#### Sample records for geometric programming problem

1. MM Algorithms for Geometric and Signomial Programming.

PubMed

Lange, Kenneth; Zhou, Hua

2014-02-01

This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.

2. Optimization of biotechnological systems through geometric programming

PubMed Central

Marin-Sanguino, Alberto; Voit, Eberhard O; Gonzalez-Alcon, Carlos; Torres, Nestor V

2007-01-01

Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM) was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA) system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into the GMA form. Thus

3. A geometrical perspective for the bargaining problem.

PubMed

Wong, Kelvin Kian Loong

2010-04-26

A new treatment to determine the Pareto-optimal outcome for a non-zero-sum game is presented. An equilibrium point for any game is defined here as a set of strategy choices for the players, such that no change in the choice of any single player will increase the overall payoff of all the players. Determining equilibrium for multi-player games is a complex problem. An intuitive conceptual tool for reducing the complexity, via the idea of spatially representing strategy options in the bargaining problem is proposed. Based on this geometry, an equilibrium condition is established such that the product of their gains over what each receives is maximal. The geometrical analysis of a cooperative bargaining game provides an example for solving multi-player and non-zero-sum games efficiently.

4. Calculus students' ability to solve geometric related-rates problems

Martin, Tami

2000-09-01

This study assessed the ability of university students enrolled in an introductory calculus course to solve related-rates problems set in geometric contexts. Students completed a problem-solving test and a test of performance on the individual steps involved in solving such problems. Each step was characterised as primarily relying on procedural knowledge or conceptual understanding. Results indicated that overall performance on the geometric related-rates problems was poor. The poorest performance was on steps linked to conceptual understanding, specifically steps involving the translation of prose to geometric and symbolic representations. Overall performance was most strongly related to performance on the procedural steps.

5. Geometric and analytic problems on bicomplex plane

Dimiev, Stancho; Stoev, Peter; Stoilova, Stanislava

2015-11-01

Let us recall that the bicomplex plane is a complex ring of complex dimension 2. It consists of couples of the kind (z, w) = z + jw, where z and w are complex numbers and j is a symbol with the property j2 = -1. We note that the bicomplex plane admits singular points. The set of these singular points coincides with the cross-choped set of complex bisectrices (z, ±z), z is a complex. The main problem in the function theory on the bicomplex plane is to describe the interconnection between the same theory of the cross-choped subset and whole bicomplex plane. The first theory is of one complex variable and the second one is of two complex variables. Another problems are related with the comformal mappings and the movement of a partials of this subset on the whole one. Presented paper is a start studies in this direction.

6. Bounding solutions of geometrically nonlinear viscoelastic problems

NASA Technical Reports Server (NTRS)

Stubstad, J. M.; Simitses, G. J.

1986-01-01

Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.

7. Control of tree water networks: A geometric programming approach

Sela Perelman, L.; Amin, S.

2015-10-01

This paper presents a modeling and operation approach for tree water supply systems. The network control problem is approximated as a geometric programming (GP) problem. The original nonlinear nonconvex network control problem is transformed into a convex optimization problem. The optimization model can be efficiently solved to optimality using state-of-the-art solvers. Two control schemes are presented: (1) operation of network actuators (pumps and valves) and (2) controlled demand shedding allocation between network consumers with limited resources. The dual of the network control problem is formulated and is used to perform sensitivity analysis with respect to hydraulic constraints. The approach is demonstrated on a small branched-topology network and later extended to a medium-size irrigation network. The results demonstrate an intrinsic trade-off between energy costs and demand shedding policy, providing an efficient decision support tool for active management of water systems.

8. Iso-geometric analysis for neutron diffusion problems

SciTech Connect

Hall, S. K.; Eaton, M. D.; Williams, M. M. R.

2012-07-01

Iso-geometric analysis can be viewed as a generalisation of the finite element method. It permits the exact representation of a wider range of geometries including conic sections. This is possible due to the use of concepts employed in computer-aided design. The underlying mathematical representations from computer-aided design are used to capture both the geometry and approximate the solution. In this paper the neutron diffusion equation is solved using iso-geometric analysis. The practical advantages are highlighted by looking at the problem of a circular fuel pin in a square moderator. For this problem the finite element method requires the geometry to be approximated. This leads to errors in the shape and size of the interface between the fuel and the moderator. In contrast to this iso-geometric analysis allows the interface to be represented exactly. It is found that, due to a cancellation of errors, the finite element method converges more quickly than iso-geometric analysis for this problem. A fuel pin in a vacuum was then considered as this problem is highly sensitive to the leakage across the interface. In this case iso-geometric analysis greatly outperforms the finite element method. Due to the improvement in the representation of the geometry iso-geometric analysis can outperform traditional finite element methods. It is proposed that the use of iso-geometric analysis on neutron transport problems will allow deterministic solutions to be obtained for exact geometries. Something that is only currently possible with Monte Carlo techniques. (authors)

9. The lawnmower problem and other geometric path covering problems

SciTech Connect

Fekete, S.; Arkin, E.; Mitchell, J.

1994-12-31

We discuss the Lawnmower Problem: Given a polygonal region, find the shortest closed path along which we have to move a given object (typically a square or a circle), such that any point of the region will be covered by the object for some position of it movement. In another version of the problem, known as the Milling Problem, the object has to stay within the region at all times. Practical motivations for considering the Lawnmower Problem come from manufacturing (spray painting, quality control), geography (aerial surveys), optimization (tour planning for a large number of clients with limited mobility), and gardening. The Milling Problem has gained attention by its importance for NC pocket machining. We show that both problems are NP-hard and discuss approximation methods for various versions of the problem.

10. Geometric programming prediction of design trends for OMV protective structures

NASA Technical Reports Server (NTRS)

Mog, R. A.; Horn, J. R.

1990-01-01

The global optimization trends of protective honeycomb structural designs for spacecraft subject to hypervelocity meteroid and space debris are presented. This nonlinear problem is first formulated for weight minimization of the orbital maneuvering vehicle (OMV) using a generic monomial predictor. Five problem formulations are considered, each dependent on the selection of independent design variables. Each case is optimized by considering the dual geometric programming problem. The dual variables are solved for in terms of the generic estimated exponents of the monomial predictor. The primal variables are then solved for by conversion. Finally, parametric design trends are developed for ranges of the estimated regression parameters. Results specify nonmonotonic relationships for the optimal first and second sheet mass per unit areas in terms of the estimated exponents.

11. Study of Historical Geometric Problems by Means of CAS and DGS

ERIC Educational Resources Information Center

2015-01-01

The use of the dynamic mathematics software GeoGebra to solve geometric problems on conics and loci from an 18th century textbook will be presented. In particular, examples will be shown of how the use of this program helped the authors to understand the method that our predecessors used to deal with conic sections together with solving loci…

12. Geometric MCMC for infinite-dimensional inverse problems

Beskos, Alexandros; Girolami, Mark; Lan, Shiwei; Farrell, Patrick E.; Stuart, Andrew M.

2017-04-01

Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon mesh-refinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and thus are expensive as a function of dimension. Recently, a new class of MCMC methods with mesh-independent convergence times has emerged. However, few of them take into account the geometry of the posterior informed by the data. At the same time, recently developed geometric MCMC algorithms have been found to be powerful in exploring complicated distributions that deviate significantly from elliptic Gaussian laws, but are in general computationally intractable for models defined in infinite dimensions. In this work, we combine geometric methods on a finite-dimensional subspace with mesh-independent infinite-dimensional approaches. Our objective is to speed up MCMC mixing times, without significantly increasing the computational cost per step (for instance, in comparison with the vanilla preconditioned Crank-Nicolson (pCN) method). This is achieved by using ideas from geometric MCMC to probe the complex structure of an intrinsic finite-dimensional subspace where most data information concentrates, while retaining robust mixing times as the dimension grows by using pCN-like methods in the complementary subspace. The resulting algorithms are demonstrated in the context of three challenging inverse problems arising in subsurface flow, heat conduction and incompressible flow control. The algorithms exhibit up to two orders of magnitude improvement in sampling efficiency when compared with the pCN method.

13. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

SciTech Connect

Anglin, J.R.; Schmiedmayer, J.

2004-02-01

The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.

14. Scale Problems in Geometric-Kinematic Modelling of Geological Objects

Siehl, Agemar; Thomsen, Andreas

To reveal, to render and to handle complex geological objects and their history of structural development, appropriate geometric models have to be designed. Geological maps, sections, sketches of strain and stress patterns are such well-known analogous two-dimensional models. Normally, the set of observations and measurements supporting them is small in relation to the complexity of the real objects they derive from. Therefore, modelling needs guidance by additional expert knowledge to bridge empty spaces which are not supported by data. Generating digital models of geological objects has some substantial advantages compared to conventional methods, especially if they are supported by an efficient database management system. Consistent 3D models of some complexity can be created, and experiments with time-dependent geological geometries may help to restore coherent sequences of paleogeological states. In order to cope with the problems arising from the combined usage of 3D-geometry models of different scale and resolution within an information system on subsurface geology, geometrical objects need to be annotated with information on the context, within which the geometry model has been established and within which it is valid, and methods supporting storage and retrieval as well as manipulation of geometry at different scales must also take into account and handle such context information to achieve meaningful results. An example is given of a detailed structural study of an open pit lignite mine in the Lower Rhine Basin.

15. Strengthening Programs through Problem Solving.

ERIC Educational Resources Information Center

Dyer, Jim

1993-01-01

Describes a secondary agricultural education program that was a dumping ground for academically disadvantaged students. Discusses how such a program can be improved by identifying problems and symptoms, treating problems, and goal setting. (JOW)

16. Problem Solving and Beginning Programming.

ERIC Educational Resources Information Center

McAllister, Alan

Based on current models of problem solving within cognitive psychology, this study focused on the spontaneous problem solving strategies used by children as they first learned LOGO computer programming, and on strategy transformations that took place during the problem solving process. The research consisted of a six weeks programming training…

17. A solution to the surface intersection problem. [Boolean functions in geometric modeling

NASA Technical Reports Server (NTRS)

Timer, H. G.

1977-01-01

An application-independent geometric model within a data base framework should support the use of Boolean operators which allow the user to construct a complex model by appropriately combining a series of simple models. The use of these operators leads to the concept of implicitly and explicitly defined surfaces. With an explicitly defined model, the surface area may be computed by simply summing the surface areas of the bounding surfaces. For an implicitly defined model, the surface area computation must deal with active and inactive regions. Because the surface intersection problem involves four unknowns and its solution is a space curve, the parametric coordinates of each surface must be determined as a function of the arc length. Various subproblems involved in the general intersection problem are discussed, and the mathematical basis for their solution is presented along with a program written in FORTRAN IV for implementation on the IBM 370 TSO system.

18. Geometric Modeling Applications Interface Program (GMAP). Volume 2. Program Description

DTIC Science & Technology

1989-09-01

Retirement for Cause ..................................................... 3- 41 3-21 Interrelationship of GMAP Documents...M a 9 2a. ~* .E 0 4) -------- U- 00 004-4 a___ cam 0 0 Z CL cw; 3- 41 CI FTR560240001U September 1989 Initially, GMAP looked at several programs...oteInpcinPanGnrto Sub System Intgratof IBIs.tfaiithPats hinecto AMofa Syservic Rene aoressr bade fo sufaenoaiesuin fluo.ResCInteetrface inspetin. ee eainhp 3.3.21

19. Articulation of Spatial and Geometrical Knowledge in Problem Solving with Technology at Primary School

ERIC Educational Resources Information Center

Soury-Lavergne, Sophie; Maschietto, Michela

2015-01-01

Our paper focuses on the relationship between spatial and geometrical knowledge in problem solving situations at primary school. We have created tasks that involve three different spaces: physical space, graphical space and geometrical space. We aim to study the specific role of graphical space as a bridge between the other two spaces using paper…

20. New Protocols for Solving Geometric Calculation Problems Incorporating Dynamic Geometry and Computer Algebra Software.

ERIC Educational Resources Information Center

Schumann, Heinz; Green, David

2000-01-01

Discusses software for geometric construction, measurement, and calculation, and software for numerical calculation and symbolic analysis that allows for new approaches to the solution of geometric problems. Illustrates these computer-aided graphical, numerical, and algebraic methods of solution and discusses examples using the appropriate choice…

1. Towards programming immune tolerance through geometric manipulation of phosphatidylserine.

PubMed

Roberts, Reid A; Eitas, Timothy K; Byrne, James D; Johnson, Brandon M; Short, Patrick J; McKinnon, Karen P; Reisdorf, Shannon; Luft, J Christopher; DeSimone, Joseph M; Ting, Jenny P

2015-12-01

The possibility of engineering the immune system in a targeted fashion using biomaterials such as nanoparticles has made considerable headway in recent years. However, little is known as to how modulating the spatial presentation of a ligand augments downstream immune responses. In this report we show that geometric manipulation of phosphatidylserine (PS) through fabrication on rod-shaped PLGA nanoparticles robustly dampens inflammatory responses from innate immune cells while promoting T regulatory cell abundance by impeding effector T cell expansion. This response depends on the geometry of PS presentation as both PS liposomes and 1 micron cylindrical PS-PLGA particles are less potent signal inducers than 80 × 320 nm rod-shaped PS-PLGA particles for an equivalent dose of PS. We show that this immune tolerizing effect can be co-opted for therapeutic benefit in a mouse model of multiple sclerosis and an assay of organ rejection using a mixed lymphocyte reaction with primary human immune cells. These data provide evidence that geometric manipulation of a ligand via biomaterials may enable more efficient and tunable programming of cellular signaling networks for therapeutic benefit in a variety of disease states, including autoimmunity and organ rejection, and thus should be an active area of further research.

2. Towards programming immune tolerance through geometric manipulation of phosphatidylserine

PubMed Central

Johnson, Brandon M.; Short, Patrick J.; McKinnon, Karen P.; Reisdorf, Shannon; Luft, J. Christopher; DeSimone, Joseph M.

2016-01-01

The possibility of engineering the immune system in a targeted fashion using biomaterials such as nanoparticles has made considerable headway in recent years. However, little is known as to how modulating the spatial presentation of a ligand augments downstream immune responses. In this report we show that geometric manipulation of phosphatidylserine (PS) through fabrication on rod-shaped PLGA nanoparticles robustly dampens inflammatory responses from innate immune cells while promoting T regulatory cell abundance by impeding effector T cell expansion. This response depends on the geometry of PS presentation as both PS liposomes and 1 micron cylindrical PS-PLGA particles are less potent signal inducers than 80 × 320 nm rod-shaped PS-PLGA particles for an equivalent dose of PS. We show that this immune tolerizing effect can be co-opted for therapeutic benefit in a mouse model of multiple sclerosis and an assay of organ rejection using a mixed lymphocyte reaction with primary human immune cells. These data provide evidence that geometric manipulation of a ligand via biomaterials may enable more efficient and tunable programming of cellular signaling networks for therapeutic benefit in a variety of disease states, including autoimmunity and organ rejection, and thus should be an active area of further research. PMID:26325217

3. The Future Problem Solving Program.

ERIC Educational Resources Information Center

Crabbe, Anne B.

1989-01-01

Describes the Future Problem Solving Program, in which students from the U.S. and around the world are tackling some complex challenges facing society, ranging from acid rain to terrorism. The program uses a creative problem solving process developed for business and industry. A sixth-grade toxic waste cleanup project illustrates the process.…

4. Geometric Series: A New Solution to the Dog Problem

ERIC Educational Resources Information Center

Dion, Peter; Ho, Anthony

2013-01-01

This article describes what is often referred to as the dog, beetle, mice, ant, or turtle problem. Solutions to this problem exist, some being variations of each other, which involve mathematics of a wide range of complexity. Herein, the authors describe the intuitive solution and the calculus solution and then offer a completely new solution…

5. Geometric projection filter: an efficient solution to the SLAM problem

Newman, Paul M.; Durrant-Whyte, Hugh F.

2001-10-01

This paper is concerned with the simultaneous localization and map building (SLAM) problem. The SLAM problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle location. Conventional approaches to this problem are plagued with a prohibitively large increase in computation with the size of the environment. This paper offers a new solution to the SLAM problem that is both consistent and computationally feasible. The proposed algorithm builds a map expressing the relationships between landmarks which is then transformed into landmark locations. Experimental results are presented employing the new algorithm on a subsea vehicle using a scanning sonar sensor.

6. Geometric properties of solutions to the total variation denoising problem

Chambolle, Antonin; Duval, Vincent; Peyré, Gabriel; Poon, Clarice

2017-01-01

This article studies the denoising performance of total variation (TV) image regularization. More precisely, we study geometrical properties of the solution to the so-called Rudin-Osher-Fatemi total variation denoising method. The first contribution of this paper is a precise mathematical definition of the ‘extended support’ (associated to the noise-free image) of TV denoising. It is intuitively the region which is unstable and will suffer from the staircasing effect. We highlight in several practical cases, such as the indicator of convex sets, that this region can be determined explicitly. Our second and main contribution is a proof that the TV denoising method indeed restores an image which is exactly constant outside a small tube surrounding the extended support. The radius of this tube shrinks toward zero as the noise level vanishes, and we are able to determine, in some cases, an upper bound on the convergence rate. For indicators of so-called ‘calibrable’ sets (such as disks or properly eroded squares), this extended support matches the edges, so that discontinuities produced by TV denoising cluster tightly around the edges. In contrast, for indicators of more general shapes or for complicated images, this extended support can be larger. Beside these main results, our paper also proves several intermediate results about fine properties of TV regularization, in particular for indicators of calibrable and convex sets, which are of independent interest.

7. The Geometric Construction Abilities of Gifted Students in Solving Real-World Problems: A Case from Turkey

ERIC Educational Resources Information Center

Yildiz, Avni

2016-01-01

Geometric constructions have already been of interest to mathematicians. However, studies on geometric construction are not adequate in the relevant literature. Moreover, these studies generally focus on how secondary school gifted students solve non-routine mathematical problems. The present study aims to examine the geometric construction…

8. Breathing Problems: An Individualized Program.

ERIC Educational Resources Information Center

Vodola, Thomas M.

As one of the components of the Project ACTIVE (All Children Totally Involved Exercising) Teacher Training Model Kit, the manual is designed to enable the educator to organize, conduct, and evaluate individualized-personalized physical education programs for children (prekindergarten through high school) with breathing problems. An introductory…

9. A restricted Steiner tree problem is solved by Geometric Method II

Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu

2013-03-01

The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.

10. Geometric Langlands Program and Dualities in Quantum Physics

DTIC Science & Technology

2009-04-30

physicists. Lectures were given by P. Aspinwall, D. Ben-Zvi, E. Frenkel, S. Gukov, A. Kapustin , and D. Morrison. We had more than 15 graduate students, about...Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, arXiv:0807.4723. [20] A. Kapustin , A Note on Quantum Geometric Langlands

11. Geometrically derived difference formulae for the numerical integration of trajectory problems

NASA Technical Reports Server (NTRS)

Mcleod, R. J. Y.; Sanz-Serna, J. M.

1981-01-01

The term 'trajectory problem' is taken to include problems that can arise, for instance, in connection with contour plotting, or in the application of continuation methods, or during phase-plane analysis. Geometrical techniques are used to construct difference methods for these problems to produce in turn explicit and implicit circularly exact formulae. Based on these formulae, a predictor-corrector method is derived which, when compared with a closely related standard method, shows improved performance. It is found that this latter method produces spurious limit cycles, and this behavior is partly analyzed. Finally, a simple variable-step algorithm is constructed and tested.

12. Geometric tools for solving the FDI problem for linear periodic discrete-time systems

Longhi, Sauro; Monteriù, Andrea

2013-07-01

This paper studies the problem of detecting and isolating faults in linear periodic discrete-time systems. The aim is to design an observer-based residual generator where each residual is sensitive to one fault, whilst remaining insensitive to the other faults that can affect the system. Making use of the geometric tools, and in particular of the outer observable subspace notion, the Fault Detection and Isolation (FDI) problem is formulated and necessary and solvability conditions are given. An algorithmic procedure is described to determine the solution of the FDI problem.

13. Geometrically derived difference formulae for the numerical integration of trajectory problems

NASA Technical Reports Server (NTRS)

Mcleod, R. J. Y.; Sanz-Serna, J. M.

1982-01-01

An initial value problem for the autonomous system of ordinary differential equations dy/dt = f(y), where y is a vector, is considered. In a number of practical applications the interest lies in obtaining the curve traced by the solution y. These applications include the computation of trajectories in mechanical problems. The term 'trajectory problem' is employed to refer to these cases. Lambert and McLeod (1979) have introduced a method involving local rotation of the axes in the y-plane for the two-dimensional case. The present investigation continues the study of difference schemes specifically derived for trajectory problems. A simple geometrical way of constructing such methods is presented, and the local accuracy of the schemes is investigated. A circularly exact, fixed-step predictor-corrector algorithm is defined, and a variable-step version of a circularly exact algorithm is presented.

14. Three-dimensional crack and contact problems with a general geometric configuration

Yong, Z.; Hanson, M. T.

1994-02-01

A NEW METHOD, based on point set theory and properties of orthogonal functions, is developed for determining exact solutions to three-dimensional crack and contact problems with complicated geometric configurations (e.g. a star-convex domain) in an infinite linear elastic medium. The governing equation is a two-dimensional Fredholm integral equation of the first kind. The central idea of this method is the chain extension of an exact solution from a regular subdomain to an irregular entire domain. Examples are given illustrating how this solution procedure can be used to obtain exact closed form solutions for a general Hertz contact problem and various crack problems in an inhomogeneous isotropic medium with an elastic modulus which is a power function of depth.

15. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.

PubMed

Asnafi, Alireza; Mahzoon, Mojtaba

2011-09-01

Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

16. OPEN PROBLEM: Geometric function theory: a modern view of a classical subject

Crowdy, Darren

2008-10-01

Geometric function theory is a classical subject. Yet it continues to find new applications in an ever-growing variety of areas such as modern mathematical physics, more traditional fields of physics such as fluid dynamics, nonlinear integrable systems theory and the theory of partial differential equations. This paper surveys, with a view to modern applications, open problems and challenges in this subject. Here we advocate an approach based on the use of the Schottky-Klein prime function within a Schottky model of compact Riemann surfaces.

17. A reduced computational and geometrical framework for inverse problems in hemodynamics.

PubMed

Lassila, Toni; Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi

2013-07-01

The solution of inverse problems in cardiovascular mathematics is computationally expensive. In this paper, we apply a domain parametrization technique to reduce both the geometrical and computational complexities of the forward problem and replace the finite element solution of the incompressible Navier-Stokes equations by a computationally less-expensive reduced-basis approximation. This greatly reduces the cost of simulating the forward problem. We then consider the solution of inverse problems both in the deterministic sense, by solving a least-squares problem, and in the statistical sense, by using a Bayesian framework for quantifying uncertainty. Two inverse problems arising in hemodynamics modeling are considered: (i) a simplified fluid-structure interaction model problem in a portion of a stenosed artery for quantifying the risk of atherosclerosis by identifying the material parameters of the arterial wall on the basis of pressure measurements; (ii) a simplified femoral bypass graft model for robust shape design under uncertain residual flow in the main arterial branch identified from pressure measurements.

18. Geometric multigrid to accelerate the solution of the quasi-static electric field problem by tetrahedral finite elements.

PubMed

Hollaus, K; Weiss, B; Magele, Ch; Hutten, H

2004-02-01

The acceleration of the solution of the quasi-static electric field problem considering anisotropic complex conductivity simulated by tetrahedral finite elements of first order is investigated by geometric multigrid.

19. Effects of geometric head model perturbations on the EEG forward and inverse problems.

PubMed

von Ellenrieder, Nicolás; Muravchik, Carlos H; Nehorai, Arye

2006-03-01

We study the effect of geometric head model perturbations on the electroencephalography (EEG) forward and inverse problems. Small magnitude perturbations of the shape of the head could represent uncertainties in the head model due to errors on images or techniques used to construct the model. They could also represent small scale details of the shape of the surfaces not described in a deterministic model, such as the sulci and fissures of the cortical layer. We perform a first-order perturbation analysis, using a meshless method for computing the sensitivity of the solution of the forward problem to the geometry of the head model. The effect on the forward problem solution is treated as noise in the EEG measurements and the Cramér-Rao bound is computed to quantify the effect on the inverse problem performance. Our results show that, for a dipolar source, the effect of the perturbations on the inverse problem performance is under the level of the uncertainties due to the spontaneous brain activity. Thus, the results suggest that an extremely detailed model of the head may be unnecessary when solving the EEG inverse problem.

20. Children's Inductive Thinking during Intrinsic and Euclidean Geometrical Activities in a Computer Programming Environment.

ERIC Educational Resources Information Center

Kynigos, Chronis

1993-01-01

Used 2 12-year-old children to investigate deductive and inductive reasoning in plane geometry. A LOGO microworld was programmed to measure distances and turns relative to points on the plane. Learning environments like this may enhance formation of inductive geometrical understandings. (Contains 44 references.) (LDR)

1. Gauging spacetime symmetries on the worldsheet and the geometric Langlands program

Tan, Meng-Chwan

2008-03-01

We study the two-dimensional twisted (0, 2) sigma-model on various smooth complex flag manifolds G/B, and explore its relevance to the geometric Langlands program. We find that an equivalence—at the level of the holomorphic chiral algebra—between a bosonic string on G/B and a B-gauged version of itself on G, will imply an isomorphism of classical Script W-algebras and a level relation which underlie a geometric Langlands correspondence for G = SL(N, C). This furnishes an alternative physical interpretation of the geometric Langlands correspondence for G = SL(N, C), to that demonstrated earlier by Kapustin and Witten via an electric-magnetic duality of four-dimensional gauge theory. Likewise, the Hecke operators and Hecke eigensheaves will have an alternative physical interpretation in terms of the correlation functions of local operators in the holomorphic chiral algebra of a quasi-topological sigma-model without boundaries. A forthcoming paper will investigate the interpretation of a ``quantum'' geometric Langlands correspondence for G = SL(N, C) in a similar setting, albeit with fluxes of the sigma-model moduli which induce a ``quantum'' deformation of the relevant classical algebras turned on.

2. High level implementation of geometric multigrid solvers for finite element problems: Applications in atmospheric modelling

Mitchell, Lawrence; Müller, Eike Hermann

2016-12-01

The implementation of efficient multigrid preconditioners for elliptic partial differential equations (PDEs) is a challenge due to the complexity of the resulting algorithms and corresponding computer code. For sophisticated (mixed) finite element discretisations on unstructured grids an efficient implementation can be very time consuming and requires the programmer to have in-depth knowledge of the mathematical theory, parallel computing and optimisation techniques on manycore CPUs. In this paper we show how the development of bespoke multigrid preconditioners can be simplified significantly by using a framework which allows the expression of the each component of the algorithm at the correct abstraction level. Our approach (1) allows the expression of the finite element problem in a language which is close to the mathematical formulation of the problem, (2) guarantees the automatic generation and efficient execution of parallel optimised low-level computer code and (3) is flexible enough to support different abstraction levels and give the programmer control over details of the preconditioner. We use the composable abstractions of the Firedrake/PyOP2 package to demonstrate the efficiency of this approach for the solution of strongly anisotropic PDEs in atmospheric modelling. The weak formulation of the PDE is expressed in Unified Form Language (UFL) and the lower PyOP2 abstraction layer allows the manual design of computational kernels for a bespoke geometric multigrid preconditioner. We compare the performance of this preconditioner to a single-level method and hypre's BoomerAMG algorithm. The Firedrake/PyOP2 code is inherently parallel and we present a detailed performance analysis for a single node (24 cores) on the ARCHER supercomputer. Our implementation utilises a significant fraction of the available memory bandwidth and shows very good weak scaling on up to 6,144 compute cores.

3. Quantum Algorithm for Linear Programming Problems

Joag, Pramod; Mehendale, Dhananjay

The quantum algorithm (PRL 103, 150502, 2009) solves a system of linear equations with exponential speedup over existing classical algorithms. We show that the above algorithm can be readily adopted in the iterative algorithms for solving linear programming (LP) problems. The first iterative algorithm that we suggest for LP problem follows from duality theory. It consists of finding nonnegative solution of the equation forduality condition; forconstraints imposed by the given primal problem and for constraints imposed by its corresponding dual problem. This problem is called the problem of nonnegative least squares, or simply the NNLS problem. We use a well known method for solving the problem of NNLS due to Lawson and Hanson. This algorithm essentially consists of solving in each iterative step a new system of linear equations . The other iterative algorithms that can be used are those based on interior point methods. The same technique can be adopted for solving network flow problems as these problems can be readily formulated as LP problems. The suggested quantum algorithm cansolveLP problems and Network Flow problems of very large size involving millions of variables.

4. Joint pricing and production management: a geometric programming approach with consideration of cubic production cost function

2014-08-01

Coordination and harmony between different departments of a company can be an important factor in achieving competitive advantage if the company corrects alignment between strategies of different departments. This paper presents an integrated decision model based on recent advances of geometric programming technique. The demand of a product considers as a power function of factors such as product's price, marketing expenditures, and consumer service expenditures. Furthermore, production cost considers as a cubic power function of outputs. The model will be solved by recent advances in convex optimization tools. Finally, the solution procedure is illustrated by numerical example.

5. The Obstacle Version of the Geometric Dynamic Programming Principle: Application to the Pricing of American Options Under Constraints

SciTech Connect

Bouchard, Bruno Vu, Thanh Nam

2010-04-15

We provide an obstacle version of the Geometric Dynamic Programming Principle of Soner and Touzi (J. Eur. Math. Soc. 4:201-236, 2002) for stochastic target problems. This opens the doors to a wide range of applications, particularly in risk control in finance and insurance, in which a controlled stochastic process has to be maintained in a given set on a time interval [0,T]. As an example of application, we show how it can be used to provide a viscosity characterization of the super-hedging cost of American options under portfolio constraints, without appealing to the standard dual formulation from mathematical finance. In particular, we allow for a degenerate volatility, a case which does not seem to have been studied so far in this context.

6. Novel solutions to low-frequency problems with geometrically designed beam-waveguide systems

NASA Technical Reports Server (NTRS)

Imbriale, W. A.; Esquivel, M. S.; Manshadi, F.

1995-01-01

The poor low-frequency performance of geometrically designed beam-waveguide (BWG) antennas is shown to be caused by the diffraction phase centers being far from the geometrical optics mirror focus, resulting in substantial spillover and defocusing loss. Two novel solutions are proposed: (1) reposition the mirrors to focus low frequencies and redesign the high frequencies to utilize the new mirror positions, and (2) redesign the input feed system to provide an optimum solution for the low frequency. A novel use of the conjugate phase-matching technique is utilized to design the optimum low-frequency feed system, and the new feed system has been implemented in the JPL research and development BWG as part of a dual S-/X-band (2.3 GHz/8.45 GHz) feed system. The new S-band feed system is shown to perform significantly better than the original geometrically designed system.

7. Women in Jail: Problems, Programs and Resources.

ERIC Educational Resources Information Center

Roy, Marjorie Brown

This manual is designed to assist those individuals or groups responsible for developing educational and vocational programs for women in jail. The first section identifies the needs and problems of women in jail, focussing on discrimination against poor women unable to afford bail, the nonviolent nature of women's crimes, and the inequity of jail…

8. Geometrical attenuation, frequency dependence of Q, and the absorption band problem

Morozov, Igor B.

2008-10-01

A geometrical attenuation model is proposed as an alternative to the conventional frequency-dependent attenuation law Q(f) = Q0(f/f0)η. The new model provides a straightforward differentiation between the geometrical and effective attenuation (Qe) which incorporates the intrinsic attenuation and small-scale scattering. Unlike the (Q0, η) description, the inversion procedure uses only the spectral amplitude data and does not rely on elaborate theoretical models or restrictive assumptions. Data from over 40 reported studies were transformed to the new parametrization. The levels of geometrical attenuation strongly correlate with crustal tectonic types and decrease with tectonic age. The corrected values of Qe are frequency-independent and generally significantly higher than Q0 and show no significant correlation with tectonic age. Several case studies were revisited in detail, with significant changes in the interpretations. The absorption-band and the `10-Hz transition' are not found in the corrected Qe data, and therefore, these phenomena are interpreted as related to geometrical attenuation. The absorption band could correspond to changes in the dominant mode content of the wavefield as the frequency changes from about 0.1 to 100 Hz. Alternatively, it could also be a pure artefact related to the power-law Q(f) paradigm above. The explicit separation of the geometrical and intrinsic attenuation achieves three goals: (1) it provides an unambiguous, assumption- and model-free description of attenuation, (2) it allows relating the observations to the basic physics and geology and (3) it simplifies the interpretation because of reduced emphasis on the apparent Q(f) dependence. The model also agrees remarkably well with the initial attempts for finite-difference short-period coda waveform modelling. Because of its consistency and direct link to the observations, the approach should also help in building robust and transportable coda magnitudes and in seismic

9. Menu-Driven Solver Of Linear-Programming Problems

NASA Technical Reports Server (NTRS)

Viterna, L. A.; Ferencz, D.

1992-01-01

Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

10. Solvability of boundary value problems in the geometrically and physically nonlinear theory of shallow shells of Timoshenko type

Timergaliev, S. N.

2009-06-01

This paper deals with the proof of the existence of solutions of a geometrically and physically nonlinear boundary value problem for shallow Timoshenko shells with the transverse shear strains taken into account. The shell edge is assumed to be partly fixed. It is proposed to study the problem by a variational method based on searching the points of minimum of the total energy functional for the shell-load system in the space of generalized displacements. We show that there exists a generalized solution of the problemon which the total energy functional attains its minimum on a weakly closed subset of the space of generalized displacements.

11. VLSI architectures for geometrical mapping problems in high-definition image processing

NASA Technical Reports Server (NTRS)

Kim, K.; Lee, J.

1991-01-01

This paper explores a VLSI architecture for geometrical mapping address computation. The geometric transformation is discussed in the context of plane projective geometry, which invokes a set of basic transformations to be implemented for the general image processing. The homogeneous and 2-dimensional cartesian coordinates are employed to represent the transformations, each of which is implemented via an augmented CORDIC as a processing element. A specific scheme for a processor, which utilizes full-pipelining at the macro-level and parallel constant-factor-redundant arithmetic and full-pipelining at the micro-level, is assessed to produce a single VLSI chip for HDTV applications using state-of-art MOS technology.

12. Extensions to the Multilevel Programming Problem

DTIC Science & Technology

1988-05-01

OVERVIEW 2 CHAPTER 2 LITERATURE SEARCH 4 2.1 INTRODUCTION 4 2.2 RELEVANCE OF THE MODEL 6 2.3 PROBLEM FORMULATION 7 2.4 THE LINEAR BLPP 13 2.5 THE LINEAR...4.2 THE PARAMETRIC FORMULATION OF THE 0-1 BLPP 27 4.3 THE ALGORITHM 30 4.4 EXAMPLES 37 4.5 COMPUTATIONAL EXPERIENCE 43 CHAPTER 5 A BRANCH AND BOUND...ALGORITHM FOR THE BILEVEL PROGRAMMING PROBLEM 48 5.1 DEVELOPMENT OF THE KUHN-TUCKER APPROACH 48 5.2 THE ALGORITHM 52 5.3 OTHER FORMS OF THE BLPP 58 5.4

13. Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis.

PubMed

Pawlak, Tomasz P; Krawiec, Krzysztof

2017-02-16

Program semantics is a promising recent research thread in Genetic Programming (GP). Over a dozen of semantic-aware search, selection, and initialization operators for GP have been proposed to date. Some of those operators are designed to exploit the geometric properties of semantic space, while some others focus on making offspring effective, i.e., semantically different from their parents. Only a small fraction of previous works aimed at addressing both these features simultaneously. In this paper, we propose a suite of competent operators that combine effectiveness with geometry for population initialization, mate selection, mutation and crossover. We present a theoretical rationale behind these operators and compare them experimentally to operators known from literature on symbolic regression and Boolean function synthesis benchmarks. We analyze each operator in isolation as well as verify how they fare together in an evolutionary run, concluding that the competent operators are superior on a wide range of performance indicators, including best-of-run fitness, test-set fitness, and program size.

14. A prefiltered cuckoo search algorithm with geometric operators for solving Sudoku problems.

PubMed

Soto, Ricardo; Crawford, Broderick; Galleguillos, Cristian; Monfroy, Eric; Paredes, Fernando

2014-01-01

The Sudoku is a famous logic-placement game, originally popularized in Japan and today widely employed as pastime and as testbed for search algorithms. The classic Sudoku consists in filling a 9 × 9 grid, divided into nine 3 × 3 regions, so that each column, row, and region contains different digits from 1 to 9. This game is known to be NP-complete, with existing various complete and incomplete search algorithms able to solve different instances of it. In this paper, we present a new cuckoo search algorithm for solving Sudoku puzzles combining prefiltering phases and geometric operations. The geometric operators allow one to correctly move toward promising regions of the combinatorial space, while the prefiltering phases are able to previously delete from domains the values that do not conduct to any feasible solution. This integration leads to a more efficient domain filtering and as a consequence to a faster solving process. We illustrate encouraging experimental results where our approach noticeably competes with the best approximate methods reported in the literature.

15. A Prefiltered Cuckoo Search Algorithm with Geometric Operators for Solving Sudoku Problems

PubMed Central

Crawford, Broderick; Galleguillos, Cristian; Paredes, Fernando

2014-01-01

The Sudoku is a famous logic-placement game, originally popularized in Japan and today widely employed as pastime and as testbed for search algorithms. The classic Sudoku consists in filling a 9 × 9 grid, divided into nine 3 × 3 regions, so that each column, row, and region contains different digits from 1 to 9. This game is known to be NP-complete, with existing various complete and incomplete search algorithms able to solve different instances of it. In this paper, we present a new cuckoo search algorithm for solving Sudoku puzzles combining prefiltering phases and geometric operations. The geometric operators allow one to correctly move toward promising regions of the combinatorial space, while the prefiltering phases are able to previously delete from domains the values that do not conduct to any feasible solution. This integration leads to a more efficient domain filtering and as a consequence to a faster solving process. We illustrate encouraging experimental results where our approach noticeably competes with the best approximate methods reported in the literature. PMID:24707205

16. An Algorithm for Linearly Constrained Nonlinear Programming Programming Problems.

DTIC Science & Technology

1980-01-01

ALGORITHM FOR LINEARLY CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS Mokhtar S. Bazaraa and Jamie J. Goode In this paper an algorithm for solving a linearly...distance pro- gramr.ing, as in the works of Bazaraa and Goode 12], and Wolfe [16 can be used for solving this problem. Special methods that take advantage of...34 Pacific Journal of Mathematics, Volume 16, pp. 1-3, 1966. 2. M. S. Bazaraa and J. j. Goode, "An Algorithm for Finding the Shortest Element of a

17. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

Pallozzi Lavorante, Luca; Dirk Ebert, Hans

2008-07-01

Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

18. Approximations for generalized bilevel programming problem

SciTech Connect

Morgan, J.; Lignola, M.B.

1994-12-31

The following mathematical programming with variational inequality constraints, also called {open_quotes}Generalized bilevel programming problem{close_quotes}, is considered: minimize f(x, y) subject to x {element_of} U and y {element_of} S(x) where S(x) is the solution set of a parametrized variational inequality; i.e., S(x) = {l_brace}y {element_of} U(x): F(x, y){sup T} (y-z){<=} 0 {forall}z {element_of} U (x){r_brace} with f : R{sup n} {times} R{sup m} {yields} {bar R}, F : R{sup n} {times} R{sup m} - R{sup n} and U(x) = {l_brace}y {element_of} {Gamma}{sup T} c{sub i} (x, y) {<=} 0 for 1 = 1, p{r_brace} with c : R{sup n} {times} R{sup m} {yields} R and U{sub ad}, {Gamma} be compact subsets of R{sup m} and R{sup n} respectively. Approximations will be presented to guarantee not only existence of solutions but also convergence of them under perturbations of the data. Connections with previous results obtained when the lower level problem is an optimization one, will be given.

19. Problems and limitations of voluntary cleanup programs

SciTech Connect

Johnson, S.F.

1995-12-31

At least a dozen states have already implemented voluntary cleanup programs (VCPs). Provisions to promote state VCPs were prominent in the EPA`s 1994 proposed revisions to CERCLA and in current legislative initiatives. Under the VCP, property owners voluntarily enroll to investigate and remediate contaminated sites with the aegis of a state agency and thus avoid involvement with the federal Superfund program. When the state agency is satisfied with the condition of the site, it issues a certificate to the owner. The VCP is meant to mitigate unintended consequences of CERCLA such as the economic abandonment of urban industrial sites in favor of unpolluted suburban sites. The VCP concept has been combined with other reforms including cleanup standards, financial incentives, and independent action. The effectiveness of voluntary cleanup programs is limited by the costs of investigation and cleanup relative to the value of the property in question. It is also limited when property has environmental problems outside the traditional focus of state Superfund agencies on soil and groundwater contamination. VCPs also have potential unintended consequences of their own. The VCP concept is consistent with a 15 year trend of increasing government attention and involvement with sites of diminishing health and environmental significance. VCP may reinforce the perception of liability and unwittingly raise the standard of due diligence in property assessments, especially if combined with generic cleanup standard.

20. Fifth SIAM conference on geometric design 97: Final program and abstracts. Final technical report

SciTech Connect

1997-12-31

The meeting was divided into the following sessions: (1) CAD/CAM; (2) Curve/Surface Design; (3) Geometric Algorithms; (4) Multiresolution Methods; (5) Robotics; (6) Solid Modeling; and (7) Visualization. This report contains the abstracts of papers presented at the meeting. Proceding the conference there was a short course entitled ``Wavelets for Geometric Modeling and Computer Graphics``.

1. A geometric buildup algorithm for the solution of the distance geometry problem using least-squares approximation.

PubMed

Sit, Atilla; Wu, Zhijun; Yuan, Yaxiang

2009-11-01

We propose a new geometric buildup algorithm for the solution of the distance geometry problem in protein modeling, which can prevent the accumulation of the rounding errors in the buildup calculations successfully and also tolerate small errors in given distances. In this algorithm, we use all instead of a subset of available distances for the determination of each unknown atom and obtain the position of the atom by using a least-squares approximation instead of an exact solution to the system of distance equations. We show that the least-squares approximation can be obtained by using a special singular value decomposition method, which not only tolerates and minimizes small distance errors, but also prevents the rounding errors from propagation effectively, especially when the distance data is sparse. We describe the least-squares formulations and their solution methods, and present the test results from applying the new algorithm for the determination of a set of protein structures with varying degrees of availability and accuracy of the distances. We show that the new development of the algorithm increases the modeling ability, and improves stability and robustness of the geometric buildup approach significantly from both theoretical and practical points of view.

2. Curvature and geodesic instabilities in a geometrical approach to the planar three-body problem

Krishnaswami, Govind S.; Senapati, Himalaya

2016-10-01

The Maupertuis principle allows us to regard classical trajectories as reparametrized geodesics of the Jacobi-Maupertuis (JM) metric on configuration space. We study this geodesic reformulation of the planar three-body problem with both Newtonian and attractive inverse-square potentials. The associated JM metrics possess translation and rotation isometries in addition to scaling isometries for the inverse-square potential with zero energy E. The geodesic flow on the full configuration space ℂ3 (with collision points excluded) leads to corresponding flows on its Riemannian quotients: the center of mass configuration space ℂ2 and shape space ℝ3 (as well as 𝕊3 and the shape sphere 𝕊2 for the inverse-square potential when E = 0). The corresponding Riemannian submersions are described explicitly in "Hopf" coordinates which are particularly adapted to the isometries. For equal masses subject to inverse-square potentials, Montgomery shows that the zero-energy "pair of pants" JM metric on the shape sphere is geodesically complete and has negative gaussian curvature except at Lagrange points. We extend this to a proof of boundedness and strict negativity of scalar curvatures everywhere on ℂ2, ℝ3, and 𝕊3 with collision points removed. Sectional curvatures are also found to be largely negative, indicating widespread geodesic instabilities. We obtain asymptotic metrics near collisions, show that scalar curvatures have finite limits, and observe that the geodesic reformulation "regularizes" pairwise and triple collisions on ℂ2 and its quotients for arbitrary masses and allowed energies. For the Newtonian potential with equal masses and zero energy, we find that the scalar curvature on ℂ2 is strictly negative though it could have either sign on ℝ3. However, unlike for the inverse-square potential, geodesics can encounter curvature singularities at collisions in finite geodesic time.

3. Research program with no ''measurement problem''

SciTech Connect

Noyes, H.P.; Gefwert, C.; Manthey, M.J.

1985-07-01

The ''measurement problem'' of contemporary physics is met by recognizing that the physicist participates when constructing and when applying the theory consisting of the formulated formal and measurement criteria (the expressions and rules) providing the necessary conditions which allow him to compute and measure facts, yet retains objectivity by requiring that these criteria, rules and facts be in corroborative equilibrium. We construct the particulate states of quantum physics by a recursive program which incorporates the non-determinism born of communication between asynchronous processes over a shared memory. Their quantum numbers and coupling constants arise from the construction via the unique 4-level combinatorial hierarchy. The construction defines indivisible quantum events with the requisite supraluminal correlations, yet does not allow supraluminal communication. Measurement criteria incorporate c, h-bar, and m/sub p/ or (not ''and'') G. The resulting theory is discrete throughout, contains no infinities, and, as far as we have developed it, is in agreement with quantum mechanical and cosmological fact.

4. Geometric Mechanics

Talman, Richard

1999-10-01

Mechanics for the nonmathematician-a modern approach For physicists, mechanics is quite obviously geometric, yet the classical approach typically emphasizes abstract, mathematical formalism. Setting out to make mechanics both accessible and interesting for nonmathematicians, Richard Talman uses geometric methods to reveal qualitative aspects of the theory. He introduces concepts from differential geometry, differential forms, and tensor analysis, then applies them to areas of classical mechanics as well as other areas of physics, including optics, crystal diffraction, electromagnetism, relativity, and quantum mechanics. For easy reference, Dr. Talman treats separately Lagrangian, Hamiltonian, and Newtonian mechanics-exploring their geometric structure through vector fields, symplectic geometry, and gauge invariance respectively. Practical perturbative methods of approximation are also developed. Geometric Mechanics features illustrative examples and assumes only basic knowledge of Lagrangian mechanics. Of related interest . . . APPLIED DYNAMICS With Applications to Multibody and Mechatronic Systems Francis C. Moon A contemporary look at dynamics at an intermediate level, including nonlinear and chaotic dynamics. 1998 (0-471-13828-2) 504 pp. MATHEMATICAL PHYSICS Applied Mathematics for Scientists and Engineers Bruce Kusse and Erik Westwig A comprehensive treatment of the mathematical methods used to solve practical problems in physics and engineering. 1998 (0-471-15431-8) 680 pp.

5. A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates.

PubMed

Lenarda, P; Paggi, M

A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.

6. Future Problem Solving--One Program Meeting Many Needs.

ERIC Educational Resources Information Center

Hume, Katherine C.

2002-01-01

This article describes the Future Problem Solving Program, a year-long curriculum project with competitive and non-competitive options. The international program involves 250,000 students and is designed to help students enlarge, enrich, and make more accurate their images of the future. Team problem solving and individual problem solving…

7. I Can Problem Solve: An Interpersonal Cognitive Problem-Solving Program. Intermediate Elementary Grades.

ERIC Educational Resources Information Center

Shure, Myrna B.

Designed for teachers of intermediate elementary grades to enable children to learn how to solve the problems they have with others, the underlying goal of the program is to help children develop problem-solving skills so that they learn how to think, not what to think. The interpersonal cognitive problem-solving (ICPS) program includes both…

8. Problems in Geometrical Optics

ERIC Educational Resources Information Center

Joyce, L. S.

1973-01-01

Ten laboratory exercises on optics are described to clarify concepts involving point objects and converging lenses producing real images. Mathematical treatment is kept to a minimum to stress concepts involved. (PS)

9. Bilingual Program Management: A Problem Solving Approach.

ERIC Educational Resources Information Center

De George, George P., Ed.

A collection of essays on the management of bilingual education programs is organized in three units: managing in a culturally diverse setting, balancing critical interactions, and special issues. The following papers are included: "Recruiting and Retaining Competent Personnel for Bilingual Education Programs" (Joan E. Friedenberg, Curtis H.…

10. Preschool-Based Programs for Externalizing Problems

ERIC Educational Resources Information Center

Arnold, David H.; Brown, Sharice A.; Meagher, Susan; Baker, Courtney N.; Dobbs, Jennifer; Doctoroff, Greta L.

2006-01-01

Few mental health initiatives for young children have used classroom programs. Preschool-based efforts targeting externalizing behavior could help prevent conduct disorders. Additional benefits may include improved academic achievement and reduced risk for other mental health difficulties. Pro-grams that target multiple developmental domains are…

11. New computer program solves wide variety of heat flow problems

NASA Technical Reports Server (NTRS)

Almond, J. C.

1966-01-01

Boeing Engineering Thermal Analyzer /BETA/ computer program uses numerical methods to provide accurate heat transfer solutions to a wide variety of heat flow problems. The program solves steady-state and transient problems in almost any situation that can be represented by a resistance-capacitance network.

12. Improve Problem Solving Skills through Adapting Programming Tools

NASA Technical Reports Server (NTRS)

Shaykhian, Linda H.; Shaykhian, Gholam Ali

2007-01-01

There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

13. DNA computation model to solve 0-1 programming problem.

PubMed

Zhang, Fengyue; Yin, Zhixiang; Liu, Bo; Xu, Jin

2004-01-01

0-1 programming problem is an important problem in opsearch with very widespread applications. In this paper, a new DNA computation model utilizing solution-based and surface-based methods is presented to solve the 0-1 programming problem. This model contains the major benefits of both solution-based and surface-based methods; including vast parallelism, extraordinary information density and ease of operation. The result, verified by biological experimentation, revealed the potential of DNA computation in solving complex programming problem.

14. User's manual for GAMNAS: Geometric and Material Nonlinear Analysis of Structures

NASA Technical Reports Server (NTRS)

Whitcomb, J. D.; Dattaguru, B.

1984-01-01

GAMNAS (Geometric and Material Nonlinear Analysis of Structures) is a two dimensional finite-element stress analysis program. Options include linear, geometric nonlinear, material nonlinear, and combined geometric and material nonlinear analysis. The theory, organization, and use of GAMNAS are described. Required input data and results for several sample problems are included.

15. Enhancing Digital Fluency through a Training Program for Creative Problem Solving Using Computer Programming

ERIC Educational Resources Information Center

Kim, SugHee; Chung, KwangSik; Yu, HeonChang

2013-01-01

The purpose of this paper is to propose a training program for creative problem solving based on computer programming. The proposed program will encourage students to solve real-life problems through a creative thinking spiral related to cognitive skills with computer programming. With the goal of enhancing digital fluency through this proposed…

16. Program Planning with Problem Mapping to Better Understand Need

ERIC Educational Resources Information Center

2012-01-01

This article describes two methods for use in program development and refinement. Problem mapping and forcefield analysis are explained with a real-world example about parenting education. Both methods are visual and consider multiple causes and effects of a problem. The methods are effective for clearly thinking through a problem, identifying…

17. Administrator Preparation Programs: Problems in Evaluating Competence.

ERIC Educational Resources Information Center

Kelley, Edgar A.

Judgments about competence are always relative, tentative, and situation-specific. An effective competency-based program for preparation of school administrators must base judgments about competency development on the same sources that will judge on-the-job administrative competency. The four most common instructional orientations to administrator…

18. Gauging spacetime symmetries on the worldsheet and the geometric Langlands program — II

Tan, Meng-Chwan

2008-09-01

We generalise the analysis carried out in [1], and find that our previous results can be extended beyond the case of SL (N,C). In particular, we show that an equivalence — at the level of the holomorphic chiral algebra — between a bosonic string on a smooth coset manifold G/B and a B-gauged version of itself on G, will imply an isomorphism of classical Script W-algebras and a level relation which underlie a geometric Langlands correspondence for the simply-laced, complex ADE-groups. In addition, as opposed to line operators and branes of an open topological sigma-model, the Hecke operators and Hecke eigensheaves, can, instead, be physically interpreted in terms of the correlation functions of local operators in the holomorphic chiral algebra of a closed, quasi-topological sigma-model. Our present results thus serve as an alternative physical interpretation — to that of an electric-magnetic duality of four-dimensional gauge theory demonstrated earlier by Kapustin and Witten in [2]—of the geometric Langlands correspondence for complex ADE-groups. The cases with tame and mild ``ramifications'' are also discussed.

19. A computer program for the geometrically nonlinear static and dynamic analysis of arbitrarily loaded shells of revolution, theory and users manual

NASA Technical Reports Server (NTRS)

Ball, R. E.

1972-01-01

A digital computer program known as SATANS (static and transient analysis, nonlinear, shells) for the geometrically nonlinear static and dynamic response of arbitrarily loaded shells of revolution is presented. Instructions for the preparation of the input data cards and other information necessary for the operation of the program are described in detail and two sample problems are included. The governing partial differential equations are based upon Sanders' nonlinear thin shell theory for the conditions of small strains and moderately small rotations. The governing equations are reduced to uncoupled sets of four linear, second order, partial differential equations in the meridional and time coordinates by expanding the dependent variables in a Fourier sine or cosine series in the circumferential coordinate and treating the nonlinear modal coupling terms as pseudo loads. The derivatives with respect to the meridional coordinate are approximated by central finite differences, and the displacement accelerations are approximated by the implicit Houbolt backward difference scheme with a constant time interval. The boundaries of the shell may be closed, free, fixed, or elastically restrained. The program is coded in the FORTRAN 4 language and is dimensioned to allow a maximum of 10 arbitrary Fourier harmonics and a maximum product of the total number of meridional stations and the total number of Fourier harmonics of 200. The program requires 155,000 bytes of core storage.

20. Measurement problem in Program Universe. Revision

SciTech Connect

Noyes, H.P.; Gefwert, C.; Manthey, M.J.

1985-07-01

The ''measurement problem'' of contemporary physics is in our view an artifact of its philosophical and mathematical underpinnings. We describe a new philosophical view of theory formation, rooted in Wittgenstein, and Bishop's and Martin-Loef's constructivity, which obviates such discussions. We present an unfinished, but very encouraging, theory which is compatible with this philosophical framework. The theory is based on the concepts of counting and combinatorics in the framework provided by the combinatorial hierarchy, a unique hierarchy of bit strings which interact by an operation called discrimination. Measurement criteria incorporate c, h-bar and m/sub p/ or (not ''and'') G. The resulting theory is discrete throughout, contains no infinities, and, as far as we have developed it, is in agreement with quantum mechanical and cosmological fact. 15 refs.

1. Measurement problem in Program Universe. Revision

Noyes, H. P.; Gefwert, C.; Manthey, M. J.

1985-07-01

The measurement problem of contemporary physics is in our view an artifact of its philosophical and mathematical underpinnings. We describe a new philosophical view of theory formation, rooted in Wittgenstein, and Bishop's and Martin-Loef's constructivity, which obviates such discussions. We present an unfinished, but very encouraging, theory which is compatible with this philosophical framework. The theory is based on the concepts of counting and combinatorics in the framework provided by the combinatorial hierarchy, a unique hierarchy of bit strings which interact by an operation called discrimination. Measurement criteria incorporate c, h-bar and m/sub p/ or (not and) G. The resulting theory is discrete throughout, contains no infinities, and, as far as we have developed it, is in agreement with quantum mechanical and cosmological fact.

2. Promising Parenting Programs for Reducing Adolescent Problem Behaviors

PubMed Central

Haggerty, Kevin P.; McGlynn-Wright, Anne; Klima, Tali

2013-01-01

Purpose Adolescent problem behaviors (substance use, delinquency, school dropout, pregnancy, and violence) are costly not only for individuals, but for entire communities. Policymakers and practitioners that are interested in preventing these problem behaviors are faced with many programming options. In this review, we discuss two criteria for selecting relevant parenting programs, and provide five examples of such programs. Design/methodology/approach The first criterion for program selection is theory based. Well-supported theories, such as the social development model, have laid out key family-based risk and protective factors for problem behavior. Programs that target these risk and protective factors are more likely to be effective. Second, programs should have demonstrated efficacy; these interventions have been called “evidence-based programs” (EBP). This review highlights the importance of evidence from rigorous research designs, such as randomized clinical trials, in order to establish program efficacy. Findings Nurse-Family Partnership, The Incredible Years, Positive Parenting Program, Strengthening Families 10–14, and Staying Connected with Your Teen are examined. The unique features of each program are briefly presented. Evidence showing impact on family risk and protective factors, as well as long-term problem behaviors, is reviewed. Finally, a measure of cost effectiveness of each program is provided. Originality/value We propose that not all programs are of equal value, and suggest two simple criteria for selecting a parenting program with a high likelihood for positive outcomes. Furthermore, although this review is not exhaustive, the five examples of EBPs offer a good start for policymakers and practitioners seeking to implement effective programs in their communities. Thus, this paper offers practical suggestions for those grappling with investments in child and adolescent programs on the ground. PMID:24416068

3. The Environmental Justice Collaborative Problem-Solving Cooperative Agreement Program

EPA Pesticide Factsheets

The Environmental Justice Collaborative Problem-Solving (CPS) Cooperative Agreement Program provides financial assistance to eligible organizations working on or planning to work on projects to address local environmental and/or public health issues

4. Symmetry Groups for Linear Programming Relaxations of Orthogonal Array Problems

DTIC Science & Technology

2015-03-26

Symmetry Groups for Linear Programming Relaxations of Orthogonal Array Problems THESIS MARCH 2015 David M. Arquette, Second Lieutenant, USAF AFIT-ENC...work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENC-MS-15-M-003 SYMMETRY GROUPS FOR LINEAR...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENC-MS-15-M-003 SYMMETRY GROUPS FOR LINEAR PROGRAMMING RELAXATIONS OF ORTHOGONAL ARRAY PROBLEMS David M

5. Linear Programming and Its Application to Pattern Recognition Problems

NASA Technical Reports Server (NTRS)

Omalley, M. J.

1973-01-01

Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.

6. Preservice Teachers' Use of Spatio-Visual Elements and their Level of Justification Dealing with a Geometrical Construction Problem

ERIC Educational Resources Information Center

Tapan, Menekse Seden; Arslan, Cigdem

2009-01-01

The main purpose of this research is to determine to what extent preservice teachers use visual elements and mathematical properties when they are dealing with a geometrical construction activity. The axiomatic structure of the Euclidian geometry forms a coherent field of objects and relations of a theoretical nature; and thus it constitutes a…

7. Solving linear integer programming problems by a novel neural model.

PubMed

Cavalieri, S

1999-02-01

The paper deals with integer linear programming problems. As is well known, these are extremely complex problems, even when the number of integer variables is quite low. Literature provides examples of various methods to solve such problems, some of which are of a heuristic nature. This paper proposes an alternative strategy based on the Hopfield neural network. The advantage of the strategy essentially lies in the fact that hardware implementation of the neural model allows for the time required to obtain a solution so as not depend on the size of the problem to be solved. The paper presents a particular class of integer linear programming problems, including well-known problems such as the Travelling Salesman Problem and the Set Covering Problem. After a brief description of this class of problems, it is demonstrated that the original Hopfield model is incapable of supplying valid solutions. This is attributed to the presence of constant bias currents in the dynamic of the neural model. A demonstration of this is given and then a novel neural model is presented which continues to be based on the same architecture as the Hopfield model, but introduces modifications thanks to which the integer linear programming problems presented can be solved. Some numerical examples and concluding remarks highlight the solving capacity of the novel neural model.

8. Solving quadratic programming problems by delayed projection neural network.

PubMed

Yang, Yongqing; Cao, Jinde

2006-11-01

In this letter, the delayed projection neural network for solving convex quadratic programming problems is proposed. The neural network is proved to be globally exponentially stable and can converge to an optimal solution of the optimization problem. Three examples show the effectiveness of the proposed network.

9. Changing the Composition Program: A Problem-Solving Approach.

ERIC Educational Resources Information Center

Soven, Margot

Little attention has been paid in composition journals and professional conferences to the practical problems associated with a writing program director's efforts to introduce an innovative composition curriculum within a traditional English department. A collaborative, problem solving approach to curriculum change is a practical way to proceed…

10. An Interdisciplinary Program in Technical Communications: Problems Encountered.

ERIC Educational Resources Information Center

Eckman, Martha

1979-01-01

Notes three major types of problems encountered by colleges and universities attempting to establish a program in technical communications: society's increasing need for better communications; industry's reluctance to fund cooperative programs; and difficulties within the academic community involving course selection, intercollegial competition…

11. Problems in Choosing Tools and Methods for Teaching Programming

ERIC Educational Resources Information Center

2012-01-01

The paper analyses the problems in selecting and integrating tools for delivering basic programming knowledge at the university level. Discussion and analysis of teaching the programming disciplines, the main principles of study programme design, requirements for teaching tools, methods and corresponding languages is presented, based on literature…

12. Efficient numerical methods for entropy-linear programming problems

Gasnikov, A. V.; Gasnikova, E. B.; Nesterov, Yu. E.; Chernov, A. V.

2016-04-01

Entropy-linear programming (ELP) problems arise in various applications. They are usually written as the maximization of entropy (minimization of minus entropy) under affine constraints. In this work, new numerical methods for solving ELP problems are proposed. Sharp estimates for the convergence rates of the proposed methods are established. The approach described applies to a broader class of minimization problems for strongly convex functionals with affine constraints.

13. EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.

ERIC Educational Resources Information Center

Jarvis, John J.; And Others

Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…

14. I Can Problem Solve: An Interpersonal Cognitive Problem Solving Program. Kindergarten and Primary Grades.

ERIC Educational Resources Information Center

Shure, Myrna B.

Designed for teachers of kindergarten and the primary grades to enable children to learn how to solve the problems they have with others, the underlying goal of the program is to help children develop problem-solving skills so that they learn how to think, not what to think. The 89 lessons are adaptable for various levels of ability throughout the…

15. I Can Problem Solve: An Interpersonal Cognitive Problem-Solving Program. Preschool.

ERIC Educational Resources Information Center

Shure, Myrna B.

Designed for teachers of preschool to enable children to learn how to solve the problems they have with others, the underlying goal of the program is to help children develop problem-solving skills so that they learn how to think, not what to think. Originally developed for four-year-old children in a preschool setting, most three-year-old…

16. Parallel solution of sparse one-dimensional dynamic programming problems

NASA Technical Reports Server (NTRS)

Nicol, David M.

1989-01-01

Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.

17. Nucleus downscaling in mouse embryos is regulated by cooperative developmental and geometric programs

PubMed Central

Tsichlaki, Elina; FitzHarris, Greg

2016-01-01

Maintaining appropriate nucleus size is important for cell health, but the mechanisms by which this is achieved are poorly understood. Controlling nucleus size is a particular challenge in early development, where the nucleus must downscale in size with progressive reductive cell divisions. Here we use live and fixed imaging, micromanipulation approaches, and small molecule analyses during preimplantation mouse development to probe the mechanisms by which nucleus size is determined. We find a close correlation between cell and nuclear size at any given developmental stage, and show that experimental cytoplasmic reduction can alter nuclear size, together indicating that cell size helps dictate nuclear proportions. Additionally, however, by creating embryos with over-sized blastomeres we present evidence of a developmental program that drives nuclear downscaling independently of cell size. We show that this developmental program does not correspond with nuclear import rates, but provide evidence that PKC activity may contribute to this mechanism. We propose a model in which nuclear size regulation during early development is a multi-mode process wherein nucleus size is set by cytoplasmic factors, and fine-tuned on a cell-by-cell basis according to cell size. PMID:27320842

18. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

SciTech Connect

2014-06-19

This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.

19. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

2014-06-01

This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α-. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen's method is employed to find a compromise solution, supported by illustrative numerical example.

20. Quantum algorithms for the ordered search problem via semidefinite programming

SciTech Connect

Childs, Andrew M.; Landahl, Andrew J.; Parrilo, Pablo A.

2007-03-15

One of the most basic computational problems is the task of finding a desired item in an ordered list of N items. While the best classical algorithm for this problem uses log{sub 2} N queries to the list, a quantum computer can solve the problem using a constant factor fewer queries. However, the precise value of this constant is unknown. By characterizing a class of quantum query algorithms for the ordered search problem in terms of a semidefinite program, we find quantum algorithms for small instances of the ordered search problem. Extending these algorithms to arbitrarily large instances using recursion, we show that there is an exact quantum ordered search algorithm using 4 log{sub 605} N{approx_equal}0.433 log{sub 2} N queries, which improves upon the previously best known exact algorithm.

1. An Interdisciplinary Program in Technical Communications: Problems Encountered.

ERIC Educational Resources Information Center

Eckman, Martha

The need for experts in technical communication is growing significantly while the number of college graduates in the field accounts for less than one percent of the need. Three major types of problems should be considered in trying to establish a technical communication program: those involving society's need for better technical communicators,…

2. Robust semidefinite programming approach to the separability problem

SciTech Connect

Brandao, Fernando G.S.L.; Vianna, Reinaldo O.

2004-12-01

We express the optimization of entanglement witnesses for arbitrary bipartite states in terms of a class of convex optimization problems known as robust semidefinite programs (RSDPs). We propose, using well known properties of RSDPs, several sufficient tests for separability of mixed states. Our results are then generalized to multipartite density operators.

3. Approximate proximal point methods for convex programming problems

SciTech Connect

Eggermont, P.

1994-12-31

We study proximal point methods for the finite dimensional convex programming problem minimize f(x) such that x {element_of} C, where f : dom f {contained_in} RIR is a proper convex function and C {contained_in} R is a closed convex set.

4. Parent Drug Education Programs: Reasons, Problems, and Implications.

ERIC Educational Resources Information Center

Fox, Tricia A.

1991-01-01

Presents an overview of parent drug education programs together with information regarding those problems, concerns, and needs faced by parents who are dealing with an offspring drug user/abuser. Emphasizes the unique, individual characteristics of parents and suggests that these influences may be the main determinants of the effectiveness of…

5. EARLY DETECTION AND PROGRAMING FOR CHILDREN WITH SCHOOL ADJUSTMENT PROBLEMS.

ERIC Educational Resources Information Center

MCGAHAN, F.E.

THE GALENA PARK SPECIAL PROGRAM IS AN EFFORT ON THE PART OF THE SCHOOL ADMINISTRATION TO DETECT, AT THE EARLIEST TIME, ANY STUDENT PROBLEM WHICH MAY LEAD TO DIFFICULTIES IN SCHOOL ADJUSTMENT. ALL PHASES OF PUPIL PERSONNEL SERVICES ARE PLACED UNDER ONE COORDINATOR TO EXPEDITE SERVICES TO THE CHILD IN DIFFICULTY. EARLY DETECTION OF POTENTIAL PROBLEM…

6. The toxic waste dump problem and a suggested insurance program

SciTech Connect

Fisher, A.

1980-01-01

The extent of the hazardous waste problem in the U.S. is explored. To emphasize the enormous scope of the problem, several recent cases involving hazardous waste disasters, including the Love Canal incident, are reviewed. Legislation related to toxic waste disposal is discussed. A Nat'l Hazardous Waste Insurance Program, based on the policies of the Nat'l Flood Insurance Program, is proposed. The rationale for government involvement in insurance provision is examined. The cost to taxpayers of this toxic waste insurance program will depend on several factors, including: the types of coverage available/ upper limits on each type of coverage/ the premium rates charged for each type of coverage/ the number and size of potential impact acres/ the number of people who would actually buy the insurance/ the actual incidence of hazardous waste damages/ and the time frame chosen for mapping all potential impact areas. (138 references)

ERIC Educational Resources Information Center

Gorsuch, Marjorie, Ed.

"Alaska's Image in the Lower 48," is the theme selected by a Blue Ribbon panel of state and national leaders who felt that it was important for students to explore the relationship between Alaska's outside image and the effect of that image on the federal programs/policies that impact Alaska. An overview of Alaska is presented first in…

8. Solving seismological problems using sgraph program: II-waveform modeling

SciTech Connect

Abdelwahed, Mohamed F.

2012-09-26

One of the seismological programs to manipulate seismic data is SGRAPH program. It consists of integrated tools to perform advanced seismological techniques. SGRAPH is considered a new system for maintaining and analyze seismic waveform data in a stand-alone Windows-based application that manipulate a wide range of data formats. SGRAPH was described in detail in the first part of this paper. In this part, I discuss the advanced techniques including in the program and its applications in seismology. Because of the numerous tools included in the program, only SGRAPH is sufficient to perform the basic waveform analysis and to solve advanced seismological problems. In the first part of this paper, the application of the source parameters estimation and hypocentral location was given. Here, I discuss SGRAPH waveform modeling tools. This paper exhibits examples of how to apply the SGRAPH tools to perform waveform modeling for estimating the focal mechanism and crustal structure of local earthquakes.

9. A convergence theory for a class of nonlinear programming problems.

NASA Technical Reports Server (NTRS)

Rauch, S. W.

1973-01-01

A recent convergence theory of Elkin concerning methods for unconstrained minimization is extended to a certain class of nonlinear programming problems. As in Elkin's original approach, the analysis of a variety of step-length algorithms is treated entirely separately from that of several direction algorithms. This allows for their combination into many different methods for solving the constrained problem. These include some of the methods of Rosen and Zoutendijk. We also extend the results of Topkis and Veinott to nonconvex sets and drop their requirement of the uniform feasibility of a subsequence of the search directions.

10. Neural network for solving convex quadratic bilevel programming problems.

PubMed

He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

2014-03-01

In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network.

11. BRIK, An Interactive, Goal Programming Model for Nuclear Exchange Problems

DTIC Science & Technology

1984-03-01

allocation is achieved through a nonlinear integer progamming algorithm using a branch and bound technique (Ref 21). DAVID, This model allocates a...Because of the complexity of the damage function and the nonlinearity of portions of the constraint set, a Lagrangian solution method is used (Ref 15...the weapon stockpile. The model is complex and requires the solution of a nonlinear programming problem for every target complex. DAY assigns values

12. A Hybrid Constraint Programming Approach for Nurse Rostering Problems

Qu, Rong; He, Fang

Due to the complexity of nurse rostering problems (NRPs), Constraint Programming (CP) approaches on their own have shown to be ineffective in solving these highly constrained problems. We investigate a two-stage hybrid CP approach on real world benchmark NRPs. In the first stage, a constraint satisfaction model is used to generate weekly rosters consist of high quality shift sequences satisfying a subset of constraints. An iterative forward search is then adapted to extend them to build complete feasible solutions. Variable and value selection heuristics are employed to improve the efficiency. In the second stage, a simple Variable Neighborhood Search is used to quickly improve the solution obtained. The basic idea of the hybrid approach is based on the observations that high quality nurse rosters consist of high quality shift sequences. By decomposing the problems into solvable sub-problems for CP, the search space of the original problems are significantly reduced. The results on benchmark problems demonstrate the efficiency of this hybrid CP approach when compared to the state-of-the-art approaches in the literature.

13. Multi-choice stochastic bi-level programming problem in cooperative nature via fuzzy programming approach

Maiti, Sumit Kumar; Roy, Sankar Kumar

2016-05-01

In this paper, a Multi-Choice Stochastic Bi-Level Programming Problem (MCSBLPP) is considered where all the parameters of constraints are followed by normal distribution. The cost coefficients of the objective functions are multi-choice types. At first, all the probabilistic constraints are transformed into deterministic constraints using stochastic programming approach. Further, a general transformation technique with the help of binary variables is used to transform the multi-choice type cost coefficients of the objective functions of Decision Makers(DMs). Then the transformed problem is considered as a deterministic multi-choice bi-level programming problem. Finally, a numerical example is presented to illustrate the usefulness of the paper.

14. Simplified partial digest problem: enumerative and dynamic programming algorithms.

PubMed

Blazewicz, Jacek; Burke, Edmund; Kasprzak, Marta; Kovalev, Alexandr; Kovalyov, Mikhail

2007-01-01

We study the Simplified Partial Digest Problem (SPDP), which is a mathematical model for a new simplified partial digest method of genome mapping. This method is easy for laboratory implementation and robust with respect to the experimental errors. SPDP is NP-hard in the strong sense. We present an \$O(n2;n)\$ time enumerative algorithm and an O(n(2q)) time dynamic programming algorithm for the error-free SPDP, where \$n\$ is the number of restriction sites and n is the number of distinct intersite distances. We also give examples of the problem, in which there are 2(n+2)/(3)-1 non-congruent solutions. These examples partially answer a question recently posed in the literature about the number of solutions of SPDP. We adapt our enumerative algorithm for handling SPDP with imprecise input data. Finally, we describe and discuss the results of the computer experiments with our algorithms.

15. Hierarchical Multiobjective Linear Programming Problems with Fuzzy Domination Structures

Yano, Hitoshi

2010-10-01

In this paper, we focus on hierarchical multiobjective linear programming problems with fuzzy domination structures where multiple decision makers in a hierarchical organization have their own multiple objective linear functions together with common linear constraints. After introducing decision powers and the solution concept based on the α-level set for the fuzzy convex cone Λ which reflects a fuzzy domination structure, we propose a fuzzy approach to obtain a satisfactory solution which reflects not only the hierarchical relationships between multiple decision makers but also their own preferences for their membership functions. In the proposed method, instead of Pareto optimal concept, a generalized Λ˜α-extreme point concept is introduced. In order to obtain a satisfactory solution from among a generalized Λ˜α-extreme point set, an interactive algorithm based on linear programming is proposed, and an interactive processes are demonstrated by means of an illustrative numerical example.

16. A recurrent neural network for solving bilevel linear programming problem.

PubMed

He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian

2014-04-01

In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.

17. Extracting Embedded Generalized Networks from Linear Programming Problems.

DTIC Science & Technology

1984-09-01

E EXTRACTING EMBEDDED GENERALIZED NETWORKS FROM LINEAR PROGRAMMING PROBLEMS by Gerald G. Brown * . ___Richard D. McBride * R. Kevin Wood LcL7...authorized. EA Gerald ’Brown Richar-rD. McBride 46;val Postgrduate School University of Southern California Monterey, California 93943 Los Angeles...REOT UBE . OV S.SF- PERFOING’ CAORG soN UER. 7. AUTNOR(a) S. CONTRACT ON GRANT NUME111() Gerald G. Brown Richard D. McBride S. PERFORMING ORGANIZATION

18. Dynamic Programming for Structured Continuous Markov Decision Problems

NASA Technical Reports Server (NTRS)

Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu

2004-01-01

We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.

19. An Algorithm for Solving Interval Linear Programming Problems

DTIC Science & Technology

1974-11-01

34regularized" a lä Chames -Cooper so that infeasibility is determined at optimal solution if that is the case. If I(x*(v)) - 0 then x*(v) is an... Chames and Cooper J3]) may be used to compute the new inverse. Theorem 2 The algorithm described above terminates in a finite number of steps...I J 19- REFERENCES 1) A. Ben-Israel and A. Chames , "An Explicit Solution of A Special Class of Linear Programming Problems", Operations

20. Nepal CSM program confronts old problems with new ideas.

PubMed

1984-01-01

Following 2 years of government negotiations, the social marketing banner in Nepal has been passed to a preivate firm, the Nepal Contraceptive Retail Sales (CRS) Company, Limited. With the change comes hope of rebirth for a program that has been plagued by cultural, distributional, and promotional impediments. The rejuvenation began in 1981, when the project acquired 4 jeeps, easing mobility and promotional problems. Then, the government rescinded a ban on brand name contraceptive radio advertisements. CRS now sells 5 contraceptive products: Dhaal and Suki Dhaal condoms, Gulaf and a low dose Nilocon pill, and Kamal foaming spermicidal tablets. In October, CRS began sales of its 1st noncontraceptive product, oral rehydration salts. CRS also plans to introduce a high priced colored condom this year and its exploring the possibility of marketing other drugs in a push toward self sufficiency. For the present, the Agency for International Development (AID) will continue supplying about 98% of CRS' budget, with product sales accounting for the remaining income. AID has pledged approximately \$1.8 million for December 1982 to September 1985. Moreover, CRS may earn profits on its newest contraceptive products. From the new CRS vantage point, it is evident some old problems persist. Nepalese districts now carry CRS products, but the number of distribution outlets must be increased. James Messick, former Westinghouse field representative, believes the social marketing program's new independent status will help it meet such challenges. CRS now sells 43% of Nepal's condoms and 16% of the country's oral contraceptives.

1. Administrative Problem-Solving for Writing Programs and Writing Centers: Scenarios in Effective Program Management.

ERIC Educational Resources Information Center

Myers-Breslin, Linda

Addressing the issues and problems faced by writing program administrators (WPAs) and writing center directors (WCDs), and how they can most effectively resolve the political, pedagogical, and financial questions that arise, this book presents essays from experienced WPAs and WCDs at a wide variety of institutions that offer scenarios and case…

2. Solving deterministic non-linear programming problem using Hopfield artificial neural network and genetic programming techniques

Vasant, P.; Ganesan, T.; Elamvazuthi, I.

2012-11-01

A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.

3. Problem Solving with an Icon Oriented Programming Tool: A Case Study in Technology Education.

ERIC Educational Resources Information Center

Lavonen, Jari M.; Lattu, Matti; Meisalo, Veijo P.

2001-01-01

Finnish eighth graders used computer control software to find creative solutions to technological problems. The learning environment encouraged problem-centered and creative approaches. More systematic teaching of programming skills before problem solving was recommended. (Contains 32 references.) (SK)

4. Generalization of Social Skills: Strategies and Results of a Training Program in Problem Solving Skills.

ERIC Educational Resources Information Center

Paraschiv, Irina; Olley, J. Gregory

This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…

SciTech Connect

Khalil, M.A.M.

1989-01-01

6. Computing Health: Programing Problem 3, Computing Peak Blood Alcohol Levels.

ERIC Educational Resources Information Center

Gold, Robert S.

1985-01-01

The Alcohol Metabolism Program, a computer program used to compute peak blood alcohol levels, is expanded upon to include a cover page, brief introduction, and techniques for generalizing the program to calculate peak levels for any number of drinks. (DF)

7. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

ERIC Educational Resources Information Center

Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

2016-01-01

The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

8. Memetic algorithms for the unconstrained binary quadratic programming problem.

PubMed

Merz, Peter; Katayama, Kengo

2004-12-01

This paper presents a memetic algorithm, a highly effective evolutionary algorithm incorporating local search for solving the unconstrained binary quadratic programming problem (BQP). To justify the approach, a fitness landscape analysis is conducted experimentally for several instances of the BQP. The results of the analysis show that recombination-based variation operators are well suited for the evolutionary algorithms with local search. Therefore, the proposed approach includes--besides a highly effective randomized k-opt local search--a new variation operator that has been tailored specially for the application in the hybrid evolutionary framework. The operator is called innovative variation and is fundamentally different from traditional crossover operators, since new genetic material is included in the offspring which is not contained in one of the parents. The evolutionary heuristic is tested on 35 publicly available BQP instances, and it is shown experimentally that the algorithm is capable of finding best-known solutions to large BQPs in a short time and with a high frequency. In comparison to other approaches for the BQP, the approach appears to be much more effective, particularly for large instances of 1000 or 2500 binary variables.

9. Teaching Introductory Programming to IS Students: Java Problems and Pitfalls

ERIC Educational Resources Information Center

Pendergast, Mark O.

2006-01-01

This paper examines the impact the use of the Java programming language has had on the way our students learn to program and the success they achieve. The importance of a properly constructed first course in programming cannot be overstated. A course well experienced will leave students with good programming habits, the ability to learn on their…

10. Finding Trustworthy Experts to Help Problem Solving on the Programming Learning Forum

ERIC Educational Resources Information Center

Tseng, Shian-Shyong; Weng, Jui-Feng

2010-01-01

The most important thing for learners in Programming Language subject is problem solving. During the practical programming project, various problems may occur and learners usually need consultation from the senior programmers (i.e. the experts) to assist them in solving the problems. Thus, the inquiry-based learning with learning forum is applied…

11. COYOTE: a finite-element computer program for nonlinear heat-conduction problems

SciTech Connect

Gartling, D.K.

1982-10-01

COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.

12. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.

PubMed

Zörnig, Peter

2015-08-01

We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.

13. METLIN-PC: An applications-program package for problems of mathematical programming

SciTech Connect

Pshenichnyi, B.N.; Sobolenko, L.A.; Sosnovskii, A.A.; Aleksandrova, V.M.; Shul`zhenko, Yu.V.

1994-05-01

The METLIN-PC applications-program package (APP) was developed at the V.M. Glushkov Institute of Cybernetics of the Academy of Sciences of Ukraine on IBM PC XT and AT computers. The present version of the package was written in Turbo Pascal and Fortran-77. The METLIN-PC is chiefly designed for the solution of smooth problems of mathematical programming and is a further development of the METLIN prototype, which was created earlier on a BESM-6 computer. The principal property of the previous package is retained - the applications modules employ a single approach based on the linearization method of B.N. Pschenichnyi. Hence the name {open_quotes}METLIN.{close_quotes}

14. A Group Process Model for Problem Identification and Program Planning

ERIC Educational Resources Information Center

Delbecq, Andre L.; Van De Ven, Andrew H.

1971-01-01

This article sets forth a group process approach useful for practicing administrators charged with a program development task. Meeting formats are suggested for involving critical reference groups in successive phases of program Development. (Author)

15. Problems In, and Strategies For, Evaluating Preschool Programs

ERIC Educational Resources Information Center

Vane, Julia R.

1976-01-01

Discusses the difficulty of documenting the effectiveness of preschool programs and relates this to measuring instruments used and the type of design selected. Methods are provided to assist psychologists and educators to evaluate preschool programs. Three studies of preschool programs using different designs which involve published…

16. Program Administrator's Handbook. Strategies for Preventing Alcohol and Other Drug Problems. The College Series.

ERIC Educational Resources Information Center

CSR, Inc., Washington, DC.

This handbook is for administrators of programs in higher education settings which deal with alcohol and other drug (AOD) related problems. Chapter 1, "Defining the Problem, Issues, and Trends" examines the problem from various perspectives and presents the latest statistics on the extent of AOD use on campuses, specific problems affecting…

17. An efficient method for generalized linear multiplicative programming problem with multiplicative constraints.

PubMed

Zhao, Yingfeng; Liu, Sanyang

2016-01-01

We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.

18. The Current Often Implemented Fitness Tests in Physical Education Programs: Problems and Future Directions

ERIC Educational Resources Information Center

Keating, Xiaofen Deng

2003-01-01

This paper aims to examine current nationwide youth fitness test programs, address problems embedded in the programs, and possible solutions. The current Fitnessgram, President's Challenge, and YMCA youth fitness test programs were selected to represent nationwide youth fitness test programs. Sponsors of the nationwide youth fitness test programs…

19. Deadlock and fictitiousness problem in parallel program specifications

SciTech Connect

Panfilenko, V.P.

1995-05-01

One of the directions of modern programming based on algebraic methods takes its origin in V.M. Glushkov`s theory of systems of algorithmic algebras (SAA). The SAA apparatus with appropriately interpreted operations is used for program design and allows compact structured representation of program schemas in the form of algebraic formulas. Modified systems of algorithmic algebras (SAA-M) additionally represent parallelism description tools.

20. Modern Problems: Sociology Units. An Experimental Program for Grade 12.

ERIC Educational Resources Information Center

Carlson, Marshall; Fennig, Lois

GRADES OR AGES: Grade 12. SUBJECT MATTER: Sociology; modern problems. ORGANIZATION AND PHYSICAL APPEARANCE: The guide contains two units, one on the problems of minority groups and the other on social pathology. Sub-sections of unit 2 include crime and criminals, criminal investigation, gun control, U.S. criminal law, criminal procedure,…

1. Virtually Successful: Defeating the Dropout Problem through Online School Programs

ERIC Educational Resources Information Center

Roblyer, M. D.

2006-01-01

Although dropout rates in virtual school courses are typically quite high, some virtual programs have very low course dropout and failure rates and better passing rates on key criterion tests (e.g., AP tests) than do traditional school programs. Directors of five successful virtual schools agreed to share their "formulas for success" in…

2. Special Concretes and Field Problems; Instructor's Guide; Pilot Program Edition.

ERIC Educational Resources Information Center

Portland Cement Association, Cleveland, OH.

This guide, prepared for a 2-year program in junior colleges and technical institutes, is designed for a national program to train persons for employment as technicians in the cement and concrete industries. Included are 48 session oultines divided into four units of study. Each unit contains session objectives and outlines, presentation outlines,…

3. Robust Programming Problems Based on the Mean-Variance Model Including Uncertainty Factors

Hasuike, Takashi; Ishii, Hiroaki

2009-01-01

This paper considers robust programming problems based on the mean-variance model including uncertainty sets and fuzzy factors. Since these problems are not well-defined problems due to fuzzy factors, it is hard to solve them directly. Therefore, introducing chance constraints, fuzzy goals and possibility measures, the proposed models are transformed into the deterministic equivalent problems. Furthermore, in order to solve these equivalent problems efficiently, the solution method is constructed introducing the mean-absolute deviation and doing the equivalent transformations.

4. Developing Student Programming and Problem-Solving Skills with Visual Basic

ERIC Educational Resources Information Center

Siegle, Del

2009-01-01

Although most computer users will never need to write a computer program, many students enjoy the challenge of creating one. Computer programming enhances students' problem solving by forcing students to break a problem into its component pieces and reassemble it in a generic format that can be understood by a nonsentient entity. It promotes…

5. Stacked Deck: An Effective, School-Based Program for the Prevention of Problem Gambling

ERIC Educational Resources Information Center

Williams, Robert J.; Wood, Robert T.; Currie, Shawn R.

2010-01-01

School-based prevention programs are an important component of problem gambling prevention, but empirically effective programs are lacking. Stacked Deck is a set of 5-6 interactive lessons that teach about the history of gambling; the true odds and "house edge"; gambling fallacies; signs, risk factors, and causes of problem gambling; and…

6. Creating a Brighter Future: An Update on the Future Problem Solving Program.

ERIC Educational Resources Information Center

Crabbe, Anne Borland

1982-01-01

The Future Problem Solving Program is intended to help gifted students (grades 4 through 12) develop richer images of the future and increase creativity, communication, teamwork, research, and problem-solving skills. Procedures for participating in the program and securing materials are explained. (CL)

7. Fundamental solution of the problem of linear programming and method of its determination

NASA Technical Reports Server (NTRS)

Petrunin, S. V.

1978-01-01

The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.

8. Designing a Family Problem Solving Training Program with an Adolescent Diabetic.

ERIC Educational Resources Information Center

Kieren, Dianne K.; And Others

An educational program was developed to assist family groups with adolescent diabetics to improve their problem-solving skills. The program is based on theoretical assumptions and research findings from a study of family problem-solving, which involved nine intact, well-functioning families (five families with a diabetic adolescent and four…

9. Studies of Verbal Problem Solving: I. Two Performance-Aiding Programs. Technical Report No. 83.

ERIC Educational Resources Information Center

Bond, Nicholas A., Jr.; And Others

This booklet describes two computer programs that were written to provide on-line aid to problem solvers. Both programs were designed for "membership" problems, or those in which there are several English sentences and implicit relationships. The task was to infer a membership structure that is compatible with all the logical constraints.…

10. LINOPT: A FORTRAN Routine for Solving Linear Programming Problems,

DTIC Science & Technology

1981-10-09

MD 20910 2R44EA501 I I. CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT DATE 9 October 1981 ’I. NUMBER OF PAGES 46 11. MONITORING AGENCY NAME...block /XXXLP/, which must accordingly be a common block in the calling program. ROUNDOFF CONTROL In the program there are three input variables which...can be used to control roundoff error accummulations. EPS is a tolerance used in checking constraint violations. H is also used to zero out

11. Geometric reasoning

NASA Technical Reports Server (NTRS)

Woodbury, R. F.; Oppenheim, I. J.

1987-01-01

Cognitive robot systems are ones in which sensing and representation occur, from which task plans and tactics are determined. Such a robot system accomplishes a task after being told what to do, but determines for itself how to do it. Cognition is required when the work environment is uncontrolled, when contingencies are prevalent, or when task complexity is large; it is useful in any robotic mission. A number of distinguishing features can be associated with cognitive robotics, and one emphasized here is the role of artificial intelligence in knowledge representation and in planning. While space telerobotics may elude some of the problems driving cognitive robotics, it shares many of the same demands, and it can be assumed that capabilities developed for cognitive robotics can be employed advantageously for telerobotics in general. The top level problem is task planning, and it is appropriate to introduce a hierarchical view of control. Presented with certain mission objectives, the system must generate plans (typically) at the strategic, tactical, and reflexive levels. The structure by which knowledge is used to construct and update these plans endows the system with its cognitive attributes, and with the ability to deal with contingencies, changes, unknowns, and so on. Issues of representation and reasoning which are absolutely fundamental to robot manipulation, decisions based upon geometry, are discussed here, not AI task planning per se.

12. The "Problems Behind the Problems:" Systems Engineering and Program Management Risk Factors in Acquisition Programs

DTIC Science & Technology

2004-08-01

Acquisition, Technology, and Logistics), Office of Enterprise Development in the Office of Systems Engineering . The publication of this IDA document does not...Defense (Acquisition, Technology, and Logistics), Office of Enterprise Development in the Office of Systems Engineering (SE). This paper responds to... development process, and open systems.6 2. Category II: Systems Engineering and Program Management Process Risk Factors Systems engineering and program

13. Molecular solutions to the binary integer programming problem based on DNA computation.

PubMed

Yeh, Chung-Wei; Chu, Chih-Ping; Wu, Kee-Rong

2006-01-01

Binary optimization is a widely investigated topic in integer linear programming. This study proposes a DNA-based computing algorithm for solving the significantly large binary integer programming (BIP) problem. The proposed approach is based upon Adleman and Lipton's DNA operations to solve the BIP problem. The potential of DNA computation for the BIP problem is promising given the operational time complexity of O(nxk).

14. A new neural network model for solving random interval linear programming problems.

PubMed

2017-05-01

This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique.

15. Documentation as Problem Solving for Literacy Outreach Programs

SciTech Connect

Girill, T R

2004-07-06

Age-appropriate technical writing lessons for underperforming high-school students can offer them an innovative, ''authentic'' way to improve how they read and write. Thus the techniques and principles of effective technical communication routinely applied at work also provide a positive response to one of today's great educational challenges. This workshop shows participants how to (1) introduce English and science teachers to the value of technical writing as a response to school literacy problems, (2) prepare plausible practice exercises to help students improve their basic literacy, and (3) recognize and respond to known literacy outreach pitfalls. Every effective literacy outreach project based on technical writing needs to address four key problems.

16. Transfer Problems in Outdoor Management Development Programs and How to Overcome Them.

ERIC Educational Resources Information Center

McGraw, Peter

This paper examines the issues and problems that arise in the transfer process in outdoor management development (OMD) programs. The transfer of learning from the outdoors back to the workplace is a crucial element of OMD. A review of general transfer problems and management development demonstrates that many of the transfer problems associated…

17. Higher order sensitivity of solutions to convex programming problems without strict complementarity

NASA Technical Reports Server (NTRS)

Malanowski, Kazimierz

1988-01-01

Consideration is given to a family of convex programming problems which depend on a vector parameter. It is shown that the solutions of the problems and the associated Lagrange multipliers are arbitrarily many times directionally differentiable functions of the parameter, provided that the data of the problems are sufficiently regular. The characterizations of the respective derivatives are given.

18. CHEMEX; Understanding and Solving Problems in Chemistry. A Computer-Assisted Instruction Program for General Chemistry.

ERIC Educational Resources Information Center

Lower, Stephen K.

A brief overview of CHEMEX--a problem-solving, tutorial style computer-assisted instructional course--is provided and sample problems are offered. In CHEMEX, students receive problems in advance and attempt to solve them before moving through the computer program, which assists them in overcoming difficulties and serves as a review mechanism.…

19. Problem Solving in Mathematics. An ESEA Title IV-C Instructional Program.

ERIC Educational Resources Information Center

Schaaf, Oscar; Brannan, Richard

1981-01-01

Problem solving is viewed as an ability required throughout life, and how we function is seen to be directly related to how well we solve problems. In this document, the issue of a steady decline in students' abilities in the area of mathematical problem solving is confronted and a program designed to teach students the necessary skills in this…

20. Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm

2016-02-01

Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.

1. Proof test of the computer program BUCKY for plasticity problems

Smith, James P.

1994-01-01

A theoretical equation describing the elastic-plastic deformation of a cantilever beam subject to a constant pressure is developed. The theoretical result is compared numerically to the computer program BUCKY for the case of an elastic-perfectly plastic specimen. It is shown that the theoretical and numerical results compare favorably in the plastic range. Comparisons are made to another research code to further validate the BUCKY results. This paper serves as a quality test for the computer program BUCKY developed at NASA Johnson Space Center.

2. A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem

2016-07-01

The linear semidefinite programming problem is considered. The dual affine scaling method in which all current iterations belong to the feasible set is proposed for its solution. Moreover, the boundaries of the feasible set may be reached. This method is a generalization of a version of the affine scaling method that was earlier developed for linear programs to the case of semidefinite programming.

3. 34 CFR 356.11 - What types of problems may be researched under the fellowship program?

Code of Federal Regulations, 2014 CFR

2014-07-01

... fellowship program? 356.11 Section 356.11 Education Regulations of the Offices of the Department of Education... REHABILITATION RESEARCH: RESEARCH FELLOWSHIPS What Kinds of Activities Does the Department Support Under This Program? § 356.11 What types of problems may be researched under the fellowship program?...

4. 34 CFR 356.11 - What types of problems may be researched under the fellowship program?

Code of Federal Regulations, 2011 CFR

2011-07-01

... fellowship program? 356.11 Section 356.11 Education Regulations of the Offices of the Department of Education... REHABILITATION RESEARCH: RESEARCH FELLOWSHIPS What Kinds of Activities Does the Department Support Under This Program? § 356.11 What types of problems may be researched under the fellowship program?...

5. 34 CFR 356.11 - What types of problems may be researched under the fellowship program?

Code of Federal Regulations, 2012 CFR

2012-07-01

... fellowship program? 356.11 Section 356.11 Education Regulations of the Offices of the Department of Education... REHABILITATION RESEARCH: RESEARCH FELLOWSHIPS What Kinds of Activities Does the Department Support Under This Program? § 356.11 What types of problems may be researched under the fellowship program?...

6. 34 CFR 356.11 - What types of problems may be researched under the fellowship program?

Code of Federal Regulations, 2010 CFR

2010-07-01

... fellowship program? 356.11 Section 356.11 Education Regulations of the Offices of the Department of Education... REHABILITATION RESEARCH: RESEARCH FELLOWSHIPS What Kinds of Activities Does the Department Support Under This Program? § 356.11 What types of problems may be researched under the fellowship program?...

7. 34 CFR 356.11 - What types of problems may be researched under the fellowship program?

Code of Federal Regulations, 2013 CFR

2013-07-01

... fellowship program? 356.11 Section 356.11 Education Regulations of the Offices of the Department of Education... REHABILITATION RESEARCH: RESEARCH FELLOWSHIPS What Kinds of Activities Does the Department Support Under This Program? § 356.11 What types of problems may be researched under the fellowship program?...

8. A Computer Program for the Management of Prescription-Based Problems.

ERIC Educational Resources Information Center

Cotter, Patricia M.; Gumtow, Robert H.

1991-01-01

The Prescription Management Program, a software program using Apple's HyperCard on a MacIntosh, was developed to simplify the creation, storage, modification, and general management of prescription-based problems. Pharmacy instructors may customize the program to serve their individual teaching needs. (Author/DB)

9. How Does Early Feedback in an Online Programming Course Change Problem Solving?

ERIC Educational Resources Information Center

Ebrahimi, Alireza

2012-01-01

How does early feedback change the programming problem solving in an online environment and help students choose correct approaches? This study was conducted in a sample of students learning programming in an online course entitled Introduction to C++ and OOP (Object Oriented Programming) using the ANGEL learning management system platform. My…

10. Personalized Computer-Assisted Mathematics Problem-Solving Program and Its Impact on Taiwanese Students

ERIC Educational Resources Information Center

Chen, Chiu-Jung; Liu, Pei-Lin

2007-01-01

This study evaluated the effects of a personalized computer-assisted mathematics problem-solving program on the performance and attitude of Taiwanese fourth grade students. The purpose of this study was to determine whether the personalized computer-assisted program improved student performance and attitude over the nonpersonalized program.…

11. Deviant Peer Influences in Programs for Youth Problems and Solutions

ERIC Educational Resources Information Center

Dodge, Kenneth A., Ed.; Dishion, Thomas J., Ed.; Lansford, Jennifer E., Ed.

2006-01-01

Most interventions for at-risk youth are group based. Yet, emerging research indicates that young people often learn to become deviant by interacting with deviant peers. In this important volume, leading intervention and prevention experts from psychology, education, criminology, and related fields analyze how, and to what extent, programs that…

12. Prevention of ADHD Related Problems: A Universal Preschool Program

ERIC Educational Resources Information Center

Christiansen, Hanna; Hirsch, Oliver; König, Anika; Steinmayr, Ricarda; Roehrle, Bernd

2015-01-01

Purpose: Early onset of behavioral disorders is predictive of long term adverse outcomes. There are some indicated and selective early prevention programs for attention deficit/hyperactivity disorder (ADHD), one of the most common behavioral disorders in childhood and adolescence. The purpose of this paper is to present a universal preschool…

13. Solving Bilevel Programming Problems Using a Neural Network Approach and Its Application to Power System Environment

In this paper, a hybrid neural network approach to solve mixed integer quadratic bilevel programming problems is proposed. Bilevel programming problems arise when one optimization problem, the upper problem, is constrained by another optimization, the lower problem. The mixed integer quadratic bilevel programming problem is transformed into a double-layered neural network. The combination of a genetic algorithm (GA) and a meta-controlled Boltzmann machine (BM) enables us to formulate a hybrid neural network approach to solving bilevel programming problems. The GA is used to generate the feasible partial solutions of the upper level and to provide the parameters for the lower level. The meta-controlled BM is employed to cope with the lower level problem. The lower level solution is transmitted to the upper level. This procedure enables us to obtain the whole upper level solution. The iterative processes can converge on the complete solution of this problem to generate an optimal one. The proposed method leads the mixed integer quadratic bilevel programming problem to a global optimal solution. Finally, a numerical example is used to illustrate the application of the method in a power system environment, which shows that the algorithm is feasible and advantageous.

14. A Program for Solving the Brain Ischemia Problem

PubMed Central

DeGracia, Donald J.

2013-01-01

Our recently described nonlinear dynamical model of cell injury is here applied to the problems of brain ischemia and neuroprotection. We discuss measurement of global brain ischemia injury dynamics by time course analysis. Solutions to proposed experiments are simulated using hypothetical values for the model parameters. The solutions solve the global brain ischemia problem in terms of “master bifurcation diagrams” that show all possible outcomes for arbitrary durations of all lethal cerebral blood flow (CBF) decrements. The global ischemia master bifurcation diagrams: (1) can map to a single focal ischemia insult, and (2) reveal all CBF decrements susceptible to neuroprotection. We simulate measuring a neuroprotectant by time course analysis, which revealed emergent nonlinear effects that set dynamical limits on neuroprotection. Using over-simplified stroke geometry, we calculate a theoretical maximum protection of approximately 50% recovery. We also calculate what is likely to be obtained in practice and obtain 38% recovery; a number close to that often reported in the literature. The hypothetical examples studied here illustrate the use of the nonlinear cell injury model as a fresh avenue of approach that has the potential, not only to solve the brain ischemia problem, but also to advance the technology of neuroprotection. PMID:24961411

15. Geometrical pattern learning

SciTech Connect

Goldberg, P.W.

1993-04-01

In this paper we consider the problem of learning the positions of spheres in metric spaces, given as data randomly drawn points classified according to whether they are internal or external to an unknown sphere. The particular metrics under consideration are geometrical shape metrics, and the results are intended to be applicable to the problem of learning to identify a shape from related shapes classified according to whether they resemble it visually. While it is typically NP-hard to locate a central point for a hypothesis sphere, we find that it is however often possible to obtain a non-spherical hypothesis which can accurately predict whether further random points lie within the unknown sphere. We exhibit algorithms which achieve this, and in the process indicate useful general techniques for computational learning. Finally we exhibit a natural shape metric and show that it defines a class of spheres not predictable in this sense, subject to standard cryptographic assumptions.

16. Genetic programming over context-free languages with linear constraints for the knapsack problem: first results.

PubMed

Bruhn, Peter; Geyer-Schulz, Andreas

2002-01-01

In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling complementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.

17. Application of Dynamic Programming to Solving K Postmen Chinese Postmen Problem

Fei, Rong; Cui, Duwu; Zhang, Yikun; Wang, Chaoxue

In this paper, Dynamic Programming is used to solve K postmen Chinese postmen problem for the first time. And a novel model for decision- making of KPCPP and the computation models for solving the whole problem are proposed. The arcs of G are changed into the points of G' by CAPA, and the model is converted into another one, which applies to Multistep Decision Process, by MDPMCA. On the base of these two programs, Dynamic Programming algorithm KMPDPA can finally solve the NPC problem-KPCPP. An illustrative example is given to clarify concepts and methods. The accuracy of these algorithms and the relative theories are verified by mathematical language.

18. Challenge problems focusing on equality and combinatory logic: Evaluating automated theorem-proving programs

SciTech Connect

Wos, L.; McCune, W.

1988-01-01

In this paper, we offer a set of problems for evaluating the power of automated theorem-proving programs and the potential of new ideas. Since the problems published in the proceedings of the first CADE conference proved to be so useful, and since researchers are now far more disposed to implementing and testing their ideas, a new set of problems to complement those that have been widely studied is in order. In general, the new problems provide a far greater challenge for an automated theorem-proving program than those in the first set do. Indeed, to our knowledge, five of the six problems we propose for study have never been proved with a theorem-proving program. For each problem, we give a set of statements that can easily be translated into a standard set of clauses. We also state each problem in its mathematical and logical form. In many cases, we also provide a proof of the theorem from which a problem is taken so that one can measure a program's progress in its attempt to solve the problem. Two of the theorems we discuss are of especial interest in that they answer questions that had been open concerning the constructibility of two types of combinator. We also include a brief description of a new strategy for restricting the application of paramodulation. All of the problems we propose for study emphasize the role of equality. This paper is tutorial in nature.

19. Bellingham Bay action program: Initial data summaries and problem identification

SciTech Connect

Decker, D.S.; Sonnerup, R.; Greene, J.J.

1989-08-01

The report provides a synthesis of information describing the geographic extent and severity of estuarine contamination in Bellingham Bay within Puget Sound in Washington State. Summaries of existing data are provided for chemical contamination of sediment and biota, microbial contamination, eutrophication and contaminant sources. Original, summarized, tabulated, and mapped data are presented. The objective of the report is to provide a mechanism for comprehensively evaluating pollution problems in the more urbanized embayments and for providing a basis for prioritizing corrective actions. A decision making framework is presented for evaluating and prioritizing both sub-areas within Bellingham Bay and specific contaminant sources.

20. Helping solve Georgia's water problems - the USGS Cooperative Water Program

USGS Publications Warehouse

Clarke, John S.

2006-01-01

The U.S. Geological Survey (USGS) addresses a wide variety of water issues in the State of Georgia through the Cooperative Water Program (CWP). As the primary Federal science agency for water-resource information, the USGS monitors the quantity and quality of water in the Nation's rivers and aquifers, assesses the sources and fate of contaminants in aquatic systems, collects and analyzes data on aquatic ecosystems, develops tools to improve the application of hydrologic information, and ensures that its information and tools are available to all potential users. This broad, diverse mission cannot be accomplished effectively without the contributions of the CWP.

1. Carbon dioxide problem: DOE program and a general assessment

SciTech Connect

Abarbanel, H.; Chamberlain, J.; Foley, H.; MacDonald, G.; Nierenberg, W.; Ruderman, M.

1980-10-01

From the view of a potential national or international policy on CO/sub 2/, progress towards these goals is reported along with suggestions for additions to and implementation of the present work. After the introduction, conclusions and recommendations are presented. The third and fourth sections contain discussions of the present research programs on the carbon cycle and on climate modeling. The fifth section considers physical effects of CO/sub 2/-induced climate change that may be of social or economic importance. The last section considers some early warning signals for climate changes due to increased atmospheric CO/sub 2/.

2. Nonlinear Programming Problems Associated with Closed Range Operators

SciTech Connect

Aizicovici, S.; Motreanu, D.; Pavel, N. H.

1999-09-15

Necessary conditions for the optimality of a pair (y-bar, u-bar) with respect to a locally Lipschitz cost functional L(y,u) , subject to Ay + F(y) = Cu + B(u) , are given in terms of generalized gradients. Here A and C are densely defined, closed, linear operators on some Banach spaces, while F and B are (Frechet) differentiable maps, which are suitably related to A and C . Various examples and potential applications to nonlinear programming models and nonlinear optimal control of partial differential equations are also discussed.

3. The general form of 0-1 programming problem based on DNA computing.

PubMed

ZhiXiang, Yin; Fengyue, Zhang; Jin, Xu

2003-06-01

DNA computing is a novel method of solving a class of intractable computational problems, in which the computing speeds up exponentially with the problem size. Up to now, many accomplishments have been made to improve its performance and increase its reliability. In this paper, we solved the general form of 0-1 programming problem with fluorescence labeling techniques based on surface chemistry by attempting to apply DNA computing to a programming problem. Our method has some significant advantages such as simple encoding, low cost, and short operating time.

4. A New Bound for the Ration Between the 2-Matching Problem and Its Linear Programming Relaxation

SciTech Connect

Boyd, Sylvia; Carr, Robert

1999-07-28

Consider the 2-matching problem defined on the complete graph, with edge costs which satisfy the triangle inequality. We prove that the value of a minimum cost 2-matching is bounded above by 4/3 times the value of its linear programming relaxation, the fractional 2-matching problem. This lends credibility to a long-standing conjecture that the optimal value for the traveling salesman problem is bounded above by 4/3 times the value of its linear programming relaxation, the subtour elimination problem.

5. Student Behaviour Problems: Context, Initiatives and Programs. Selected Papers from the National Conference on Student Behaviour Problems: Context, Initiatives and Programs (3rd, Brisbane, Queensland, Australia, October 1991).

ERIC Educational Resources Information Center

Elkins, John, Ed.; Izard, John, Ed.

The conference papers in this collection are grouped under the following topics: behavior problems in context; interpersonal relationships; initiatives by systems and schools; and programs in special settings. Papers included are: (1) National Trends in Discipline Policy Development (Roger Slee); (2) Balancing: The Protocols of Discipline (William…

6. A hybrid approach to protein folding problem integrating constraint programming with local search

PubMed Central

2010-01-01

Background The protein folding problem remains one of the most challenging open problems in computational biology. Simplified models in terms of lattice structure and energy function have been proposed to ease the computational hardness of this optimization problem. Heuristic search algorithms and constraint programming are two common techniques to approach this problem. The present study introduces a novel hybrid approach to simulate the protein folding problem using constraint programming technique integrated within local search. Results Using the face-centered-cubic lattice model and 20 amino acid pairwise interactions energy function for the protein folding problem, a constraint programming technique has been applied to generate the neighbourhood conformations that are to be used in generic local search procedure. Experiments have been conducted for a few small and medium sized proteins. Results have been compared with both pure constraint programming approach and local search using well-established local move set. Substantial improvements have been observed in terms of final energy values within acceptable runtime using the hybrid approach. Conclusion Constraint programming approaches usually provide optimal results but become slow as the problem size grows. Local search approaches are usually faster but do not guarantee optimal solutions and tend to stuck in local minima. The encouraging results obtained on the small proteins show that these two approaches can be combined efficiently to obtain better quality solutions within acceptable time. It also encourages future researchers on adopting hybrid techniques to solve other hard optimization problems. PMID:20122212

7. Nonlinear programming for classification problems in machine learning

Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio

2016-10-01

We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.

8. Vocal problems among teachers: evaluation of a preventive voice program.

PubMed

Bovo, Roberto; Galceran, Marta; Petruccelli, Joseph; Hatzopoulos, Stavros

2007-11-01

Vocal education programs for teachers may prevent the emergence of vocal disorders; however, only a few studies have tried to evaluate the effectiveness of these preventive programs, particularly in the long term. Two hundred and sixty-four subjects, mostly kindergarten and primary school female teachers, participated in a course on voice care, including a theoretical seminar (120 minutes) and a short voice group therapy (180 minutes, small groups of 20 subjects). For 3 months, they had to either attend the vocal ergonomics norms and, as psychological reinforcement, they had to make out a daily report of vocal abuse, or to follow the given exercises for a more efficient vocal technique, reporting on whether the time scheduled was respected or not. The effectiveness of the course was assessed in a group of 21 female teachers through a randomized controlled study. Evaluation comprehended stroboscopy, perceptual and electro-acoustical voice analysis, Voice Handicap Index, and a course benefit questionnaire. A group of 20 teachers matched for age, working years, hoarseness grade, and vocal demand served as a control group. At 3 months evaluation, participants demonstrated amelioration in the global dysphonia rates (P=0.0003), jitter (P=0.0001), shimmer (P=0.0001), MPT (P=0.0001), and VHI (P=0.0001). Twelve months after the course, the positive effects remained, although they were slightly reduced. In conclusion, a course inclusive of two lectures, a short group voice therapy, home-controlled voice exercises, and hygiene, represents a feasible and cost-effective primary prevention of voice disorders in a homogeneous and well-motivated population of teachers.

9. A high-performance feedback neural network for solving convex nonlinear programming problems.

PubMed

Leung, Yee; Chen, Kai-Zhou; Gao, Xing-Bao

2003-01-01

Based on a new idea of successive approximation, this paper proposes a high-performance feedback neural network model for solving convex nonlinear programming problems. Differing from existing neural network optimization models, no dual variables, penalty parameters, or Lagrange multipliers are involved in the proposed network. It has the least number of state variables and is very simple in structure. In particular, the proposed network has better asymptotic stability. For an arbitrarily given initial point, the trajectory of the network converges to an optimal solution of the convex nonlinear programming problem under no more than the standard assumptions. In addition, the network can also solve linear programming and convex quadratic programming problems, and the new idea of a feedback network may be used to solve other optimization problems. Feasibility and efficiency are also substantiated by simulation examples.

10. A quasi-Newton approach to optimization problems with probability density constraints. [problem solving in mathematical programming

NASA Technical Reports Server (NTRS)

Tapia, R. A.; Vanrooy, D. L.

1976-01-01

A quasi-Newton method is presented for minimizing a nonlinear function while constraining the variables to be nonnegative and sum to one. The nonnegativity constraints were eliminated by working with the squares of the variables and the resulting problem was solved using Tapia's general theory of quasi-Newton methods for constrained optimization. A user's guide for a computer program implementing this algorithm is provided.

11. Small Special Education Teacher Preparation Programs: Innovative Programming and Solutions to Problems in Higher Education.

ERIC Educational Resources Information Center

Reid, Barbara J., Ed.

This monograph presents nine articles that describe innovative programs within small special education teacher education programs at a variety of institutions of higher education. The papers are: (1) "Furman University: A Field-Based Model for Small Liberal Arts Teacher Education Programs" (Shirley A. Ritter and Lesley A. Quast); (2) "Providing a…

12. Stacked Deck: an effective, school-based program for the prevention of problem gambling.

PubMed

Williams, Robert J; Wood, Robert T; Currie, Shawn R

2010-06-01

School-based prevention programs are an important component of problem gambling prevention, but empirically effective programs are lacking. Stacked Deck is a set of 5-6 interactive lessons that teach about the history of gambling; the true odds and "house edge"; gambling fallacies; signs, risk factors, and causes of problem gambling; and skills for good decision making and problem solving. An overriding theme of the program is to approach life as a "smart gambler" by determining the odds and weighing the pros versus cons of your actions. A total of 949 grade 9-12 students in 10 schools throughout southern Alberta received the program and completed baseline and follow-up measures. These students were compared to 291 students in 4 control schools. Four months after receiving the program, students in the intervention group had significantly more negative attitudes toward gambling, improved knowledge about gambling and problem gambling, improved resistance to gambling fallacies, improved decision making and problem solving, decreased gambling frequency, and decreased rates of problem gambling. There was no change in involvement in high risk activities or money lost gambling. These results indicate that Stacked Deck is a promising curriculum for the prevention of problem gambling.

13. Geometric Modeling Application Interface Program

DTIC Science & Technology

1990-11-01

Manual IDEF-Extended ( IDEFIX ) Integrated Information Support System (IISS), ICAM Project 6201, Contract F33615-80-C-5155, December 1985. Interim...Differential Geometry of Curves and Surfaces, M. P. de Carmo, Prentice-Hall, Inc., 1976. IDEFIX Readers Reference, D. Appleton Company, December 1985...Modeling. IDEFI -- IDEF Information Modeling. IDEFIX -- IDEF Extended Information Modeling. IDEF2 -- IDEF Dynamics Modeling. IDSS -- Integrated Decision

14. Learning Problem-Solving through Making Games at the Game Design and Learning Summer Program

ERIC Educational Resources Information Center

Akcaoglu, Mete

2014-01-01

Today's complex and fast-evolving world necessitates young students to possess design and problem-solving skills more than ever. One alternative method of teaching children problem-solving or thinking skills has been using computer programming, and more recently, game-design tasks. In this pre-experimental study, a group of middle school…

15. Evaluation of a Multicomponent, Behaviorally Oriented, Problem-Based "Summer School" Program for Adolescents with Diabetes.

ERIC Educational Resources Information Center

Schlundt, David G.; Flannery, Mary Ellen; Davis, Dianne L.; Kinzer, Charles K.; Pichert, James W.

1999-01-01

Examines a two-week summer program using problem-based learning and behavior therapy to help adolescents with insulin-dependent diabetes improve their ability to cope with obstacles to dietary management. Improvements were observed in self-efficacy, problem-solving skills, and self-reported coping strategies. No significant changes were observed…

16. Adventure Camp Programs, Self-Concept, and Their Effects on Behavioral Problem Adolescents

ERIC Educational Resources Information Center

Larson, Bruce A.

2007-01-01

The purpose of this study was to examine the effects of an adventure camp program on the self-concept of adolescents with behavioral problems. Subjects in the study included 61 randomly selected male and female adolescents ranging in age from 9 to 17 years with behavioral problems. The treatment group of 31 adolescents was randomly selected from a…

17. Problem Video Gaming Among Children Enrolled in Tertiary Weight Management Programs.

PubMed

Stubblefield, Sam; Datto, George; Phan, Thao-Ly T; Werk, Lloyd N; Stackpole, Kristin; Siegel, Robert; Stratbucker, William; Tucker, Jared M; Christison, Amy L; Hossain, Jobayer; Gentile, Douglas A

2017-02-01

Prior studies show seven percent to nine percent of children demonstrate gaming behaviors that affect a child's ability to function (e.g., problem gaming), but none have examined the association between problem gaming and weight status. The objective of this study was to determine the prevalence of problem gaming among children enrolled in tertiary weight management programs. We administered a computer-based survey to a convenience sample of children aged 11-17 years enrolled in five geographically diverse pediatric weight management (PWM) programs in the COMPASS (Childhood Obesity Multi-Program Analysis and Study System) network. The survey included demographics, gaming characteristics, and a problem gaming assessment. The survey had 454 respondents representing a diverse cohort (53 percent females, 27 percent black, 24 percent Hispanic, 41 percent white) with mean age of 13.7 years. A total of 8.2 percent of respondents met criteria for problem gaming. Problem gamers were more likely to be white, male, play mature-rated games, and report daily play. Children in PWM programs reported problem gaming at the same rate as other pediatric populations. Screening for problem gaming provides an opportunity for pediatricians to address gaming behaviors that may affect the health of children with obesity who already are at risk for worsened health and quality of life.

18. A Pilot Study of a Self-Voicing Computer Program for Prealgebra Math Problems

ERIC Educational Resources Information Center

Beal, Carole R.; Rosenblum, L. Penny; Smith, Derrick W.

2011-01-01

Fourteen students with visual impairments in Grades 5-12 participated in the field-testing of AnimalWatch-VI-Beta. This computer program delivered 12 prealgebra math problems and hints through a self-voicing audio feature. The students provided feedback about how the computer program can be improved and expanded to make it accessible to all users.…

19. Using the Same Problem with Different Techniques in Programming Assignments: An Empirical Study of Its Effectiveness

ERIC Educational Resources Information Center

Newby, Michael; Nguyen, ThuyUyen H.

2010-01-01

This paper examines the effectiveness of a technique that first appeared as a Teaching Tip in the Journal of Information Systems Education. In this approach the same problem is used in every programming assignment within a course, but the students are required to use different programming techniques. This approach was used in an intermediate C++…

20. Challenging the Gifted through Problem Solving Experiences: Design and Evaluation of the COMET Program.

ERIC Educational Resources Information Center

Feldhusen, John F.; And Others

1992-01-01

The COMET summer residential program at Purdue University (Indiana) offers gifted and talented youth in grades 4-6 a week of intensive study in a single content area. Courses stress specific problem-solving skills and development of a rich knowledge base. Extensive program evaluation by students, teachers, counselors, and parents was highly…

1. Problems in the Management of the National School Lunch Program in Washington School Districts. Bulletin 817.

ERIC Educational Resources Information Center

Price, David W.; And Others

To find major problems with the National School Lunch Program, a study was conducted with 1,015 students, their parents, and 16 school lunch supervisors in 18 Washington school districts. When interviewed, only 2% of the students said the lunch program did not need any changes. The needed changes most often mentioned were for "different kinds…

2. An Achievement Degree Analysis Approach to Identifying Learning Problems in Object-Oriented Programming

ERIC Educational Resources Information Center

Allinjawi, Arwa A.; Al-Nuaim, Hana A.; Krause, Paul

2014-01-01

Students often face difficulties while learning object-oriented programming (OOP) concepts. Many papers have presented various assessment methods for diagnosing learning problems to improve the teaching of programming in computer science (CS) higher education. The research presented in this article illustrates that although max-min composition is…

3. Geometric scaling as traveling waves.

PubMed

Munier, S; Peschanski, R

2003-12-05

We show the relevance of the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (KPP) equation to the problem of high energy evolution of the QCD amplitudes. We explain how the traveling wave solutions of this equation are related to geometric scaling, a phenomenon observed in deep-inelastic scattering experiments. Geometric scaling is for the first time shown to result from an exact solution of nonlinear QCD evolution equations. Using general results on the KPP equation, we compute the velocity of the wave front, which gives the full high energy dependence of the saturation scale.

4. MARIAH: A finite-element computer program for incompressible porous flow problems. Theoretical background

Gartling, D. K.; Hickox, C. E.

1982-10-01

The theoretical background for the finite element computer program MARIAH is presented. The MARIAH code is designed for the analysis of incompressible fluid flow and heat transfer in saturated porous media. A description of the fluid/thermal boundary value problem treated by the program is presented and the finite element method and associated numerical methods used in MARIAH are discussed. Instructions for use of the program are documented in the Sandia National Laboratories report, SAND79-1623.

5. Averaging and Linear Programming in Some Singularly Perturbed Problems of Optimal Control

SciTech Connect

2015-04-15

The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.

6. Geometric Approaches to Quadratic Equations from Other Times and Places.

ERIC Educational Resources Information Center

Allaire, Patricia R.; Bradley, Robert E.

2001-01-01

Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

7. Four Decades of Creative Vision: Insights from an Evaluation of the Future Problem Solving Program International (FPSPI)

ERIC Educational Resources Information Center

Treffinger, Donald J.; Solomon, Marianne; Woythal, Deb

2012-01-01

E. Paul Torrance, a pioneer in creative education, and his associates founded the Future Problem Solving Program (now FPSPI, or Future Problem Solving Program International) in the mid-1970s as a competitive, interscholastic program and as a curriculum project integrating creative problem-solving and future studies. Since its founding, the program…

8. Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation

Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.

2016-06-01

As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.

9. A PROGRAMED PRIMER ON PROGRAMING. VOLUME II, PRACTICAL PROBLEMS. SECOND EDITION.

ERIC Educational Resources Information Center

MARKLE, SUSAN MEYER

KEY CONCEPTS, TERMS, AND TECHNIQUES IN PROGRAMED INSTRUCTION ARE PRESENTED IN THIS PROGRAMED PRIMER, WHICH BEGINS BY DEMONSTRATING THE USE OF FORMAL AND THEMATIC PROMPTS IN THE UTILIZATION OF A STUDENT'S REPERTOIRE. NEW RESPONSES ARE INTRODUCED INTO THIS REPERTOIRE BY THE USE OF COPYING FRAMES, EMPHASIS PROMPTS, AND PANELS. THE DESIGN OF SEQUENCES…

10. Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems

Kuterin, F. A.; Sumin, M. I.

2017-01-01

A convex programming problem in a Hilbert space with an operator equality constraint and a finite number of functional inequality constraints is considered. All constraints involve parameters. The close relation of the instability of this problem and, hence, the instability of the classical Lagrange principle for it to its regularity properties and the subdifferentiability of the value function in the problem is discussed. An iterative nondifferential Lagrange principle with a stopping rule is proved for the indicated problem. The principle is stable with respect to errors in the initial data and covers the normal, regular, and abnormal cases of the problem and the case where the classical Lagrange principle does not hold. The possibility of using the stable sequential Lagrange principle for directly solving unstable optimization problems is discussed. The capabilities of this principle are illustrated by numerically solving the classical ill-posed problem of finding the normal solution of a Fredholm integral equation of the first kind.

11. An application of a linear programing technique to nonlinear minimax problems

NASA Technical Reports Server (NTRS)

Schiess, J. R.

1973-01-01

A differential correction technique for solving nonlinear minimax problems is presented. The basis of the technique is a linear programing algorithm which solves the linear minimax problem. By linearizing the original nonlinear equations about a nominal solution, both nonlinear approximation and estimation problems using the minimax norm may be solved iteratively. Some consideration is also given to improving convergence and to the treatment of problems with more than one measured quantity. A sample problem is treated with this technique and with the least-squares differential correction method to illustrate the properties of the minimax solution. The results indicate that for the sample approximation problem, the minimax technique provides better estimates than the least-squares method if a sufficient amount of data is used. For the sample estimation problem, the minimax estimates are better if the mathematical model is incomplete.

12. The solution of singular optimal control problems using direct collocation and nonlinear programming

Downey, James R.; Conway, Bruce A.

1992-08-01

This paper describes work on the determination of optimal rocket trajectories which may include singular arcs. In recent years direct collocation and nonlinear programming has proven to be a powerful method for solving optimal control problems. Difficulties in the application of this method can occur if the problem is singular. Techniques exist for solving singular problems indirectly using the associated adjoint formulation. Unfortunately, the adjoints are not a part of the direct formulation. It is shown how adjoint information can be obtained from the direct method to allow the solution of singular problems.

13. A cutting plane algorithm for semi-definite programming problems with applications to failure discriminant analysis

Konno, Hiroshi; Gotoh, Jun-Ya; Uno, Takeaki; Yuki, Atsushi

2002-09-01

We will propose a new cutting plane algorithm for solving a class of semi-definite programming problems (SDP) with a small number of variables and a large number of constraints. Problems of this type appear when we try to classify a large number of multi-dimensional data into two groups by a hyper-ellipsoidal surface. Among such examples are cancer diagnosis, failure discrimination of enterprises. Also, a certain class of option pricing problems can be formulated as this type of problem. We will show that the cutting plane algorithm is much more efficient than the standard interior point algorithms for solving SDP.

14. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

NASA Technical Reports Server (NTRS)

Fogle, F. R.

1994-01-01

IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

15. The Problem-Solving Approach to program evaluation: Development and application in a mathematics context

Costner, Kelly Mitchell

This study developed and piloted the Problem-Solving Approach to program evaluation, which involves the direct application of the problem-solving process as a metaphor for program evaluation. A rationale for a mathematics-specific approach is presented, and relevant literature in both program evaluation and mathematics education is reviewed. The Problem-Solving Approach was piloted with a high-school level integrated course in mathematics and science that used graphing calculators and data collection devices with the goal of helping students to gain better understanding of relationships between mathematics and science. Twelve students participated in the course, which was co-taught by a mathematics teacher and a science teacher. Data collection for the evaluation included observations, a pre- and posttest, student questionnaires, student interviews, teacher interviews, principal interviews, and a focus group that involved both students and their teachers. Results of the evaluation of the course are presented as an evaluation report. Students showed improvement in their understandings of mathematics-science relationships, but also showed growth in terms of self-confidence, independence, and various social factors that were not expected outcomes. The teachers experienced a unique form of professional development by learning and relearning concepts in each other's respective fields and by gaining insights into each other's teaching strengths. Both the results of the evaluation and the evaluation process itself are discussed in light of the proposed problem-solving approach. The use of problem solving and of specific problem-solving strategies was found to be prevalent among the students and the teachers, as well as in the activities of the evaluator. Specific problem-solving strategies are highlighted for their potential value in program evaluation situations. The resulting Problem-Solving Approach, revised through the pilot application, employs problem solving as a

16. A strictly improving linear programming alorithm based on a series of Phase 1 problems

SciTech Connect

Leichner, S.A.; Dantzig, G.B.; Davis, J.W.

1992-04-01

When used on degenerate problems, the simplex method often takes a number of degenerate steps at a particular vertex before moving to the next. In theory (although rarely in practice), the simplex method can actually cycle at such a degenerate point. Instead of trying to modify the simplex method to avoid degenerate steps, we have developed a new linear programming algorithm that is completely impervious to degeneracy. This new method solves the Phase II problem of finding an optimal solution by solving a series of Phase I feasibility problems. Strict improvement is attained at each iteration in the Phase I algorithm, and the Phase II sequence of feasibility problems has linear convergence in the number of Phase I problems. When tested on the 30 smallest NETLIB linear programming test problems, the computational results for the new Phase II algorithm were over 15% faster than the simplex method; on some problems, it was almost two times faster, and on one problem it was four times faster.

17. Setting goals, solving problems, and seeking social support: developing adolescents' abilities through a life skills program.

PubMed

Forneris, Tanya; Danish, Steven J; Scott, David L

2007-01-01

The Going for the Goal (GOAL) program is designed to teach adolescents life skills. There have been few efforts to assess whether the skills that GOAL is designed to teach are being learned by adolescents involved in the program. The purpose of this study was to examine the impact of GOAL on the acquisition of skills in the areas of setting goals, solving problems, and seeking social support. Interviews were conducted with twenty adolescents. Those who participated in GOAL reported that they had learned how to set goals, to solve problems effectively, and to seek the appropriate type of social support.

18. Solution of Mixed-Integer Programming Problems on the XT5

SciTech Connect

Hartman-Baker, Rebecca J; Busch, Ingrid Karin; Hilliard, Michael R; Middleton, Richard S; Schultze, Michael

2009-01-01

In this paper, we describe our experience with solving difficult mixed-integer linear programming problems (MILPs) on the petaflop Cray XT5 system at the National Center for Computational Sciences at Oak Ridge National Laboratory. We describe the algorithmic, software, and hardware needs for solving MILPs and present the results of using PICO, an open-source, parallel, mixed-integer linear programming solver developed at Sandia National Laboratories, to solve canonical MILPs as well as problems of interest arising from the logistics and supply chain management field.

19. HEAP: Heat Energy Analysis Program, a computer model simulating solar receivers. [solving the heat transfer problem

NASA Technical Reports Server (NTRS)

Lansing, F. L.

1979-01-01

A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.

20. Digital program for solving the linear stochastic optimal control and estimation problem

NASA Technical Reports Server (NTRS)

Geyser, L. C.; Lehtinen, B.

1975-01-01

A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.

1. Facing the PA team growth problem in space programs: The Hermes approach

Bernede, G.

1991-08-01

The increasing need for product assurance (PA) in space programs makes finding skilled and trained engineers willing to work in the PA field a top level difficulty. Few engineers are available and exchanging them from one project to another is not a solution. No reservoir of talent exists for the time being in Europe. Educational efforts have started in several countries to have product assurance techniques become part of basic engineering knowledge. These efforts will bring strong improvement compared to today's situation but not in time for programs such as Hermes. Peculiar solutions must be developed. Approaches used to solve this problem within the Hermes program are outlined.

2. Treating Conduct Problems and Strengthening Social and Emotional Competence in Young Children: The Dina Dinosaur Treatment Program.

ERIC Educational Resources Information Center

Webster-Stratton, Carolyn; Reid, M. Jamila

2003-01-01

This article describes the Dina Dinosaur Social, Emotional and Problem Solving Child Training Program for young children with conduct problems. The program emphasizes training children in skills such as emotional literacy, empathy or perspective taking, friendship and communication skills, anger management, interpersonal problem solving, and…

3. An Augmented Lagrangian Method for a Class of Inverse Quadratic Programming Problems

SciTech Connect

Zhang Jianzhong; Zhang Liwei

2010-02-15

We consider an inverse quadratic programming (QP) problem in which the parameters in the objective function of a given QP problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a minimization problem with a positive semidefinite cone constraint and its dual is a linearly constrained semismoothly differentiable (SC{sup 1}) convex programming problem with fewer variables than the original one. We demonstrate the global convergence of the augmented Lagrangian method for the dual problem and prove that the convergence rate of primal iterates, generated by the augmented Lagrange method, is proportional to 1/r, and the rate of multiplier iterates is proportional to 1/{radical}r, where r is the penalty parameter in the augmented Lagrangian. As the objective function of the dual problem is a SC{sup 1} function involving the projection operator onto the cone of symmetrically semi-definite matrices, the analysis requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and properties of the projection operator in the symmetric-matrix space. Furthermore, the semismooth Newton method with Armijo line search is applied to solve the subproblems in the augmented Lagrange approach, which is proven to have global convergence and local quadratic rate. Finally numerical results, implemented by the augmented Lagrangian method, are reported.

4. A Cooperative Training Program for Students with Severe Behavior Problems: Description and Comparative Evaluation.

ERIC Educational Resources Information Center

Reganick, Karol A.

The Cooperative Training Program was implemented with 20 students having severe behavior problems, to augment a classroom employability curriculum. Educators and business managers at a local Perkins restaurant worked cooperatively to design a new curriculum and recruitment procedure to benefit both students and the business. A continuous and…

5. SPECIAL PROBLEMS REPORT, ADULT EDUCATION PROGRAMS FOR RURAL POPULATION IN PAKISTAN AND SUGGESTIONS FOR THEIR IMPROVEMENT.

ERIC Educational Resources Information Center

ALI KHAN, ANSAR

THE AUTHOR DISCUSSES THE NEED FOR FUNCTIONAL, SEQUENTIAL PROGRAMS OF LITERACY, VOCATIONAL, LIBERAL, POLITICAL, AND HUMAN RELATIONS EDUCATION IN RURAL AREAS OF PAKISTAN. PROBLEMS AND CHALLENGES ARE SEEN IN THE OCCUPATIONAL CASTE SYSTEM, FAMILY STRUCTURES, ATTITUDES TOWARD THE EDUCATION OF BOYS AND GIRLS, POOR MEANS OF TRANSPORTATION AND…

6. Problem-Based Learning in a Physical Therapy Program and Subsequent Clinical Practice: The Practitioners' Perspectives.

ERIC Educational Resources Information Center

Wilson, Stanley H.; Gallagher, Jo D.; Elbaum, Leonard; Smith, Douglas H.

This study examined the perspectives of three graduates of a problem-based learning (PBL) physical therapy (PT) program about their clinical practice. Researchers used qualitative methods of observation, interview, and journaling to gather the data. Three sessions of audiotaped interviews and two observation sessions were conducted with the three…

7. A new gradient-based neural network for solving linear and quadratic programming problems.

PubMed

Leung, Y; Chen, K Z; Jiao, Y C; Gao, X B; Leung, K S

2001-01-01

A new gradient-based neural network is constructed on the basis of the duality theory, optimization theory, convex analysis theory, Lyapunov stability theory, and LaSalle invariance principle to solve linear and quadratic programming problems. In particular, a new function F(x, y) is introduced into the energy function E(x, y) such that the function E(x, y) is convex and differentiable, and the resulting network is more efficient. This network involves all the relevant necessary and sufficient optimality conditions for convex quadratic programming problems. For linear programming and quadratic programming (QP) problems with unique and infinite number of solutions, we have proven strictly that for any initial point, every trajectory of the neural network converges to an optimal solution of the QP and its dual problem. The proposed network is different from the existing networks which use the penalty method or Lagrange method, and the inequality constraints are properly handled. The simulation results show that the proposed neural network is feasible and efficient.

8. Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.

ERIC Educational Resources Information Center

Shama, Gilli; Dreyfus, Tommy

1994-01-01

Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…

9. The Effectiveness of a CBI Program for Teaching Problem Solving Skills to Middle Level Students.

ERIC Educational Resources Information Center

Langholz, Judith; Smaldino, Sharon E.

This study focuses on the effectiveness of "Solutions Unlimited," a computer software program developed to teach problem solving to middle level students. Fifty-one fourth, fifth, and sixth graders (21 girls and 30 boys) attending a private school in a small mid-west community were the subjects for this experiment; none had received…

10. Problems and Methods of Implementing a Treatment Program for a Security Unit

ERIC Educational Resources Information Center

Mell, Lowry W.; Knotts, Ralph

1976-01-01

Available from: EC 090 474. The Security Unit School--an educational and residential treatment model in Pennsylvania for 24 juvenile offenders (15-18 years old)--is described in terms of problems encountered in assimilating students into the program, planning a curriculum, developing effective instructional materials, and providing treatment. (SBH)

11. Effects of a Multifocused Prevention Program on Preschool Children's Competencies and Behavior Problems

ERIC Educational Resources Information Center

Stefan, Catrinel A.; Miclea, Mircea

2013-01-01

This study was designed to assess the effectiveness of a multifocused (child-, teacher- and parent-focused) prevention program for Romanian preschoolers, targeting social--emotional competence development, as well as reduction of behavior problems. Fourteen classrooms were randomly assigned to the intervention and control conditions. Subsequent…

12. Keeping Fit with Asta O'Donnell. An Exercise Program for Problem Backs.

ERIC Educational Resources Information Center

O'Donnell, Asta

An estimated 75 million people in the United States suffer from some type of back problem. Most are caused by muscle strain and improper posture. This book describes an exercise program designed to relieve muscle strain, improve and correct posture, and reduce stress and tension. The book is divided into four sections: "Warm…

13. Preventing Boys' Problems in Schools through Psychoeducational Programming: A Call to Action

ERIC Educational Resources Information Center

O'Neil, James M.; Lujan, Melissa L.

2009-01-01

Controversy currently exists on whether boys are in crises and, if so, what to do about it. Research is reviewed that indicates that boys have problems that affect their emotional and interpersonal functioning. Psychoeducational and preventive programs for boys are recommended as a call to action in schools. Thematic areas for boys' programming…

14. Students' Usability Evaluation of a Web-Based Tutorial Program for College Biology Problem Solving

ERIC Educational Resources Information Center

Kim, H. S.; Prevost, L.; Lemons, P. P.

2015-01-01

The understanding of core concepts and processes of science in solving problems is important to successful learning in biology. We have designed and developed a Web-based, self-directed tutorial program, "SOLVEIT," that provides various scaffolds (e.g., prompts, expert models, visual guidance) to help college students enhance their…

15. The Effects of Teaching Programming via Scratch on Problem Solving Skills: A Discussion from Learners' Perspective

ERIC Educational Resources Information Center

Kalelioglu, Filiz; Gülbahar, Yasemin

2014-01-01

Computer programming is perceived as an important competence for the development of problem solving skills in addition to logical reasoning. Hence, its integration throughout all educational levels, as well as the early ages, is considered valuable and research studies are carried out to explore the phenomenon in more detail. In light of these…

16. Heuristic Implementation of Dynamic Programming for Matrix Permutation Problems in Combinatorial Data Analysis

ERIC Educational Resources Information Center

Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie

2008-01-01

Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…

17. Enhancing Problem-Solving Capabilities Using Object-Oriented Programming Language

ERIC Educational Resources Information Center

Unuakhalu, Mike F.

2009-01-01

This study integrated object-oriented programming instruction with transfer training activities in everyday tasks, which might provide a mechanism that can be used for efficient problem solving. Specifically, a Visual BASIC embedded with everyday tasks group was compared to another group exposed to Visual BASIC instruction only. Subjects were 40…

18. A fuzzy goal programming model for the simple U-line balancing problem with multiple objectives

Toklu, Bilal; Ozcan, Uğur

2008-03-01

A fuzzy goal programming model for the simple U-line balancing (SULB) problem with multiple objectives is presented. In real life applications of the SULB problem with multiple objectives, it is difficult for the decision-maker(s) to determine the goal value of each objective precisely as the goal values are imprecise, vague, or uncertain. Therefore a fuzzy goal programming model is developed for this purpose. The proposed model is the first fuzzy multi-objective decision-making approach to the SULB problem with multiple objectives which aims at simultaneously optimizing several conflicting goals. The proposed model is illustrated using an example. A computational study is conducted by solving a large number of test problems to investigate the relationship between the fuzzy goals and to compare them with the goal programming model proposed by Gokcen and Ağpak (Gokcen, H. and Ağpak, K., European Journal of Operational Research, 171, 577-585, 2006). The results of the computational study show that the proposed model is more realistic than the existing models for the SULB problem with multiple objectives and also provides increased flexibility for the decision-maker(s) to determine different alternatives.

19. Interactive computerized learning program exposes veterinary students to challenging international animal-health problems.

PubMed

Conrad, Patricia A; Hird, Dave; Arzt, Jonathan; Hayes, Rick H; Magliano, Dave; Kasper, Janine; Morfin, Saul; Pinney, Stephen

2007-01-01

This article describes a computerized case-based CD-ROM (CD) on international animal health that was developed to give veterinary students an opportunity to "virtually" work alongside veterinarians and other veterinary students as they try to solve challenging disease problems relating to tuberculosis in South African wildlife, bovine abortion in Mexico, and neurologic disease in horses in Rapa Nui, Chile. Each of the three case modules presents, in a highly interactive format, a problem or mystery that must be solved by the learner. As well as acquiring information via video clips and text about the specific health problem, learners obtain information about the different countries, animal-management practices, diagnostic methods, related disease-control issues, economic factors, and the opinions of local experts. After assimilating this information, the learner must define the problem and formulate an action plan or make a recommendation or diagnosis. The computerized program invokes three principles of adult education: active learning, learner-centered education, and experiential learning. A medium that invokes these principles is a potentially efficient learning tool and template for developing other case-based problem-solving computerized programs. The program is accessible on the World Wide Web at . A broadband Internet connection is recommended, since the modules make extensive use of embedded video and audio clips. Information on how to obtain the CD is also provided.

20. Exploring New Geometric Worlds

ERIC Educational Resources Information Center

Nirode, Wayne

2015-01-01

When students work with a non-Euclidean distance formula, geometric objects such as circles and segment bisectors can look very different from their Euclidean counterparts. Students and even teachers can experience the thrill of creative discovery when investigating these differences among geometric worlds. In this article, the author describes a…

1. The Strengthening Families Program 10–14: influence on parent and youth problem-solving skill

PubMed Central

Semeniuk, Y.; Brown, R. L.; Riesch, S.K.; Zywicki, M.; Hopper, J.; Henriques, J.B.

2011-01-01

The aim of this paper is to report the results of a preliminary examination of the efficacy of the Strengthening Families Program (SFP) 10–14 in improving parent and youth problem-solving skill. The Hypotheses in this paper include: (1) youth and parents who participated in SFP would have lower mean scores immediately (T2) and 6 months (T3) post intervention on indicators of hostile and negative problem-solving strategies; (2) higher mean scores on positive problem-solving strategies; and (3) youth who participated in SFP would have higher mean scores at T2 and at T3 on indicators of individual problem solving and problem-solving efficacy than youth in the comparison group. The dyads were recruited from elementary schools that had been stratified for race and assigned randomly to intervention or comparison conditions. Mean age of youth was 11 years (SD = 1.04). Fifty-seven dyads (34-intervention & 23-control) were videotaped discussing a frequently occurring problem. The videotapes were analysed using the Iowa Family Interaction Rating Scale (IFIRS) and data were analysed using Dyadic Assessment Intervention Model. Most mean scores on the IFIRS did not change. One score changed as predicted: youth hostility decreased at T3. Two scores changed contrary to prediction: parent hostility increased T3 and parent positive problem solving decreased at T2. SFP demonstrated questionable efficacy for problem-solving skill in this study. PMID:20584236

2. Understanding change among multi-problem families: Learnings from a formative program assessment.

PubMed

Millett, Lina Sapokaite; Ben-David, Vered; Jonson-Reid, Melissa; Echele, Greg; Moussette, Pam; Atkins, Valerie

2016-10-01

This paper describes the implementation of a long-term voluntary intervention to prevent chronic maltreatment among multi-problem families with histories of child welfare involvement. A small formative evaluation included a limited number of interviews with program participants during the first year of program implementation (n=10), a retrospective case file review (n=17) of closed cases following the first three years of implementation, and notes from ongoing meetings and discussion with program staff. Findings regarding client engagement, long-term interaction between risk and services, and program refinement are discussed. Despite the program's voluntary nature, positive comments from families, and extensive engagement strategies, only about 22% of families remained engaged for the full two-year program. Material hardship was one of the most persistent risk factors from baseline to termination. In many cases, unforeseen negative events occurred that, at least partly, derailed progress. In all cases, progress made was not reflective of a consistent linear process used in the design of most child welfare programs. Implications for program theory and design are discussed.

3. Calculators and Strategies for Problem Solving in Grade Seven: An Implementation Program and Study. Report No. 83:3.

ERIC Educational Resources Information Center

Szetela, W.; Super, D.

A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…

4. Second-quantized formulation of geometric phases

SciTech Connect

Deguchi, Shinichi; Fujikawa, Kazuo

2005-07-15

The level crossing problem and associated geometric terms are neatly formulated by the second-quantized formulation. This formulation exhibits a hidden local gauge symmetry related to the arbitrariness of the phase choice of the complete orthonormal basis set. By using this second-quantized formulation, which does not assume adiabatic approximation, a convenient exact formula for the geometric terms including off-diagonal geometric terms is derived. The analysis of geometric phases is then reduced to a simple diagonalization of the Hamiltonian, and it is analyzed both in the operator and path-integral formulations. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial (and thus no monopole singularity) for arbitrarily large but finite time interval T. The integrability of Schroedinger equation and the appearance of the seemingly nonintegrable phases are thus consistent. The topological proof of the Longuet-Higgins' phase-change rule, for example, fails in the practical Born-Oppenheimer approximation where a large but finite ratio of two time scales is involved and T is identified with the period of the slower system. The difference and similarity between the geometric phases associated with level crossing and the exact topological object such as the Aharonov-Bohm phase become clear in the present formulation. A crucial difference between the quantum anomaly and the geometric phases is also noted.

5. Stable computation of search directions for near-degenerate linear programming problems

SciTech Connect

Hough, P.D.

1997-03-01

In this paper, we examine stability issues that arise when computing search directions ({delta}x, {delta}y, {delta} s) for a primal-dual path-following interior point method for linear programming. The dual step {delta}y can be obtained by solving a weighted least-squares problem for which the weight matrix becomes extremely il conditioned near the boundary of the feasible region. Hough and Vavisis proposed using a type of complete orthogonal decomposition (the COD algorithm) to solve such a problem and presented stability results. The work presented here addresses the stable computation of the primal step {delta}x and the change in the dual slacks {delta}s. These directions can be obtained in a straight-forward manner, but near-degeneracy in the linear programming instance introduces ill-conditioning which can cause numerical problems in this approach. Therefore, we propose a new method of computing {delta}x and {delta}s. More specifically, this paper describes and orthogonal projection algorithm that extends the COD method. Unlike other algorithms, this method is stable for interior point methods without assuming nondegeneracy in the linear programming instance. Thus, it is more general than other algorithms on near-degenerate problems.

6. Enrollment and attendance in a parent training prevention program for conduct problems.

PubMed

Baker, Courtney N; Arnold, David H; Meagher, Susan

2011-06-01

Low levels of enrollment and attendance in parent training programs present major problems for researchers and clinicians. The literature on enrollment and attendance in prevention programs is especially limited, and these constructs may be particularly difficult to address in this context. Further, most previous research has not made the distinction between enrollment and attendance. This study describes predictors of enrollment and attendance in a behavioral parent training program intended to prevent conduct problems in preschoolers. Information was gathered from 106 preschoolers, their parents, and their teachers. Parent socioeconomic status (SES), single parent status, ethnicity, child externalizing behavior, parent depressive symptoms, and parent social support were investigated as possible predictors of families' enrollment and attendance. Only 48% of the families that had already provided informed consent and completed demographic questionnaires actually enrolled in the parent training program; parents with lower incomes and lower levels of social support were less likely to enroll. In addition, African-American and Puerto Rican families were less likely to enroll than Caucasian families. The average attendance rate for enrolled parents was 61%; dual parents and parents with children evidencing externalizing behavior problems attended more parent training sessions. Parent depression was not associated with enrollment or attendance. Significant relationships were maintained when controlling for other predictors including SES and when accounting for center-level variance. In addition, three distinct patterns of attendance were observed, which may have practical implications related to retention strategies.

7. COYOTE : a finite element computer program for nonlinear heat conduction problems. Part I, theoretical background.

SciTech Connect

Glass, Micheal W.; Hogan, Roy E., Jr.; Gartling, David K.

2010-03-01

The need for the engineering analysis of systems in which the transport of thermal energy occurs primarily through a conduction process is a common situation. For all but the simplest geometries and boundary conditions, analytic solutions to heat conduction problems are unavailable, thus forcing the analyst to call upon some type of approximate numerical procedure. A wide variety of numerical packages currently exist for such applications, ranging in sophistication from the large, general purpose, commercial codes, such as COMSOL, COSMOSWorks, ABAQUS and TSS to codes written by individuals for specific problem applications. The original purpose for developing the finite element code described here, COYOTE, was to bridge the gap between the complex commercial codes and the more simplistic, individual application programs. COYOTE was designed to treat most of the standard conduction problems of interest with a user-oriented input structure and format that was easily learned and remembered. Because of its architecture, the code has also proved useful for research in numerical algorithms and development of thermal analysis capabilities. This general philosophy has been retained in the current version of the program, COYOTE, Version 5.0, though the capabilities of the code have been significantly expanded. A major change in the code is its availability on parallel computer architectures and the increase in problem complexity and size that this implies. The present document describes the theoretical and numerical background for the COYOTE program. This volume is intended as a background document for the user's manual. Potential users of COYOTE are encouraged to become familiar with the present report and the simple example analyses reported in before using the program. The theoretical and numerical background for the finite element computer program, COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis of nonlinear heat conduction problems

8. Program for the solution of multipoint boundary value problems of quasilinear differential equations

NASA Technical Reports Server (NTRS)

1973-01-01

Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.

9. Observations on the linear programming formulation of the single reflector design problem.

PubMed

Canavesi, Cristina; Cassarly, William J; Rolland, Jannick P

2012-02-13

We implemented the linear programming approach proposed by Oliker and by Wang to solve the single reflector problem for a point source and a far-field target. The algorithm was shown to produce solutions that aim the input rays at the intersections between neighboring reflectors. This feature makes it possible to obtain the same reflector with a low number of rays - of the order of the number of targets - as with a high number of rays, greatly reducing the computation complexity of the problem.

10. Multilevel adaptive solution procedure for material nonlinear problems in visual programming environment

SciTech Connect

Kim, D.; Ghanem, R.

1994-12-31

Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.

11. Evaluating minority retention programs: problems encountered and lessons learned from the Ohio science and engineering alliance.

PubMed

White, Jeffry L; Altschuld, James W; Lee, Yi-Fang

2008-08-01

The retention rates for African-Americans, Hispanics, and Native-Americans in science, technology, engineering, and mathematics (STEM) are lower than those of White or Asian college students. In response, the National Science Foundation formed statewide partnerships of universities to develop programs to address this disparity. The deliberations and experiences in evaluating one such partnership are retrospectively reviewed. Problems and issues encountered during conceptualization and implementation are presented. Lessons learned from this endeavor should generalize to similar situations and provide guidance for others new to or interested in evaluating STEM retention programs as well as those evaluating collaborative endeavors.

12. Impossible Geometric Constructions: A Calculus Writing Project

ERIC Educational Resources Information Center

2013-01-01

This article discusses a writing project that offers students the opportunity to solve one of the most famous geometric problems of Greek antiquity; namely, the impossibility of trisecting the angle [pi]/3. Along the way, students study the history of Greek geometry problems as well as the life and achievements of Carl Friedrich Gauss. Included is…

13. NASA/Drexel program. [research effort in large-scale technical programs management for application to urban problems

NASA Technical Reports Server (NTRS)

1973-01-01

The results are reported of the NASA/Drexel research effort which was conducted in two separate phases. The initial phase stressed exploration of the problem from the point of view of three primary research areas and the building of a multidisciplinary team. The final phase consisted of a clinical demonstration program in which the research associates consulted with the County Executive of New Castle County, Delaware, to aid in solving actual problems confronting the County Government. The three primary research areas of the initial phase are identified as technology, management science, and behavioral science. Five specific projects which made up the research effort are treated separately. A final section contains the conclusions drawn from total research effort as well as from the specific projects.

14. Swimming training program for children with cerebral palsy: body perceptions, problem behaviour, and competence.

PubMed

Ozer, Dilara; Nalbant, Sibel; Aktop, Abdurrahman; Duman, Ozgür; Keleş, Inan; Toraman, N Füsun

2007-12-01

The aim of this study was to assess the effects of a 14-week swimming training program on the competence, problem behaviour, and body awareness in 13 children with cerebral palsy aged 5 to 10 years, compared with 10 subjects in a comparison group. Both of the groups continued a traditional rehabilitation program. The outcome measures were Child Behaviour Check List (CBCL) and Body Awareness. The parent forms were evaluated before and after training and also at 6 months followup. Teacher forms and body awareness were evaluated before and after training. The results showed that swimming training produced significant gain on body awareness in the Swimming Group, whereas no significant group differences were evident in competence and problem behaviours on parent or teacher forms of the CBCL.

15. Mixed-integer programming methods for transportation and power generation problems

Damci Kurt, Pelin

This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.

16. The solution of the optimization problem of small energy complexes using linear programming methods

Ivanin, O. A.; Director, L. B.

2016-11-01

Linear programming methods were used for solving the optimization problem of schemes and operation modes of distributed generation energy complexes. Applicability conditions of simplex method, applied to energy complexes, including installations of renewable energy (solar, wind), diesel-generators and energy storage, considered. The analysis of decomposition algorithms for various schemes of energy complexes was made. The results of optimization calculations for energy complexes, operated autonomously and as a part of distribution grid, are presented.

17. Preventing Alcohol Problems Through a Student Assistance Program: A Manual for Implementation Based on the Westchester County, New York Model.

ERIC Educational Resources Information Center

Snyder, Gerald; And Others

This manual was designed to provide school administrators, counselors, teachers, parent groups, and community members with a comprehensive school-based program for preventing alcohol problems. Detection and intervention before the onset of alcohol and drug problems is stressed. Modeled after employees' assistance programs used to identify and aid…

18. Effectiveness of the Triple P Positive Parenting Program on Behavioral Problems in Children: A Meta-Analysis

ERIC Educational Resources Information Center

de Graaf, Ireen; Speetjens, Paula; Smit, Filip; de Wolff, Marianne; Tavecchio, Louis

2008-01-01

The Triple P Positive Parenting Program is a multilevel parenting program to prevent and offer treatment for severe behavioral, emotional, and developmental problems in children. The aim of this meta-analysis is to assess the effectiveness of Triple P Level 4 interventions in the management of behavioral problems in children by pooling the…

19. The Effect of Hints and Model Answers in a Student-Controlled Problem-Solving Program for Secondary Physics Education

ERIC Educational Resources Information Center

Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.

2008-01-01

Many students experience difficulties in solving applied physics problems. Most programs that want students to improve problem-solving skills are concerned with the development of content knowledge. Physhint is an example of a student-controlled computer program that supports students in developing their strategic knowledge in combination with…

20. Lagrange Programming Neural Network for Nondifferentiable Optimization Problems in Sparse Approximation.

PubMed

Feng, Ruibin; Leung, Chi-Sing; Constantinides, Anthony G; Zeng, Wen-Jun

2016-07-27

The major limitation of the Lagrange programming neural network (LPNN) approach is that the objective function and the constraints should be twice differentiable. Since sparse approximation involves nondifferentiable functions, the original LPNN approach is not suitable for recovering sparse signals. This paper proposes a new formulation of the LPNN approach based on the concept of the locally competitive algorithm (LCA). Unlike the classical LCA approach which is able to solve unconstrained optimization problems only, the proposed LPNN approach is able to solve the constrained optimization problems. Two problems in sparse approximation are considered. They are basis pursuit (BP) and constrained BP denoise (CBPDN). We propose two LPNN models, namely, BP-LPNN and CBPDN-LPNN, to solve these two problems. For these two models, we show that the equilibrium points of the models are the optimal solutions of the two problems, and that the optimal solutions of the two problems are the equilibrium points of the two models. Besides, the equilibrium points are stable. Simulations are carried out to verify the effectiveness of these two LPNN models.

1. Empirical support for a treatment program for families of young children with externalizing problems.

PubMed

Feinfield, Kristin Abbott; Baker, Bruce L

2004-03-01

We evaluated the efficacy of a manualized multimodal treatment program for young externalizing children. Families were assigned randomly to an immediate 12-week parent and child treatment condition (n = 24) or to a delayed-treatment condition (n = 23). Parents had high attendance, high satisfaction with treatment, and increased knowledge of behavior management principles. Relative to the waitlist condition, treatment parents reported statistically and clinically significant reductions in child behavior problems, improved parenting practices (i.e., increased consistency, decreased power assertive techniques), an increased sense of efficacy, and reduced parenting stress. There was a trend toward parents improving their attitudes toward their children. In considering the process of change, we found evidence that improved parenting practices mediated reductions in child behavior problems and that child improvements mediated changes in parent attitudes and stress. Five months following treatment, teachers reported significant improvements in child behaviors, whereas parents reported that reductions in child behavior problems and parenting stress were maintained.

2. An optimal approach for the critical node problem using semidefinite programming

Jiang, Cheng; Liu, Zhonghua; Wang, Juyun; Yu, Hua; Guo, Xiaoling

2017-04-01

Detecting critical nodes in complex networks (CNP) has great theoretical and practical significance in many disciplines. The existing formulations for CNP are mostly, as we know, based on the integer linear programming model. However, we observed that, these formulations only considered the sizes but neglected the cohesiveness properties of the connected components in the induced network. To solve the problem and improve the performance of CNP solutions, we construct a novel nonconvex quadratically constrained quadratic programming (QCQP) model and derive its approximation solutions via semidefinite programming (SDP) technique and heuristic algorithms. Various types of synthesized and real-world networks, in the context of different connectivity patterns, are used to validate and verify the effectiveness of the proposed model and algorithm. Experimental results show that our method improved the state of the art of the CNP.

3. Assessment of the NASA Space Shuttle Program's Problem Reporting and Corrective Action System

NASA Technical Reports Server (NTRS)

Korsmeryer, D. J.; Schreiner, J. A.; Norvig, Peter (Technical Monitor)

2001-01-01

This paper documents the general findings and recommendations of the Design for Safety Programs Study of the Space Shuttle Programs (SSP) Problem Reporting and Corrective Action (PRACA) System. The goals of this Study were: to evaluate and quantify the technical aspects of the SSP's PRACA systems, and to recommend enhancements addressing specific deficiencies in preparation for future system upgrades. The Study determined that the extant SSP PRACA systems accomplished a project level support capability through the use of a large pool of domain experts and a variety of distributed formal and informal database systems. This operational model is vulnerable to staff turnover and loss of the vast corporate knowledge that is not currently being captured by the PRACA system. A need for a Program-level PRACA system providing improved insight, unification, knowledge capture, and collaborative tools was defined in this study.

4. College and university environmental programs as a policy problem (Part 2): Strategies for improvement

USGS Publications Warehouse

Clark, S.G.; Rutherford, M.B.; Auer, M.R.; Cherney, D.N.; Wallace, R.L.; Mattson, D.J.; Clark, D.A.; Foote, L.; Krogman, N.; Wilshusen, P.; Steelman, T.

2011-01-01

Environmental studies and environmental sciences programs in American and Canadian colleges and universities seek to ameliorate environmental problems through empirical enquiry and analytic judgment. In a companion article (Part 1) we describe the environmental program movement (EPM) and discuss factors that have hindered its performance. Here, we complete our analysis by proposing strategies for improvement. We recommend that environmental programs re-organize around three principles. First, adopt as an overriding goal the concept of human dignity-defined as freedom and social justice in healthy, sustainable environments. This clear higher-order goal captures the human and environmental aspirations of the EPM and would provide a more coherent direction for the efforts of diverse participants. Second, employ an explicit, genuinely interdisciplinary analytical framework that facilitates the use of multiple methods to investigate and address environmental and social problems in context. Third, develop educational programs and applied experiences that provide students with the technical knowledge, powers of observation, critical thinking skills and management acumen required for them to become effective professionals and leaders. Organizing around these three principles would build unity in the EPM while at the same time capitalizing on the strengths of the many disciplines and diverse local conditions involved. ?? 2011 Springer Science+Business Media, LLC.

5. College and University Environmental Programs as a Policy Problem (Part 2): Strategies for Improvement

Clark, Susan G.; Rutherford, Murray B.; Auer, Matthew R.; Cherney, David N.; Wallace, Richard L.; Mattson, David J.; Clark, Douglas A.; Foote, Lee; Krogman, Naomi; Wilshusen, Peter; Steelman, Toddi

2011-05-01

Environmental studies and environmental sciences programs in American and Canadian colleges and universities seek to ameliorate environmental problems through empirical enquiry and analytic judgment. In a companion article (Part 1) we describe the environmental program movement (EPM) and discuss factors that have hindered its performance. Here, we complete our analysis by proposing strategies for improvement. We recommend that environmental programs re-organize around three principles. First, adopt as an overriding goal the concept of human dignity—defined as freedom and social justice in healthy, sustainable environments. This clear higher-order goal captures the human and environmental aspirations of the EPM and would provide a more coherent direction for the efforts of diverse participants. Second, employ an explicit, genuinely interdisciplinary analytical framework that facilitates the use of multiple methods to investigate and address environmental and social problems in context. Third, develop educational programs and applied experiences that provide students with the technical knowledge, powers of observation, critical thinking skills and management acumen required for them to become effective professionals and leaders. Organizing around these three principles would build unity in the EPM while at the same time capitalizing on the strengths of the many disciplines and diverse local conditions involved.

6. College and university environmental programs as a policy problem (part 2): strategies for improvement.

PubMed

Clark, Susan G; Rutherford, Murray B; Auer, Matthew R; Cherney, David N; Wallace, Richard L; Mattson, David J; Clark, Douglas A; Foote, Lee; Krogman, Naomi; Wilshusen, Peter; Steelman, Toddi

2011-05-01

Environmental studies and environmental sciences programs in American and Canadian colleges and universities seek to ameliorate environmental problems through empirical enquiry and analytic judgment. In a companion article (Part 1) we describe the environmental program movement (EPM) and discuss factors that have hindered its performance. Here, we complete our analysis by proposing strategies for improvement. We recommend that environmental programs re-organize around three principles. First, adopt as an overriding goal the concept of human dignity-defined as freedom and social justice in healthy, sustainable environments. This clear higher-order goal captures the human and environmental aspirations of the EPM and would provide a more coherent direction for the efforts of diverse participants. Second, employ an explicit, genuinely interdisciplinary analytical framework that facilitates the use of multiple methods to investigate and address environmental and social problems in context. Third, develop educational programs and applied experiences that provide students with the technical knowledge, powers of observation, critical thinking skills and management acumen required for them to become effective professionals and leaders. Organizing around these three principles would build unity in the EPM while at the same time capitalizing on the strengths of the many disciplines and diverse local conditions involved.

7. Solving seismological problems using SGRAPH program: I-source parameters and hypocentral location

SciTech Connect

Abdelwahed, Mohamed F.

2012-09-26

SGRAPH program is considered one of the seismological programs that maintain seismic data. SGRAPH is considered unique for being able to read a wide range of data formats and manipulate complementary tools in different seismological subjects in a stand-alone Windows-based application. SGRAPH efficiently performs the basic waveform analysis and solves advanced seismological problems. The graphical user interface (GUI) utilities and the Windows facilities such as, dialog boxes, menus, and toolbars simplified the user interaction with data. SGRAPH supported the common data formats like, SAC, SEED, GSE, ASCII, and Nanometrics Y-format, and others. It provides the facilities to solve many seismological problems with the built-in inversion and modeling tools. In this paper, I discuss some of the inversion tools built-in SGRAPH related to source parameters and hypocentral location estimation. Firstly, a description of the SGRAPH program is given discussing some of its features. Secondly, the inversion tools are applied to some selected events of the Dahshour earthquakes as an example of estimating the spectral and source parameters of local earthquakes. In addition, the hypocentral location of these events are estimated using the Hypoinverse 2000 program operated by SGRAPH.

8. Solving seismological problems using SGRAPH program: I-source parameters and hypocentral location

Abdelwahed, Mohamed F.

2012-09-01

SGRAPH program [1] is considered one of the seismological programs that maintain seismic data. SGRAPH is considered unique for being able to read a wide range of data formats and manipulate complementary tools in different seismological subjects in a stand-alone Windows-based application. SGRAPH efficiently performs the basic waveform analysis and solves advanced seismological problems. The graphical user interface (GUI) utilities and the Windows facilities such as, dialog boxes, menus, and toolbars simplified the user interaction with data. SGRAPH supported the common data formats like, SAC, SEED, GSE, ASCII, and Nanometrics Y-format, and others. It provides the facilities to solve many seismological problems with the built-in inversion and modeling tools. In this paper, I discuss some of the inversion tools built-in SGRAPH related to source parameters and hypocentral location estimation. Firstly, a description of the SGRAPH program is given discussing some of its features. Secondly, the inversion tools are applied to some selected events of the Dahshour earthquakes as an example of estimating the spectral and source parameters of local earthquakes. In addition, the hypocentral location of these events are estimated using the Hypoinverse 2000 program [2] operated by SGRAPH.

9. The implementation of problem-based learning in health service management training programs.

PubMed

Stankunas, Mindaugas; Czabanowska, Katarzyna; Avery, Mark; Kalediene, Ramune; Babich, Suzanne Marie

2016-10-03

Purpose Strengthening management capacity within the health care sector could have a significant impact on population health. However, many training programs in this area are still delivered using a classic lecture-based approach. The purpose of this paper is to evaluate and better understand the feasibility of using a problem-based learning (PBL) approach in health services management training programs. Design/methodology/approach A PBL teaching approach (based on the Maastricht University model) was tested with second-year postgraduate students from the Master in Public Health Management program at the Lithuanian University of Health Sciences. Students' opinions about PBL were investigated using a questionnaire with eight open-ended questions. Thematic content analysis was chosen to reflect the search for patterns across the data. Findings Respondents stated that the main advantage of PBL was that it was a more interesting and effective way of learning: "It is easier to remember, when you study by yourself and discuss with all peers". In addition, it was mentioned that PBL initiated a rapid exchange of ideas and sharing of personal experience. Students stressed that PBL was a good tool for developing other skills as well, such as "public speaking, communication, logic thinking". All students recommended delivering all other courses in the health services management program using PBL methodologies. Originality/value Findings from our study suggest that PBL may be an effective approach to teaching health services management. Potential problems in implementation are noted.

10. Applying Genetic Programming with Substructure Discovery to a Traffic Signal Control Problem

Kumagai, Juncichi; Ojima, Yasuo; Takashige, Souichi; Kameya, Yoshitaka; Sato, Taisuke

Nowadays the increase of traffic causes numerous serious traffic jams, and traffic signals are desired to work adaptively for dynamic traffic flows. In this paper, we view such a problem of traffic signal control as a multi-agent problem where each signal has a controlling agent, and aim to make the agents work cooperatively depending on the traffic status. To build such an agent program automatically, we introduce genetic programming (GP), an evolutionary method for program construction. In GP, it is known as important to encapsulate the substructures of a program which leads to higher fitness to the environment, and we propose a new encapsulation method using an efficient technique for discovering frequent substructures, which has been recently proposed in the data mining field. We also conducted a simulation with a real traffic data, and confirmed that GP with our encapsulation method outperforms the normal GP. It is also observed that the best individual has a communication part that chooses an appropriate communication area and adapts to the traffic status.

11. A hybrid computer program for rapidly solving flowing or static chemical kinetic problems involving many chemical species

NASA Technical Reports Server (NTRS)

Mclain, A. G.; Rao, C. S. R.

1976-01-01

A hybrid chemical kinetic computer program was assembled which provides a rapid solution to problems involving flowing or static, chemically reacting, gas mixtures. The computer program uses existing subroutines for problem setup, initialization, and preliminary calculations and incorporates a stiff ordinary differential equation solution technique. A number of check cases were recomputed with the hybrid program and the results were almost identical to those previously obtained. The computational time saving was demonstrated with a propane-oxygen-argon shock tube combustion problem involving 31 chemical species and 64 reactions. Information is presented to enable potential users to prepare an input data deck for the calculation of a problem.

12. Creativity and Motivation for Geometric Tasks Designing in Education

ERIC Educational Resources Information Center

Rumanová, Lucia; Smiešková, Edita

2015-01-01

In this paper we focus on creativity needed for geometric tasks designing, visualization of geometric problems and use of ICT. We present some examples of various problems related to tessellations. Altogether 21 students--pre-service teachers participated in our activity within a geometry course at CPU in Nitra, Slovakia. Our attempt was to…

13. Solving large double digestion problems for DNA restriction mapping by using branch-and-bound integer linear programming.

PubMed

Wu, Z; Zhang, Y

2008-01-01

The double digestion problem for DNA restriction mapping has been proved to be NP-complete and intractable if the numbers of the DNA fragments become large. Several approaches to the problem have been tested and proved to be effective only for small problems. In this paper, we formulate the problem as a mixed-integer linear program (MIP) by following (Waterman, 1995) in a slightly different form. With this formulation and using state-of-the-art integer programming techniques, we can solve randomly generated problems whose search space sizes are many-magnitude larger than previously reported testing sizes.

14. A Maximin Approach for the Bi-criteria 0-1 Random Fuzzy Programming Problem Based on the Necessity Measure

SciTech Connect

Hasuike, Takashi; Ishii, Hiroaki; Katagiri, Hideki

2009-10-08

This paper considers a bi-criteria general 0-1 random fuzzy programming problem based on the degree of necessity which include some previous 0-1 stochastic and fuzzy programming problems. The proposal problem is not well-defined due to including randomness and fuzziness. Therefore, by introducing chance constraint and fuzzy goals for objectives, and considering the maximization of the aspiration level for total profit and the degree of necessity that the objective function's value satisfies the fuzzy goal, the main problem is transformed into a deterministic equivalent problem. Furthermore, by using the assumption that each random variable is distributed according to a normal distribution, the problem is equivalently transformed into a basic 0-1 programming problem, and the efficient strict solution method to find an optimal solution is constructed.

15. UPDATED USER-FRIENDLY COMPUTER PROGRAMS FOR SOLVING SAMPLING AND STATISTICAL PROBLEMS (FOR MICROCOMPUTERS) (DATE OF COVERAGE: 1993). - SOFTWARE.

EPA Science Inventory

The product contains user-friendly computer programs for solving sampling and related statistical problems. All have been updated as well and more programs have been added. Specific, detailed written instructions and examples built into the programs are provided so that the user ...

16. Preventing Internalizing Problems in 6–8 Year Old Children: A Universal School-Based Program

PubMed Central

Pophillat, Eugenie; Rooney, Rosanna M.; Nesa, Monique; Davis, Melissa C.; Baughman, Natalie; Hassan, Sharinaz; Kane, Robert T.

2016-01-01

The Aussie Optimism Program: Feelings and Friends (AOP-FF) is a 10 week, universal mental health promotion program based on social/emotional and cognitive and behavioral strategies. The aim of the current study was to evaluate the efficacy of a universal Cognitive Behavioral Therapy based program in preventing and reducing internalizing problems in 6–8 year olds (Years 1–3 in Australia). Year 1–3 students from a low SES primary school (N = 206) were randomly assigned in classes to either an intervention or a control group and assessed at baseline and post-test. Results showed a significant (p = 0.009) and small to moderate (partial eta-squared = 0.034) pre-post decrease in parent-reported anxiety symptoms for the intervention group, in conjunction with a non-significant (p = 0.708) and negligible (partial eta-squared = 0.001) pre-post increase for the control group. A larger randomized controlled trial assessing longer term effects is needed. In addition the program needs to be simplified for year 1–2 students with a separate more developmentally appropriate program for year 3 students. PMID:28018267

17. A Fuzzy Goal Programming for a Multi-Depot Distribution Problem

Nunkaew, Wuttinan; Phruksaphanrat, Busaba

2010-10-01

A fuzzy goal programming model for solving a Multi-Depot Distribution Problem (MDDP) is proposed in this research. This effective proposed model is applied for solving in the first step of Assignment First-Routing Second (AFRS) approach. Practically, a basic transportation model is firstly chosen to solve this kind of problem in the assignment step. After that the Vehicle Routing Problem (VRP) model is used to compute the delivery cost in the routing step. However, in the basic transportation model, only depot to customer relationship is concerned. In addition, the consideration of customer to customer relationship should also be considered since this relationship exists in the routing step. Both considerations of relationships are solved using Preemptive Fuzzy Goal Programming (P-FGP). The first fuzzy goal is set by a total transportation cost and the second fuzzy goal is set by a satisfactory level of the overall independence value. A case study is used for describing the effectiveness of the proposed model. Results from the proposed model are compared with the basic transportation model that has previously been used in this company. The proposed model can reduce the actual delivery cost in the routing step owing to the better result in the assignment step. Defining fuzzy goals by membership functions are more realistic than crisps. Furthermore, flexibility to adjust goals and an acceptable satisfactory level for decision maker can also be increased and the optimal solution can be obtained.

18. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems.

PubMed

Takabe, Satoshi; Hukushima, Koji

2016-05-01

Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken.

19. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems

Takabe, Satoshi; Hukushima, Koji

2016-05-01

Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken.

20. Applicability of the flow-net program to solution of Space Station fluid dynamics problems

Navickas, J.; Rivard, W. C.

The Space Station design encompasses a variety of fluid systems that require extensive flow and combined flow-thermal analyses. The types of problems encountered range from two-phase cryogenic to high-pressure gaseous systems. Design of such systems requires the most advanced analytical tools. Because Space Station applications are a new area for existing two-phase flow programs, typically developed for nuclear safety applications, a careful evaluation of their capabilities to treat generic Space Station flows is appropriate. The results from an assessment of one particular program, FLOW-NET, developed by Flow Science, In., are presented. Three typical problems are analyzed: (1) fill of a hyperbaric module with gaseous nitrogen from a high-pressure supply system, (2) response of a liquid ammonia line to a rapid pressure decrease, and (3) performance of a basic two-phase, thermal control network. The three problems were solved successfully. Comparison of the results with those obtained by analytical methods supports the FLOW-NET calculations.

1. Inflation from geometrical tachyons

SciTech Connect

Thomas, Steven; Ward, John

2005-10-15

We propose an alternative formulation of tachyon inflation using the geometrical tachyon arising from the time dependent motion of a BPS D3-brane in the background geometry due to k parallel NS5-branes arranged around a ring of radius R. Because of the fact that the mass of this geometrical tachyon field is {radical}(2/k) times smaller than the corresponding open-string tachyon mass, we find that the slow-roll conditions for inflation and the number of e-foldings can be satisfied in a manner that is consistent with an effective 4-dimensional model and with a perturbative string coupling. We also show that the metric perturbations produced at the end of inflation can be sufficiently small and do not lead to the inconsistencies that plague the open-string tachyon models. Finally we argue for the existence of a minimum of the geometrical tachyon potential which could give rise to a traditional reheating mechanism.

2. A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems.

PubMed

Sabar, Nasser R; Ayob, Masri; Kendall, Graham; Qu, Rong

2015-02-01

Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite.

3. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

PubMed

Graff, Mario; Poli, Riccardo; Flores, Juan J

2013-01-01

Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models.

4. Optimization approach for the evaluation of geometric errors in computer-aided inspection

Jiang, Guohua

Geometric dimensioning and tolerancing (GD&T) is a set of standards that defines a clear and concise mathematical language for communicating product definition. A design based on GD&T clearly reflects the functional requirements of a product, provides unique definition of a drawing among design, manufacturing and inspection engineers and conveys the design intention clearly without any ambiguity. The latest version of this standard is ASME Y14.5M-1994. Traditional methods for the inspection of geometric tolerances have been mostly with the use of functional gages and Coordinate Measuring Machines (CMM). Function gages are very expensive and only provide a yes/no result. CMMs have embedded algorithms to verify geometric tolerances according to the design specification. However, it has been shown that these embedded algorithms neither provide accurate evaluation of geometric errors nor do they conform to the ASME standards. High accuracy requirements in the manufacture of precision parts with complex geometries have made accurate evaluation and verification of geometric tolerances very critical. Over the years, researchers have developed many algorithms to evaluate some of the geometric errors. However, there is still a significant lack of evaluation procedures for complex geometric errors. In this dissertation, mathematical models have been built for the evaluation of a certain set of complex geometric characteristics. The concentration has been on the evaluation of 3D feature relating positional error, cylindricity error and straightness error of spatial line. Research has been carried out to understand the mathematical natures of these problems. Based on the research results, efficient solution methodologies have been developed according to the ASME standards. A robust and efficient procedure has also been developed for the identification of candidate datum sets. The proposed procedures have been implemented using the C++ or C programming language. Experimental

5. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

PubMed

Liu, Derong; Li, Hongliang; Wang, Ding

2015-06-01

In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

6. SEMI-DEFINITE PROGRAMMING TECHNIQUES FOR STRUCTURED QUADRATIC INVERSE EIGENVALUE PROBLEMS

PubMed Central

LIN, MATTHEW M.; DONG, BO; CHU, MOODY T.

2014-01-01

In the past decade or so, semi-definite programming (SDP) has emerged as a powerful tool capable of handling a remarkably wide range of problems. This article describes an innovative application of SDP techniques to quadratic inverse eigenvalue problems (QIEPs). The notion of QIEPs is of fundamental importance because its ultimate goal of constructing or updating a vibration system from some observed or desirable dynamical behaviors while respecting some inherent feasibility constraints well suits many engineering applications. Thus far, however, QIEPs have remained challenging both theoretically and computationally due to the great variations of structural constraints that must be addressed. Of notable interest and significance are the uniformity and the simplicity in the SDP formulation that solves effectively many otherwise very difficult QIEPs. PMID:25392603

7. Wildlife and oil shale: a problem analysis and research program: volume 2, appendix and bibliography

USGS Publications Warehouse

Burke, Hubert D.

1975-01-01

This appendix is designed to apply to the program of studies recommended in the problem analysis and research program Volume I. It has two purposes: (1) to provide reference that may be used in the preparation of requests for proposals or for studies, and (2) to suggest a core group of references for a reference library for research. The references that follow are listed taxonomically as follows: A. Aquatic Ecosystems B. Water Quality C. Terrestrial Ecosystems D. Industrial Impacts on Wildlife E. Reptiles and Amphibians F. Blood-sucking Arthropods and Disease Vectors This bibliography is not integrated because it was believed that it would be more useful with the sources separate. It also does not attempt to cover the entire field. It is, however, a listing that will be most useful in the description of the region and its environmental processes.

8. Lessons Learned for Cx PRACA. Constellation Program Problem Reporting, Analysis and Corrective Action Process and System

NASA Technical Reports Server (NTRS)

Kelle, Pido I.; Ratterman, Christian; Gibbs, Cecil

2009-01-01

This slide presentation reviews the Constellation Program Problem Reporting, Analysis and Corrective Action Process and System (Cx PRACA). The goal of the Cx PRACA is to incorporate Lessons learned from the Shuttle, ISS, and Orbiter programs by creating a single tool for managing the PRACA process, that clearly defines the scope of PRACA applicability and what must be reported, and defines the ownership and responsibility for managing the PRACA process including disposition approval authority. CxP PRACA is a process, supported by a single information gathering data module which will be integrated with a single CxP Information System, providing interoperability, import and export capability making the CxP PRACA a more effective and user friendly technical and management tool.

9. Dynamic Programming on Reduced Models and Its Evaluation through Its Application to Elevator Operation Problems

Inamoto, Tsutomu; Tamaki, Hisashi; Murao, Hajime

In this paper, we present a modified dynamic programming (DP) method. The method is basically the same as the value iteration method (VI), a representative DP method, except the preprocess of a system's state transition model for reducing its complexity, and is called the dynamic programming on reduced models (DPRM). That reduction is achieved by imaginarily considering causes of the probabilistic behavior of a system, and then cutting off some causes with low occurring probabilities. In computational illustrations, VI, DPRM, and the real-time Q-learning method (RTQ) are applied to elevator operation problems, which can be modeled by using Markov decision processes. The results show that DPRM can compute quasi-optimal value functions which bring more effective allocations of elevators than value functions by RTQ in less computational times than VI. This characteristic is notable when the traffic pattern is complicated.

10. On large-scale nonlinear programming techniques for solving optimal control problems

SciTech Connect

Faco, J.L.D.

1994-12-31

The formulation of decision problems by Optimal Control Theory allows the consideration of their dynamic structure and parameters estimation. This paper deals with techniques for choosing directions in the iterative solution of discrete-time optimal control problems. A unified formulation incorporates nonlinear performance criteria and dynamic equations, time delays, bounded state and control variables, free planning horizon and variable initial state vector. In general they are characterized by a large number of variables, mostly when arising from discretization of continuous-time optimal control or calculus of variations problems. In a GRG context the staircase structure of the jacobian matrix of the dynamic equations is exploited in the choice of basic and super basic variables and when changes of basis occur along the process. The search directions of the bound constrained nonlinear programming problem in the reduced space of the super basic variables are computed by large-scale NLP techniques. A modified Polak-Ribiere conjugate gradient method and a limited storage quasi-Newton BFGS method are analyzed and modifications to deal with the bounds on the variables are suggested based on projected gradient devices with specific linesearches. Some practical models are presented for electric generation planning and fishery management, and the application of the code GRECO - Gradient REduit pour la Commande Optimale - is discussed.

11. A revised version of Graphic Normative Analysis Program (GNAP) with examples of petrologic problem solving

USGS Publications Warehouse

Stuckless, J.S.; VanTrump, G.

1979-01-01

A revised version of Graphic Normative Analysis Program (GNAP) has been developed to allow maximum flexibility in the evaluation of chemical data by the occasional computer user. GNAP calculates ClPW norms, Thornton and Tuttle's differentiation index, Barth's cations, Niggli values and values for variables defined by the user. Calculated values can be displayed graphically in X-Y plots or ternary diagrams. Plotting can be done on a line printer or Calcomp plotter with either weight percent or mole percent data. Modifications in the original program give the user some control over normative calculations for each sample. The number of user-defined variables that can be created from the data has been increased from ten to fifteen. Plotting and calculations can be based on the original data, data adjusted to sum to 100 percent, or data adjusted to sum to 100 percent without water. Analyses for which norms were previously not computable are now computed with footnotes that show excesses or deficiencies in oxides (or volatiles) not accounted for by the norm. This report contains a listing of the computer program, an explanation of the use of the program, and the two sample problems.

12. Evaluation of a school-based educational program to prevent adolescents’ problem behaviors

PubMed Central

Eslami, Ahmad Ali; Ghofranipour, Fazlollah; Bonab, Bagher Ghobari; Zadeh, Davood Shojaei; Shokravi, Farkhondeh Amin; Tabatabaie, Mahmoud Ghazi

2015-01-01

Background: Many researchers believe that adolescents’ problem behaviors are indicators of a deficiency in social skills. This study was aimed to evaluate the effectiveness of a prevention program on reducing problem behaviors in male adolescents. Materials and Methods: In a preposttest design with randomized control group, 49 students received social skills training (SST). Follow-up assessment of outcomes took place 5 months post baseline. The SST program was administered over the course of 10 weeks (10 sessions of 1 h). The main tools were multiple problem behaviors index (MPBI) and Social Skills Rating System – student form (SSRS-S). The control group (57 students) did not receive any intervention. Intervention effects were evaluated with t-test, univariate ANCOVA, and repeated measures ANOVA. Results: Significant difference between groups founded on SSRS at posttest (t = 2.5, P = 0.014) by univariate ANCOVA. In addition, the findings indicated that variation trend of mean scores of SSRS in the intervention group was significant (F = 225.3, P < 0.0001). The intervention group reported Lower levels of MPBI at posttest and follow-up compared to the control group. Significant difference between the two groups did not achieved on MPBI scores in the posttest after adjusting for the pretest scores; however, this difference was significant at the follow up (F = 5.3, P = 0.020). Conclusion: The results suggest that SST was effective in improving social competence and preventing problem behaviors among male adolescent. Future researches must be examined the role of peer and family. PMID:25884000

13. Chiral models: Geometrical aspects

Perelomov, A. M.

1987-02-01

Two-dimensional classical chiral models of field theory are considered, the main attention being paid on geometrical aspects of such theories. A characteristic feature of these models is that the interaction is inserted not by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the manifold. These models are in many respects analogous to non-Abelian gauge theories and as became clear recently, they are also important for the superstring theory which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.

14. Problem Solving

ERIC Educational Resources Information Center

Kinsella, John J.

1970-01-01

Discussed are the nature of a mathematical problem, problem solving in the traditional and modern mathematics programs, problem solving and psychology, research related to problem solving, and teaching problem solving in algebra and geometry. (CT)

15. PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism

Gardner, Jason S.

2011-04-01

Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals

16. Geometric Series via Probability

ERIC Educational Resources Information Center

Tesman, Barry

2012-01-01

Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…

17. A Geometric Scavenger Hunt

ERIC Educational Resources Information Center

Smart, Julie; Marshall, Jeff

2007-01-01

Children possess a genuine curiosity for exploring the natural world around them. One third grade teacher capitalized on this inherent trait by leading her students on "A Geometric Scavenger Hunt." The four-lesson inquiry investigation described in this article integrates mathematics and science. Among the students' discoveries was the fact that…

18. Geometric grid generation

NASA Technical Reports Server (NTRS)

Ives, David

1995-01-01

This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

19. Untangling Geometric Ideas

ERIC Educational Resources Information Center

Burgess, Claudia R.

2014-01-01

Designed for a broad audience, including educators, camp directors, afterschool coordinators, and preservice teachers, this investigation aims to help individuals experience mathematics in unconventional and exciting ways by engaging them in the physical activity of building geometric shapes using ropes. Through this engagement, the author…

20. Approximate dynamic programming recurrence relations for a hybrid optimal control problem

Lu, W.; Ferrari, S.; Fierro, R.; Wettergren, T. A.

2012-06-01

This paper presents a hybrid approximate dynamic programming (ADP) method for a hybrid dynamic system (HDS) optimal control problem, that occurs in many complex unmanned systems which are implemented via a hybrid architecture, regarding robot modes or the complex environment. The HDS considered in this paper is characterized by a well-known three-layer hybrid framework, which includes a discrete event controller layer, a discrete-continuous interface layer, and a continuous state layer. The hybrid optimal control problem (HOCP) is to nd the optimal discrete event decisions and the optimal continuous controls subject to a deterministic minimization of a scalar function regarding the system state and control over time. Due to the uncertainty of environment and complexity of the HOCP, the cost-to-go cannot be evaluated before the HDS explores the entire system state space; as a result, the optimal control, neither continuous nor discrete, is not available ahead of time. Therefore, ADP is adopted to learn the optimal control while the HDS is exploring the environment, because of the online advantage of ADP method. Furthermore, ADP can break the curses of dimensionality which other optimizing methods, such as dynamic programming (DP) and Markov decision process (MDP), are facing due to the high dimensions of HOCP.

1. Pragmatic geometric model evaluation

Pamer, Robert

2015-04-01

Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to

2. Study of Induction Programs for Beginning Teachers. Volume II. The Problems of Beginning Teachers: A Digest of Helping Programs.

ERIC Educational Resources Information Center

Elias, Patricia; And Others

The Digest of Helping Programs presented in this volume describes exemplary support programs for beginning teachers in the United States. Twenty-four programs are included, of which four are described in considerable detail. Comprehensive descriptions are given of the following programs: (1) The Stanford University Intern Program; (2) The Resident…

3. Geometric Models for Collaborative Search and Filtering

ERIC Educational Resources Information Center

Bitton, Ephrat

2011-01-01

This dissertation explores the use of geometric and graphical models for a variety of information search and filtering applications. These models serve to provide an intuitive understanding of the problem domains and as well as computational efficiencies to our solution approaches. We begin by considering a search and rescue scenario where both…

4. Building Interactivity in Higher Education to Support Student Engagement in Spatial Problem Solving and Programming

Gulland, E.-K.; Veenendaal, B.; Schut, A. G. T.

2012-07-01

Problem-solving knowledge and skills are an important attribute of spatial sciences graduates. The challenge of higher education is to build a teaching and learning environment that enables students to acquire these skills in relevant and authentic applications. This study investigates the effectiveness of traditional face-to-face teaching and online learning technologies in supporting the student learning of problem-solving and computer programming skills, techniques and solutions. The student cohort considered for this study involves students in the surveying as well as geographic information science (GISc) disciplines. Also, students studying across a range of learning modes including on-campus, distance and blended, are considered in this study. Student feedback and past studies reveal a lack of student interest and engagement in problem solving and computer programming. Many students do not see such skills as directly relevant and applicable to their perceptions of what future spatial careers hold. A range of teaching and learning methods for both face-to-face teaching and distance learning were introduced to address some of the perceived weaknesses of the learning environment. These included initiating greater student interaction in lectures, modifying assessments to provide greater feedback and student accountability, and the provision of more interactive and engaging online learning resources. The paper presents and evaluates the teaching methods used to support the student learning environment. Responses of students in relation to their learning experiences were collected via two anonymous, online surveys and these results were analysed with respect to student pass and retention rates. The study found a clear distinction between expectations and engagement of surveying students in comparison to GISc students. A further outcome revealed that students who were already engaged in their learning benefited the most from the interactive learning resources and

5. Problem based learning - 'Bringing everything together' - A strategy for Graduate Nurse Programs.

PubMed

Vittrup, Ann-Charlotte; Davey, Anna

2010-03-01

6. An improved exploratory search technique for pure integer linear programming problems

NASA Technical Reports Server (NTRS)

Fogle, F. R.

1990-01-01

The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.

7. On the location selection problem using analytic hierarchy process and multi-choice goal programming

Ho, Hui-Ping; Chang, Ching-Ter; Ku, Cheng-Yuan

2013-01-01

Location selection is a crucial decision in cost/benefit analysis of restaurants, coffee shops and others. However, it is difficult to be solved because there are many conflicting multiple goals in the problem of location selection. In order to solve the problem, this study integrates analytic hierarchy process (AHP) and multi-choice goal programming (MCGP) as a decision aid to obtain an appropriate house from many alternative locations that better suit the preferences of renters under their needs. This study obtains weights from AHP and implements it upon each goal using MCGP for the location selection problem. According to the function of multi-aspiration provided by MCGP, decision makers can set multi-aspiration for each location goal to rank the candidate locations. Compared to the unaided selection processes, the integrated approach of AHP and MCGP is a better scientific and efficient method than traditional methods in finding a suitable location for buying or renting a house for business, especially under multiple qualitative and quantitative criteria within a shorter evaluation time. In addition, a real case is provided to demonstrate the usefulness of the proposed method. The results show that the proposed method is able to provide better quality decision than normal manual methods.

8. Analyzing the Effects of a Mathematics Problem-Solving Program, Exemplars, on Mathematics Problem-Solving Scores with Deaf and Hard-of-Hearing Students

ERIC Educational Resources Information Center

Chilvers, Amanda Leigh

2013-01-01

Researchers have noted that mathematics achievement for deaf and hard-of-hearing (d/hh) students has been a concern for many years, including the ability to problem solve. This quasi-experimental study investigates the use of the Exemplars mathematics program with students in grades 2-8 in a school for the deaf that utilizes American Sign Language…

9. The Development of Online Tutorial Program Design Using Problem-Based Learning in Open Distance Learning System

ERIC Educational Resources Information Center

Said, Asnah; Syarif, Edy

2016-01-01

This research aimed to evaluate of online tutorial program design by applying problem-based learning Research Methods currently implemented in the system of Open Distance Learning (ODL). The students must take a Research Methods course to prepare themselves for academic writing projects. Problem-based learning basically emphasizes the process of…

10. Water as Focus of Problem-Based Learning: An Integrated Curricular Program for Environmental Education in Secondary School

ERIC Educational Resources Information Center

Gutierrez-Perez, Jose; Pirrami, Franco

2011-01-01

In this paper, we explore some aspects regarding the introduction of an active learning approach to deal with environmental issues in secondary school during natural sciences lessons. Integrated curricular program and PBL (problem-based learning) are comprehensive approaches designed to engage students in investigation of authentic problems. We…

11. An Investigation of the Impact of Function of Problem Behavior on Effectiveness of the Behavior Education Program (BEP)

ERIC Educational Resources Information Center

Hawken, Leanne S.; O'Neill, Robert E.; MacLeod, K. Sandra

2011-01-01

The Behavior Education Program (BEP) is a check-in, check-out intervention implemented with students who are at-risk for engaging in more severe problem behavior. Previous research with middle and elementary school students found that the BEP was more effective with students who had adult attention maintained problem behavior. The purposes of this…

12. Evaluation of a Voluntary, Military-Style Residential Treatment Program for Adolescents With Academic and Conduct Problems

ERIC Educational Resources Information Center

Weis, Robert; Wilson, Nicole L.; Whitemarsh, Savannah M.

2005-01-01

This study evaluated the effectiveness of a military-style residential treatment program for adolescents with academic and conduct problems. Two hundred twelve referred adolescents were separated into 3 groups for analyses: (a) adolescents who completed the 22-week program, (b) adolescents who prematurely withdrew, and (c) wait-list controls.…

13. Parent Participation within Community Center or In-Home Outreach Delivery Models of the Early Risers Conduct Problems Prevention Program

ERIC Educational Resources Information Center

Bloomquist, Michael L; August, Gerald J.; Lee, Susanne S.; Piehler, Timothy F.; Jensen, Marcia

2012-01-01

A variety of predictors of parent participation in prevention programming have been identified in past research, but few studies have investigated how those predictors may vary by implementation context. Patterns of parent participation were examined in the Early Risers Conduct Problems Prevention Program using two family-focused service delivery…

14. Geometric continuum regularization of quantum field theory

SciTech Connect

Halpern, M.B. . Dept. of Physics)

1989-11-08

An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.

15. Geometric effects in tomographic reconstruction

SciTech Connect

Barnes, F.L.; Azevedo, S.G.; Martz, H.E. Jr.; Roberson, G.P.; Schneberk, D.J.; Skeate, M.F.

1990-01-08

In x-ray and ion-beam computerized tomography, there are a number of reconstruction effects, manifested as artifacts, that can be attributed to the geometry of the experimental setup and of the object being scanned. In this work, we will examine four geometric effects that are common to first-and third-generation (parallel beam, 180 degree) computerized tomography (CT) scanners and suggest solutions for each problem. The geometric effects focused on in this paper are: X-pattern'' artifacts (believed to be caused by several errors), edge-generated ringing artifacts (due to improper choice of the reconstruction filter and cutoff frequency), circular-ring artifacts (caused by employing uncalibrated detectors), and tuning-fork artifacts (generated by an incorrectly specified center-of-rotation). Examples of four effects are presented. The X-pattern and edge-generated ringing artifacts are presented with actual experimental data introducing the artifact. given the source of the artifact, we present simulated data designed to replicate the artifact. Finally, we suggest ways to reduce or completely remove these artifacts. The circular-ring and tuning-fork artifacts are introduced with actual experimental data as well, while digital signal processing solutions are employed to remove the artifacts from the data. 15 refs., 12 figs.

16. CAM - Geometric systems integration

Dunlap, G. C.

The integration of geometric and nongeometric information for efficient use of CAM is examined. Requirements for engineering drawings requested by management are noted to involve large volumes of nongeometric data to define the materials and quantity variables which impinge on the required design, so that the actual design may be the last and smaller step in the CAM process. Geometric classification and coding are noted to offer an alpha/numeric identifier for integrating the engineering design, manufacturing, and quality assurance functions. An example is provided of a turbine gear part coding in terms of polycode and monocode displays, showing a possible covering of more than 10 trillion features. Software is stressed as the key to integration of company-wide data.

17. Geometric Integration of Weakly Dissipative Systems

Modin, K.; Führer, C.; Soöderlind, G.

2009-09-01

Some problems in mechanics, e.g. in bearing simulation, contain subsystems that are conservative as well as weakly dissipative subsystems. Our experience is that geometric integration methods are often superior for such systems, as long as the dissipation is weak. Here we develop adaptive methods for dissipative perturbations of Hamiltonian systems. The methods are "geometric" in the sense that the form of the dissipative perturbation is preserved. The methods are linearly explicit, i.e., they require the solution of a linear subsystem. We sketch an analysis in terms of backward error analysis and numerical comparisons with a conventional RK method of the same order is given.

18. Geometric measures of entanglement

SciTech Connect

Uyanik, K.; Turgut, S.

2010-03-15

The geometric measure of entanglement, which expresses the minimum distance to product states, has been generalized to distances to sets that remain invariant under the stochastic reducibility relation. For each such set, an associated entanglement monotone can be defined. The explicit analytical forms of these measures are obtained for bipartite entangled states. Moreover, the three-qubit case is discussed and it is argued that the distance to the W states is a new monotone.

19. Geometrical deuteron stripping revisited

SciTech Connect

Neoh, Y. S.; Yap, S. L.

2014-03-05

We investigate the reality of the idea of geometrical deuteron stripping originally envisioned by Serber. By taking into account of realistic deuteron wavefunction, nuclear density, and nucleon stopping mean free path, we are able to estimate inclusive deuteron stripping cross section for deuteron energy up to before pion production. Our semiclassical model contains only one global parameter constant for all nuclei which can be approximated by Woods-Saxon or any other spherically symmetric density distribution.

20. TORO II: A finite element computer program for nonlinear quasi-static problems in electromagnetics: Part 1, Theoretical background

SciTech Connect

Gartling, D.K.

1996-05-01

The theoretical and numerical background for the finite element computer program, TORO II, is presented in detail. TORO II is designed for the multi-dimensional analysis of nonlinear, electromagnetic field problems described by the quasi-static form of Maxwell`s equations. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in TORO II are also outlined. Instructions for the use of the code are documented in SAND96-0903; examples of problems analyzed with the code are also provided in the user`s manual. 24 refs., 8 figs.

1. Perspective: Geometrically frustrated assemblies

Grason, Gregory M.

2016-09-01

This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.

2. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

SciTech Connect

Bokanowski, Olivier; Picarelli, Athena; Zidani, Hasnaa

2015-02-15

This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.

3. Effects of Training in Problem Solving on the Problem-Solving Abilities of Gifted Fourth Graders: A Comparison of the Future Problem Solving and Instrumental Enrichment Programs.

ERIC Educational Resources Information Center

Dufner, Hillrey A.; Alexander, Patricia A.

The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…

4. College and university environmental programs as a policy problem (Part 1): Integrating Knowledge, education, and action for a better world?

USGS Publications Warehouse

Clark, S.G.; Rutherford, M.B.; Auer, M.R.; Cherney, D.N.; Wallace, R.L.; Mattson, D.J.; Clark, D.A.; Foote, L.; Krogman, N.; Wilshusen, P.; Steelman, T.

2011-01-01

The environmental sciences/studies movement, with more than 1000 programs at colleges and universities in the United States and Canada, is unified by a common interest-ameliorating environmental problems through empirical enquiry and analytic judgment. Unfortunately, environmental programs have struggled in their efforts to integrate knowledge across disciplines and educate students to become sound problem solvers and leaders. We examine the environmental program movement as a policy problem, looking at overall goals, mapping trends in relation to those goals, identifying the underlying factors contributing to trends, and projecting the future. We argue that despite its shared common interest, the environmental program movement is disparate and fragmented by goal ambiguity, positivistic disciplinary approaches, and poorly rationalized curricula, pedagogies, and educational philosophies. We discuss these challenges and the nature of the changes that are needed in order to overcome them. In a subsequent article (Part 2) we propose specific strategies for improvement. ?? 2011 Springer Science+Business Media, LLC.

5. Quantum computation using geometric algebra

Matzke, Douglas James

This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.

6. Geometric diffusion of quantum trajectories

PubMed Central

Yang, Fan; Liu, Ren-Bao

2015-01-01

A quantum object can acquire a geometric phase (such as Berry phases and Aharonov–Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects. PMID:26178745

7. Wrinkled flames and geometrical stretch

Denet, Bruno; Joulin, Guy

2011-07-01

Localized wrinkles of thin premixed flames subject to hydrodynamic instability and geometrical stretch of uniform intensity (S) are studied. A stretch-affected nonlinear and nonlocal equation, derived from an inhomogeneous Michelson-Sivashinsky equation, is used as a starting point, and pole decompositions are used as a tool. Analytical and numerical descriptions of isolated (centered or multicrested) wrinkles with steady shapes (in a frame) and various amplitudes are provided; their number increases rapidly with 1/S>0. A large constant S>0 weakens or suppresses all localized wrinkles (the larger the wrinkles, the easier the suppression), whereas S<0 strengthens them; oscillations of S further restrict their existence domain. Self-similar evolutions of unstable many-crested patterns are obtained. A link between stretch, nonlinearity, and instability with the cutoff size of the wrinkles in turbulent flames is suggested. Open problems are evoked.

8. Multiple Problem-Solving Strategies Provide Insight into Students' Understanding of Open-Ended Linear Programming Problems

ERIC Educational Resources Information Center

Sole, Marla A.

2016-01-01

Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…

9. Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming.

PubMed

Schmid, Verena

2012-06-16

Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests' site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions.

10. Using stochastic dual dynamic programming in problems with multiple near-optimal solutions

Rougé, Charles; Tilmant, Amaury

2016-05-01

Stochastic dual dynamic programming (SDDP) is one of the few algorithmic solutions available to optimize large-scale water resources systems while explicitly considering uncertainty. This paper explores the consequences of, and proposes a solution to, the existence of multiple near-optimal solutions (MNOS) when using SDDP for mid or long-term river basin management. These issues arise when the optimization problem cannot be properly parametrized due to poorly defined and/or unavailable data sets. This work shows that when MNOS exists, (1) SDDP explores more than one solution trajectory in the same run, suggesting different decisions in distinct simulation years even for the same point in the state-space, and (2) SDDP is shown to be very sensitive to even minimal variations of the problem setting, e.g., initial conditions—we call this "algorithmic chaos." Results that exhibit such sensitivity are difficult to interpret. This work proposes a reoptimization method, which simulates system decisions by periodically applying cuts from one given year from the SDDP run. Simulation results obtained through this reoptimization approach are steady state solutions, meaning that their probability distributions are stable from year to year.

11. Method of expanding hyperspheres - an interior algorithm for linear programming problems

SciTech Connect

Chandrupatla, T.

1994-12-31

A new interior algorithm using some properties of hyperspheres is proposed for the solution of linear programming problems with inequality constraints: maximize c{sup T} x subject to Ax {<=} b where c and rows of A are normalized in the Euclidean sense such that {parallel} c {parallel} = {radical}c{sup T}c = 1 {parallel} a{sub i} {parallel} {radical} A{sub i}A{sub i}{sup T} = 1 for i = 1 to m. The feasible region in the polytope bounded by the constraint planes. We start from an interior point. We pass a plane normal to c until it touches a constraint plane. Then the sphere is expanded so that it keeps contact with the previously touched planes and the expansion proceeds till it touches another plane. The procedure is continued till the sphere touches the c-plane and n constraint planes. We move to the center of the sphere and repeat the process. The interior maximum is reached when the radius of the expanded sphere is less than a critical value say {epsilon}. Problems of direction finding, determination of incoming constraint, sphere jamming, and evaluation of the initial feasible point are discussed.

12. Does an Online CBT Program for Anxiety Impact Upon Sleep Problems in Anxious Youth?

PubMed

Donovan, Caroline L; Spence, Susan H; March, Sonja

2017-01-01

This study aimed to assess whether the transdiagnostic therapy elements of an online cognitive behaviour therapy anxiety program also impact on sleep-related problems (SRPs) in anxious youth. Participants were drawn from two previously published studies evaluating online cognitive behaviour therapy for child anxiety (BRAVE-ONLINE). The study included 63 children 7-12 years of age (M = 9.49, SD = 1.37) and 71 adolescents 12-18 years of age (M = 13.90, SD = 1.68). SRPs, severity of anxiety diagnosis, anxiety symptoms, number of diagnoses, depressive symptoms, and global functioning were assessed at pre-, post-, and 6-month follow-up assessment points. SRPs were positively related to anxiety symptoms and severity for children and were positively related to depression for adolescents. SRPs did not differ between male and female participants, between children and adolescents, or between those who had generalised anxiety disorder in their profile and those who did not. Finally, children but not adolescents participating in the online program demonstrated a significantly greater reduction in SRPs from pre- to posttreatment compared to the waitlist group, and these gains were maintained at 6-month follow-up. Treatment focusing on child anxiety alone may reduce SRPs in children but not adolescents. Although further research is clearly needed, clinicians should ensure that they assess for SRPs in their teenage clients and directly target SRPs in treatment where required.

13. Characteristics of young children with persistent conduct problems 1 year after treatment with the Incredible Years program.

PubMed

Drugli, May Britt; Fossum, Sturla; Larsson, Bo; Morch, Willy-Tore

2010-07-01

In the present study, predictors of persistent conduct problems among children aged 4-8 years were investigated in a randomized controlled trial 1 year after treatment with the Incredible Years parent training program (PT), or combined parent training and child treatment (PT + CT). Data were collected before and after treatment and at a 1-year follow-up. Pre-treatment child characteristics predicting persistent conduct problems in the child at the 1-year follow-up were high levels of internalizing and aggression problems as reported by mothers. The only family characteristic predicting persistence of child conduct problems was having contacts with child protection services. Clinicians and researchers need to closely monitor and identify children with conduct problems not responding to parent training programs. These individuals and their families are likely to need further support.

14. Research Problems in Data Curation: Outcomes from the Data Curation Education in Research Centers Program

Palmer, C. L.; Mayernik, M. S.; Weber, N.; Baker, K. S.; Kelly, K.; Marlino, M. R.; Thompson, C. A.

2013-12-01

The need for data curation is being recognized in numerous institutional settings as national research funding agencies extend data archiving mandates to cover more types of research grants. Data curation, however, is not only a practical challenge. It presents many conceptual and theoretical challenges that must be investigated to design appropriate technical systems, social practices and institutions, policies, and services. This presentation reports on outcomes from an investigation of research problems in data curation conducted as part of the Data Curation Education in Research Centers (DCERC) program. DCERC is developing a new model for educating data professionals to contribute to scientific research. The program is organized around foundational courses and field experiences in research and data centers for both master's and doctoral students. The initiative is led by the Graduate School of Library and Information Science at the University of Illinois at Urbana-Champaign, in collaboration with the School of Information Sciences at the University of Tennessee, and library and data professionals at the National Center for Atmospheric Research (NCAR). At the doctoral level DCERC is educating future faculty and researchers in data curation and establishing a research agenda to advance the field. The doctoral seminar, Research Problems in Data Curation, was developed and taught in 2012 by the DCERC principal investigator and two doctoral fellows at the University of Illinois. It was designed to define the problem space of data curation, examine relevant concepts and theories related to both technical and social perspectives, and articulate research questions that are either unexplored or under theorized in the current literature. There was a particular emphasis on the Earth and environmental sciences, with guest speakers brought in from NCAR, National Snow and Ice Data Center (NSIDC), and Rensselaer Polytechnic Institute. Through the assignments, students

15. Some theoretical models and constructs generic to substance abuse prevention programs for adolescents: possible relevance and limitations for problem gambling.

PubMed

Evans, Richard I

2003-01-01

For the past several years the author and his colleagues have explored the area of how social psychological constructs and theoretical models can be applied to the prevention of health threatening behaviors in adolescents. In examining the need for the development of gambling prevention programs for adolescents, it might be of value to consider the application of such constructs and theoretical models as a foundation to the development of prevention programs in this emerging problem behavior among adolescents. In order to provide perspective to the reader, the present paper reviews the history of various psychosocial models and constructs generic to programs directed at prevention of substance abuse in adolescents. A brief history of some of these models, possibly most applicable to gambling prevention programs, are presented. Social inoculation, reasoned action, planned behavior, and problem behavior theory, are among those discussed. Some deficits of these models, are also articulated. How such models may have relevance to developing programs for prevention of problem gambling in adolescents is also discussed. However, the inherent differences between gambling and more directly health threatening behaviors such as substance abuse must, of course, be seriously considered in utilizing such models. Most current gambling prevention programs have seldom been guided by theoretical models. Developers of gambling prevention programs should consider theoretical foundations, particularly since such foundations not only provide a guide for programs, but may become critical tools in evaluating their effectiveness.

16. Generalizations of fuzzy linguistic control points in geometric design

Sallehuddin, M. H.; Wahab, A. F.; Gobithaasan, R. U.

2014-07-01

Control points are geometric primitives that play an important role in designing the geometry curve and surface. When these control points are blended with some basis functions, there are several geometric models such as Bezier, B-spline and NURBS(Non-Uniform Rational B-Spline) will be produced. If the control points are defined by the theory of fuzzy sets, then fuzzy geometric models are produced. But the fuzzy geometric models can only solve the problem of uncertainty complex. This paper proposes a new definition of fuzzy control points with linguistic terms. When the fuzzy control points with linguistic terms are blended with basis functions, then a fuzzy linguistic geometric model is produced. This paper ends with some numerical examples illustrating linguistic control attributes of fuzzy geometric models.

17. Representing geometrical knowledge.

PubMed

Anderson, J A

1997-08-29

This paper introduces perspex algebra which is being developed as a common representation of geometrical knowledge. A perspex can currently be interpreted in one of four ways. First, the algebraic perspex is a generalization of matrices, it provides the most general representation for all of the interpretations of a perspex. The algebraic perspex can be used to describe arbitrary sets of coordinates. The remaining three interpretations of the perspex are all related to square matrices and operate in a Euclidean model of projective space-time, called perspex space. Perspex space differs from the usual Euclidean model of projective space in that it contains the point at nullity. It is argued that the point at nullity is necessary for a consistent account of perspective in top-down vision. Second, the geometric perspex is a simplex in perspex space. It can be used as a primitive building block for shapes, or as a way of recording landmarks on shapes. Third, the transformational perspex describes linear transformations in perspex space that provide the affine and perspective transformations in space-time. It can be used to match a prototype shape to an image, even in so called 'accidental' views where the depth of an object disappears from view, or an object stays in the same place across time. Fourth, the parametric perspex describes the geometric and transformational perspexes in terms of parameters that are related to everyday English descriptions. The parametric perspex can be used to obtain both continuous and categorical perception of objects. The paper ends with a discussion of issues related to using a perspex to describe logic.

18. Representing geometrical knowledge.

PubMed Central

Anderson, J A

1997-01-01

This paper introduces perspex algebra which is being developed as a common representation of geometrical knowledge. A perspex can currently be interpreted in one of four ways. First, the algebraic perspex is a generalization of matrices, it provides the most general representation for all of the interpretations of a perspex. The algebraic perspex can be used to describe arbitrary sets of coordinates. The remaining three interpretations of the perspex are all related to square matrices and operate in a Euclidean model of projective space-time, called perspex space. Perspex space differs from the usual Euclidean model of projective space in that it contains the point at nullity. It is argued that the point at nullity is necessary for a consistent account of perspective in top-down vision. Second, the geometric perspex is a simplex in perspex space. It can be used as a primitive building block for shapes, or as a way of recording landmarks on shapes. Third, the transformational perspex describes linear transformations in perspex space that provide the affine and perspective transformations in space-time. It can be used to match a prototype shape to an image, even in so called 'accidental' views where the depth of an object disappears from view, or an object stays in the same place across time. Fourth, the parametric perspex describes the geometric and transformational perspexes in terms of parameters that are related to everyday English descriptions. The parametric perspex can be used to obtain both continuous and categorical perception of objects. The paper ends with a discussion of issues related to using a perspex to describe logic. PMID:9304680

19. Geometric phase in Bohmian mechanics

SciTech Connect

Chou, Chia-Chun; Wyatt, Robert E.

2010-10-15

Using the quantum kinematic approach of Mukunda and Simon, we propose a geometric phase in Bohmian mechanics. A reparametrization and gauge invariant geometric phase is derived along an arbitrary path in configuration space. The single valuedness of the wave function implies that the geometric phase along a path must be equal to an integer multiple of 2{pi}. The nonzero geometric phase indicates that we go through the branch cut of the action function from one Riemann sheet to another when we locally travel along the path. For stationary states, quantum vortices exhibiting the quantized circulation integral can be regarded as a manifestation of the geometric phase. The bound-state Aharonov-Bohm effect demonstrates that the geometric phase along a closed path contains not only the circulation integral term but also an additional term associated with the magnetic flux. In addition, it is shown that the geometric phase proposed previously from the ensemble theory is not gauge invariant.

20. Evolutionary Optimization of a Geometrically Refined Truss

NASA Technical Reports Server (NTRS)

Hull, P. V.; Tinker, M. L.; Dozier, G. V.

2007-01-01

Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.

1. A Review of Intervention Programs to Prevent and Treat Behavioral Problems in Young Children with Developmental Disabilities

PubMed Central

Petrenko, Christie L. M.

2013-01-01

Children with developmental disabilities are at higher risk for internalizing and externalizing behavioral problems than children in the general population. Effective prevention and treatment programs are necessary to reduce the burden of behavioral problems in this population. The current review identified 17 controlled trials of nine intervention programs for young children with developmental disabilities, with parent training the most common type of intervention in this population. Nearly all studies demonstrated medium to large intervention effects on child behavior post-intervention. Preliminary evidence suggests interventions developed for the general population can be effective for children with developmental disabilities and their families. A greater emphasis on the prevention of behavior problems in young children with developmental disabilities prior to the onset of significant symptoms or clinical disorders is needed. Multi-component interventions may be more efficacious for child behavior problems and yield greater benefits for parent and family adjustment. Recommendations for future research directions are provided. PMID:24222982

2. Modifying a Social Problem-Solving Program With the Input of Individuals With Intellectual Disabilities and Their Staff

PubMed Central

Ailey, Sarah H.; Friese, Tanya R.; Nezu, Arthur M.

2016-01-01

Social problem-solving programs have shown success in reducing aggressive/challenging behaviors among individuals with intellectual disabilities in clinical settings, but have not been adapted for health promotion in community settings. We modified a social problem-solving program for the community setting of the group home. Multiple sequential methods were used to seek advice from community members on making materials understandable and on intervention delivery. A committee of group home supervisory staff gave advice on content and delivery. Cognitive interviews with individuals with intellectual disabilities and residential staff provided input on content wording and examples. Piloting the program provided experience with content and delivery. The process provides lessons on partnering with vulnerable populations and community stakeholders to develop health programs. PMID:22753149

3. Maternal education preferences moderate the effects of mandatory employment and education programs on child positive and problem behaviors.

PubMed

Gassman-Pines, Anna; Godfrey, Erin B; Yoshikawa, Hirokazu

2013-01-01

Grounded in person-environment fit theory, this study examined whether low-income mothers' preferences for education moderated the effects of employment- and education-focused welfare programs on children's positive and problem behaviors. The sample included 1,365 families with children between ages 3 and 5 years at study entry. Results 5 years after random assignment, when children were ages 8-10 years, indicated that mothers' education preferences did moderate program impacts on teacher-reported child behavior problems and positive behavior. Children whose mothers were assigned to the education program were rated by teachers to have less externalizing behavior and more positive behavior than children whose mothers were assigned to the employment program but only when mothers had strong preferences for education.

4. An interactive approach based on a discrete differential evolution algorithm for a class of integer bilevel programming problems

Li, Hong; Zhang, Li; Jiao, Yong-Chang

2016-07-01

This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.

5. Comparing an Emotion- and a Behavior-Focused Parenting Program as Part of a Multsystemic Intervention for Child Conduct Problems.

PubMed

Duncombe, Melissa E; Havighurst, Sophie S; Kehoe, Christiane E; Holland, Kerry A; Frankling, Emma J; Stargatt, Robyn

2016-01-01

This study evaluated the effectiveness of a multisystemic early intervention that included a comparison of an emotion- and behavior-focused parenting program for children with emerging conduct problems. The processes that moderated positive child outcomes were also explored. A repeated measures cluster randomized group design methodology was employed with three conditions (Tuning in to Kids, Positive Parenting Program, and waitlist control) and two periods (preintervention and 6-month follow-up). The sample consisted of 320 predominantly Caucasian 4- to 9-year-old children who were screened for disruptive behavior problems. Three outcome measures of child conduct problems were evaluated using a parent (Eyberg Child Behavior Inventory) and teacher (Strengths and Difficulties Questionnaire) rating scale and a structured child interview (Home Interview With Child). Six moderators were assessed using family demographic information and a parent-rated measure of psychological well-being (Depression Anxiety and Stress Scales short form). The results indicated that the multisystemic intervention was effective compared to a control group and that, despite different theoretical orientations, the emotion- and behavior-focused parenting programs were equally effective in reducing child conduct problems. Child age and parent psychological well-being moderated intervention response. This effectiveness trial supports the use of either emotion- or behavior-focused parenting programs in a multisystemic early intervention and provides greater choice for practitioners in the selection of specific programs.

6. An Analysis of the Multiple Objective Capital Budgeting Problem via Fuzzy Linear Integer (0-1) Programming.

DTIC Science & Technology

1980-05-31

Multiconstraint Zero - One Knapsack Problem ," The Journal of the Operational Research Society, Vol. 30, 1979, pp. 369-378. 69 [41] Kepler, C...programming. Shih [401 has written on a branch and bound method , Kepler and Blackman [41] have demonstrated the use of dynamic programming in the selection of...Portfolio Selection Model," IEEE A. Transactions on Engineering Management, Vol. EM-26, No. 1, 1979, pp. 2-7. [40] Shih, Wei, "A Branch and

7. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

NASA Technical Reports Server (NTRS)

Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

2010-01-01

Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

8. An interactive media program for managing psychosocial problems on long-duration spaceflights.

PubMed

Carter, James A; Buckey, Jay C; Greenhalgh, Leonard; Holland, Albert W; Hegel, Mark T

2005-06-01

Space crews must be self-reliant to complete long-duration missions successfully. This project involves the development and evaluation of a network of self-guided interactive multimedia programs to train and assist long-duration flyers in the prevention, assessment, and management of psychosocial problems that can arise on extended missions. The system is currently under development and is intended for use both during training and on orbit. A virtual space station 3-dimensional graphic was created to serve as a portal to multimedia-based training, assessment, and intervention resources. Additionally, original content on interpersonal conflict and depression is being developed for the system. Input on the best practices for managing conflict and depression on extended missions was obtained from 13 veteran long-duration flyers, as well as from clinical experts. Formative evaluation of a prototype of the system will be conducted with 10 members of the astronaut corps. Subsequently, the content on conflict and depression will be completed, and the depression self-treatment portion will be evaluated in a randomized controlled trial. Although this study involves developing countermeasures to assist long-duration flyers, it also provides a model that could be applied in many Earthbound settings, both in operational environments and in everyday life.

9. The implementation of problem-based learning in collaborative groups in a chiropractic program in Malaysia

PubMed Central

Win, Ni Ni; Nadarajah, Vishna Devi V; Win, Daw Khin

2015-01-01

Purpose: Problem-based learning (PBL) is usually conducted in small-group learning sessions with approximately eight students per facilitator. In this study, we implemented a modified version of PBL involving collaborative groups in an undergraduate chiropractic program and assessed its pedagogical effectiveness. Methods: This study was conducted at the International Medical University, Kuala Lumpur, Malaysia, and involved the 2012 chiropractic student cohort. Six PBL cases were provided to chiropractic students, consisting of three PBL cases for which learning resources were provided and another three PBL cases for which learning resources were not provided. Group discussions were not continuously supervised, since only one facilitator was present. The students’ perceptions of PBL in collaborative groups were assessed with a questionnaire that was divided into three domains: motivation, cognitive skills, and perceived pressure to work. Results: Thirty of the 31 students (97%) participated in the study. PBL in collaborative groups was significantly associated with positive responses regarding students’ motivation, cognitive skills, and perceived pressure to work (P<0.05). The students felt that PBL with learning resources increased motivation and cognitive skills (P<0.001). Conclusion: The new PBL implementation described in this study does not require additional instructors or any additional funding. When implemented in a classroom setting, it has pedagogical benefits equivalent to those of small-group sessions. Our findings also suggest that students rely significantly on available learning resources. PMID:25961676

10. Using Genetic Programming with Prior Formula Knowledge to Solve Symbolic Regression Problem

PubMed Central

Lu, Qiang; Ren, Jun; Wang, Zhiguang

2016-01-01

A researcher can infer mathematical expressions of functions quickly by using his professional knowledge (called Prior Knowledge). But the results he finds may be biased and restricted to his research field due to limitation of his knowledge. In contrast, Genetic Programming method can discover fitted mathematical expressions from the huge search space through running evolutionary algorithms. And its results can be generalized to accommodate different fields of knowledge. However, since GP has to search a huge space, its speed of finding the results is rather slow. Therefore, in this paper, a framework of connection between Prior Formula Knowledge and GP (PFK-GP) is proposed to reduce the space of GP searching. The PFK is built based on the Deep Belief Network (DBN) which can identify candidate formulas that are consistent with the features of experimental data. By using these candidate formulas as the seed of a randomly generated population, PFK-GP finds the right formulas quickly by exploring the search space of data features. We have compared PFK-GP with Pareto GP on regression of eight benchmark problems. The experimental results confirm that the PFK-GP can reduce the search space and obtain the significant improvement in the quality of SR. PMID:26819577

11. Solution of monotone complementarity and general convex programming problems using a modified potential reduction interior point method

DOE PAGES

Huang, Kuo -Ling; Mehrotra, Sanjay

2016-11-08

We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less

12. Solution of monotone complementarity and general convex programming problems using a modified potential reduction interior point method

SciTech Connect

Huang, Kuo -Ling; Mehrotra, Sanjay

2016-11-08

We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadratic programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).

13. Geometric Phases in Sensing and Control

DTIC Science & Technology

2003-01-01

this idea with an equal-sided, spring-jointed, four-bar mechanism and then apply the technique to a vibrating ring gyroscope. In physical systems the...Douglas Sparks of Delco Au- tomotive Systems ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Equal-Sided Four-Bar Mechanism ...Landsberg in [48, 49]. Many researchers have investigated the role of the geometric phase in mechan - ical systems . In problems of this type, changes

14. Problem Solving with Workstations. Program Description, Teacher Materials, and Student Information. Teacher Developed Technology Education for the Nineties (TD-TEN).

ERIC Educational Resources Information Center

Garey, Robert W.

The Randolph, New Jersey Intermediate School updated its industrial arts program to reflect the challenges and work force of the Twentieth Century in which students apply a design/problem-solving process to solve real-world problems. In the laboratory portion of the program, students circulate between workstations to define problems, complete…

15. Stable sequential Kuhn-Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem

Sumin, M. I.

2015-06-01

A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.

16. Effects of interferential care: A community-based care program for persons with severe problems on several life areas

PubMed Central

van de Goor, Ien AM; Voogt, Margot CM; van Assen, Marcel ALM; Garretsen, Henk FL

2014-01-01

Background and aims: Interferential care differs from the current community-based care programs in that it targets a larger, heterogeneous group and combines brokerage and full service elements in a multi-organizational care team. The team provides all the services itself, but with the aim to prepare clients within a few months for referral to regular (ambulant) healthcare services. The aim of this study was to assess the effectiveness of interferential care. Methods: In a multisite, pretest–posttest design, 523 patients of three interferential care teams were followed. Quality of life, problem severity, problems with referral and engagement were assessed at baseline, at referral and again after 6 months. Analyses were performed using linear mixed modeling. Results: Interferential care showed moderate to strong effects on quality of life and problem severity. These effects persisted (quality of life) or further improved (problem severity) until follow-up 6 months after referral to regular services. There were also small effects on both engagement and problems with referral. Conclusion: Interferential care offers significant improvements in quality of life and problem severity in persons who have severe problems on several life areas and who are currently not reached by healthcare services. It is a promising community-based care program for healthcare systems in which regular care already contains many elements of home-based practice. PMID:24221098

17. A new recurrent neural network for solving convex quadratic programming problems with an application to the k-winners-take-all problem.

PubMed

Hu, Xiaolin; Zhang, Bo

2009-04-01

In this paper, a new recurrent neural network is proposed for solving convex quadratic programming (QP) problems. Compared with existing neural networks, the proposed one features global convergence property under weak conditions, low structural complexity, and no calculation of matrix inverse. It serves as a competitive alternative in the neural network family for solving linear or quadratic programming problems. In addition, it is found that by some variable substitution, the proposed network turns out to be an existing model for solving minimax problems. In this sense, it can be also viewed as a special case of the minimax neural network. Based on this scheme, a k-winners-take-all ( k-WTA) network with O(n) complexity is designed, which is characterized by simple structure, global convergence, and capability to deal with some ill cases. Numerical simulations are provided to validate the theoretical results obtained. More importantly, the network design method proposed in this paper has great potential to inspire other competitive inventions along the same line.

18. Development and Application of a Computer Simulation Program to Enhance the Clinical Problem-Solving Skills of Students.

ERIC Educational Resources Information Center

Boh, Larry E.; And Others

1987-01-01

A project to (1) develop and apply a microcomputer simulation program to enhance clinical medication problem solving in preclerkship and clerkship students and (2) perform an initial formative evaluation of the simulation is described. A systematic instructional design approach was used in applying the simulation to the disease state of rheumatoid…

19. Problem Solving by 5-6 Years Old Kindergarten Children in a Computer Programming Environment: A Case Study

ERIC Educational Resources Information Center

Fessakis, G.; Gouli, E.; Mavroudi, E.

2013-01-01

Computer programming is considered an important competence for the development of higher-order thinking in addition to algorithmic problem solving skills. Its horizontal integration throughout all educational levels is considered worthwhile and attracts the attention of researchers. Towards this direction, an exploratory case study is presented…

20. Generation Psy: Student Characteristics and Academic Achievement in a Three-Year Problem-Based Learning Bachelor Program

ERIC Educational Resources Information Center

de Koning, Bjorn B.; Loyens, Sofie M. M.; Rikers, Remy M. J. P.; Smeets, Guus; van der Molen, Henk T.

2012-01-01

This study investigated the simultaneous impact of demographic, personality, intelligence, and (prior) study performance factors on students' academic achievement in a three-year academic problem-based psychology program. Information regarding students' gender, age, nationality, pre-university education, high school grades, Big Five personality…

1. Maternal Education Preferences Moderate the Effects of Mandatory Employment and Education Programs on Child Positive and Problem Behaviors

ERIC Educational Resources Information Center

Gassman-Pines, Anna; Godfrey, Erin B.; Yoshikawa, Hirokazu

2013-01-01

Grounded in person-environment fit theory, this study examined whether low-income mothers' preferences for education moderated the effects of employment- and education-focused welfare programs on children’s positive and problem behaviors. The sample included 1,365 families with children between ages 3 and 5 years at study entry. Results 5 years…

2. Programs for Prevention of Externalizing Problems in Children: Limited Evidence for Effect beyond 6 Months Post Intervention

ERIC Educational Resources Information Center

Smedler, Ann-Charlotte; Hjern, Anders; Wiklund, Stefan; Anttila, Sten; Pettersson, Agneta

2015-01-01

Background: Preventing externalizing problems in children is a major societal concern, and a great number of intervention programs have been developed to this aim. To evaluate their preventive effects, well-controlled trials including follow-up assessments are necessary. Methods: This is a systematic review of the effect of prevention programs…

3. A Perspective Evaluation of Problem-Based Learning in ESL Classroom in the Malaysian Higher School Certificate Program

ERIC Educational Resources Information Center

2011-01-01

This study was initiated to explore how pre-university students who enrolled in the Malaysian Higher School Certificate program perceived their experiences in learning ESL through Problem-Based Learning (PBL). This small scale study involved 35 pre-university students in an upper sixth form in a secondary school in Kelantan, Malaysia. Participants…

4. Transportation Problems in Special Education Programs in Rural Areas - A Specific Solution and Some Suggestions for Delivery System Development.

ERIC Educational Resources Information Center

Brody, Z. H.

The paper describes transportation problems encountered and solutions employed in delivering systems of comprehensive services to handicapped children in Anderson County, Tennessee, a predominantly rural area with considerable mountain area. Detailed are methods of transportation utilized in the four different program areas of the county special…

5. An Alternative Evaluation Approach for the Problem-Solving Training Program: A Utilization-Focused Evaluation Process.

ERIC Educational Resources Information Center

Patton, Michael Quinn

1984-01-01

A utilization-focused approach in evaluating a problem-solving skills training program (see TM 510 179) would have placed more emphasis on identifying evaluation users, their information needs, and likely use of findings. Other methods options are also discussed, along with how to prepare decision makers for utilization. (Author/BW)

6. Effectiveness of Leisure Time Activities Program on Social Skills and Behavioral Problems in Individuals with Intellectual Disabilities

ERIC Educational Resources Information Center

Eratay, Emine

2013-01-01

The objective of this study is to evaluate the effectiveness of leisure time activities program in individuals with intellectual disabilities in terms of developing social skills and reducing behavioral problems. Social skills assessment scale, behavioral assessment form for children and young adults, and teacher's report forms were used in the…

7. On-the-Spot Problem Solving of Airline Professionals: A Case Study of Sky Business School Personnel Training Program

ERIC Educational Resources Information Center

Nara, Jun

2010-01-01

This research explores how chief cabin crew members of major airlines made their decisions on-the-spot when they had unexpected problems. This research also presents some insights that may improve personnel training programs for future stewardesses and stewards based on the investigation of their decision-making styles. The theoretical framework…

8. Better O and M Programs is Ultimate Answer to O and M Problems

ERIC Educational Resources Information Center

Davanzo, A. C.; Thompson, William B.

1978-01-01

Describes is an improvement program for the operation and maintenance of municipal wastewater treatment plants in Detroit, Michigan. Improvements included expansion and upgrading of the existing city plant and a training program for plant personnel. (MA)

9. The NOx Budget Trading Program: A Collaborative, Innovative Approach to Solving a Regional Air Pollution Problem

EPA Pesticide Factsheets

This article examines the development and implementation of the NOx Budget Trading Program (NBP) and the lessons the Environmental Protection Agency has learned from this seasonal emissions cap-and-trade program.

10. APPLICATION OF LINEAR PROGRAMMING TO FACILITY MAINTENANCE PROBLEMS IN THE NAVY SHORE ESTABLISHMENT.

DTIC Science & Technology

LINEAR PROGRAMMING ), (*NAVAL SHORE FACILITIES, MAINTENANCE), (*MAINTENANCE, COSTS, MATHEMATICAL MODELS, MANAGEMENT PLANNING AND CONTROL, MANPOWER, FEASIBILITY STUDIES, OPTIMIZATION, MANAGEMENT ENGINEERING.

11. Alcohol Problems Prevention/Intervention Programs: Guidelines for College Campuses. Revised.

ERIC Educational Resources Information Center

Harding, Frances M.; Connor, Leslie S.

This manual is designed to respond to the growing interest among colleges in technical assistance for dealing with alcohol-related problems. Part One provides an overview of the dimensions of alcohol related problems and delves into the causes and prevention of alcohol problems. It outlines the Public Health Model approach to dealing with alcohol…

12. An e-Learning Collaborative Filtering Approach to Suggest Problems to Solve in Programming Online Judges

ERIC Educational Resources Information Center

Toledo, Raciel Yera; Mota, Yailé Caballero

2014-01-01

The paper proposes a recommender system approach to cover online judge's domains. Online judges are e-learning tools that support the automatic evaluation of programming tasks done by individual users, and for this reason they are usually used for training students in programming contest and for supporting basic programming teachings. The…

13. An Undergraduate Program in Human Factors: The Need, the Problems, and the Outlook.

ERIC Educational Resources Information Center

Gardner, Daryle Jean

This article describes the development of an undergraduate psychology program in human factors engineering (the application of psychological principles to systems/technology development and usage). The need for such programs, as evidenced by the positive reactions of industry and academia to the program at Kearney State College, Kearney, Nebraska,…

14. Aerospace plane guidance using geometric control theory

NASA Technical Reports Server (NTRS)

Van Buren, Mark A.; Mease, Kenneth D.

1990-01-01

A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.

15. Geometrical Wake of a Smooth Flat Collimator

SciTech Connect

Stupakov, G.V.; /SLAC

2011-09-09

A transverse geometrical wake generated by a beam passing through a smooth flat collimator with a gradually varying gap between the upper and lower walls is considered. Based on generalization of the approach recently developed for a smooth circular taper we reduce the electromagnetic problem of the impedance calculation to the solution of two much simpler static problems - a magnetostatic and an electrostatic ones. The solution shows that in the limit of not very large frequencies, the impedance increases with the ratio h/d where h is the width and d is the distance between the collimating jaws. Numerical results are presented for the NLC Post Linac collimator.

16. Geometric Reasoning for Automated Planning

NASA Technical Reports Server (NTRS)

Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel

2012-01-01

An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.

17. Geometric reasoning about assembly tools

SciTech Connect

Wilson, R.H.

1997-01-01

Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

18. Solving large-scale fixed cost integer linear programming models for grid-based location problems with heuristic techniques

Noor-E-Alam, Md.; Doucette, John

2015-08-01

Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.

19. The Impact of an Educational Program in Brief Interventions for Alcohol Problems on Undergraduate Nursing Students: A Brazilian Context.

PubMed

Junqueira, Marcelle Aparecida de Barros; Rassool, G Hussein; Santos, Manoel Antônio dos; Pillon, Sandra Cristina

2015-01-01

Nurses are the prime movers in the prevention and harm reduction in alcohol-related harm especially for those patients who are unwilling to access specialist care. The aim of the study is to evaluate the attitudes and knowledge of nursing students before and after Brief Intervention Training for alcohol problems. A quasi-experimental study was conducted with 120 undergraduate nursing students. Sixty recruited students were randomized into experimental and control groups (n = 60 each). Participants completed questionnaires on knowledge and attitudes before and after this training of brief intervention. The brief intervention program, 16 hours of duration, includes training for screening and early recognition, nursing, and the treatment of alcohol problems. Analysis of the data showed statistically significant positive change in the nursing students' knowledge (identifications and care) and personal and professional attitudes in working with patients with alcohol problems after the educational intervention. The experimental group differed significantly in all the variables measured at posteducational program. The provision of educational program on brief intervention in undergraduate nursing education can be an effective way for acquisition of knowledge and changes in attitudes in working with patients with alcohol problems.

20. CUERVO: A finite element computer program for nonlinear scalar transport problems

SciTech Connect

Sirman, M.B.; Gartling, D.K.

1995-11-01

CUERVO is a finite element code that is designed for the solution of multi-dimensional field problems described by a general nonlinear, advection-diffusion equation. The code is also applicable to field problems described by diffusion, Poisson or Laplace equations. The finite element formulation and the associated numerical methods used in CUERVO are outlined here; detailed instructions for use of the code are also presented. Example problems are provided to illustrate the use of the code.

1. An Investigation of Joint Service Acquisition Logistics Issues/Problems and Automated Joint Program Support.

DTIC Science & Technology

1984-09-01

Management Information System (ALMIS) to address them. Literature was surveyed and problems were summarized and developed into a questionnaire. Structured interviews were then conducted with over 100 different Air Force and civilian upper and middle JSAP managers. Many general and specific problems and issues were identified and validated using statistical and qualitative methods. General use of ALMIS to address certain joint service problem areas was confirmed. Potential use and desirable capabilities for ALMIS were also determined. Recommendations for ALMIS

2. ELAS: A general-purpose computer program for the equilibrium problems of linear structures. Volume 2: Documentation of the program. [subroutines and flow charts

NASA Technical Reports Server (NTRS)

Utku, S.

1969-01-01

A general purpose digital computer program for the in-core solution of linear equilibrium problems of structural mechanics is documented. The program requires minimum input for the description of the problem. The solution is obtained by means of the displacement method and the finite element technique. Almost any geometry and structure may be handled because of the availability of linear, triangular, quadrilateral, tetrahedral, hexahedral, conical, triangular torus, and quadrilateral torus elements. The assumption of piecewise linear deflection distribution insures monotonic convergence of the deflections from the stiffer side with decreasing mesh size. The stresses are provided by the best-fit strain tensors in the least squares at the mesh points where the deflections are given. The selection of local coordinate systems whenever necessary is automatic. The core memory is used by means of dynamic memory allocation, an optional mesh-point relabelling scheme and imposition of the boundary conditions during the assembly time.

3. Geometric Quantization and Foliation Reduction

Skerritt, Paul

A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether "quantization commutes with reduction." Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kahler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kahler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds. In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kahler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or "admissible", values of momentum. We first propose a reduction procedure for the prequantum geometric structures that "covers" symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems. We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces. Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees

4. The bouncing ball through a geometrical series

Flores, Sergio; Alfaro, Luis L.; Chavez, Juan E.; Bastarrachea, Aztlan; Hurtado, Jazmin

2008-10-01

The mathematical representation of the physical situation related to a bouncing ball on the floor is an important understanding difficulty for most of the students during the introductory mechanics and mathematics courses. The research group named Physics and mathematics in context from the University of Ciudad Juarez is concerned about the versatility in the change from a mathematical representation to the own physical context of any problem under a traditional instruction. In this case, the main idea is the association of the physical properties of the bouncing ball situation to the nearest mathematical model based on a geometrical series. The proposal of the cognitive development is based on a geometrical series that shows the time the ball takes to stop. In addition, we show the behavior of the ratio of the consecutive heights during the motion.

5. Geometric Mechanics of Periodic Pleated Origami

Wei, Z. Y.; Guo, Z. V.; Dudte, L.; Liang, H. Y.; Mahadevan, L.

2013-05-01

Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson’s ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.

6. Geometric mechanics of periodic pleated origami.

PubMed

Wei, Z Y; Guo, Z V; Dudte, L; Liang, H Y; Mahadevan, L

2013-05-24

Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson's ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.

7. Small-on-large geometric anelasticity

2016-11-01

In this paper, we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics, this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems. This geometric formulation can be thought of as a material analogue of the classical small-on-large theory in nonlinear elasticity. We use the present small-on-large anelasticity theory to find exact solutions for the stress fields of some non-symmetric distributions of screw dislocations in incompressible isotropic solids.

8. Exploring Geometric Sequences

ERIC Educational Resources Information Center

Reiser, Elana

2016-01-01

In this brief article Elana Reiser describes her favorite lesson that combines popular culture with mathematics in a way that motivates student thinking and participation. Exploring open-ended problems, students may feel uneasy at first, but working in small groups often leads them to experiment with a variety of solutions. Reiser explains that…

9. Reasoning with Geometric Shapes

ERIC Educational Resources Information Center

Seah, Rebecca

2015-01-01

Geometry belongs to branches of mathematics that develop students' visualisation, intuition, critical thinking, problem solving, deductive reasoning, logical argument and proof (Jones, 2002). It provides the basis for the development of spatial sense and plays an important role in acquiring advanced knowledge in science, technology, engineering,…

10. Lifeline electric rates and alternative approaches to the problems of low-income ratepayers. Ten case studies of implemented programs

SciTech Connect

Not Available

1980-07-01

Program summaries, issue developments, governmental processes, and impacts are discussed for 10 case studies dealing with lifeline electric rates and alternative approaches to the problems of low-income ratepayers, namely; the Boston Edison rate freeze; the California lifeline; Florida Power and Light conservation rate; the Iowa-Illinois Gas and Electric small-use rate; the Maine demonstration lifeline program; the Massachusetts Electric Company A-65 rate; the Michigan optional senior citizen rate; the Narragansett Electric Company A-65 SSI rate; the Northern States Power Company conservation rate break; and the Potomac Electric Power Company rate freeze. (MCW)

11. Investigating Problem-Based Learning Tutorship in Medical and Engineering Programs in Malaysia

ERIC Educational Resources Information Center

Servant, Virginie F. C.; Dewar, Eleanor F. A.

2015-01-01

Although Malaysia was the first country in Asia to adopt problem-based learning (PBL), the impact that this has had on its tutors remains largely unexplored. This paper details a qualitative study of the changing perceptions of teaching roles in two groups of problem-based learning tutors in two institutional contexts--one in medicine located in…

12. Fire Problems in High-Rise Buildings. California Fire Service Training Program.

ERIC Educational Resources Information Center

California State Dept. of Education, Sacramento. Bureau of Industrial Education.

Resulting from a conference concerned with high-rise fire problems, this manual has been prepared as a fire department training manual and as a reference for students enrolled in fire service training courses. Information is provided for topics dealing with: (1) Typical Fire Problems in High-Rise Buildings, (2) Heat, (3) Smoke and Fire Gases, (4)…

13. Teacher Education: Privileges and Problems Associated with Reading Programs in Developing Countries.

ERIC Educational Resources Information Center

Robertson, Jean E.

The problems of teacher education in developing nations are discussed. Blending new knowledge with cultural heritage so that the personal cultural synthesis demanded of new literates is effected without disrupting social structures is complicated by the language problem. The impact of the written word on a society dependent on oral communication…

14. Integrating Problem-Based Learning with Community-Engaged Learning in Teaching Program Development and Implementation

ERIC Educational Resources Information Center

Hou, Su-I

2014-01-01

Purpose: Problem-based learning (PBL) challenges students to learn and work in groups to seek solutions to real world problems. Connecting academic study with community-engaged learning (CEL) experience can deeper learning and thinking. This paper highlights the integration of PBL with CEL in the Implementation Course to engage graduate students…

15. The Problem of Interfacing the Academic and Business Worlds: Internship Programs in Communication.

ERIC Educational Resources Information Center

Smith, Glenn

In response to the glut of communication degree holders in a time of rapidly diminishing demand for teachers and the subsequent need for alternative careers in communications, the department of speech and theatre at an Arkansas university developed a one-semester internship program for seniors in communications. The program began with students…

16. An Introduction to Numerical Control. Problems for Numerical Control Part Programming.

ERIC Educational Resources Information Center

Campbell, Clifton P.

This combination text and workbook is intended to introduce industrial arts students to numerical control part programming. Discussed in the first section are the impact of numerical control, training efforts, numerical control in established programs, related information for drafting, and the Cartesian Coordinate System and dimensioning…

17. Family Support in Prevention Programs for Children at Risk for Emotional/Behavioral Problems

ERIC Educational Resources Information Center

Cavaleri, Mary A.; Olin, S. Serene; Kim, Annie; Hoagwood, Kimberly E.; Burns, Barbara J.

2011-01-01

We conducted a review of empirically based prevention programs to identify prevalence and types of family support services within these programs. A total of 238 articles published between 1990 and 2011 that included a family support component were identified; 37 met criteria for inclusion. Following the Institute of Medicine's typology, prevention…

18. Evaluating Principal-Preparation Programs Based on Placement Rates: Problems and Prospects for Policymakers

ERIC Educational Resources Information Center

Fuller, Edward J.; Hollingworth, Liz

2016-01-01

Recent calls to hold preparation programs accountable for outcomes have led states to develop and adopt preparation program accountability systems. A primary feature of these systems is a focus on outcomes such as placement rates, retention rates, and graduates' effectiveness in improving K-12 student achievement. Yet, little research has examined…

19. A Model Program of Comprehensive Educational Services for Students With Learning Problems.

ERIC Educational Resources Information Center

Union Township Board of Education, NJ.

Programs are described for learning-disabled or mantally-handicapped elementary and secondary students in regular and special classes in Union, New Jersey, and approximately 58 instructional episodes involving student made objects for understanding technology are presented. In part one, components of the model program such as the multi-learning…

20. Security Officer's Role in Reducing Inmate Problem Behaviors: A Program Based on Contingency Management.

ERIC Educational Resources Information Center

Ellis, Janet

1993-01-01

Describes guard-designed and implemented contingency-management work squad training program for administratively segregated prison inmates with histories of violent and assaultive behavior. Notes that participation in the work squad program sharply reduced frequency of violent and assaultive behavior for 8 of 10 offender-participants whose…

1. Implementing Problem-Based Learning in Principal Training: The First Pilot Program in China

ERIC Educational Resources Information Center

Feng, Daming

2005-01-01

In designing and implementing the pilot program of serving principal training, the author of this paper learned the experience from what E. Bridges and P. Hallinger did but didn't imitate fully, rather, created several new strategies because Chinese principals faced different situation from their American counterparts. The pilot program introduced…

2. Education, Assistance and Prevention Program for Chemical Dependency Problems among Pharmacy Students.

ERIC Educational Resources Information Center

Giannetti, Vincent J.; And Others

1990-01-01

Duquesne University (Pennsylvania) has established a chemical dependency peer intervention program with a strong education and prevention focus which involves identifying, motivating, referring for treatment and aftercare monitoring of impaired pharmacy students. The program includes a required student seminar. Student response to the seminar and…

3. Preventing Alcohol-Related Problems on Campus: Acquaintance Rape. A Guide for Program Coordinators.

ERIC Educational Resources Information Center

Finn, Peter

This is a guide for college and university program coordinators and planning committees on how to establish, expand, or improve a program on the prevention of acquaintance rape. Information is given for Presidents, Vice Presidents, and Deans on the relationship between acquaintance rape and alcohol, reasons for top administrators to become…

4. Geometric constrained variational calculus. II: The second variation (Part I)

Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

2016-10-01

Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.

5. A Geometrically Nonlinear Phase Field Theory of Brittle Fracture

DTIC Science & Technology

2014-10-01

A Geometrically Nonlinear Phase Field Theory of Brittle Fracture by JD Clayton and J Knap ARL-RP-0511 October 2014...21005-5069 ARL-RP-0511 October 2014 A Geometrically Nonlinear Phase Field Theory of Brittle Fracture JD Clayton and J Knap Weapons and...Nonlinear Phase Field Theory of Brittle Fracture 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) JD Clayton

6. A geometric multigrid Poisson solver for domains containing solid inclusions

Botto, Lorenzo

2013-03-01

A Cartesian grid method for the fast solution of the Poisson equation in three-dimensional domains with embedded solid inclusions is presented and its performance analyzed. The efficiency of the method, which assume Neumann conditions at the immersed boundaries, is comparable to that of a multigrid method for regular domains. The method is light in terms of memory usage, and easily adaptable to parallel architectures. Tests with random and ordered arrays of solid inclusions, including spheres and ellipsoids, demonstrate smooth convergence of the residual for small separation between the inclusion surfaces. This feature is important, for instance, in simulations of nearly-touching finite-size particles. The implementation of the method, “MG-Inc”, is available online. Catalogue identifier: AEOE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19068 No. of bytes in distributed program, including test data, etc.: 215118 Distribution format: tar.gz Programming language: C++ (fully tested with GNU GCC compiler). Computer: Any machine supporting standard C++ compiler. Operating system: Any OS supporting standard C++ compiler. RAM: About 150MB for 1283 resolution Classification: 4.3. Nature of problem: Poisson equation in domains containing inclusions; Neumann boundary conditions at immersed boundaries. Solution method: Geometric multigrid with finite-volume discretization. Restrictions: Stair-case representation of the immersed boundaries. Running time: Typically a fraction of a minute for 1283 resolution.

7. Impacting the problem of inner-city youth violence: "Educating Kids About Gun Violence" program.

PubMed

Hayward, Thomas Z; Simons, Clark J; St John, Wendy; Waymire, Michelle; Stucky, Thomas D

2011-04-01

The Educating Kids Against Gun Violence (EKG) program was developed in response to high levels of gun violence in an urban inner-city county through a partnership between the county prosecutor's office, local law enforcement, and a Level 1 trauma center. This program incorporates short video clips and interactive presentations, which address legal and medical consequences of gun violence. The program was presented to youths varying in age and degree of prior contact with the criminal justice system. Pre and post surveys were used to evaluate the short-term impact of the EKG program on the legal and medical knowledge and attitudes of youth participants. There were 130 pre and post surveys that could be exactly matched. Sixty-three per cent of participants had been arrested and 35 per cent had been convicted of a crime. On the post survey, 79 per cent stated that "the program will help keep me out of trouble" and 69 per cent stated that "in the future because of this program I will be less likely to carry a gun". The EKG program seemed to have positive short-term impacts on youth knowledge of legal and medical consequences and attitudes regarding gun violence.

8. Geometric phase shifting digital holography.

PubMed

Jackin, Boaz Jessie; Narayanamurthy, C S; Yatagai, Toyohiko

2016-06-01

A new phase shifting digital holographic technique using a purely geometric phase in Michelson interferometric geometry is proposed. The geometric phase in the system does not depend upon either optical path length or wavelength, unlike dynamic phase. The amount of geometric phase generated is controllable through a rotating wave plate. The new approach has unique features and major advantages in holographic measurement of transparent and reflecting three-dimensional (3D) objects. Experimental results on surface shape measurement and imaging of 3D objects are presented using the proposed method.

9. Geometric Effects on Electron Cloud

SciTech Connect

Wang, L

2007-07-06

The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit the machine performances by inducing beam instabilities, beam emittance increase, beam loss, vacuum pressure increases and increased heat load on the vacuum chamber wall. The electron multipacting is a kind of geometric resonance phenomenon and thus is sensitive to the geometric parameters such as the aperture of the beam pipe, beam shape and beam bunch fill pattern, etc. This paper discusses the geometric effects on the electron cloud build-up in a beam chamber and examples are given for different beams and accelerators.

10. THERM3D -- A boundary element computer program for transient heat conduction problems

SciTech Connect

Ingber, M.S.

1994-02-01

The computer code THERM3D implements the direct boundary element method (BEM) to solve transient heat conduction problems in arbitrary three-dimensional domains. This particular implementation of the BEM avoids performing time-consuming domain integrations by approximating a ``generalized forcing function`` in the interior of the domain with the use of radial basis functions. An approximate particular solution is then constructed, and the original problem is transformed into a sequence of Laplace problems. The code is capable of handling a large variety of boundary conditions including isothermal, specified flux, convection, radiation, and combined convection and radiation conditions. The computer code is benchmarked by comparisons with analytic and finite element results.

11. [Neuropsychiatric problems among children are signigicantly underdiagnosed. Intervention programs result in better and less expensive care].

PubMed

Nydén, A; Paananen, M; Gillberg, C

2000-11-29

Neuropsychiatric problems (Asperger syndrome, ADHD, reading and writing disorders) affect 6-10 per cent of all children in Sweden. Many of these disorders are never diagnosed. As a consequence, secondary behaviour problems and impaired family relations often follow. A study of 60 families with at least one child affected by one of the above mentioned disorders shows that quality of life can be increased and problems reduced if parents and children are informed of the child's disabilities and the child receives a special education programme. Families who do not receive this special treatment more often apply for medical care from other (more expensive) sources. Quite often do they find this treatment unsatisfactory.

12. Solution of a General Linear Complementarity Problem Using Smooth Optimization and Its Application to Bilinear Programming and LCP

SciTech Connect

Fernandes, L.; Friedlander, A.; Guedes, M.; Judice, J.

2001-07-01

This paper addresses a General Linear Complementarity Problem (GLCP) that has found applications in global optimization. It is shown that a solution of the GLCP can be computed by finding a stationary point of a differentiable function over a set defined by simple bounds on the variables. The application of this result to the solution of bilinear programs and LCPs is discussed. Some computational evidence of its usefulness is included in the last part of the paper.

13. Case study findings of PHOTON problem-based learning (PBL) with high school photonics outreach programs

Hilliard-Clark, Joyce; Gilchrist, Pamela; Allgood, Sherri

2009-08-01

Using the Photonics Leaders program model, recruitment and retention, photonics content, parental engagement, internship, and PHOTON PBL challenges, the session's goal is to inform educators of strategies that can be used to motivate and develop cognitive skills in the discipline of Physics. The program caters to ethnically diverse students who traditionally lack experiences in the discipline. This paper discusses the initial findings of the National Science Foundation (NSF) Innovative Technology Experiences for Students and Teachers (ITEST) program through which high school students and teachers were given the opportunity to participate in shared lessons, and coordinate projects through cooperative learning at The Science House at North Carolina State University.

14. A Conceptual Framework and a Heuristic Program for the Credit Assignment Problem.

DTIC Science & Technology

1983-02-01

f-R127 367 R CONCEPTUAL FRAMEWORK AND A HEURISTIC PROGRAM FOR THE i/1 CREDIT ASSIGNMENT..(U) ARIZONA STATE UNIV TEMPE GROUP FOR COMPUTER STUDIES OF...ARIZONA 85287 ,.:" luioltt ulnI 1wt ea. s 04 g o71 I - -I * I . . .,° -4 A CONCEPTUAL FRAMEWORK AND A HEURISTIC PROGRAM POR THE CREDWT A=EGNMENT...Itos ’me 8 -0 8 3 l"’ 4. TITLE (and Subtitle) S. TYPE OF REPORT A CONCEPTUAL FRAMEWORK AND A HEURISTIC PROGRAM INTERIM*, 1 JUL 30 JUN 83 FOR THE CREDIT

15. Addressing racial disparities in social welfare programs: using social equity analysis to examine the problem.

PubMed

Gooden, Susan T

2006-01-01

The Personal Responsibility and Work Opportunity Reconciliation Act (PRWORA) allows states considerable discretion in developing and implementing their Temporary Assistance for Needy Families (TANF) programs. Little research so far has compared the implementation of TANF programs across racial groups. Without such analysis, it is difficult to interpret program outcomes. Using client survey data from a large Manpower Demonstration Research Corporation (MDRC) study, the Project on Devolution and Urban Change, this article compares African-American, Hispanic and White Clients' experiences with diversion, case management, sanctioning, exiting welfare, and dispute resolution. Using residual differences analysis, this article identifies significant differences in treatment among racial and ethnic groups.

16. [The problems of professional competence in the complementary professional forensic medical expertise programs of advanced training and professional requalification].

PubMed

Shadymov, A B; Fominykh, S A; Dik, V P

2017-01-01

This article reports the results of the analysis of the new tendencies and normatives of the working legislation in the field of additional professional education in the speciality of «forensic medical expertise» and the application of the competency-based approach to the training of specialists in the framework of professional requalification and advanced training programs. Special attention is given to the problems of organization of the educational process and the elaboration of additional training programs based on the competency approach to the training of specialists at the Department of Forensic Medicine and Law with the professor V.N. Kryukov Course of Advanced Professional Training and Professional Requalification of Specialists at the state budgetary educational Institution of higher professional education «Altai State Medical University», Russian Ministry of Health. The study revealed the problems pertaining to the development of professional competencies in the framework of educational programs for the professional requalification and advanced training in the speciality «forensic medical expertise». The authors propose the legally substantiated approaches to the solution of these problems.

17. Services to Multi-Problem Youth. Georgia Department of Human Resources Program and Funding Report, Vol. 2, No. 1, January 15, 1976.

ERIC Educational Resources Information Center

Schiffman, Jan; Washington, Blanche

This report focuses on a problem area which is being addressed by a consortium of agencies, and is designed to enrich the options of planners and program personnel in terms of both innovative concepts and potential resources required for program support. This report relates to the target population of "multi-problem" youth for whom no existing…

18. An Experimental Evaluation of Programed Instruction as One of Two Review Techniques for Two-Year College Students Concerned with Solving Acid-Base Chemical Equilibrium Problems.

ERIC Educational Resources Information Center

Sharon, Jared Bear

The major purpose of this study was to design and evaluate a programed instructional unit for a first year college chemistry course. The topic of the unit was the categorization and solution of acid-base equilibria problems. The experimental programed instruction text was used by 41 students and the fifth edition of Schaum's Theory and Problems of…

19. Pathfinders and Problem Solving: Comparative Effects of Two Cognitive-Behavioral Programs among Men and Women Offenders in Community and Prison

ERIC Educational Resources Information Center

Spiropoulos, Georgia V.; Spruance, Lisa; Van Voorhis, Patricia; Schmitt, Michelle M.

2005-01-01

The effects of "Problem Solving" (Taymans & Parese, 1998) are compared across small diversion and prison samples for men and women. A second program, "Pathfinders" (Hansen, 1993), was compared to the Problem Solving program among incarcerated women offenders to determine whether its focus upon empowerment and relationships enhanced the effects of…

20. Alcoholism and Familial Abuse: Enhancement of Quality Force Programs Using a Companion-Problem Approach

DTIC Science & Technology

1986-04-01

physical auc] sexual abuse and spouse abuse) hurt Air Force readiness and mission accomiplishmnent. The Air Force needs better means of problem identi- A...Abuse and Domestic Violence ................... 7 Alcohol Abuse and Child Physical Abuse ............... 9 i Alcohol Abuse and Child Sexual Abuse...abuse (spouse abuse, child phyzical abuse, and child sexual abuse) are serious problems in today’s Air Force. Beyond the moral considerations, they

1. Activities: Geometric Transformations. Part 2.

ERIC Educational Resources Information Center

Eddins, Susan K.; And Others

1994-01-01

Presents a lesson that connects basic transformational concepts with transformations on a Cartesian-coordinate system, culminating with the application of matrix operations to perform geometric transformations. Includes reproducible student worksheets and assessment activities. (MKR)

2. Guitars, Violins, and Geometric Sequences

ERIC Educational Resources Information Center

Barger, Rita; Haehl, Martha

2007-01-01

This article describes middle school mathematics activities that relate measurement, ratios, and geometric sequences to finger positions or the placement of frets on stringed musical instruments. (Contains 2 figures and 2 tables.)

3. Time as a geometric property of space

Chappell, James; Hartnett, John; Iannella, Nicolangelo; Iqbal, Azhar; Abbott, Derek

2016-11-01

The proper description of time remains a key unsolved problem in science. Newton conceived of time as absolute and universal which `flows equably without relation to anything external'. In the nineteenth century, the four-dimensional algebraic structure of the quaternions developed by Hamilton, inspired him to suggest that they could provide a unified representation of space and time. With the publishing of Einstein's theory of special relativity these ideas then lead to the generally accepted Minkowski spacetime formulation in 1908. Minkowski, though, rejected the formalism of quaternions suggested by Hamilton and adopted rather an approach using four-vectors. The Minkowski framework is indeed found to provide a versatile formalism for describing the relationship between space and time in accordance with Einstein's relativistic principles, but nevertheless fails to provide more fundamental insights into the nature of time itself. In order to answer this question we begin by exploring the geometric properties of three-dimensional space that we model using Clifford geometric algebra, which is found to contain sufficient complexity to provide a natural description of spacetime. This description using Clifford algebra is found to provide a natural alternative to the Minkowski formulation as well as providing new insights into the nature of time. Our main result is that time is the scalar component of a Clifford space and can be viewed as an intrinsic geometric property of three-dimensional space without the need for the specific addition of a fourth dimension.

4. Landsat-5 bumper-mode geometric correction

USGS Publications Warehouse

Storey, J.C.; Choate, Michael J.

2004-01-01

The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.

5. Algebraic and geometric spread in finite frames

King, Emily J.

2015-08-01

When searching for finite unit norm tight frames (FUNTFs) of M vectors in FN which yield robust representations, one is concerned with finding frames consisting of frame vectors which are in some sense as spread apart as possible. Algebraic spread and geometric spread are the two most commonly used measures of spread. A frame with optimal algebraic spread is called full spark and is such that any subcollection of N frame vectors is a basis for FN. A Grassmannian frame is a FUNTF which satisfies the Grassmannian packing problem; that is, the frame vectors are optimally geometrically spread given fixed M and N. A particular example of a Grassmannian frame is an equiangular frame, which is such that the absolute value of all inner products of distinct vectors is equal. The relationship between these two types of optimal spread is complicated. The folk knowledge for many years was that equiangular frames were full spark; however, this is now known not to hold for an infinite class of equiangular frames. The exact relationship between these types of spread will be further explored in this talk, as well as Plücker coordinates and coherence, which are measures of how much a frame misses being optimally algebraically or geometrically spread.

6. GOMA - A full-Newton finite element program for free and moving boundary problems with coupled fluid/solid momentum, energy, mass, and chemical species transport: User`s guide

SciTech Connect

Schunk, P.R.; Sackinger, P.A.; Rao, R.R.

1996-01-01

GOMA is a two- and three-dimensional finite element program which excels in analyses of manufacturing processes, particularly those involving free or moving interfaces. Specifically, the full-Newton-coupled heat, mass, momentum, and pseudo-solid mesh motion algorithm makes GOMA ideally suited for simulating processes in which the bulk fluid transport is closely coupled to the interfacial physics. Examples include, but are not limited to, coating and polymer processing flows, soldering, crystal growth, and solid-network or solution film drying. The code is based on the premise that any boundary can be (1) moving or free, with an apriori unknown position dictated by the distinguishing physics, (2) fixed, according to a global analytical representation, or (3) moving in time and space under user-prescribed kinematics. The goal is to enable the user to predict boundary position or motion simultaneously with the physics of the problem being analyzed and to pursue geometrical design studies and fluid-structure interaction problems. The moving mesh algorithm treats the entire domain as a computational Lagrangian solid that deforms subject to the physical principles which dictate boundary position. As an added benefit, the same Lagrangian solid mechanics can be exploited to solve multi-field problems for which the solid motion and stresses interact with other transport phenomena, either within the same material phase (e.g. shrinking coating) or in neighboring material phases (e.g. flexible blade coating). Thus, analyses of many fluid-structure interaction problems and deformable porous media problems are accessible. This document serves as a user`s guide and reference for GOMA and provides a brief overview of GOMA`s capabilities, theoretical background, and classes of problems for which it is targeted.

7. Antenna with Dielectric Having Geometric Patterns

NASA Technical Reports Server (NTRS)

Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

2013-01-01

An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

8. Geometric Reasoning in an Active-Engagement Upper-Division E&M Classroom

ERIC Educational Resources Information Center

Cerny, Leonard Thomas

2012-01-01

A combination of theoretical perspectives is used to create a rich description of student reasoning when facing a highly-geometric electricity and magnetism problem in an upper-division active-engagement physics classroom at Oregon State University. Geometric reasoning as students encounter problem situations ranging from familiar to novel is…

9. Preventing Serious Conduct Problems in School-Age Youths: The Fast Track Program

PubMed Central

Slough, Nancy M.; McMahon, Robert J.; Bierman, Karen L.; Coie, John D.; Dodge, Kenneth A.; Foster, E. Michael; Greenberg, Mark T.; Lochman, John E.; McMahon, Robert J.; Pinderhughes, Ellen E.

2009-01-01

Children with early-starting conduct Problems have a very poor prognosis and exact a high cost to society. The Fast Track project is a multisite, collaborative research project investigating the efficacy of a comprehensive, long-term, multicomponent intervention designed to prevent the development of serious conduct problems in high-risk children. In this article, we (a) provide an overview of the development model that serves as the conceptual foundation for the Fast Track intervention and describe its integration into the intervention model; (b) outline the research design and intervention model, with an emphasis on the elementary school phase of the intervention; and (c) summarize findings to dale concerning intervention outcomes. We then provide a case illustration, and conclude with a discussion of guidelines for practitioners who work with children with conduct problems. PMID:19890487

10. Programming and Tuning a Quantum Annealing Device to Solve Real World Problems

Perdomo-Ortiz, Alejandro; O'Gorman, Bryan; Fluegemann, Joseph; Smelyanskiy, Vadim

2015-03-01

Solving real-world applications with quantum algorithms requires overcoming several challenges, ranging from translating the computational problem at hand to the quantum-machine language to tuning parameters of the quantum algorithm that have a significant impact on the performance of the device. In this talk, we discuss these challenges, strategies developed to enhance performance, and also a more efficient implementation of several applications. Although we will focus on applications of interest to NASA's Quantum Artificial Intelligence Laboratory, the methods and concepts presented here apply to a broader family of hard discrete optimization problems, including those that occur in many machine-learning algorithms.

11. Use of Generalized Network Flow Programming in Solving the Optimal Power Flow Problem

DTIC Science & Technology

1986-05-01

program that runs on a CDC/Dual Cyber 170/750 that takes the system’s data and performs a Gauss-Seidel ( GS ) iterative scheme to solve the load flow...admittance and the diagonal elements are the sum of the line admittances. With these voltages and the admittance matrix (used In GS ), the program computes...the bus voltages, the direction of flow, and the gain factors ak and ak’ according to Equations 4. 10 and 4. 1 5. The GS iterative solution technique

12. A combined parametric quadratic programming and precise integration method based dynamic analysis of elastic-plastic hardening/softening problems

Hongwu, Zhang; Xinwei, Zhang

2002-12-01

The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.

13. Feasibility Study of an Interactive Multimedia Electronic Problem Solving Treatment Program for Depression: A Preliminary Uncontrolled Trial

PubMed Central

Berman, Margit I.; Jr., Jay C. Buckey; Hull, Jay G.; Linardatos, Eftihia; Song, Sueyoung L.; McLellan, Robert K.; Hegel, Mark T.

2014-01-01

Computer-based depression interventions lacking live therapist support have difficulty engaging users. This study evaluated the usability, acceptability, credibility, therapeutic alliance and efficacy of a stand-alone multimedia, interactive, computer-based Problem Solving Treatment program (ePST™) for depression. The program simulated live treatment from an expert PST therapist, and delivered 6 ePST™ sessions over 9 weeks. Twenty-nine participants with moderate-severe symptoms received the intervention; 23 completed a mini mally adequate dose of ePST™ (at least 4 sessions). Program usability, acceptability, credibility, and therapeutic alliance were assessed at treatment midpoint and endpoint. Depressive symptoms and health-related functioning were assessed at baseline, treatment midpoint (4 weeks), and study endpoint (10 weeks). Depression outcomes and therapeutic alliance ratings were also compared to previously published research on live PST and computer-based depression therapy. Participants rated the program as highly usable, acceptable, and credible, and reported a therapeutic alliance with the program comparable to that observed in live therapy. Depressive symptoms improved significantly over time. These findings also provide preliminary evidence that ePST™ may be effective as a depression treatment. Larger clinical trials with diverse samples are indicated. PMID:24680231

14. Feasibility study of an interactive multimedia electronic problem solving treatment program for depression: a preliminary uncontrolled trial.

PubMed

Berman, Margit I; Buckey, Jay C; Hull, Jay G; Linardatos, Eftihia; Song, Sueyoung L; McLellan, Robert K; Hegel, Mark T

2014-05-01

Computer-based depression interventions lacking live therapist support have difficulty engaging users. This study evaluated the usability, acceptability, credibility, therapeutic alliance and efficacy of a stand-alone multimedia, interactive, computer-based Problem Solving Treatment program (ePST™) for depression. The program simulated live treatment from an expert PST therapist, and delivered 6 ePST™ sessions over 9weeks. Twenty-nine participants with moderate-severe symptoms received the intervention; 23 completed a minimally adequate dose of ePST™ (at least 4 sessions). Program usability, acceptability, credibility, and therapeutic alliance were assessed at treatment midpoint and endpoint. Depressive symptoms and health-related functioning were assessed at baseline, treatment midpoint (4weeks), and study endpoint (10weeks). Depression outcomes and therapeutic alliance ratings were also compared to previously published research on live PST and computer-based depression therapy. Participants rated the program as highly usable, acceptable, and credible, and reported a therapeutic alliance with the program comparable to that observed in live therapy. Depressive symptoms improved significantly over time. These findings also provide preliminary evidence that ePST™ may be effective as a depression treatment. Larger clinical trials with diverse samples are indicated.

15. Preventing School Problems--Promoting School Success: Strategies and Programs That Work.

ERIC Educational Resources Information Center

Minke, Kathleen M., Ed.; Bear, George C., Ed.

This book discusses the prevention of problems and the promotion of success for school children today. Chapters include: (1) "Preventing Aggression and Violence" (George G. Bear, Carolyn Webster-Stratton, Michael J. Furlong, and Sabrina Rhee); (2) "Promoting Social and Emotional Competence in Children" (Joseph E. Zins, Maurice J. Elias, Mark T.…

16. Simulation to Teach or Evaluate Problem-Solving in Professional Programs.

ERIC Educational Resources Information Center

Edwards, Judith B.

Problem-solving skills are higher level cognitive processes which involve the invention of complex organizational schemes to resolve conflicts or confusion. These skills cannot be acquired by mastering a hierarchy of prerequisite skills; rather, their mastery is best facilitated by placing the student in an environment which forces him to apply…

17. Black Male Youth: Their Employment Problems and Training Programs. Background Paper No. 11.

ERIC Educational Resources Information Center

Hollister, Robinson G.

Employment problems of black males remain substantial. The unemployment rate for black males is 2.3 times that of white males. Less than one-third of 16- 19-year-old black males were employed in 1988. The most important policies affecting the employment of black males are monetary and fiscal policies. No employment and training policies can come…

18. Preventing Severe Problem Behavior in Young Children: The Behavior Education Program

ERIC Educational Resources Information Center

Hawken, Leanne S.; Johnston, Susan S.

2007-01-01

Best practice in preventing severe problem behavior in schools involves implementing a continuum of effective behavior support. This continuum includes primary prevention strategies implemented with all students, secondary prevention strategies for students at-risk, and tertiary interventions for students who engage in the most severe problem…

19. Strengthening the Reading Abilities of First Graders through an Intensive Phonics Program and Problem Solving Process.

ERIC Educational Resources Information Center

Clarke, Sheryl

A practicum aimed to strengthen the reading abilities of first grade students. Objectives included having first graders: (1) strengthen phonetic and decoding skills; (2) progress to grade level in the basal reading series; and (3) master a problem solving process that would enrich critical thinking skills. Subjects, 52 first grade students,…

20. Between Language as Problem and Resource: Examining Teachers' Language Orientations in Dual-Language Programs

ERIC Educational Resources Information Center

Zúñiga, Christian E.

2016-01-01

Using a case study methodology, the article examines the language practices of two third-grade bilingual, dual-language education teachers as they prepare their students for their state's standardized assessment. Findings revealed that both teachers taught in between the contradicting tensions of the language-as-problem and -resource orientations…

1. A Problem-Based Learning Approach to Teacher Training: Findings after Program Redesign

ERIC Educational Resources Information Center

Caukin, Nancy; Dillard, Heather; Goodin, Terry

2016-01-01

This study reports on Residency I, the first semester of a yearlong residency that utilizes problem-based learning scenarios, combined with field work, that covers both content and context and is meant to positively impact teacher candidates' self-efficacy as well as their actual efficacy as measured by scores on the edTPA. This quantitative…

2. Flipped Classroom with Problem Based Activities: Exploring Self-Regulated Learning in a Programming Language Course

ERIC Educational Resources Information Center

Çakiroglu, Ünal; Öztürk, Mücahit

2017-01-01

This study intended to explore the development of self-regulation in a flipped classroom setting. Problem based learning activities were carried out in flipped classrooms to promote self-regulation. A total of 30 undergraduate students from Mechatronic department participated in the study. Self-regulation skills were discussed through students'…

3. Results and Implications of a Problem-Solving Treatment Program for Obesity.

ERIC Educational Resources Information Center

Mahoney, B. K.; And Others

Data are from a large scale experimental study which was designed to evaluate a multimethod problem solving approach to obesity. Obese adult volunteers (N=90) were randomly assigned to three groups: maximal treatment, minimal treatment, and no treatment control. In the two treatment groups, subjects were exposed to bibliographic material and…

4. Eighth-Grade Students Defining Complex Problems: The Effectiveness of Scaffolding in a Multimedia Program

ERIC Educational Resources Information Center

Zydney, Janet Mannheimer

2005-01-01

This pilot study investigated the effectiveness of a multimedia learning environment called "Pollution Solution" on eighth-grade students' ability to define a complex problem. Sixty students from four earth science classes taught by the same teacher in a New York City public school were included in the sample for this study. The classes…

5. Students' Perspectives on Problem-Based Learning in a Transitional Doctorate of Physical Therapy Program

ERIC Educational Resources Information Center

Larin, Helene M.; Buccieri, Kathleen M.; Wessel, Jean

2010-01-01

Doctor of physical therapy (DPT) graduates are expected to be competent in professional behaviors, communication, critical inquiry, clinical decision making, and evidence-based practice. The purpose of this qualitative study was to describe the experience of students enrolled in a single, problem-based learning (PBL) course within a conventional…

6. Brown Superfund Basic research Program: a multistakeholder partnership addresses real-world problems in contaminated communities.

PubMed

Senier, Laura; Hudson, Benjamin; Fort, Sarah; Hoover, Elizabeth; Tillson, Rebecca; Brown, Phil

2008-07-01

The NIEHS funds several basic and applied research programs, many of which also require research translation or outreach. This paper reports on a project by the Brown University Superfund Basic Research Program (SBRP), in which outreach and research translation teams collaborated with state regulatory agency personnel and community activists on a legislative initiative to mitigate the financial impacts of living in a contaminated community. The Environmentally Compromised Home Ownership (ECHO) program makes home equity loans of up to \$25,000 available to qualified applicants. This collaboration provides a case study in community engagement and demonstrates how research translation and outreach activities that are clearly differentiated yet well-integrated can improve a suite of basic and applied research. Although engaging diverse constituencies can be difficult community-engaged translation and outreach have the potential to make research findings more useful to communities, address some of the social impacts of contamination, and empower stakeholders to pursue their individual and collectively held goals for remediation. The NIEHS has recently renewed its commitment to community-engaged research and advocacy, making this an optimal time to reflect on how basic research programs that engage stakeholders through research translation and outreach can add value to the overall research enterprise.

7. THE ROLE OF THE COMMUNITY ACTION PROGRAM IN THE SOLUTION OF RURAL YOUTH MANPOWER PROBLEMS.

ERIC Educational Resources Information Center

WILLIAMS, J. EARL

SUBSTANTIAL POVERTY IN RURAL AREAS HAS BEEN CAUSED BY UNEMPLOYMENT DUE TO THE TECHNOLOGICAL REVOLUTION WHICH HAS MECHANIZED AGRICULTURAL OCCUPATIONS WHICH HAVE BEEN THE EXCLUSIVE DOMAIN OF THE FARM LABORER. A WELL-ORGANIZED COMMUNITY ACTION PROGRAM PROVIDES A MEANS OF EFFECTIVELY COMBATING THE RATE OF UNEMPLOYMENT WHICH IS ESPECIALLY HIGH AMONG…

8. A Study of Writing Problems in a Remedial Writing Program for EOP Students.

ERIC Educational Resources Information Center

Duffin, Beryl; And Others

In 1976, small special sections of English A (basic composition) were initiated within the English Department of the University of California at Davis to teach university-level writing skills to students in the Educational Opportunity Program (EOP), seventy-five per cent of whom speak English as a second language. This paper describes the design…

9. Managing Personal Income: Student Problem Book. Family Financial Education Program 1.

ERIC Educational Resources Information Center

Continental Illinois National Bank and Trust Co., Chicago.

The student workbook was designed for a high school unit on personal income management, part of a family financial education program which also includes a unit on accepting credit responsibility. The student guide follows the same format as the teacher's guide and is based on three experiences--understanding checks, using a checking account, and…

10. Implementing a Structured Reading Program in an Afterschool Setting: Problems and Potential Solutions

ERIC Educational Resources Information Center

Hartry, Ardice; Fitzgerald, Robert; Porter, Kristie

2008-01-01

In this article, Ardice Hartry, Robert Fitzgerald, and Kristie Porter present results from their implementation study of a structured reading program for fourth, fifth, and sixth graders in an afterschool setting. As the authors explain, schools and districts often view an extended school day as a promising way to address the literacy needs of…

11. Responding to Problem Behavior in Schools: The Behavior Education Program. Second Edition

ERIC Educational Resources Information Center

Crone, Deanne A.; Hawken, Leanne S.; Horner, Robert H.

2010-01-01

This bestselling book has been used in schools across the country to establish efficient and cost-effective systems of Tier II positive behavior support. The Behavior Education Program (BEP) was developed for the approximately 10-15% of students who fail to meet schoolwide disciplinary expectations but do not yet require intensive, individualized…

12. The Elephants Evaluate: Some Notes on the Problem of Grades in Graduate Creative Writing Programs

ERIC Educational Resources Information Center

Peckham, Rachel

2011-01-01

This article takes up the "special strangeness" of grading practices in the graduate creative writing workshop, based on the author's research, personal experience, and interviews with the faculty of her doctoral creative writing program. Using a structure of notes, the author attempts to make sense of the way grades are understood by both teacher…

13. If Programs of Study Are the Solution, What Is the Problem?

ERIC Educational Resources Information Center

Stone, James R., III

2013-01-01

Programs of study are the most recent in a series of federal efforts to create a more transparent and rational system for school-to-work transition for all youth. The current article places this construct in the context of today's labor market and the new focus on college and career readiness for all students. It then provides evidence indicating…

14. Problems Resulting from the Implementation of a Pilot Program in Accountability.

ERIC Educational Resources Information Center

Field, David A.

The concept of accountability has become very important recently to both teachers and administrators. Despite this, very few experimental projects dealing with accountability have been attempted--especially in the field of physical education. A program of accountability was conducted at Ball State University, Muncie, Indiana, in the Department of…

15. Evaluation of Compensatory Education Programs: Problems, Promising Strategies and Recent Trends.

ERIC Educational Resources Information Center

Forgione, Pascal D., Jr.; And Others

A comparative case study to evaluate the administration of Elementary and Secondary Education Act (ESEA) Title I programs was conducted in eight state departments of education and 32 school districts. Interviews were supplemented by review and analysis of documents and available data at each site. General findings included: (1) evaluation was…

16. SPECIAL PROBLEM REPORT, IMPROVING EXTENSION PROGRAM PLANNING PROCEDURES IN SAN LUIS OBISPO COUNTY, CALIFORNIA.

ERIC Educational Resources Information Center

CANNON, DALE CARTER

A SURVEY WAS CONDUCTED BY MAIL QUESTIONNAIRE TO GATHER DATA ON THE FARM POPULATION OF SAN LUIS OBISPO COUNTY, CALIFORNIA, TO GET NAMES OF COMMUNITY LEADERS, AND PROVIDE MOTIVATION FOR EXTENSION PROGRAM PLANNING. THE MEAN AGE OF RESPONDENTS WAS 50, THE LARGE MAJORITY WITH CHILDREN AT HOME, THREE-FOURTHS NATIVE TO CALIFORNIA, ONE-HALF BEING BORN IN…

17. Lifelong Learning Programs of Education Faculty in Sinop: Evaluation of Participants' Problems and Worries

ERIC Educational Resources Information Center

Usakli, Hakan

2009-01-01

In this paper Lifelong Learning Program of Education Faculty in Sinop was evaluated in terms of interrelations between LLP and cultural shock. The barriers of LLP in Education Faculty in Sinop can be examined in two main parts: difficulties of finding suitable partner and students' difficulty in deciding whether to apply or not. These two main…

18. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach

PubMed Central

Arrieta, Jorge; Cartwright, Julyan H. E.; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

2015-01-01

Mixing fluid in a container at low Reynolds number— in an inertialess environment—is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the “belly phase,” peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing. PMID:26154384

19. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

PubMed

Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

2015-01-01

Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

20. Geometric modeling and analysis of large latticed surfaces

NASA Technical Reports Server (NTRS)

Nayfeh, A. H.; Hefzy, M. S.

1980-01-01

The application of geometrical schemes, similar to geodesic domes, to large spherical antenna reflectors was investigated. The shape and size of flat segmented latticed surfaces which approximate general shells of revolution, and in particular spherical and paraboloidal reflective surfaces, were determined. The extensive mathematical and computational geometric analyses of the reflector resulted in the development of a general purpose computer program capable of generating the complete design parameters of the dish. The program also includes a graphical self contained subroutine for graphic display of the required design.

1. Installation Restoration Program. Phase II. Problem Confirmation Study, Westover AFB, Chicopee, Massachusetts.

DTIC Science & Technology

1984-05-01

Problem Confirmation Study Westover Air Force Base * Chicopee, Massachusetts Contract F33615-80..D-4006 Prepared For. United States Air Force...Occupational and Environental Health Laboratory (OEHL) Brooks Air Force Base, Texas 4 SMay 1984 r DT SEP 619 4 H Ths ocument has been approved iOT Public...8217--* .- - -. - , - . Force by Roy F. Weston, Inc.. for the purposeof aiding in the implementation of the Air Force Installation Restoration

2. Effect of Automatic Processing on Specification of Problem Solutions for Computer Programs.

DTIC Science & Technology

1981-03-01

oermit arrivaL a:t thu ab ,;eribly int within 5 Ciys. J. Fuel on board ni .,t permit stationing .out res;-uppty for . 10 day period. These problem...Department of the Navy Department of the Navy Director CDR R. Gibson Naval Rs earch Laboratory Bureau of Medicine & Surgery Technical Information...Communications Sciences Naval Medical R & D3 Comryiw i Division Code 44 Code 7500 Naval Medical Center Naval Research Laboratory Bethesda, MD. 20014 Washington

3. Mental Rejects: The Problem, Past History and Some Justifications for a Research Program.

DTIC Science & Technology

1964-09-01

designed to explore the problems of educating and training this special population. Some statistics will help define the target group . Despite the...learning environment? * -All of the men in the proposed target group have spent usually at 27 I -" _ least seven or eight years in a classroom and...certain sets or predispositions on the psrt of the learner which might not be part of the behavioral reper- toire of the young adults of our target group . They

4. MP Salsa: a finite element computer program for reacting flow problems. Part 1--theoretical development

SciTech Connect

Shadid, J.N.; Moffat, H.K.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Salinger, A.G.

1996-05-01

The theoretical background for the finite element computer program, MPSalsa, is presented in detail. MPSalsa is designed to solve laminar, low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solver coupled multiple Poisson or advection-diffusion- reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element data base suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec solver library.

5. Binary Image Classification: A Genetic Programming Approach to the Problem of Limited Training Instances.

PubMed

Al-Sahaf, Harith; Zhang, Mengjie; Johnston, Mark

2016-01-01

In the computer vision and pattern recognition fields, image classification represents an important yet difficult task. It is a challenge to build effective computer models to replicate the remarkable ability of the human visual system, which relies on only one or a few instances to learn a completely new class or an object of a class. Recently we proposed two genetic programming (GP) methods, one-shot GP and compound-GP, that aim to evolve a program for the task of binary classification in images. The two methods are designed to use only one or a few instances per class to evolve the model. In this study, we investigate these two methods in terms of performance, robustness, and complexity of the evolved programs. We use ten data sets that vary in difficulty to evaluate these two methods. We also compare them with two other GP and six non-GP methods. The results show that one-shot GP and compound-GP outperform or achieve results comparable to competitor methods. Moreover, the features extracted by these two methods improve the performance of other classifiers with handcrafted features and those extracted by a recently developed GP-based method in most cases.

6. Psychosocial Profile of Children Having Participated in an Intervention Program for Their Sexual Behavior Problems: The Predictor Role of Maltreatment.

PubMed

Tougas, Anne-Marie; Boisvert, Isabelle; Tourigny, Marc; Lemieux, Annie; Tremblay, Claudia; Gagnon, Mélanie M

2016-01-01

This study sought to verify if a history of maltreatment may predict the psychosocial profile of children who participated in an intervention program aiming at reducing sexual behavior problems. Data were collected at both the beginning and the end of the intervention program using a clinical protocol and standardized tests selected on the basis of the intervention targets. In general, the results indicate that children who had experienced maltreatment display a psychosocial profile that is similar to that of children who had not experienced maltreatment. However, children who had experienced psychological abuse or neglect may display greater externalized or sexualized behaviors, whereas children who have a parent who had been a victim of sexual abuse may display fewer sexualized behaviors.

7. Practical Approaches to Resolving Behaviour Problems. Selected Papers from the National Conference on Practical Approaches to Resolving Behaviour Problems (2nd, Sydney, New South Wales, Australia, July 1990). Programs Implementation and System Initiatives.

ERIC Educational Resources Information Center

Richardson, Susanna, Ed.; Izard, John, Ed.

This collection of papers focuses on practical approaches to resolving behavior problems in the Australian school system. The papers are divided into four general categories: perspectives on behavior problems, focusing on families, schools and system initiatives, and programs in special settings. The papers include: (1) "Beyond…

8. A study of the use of linear programming techniques to improve the performance in design optimization problems

NASA Technical Reports Server (NTRS)

Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw

1988-01-01

This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.

9. Guiding light via geometric phases

Slussarenko, Sergei; Alberucci, Alessandro; Jisha, Chandroth P.; Piccirillo, Bruno; Santamato, Enrico; Assanto, Gaetano; Marrucci, Lorenzo

2016-09-01

All known methods for transverse confinement and guidance of light rely on modification of the refractive index, that is, on the scalar properties of electromagnetic radiation. Here, we disclose the concept of a dielectric waveguide that exploits vectorial spin-orbit interactions of light and the resulting geometric phases. The approach relies on the use of anisotropic media with an optic axis that lies orthogonal to the propagation direction but is spatially modulated, so that the refractive index remains constant everywhere. A spin-controlled cumulative phase distortion is imposed on the beam, balancing diffraction for a specific polarization. As well as theoretical analysis, we present an experimental demonstration of the guidance using a series of discrete geometric-phase lenses made from liquid crystal. Our findings show that geometric phases may determine the optical guiding behaviour well beyond a Rayleigh length, paving the way to a new class of photonic devices. The concept is applicable to the whole electromagnetic spectrum.

10. Geometric scalar theory of gravity

SciTech Connect

Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br

2013-06-01

We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

11. Geometrical modelling of textile reinforcements

NASA Technical Reports Server (NTRS)

Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene

1995-01-01

The mechanical properties of textile composites are dictated by the arrangement of yarns contained with the material. Thus to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made form highly flexible yarn systems which experience a certain degree of compressability. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical prediction models are demonstrated. Although more costly than its predecessors, the present analysis is based on the detailed architecture developed by one of the authors and his colleagues and accounts for many of the geometric complexities that other analyses ignore.

12. Geometric Observers for Dynamically Evolving Curves

PubMed Central

Niethammer, Marc; Vela, Patricio A.; Tannenbaum, Allen

2009-01-01

This paper proposes a deterministic observer design for visual tracking based on nonparametric implicit (level-set) curve descriptions. The observer is continuous discrete with continuous-time system dynamics and discrete-time measurements. Its state-space consists of an estimated curve position augmented by additional states (e.g., velocities) associated with every point on the estimated curve. Multiple simulation models are proposed for state prediction. Measurements are performed through standard static segmentation algorithms and optical-flow computations. Special emphasis is given to the geometric formulation of the overall dynamical system. The discrete-time measurements lead to the problem of geometric curve interpolation and the discrete-time filtering of quantities propagated along with the estimated curve. Interpolation and filtering are intimately linked to the correspondence problem between curves. Correspondences are established by a Laplace-equation approach. The proposed scheme is implemented completely implicitly (by Eulerian numerical solutions of transport equations) and thus naturally allows for topological changes and subpixel accuracy on the computational grid. PMID:18421113

13. OBSESSIVE COMPULSIVE DISORDER: IS IT A PROBLEM OF COMPLEX MOTOR PROGRAMMING?*

PubMed Central

Khanna, Sumant; Mukundan, C.R.; Channabasavanna, S.M.

1987-01-01

SUMMARY 44 subjects with Obsessive compulsive disorder (OCD) and 40 normals were compared using an experimental paradigm involving recording of the bereitschaftspotential. A decreased onset latency and increased amplitude was found in the OCD sample as compared to normals. A neurophysiological substrate for the bereitschaftspotential has been proposed. The implications of these findings in OCD as compared to Gilles de la Tourette syndrome, and for a focal neuro-physiological dysfunction have also been discussed. The findings of this study implicate a dysfunction in complex motor programming in OCD, with the possibility of this dysfunction being in the prefrontal area. PMID:21927207

14. An informal introduction to programming data processing problems in a functional language

SciTech Connect

Senichkin, V.I.

1994-07-01

The basic idea behind the proposed language CORAL (Conceptual Recursive Applicative Language) is that of functional programming and the functional model of data. The type system of the language includes abstraction, classification, generalization, and aggregation. The set of built-in type constructors makes it possible to describe set-theoretic operations over extensional types. The basis functions are defined as functions over lists, which are the only form of data organization in the language. The computational model of the language, which is based on notions of polymorphism and inheritance and treats data types as objects, is adequate to the needs of data processing in applications with complex relations between objects.

15. Numerical method and FORTRAN program for the solution of an axisymmetric electrostatic collector design problem

NASA Technical Reports Server (NTRS)

Reese, O. W.

1972-01-01

The numerical calculation is described of the steady-state flow of electrons in an axisymmetric, spherical, electrostatic collector for a range of boundary conditions. The trajectory equations of motion are solved alternately with Poisson's equation for the potential field until convergence is achieved. A direct (noniterative) numerical technique is used to obtain the solution to Poisson's equation. Space charge effects are included for initial current densities as large as 100 A/sq cm. Ways of dealing successfully with the difficulties associated with these high densities are discussed. A description of the mathematical model, a discussion of numerical techniques, results from two typical runs, and the FORTRAN computer program are included.

16. Supersymmetric chiral models: Geometrical aspects

Perelomov, A. M.

1989-03-01

We consider classical supersymmetric chiral models of field theory and focus our attention on the geometrical aspects of such theories. A characteristic feature of such models is that the interaction is not introduced by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the target manifold. In many aspects these models are analogous to gauge theories and, as became clear recently, they are also important for superstring theory, which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.

17. An approximation solution to refinery crude oil scheduling problem with demand uncertainty using joint constrained programming.

PubMed

Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

2014-01-01

This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.

18. A generalized fuzzy linear programming approach for environmental management problem under uncertainty.

PubMed

Fan, Yurui; Huang, Guohe; Veawab, Amornvadee

2012-01-01

In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.

19. Ad Hoc modeling, expert problem solving, and R&T program evaluation

NASA Technical Reports Server (NTRS)

Silverman, B. G.; Liebowitz, J.; Moustakis, V. S.

1983-01-01

A simplified cost and time (SCAT) analysis program utilizing personal-computer technology is presented and demonstrated in the case of the NASA-Goddard end-to-end data system. The difficulties encountered in implementing complex program-selection and evaluation models in the research and technology field are outlined. The prototype SCAT system described here is designed to allow user-friendly ad hoc modeling in real time and at low cost. A worksheet constructed on the computer screen displays the critical parameters and shows how each is affected when one is altered experimentally. In the NASA case, satellite data-output and control requirements, ground-facility data-handling capabilities, and project priorities are intricately interrelated. Scenario studies of the effects of spacecraft phaseout or new spacecraft on throughput and delay parameters are shown. The use of a network of personal computers for higher-level coordination of decision-making processes is suggested, as a complement or alternative to complex large-scale modeling.

20. DARPA Integrated Sensing and Processing (ISP) Program. Approximation Methods for Markov Decision Problems in Sensor Management

DTIC Science & Technology

2006-06-01

0 ( ) arg min ( ) ( ( ( ), , )) , for all states , u u t t uwu U S S C S e d e E J f S t u w Sγγτ ππ τ τ −− ∈ ⎧ ⎫⎪ ⎪= +⎨ ⎬ ⎪ ⎪⎩ ⎭ ∫% (31...for each state. Furthermore, every optimal policy satisfies Bellman’s equation: * * 0 ( ) max ( ( )) ( ( , , , )) , u u t tt uwu U J x R x t e dt e...fixed policy p, one step of the policy- iteration consists of solving the following problem: 0 max ( ( )) ( ( , , , )) u u t tt uwu U R x t e dt e E

1. NSEG: A segmented mission analysis program for low and high speed aircraft. Volume 3: Demonstration problems

NASA Technical Reports Server (NTRS)

Hague, D. S.; Rozendaal, H. L.

1977-01-01

Program NSEG is a rapid mission analysis code based on the use of approximate flight path equations of motion. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed vehicle characteristics are specified in tabular form. In addition to its mission performance calculation capabilities, the code also contains extensive flight envelope performance mapping capabilities. For example, rate-of-climb, turn rates, and energy maneuverability parameter values may be mapped in the Mach-altitude plane. Approximate take off and landing analyses are also performed. At high speeds, centrifugal lift effects are accounted for. Extensive turbojet and ramjet engine scaling procedures are incorporated in the code.

2. Modal Substructuring of Geometrically Nonlinear Finite-Element Models

SciTech Connect

Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

2015-12-21

The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying a series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.

3. Modal Substructuring of Geometrically Nonlinear Finite-Element Models

DOE PAGES

Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

2015-12-21

The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less

4. Platonic Symmetry and Geometric Thinking

ERIC Educational Resources Information Center

Zsombor-Murray, Paul

2007-01-01

Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…

5. The geometric oblateness of Uranus

NASA Technical Reports Server (NTRS)

Franklin, F. A.; Avis, C. C.; Colombo, G.; Shapiro, I. I.

1980-01-01

The paper considers photographs of Uranus obtained by the Stratoscope II balloon-borne telescope in 1970. These data have been redigitized and reanalyzed, and the geometric oblateness of Uranus was determined from the isophotes near the limb using an expression in terms of the equatorial and polar radii.

6. Geometric Quantum Noise of Spin

Shnirman, Alexander; Gefen, Yuval; Saha, Arijit; Burmistrov, Igor S.; Kiselev, Mikhail N.; Altland, Alexander

2015-05-01

The presence of geometric phases is known to affect the dynamics of the systems involved. Here, we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise terms. Specifically, we consider small ferromagnetic particles (nanomagnets) or quantum dots close to Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schön effective action and the corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced by the geometric phase. As a first but nontrivial application, we predict low temperature quantum diffusion of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a protocol for experimental observation of this phenomenon.

7. Celestial mechanics with geometric algebra

NASA Technical Reports Server (NTRS)

Hestenes, D.

1983-01-01

Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

8. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

PubMed

Li, Shuai; Li, Yangming; Wang, Zheng

2013-03-01

This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem.

9. The Effect of Problem-Solving Instruction on the Programming Self-efficacy and Achievement of Introductory Computer Science Students

Research in academia and industry continues to identify a decline in enrollment in computer science. One major component of this decline in enrollment is a shortage of female students. The primary reasons for the gender gap presented in the research include lack of computer experience prior to their first year in college, misconceptions about the field, negative cultural stereotypes, lack of female mentors and role models, subtle discriminations in the classroom, and lack of self-confidence (Pollock, McCoy, Carberry, Hundigopal, & You, 2004). Male students are also leaving the field due to misconceptions about the field, negative cultural stereotypes, and a lack of self-confidence. Analysis of first year attrition revealed that one of the major challenges faced by students of both genders is a lack of problem-solving skills (Beaubouef, Lucas & Howatt, 2001; Olsen, 2005; Paxton & Mumey, 2001). The purpose of this study was to investigate whether specific, non-mathematical problem-solving instruction as part of introductory programming courses significantly increased computer programming self-efficacy and achievement of students. The results of this study showed that students in the experimental group had significantly higher achievement than students in the control group. While this shows statistical significance, due to the effect size and disordinal nature of the data between groups, care has to be taken in its interpretation. The study did not show significantly higher programming self-efficacy among the experimental students. There was not enough data collected to statistically analyze the effect of the treatment on self-efficacy and achievement by gender. However, differences in means were observed between the gender groups, with females in the experimental group demonstrating a higher than average degree of self-efficacy when compared with males in the experimental group and both genders in the control group. These results suggest that the treatment from this

10. Synthesis of general polarization transformers. A geometric phase approach

Bhandari, Rajendra

1989-07-01

Using a generalized form of Jordan's formulation of the geometric phase problem it is shown that a single gadget capable of realising an arbitrary element of the polarization transformation group SU (2) can be constructed using two half-wave plates and two quarter-wave plates. For special transformations, simpler, practical gadgets are proposed.

11. Geometric and Algebraic Approaches in the Concept of Complex Numbers

ERIC Educational Resources Information Center

Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.

2006-01-01

This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…

12. Geometric Aspects of Force Controllability for a Swimming Model

SciTech Connect

Khapalov, A. Y.

2008-02-15

We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids.

13. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

PubMed

Deb, Kalyanmoy; Sinha, Ankur

2010-01-01

Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

14. MPSalsa a finite element computer program for reacting flow problems. Part 2 - user`s guide

SciTech Connect

Salinger, A.; Devine, K.; Hennigan, G.; Moffat, H.

1996-09-01

This manual describes the use of MPSalsa, an unstructured finite element (FE) code for solving chemically reacting flow problems on massively parallel computers. MPSalsa has been written to enable the rigorous modeling of the complex geometry and physics found in engineering systems that exhibit coupled fluid flow, heat transfer, mass transfer, and detailed reactions. In addition, considerable effort has been made to ensure that the code makes efficient use of the computational resources of massively parallel (MP), distributed memory architectures in a way that is nearly transparent to the user. The result is the ability to simultaneously model both three-dimensional geometries and flow as well as detailed reaction chemistry in a timely manner on MT computers, an ability we believe to be unique. MPSalsa has been designed to allow the experienced researcher considerable flexibility in modeling a system. Any combination of the momentum equations, energy balance, and an arbitrary number of species mass balances can be solved. The physical and transport properties can be specified as constants, as functions, or taken from the Chemkin library and associated database. Any of the standard set of boundary conditions and source terms can be adapted by writing user functions, for which templates and examples exist.

15. The nurse scheduling problem: a goal programming and nonlinear optimization approaches

Hakim, L.; Bakhtiar, T.; Jaharuddin

2017-01-01

Nurses scheduling is an activity of allocating nurses to conduct a set of tasks at certain room at a hospital or health centre within a certain period. One of obstacles in the nurse scheduling is the lack of resources in order to fulfil the needs of the hospital. Nurse scheduling which is undertaken manually will be at risk of not fulfilling some nursing rules set by the hospital. Therefore, this study aimed to perform scheduling models that satisfy all the specific rules set by the management of Bogor State Hospital. We have developed three models to overcome the scheduling needs. Model 1 is designed to schedule nurses who are solely assigned to a certain inpatient unit and Model 2 is constructed to manage nurses who are assigned to an inpatient room as well as at Polyclinic room as conjunct nurses. As the assignment of nurses on each shift is uneven, then we propose Model 3 to minimize the variance of the workload in order to achieve equitable assignment on every shift. The first two models are formulated in goal programming framework, while the last model is in nonlinear optimization form.

16. A New Stochastic Equivalent Linearization Implementation for Prediction of Geometrically Nonlinear Vibrations

NASA Technical Reports Server (NTRS)

Muravyov, Alexander A.; Turner, Travis L.; Robinson, Jay H.; Rizzi, Stephen A.

1999-01-01

In this paper, the problem of random vibration of geometrically nonlinear MDOF structures is considered. The solutions obtained by application of two different versions of a stochastic linearization method are compared with exact (F-P-K) solutions. The formulation of a relatively new version of the stochastic linearization method (energy-based version) is generalized to the MDOF system case. Also, a new method for determination of nonlinear sti ness coefficients for MDOF structures is demonstrated. This method in combination with the equivalent linearization technique is implemented in a new computer program. Results in terms of root-mean-square (RMS) displacements obtained by using the new program and an existing in-house code are compared for two examples of beam-like structures.

17. PlanAlyzer, an Interactive Computer-Assisted Program to Teach Clinical Problem-Solving in Diagnosing Anemia and Coronary Artery Disease.

ERIC Educational Resources Information Center

Lyon, Harold C.; And Others

1992-01-01

The computer-based PlanAlyzer program was designed to teach clinical diagnosis to medical students, taking into account several characteristics common to the clinical problem solver: limited capacity for short-term memory; use of heuristic strategies; sequential information seeking; and problem conceptualization. Six years of development and…

18. The Prevention Program for Externalizing Problem Behavior (PEP) Improves Child Behavior by Reducing Negative Parenting: Analysis of Mediating Processes in a Randomized Controlled Trial

ERIC Educational Resources Information Center

Hanisch, Charlotte; Hautmann, Christopher; Plück, Julia; Eichelberger, Ilka; Döpfner, Manfred

2014-01-01

Background: Our indicated Prevention program for preschool children with Externalizing Problem behavior (PEP) demonstrated improved parenting and child problem behavior in a randomized controlled efficacy trial and in a study with an effectiveness design. The aim of the present analysis of data from the randomized controlled trial was to identify…

19. The Effect of Scratch- and Lego Mindstorms Ev3-Based Programming Activities on Academic Achievement, Problem-Solving Skills and Logical-Mathematical Thinking Skills of Students

ERIC Educational Resources Information Center

Korkmaz, Özgen

2016-01-01

The aim of this study was to investigate the effect of the Scratch and Lego Mindstorms Ev3 programming activities on academic achievement with respect to computer programming, and on the problem-solving and logical-mathematical thinking skills of students. This study was a semi-experimental, pretest-posttest study with two experimental groups and…

20. "Superheroes in the Resource Room": A Study Examining Implementation of the Superhero Social Skills Program by a Resource Teacher with Students with Externalizing Behavior Problems

ERIC Educational Resources Information Center

Springer, Benjamin James

2012-01-01

The current study evaluated the effectiveness of the Superhero Social Skills program in increasing the social engagement skills and decreasing the aggressive behavior of students with externalizing behavior problems as implemented by a resource teacher. There have been no empirical evaluations of the Superhero Social Skills program as implemented…