the challenges in the field of optical manufacturing and inspection. The surface defects evaluation system (SDES) for large fine optical surfaces is developed based on our previously reported work. In this paper, the electromagnetic simulation model based on Finite-Difference Time-Domain (FDTD) for vector diffraction theory is firstly established to study the law of microscopic scattering dark-field imaging. Given the aberration in actual optical systems, point spread function (PSF) approximated by a Gaussian function is introduced in the extrapolation from the near field to the far field and the scatter intensity distribution in the image plane is deduced. Analysis shows that both diffraction-broadening imaging and geometrical imaging should be considered in precise size evaluation of defects. Thus, a novel inverse-recognition calibration method is put forward to avoid confusion caused by diffraction-broadening effect. The evaluation method is applied to quantitative evaluation of defects information. The evaluation results of samples of many materials by SDES are compared with those by OLYMPUS microscope to verify the micron-scale resolution and precision. The established system has been applied to inspect defects on large fine optical surfaces and can achieve defects inspection of surfaces as large as 850 mm×500 mm with the resolution of 0.5 μm.

  19. Beyond catoptrics

    NASA Astrophysics Data System (ADS)

    Götte, Jörg; Hentschel, Martina; Löffler, Wolfgang

    2013-01-01

    The laws of geometrical optics are older than physics, if we define Newton as the first physicist. The law of reflection, for example, goes back about 3000 years and is first mentioned in a book called 'Catoptrics' or 'Mirrors' [1]. The law for refraction, on the other hand, is apparently 2000 years younger, although it is traditionally attributed to Snell [2]. However, geometrical optics with its rays was superseded another 600 years later by wave optics and light beams. Whereas beams are in many respects a good approximation of rays, they are never fully localized and consist of a spread of plane-wave components to provide transverse confinement. It is precisely this spread in Fourier space which leads to deviations from the laws of reflection and refraction. Upon reflection or transmission at an interface, a light beam can thus experience a shift, either in its position or propagation direction, when compared with specular reflection or Snell's law of refraction. While the discovery of these effects is not new (2013 marks the 70th anniversary of the discovery of the Goos-Hänchen shift, though publication was delayed until 1947 [3]), there has been renewed interest in these small corrections to geometrical optics, owing to advances in precision optics and theoretical understanding. In particular, for the latter, it is only in the last few years that an agreement on analytical formulas has been reached. It is now well established that beam shifts in general can be understood as a manifestation of optical spin-orbit coupling, an emerging field of research which draws many parallels between optics and quantum mechanics. One of the earliest examples thereof is the Imbert-Fedorov effect (Fedorov's original article is featured in translation in this special issue4 [4]), a counterpart to the Goos-Hänchen shift, but directed out of the plane of incidence. Today, beam shifts are discussed within a large number of fields, such as weak measurements, geometrical phases, light's orbital angular momentum, electron vortices, ballistic electrons in graphene, neutron and other particle beams, and many more; furthermore, applications such as refractive-index (bio)sensing have been developed. They are also essential for understanding the dynamics in micro-cavities, and therefore crucial for the development of micro-lasers. This special issue contains contributions from many of these fields and provides a showcase for the importance of subtle effects in modern optics and quantum mechanics.

  20. Light and optics conceptual evaluation findings from first year optometry students

    NASA Astrophysics Data System (ADS)

    Thapa, Damber; Lakshminarayanan, Vasudevan

    2014-07-01

    The Light and Optics Conceptual Evaluation (LOCE) was developed to examine conceptual understanding of basic geometric and physical optics for the Active Learning in Optics and Photonics program administered by UNESCO. This 50 item test (46 multiple choice, 4 ray-tracing short answer) was administered to entering students in the Optometry professional degree (OD) program. We wanted to determine how much of the physics/optics concepts from undergraduate physics courses (a pre-requisite for entry to the OD program) were retained. In addition, the test was administered after the first year students had taken a required course in geometric and visual optics as part of their first semester courses. The LOCE was completed by two consecutive classes to the program in 2010 (n=89) and 2011 (n=84). The tests were administered the first week of the term and the test was given without any prior notice. In addition, the test was administered to the class of 2010 students after they had completed the course in geometric and visual optics. The means of the test were 22.1 (SD=4.5; range: 12-35) and 21.3(SD=5.1; range: 11-35) for the two entering classes. There was no statistical significance between the two classes (t-test, p<0.05). Similarly there was no difference between the scores in terms of gender. The post-course test (administered during the first week of the second term) showed a statistically significant improvement (mean score went from 22.1 to 31.1, a 35% improvement). It should be noted that both groups of students performed worse in questions related to physical optics as well as lens imaging, while scoring best in questions related to refraction and reflection. These data should be taken into consideration when designing optics curricula for optometry (and other allied health programs such as opticianry or ophthalmology).

  1. Design of Off-Axis PIAACMC Mirrors

    NASA Technical Reports Server (NTRS)

    Pluzhnik, Eugene; Guyon, Olivier; Belikov, Ruslan; Kern, Brian; Bendek, Eduardo

    2015-01-01

    The Phase-Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) provides an efficient way to control diffraction propagation effects caused by the central obstruction/segmented mirrors of the telescope. PIAACMC can be optimized in a way that takes into account both chromatic diffraction effects caused by the telescope obstructed aperture and tip/tilt sensitivity of the coronagraph. As a result, unlike classic PIAA, the PIAACMC mirror shapes are often slightly asymmetric even for an on-axis configuration and require more care in calculating off-axis shapes when an off-axis configuration is preferred. A method to design off-axis PIAA mirror shapes given an on-axis mirror design is presented. The algorithm is based on geometrical ray tracing and is able to calculate off-axis PIAA mirror shapes for an arbitrary geometry of the input and output beams. The method is demonstrated using the third generation PIAACMC design for WFIRST-AFTA (Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets) telescope. Geometrical optics design issues related to the off-axis diffraction propagation effects are also discussed.

  2. Geometrical connection between catacaustics and kinematics of planar motion of a rigid solid.

    PubMed

    Bellver-Cebreros, Consuelo; Rodríguez-Danta, Marcelo

    2016-09-01

    Unnoticed and hidden optomechanical analogies between kinematics of planar motion of a rigid solid and catacaustics generated by mirror reflection on smooth profiles in geometrical optics are discussed. A concise and self-consistent theory is developed, which intends to explain and clarify many partial aspects covered by the literature.

  3. Lens Ray Diagrams with a Spreadsheet

    ERIC Educational Resources Information Center

    González, Manuel I.

    2018-01-01

    Physicists create spreadsheets customarily to carry out numerical calculations and to display their results in a meaningful, nice-looking way. Spreadsheets can also be used to display a vivid geometrical model of a physical system. This statement is illustrated with an example taken from geometrical optics: images formed by a thin lens. A careful…

  4. The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.

    2018-04-01

    The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.

  5. Measuring the quantum geometric tensor in two-dimensional photonic and exciton-polariton systems

    NASA Astrophysics Data System (ADS)

    Bleu, O.; Solnyshkov, D. D.; Malpuech, G.

    2018-05-01

    We propose theoretically a method that allows to measure all the components of the quantum geometric tensor (the metric tensor and the Berry curvature) in a photonic system. The method is based on standard optical measurements. It applies to two-band systems, which can be mapped to a pseudospin, and to four-band systems, which can be described by two entangled pseudospins. We apply this method to several specific cases. We consider a 2D planar cavity with two polarization eigenmodes, where the pseudospin measurement can be performed via polarization-resolved photoluminescence. We also consider the s band of a staggered honeycomb lattice with polarization-degenerate modes (scalar photons), where the sublattice pseudospin can be measured by performing spatially resolved interferometric measurements. We finally consider the s band of a honeycomb lattice with polarized (spinor) photons as an example of a four-band model. We simulate realistic experimental situations in all cases. We find the photon eigenstates by solving the Schrödinger equation including pumping and finite lifetime, and then simulate the measurements to finally extract realistic mappings of the k-dependent tensor components.

  6. Modeling and Simulation of High Resolution Optical Remote Sensing Satellite Geometric Chain

    NASA Astrophysics Data System (ADS)

    Xia, Z.; Cheng, S.; Huang, Q.; Tian, G.

    2018-04-01

    The high resolution satellite with the longer focal length and the larger aperture has been widely used in georeferencing of the observed scene in recent years. The consistent end to end model of high resolution remote sensing satellite geometric chain is presented, which consists of the scene, the three line array camera, the platform including attitude and position information, the time system and the processing algorithm. The integrated design of the camera and the star tracker is considered and the simulation method of the geolocation accuracy is put forward by introduce the new index of the angle between the camera and the star tracker. The model is validated by the geolocation accuracy simulation according to the test method of the ZY-3 satellite imagery rigorously. The simulation results show that the geolocation accuracy is within 25m, which is highly consistent with the test results. The geolocation accuracy can be improved about 7 m by the integrated design. The model combined with the simulation method is applicable to the geolocation accuracy estimate before the satellite launching.

  7. A new method of measuring gravitational acceleration in an undergraduate laboratory program

    NASA Astrophysics Data System (ADS)

    Wang, Qiaochu; Wang, Chang; Xiao, Yunhuan; Schulte, Jurgen; Shi, Qingfan

    2018-01-01

    This paper presents a high accuracy method to measure gravitational acceleration in an undergraduate laboratory program. The experiment is based on water in a cylindrical vessel rotating about its vertical axis at a constant speed. The water surface forms a paraboloid whose focal length is related to rotational period and gravitational acceleration. This experimental setup avoids classical source errors in determining the local value of gravitational acceleration, so prevalent in the common simple pendulum and inclined plane experiments. The presented method combines multiple physics concepts such as kinematics, classical mechanics and geometric optics, offering the opportunity for lateral as well as project-based learning.

  8. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  9. Geometrical optical transfer function: is it worth calculating?

    PubMed

    Díaz, José A; Mahajan, Virendra N

    2017-10-01

    In this paper, we explore the merit of calculating the geometrical optical transfer function (GOTF) in optical design by comparing the time to calculate it with the time to calculate the diffraction optical transfer function (DOTF). We determine the DOTF by numerical integration of the pupil function autocorrelation (that reduces to an integration of a complex exponential of the aberration difference function), 2D digital autocorrelation of the pupil function, and the Fourier transform (FT) of the point-spread function (PSF); and we determine the GOTF by the FT of the geometrical PSF (that reduces to an integration over the pupil plane of a complex exponential that is a scalar product of the spatial frequency and transverse ray aberration vectors) and the FT of the spot diagram. Our starting point for calculating the DOTF is the wave aberrations of the system in its pupil plane, and the transverse ray aberrations in the image plane for the GOTF. Numerical results for primary aberrations and some typical imaging systems show that the direct numerical integrations are slow, but the GOTF calculation by a FT of the spot diagram is two or even three times slower than the DOTF calculation by an FT of the PSF, depending on the aberration. We conclude that the calculation of GOTF is, at best, an approximation of the DOTF and only for large aberrations; GOTF does not offer any advantage in the optical design process, and hence negates its utility.

  10. Roadway Marking Optics for Autonomous Vehicle Guidance and Other Machine Vision Applications

    NASA Astrophysics Data System (ADS)

    Konopka, Anthony T.

    This work determines optimal planar geometric light source and optical imager configurations and electromagnetic wavelengths for maximizing the reflected signal intensity when using machine vision technology to image roadway markings with embedded spherical glass beads. It is found through a first set of experiments that roadway marking samples exhibiting little or no bead rolling effects are uniformly reflective with respect to the azimuthal angle of observation when measured for retroreflectivity within industry standard 30-meter geometry. A second set of experiments indicate that white roadway markings exhibit higher reflectivity throughout the visible spectrum than yellow roadway markings. A roadway marking optical model capable of being used to determine optimal geometric light source and optical imager configurations for maximizing the reflected signal intensities of roadway marking targets is constructed and simulated using optical engineering software. It is found through a third set of experiments that high signal intensities can be measured when the polar angles of the light source and optical imager along a plane normal to a roadway marking are equal, with the maximum signal intensity being measured when the polar angles of both the light source and optical imager are 90°.

  11. Nonlinear and non-Hermitian optical systems applied to the development of filters and optical sensors

    NASA Astrophysics Data System (ADS)

    Amaro de Faria Júnior, A. C.

    2015-09-01

    In this work we present a method of investigation of nonlinear optical beams generated from non-Hermitian optical systems1 . This method can be applied in the development of optical filters and optical sensors to process, analyze and choose the passband of the propagation modes of an optical pulse from an non-Hermitian optical system. Non-Hermitian optical systems can be used to develop optical fiber sensors that suppress certain propagation modes of optical pulses that eventually behave as quantum noise. Such systems are described by the Nonlinear Schrödinger-like Equation with Parity-Time (PT) Symmetric Optical Potentials. There are optical fiber sensors that due to high laser intensity and frequency can produce quantum noise, such as Raman and Brillouin scattering. However, the optical fiber, for example, can be designed so that its geometry suppress certain propagation modes of the beam. We apply some results of non- Hermitian optical systems with PT symmetry to simulate optical lattice by a appropriate potential function, which among other applications, can naturally suppress certain propagation modes of an optical beam propagating through a waveguide. In other words, the optical system is modeled by a potential function in the Nonlinear Schrödinger-like Equation that one relates with the geometric aspects of the wave guides and with the optical beam interacting with the waveguide material. The paper is organized as follows: sections 1 and 2 present a brief description about nonlinear optical systems and non-Hermitian optical systems with PT symmetry. Section 3 presents a description of the dynamics of nonlinear optical pulses propagating through optical networks described by a optical potential non-Hermitian. Sections 4 and 5 present a general description of this non-Hermitian optical systems and how to get them from a more general model. Section 6 presents some conclusions and comment and the final section presents the references. Begin the abstract two lines below author names and addresses.

  12. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection.

    PubMed

    M, Soorya; Issac, Ashish; Dutta, Malay Kishore

    2018-02-01

    Glaucoma is an ocular disease which can cause irreversible blindness. The disease is currently identified using specialized equipment operated by optometrists manually. The proposed work aims to provide an efficient imaging solution which can help in automating the process of Glaucoma diagnosis using computer vision techniques from digital fundus images. The proposed method segments the optic disc using a geometrical feature based strategic framework which improves the detection accuracy and makes the algorithm invariant to illumination and noise. Corner thresholding and point contour joining based novel methods are proposed to construct smooth contours of Optic Disc. Based on a clinical approach as used by ophthalmologist, the proposed algorithm tracks blood vessels inside the disc region and identifies the points at which first vessel bend from the optic disc boundary and connects them to obtain the contours of Optic Cup. The proposed method has been compared with the ground truth marked by the medical experts and the similarity parameters, used to determine the performance of the proposed method, have yield a high similarity of segmentation. The proposed method has achieved a macro-averaged f-score of 0.9485 and accuracy of 97.01% in correctly classifying fundus images. The proposed method is clinically significant and can be used for Glaucoma screening over a large population which will work in a real time. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The methods of optical physics as a mean of the objects’ molecular structure identification (on the base of the research of dophamine and adrenaline molecules)

    NASA Astrophysics Data System (ADS)

    Elkin, M. D.; Alykova, O. M.; Smirnov, V. V.; Stefanova, G. P.

    2017-01-01

    Structural and dynamic models of dopamine and adrenaline are proposed on the basis of ab initio quantum calculations of the geometric and electronic structure. The parameters of the adiabatic potential are determined, a vibrational states interpretation of the test compound is proposed in this work. The analysis of the molecules conformational structure of the substance is made. A method for calculating the shifts of vibrational excitation frequencies in 1,2,4-threesubstituted of benzole is presented. It is based on second order perturbation theory. A choice of method and basis for calculation of a fundamental vibrations frequencies and intensities of the bands in the IR and Raman spectra is justified. The technique for evaluation of anharmonicity with cubic and quartic force constants is described. The paper presents the results of numerical experiments, geometric parameters of molecules, such as the valence bond lengths and angles between them. We obtain the frequency of the vibrational states and values of their integrated intensities. The interpretation of vibration of conformers is given. The results are in good agreement with experimental values. Proposed frequency can be used to identify the compounds of the vibrational spectra of molecules. The calculation was performed quantum density functional method DFT/B3LYP. It is shown that this method can be used to modeling the geometrical parameters molecular and electronic structure of various substituted of benzole. It allows us to construct the structural-dynamic models of this class of compounds by numerical calculations.

  14. PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    QIAN,S.; TAKACS,P.

    2000-07-30

    The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less

  15. Xpatch prediction improvements to support multiple ATR applications

    NASA Astrophysics Data System (ADS)

    Andersh, Dennis J.; Lee, Shung W.; Moore, John T.; Sullivan, Douglas P.; Hughes, Jeff A.; Ling, Hao

    1998-08-01

    This paper describes an electromagnetic computer prediction code for generating radar cross section (RCS), time-domain signature sand synthetic aperture radar (SAR) images of realistic 3D vehicles. The vehicle, typically an airplane or a ground vehicle, is represented by a computer-aided design (CAD) file with triangular facets, IGES curved surfaces, or solid geometries.The computer code, Xpatch, based on the shooting-and-bouncing-ray technique, is used to calculate the polarimetric radar return from the vehicles represented by these different CAD files. Xpatch computers the first- bounce physical optics (PO) plus the physical theory of diffraction (PTD) contributions. Xpatch calculates the multi-bounce ray contributions by using geometric optics and PO for complex vehicles with materials. It has been found that the multi-bounce calculations, the radar return in typically 10 to 15 dB too low. Examples of predicted range profiles, SAR, imagery, and RCS for several different geometries are compared with measured data to demonstrate the quality of the predictions. Recent enhancements to Xpatch include improvements for millimeter wave applications and hybridization with finite element method for small geometric features and augmentation of additional IGES entities to support trimmed and untrimmed surfaces.

  16. Theory and design of line-to-point focus solar concentrators with tracking secondary optics.

    PubMed

    Cooper, Thomas; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo

    2013-12-10

    The two-stage line-to-point focus solar concentrator with tracking secondary optics is introduced. Its design aims to reduce the cost per m(2) of collecting aperture by maintaining a one-axis tracking trough as the primary concentrator, while allowing the thermodynamic limit of concentration in 2D of 215× to be significantly surpassed by the implementation of a tracking secondary stage. The limits of overall geometric concentration are found to exceed 4000× when hollow secondary concentrators are used, and 6000× when the receiver is immersed in a dielectric material of refractive index n=1.5. Three exemplary collectors, with geometric concentrations in the range of 500-1500× are explored and their geometric performance is ascertained by Monte Carlo ray-tracing. The proposed solar concentrator design is well-suited for large-scale applications with discrete, flat receivers requiring concentration ratios in the range 500-2000×.

  17. Caustic Singularities Of High-Gain, Dual-Shaped Reflectors

    NASA Technical Reports Server (NTRS)

    Galindo, Victor; Veruttipong, Thavath W.; Imbriale, William A.; Rengarajan, Sambiam

    1991-01-01

    Report presents study of some sources of error in analysis, by geometric theory of diffraction (GTD), of performance of high-gain, dual-shaped antenna reflector. Study probes into underlying analytic causes of singularity, with view toward devising and testing practical methods to avoid problems caused by singularity. Hybrid physical optics (PO) approach used to study near-field spillover or noise-temperature characteristics of high-gain relector antenna efficiently and accurately. Report illustrates this approach and underlying principles by presenting numerical results, for both offset and symmetrical reflector systems, computed by GTD, PO, and PO/GO methods.

  18. Generation and dynamics of optical beams with polarization singularities.

    PubMed

    Cardano, Filippo; Karimi, Ebrahim; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico

    2013-04-08

    We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as "lemon", "star", and "spiral". Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

  19. Extended capture range for focus-diverse phase retrieval in segmented aperture systems using geometrical optics.

    PubMed

    Jurling, Alden S; Fienup, James R

    2014-03-01

    Extending previous work by Thurman on wavefront sensing for segmented-aperture systems, we developed an algorithm for estimating segment tips and tilts from multiple point spread functions in different defocused planes. We also developed methods for overcoming two common modes for stagnation in nonlinear optimization-based phase retrieval algorithms for segmented systems. We showed that when used together, these methods largely solve the capture range problem in focus-diverse phase retrieval for segmented systems with large tips and tilts. Monte Carlo simulations produced a rate of success better than 98% for the combined approach.

  20. Semi-Automatic Extraction Algorithm for Images of the Ciliary Muscle

    PubMed Central

    Kao, Chiu-Yen; Richdale, Kathryn; Sinnott, Loraine T.; Ernst, Lauren E.; Bailey, Melissa D.

    2011-01-01

    Purpose To development and evaluate a semi-automatic algorithm for segmentation and morphological assessment of the dimensions of the ciliary muscle in Visante™ Anterior Segment Optical Coherence Tomography images. Methods Geometric distortions in Visante images analyzed as binary files were assessed by imaging an optical flat and human donor tissue. The appropriate pixel/mm conversion factor to use for air (n = 1) was estimated by imaging calibration spheres. A semi-automatic algorithm was developed to extract the dimensions of the ciliary muscle from Visante images. Measurements were also made manually using Visante software calipers. Interclass correlation coefficients (ICC) and Bland-Altman analyses were used to compare the methods. A multilevel model was fitted to estimate the variance of algorithm measurements that was due to differences within- and between-examiners in scleral spur selection versus biological variability. Results The optical flat and the human donor tissue were imaged and appeared without geometric distortions in binary file format. Bland-Altman analyses revealed that caliper measurements tended to underestimate ciliary muscle thickness at 3 mm posterior to the scleral spur in subjects with the thickest ciliary muscles (t = 3.6, p < 0.001). The percent variance due to within- or between-examiner differences in scleral spur selection was found to be small (6%) when compared to the variance due to biological difference across subjects (80%). Using the mean of measurements from three images achieved an estimated ICC of 0.85. Conclusions The semi-automatic algorithm successfully segmented the ciliary muscle for further measurement. Using the algorithm to follow the scleral curvature to locate more posterior measurements is critical to avoid underestimating thickness measurements. This semi-automatic algorithm will allow for repeatable, efficient, and masked ciliary muscle measurements in large datasets. PMID:21169877

  1. Monte-Carlo Simulation for Accuracy Assessment of a Single Camera Navigation System

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Luhmann, T.

    2012-07-01

    The paper describes a simulation-based optimization of an optical tracking system that is used as a 6DOF navigation system for neurosurgery. Compared to classical system used in clinical navigation, the presented system has two unique properties: firstly, the system will be miniaturized and integrated into an operating microscope for neurosurgery; secondly, due to miniaturization a single camera approach has been designed. Single camera techniques for 6DOF measurements show a special sensitivity against weak geometric configurations between camera and object. In addition, the achievable accuracy potential depends significantly on the geometric properties of the tracked objects (locators). Besides quality and stability of the targets used on the locator, their geometric configuration is of major importance. In the following the development and investigation of a simulation program is presented which allows for the assessment and optimization of the system with respect to accuracy. Different system parameters can be altered as well as different scenarios indicating the operational use of the system. Measurement deviations are estimated based on the Monte-Carlo method. Practical measurements validate the correctness of the numerical simulation results.

  2. Controlling Surface Plasmons Through Covariant Transformation of the Spin-Dependent Geometric Phase Between Curved Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining

    2018-06-01

    General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.

  3. Two new methods used to simulate the circumferential solar flux density concentrated on the absorber of a parabolic trough solar collector

    NASA Astrophysics Data System (ADS)

    Guo, Minghuan; Wang, Zhifeng; Sun, Feihu

    2016-05-01

    The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed to be circular Gaussian type. Then a parabolic trough solar collector of Euro Trough 150 is used as an example object to apply this BRT method. Euro Trough 150 is composed of RP3 mirror facets, with the focal length of 1.71m, aperture width of 5.77m, outer tube diameter of 0.07m. Also to verify the simulated flux density distributions, we establish a modified MCRT method. For this modified MCRT method, the random rays with weighted energy elements are launched in the close-related rectangle region in the aperture plane of the parabolic concentrator and the optical errors are statistically modeled in the stages of forward ray tracing process. Given the same concentrator geometric parameters and optical error values, the simulated results from these two ray tracing methods are in good consistence. The two highlights of this paper are the new optical simulation method, BRT, and figuring out the close-related mirror surface region for BRT and the close-related aperture region for MCRT in advance to effectively simulate the solar flux distribution on the absorber surface of a parabolic trough collector.

  4. Improved GO/PO method and its application to wideband SAR image of conducting objects over rough surface

    NASA Astrophysics Data System (ADS)

    Jiang, Wang-Qiang; Zhang, Min; Nie, Ding; Jiao, Yong-Chang

    2018-04-01

    To simulate the multiple scattering effect of target in synthetic aperture radar (SAR) image, the hybrid method GO/PO method, which combines the geometrical optics (GO) and physical optics (PO), is employed to simulate the scattering field of target. For ray tracing is time-consuming, the Open Graphics Library (OpenGL) is usually employed to accelerate the process of ray tracing. Furthermore, the GO/PO method is improved for the simulation in low pixel situation. For the improved GO/PO method, the pixels are arranged corresponding to the rectangular wave beams one by one, and the GO/PO result is the sum of the contribution values of all the rectangular wave beams. To get high-resolution SAR image, the wideband echo signal is simulated which includes information of many electromagnetic (EM) waves with different frequencies. Finally, the improved GO/PO method is used to simulate the SAR image of targets above rough surface. And the effects of reflected rays and the size of pixel matrix on the SAR image are also discussed.

  5. Algorithm and Application of Gcp-Independent Block Adjustment for Super Large-Scale Domestic High Resolution Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sun, Y. S.; Zhang, L.; Xu, B.; Zhang, Y.

    2018-04-01

    The accurate positioning of optical satellite image without control is the precondition for remote sensing application and small/medium scale mapping in large abroad areas or with large-scale images. In this paper, aiming at the geometric features of optical satellite image, based on a widely used optimization method of constraint problem which is called Alternating Direction Method of Multipliers (ADMM) and RFM least-squares block adjustment, we propose a GCP independent block adjustment method for the large-scale domestic high resolution optical satellite image - GISIBA (GCP-Independent Satellite Imagery Block Adjustment), which is easy to parallelize and highly efficient. In this method, the virtual "average" control points are built to solve the rank defect problem and qualitative and quantitative analysis in block adjustment without control. The test results prove that the horizontal and vertical accuracy of multi-covered and multi-temporal satellite images are better than 10 m and 6 m. Meanwhile the mosaic problem of the adjacent areas in large area DOM production can be solved if the public geographic information data is introduced as horizontal and vertical constraints in the block adjustment process. Finally, through the experiments by using GF-1 and ZY-3 satellite images over several typical test areas, the reliability, accuracy and performance of our developed procedure will be presented and studied in this paper.

  6. Near-field fluorescence thermometry using highly efficient triple-tapered near-field optical fiber probe.

    PubMed

    Fujii, T; Taguchi, Y; Saiki, T; Nagasaka, Y

    2012-12-01

    A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.

  7. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission

    NASA Astrophysics Data System (ADS)

    Letu, Husi; Ishimoto, Hiroshi; Riedi, Jerome; Nakajima, Takashi Y.; -Labonnote, Laurent C.; Baran, Anthony J.; Nagao, Takashi M.; Sekiguchi, Miho

    2016-09-01

    In this study, various ice particle habits are investigated in conjunction with inferring the optical properties of ice clouds for use in the Global Change Observation Mission-Climate (GCOM-C) satellite programme. We develop a database of the single-scattering properties of five ice habit models: plates, columns, droxtals, bullet rosettes, and Voronoi. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor on board the GCOM-C satellite, which is scheduled to be launched in 2017 by the Japan Aerospace Exploration Agency. A combination of the finite-difference time-domain method, the geometric optics integral equation technique, and the geometric optics method is applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible to the infrared spectral regions. This covers the SGLI channels for the size parameter, which is defined as a single-particle radius of an equivalent volume sphere, ranging between 6 and 9000 µm. The database includes the extinction efficiency, absorption efficiency, average geometrical cross section, single-scattering albedo, asymmetry factor, size parameter of a volume-equivalent sphere, maximum distance from the centre of mass, particle volume, and six nonzero elements of the scattering phase matrix. The characteristics of calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, size-integrated bulk scattering properties for the five ice particle habit models are calculated from the single-scattering database and microphysical data. Using the five ice particle habit models, the optical thickness and spherical albedo of ice clouds are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements, recorded on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite. The optimal ice particle habit for retrieving the SGLI ice cloud properties is investigated by adopting the spherical albedo difference (SAD) method. It is found that the SAD is distributed stably due to the scattering angle increases for bullet rosettes with an effective diameter (Deff) of 10 µm and Voronoi particles with Deff values of 10, 60, and 100 µm. It is confirmed that the SAD of small bullet-rosette particles and all sizes of Voronoi particles has a low angular dependence, indicating that a combination of the bullet-rosette and Voronoi models is sufficient for retrieval of the ice cloud's spherical albedo and optical thickness as effective habit models for the SGLI sensor. Finally, SAD analysis based on the Voronoi habit model with moderate particle size (Deff = 60 µm) is compared with the conventional general habit mixture model, inhomogeneous hexagonal monocrystal model, five-plate aggregate model, and ensemble ice particle model. The Voronoi habit model is found to have an effect similar to that found in some conventional models for the retrieval of ice cloud properties from space-borne radiometric observations.

  8. Control algorithms and applications of the wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  9. Transformation optics beyond the manipulation of light trajectories.

    PubMed

    Ginis, Vincent; Tassin, Philippe

    2015-08-28

    Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces--a quadratic function of the fields--follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Transformation optics beyond the manipulation of light trajectories

    PubMed Central

    Ginis, Vincent; Tassin, Philippe

    2015-01-01

    Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces—a quadratic function of the fields—follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics. PMID:26217057

  11. DPSSL for direct dicing and drilling of dielectrics

    NASA Astrophysics Data System (ADS)

    Ashkenasi, David; Schwagmeier, M.

    2007-02-01

    New strategies in laser micro processing of glasses and other optically transparent materials are being developed with increasing interest and intensity using diode pumped solid state laser (DPSSL) systems generating short or ultra-short pulses in the optical spectra at good beam quality. Utilizing non-linear absorption channels, it can be demonstrated that ns green (532 nm) laser light can scribe, dice, full body cut and drill (flat) borofloat and borosilicate glasses at good quality. Outside of the correct choice in laser parameters, an intelligent laser beam management plays an important role in successful micro processing of glass. This application characterizes a very interesting alternative where standard methods demonstrate severe limitations such as diamond dicing, CO2 laser treatment or water jet cutting, especially for certain type of optical materials and/or geometric conditions. Application near processing examples using different DPSSL systems generating ns pulsed light at 532 nm in TEM 00 at average powers up to 10 W are presented and discussed in respect to potential applications in display technology, micro electronics and optics.

  12. Prediction of apparent extinction for optical transmission through rain

    NASA Astrophysics Data System (ADS)

    Vasseur, H.; Gibbins, C. J.

    1996-12-01

    At optical wavelengths, geometrical optics holds that the extinction efficiency of raindrops is equal to two. This approximation yields a wavelength-independent extinction coefficient that, however, can hardly be used to predict accurately rain extinction measured in optical transmissions. Actually, in addition to the extinct direct incoming light, a significant part of the power scattered by the rain particles reaches the receiver. This leads to a reduced apparent extinction that depends on both rain characteristics and link parameters. A simple method is proposed to evaluate this apparent extinction. It accounts for the additional scattered power that enters the receiver when one considers the forward-scattering pattern of the raindrops as well as the multiple-scattering effects using, respectively, the Fraunhofer diffraction and Twersky theory. It results in a direct analytical formula that enables a quick and accurate estimation of the rain apparent extinction and highlights the influence of the link parameters. Predictions of apparent extinction through rain are found in excellent agreement with measurements in the visible and IR regions.

  13. Geometric transformations of optical orbital angular momentum spatial modes

    NASA Astrophysics Data System (ADS)

    He, Rui; An, Xin

    2018-02-01

    With the aid of the bosonic mode conversions in two different coordinate frames, we show that (1) the coordinate eigenstate is exactly the EPR entangled state representation, and (2) the Laguerre-Gaussian (LG) mode is exactly the wave function of the common eigenvector of the orbital angular momentum and the total photon number operator. Moreover, by using the conversion of the bosonic modes, theWigner representation of the LG mode can be obtained directly. It provides an alternative to the method of Simon and Agarwal.

  14. Surface electrical properties experiment. Part 2: Theory of radio-frequency interferometry in geophysical subsurface probing

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Tsang, L.

    1974-01-01

    The radiation fields due to a horizontal electric dipole laid on the surface of a stratified medium were calculated using a geometrical optics approximation, a modal approach, and direct numerical integration. The solutions were obtained from the reflection coefficient formulation and written in integral forms. The calculated interference patterns are compared in terms of the usefulness of the methods used to obtain them. Scattering effects are also discussed and all numerical results for anisotropic and isotropic cases are presented.

  15. Wide-Field-of-View Millimeter-Wave Telescope Design with Ultra-Low Cross-Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.

    2012-05-01

    As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since most millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degreesmore » of freedom that offer larger fields of view than possible with single-reflector designs. Dragone’s graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone’s geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone’s design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low polarization crosstalk and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.« less

  16. Modeling heading and path perception from optic flow in the case of independently moving objects

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2013-01-01

    Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589

  17. Laser-induced stimulated Raman scattering in the forward direction of a droplet - Comparison of Mie theory with geometrical optics

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Jarzembski, Maurice A.

    1991-01-01

    This paper uses Mie theory to treat electromagnetic scattering and to evaluate field enhancement in the forward direction of a small droplet irradiated by a high-energy beam and compares the results of calculations with the field-enhancement evaluation obtained via geometrical optics treatment. Results of this comparison suggest that the field enhancement located at the critical ring region encircling the axis in the forward direction of the droplet can support laser-induced Raman scattering. The results are supported by experimental observations of the interaction of a 120-micron-diam water droplet with a high-energy Nd:YAG laser beam.

  18. Geometrical optics model of Mie resonances

    PubMed

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  19. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert, Jr.

    1999-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.

  20. Pulse height response of an optical particle counter to monodisperse aerosols

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Grice, S. S.; Cuda, V.

    1976-01-01

    The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.

  1. Strength measurement of optical fibers by bending

    NASA Astrophysics Data System (ADS)

    Srubshchik, Leonid S.

    1999-01-01

    A two-point bending technique has been used not only to measure the breaking stress of optical fiber but also to predict its static and dynamic fatigue. The present theory of this test is based on elastica theory of rod. However, within the limits of elastica theory the tensile and shear stresses cannot be determined. In this paper we study dynamic and static problems for optical fiber in the two- point bending test on the base of geometrically exact theory in which rod can suffer flexure, extension, and shear. We obtain the governing partial differential equations taking into account the fact that the lateral motion of the fiber is restrained by the presence of flat parallel plates. We develop the computational methods for solving the initial and equilibrium free-boundary nonlinear planar problems. We derive the formulas for predicting of the tensile strength from strength in the bending and calculate one example.

  2. Full ocular biometry through dual-depth whole-eye optical coherence tomography

    PubMed Central

    Kim, Hyung-Jin; Kim, Minji; Hyeon, Min Gyu; Choi, Youngwoon; Kim, Beop-Min

    2018-01-01

    We propose a new method of determining the optical axis (OA), pupillary axis (PA), and visual axis (VA) of the human eye by using dual-depth whole-eye optical coherence tomography (OCT). These axes, as well as the angles “α” between the OA and VA and “κ” between PA and VA, are important in many ophthalmologic applications, especially in refractive surgery. Whole-eye images are reconstructed based on simultaneously acquired images of the anterior segment and retina. The light from a light source is split into two orthogonal polarization components for imaging the anterior segment and retina, respectively. The OA and PA are identified based on their geometric definitions by using the anterior segment image only, while the VA is detected through accurate correlation between the two images. The feasibility of our approach was tested using a model eye and human subjects. PMID:29552378

  3. Measurement of the topological charge and index of vortex vector optical fields with a space-variant half-wave plate.

    PubMed

    Liu, Gui-Geng; Wang, Ke; Lee, Yun-Han; Wang, Dan; Li, Ping-Ping; Gou, Fangwang; Li, Yongnan; Tu, Chenghou; Wu, Shin-Tson; Wang, Hui-Tian

    2018-02-15

    Vortex vector optical fields (VVOFs) refer to a kind of vector optical field with an azimuth-variant polarization and a helical phase, simultaneously. Such a VVOF is defined by the topological index of the polarization singularity and the topological charge of the phase vortex. We present a simple method to measure the topological charge and index of VVOFs by using a space-variant half-wave plate (SV-HWP). The geometric phase grating of the SV-HWP diffracts a VVOF into ±1 orders with orthogonally left- and right-handed circular polarizations. By inserting a polarizer behind the SV-HWP, the two circular polarization states project into the linear polarization and then interfere with each other to form the interference pattern, which enables the direct measurement of the topological charge and index of VVOFs.

  4. Locally-enhanced light scattering by a monocrystalline silicon wafer

    NASA Astrophysics Data System (ADS)

    Ma, Li; Zhang, Pan; Li, Zhen-Hua; Liu, Chun-Xiang; Li, Xing; Zhan, Zi-Jun; Ren, Xiao-Rong; He, Chang-Wei; Chen, Chao; Cheng, Chuan-Fu

    2018-03-01

    We study the optical properties of light scattering by a monocrystalline silicon wafer, by using transparent material to replicate its surface structure and illuminating a fabricated sample with a laser source. The experimental results show that the scattering field contains four spots of concentrated intensity with high local energy, and these spots are distributed at the four vertices of a square with lines of intensity linking adjacent spots. After discussing simulations of and theory about the formation of this light scattering, we conclude that the scattering field is formed by the effects of both geometrical optics and physical optics. Moreover, we calculate the central angle of the spots in the light field, and the result indicates that the locally-enhanced intensity spots have a definite scattering angle. These results may possibly provide a method for improving energy efficiency within mono-Si based solar cells.

  5. Arbitrary spin-to-orbital angular momentum conversion of light.

    PubMed

    Devlin, Robert C; Ambrosio, Antonio; Rubin, Noah A; Mueller, J P Balthasar; Capasso, Federico

    2017-11-17

    Optical elements that convert the spin angular momentum (SAM) of light into vortex beams have found applications in classical and quantum optics. These elements-SAM-to-orbital angular momentum (OAM) converters-are based on the geometric phase and only permit the conversion of left- and right-circular polarizations (spin states) into states with opposite OAM. We present a method for converting arbitrary SAM states into total angular momentum states characterized by a superposition of independent OAM. We designed a metasurface that converts left- and right-circular polarizations into states with independent values of OAM and designed another device that performs this operation for elliptically polarized states. These results illustrate a general material-mediated connection between SAM and OAM of light and may find applications in producing complex structured light and in optical communication. Copyright © 2017, American Association for the Advancement of Science.

  6. Performance and Vibration of 30 cm Pyrolytic Ion Thruster Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Soulas, George C.

    2004-01-01

    Carbon has a sputter erosion rate about an order of magnitude less than that of molybdenum, over the voltages typically used in ion thruster applications. To explore its design potential, 30 cm pyrolytic carbon ion thruster optics have been fabricated geometrically similar to the molybdenum ion optics used on NSTAR. They were then installed on an NSTAR Engineering Model thruster, and experimentally evaluated over much of the original operating envelope. Ion beam currents ranged from 0.51 to 1.76 Angstroms, at total voltages up to 1280 V. The perveance, electron back-streaming limit, and screen-grid transparency were plotted for these operating points, and compared with previous data obtained with molybdenum. While thruster performance with pyrolytic carbon was quite similar to that with molybdenum, behavior variations can reasonably be explained by slight geometric differences. Following all performance measurements, the pyrolytic carbon ion optics assembly was subjected to an abbreviated vibration test. The thruster endured 9.2 g(sub rms) of random vibration along the thrust axis, similar to DS 1 acceptance levels. Despite significant grid clashing, there was no observable damage to the ion optics assembly.

  7. Tackling misconceptions in geometrical optics

    NASA Astrophysics Data System (ADS)

    Ceuppens, S.; Deprez, J.; Dehaene, W.; De Cock, M.

    2018-07-01

    To improve the teaching and learning materials for a curriculum it is important to incorporate the findings from educational research. In light of this, we present creative exercises and experiments to elicit, confront and resolve misconceptions in geometrical optics. Since ray diagrams can be both the cause and the solution for many misconceptions we focus strongly on improving understanding of this tool to solve and understand optical phenomena. Through a combination of a conceptual understanding programme (CUP) and provocative exercises with ray diagrams we aim to elicit conceptual or cognitive conflict and exploit this to tackle misconceptions and increase students’ conceptual understanding through inquiry. We describe exercises for image formation by a plane mirror, image formation by a convex lens and indirect and direct observation of a real image formed by a convex lens as examples of our approach.

  8. Geometric and Optic Characterization of a Hemispherical Dome Port for Underwater Photogrammetry

    PubMed Central

    Menna, Fabio; Nocerino, Erica; Fassi, Francesco; Remondino, Fabio

    2016-01-01

    The popularity of automatic photogrammetric techniques has promoted many experiments in underwater scenarios leading to quite impressive visual results, even by non-experts. Despite these achievements, a deep understanding of camera and lens behaviors as well as optical phenomena involved in underwater operations is fundamental to better plan field campaigns and anticipate the achievable results. The paper presents a geometric investigation of a consumer grade underwater camera housing, manufactured by NiMAR and equipped with a 7′′ dome port. After a review of flat and dome ports, the work analyzes, using simulations and real experiments, the main optical phenomena involved when operating a camera underwater. Specific aspects which deal with photogrammetric acquisitions are considered with some tests in laboratory and in a swimming pool. Results and considerations are shown and commented. PMID:26729133

  9. Single-lens stereovision system using a prism: position estimation of a multi-ocular prism.

    PubMed

    Cui, Xiaoyu; Lim, Kah Bin; Zhao, Yue; Kee, Wei Loon

    2014-05-01

    In this paper, a position estimation method using a prism-based single-lens stereovision system is proposed. A multifaced prism was considered as a single optical system composed of few refractive planes. A transformation matrix which relates the coordinates of an object point to its coordinates on the image plane through the refraction of the prism was derived based on geometrical optics. A mathematical model which is able to denote the position of an arbitrary faces prism with only seven parameters is introduced. This model further extends the application of the single-lens stereovision system using a prism to other areas. Experimentation results are presented to prove the effectiveness and robustness of our proposed model.

  10. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Paul C.

    2015-03-01

    The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, high-speed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Finally, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictivemore » engine simulation is summarized.« less

  11. A Wigner-based ray-tracing method for imaging simulations

    NASA Astrophysics Data System (ADS)

    Mout, B. M.; Wick, M.; Bociort, F.; Urbach, H. P.

    2015-09-01

    The Wigner Distribution Function (WDF) forms an alternative representation of the optical field. It can be a valuable tool for understanding and classifying optical systems. Furthermore, it possesses properties that make it suitable for optical simulations: both the intensity and the angular spectrum can be easily obtained from the WDF and the WDF remains constant along the paths of paraxial geometrical rays. In this study we use these properties by implementing a numerical Wigner-Based Ray-Tracing method (WBRT) to simulate diffraction effects at apertures in free-space and in imaging systems. Both paraxial and non-paraxial systems are considered and the results are compared with numerical implementations of the Rayleigh-Sommerfeld and Fresnel diffraction integrals to investigate the limits of the applicability of this approach. The results of the different methods are in good agreement when simulating free-space diffraction or calculating point spread functions (PSFs) for aberration-free imaging systems, even at numerical apertures exceeding the paraxial regime. For imaging systems with aberrations, the PSFs of WBRT diverge from the results using diffraction integrals. For larger aberrations WBRT predicts negative intensities, suggesting that this model is unable to deal with aberrations.

  12. Data fusion and photometric restoration

    NASA Astrophysics Data System (ADS)

    Pirzkal, Norbert; Hook, Richard N.

    2001-11-01

    The current generation of 8-10m optical ground-based telescopes have a symbiotic relationship with space telescopes. For direct imaging in the optical the former can collect photons relatively cheaply but the latter can still achieve, even in the era of adaptive optics, significantly higher spatial resolution, point-spread function stability and astrometric fidelity over fields of a few arcminutes. The large archives of HST imaging already in place, when combined with the ease of access to ground-based data afforded by the virtual observatory currently under development, will make space-ground data fusion a powerful tool for the future. We describe a photometric image restoration method that we have developed which allows the efficient and accurate use of high-resolution space imaging of crowded fields to extract high quality photometry from very crowded ground-based images. We illustrate the method using HST and ESO VLT/FORS imaging of a globular cluster and demonstrate quantitatively the photometric measurements quality that can achieved using the data fusion approach instead of just using data from just one telescope. This method can handle most of the common difficulties encountered when attempting this problem such as determining the geometric mapping to the requisite precision, deriving the PSF and the background.

  13. Analysis of forward scattering of an acoustical zeroth-order Bessel beam from rigid complicated (aspherical) structures

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chai, Yingbin; Gong, Zhixiong; Marston, Philip L.

    2017-10-01

    The forward scattering from rigid spheroids and endcapped cylinders with finite length (even with a large aspect ratio) immersed in a non-viscous fluid under the illumination of an idealized zeroth-order acoustical Bessel beam (ABB) with arbitrary angles of incidence is calculated and analyzed in the implementation of the T-matrix method (TTM). Based on the present method, the incident coefficients of expansion for the incident ABB are derived and simplifying methods are proposed for the numerical accuracy and computational efficiency according to the geometrical symmetries. A home-made MATLAB software package is constructed accordingly, and then verified and validated for the ABB scattering from rigid aspherical obstacles. Several numerical examples are computed for the forward scattering from both rigid spheroids and finite cylinder, with particular emphasis on the aspect ratios, the half-cone angles of ABBs, the incident angles and the dimensionless frequencies. The rectangular patterns of target strength in the (β, θs) domain (where β is the half-cone angle of the ABB and θs is the scattered polar angle) and local/total forward scattering versus dimensionless frequency are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by rigid spheroids and finite cylinders. The ray diagrams in geometrical models for the scattering in the forward half-space and the optical cross-section theorem help to interpret the scattering mechanisms of ABBs. This research work may provide an alternative for the partial wave series solution under certain circumstances interacting with ABBs for complicated obstacles and benefit some related works in optics and electromagnetics.

  14. [Optimum design of imaging spectrometer based on toroidal uniform-line-spaced (TULS) spectrometer].

    PubMed

    Xue, Qing-Sheng; Wang, Shu-Rong

    2013-05-01

    Based on the geometrical aberration theory, a optimum-design method for designing an imaging spectrometer based on toroidal uniform grating spectrometer is proposed. To obtain the best optical parameters, twice optimization is carried out using genetic algorithm(GA) and optical design software ZEMAX A far-ultraviolet(FUV) imaging spectrometer is designed using this method. The working waveband is 110-180 nm, the slit size is 50 microm x 5 mm, and the numerical aperture is 0.1. Using ZEMAX software, the design result is analyzed and evaluated. The results indicate that the MTF for different wavelengths is higher than 0.7 at Nyquist frequency 10 lp x mm(-1), and the RMS spot radius is less than 14 microm. The good imaging quality is achieved over the whole working waveband, the design requirements of spatial resolution 0.5 mrad and spectral resolution 0.6 nm are satisfied. It is certificated that the optimum-design method proposed in this paper is feasible. This method can be applied in other waveband, and is an instruction method for designing grating-dispersion imaging spectrometers.

  15. Bio-Optics Based Sensation Imaging for Breast Tumor Detection Using Tissue Characterization

    PubMed Central

    Lee, Jong-Ha; Kim, Yoon Nyun; Park, Hee-Jun

    2015-01-01

    The tissue inclusion parameter estimation method is proposed to measure the stiffness as well as geometric parameters. The estimation is performed based on the tactile data obtained at the surface of the tissue using an optical tactile sensation imaging system (TSIS). A forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of tissue inclusion using finite element modeling (FEM). This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile data. We utilize the artificial neural network (ANN) for the inversion algorithm. The proposed estimation method was validated by a realistic tissue phantom with stiff inclusions. The experimental results showed that the proposed estimation method can measure the size, depth, and Young's modulus of a tissue inclusion with 0.58%, 3.82%, and 2.51% relative errors, respectively. The obtained results prove that the proposed method has potential to become a useful screening and diagnostic method for breast cancer. PMID:25785306

  16. Far-field optical imaging with subdiffraction resolution enabled by nonlinear saturation absorption

    NASA Astrophysics Data System (ADS)

    Ding, Chenliang; Wei, Jingsong

    2016-01-01

    The resolution of far-field optical imaging is required to improve beyond the Abbe limit to the subdiffraction or even the nanoscale. In this work, inspired by scanning electronic microscopy (SEM) imaging, in which carbon (or Au) thin films are usually required to be coated on the sample surface before imaging to remove the charging effect while imaging by electrons. We propose a saturation-absorption-induced far-field super-resolution optical imaging method (SAI-SRIM). In the SAI-SRIM, the carbon (or Au) layers in SEM imaging are replaced by nonlinear-saturation-absorption (NSA) thin films, which are directly coated onto the sample surfaces using advanced thin film deposition techniques. The surface fluctuant morphologies are replicated to the NSA thin films, accordingly. The coated sample surfaces are then imaged using conventional laser scanning microscopy. Consequently, the imaging resolution is greatly improved, and subdiffraction-resolved optical images are obtained theoretically and experimentally. The SAI-SRIM provides an effective and easy way to achieve far-field super-resolution optical imaging for sample surfaces with geometric fluctuant morphology characteristics.

  17. Optimization of design and operating parameters of a space-based optical-electronic system with a distributed aperture.

    PubMed

    Tcherniavski, Iouri; Kahrizi, Mojtaba

    2008-11-20

    Using a gradient optimization method with objective functions formulated in terms of a signal-to-noise ratio (SNR) calculated at given values of the prescribed spatial ground resolution, optimization problems of geometrical parameters of a distributed optical system and a charge-coupled device of a space-based optical-electronic system are solved for samples of the optical systems consisting of two and three annular subapertures. The modulation transfer function (MTF) of the distributed aperture is expressed in terms of an average MTF taking residual image alignment (IA) and optical path difference (OPD) errors into account. The results show optimal solutions of the optimization problems depending on diverse variable parameters. The information on the magnitudes of the SNR can be used to determine the number of the subapertures and their sizes, while the information on the SNR decrease depending on the IA and OPD errors can be useful in design of a beam combination control system to produce the necessary requirements to its accuracy on the basis of the permissible deterioration in the image quality.

  18. Triangulation-based 3D surveying borescope

    NASA Astrophysics Data System (ADS)

    Pulwer, S.; Steglich, P.; Villringer, C.; Bauer, J.; Burger, M.; Franz, M.; Grieshober, K.; Wirth, F.; Blondeau, J.; Rautenberg, J.; Mouti, S.; Schrader, S.

    2016-04-01

    In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of +/- 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.

  19. Vibration sensitivity of the scanning near-field optical microscope with a tapered optical fiber probe.

    PubMed

    Chang, Win-Jin; Fang, Te-Hua; Lee, Haw-Long; Yang, Yu-Ching

    2005-01-01

    In this paper the Rayleigh-Ritz method was used to study the scanning near-field optical microscope (SNOM) with a tapered optical fiber probe's flexural and axial sensitivity to vibration. Not only the contact stiffness but also the geometric parameters of the probe can influence the flexural and axial sensitivity to vibration. According to the analysis, the lateral and axial contact stiffness had a significant effect on the sensitivity of vibration of the SNOM's probe, each mode had a different level of sensitivity and in the first mode the tapered optical fiber probe was the most acceptive to higher levels of flexural and axial vibration. Generally, when the contact stiffness was lower, the tapered probe was more sensitive to higher levels of both axial and flexural vibration than the uniform probe. However, the situation was reversed when the contact stiffness was larger. Furthermore, the effect that the probe's length and its tapered angle had on the SNOM's probe axial and flexural vibration were significant and these two conditions should be incorporated into the design of new SNOM probes.

  20. Optical properties (bidirectional reflectance distribution function) of shot fabric.

    PubMed

    Lu, R; Koenderink, J J; Kappers, A M

    2000-11-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.

  1. Astronomical phenomena: events with high impact factor in teaching optics and photonics

    NASA Astrophysics Data System (ADS)

    Curticapean, Dan

    2014-07-01

    Astronomical phenomena fascinate people from the very beginning of mankind up to today. They have a enthusiastic effect, especially on young people. Among the most amazing and well-known phenomena are the sun and moon eclipses. The impact factor of such events is very high, as they are being covered by mass media reports and the Internet, which provides encyclopedic content and discussion in social networks. The principal optics and photonics topics that can be included in such lessons originate from geometrical optics and the basic phenomena of reflection, refraction and total internal reflection. Lenses and lens systems up to astronomical instruments also have a good opportunity to be presented. The scientific content can be focused on geometrical optics but also diffractive and quantum optics can be incorporated successfully. The author will present how live streams of the moon eclipses can be used to captivate the interest of young listeners for optics and photonics. The gathered experience of the last two moon eclipses visible from Germany (on Dec, 21 2010 and Jun, 15 2011) will be considered. In an interactive broadcast we reached visitors from more than 135 countries.

  2. Vector optical fields with bipolar symmetry of linear polarization.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian

    2013-09-15

    We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.

  3. Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy

    PubMed Central

    Weigert, Martin; Bundschuh, Sebastian T.

    2018-01-01

    Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879

  4. Ray-optical theory of broadband partially coherent emission

    NASA Astrophysics Data System (ADS)

    Epstein, Ariel; Tessler, Nir; Einziger, Pinchas D.

    2013-04-01

    We present a rigorous formulation of the effects of spectral broadening on emission of partially coherent source ensembles embedded in multilayered formations with arbitrarily shaped interfaces, provided geometrical optics is valid. The resulting ray-optical theory, applicable to a variety of optical systems from terahertz lenses to photovoltaic cells, quantifies the fundamental interplay between bandwidth and layer dimensions, and sheds light on common practices in optical analysis of statistical fields, e.g., disregarding multiple reflections or neglecting interference cross terms.

  5. Aero-Optical Wavefront Propagation and Refractive Fluid Interfaces in Large-Reynolds-Number Compressible Turbulent Flows

    DTIC Science & Technology

    2005-12-31

    are utilized with the eikonal equation of geometrical optics to propagate computationally the optical wavefronts in the near field. As long as the...aero-optical interactions. In terms of the refractive index field n and the optical path length (OPL), the eikonal equation is: |∇ (OPL)| = n , (9) (e.g...ray n(`, t) d` . (10) The OPL integral corresponds to inverting the eikonal equation 9. The physical distance along the beam propagation path for

  6. Cultivation mode research of practical application talents for optical engineering major

    NASA Astrophysics Data System (ADS)

    Liu, Zhiying

    2017-08-01

    The requirements on science and technology graduates are more and higher with modern science progress and society market economy development. Because optical engineering major is with very long practicality, practice should be paid more attention from analysis of optical engineering major and students' foundation. To play role of practice to a large amount, the practice need be systemic and correlation. It should be combination of foundation and profundity. Modern foundation professional knowledge is studied with traditional optical concept and technology at the same time. Systemic regularity and correlation should be embodied in the contents. Start from basic geometrical optics concept, the optical parameter of optical instrument is analyzed, the optical module is built and ray tracing is completed during geometrical optics practice. With foundation of primary aberration calculation, the optical system is further designed and evaluated during optical design practice course. With the optical model and given instrument functions and requirements, the optical-mechanism is matched. The accuracy is calculated, analyzed and distributed in every motion segment. And the mechanism should guarantee the alignment and adjustment. The optical mechanism is designed during the instrument and element design practice. When the optical and mechanism drawings are completed, the system is ready to be fabricated. Students can complete grinding, polishing and coating process by themselves through optical fabricating practice. With the optical and mechanical elements, the system can be assembled and aligned during the thesis practice. With a set of correlated and logical practices, the students can acquire the whole process knowledge about optical instrument. All details are contained in every practice process. These practical experiences provide students working ability. They do not need much adaption anymore when they go to work after graduation. It is favorable to both student talents and employer.

  7. Investigation of Metastatic Breast Tumor Heterogeneity and Progression Using Dual Optical/SPECT Imaging. Addendum

    DTIC Science & Technology

    2008-05-01

    2(b) is again 1.0 mm but has been reduced by an order of magnitude to 0.5 mm. It can be seen that the geometric resolution is now the limiting term...activity) of the system. The on-axis geometric efficiency for a pinhole is given by: (2) and represents the fraction of emitted photons that pass through...0.96 mm. The slight increase in the recon- structed diameter is due to the total resolution of the setup being limited by the geometric resolution which

  8. Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite

    NASA Astrophysics Data System (ADS)

    Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.

    2018-04-01

    We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.

  9. Modeling of the laser device for the stress therapy

    NASA Astrophysics Data System (ADS)

    Matveev, Nikolai V.; Shcheglov, Sergey A.; Romanova, Galina E.; Koneva, Ð.¢atiana A.

    2017-05-01

    Recently there is a great interest to the drug-free methods of treatment of various diseases. For example, audiovisual therapy is used for the stress therapy. The main destination of the method is the health care and well-being. Visual content in the given case is formed when laser radiation is passing through the optical mediums and elements. The therapy effect is achieved owing to the color varying and complicated structure of the picture which is produced by the refraction, dispersion effects, diffraction and interference. As the laser source we use three laser sources with wavelengths of 445 nm, 520 nm and 640 nm and the optical power up to 1 W. The beam is guided to the optical element which is responsible for the final image of the dome surface. The dynamic image can be achieved by the rotating of the optical element when the laser beam is static or by scanning the surface of the element. Previous research has shown that the complexity of the image connected to the therapy effect. The image was chosen experimentally in practice. The evaluation was performed using the fractal dimension calculation for the produced image. In this work we model the optical image on the surface formed by the laser sources together with the optical elements. Modeling is performed in two stages. On the first stage we perform the simple modeling taking into account simple geometrical effects and specify the optical models of the sources.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickey, Daniel; Sasaki, David; Dubey, Arbind

    Purpose: Three-dimensional printing has been implemented at our institution to create customized treatment accessories including shielding and bolus. In order to effectively use 3D printing, the topography of the patient must first be acquired. To this end, we have evaluated a low-cost structured-light 3D scanner in order to assess the clinical viability of this technology. Methods: For ease of use, the scanner (3D Systems, Sense 3D Scanner) was mounted in a simple gantry that guided its motion and maintained an optimum distance between the scanner and the object. To characterise the spatial accuracy of the scanner, we used a geometricmore » phantom and an anthropomorphic head phantom. The geometric phantom was machined from plastic and had overall dimensions of 24 cm by 15 cm and included a hemispherical and a tetrahedron protrusion roughly the dimensions of an average forehead and nose respectively. Meshes acquired by the optical scanner were compared to meshes generated from high-resolution CT images. Results: Scans were acquired in under one minute. Most of the optical scans contained noticeable artefacts although in most instances these were considered minor. Using an algorithm that calculated distances between the two meshes, we found most of the optical scanner measurements agreed with those from CT to within about 1 mm for the geometric phantom and to within about 2 mm for the head phantom. Conclusion: In summary, we deemed this scanner to be clinically acceptable and it has been used to design treatment accessories for several skin cancer patients.« less

  11. Demonstration of theoretical and experimental simulations in fiber optics course

    NASA Astrophysics Data System (ADS)

    Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun

    2017-08-01

    "Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.

  12. Evaporative Optical Marangoni Assembly: Tailoring the Three-Dimensional Morphology of Individual Deposits of Nanoparticles from Sessile Drops.

    PubMed

    Anyfantakis, Manos; Varanakkottu, Subramanyan Namboodiri; Rudiuk, Sergii; Morel, Mathieu; Baigl, Damien

    2017-10-25

    We have recently devised the evaporative optical Marangoni assembly (eOMA), a novel and versatile interfacial flow-based method for directing the deposition of colloidal nanoparticles (NPs) on solid substrates from evaporating sessile drops along desired patterns using shaped UV light. Here, we focus on a fixed UV spot irradiation resulting in a cylinder-like deposit of assembled particles and show how the geometrical features of the single deposit can be tailored in three dimensions by simply adjusting the optical conditions or the sample composition, in a quantitative and reproducible manner. Sessile drops containing cationic NPs and a photosensitive surfactant at various concentrations are allowed to evaporate under a single UV beam with a diameter much smaller than that of the drop. After complete evaporation, the geometrical characteristics of the NP deposits are precisely assessed using optical profilometry. We show that both the volume and the radial size of the light-directed NP deposit can be adjusted by varying the diameter or the intensity of the UV beam or alternatively by changing the concentration of the photosensitive surfactant. Notably, in all these cases, the deposits display an almost constant median height corresponding to a few layers of particles. Moreover, both the radial and the axial extent of the patterns are tuned by changing the NP concentration. These results are explained by the correlation among the strength of Marangoni flow, the particle trapping efficiency, and the volume of the deposit, and by the role of evaporation-driven flow in strongly controlling the deposit height. Finally, we extend the versatility of eOMA by demonstrating that NPs down to 30 nm in diameter can be effectively patterned on glass or polymeric substrates.

  13. DNA strand breaks induced by electrons simulated with Nanodosimetry Monte Carlo Simulation Code: NASIC.

    PubMed

    Li, Junli; Li, Chunyan; Qiu, Rui; Yan, Congchong; Xie, Wenzhang; Wu, Zhen; Zeng, Zhi; Tung, Chuanjong

    2015-09-01

    The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Transition from linear- to nonlinear-focusing regime in filamentation

    PubMed Central

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-01-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678

  15. Geometric correction of synchronous scanned Operational Modular Imaging Spectrometer II hyperspectral remote sensing images using spatial positioning data of an inertial navigation system

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohu; Neubauer, Franz; Zhao, Dong; Xu, Shichao

    2015-01-01

    The high-precision geometric correction of airborne hyperspectral remote sensing image processing was a hard nut to crack, and conventional methods of remote sensing image processing by selecting ground control points to correct the images are not suitable in the correction process of airborne hyperspectral image. The optical scanning system of an inertial measurement unit combined with differential global positioning system (IMU/DGPS) is introduced to correct the synchronous scanned Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing images. Posture parameters, which were synchronized with the OMIS II, were first obtained from the IMU/DGPS. Second, coordinate conversion and flight attitude parameters' calculations were conducted. Third, according to the imaging principle of OMIS II, mathematical correction was applied and the corrected image pixels were resampled. Then, better image processing results were achieved.

  16. An instrument for the geometric attributes of metallic appearance.

    PubMed

    Christie, J S

    1969-09-01

    With the use of a greater variety of metals and methods of finishing them, an increasing need to measure metallic appearance has developed in the automotive industry. A simple and easy to operate instrument has been designed to measure the geometric characteristics of reflectance related to metallic appearance. These are specular reflectance, distinctness of image, haze, and diffuseness. A series of selected aluminum and stainless steel specimens has been used to test the performance of the new instrument and of older devices with which it has been compared. Functionally, the new instrument combines features of the Distinctness of ReflectedImage (DORI)meter designed by Tingle, and the abridged goniophotometer designed by Tingle and George. The design and operation of the new instrument have been simplified by use of multiple receptor apertures with optical fiber light collectors. The measurement of a wide range of metal appearance characteristic has thus been achieved with mechanical and electrical circuit simplicity.

  17. Techniques to derive geometries for image-based Eulerian computations

    PubMed Central

    Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.

    2014-01-01

    Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID:25750470

  18. Biphoton optics

    NASA Astrophysics Data System (ADS)

    Strekalov, Dmitry Vladimirovich

    1997-10-01

    The subject of this dissertation is the study of the two- photon entanglement. This phenomenon has been paid a great deal of attention since 1935, when A. Einstein, B. Podolsky and N. Rosen asked their famous question, 'Can quantum-mechanical description of physical reality be considered complete?' An entangled system behavior is inconsistent with many classical concepts. Therefore, the understanding of two-photon entanglement is important for the foundations of quantum theory. A two-photon entangled sate represents a two-photon, or a biphoton, rather than two photons. The concept of biphoton as a single nonlocal quantum object is fundamentally different from the concept of a photon pair, as has been experimentally demonstrated in the present dissertation. Two-photon entanglement gives rise to unusual 'ghost' interference and diffraction, nonlocal geometrical phase, and other quantum phenomena originally studied in the present dissertation. The variety of available results calls for bringing them into a general system which we call Biphoton Optics. This is the main goal of this dissertation. Biphoton optics operate with two-photon wave packets, or with an equivalent concept of advanced wave. We show that in the framework of the advanced wave concept two-photon phenomena can be effectively described in terms of classical optics. Therefore the biphoton optics has the same structure as the classical optics. It includes two- photon geometrical optics, dispersion and frequency beating, polarization effects, interference, diffraction, and geometrical phase. All these two-photon effects are represented by experiments included in this dissertation. Our approach does not make two-photon quantum effects 'classical', however. It should be understood that the advanced wave model operates with counter-propagation in time which does not correspond to any real physical process. Therefore it is just a model, but it is clearly a great advantage to have such a model that is both simple and powerful, in terms of its ability to describe the known results and accurately predict the new ones. Therefore an important step is made in understanding and describing of the quantum phenomena of two-photon entanglement.

  19. Predicting Patient-specific Dosimetric Benefits of Proton Therapy for Skull-base Tumors Using a Geometric Knowledge-based Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, David C.; Trofimov, Alexei V.; Winey, Brian A.

    Purpose: To predict the organ at risk (OAR) dose levels achievable with proton beam therapy (PBT), solely based on the geometric arrangement of the target volume in relation to the OARs. A comparison with an alternative therapy yields a prediction of the patient-specific benefits offered by PBT. This could enable physicians at hospitals without proton capabilities to make a better-informed referral decision or aid patient selection in model-based clinical trials. Methods and Materials: Skull-base tumors were chosen to test the method, owing to their geometric complexity and multitude of nearby OARs. By exploiting the correlations between the dose and distance-to-targetmore » in existing PBT plans, the models were independently trained for 6 types of OARs: brainstem, cochlea, optic chiasm, optic nerve, parotid gland, and spinal cord. Once trained, the models could estimate the feasible dose–volume histogram and generalized equivalent uniform dose (gEUD) for OAR structures of new patients. The models were trained using 20 patients and validated using an additional 21 patients. Validation was achieved by comparing the predicted gEUD to that of the actual PBT plan. Results: The predicted and planned gEUD were in good agreement. Considering all OARs, the prediction error was +1.4 ± 5.1 Gy (mean ± standard deviation), and Pearson's correlation coefficient was 93%. By comparing with an intensity modulated photon treatment plan, the model could classify whether an OAR structure would experience a gain, with a sensitivity of 93% (95% confidence interval: 87%-97%) and specificity of 63% (95% confidence interval: 38%-84%). Conclusions: We trained and validated models that could quickly and accurately predict the patient-specific benefits of PBT for skull-base tumors. Similar models could be developed for other tumor sites. Such models will be useful when an estimation of the feasible benefits of PBT is desired but the experience and/or resources required for treatment planning are unavailable.« less

  20. Verifying the functional ability of microstructured surfaces by model-based testing

    NASA Astrophysics Data System (ADS)

    Hartmann, Wito; Weckenmann, Albert

    2014-09-01

    Micro- and nanotechnology enables the use of new product features such as improved light absorption, self-cleaning or protection, which are based, on the one hand, on the size of functional nanostructures and the other hand, on material-specific properties. With the need to reliably measure progressively smaller geometric features, coordinate and surface-measuring instruments have been refined and now allow high-resolution topography and structure measurements down to the sub-nanometre range. Nevertheless, in many cases it is not possible to make a clear statement about the functional ability of the workpiece or its topography because conventional concepts of dimensioning and tolerancing are solely geometry oriented and standardized surface parameters are not sufficient to consider interaction with non-geometric parameters, which are dominant for functions such as sliding, wetting, sealing and optical reflection. To verify the functional ability of microstructured surfaces, a method was developed based on a parameterized mathematical-physical model of the function. From this model, function-related properties can be identified and geometric parameters can be derived, which may be different for the manufacturing and verification processes. With this method it is possible to optimize the definition of the shape of the workpiece regarding the intended function by applying theoretical and experimental knowledge, as well as modelling and simulation. Advantages of this approach will be discussed and demonstrated by the example of a microstructured inking roll.

  1. Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery

    PubMed Central

    Tax, Chantal M. W.; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M.; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly

    2014-01-01

    Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning. PMID:25077946

  2. Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery.

    PubMed

    Tax, Chantal M W; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly

    2014-01-01

    Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.

  3. Measurement of Surface Interfacial Tension as a Function of Temperature Using Pendant Drop Images

    NASA Astrophysics Data System (ADS)

    Yakhshi-Tafti, Ehsan; Kumar, Ranganathan; Cho, Hyoung J.

    2011-10-01

    Accurate and reliable measurements of surface tension at the interface of immiscible phases are crucial to understanding various physico-chemical reactions taking place between those. Based on the pendant drop method, an optical (graphical)-numerical procedure was developed to determine surface tension and its dependency on the surrounding temperature. For modeling and experimental verification, chemically inert and thermally stable perfluorocarbon (PFC) oil and water was used. Starting with geometrical force balance, governing equations were derived to provide non-dimensional parameters which were later used to extract values for surface tension. Comparative study verified the accuracy and reliability of the proposed method.

  4. Theoretical investigation for excitation light and fluorescence signal of fiber optical sensor using tapered fiber tip.

    PubMed

    Yuan, Yinquan; Ding, Liyun

    2011-10-24

    For fiber optical sensor made of tapered fiber tip, the effects of the geometrical parameters of tapered tip on two important factors have been investigated. One factor is the intensity of the evanescent wave into fluorescent layer through core-medium interface; the other is the intensity of fluorescence signal transmitted from fluorescent layer to measurement end. A dependence relation of the intensity of fluorescence signal transmitted from fluorescent layer to measurement end upon the geometrical parameters of tapered tip has been obtained. Theoretical results show that the intensity of the evanescent wave into fluorescent layer rises with the decrease of the end diameter of tapered tip, and the increase of the tip length; and the transmitted power of fluorescence signal increases linearly with the increase of the tip length due to the contribution of the side area of tapered tip. © 2011 Optical Society of America

  5. Self-interference digital holography with a geometric-phase hologram lens.

    PubMed

    Choi, KiHong; Yim, Junkyu; Yoo, Seunghwi; Min, Sung-Wook

    2017-10-01

    Self-interference digital holography (SIDH) is actively studied because the hologram acquisition under the incoherent illumination condition is available. The key component in this system is wavefront modulating optics, which modulates an incoming object wave into two different wavefront curvatures. In this Letter, the geometric-phase hologram lens is introduced in the SIDH system to perform as a polarization-sensitive wavefront modulator and a single-path beam splitter. This special optics has several features, such as high transparency, a modulation efficiency up to 99%, a thinness of a few millimeters, and a flat structure. The demonstration system is devised, and the numerical reconstruction results from an acquired complex hologram are presented.

  6. Two solvable problems of planar geometrical optics.

    PubMed

    Borghero, Francesco; Bozis, George

    2006-12-01

    In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.

  7. Expression of the degree of polarization based on the geometrical optics pBRDF model.

    PubMed

    Wang, Kai; Zhu, Jingping; Liu, Hong; Du, Bingzheng

    2017-02-01

    An expression of the degree of polarization (DOP) based on the geometrical optics polarimetric bidirectional reflectance distribution function model is presented. In this expression, the DOP is related to the surface roughness and decreases at different reflection angles because diffuse reflection is taken into consideration. A shadowing/masking function introduced into the specular reflection expression makes the DOP values decrease as the angle of incidence or observation approaches grazing. Different kinds of materials were measured to validate the accuracy of this DOP expression. The measured results suggest that the errors of the DOP are reduced significantly, and the polarized reflection characteristics can be described more reasonably and accurately.

  8. Experimental contextuality in classical light

    NASA Astrophysics Data System (ADS)

    Li, Tao; Zeng, Qiang; Song, Xinbing; Zhang, Xiangdong

    2017-03-01

    The Klyachko, Can, Binicioglu, and Shumovsky (KCBS) inequality is an important contextuality inequality in three-level system, which has been demonstrated experimentally by using quantum states. Using the path and polarization degrees of freedom of classical optics fields, we have constructed the classical trit (cetrit), tested the KCBS inequality and its geometrical form (Wright’s inequality) in this work. The projection measurement has been implemented, the clear violations of the KCBS inequality and its geometrical form have been observed. This means that the contextuality inequality, which is commonly used in test of the conflict between quantum theory and noncontextual realism, may be used as a quantitative tool in classical optical coherence to describe correlation characteristics of the classical fields.

  9. On the contribution of Heinrich Bruns to theoretical geometrical optics. With consideration of his correspondence with scientists of the Zeiss Company in Jena 1888-1893. (German Title: Über den Beitrag von Heinrich Bruns zur theoretischen geometrischen Optik Unter Berücksichtigung seines Briefwechsels mit Wissenschaftlern der Zeiss-Werke in Jena 1888-1893)

    NASA Astrophysics Data System (ADS)

    Ilgauds, Hans-Joachim; Münzel, Gisela

    This paper describes the works of Heinrich Bruns, director of the Leipzig University Observatory, on theoretical geometrical optics, which followed an outstanding tradition in Leipzig. Bruns and his pupils did not stop at theoretical considerations, but applied their findings to practical questions. Bruns' correspondence with opticians of the Zeiss Company in Jena, so far known only fragmentarily, gives impressive evidence of their friendly relationship characterized by mutual regard and stimulation.

  10. The Laser Level as an Optics Laboratory Tool

    ERIC Educational Resources Information Center

    Kutzner, Mickey

    2013-01-01

    For decades now, the laser has been used as a handy device for performing ray traces in geometrical optics demonstrations and laboratories. For many ray- trace applications, I have found the laser level 3 to be even more visually compelling and easy for student use than the laser pointer.

  11. Optics Demonstrations Using Cylindrical Lenses

    ERIC Educational Resources Information Center

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  12. Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling

    DTIC Science & Technology

    2010-01-01

    e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to provide a more comprehensive description of the physical and optical...the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic

  13. Complementary Huygens Principle for Geometrical and Nongeometrical Optics

    ERIC Educational Resources Information Center

    Luis, Alfredo

    2007-01-01

    We develop a fundamental principle depicting the generalized ray formulation of optics provided by the Wigner function. This principle is formally identical to the Huygens-Fresnel principle but in terms of opposite concepts, rays instead of waves, and incoherent superpositions instead of coherent ones. This ray picture naturally includes…

  14. Development of multi-component explosive lenses for arbitrary phase velocity generation

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Huneault, Justin; Petel, Oren; Goroshin, Sam; Frost, David; Higgins, Andrew; Zhang, Fan

    2013-06-01

    The combination of explosives with different detonation velocities and lens-like geometric shaping is a well-established technique for producing structured detonation waves. This technique can be extended to produce nearly arbitrary detonation phase velocities for the purposes of sequentially imploding pressurized tubes or driving Mach disks through high-density metalized explosives. The current study presents the experimental development of accelerating, multi-component lenses designed using simple geometric optics and idealized front curvature. The fast explosive component is either Composition C4 (VOD = 8 km/s) or Primasheet 1000 (VOD = 7 km/s), while the slow component varies from heavily amine-diluted nitromethane (amine mass fraction exceeding 20%) to packed metal and glass particle beds wetted with amine-sensitized nitromethane. The applicability of the geometric optic analog to such highly heterogeneous explosives is also investigated. The multi-layered lens technique is further developed as a means of generating a directed mass and momentum flux of metal particles via Mach-disk formation and jetting in circular and oval planar lenses.

  15. Computer vision based method and system for online measurement of geometric parameters of train wheel sets.

    PubMed

    Zhang, Zhi-Feng; Gao, Zhan; Liu, Yuan-Yuan; Jiang, Feng-Chun; Yang, Yan-Li; Ren, Yu-Fen; Yang, Hong-Jun; Yang, Kun; Zhang, Xiao-Dong

    2012-01-01

    Train wheel sets must be periodically inspected for possible or actual premature failures and it is very significant to record the wear history for the full life of utilization of wheel sets. This means that an online measuring system could be of great benefit to overall process control. An online non-contact method for measuring a wheel set's geometric parameters based on the opto-electronic measuring technique is presented in this paper. A charge coupled device (CCD) camera with a selected optical lens and a frame grabber was used to capture the image of the light profile of the wheel set illuminated by a linear laser. The analogue signals of the image were transformed into corresponding digital grey level values. The 'mapping function method' is used to transform an image pixel coordinate to a space coordinate. The images of wheel sets were captured when the train passed through the measuring system. The rim inside thickness and flange thickness were measured and analyzed. The spatial resolution of the whole image capturing system is about 0.33 mm. Theoretic and experimental results show that the online measurement system based on computer vision can meet wheel set measurement requirements.

  16. A geometrical optics approach for modeling aperture averaging in free space optical communication applications

    NASA Astrophysics Data System (ADS)

    Yuksel, Heba; Davis, Christopher C.

    2006-09-01

    Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.

  17. Refractive indices used by the Haag-Streit Lenstar to calculate axial biometric dimensions.

    PubMed

    Suheimat, Marwan; Verkicharla, Pavan K; Mallen, Edward A H; Rozema, Jos J; Atchison, David A

    2015-01-01

    To estimate refractive indices used by the Lenstar biometer to translate measured optical path lengths into geometrical path lengths within the eye. Axial lengths of model eyes were determined using the IOLMaster and Lenstar biometers; comparing those lengths gave an overall eye refractive index estimate for the Lenstar. Using the Lenstar Graphical User Interface, we noticed that boundaries between media could be manipulated and opposite changes in optical path lengths on either side of the boundary could be introduced. Those ratios were combined with the overall eye refractive index to estimate separate refractive indices. Furthermore, Haag-Streit provided us with a template to obtain 'air thicknesses' to compare with geometrical distances. The axial length estimates obtained using the IOLMaster and the Lenstar agreed to within 0.01 mm. Estimates of group refractive indices used in the Lenstar were 1.340, 1.341, 1.415, and 1.354 for cornea, aqueous, lens, and overall eye, respectively. Those refractive indices did not match those of schematic eyes, but were close in the cases of aqueous and lens. Linear equations relating air thicknesses to geometrical thicknesses were consistent with our findings. The Lenstar uses different refractive indices for different ocular media. Some of the refractive indices, such as that for the cornea, are not physiological; therefore, it is likely that the calibrations in the instrument correspond to instrument-specific corrections and are not the real optical path lengths. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  18. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Gunapala, Sarath D.; Agrawal, Govind P.

    2016-01-01

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. PMID:26887286

  19. All-dielectric planar chiral metasurface with gradient geometric phase.

    PubMed

    Ma, Zhijie; Li, Yi; Li, Yang; Gong, Yandong; Maier, Stefan A; Hong, Minghui

    2018-03-05

    Planar optical chirality of a metasurface measures its differential response between left and right circularly polarized (CP) lights and governs the asymmetric transmission of CP lights. In 2D ultra-thin plasmonic structures the circular dichroism is limited to 25% in theory and it requires high absorption loss. Here we propose and numerically demonstrate a planar chiral all-dielectric metasurface that exhibits giant circular dichroism and transmission asymmetry over 0.8 for circularly polarized lights with negligible loss, without bringing in bianisotropy or violating reciprocity. The metasurface consists of arrays of high refractive index germanium Z-shape resonators that break the in-plane mirror symmetry and induce cross-polarization conversion. Furthermore, at the transmission peak of one handedness, the transmitted light is efficiently converted into the opposite circular polarization state, with a designated geometric phase depending on the orientation angle of the optical element. In this way, the optical component sets before and after the metasurface to filter the light of certain circular polarization states are not needed and the metasurface can function under any linear polarization, in contrast to the conventional setup for geometry phase based metasurfaces. Anomalous transmission and two-dimensional holography based on the geometric phase chiral metasurface are numerically demonstrate as proofs of concept.

  20. Geometrical modeling of complete dental shapes by using panoramic X-ray, digital mouth data and anatomical templates.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2015-07-01

    In the field of orthodontic planning, the creation of a complete digital dental model to simulate and predict treatments is of utmost importance. Nowadays, orthodontists use panoramic radiographs (PAN) and dental crown representations obtained by optical scanning. However, these data do not contain any 3D information regarding tooth root geometries. A reliable orthodontic treatment should instead take into account entire geometrical models of dental shapes in order to better predict tooth movements. This paper presents a methodology to create complete 3D patient dental anatomies by combining digital mouth models and panoramic radiographs. The modeling process is based on using crown surfaces, reconstructed by optical scanning, and root geometries, obtained by adapting anatomical CAD templates over patient specific information extracted from radiographic data. The radiographic process is virtually replicated on crown digital geometries through the Discrete Radon Transform (DRT). The resulting virtual PAN image is used to integrate the actual radiographic data and the digital mouth model. This procedure provides the root references on the 3D digital crown models, which guide a shape adjustment of the dental CAD templates. The entire geometrical models are finally created by merging dental crowns, captured by optical scanning, and root geometries, obtained from the CAD templates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry.

    PubMed

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-02-18

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.

  2. Distance measurement based on light field geometry and ray tracing.

    PubMed

    Chen, Yanqin; Jin, Xin; Dai, Qionghai

    2017-01-09

    In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.

  3. Measurement of spectral characteristics and CCT mixture of PDMS and the luminophore depending on the geometric parameters and the concentration of the samples of the special optical fibers

    NASA Astrophysics Data System (ADS)

    Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Bednarek, Lukas; Vasinek, Vladimir

    2017-05-01

    White light is produced by a suitable combination of spectral components RGB (colors) or through exposure excitation of blue light (the blue component of light). This blue part of the light is partly and suitably transformed by luminophore so that the resulting emitted spectrum corresponded to the spectral characteristics of white light with a given correlated color temperature (CCT). This paper deals with the measurement of optical properties of a mixture polydimethylsiloxane (PDMS) and luminophore, which is irradiated by the blue LED (Light-Emitting Diode) to obtain the white color of light. The subject of the investigation is the dependence of CCT on the concentration of the luminophore in a mixture of PDMS and different geometrical parameters of the samples. There are many kinds of PDMS and luminophore. We used PDMS Sylgard 184 and luminophore-labeled U2. More accurately Yttrium Aluminium Oxide: Cerium Y3Al5O12: Ce. From the analyzed data, we determined, which mutual combinations of concentration of the mixture of luminophore and PDMS together with the geometric parameters of the samples of the special optical fibers are suitable for illumination, while we get the desired CCT.

  4. On the Accuracy Potential in Underwater/Multimedia Photogrammetry.

    PubMed

    Maas, Hans-Gerd

    2015-07-24

    Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are refracted at interfaces between optical media with different refractive indices according to Snell's Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more planar glass interfaces, as it allows for some simplifications here. In the second part of the paper, several aspects, which are relevant for an assessment of the accuracy potential in underwater/multimedia photogrammetry, are discussed. These aspects include network geometry and interface planarity issues as well as effects caused by refractive index variations and dispersion and diffusion under water. All these factors contribute to a rather significant degradation of the geometric accuracy potential in underwater/multimedia photogrammetry. In practical experiments, a degradation of the quality of results by a factor two could be determined under relatively favorable conditions.

  5. Path profiles of Cn2 derived from radiometer temperature measurements and geometrical ray tracing

    NASA Astrophysics Data System (ADS)

    Vyhnalek, Brian E.

    2017-02-01

    Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter C 2 n is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify C 2 n profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.

  6. Path Profiles of Cn2 Derived from Radiometer Temperature Measurements and Geometrical Ray Tracing

    NASA Technical Reports Server (NTRS)

    Vyhnalek, Brian E.

    2017-01-01

    Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter Cn2 is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify Cn2 profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time-varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.

  7. Geometrical superresolved imaging using nonperiodic spatial masking.

    PubMed

    Borkowski, Amikam; Zalevsky, Zeev; Javidi, Bahram

    2009-03-01

    The resolution of every imaging system is limited either by the F-number of its optics or by the geometry of its detection array. The geometrical limitation is caused by lack of spatial sampling points as well as by the shape of every sampling pixel that generates spectral low-pass filtering. We present a novel approach to overcome the low-pass filtering that is due to the shape of the sampling pixels. The approach combines special algorithms together with spatial masking placed in the intermediate image plane and eventually allows geometrical superresolved imaging without relation to the actual shape of the pixels.

  8. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  9. Fréchet derivative with respect to the shape of a strongly convex nonscattering region in optical tomography

    NASA Astrophysics Data System (ADS)

    Hyvönen, Nuutti

    2007-10-01

    The aim of optical tomography is to reconstruct the optical properties inside a physical body, e.g. a neonatal head, by illuminating it with near-infrared light and measuring the outward flux of photons on the object boundary. Because a brain consists of strongly scattering tissue with imbedded cavities filled by weakly scattering cerebrospinal fluid, propagation of near-infrared photons in the human head can be treated by combining the diffusion approximation of the radiative transfer equation with geometrical optics to obtain the radiosity-diffusion forward model of optical tomography. At the moment, a disadvantage with the radiosity-diffusion model is that the locations of the transparent cavities must be known in advance in order to be able to reconstruct the physiologically interesting quantities, i.e., the absorption and the scatter in the strongly scattering brain tissue. In this work we show that the boundary measurement map of optical tomography is Fréchet differentiable with respect to the shape of a strongly convex nonscattering region. Using this result, we introduce a numerical algorithm for approximating an unknown nonscattering cavity by a ball if the background diffuse optical properties of the object are known. The functionality of the method is demonstrated through two-dimensional numerical experiments.

  10. Stretching of red blood cells using an electro-optics trap.

    PubMed

    Haque, Md Mozzammel; Moisescu, Mihaela G; Valkai, Sándor; Dér, András; Savopol, Tudor

    2015-01-01

    The stretching stiffness of Red Blood Cells (RBCs) was investigated using a combination of an AC dielectrophoretic apparatus and a single-beam optical tweezer. The experiments were performed at 10 MHz, a frequency high enough to avoid conductivity losses, but below the second turnover point between positive and negative dielectrophoresis. By measuring the geometrical parameters of single healthy human RBCs as a function of the applied voltage, the elastic modulus of RBCs was determined (µ = 1.80 ± 0.5 µN/m) and compared with similar values of the literature got by other techniques. The method is expected to be an easy-to-use, alternative tool to determine the mechano-elastic properties of living cells, and, on this basis, to distinguish healthy and diseased cells.

  11. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over themore » array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.« less

  12. Fabrication of optical microlenses by a new inkjet printing technique based on pyro-electrohydrodynamic (PEHD) effect

    NASA Astrophysics Data System (ADS)

    Coppola, S.; Vespini, V.; Grimaldi, I. A.; Loffredo, F.; Villani, F.; Miccio, L.; Grilli, S.; Ferraro, P.

    2012-06-01

    Here the pyroelectric functionality of a Lithium Niobate (LN) substrate is used for non-contact manipulation of liquids. In this work we introduced the use of a pyro-electrohydrodynamc (PEHD) dispenser for the manipulation of high viscous polymer materials leading to the fabrication of arrays of microlenses. The set-up used for the experiment is described and the fabricated microlenses are analyzed by means of the Digital Holography (DH) set-up in transmission mode and through profilometric analysis. PMMA based ink was employed for the realization of optical quality microsctructures whose geometrical properties and, hence, the focal lengths were controlled by modifying the printing configuration of the PEHD method. The profilometric results are in agreement with those calculated using the digital holography technique.

  13. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging

    DOE PAGES

    Ishikawa, Ryo; Lupini, Andrew R.; Hinuma, Yoyo; ...

    2014-11-26

    To completely understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us tomore » measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation.« less

  14. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    PubMed

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  15. Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump.

    PubMed

    Co, Dick T; Lockard, Jenny V; McCamant, David W; Wasielewski, Michael R

    2010-04-01

    Narrow-bandwidth (approximately 27 cm(-1)) tunable picosecond pulses from 480 nm-780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femtosecond NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

  16. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams

    NASA Astrophysics Data System (ADS)

    Milione, Giovanni; Dudley, Angela; Nguyen, Thien An; Chakraborty, Ougni; Karimi, Ebrahim; Forbes, Andrew; Alfano, Robert R.

    2015-03-01

    We experimentally measured the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams. Radially and azimuthally polarized vector Bessel beams were experimentally generated via a digital version of Durnin's method, using a spatial light modulator in concert with a liquid crystal q-plate. As a proof of principle, their intensities and spatially inhomogeneous states of polarization were experimentally measured using Stokes polarimetry as they propagated through two disparate obstructions. It was found, similar to their intensities, that their spatially inhomogeneous states of polarization self-healed. The self-healing can be understood via geometric optics, i.e., the interference of the unobstructed conical rays in the shadow region of the obstruction, and may have applications in, for example, optical trapping.

  17. Geometric approach to the design of an imaging probe to evaluate the iridocorneal angle structures

    NASA Astrophysics Data System (ADS)

    Hong, Xun Jie Jeesmond; V. K., Shinoj; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2017-06-01

    Photographic imaging methods allow the tracking of anatomical changes in the iridocorneal angle structures and the monitoring of treatment responses overtime. In this work, we aim to design an imaging probe to evaluate the iridocorneal angle structures using geometrical optics. We first perform an analytical analysis on light propagation from the anterior chamber of the eye to the exterior medium using Snell's law. This is followed by adopting a strategy to achieve uniform near field irradiance, by simplifying the complex non-rotational symmetric irradiance distribution of LEDs tilted at an angle. The optimization is based on the geometric design considerations of an angled circular ring array of 4 LEDs (or a 2 × 2 square LED array). The design equation give insights on variable parameters such as the illumination angle of the LEDs, ring array radius, viewing angle of the LEDs, and the working distance. A micro color CCD video camera that has sufficient resolution to resolve the iridocorneal angle structures at the required working distance is then chosen. The proposed design aspects fulfil the safety requirements recommended by the International Commission on Non-ionizing Radiation Protection.

  18. 3D-printed optical active components

    NASA Astrophysics Data System (ADS)

    Suresh Nair, S.; Nuding, J.; Heinrich, A.

    2018-02-01

    Additive Manufacturing (AM) has the potential to become a powerful tool in the realization of complex optical components. The primary advantage that meets the eye, is that fabrication of geometrically complicated optical structures is made easier in AM as compared to the conventional fabrication methods (using molds for instance). But this is not the only degree of freedom that AM has to offer. With the multitude of materials suitable for AM in the market, it is possible to introduce functionality into the components one step before fabrication: by altering the raw material. A passive example would be to use materials with varying properties together, in a single manufacturing step, constructing samples with localized refractive indices for instance. An active approach is to blend in materials with distinct properties into the photopolymer resin and manufacturing with this composite material. Our research is currently focused in this direction, with the desired optical property to be introduced being Photoluminescence. Formation of nanocomposite mixtures to produce samples is the current approach. With this endeavor, new sensor systems can be realized, which may be used to measure the absorption spectra of biological samples. Thereby the sample compartment, the optics and the spectral light source (different quantum dots) are 3D-printed in one run. This component can be individually adapted to the biological sample with respect to wavelength, optical and mechanical properties. Here we would like to present our work on the additive manufacturing of an active optical component. Based on the stereolithography method, a monolithic optical component was 3D-printed, showing light emission at different defined wavelengths due to UV excited quantum dots inside the 3D-printed optics.

  19. Integrated multidisciplinary analysis of segmented reflector telescopes

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Needels, Laura

    1992-01-01

    The present multidisciplinary telescope-analysis approach, which encompasses thermal, structural, control and optical considerations, is illustrated for the case of an IR telescope in LEO; attention is given to end-to-end evaluations of the effects of mechanical disturbances and thermal gradients in measures of optical performance. Both geometric ray-tracing and surface-to-surface diffraction approximations are used in the telescope's optical model. Also noted is the role played by NASA-JPL's Integrated Modeling of Advanced Optical Systems computation tool, in view of numerical samples.

  20. Role of optics in the accuracy of depth-from-defocus systems: comment.

    PubMed

    Blendowske, Ralf

    2007-10-01

    In their paper "Role of optics in the accuracy of depth-from-defocus systems" [J. Opt. Soc. Am. A24, 967 (2007)] the authors Blayvas, Kimmel, and Rivlin discuss the effect of optics on the depth reconstruction accuracy. To this end they applied an approach in Fourier space. An alternative derivation of their result in the spatial domain, based on geometrical optics, is presented and compared with their outcome. A better agreement with experimental data is achieved if some unclarities are refined.

Top