Sample records for geometrically complex faults

  1. Systematic Underestimation of Earthquake Magnitudes from Large Intracontinental Reverse Faults: Historical Ruptures Break Across Segment Boundaries

    NASA Technical Reports Server (NTRS)

    Rubin, C. M.

    1996-01-01

    Because most large-magnitude earthquakes along reverse faults have such irregular and complicated rupture patterns, reverse-fault segments defined on the basis of geometry alone may not be very useful for estimating sizes of future seismic sources. Most modern large ruptures of historical earthquakes generated by intracontinental reverse faults have involved geometrically complex rupture patterns. Ruptures across surficial discontinuities and complexities such as stepovers and cross-faults are common. Specifically, segment boundaries defined on the basis of discontinuities in surficial fault traces, pronounced changes in the geomorphology along strike, or the intersection of active faults commonly have not proven to be major impediments to rupture. Assuming that the seismic rupture will initiate and terminate at adjacent major geometric irregularities will commonly lead to underestimation of magnitudes of future large earthquakes.

  2. Fault geometric complexity and how it may cause temporal slip-rate variation within an interacting fault system

    NASA Astrophysics Data System (ADS)

    Zielke, Olaf; Arrowsmith, Ramon

    2010-05-01

    Slip-rates along individual faults may differ as a function of measurement time scale. Short-term slip-rates may be higher than the long term rate and vice versa. For example, vertical slip-rates along the Wasatch Fault, Utah are 1.7+/-0.5 mm/yr since 6ka, <0.6 mm/yr since 130ka, and 0.5-0.7 mm/yr since 10Ma (Friedrich et al., 2003). Following conventional earthquake recurrence models like the characteristic earthquake model, this observation implies that the driving strain accumulation rates may have changed over the respective time scales as well. While potential explanations for such slip-rate variations may be found for example in the reorganization of plate tectonic motion or mantle flow dynamics, causing changes in the crustal velocity field over long spatial wavelengths, no single geophysical explanation exists. Temporal changes in earthquake rate (i.e., event clustering) due to elastic interactions within a complex fault system may present an alternative explanation that requires neither variations in strain accumulation rate or nor changes in fault constitutive behavior for frictional sliding. In the presented study, we explore this scenario and investigate how fault geometric complexity, fault segmentation and fault (segment) interaction affect the seismic behavior and slip-rate along individual faults while keeping tectonic stressing-rate and frictional behavior constant in time. For that, we used FIMozFric--a physics-based numerical earthquake simulator, based on Okada's (1992) formulations for internal displacements and strains due to shear and tensile faults in a half-space. Faults are divided into a large number of equal-sized fault patches which communicate via elastic interaction, allowing implementation of geometrically complex, non-planar faults. Each patch has assigned a static and dynamic friction coefficient. The difference between those values is a function of depth--corresponding to the temperature-dependence of velocity-weakening that is observed in laboratory friction experiments and expressed in an [a-b] term in Rate-State-Friction (RSF) theory. Patches in the seismic zone are incrementally loaded during the interseismic phase. An earthquake initiates if shear stress along at least one (seismic) patch exceeds its static frictional strength and may grow in size due to elastic interaction with other fault patches (static stress transfer). Aside from investigating slip-rate variations due to the elastic interactions within a fault system with this tool, we want to show how such modeling results can be very useful in exploring the physics underlying the patterns that the paleoseismology sees and that those methods (simulation and observations) can be merged, with both making important contributions. Using FIMozFric, we generated synthetic seismic records for a large number of fault geometries and structural scenarios to investigate along-fault slip accumulation patterns and the variability of slip at a point. Our simulations show that fault geometric complexity and the accompanied fault interactions and multi-fault ruptures may cause temporal deviations from the average fault slip-rate, in other words phases of earthquake clustering or relative quiescence. Slip-rates along faults within an interacting fault system may change even when the loading function (stressing rate) remains constant and the magnitude of slip rate change is suggested to be proportional to the magnitude of fault interaction. Thus, spatially isolated and structurally mature faults are expected to experience less slip-rate changes than strongly interacting and less mature faults. The magnitude of slip-rate change may serve as a proxy for the magnitude of fault interaction and vice versa.

  3. 3D fault curvature and fractal roughness: Insights for rupture dynamics and ground motions using a Discontinous Galerkin method

    NASA Astrophysics Data System (ADS)

    Ulrich, Thomas; Gabriel, Alice-Agnes

    2017-04-01

    Natural fault geometries are subject to a large degree of uncertainty. Their geometrical structure is not directly observable and may only be inferred from surface traces, or geophysical measurements. Most studies aiming at assessing the potential seismic hazard of natural faults rely on idealised shaped models, based on observable large-scale features. Yet, real faults are wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. Dynamic rupture simulations aim to capture the observed complexity of earthquake sources and ground-motions. From a numerical point of view, incorporating rough faults in such simulations is challenging - it requires optimised codes able to run efficiently on high-performance computers and simultaneously handle complex geometries. Physics-based rupture dynamics hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Moreover, the simulated ground-motions present many similarities with observed ground-motions records. Thus, such simulations may foster our understanding of earthquake source processes, and help deriving more accurate seismic hazard estimates. In this presentation, the software package SeisSol (www.seissol.org), based on an ADER-Discontinuous Galerkin scheme, is used to solve the spontaneous dynamic earthquake rupture problem. The usage of tetrahedral unstructured meshes naturally allows for complicated fault geometries. However, SeisSol's high-order discretisation in time and space is not particularly suited for small-scale fault roughness. We will demonstrate modelling conditions under which SeisSol resolves rupture dynamics on rough faults accurately. The strong impact of the geometric gradient of the fault surface on the rupture process is then shown in 3D simulations. Following, the benefits of explicitly modelling fault curvature and roughness, in distinction to prescribing heterogeneous initial stress conditions on a planar fault, is demonstrated. Furthermore, we show that rupture extend, rupture front coherency and rupture speed are highly dependent on the initial amplitude of stress acting on the fault, defined by the normalized prestress factor R, the ratio of the potential stress drop over the breakdown stress drop. The effects of fault complexity are particularly pronounced for lower R. By low-pass filtering a rough fault at several cut-off wavelengths, we then try to capture rupture complexity using a simplified fault geometry. We find that equivalent source dynamics can only be obtained using a scarcely filtered fault associated with a reduced stress level. To investigate the wavelength-dependent roughness effect, the fault geometry is bandpass-filtered over several spectral ranges. We show that geometric fluctuations cause rupture velocity fluctuations of similar length scale. The impact of fault geometry is especially pronounced when the rupture front velocity is near supershear. Roughness fluctuations significantly smaller than the rupture front characteristic dimension (cohesive zone size) affect only macroscopic rupture properties, thus, posing a minimum length scale limiting the required resolution of 3D fault complexity. Lastly, the effect of fault curvature and roughness on the simulated ground-motions is assessed. Despite employing a simple linear slip weakening friction law, the simulated ground-motions compare well with estimates from ground motions prediction equations, even at relatively high frequencies.

  4. Transpressional Rupture Cascade of the 2016 Mw 7.8 Kaikoura Earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Feng, Guangcai; Meng, Lingsen; Zhang, Ailin; Ampuero, Jean Paul; Bürgmann, Roland; Fang, Lihua

    2018-03-01

    Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface displacement of about 10 m near the intersection between the Kekerengu and Papatea faults. Teleseismic back projection imaging shows that rupture speed was overall slow (1.4 km/s) but faster on individual fault segments (approximately 2 km/s) and that the conjugate, oblique-reverse, north striking faults released the largest high-frequency energy. We show that the linking Conway-Charwell faults aided in propagation of rupture across the step over from the Humps fault zone to the Hope fault. Fault slip cascaded along the Jordan Thrust, Kekerengu, and Needles faults, causing stress perturbations that activated two major conjugate faults, the Hundalee and Papatea faults. Our results shed important light on the study of earthquakes and seismic hazard evaluation in geometrically complex fault systems.

  5. Uplifted Yellow river terraces across the Haiyuan fault, China and their implications to geometrical complexity of strike-slip fault system

    NASA Astrophysics Data System (ADS)

    Liu, J.; van der Woerd, J.; Li, Z.; Klinger, Y.; Matrau, R.; Shao, Y.; Zhang, J.; Wang, P.

    2016-12-01

    Geometrical complexities and discontinues, such as fault bends, splays and step-overs, are common along large strike-slip faults. Numerical and observational studies show that geometrical complexities above some threshold degree may inhibit thoroughgoing rupture, limiting rupture length and the size of the resulting earthquake. Studying the fine structure and long-term evolution of fault step-overs would help us better understand their effect on earthquake ruptures. In this study, we focus on a prominent geometrical "knot" on the left-lateral Haiyuan fault, where the fault curves with multi-strand splays bounding the Mijia Shan-Hasi Shan ranges. Incidentally, the Yellow river flows between the Mijia Shan and Hasi Shan and cuts a deep gorge when crossing the fault. On the western bank of the river, a series of at least twelve levels of fluvial strath terraces perch above river bed, and are capped with no more than 5 meters of alluvial deposits. We measured the terrace heights above river bed, using RTK and UAV surveys. We collected quartz-rich pebbles of yellow river gravel for cosmogenic radio nuclide (CRN), and silt layers within gravel and the overlying loess cap for optimally stimulated luminescence (OSL) dating to constrain the terrace formation ages. Quartz-rich pebbles were sampled both in hand-dug pit for depth-profile method and surface samples on terrace surfaces. The CRN age results were corrected in terms of inheritance and shielding by loess. The dates and heights of serial terraces yielded an average uplift rate of 2±0.34 mm/yr, which represents the late Quaternary uplifting rate of the Mijia Shan. The uplift of the Mijia Shan-Hasi Shan may result from the oblique shear of positive flower in the deep crust of the left-lateral Haiyuan fault. We further speculate that with progressively uplifted mountain ranges, the active fault trace shifts with time among the multi-strands of the fault system. In addition, the coincidence of prominent uplifted mountains at the position where the Yellow river cut across the left-lateral strike-slip fault suggests that Yellow river may play a role in enhancing the uplifting rate, though efficient mass unloading.

  6. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.

    2017-12-01

    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger event. For that reason, we are investigating scenarios of a moderate rupture on a cross fault, and determining conditions under which the rupture will propagate onto the adjacent SSAF. Our investigation will provide fundamental insights that may help us interpret faulting behaviors in other areas, such as the complex Mw 7.8 2016 Kaikoura (New Zealand) earthquake.

  7. Rupture complexity and the supershear transition on rough faults

    NASA Astrophysics Data System (ADS)

    Bruhat, Lucile; Fang, Zijun; Dunham, Eric M.

    2016-01-01

    Field investigations suggest that supershear earthquakes occur on geometrically simple, smooth fault segments. In contrast, dynamic rupture simulations show how heterogeneity of stress, strength, and fault geometry can trigger supershear transitions, as well as other complex rupture styles. Here we examine the Fang and Dunham (2013) ensemble of 2-D plane strain dynamic ruptures on fractally rough faults subject to strongly rate weakening friction laws to document the effect of fault roughness and prestress on rupture behavior. Roughness gives rise to extremely diverse rupture styles, such as rupture arrests, secondary slip pulses that rerupture previously slipped fault sections, and supershear transitions. Even when the prestress is below the Burridge-Andrews threshold for supershear on planar faults with uniform stress and strength conditions, supershear transitions are observed. A statistical analysis of the rupture velocity distribution reveals that supershear transients become increasingly likely at higher stress levels and on rougher faults. We examine individual ruptures and identify recurrent patterns for the supershear transition. While some transitions occur on fault segments that are favorably oriented in the background stress field, other transitions happen at the initiation of or after propagation through an unfavorable bend. We conclude that supershear transients are indeed favored by geometric complexity. In contrast, sustained supershear propagation is most common on segments that are locally smoother than average. Because rupture style is so sensitive to both background stress and small-scale details of the fault geometry, it seems unlikely that field maps of fault traces will provide reliable deterministic predictions of supershear propagation on specific fault segments.

  8. Characterization of Aftershock Sequences from Large Strike-Slip Earthquakes Along Geometrically Complex Faults

    NASA Astrophysics Data System (ADS)

    Sexton, E.; Thomas, A.; Delbridge, B. G.

    2017-12-01

    Large earthquakes often exhibit complex slip distributions and occur along non-planar fault geometries, resulting in variable stress changes throughout the region of the fault hosting aftershocks. To better discern the role of geometric discontinuities on aftershock sequences, we compare areas of enhanced and reduced Coulomb failure stress and mean stress for systematic differences in the time dependence and productivity of these aftershock sequences. In strike-slip faults, releasing structures, including stepovers and bends, experience an increase in both Coulomb failure stress and mean stress during an earthquake, promoting fluid diffusion into the region and further failure. Conversely, Coulomb failure stress and mean stress decrease in restraining bends and stepovers in strike-slip faults, and fluids diffuse away from these areas, discouraging failure. We examine spatial differences in seismicity patterns along structurally complex strike-slip faults which have hosted large earthquakes, such as the 1992 Mw 7.3 Landers, the 2010 Mw 7.2 El-Mayor Cucapah, the 2014 Mw 6.0 South Napa, and the 2016 Mw 7.0 Kumamoto events. We characterize the behavior of these aftershock sequences with the Epidemic Type Aftershock-Sequence Model (ETAS). In this statistical model, the total occurrence rate of aftershocks induced by an earthquake is λ(t) = λ_0 + \\sum_{i:t_i

  9. Boundary element analysis of active mountain building and stress heterogeneity proximal to the 2015 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Thompson, T. B.; Meade, B. J.

    2015-12-01

    The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.

  10. The influence of fault geometry and frictional contact properties on slip surface behavior and off-fault damage: insights from quasi-static modeling of small strike-slip faults from the Sierra Nevada, CA

    NASA Astrophysics Data System (ADS)

    Ritz, E.; Pollard, D. D.

    2011-12-01

    Geological and geophysical investigations demonstrate that faults are geometrically complex structures, and that the nature and intensity of off-fault damage is spatially correlated with geometric irregularities of the slip surfaces. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, central Sierra Nevada, CA, provide insight into the relationship between non-planar fault geometry and frictional slip at depth. We investigate natural fault geometries in an otherwise homogeneous and isotropic elastic material with a two-dimensional displacement discontinuity method (DDM). Although the DDM is a powerful tool, frictional contact problems are beyond the scope of the elementary implementation because it allows interpenetration of the crack surfaces. By incorporating a complementarity algorithm, we are able to enforce appropriate contact boundary conditions along the model faults and include variable friction and frictional strength. This tool allows us to model quasi-static slip on non-planar faults and the resulting deformation of the surrounding rock. Both field observations and numerical investigations indicate that sliding along geometrically discontinuous or irregular faults may lead to opening of the fault and the formation of new fractures, affecting permeability in the nearby rock mass and consequently impacting pore fluid pressure. Numerical simulations of natural fault geometries provide local stress fields that are correlated to the style and spatial distribution of off-fault damage. We also show how varying the friction and frictional strength along the model faults affects slip surface behavior and consequently influences the stress distributions in the adjacent material.

  11. Tertiary extension and mineral deposits, southwestern U.S.

    USGS Publications Warehouse

    Rehrig, William A.; Hardy, James.J.

    1996-01-01

    Starting in Las Vegas, we will traverse through many of the geometric elements and complexities of hanging wall deformation above the regional detachment systems of the Colorado River extensional terrane. We will study the interaction of normal faults as arranged in regional, crustal-scale mega-domains and the bounding structures that separate these tilt domains. As we progress through the classic Eldorado Mountains-Hoover Dam region, where many of the ideas of listric normal faulting were first popularized, we will see both the real rocks and the historic rationale for their deformation. By examining the listric versus domino models for normal faulting, we will utilize different geometric techniques for determining the depth to the detachment structures and percent extension. Continuing further south toward southernmost Nevada, we will cross the accommodation zone that separates the Lake Mead and Whipple dip domains and further descend to deeper structural levels to examine lower levels of the major normal faults and their tilting of upper-crustal blocks and associated offset along the regional detachment faults. Fluid flow within the shattered fault zones and its relationship to the 3-D geometries of the fault surfaces will be studied both along the faults and within the hydrothermally altered and mineralized wallrocks.

  12. Peripheral Faulting of Eden Patera: Potential Evidence in Support of a New Volcanic Construct on Mars

    NASA Astrophysics Data System (ADS)

    Harlow, J.

    2016-12-01

    Arabia Terra's (AT) pock-marked topography in the expansive upland region of Mars Northern Hemisphere has been assumed to be the result of impact crater bombardment. However, examination of several craters by researchers revealed morphologies inconsistent with neighboring craters of similar size and age. These 'craters' share features with terrestrial super-eruption calderas, and are considered a new volcanic construct on Mars called `plains-style' caldera complexes. Eden Patera (EP), located on the northern boundary of AT is a reference type for these calderas. EP lacks well-preserved impact crater morphologies, including a decreasing depth to diameter ratio. Conversely, Eden shares geomorphological attributes with terrestrial caldera complexes such as Valles Caldera (New Mexico): arcuate caldera walls, concentric fracturing/faulting, flat-topped benches, irregular geometric circumferences, etc. This study focuses on peripheral fractures surrounding EP to provide further evidence of calderas within the AT region. Scaled balloon experiments mimicking terrestrial caldera analogs have showcased fracturing/faulting patterns and relationships of caldera systems. These experiments show: 1) radial fracturing (perpendicular to caldera rim) upon inflation, 2) concentric faulting (parallel to sub-parallel to caldera rim) during evacuation, and 3) intersecting radial and concentric peripheral faulting from resurgence. Utilizing Mars Reconnaissance Orbiter Context Camera (CTX) imagery, peripheral fracturing is analyzed using GIS to study variations in peripheral fracture geometries relative to the caldera rim. Visually, concentric fractures dominate within 20 km, radial fractures prevail between 20 and 50 km, followed by gradation into randomly oriented and highly angular intersections in the fretted terrain region. Rose diagrams of orientation relative to north expose uniformly oriented mean regional stresses, but do not illuminate localized caldera stresses. Further examination of orientation relative to caldera rim reveals expected orientations of ±30° on rose diagrams, taking into account the geometric nature of concentric faulting. These results establish a quantitative geometric system to differentiate localized from regional faulting surrounding Eden Patera.

  13. Fault Geometry and Slip Distribution at Depth of the 1997 Mw 7.2 Zirkuh Earthquake: Contribution of Near-Field Displacement Data

    NASA Astrophysics Data System (ADS)

    Marchandon, Mathilde; Vergnolle, Mathilde; Sudhaus, Henriette; Cavalié, Olivier

    2018-02-01

    In this study, we reestimate the source model of the 1997 Mw 7.2 Zirkuh earthquake (northeastern Iran) by jointly optimizing intermediate-field Interferometry Synthetic Aperture Radar data and near-field optical correlation data using a two-step fault modeling procedure. First, we estimate the geometry of the multisegmented Abiz fault using a genetic algorithm. Then, we discretize the fault segments into subfaults and invert the data to image the slip distribution on the fault. Our joint-data model, although similar to the Interferometry Synthetic Aperture Radar-based model to the first order, highlights differences in the fault dip and slip distribution. Our preferred model is ˜80° west dipping in the northern part of the fault, ˜75° east dipping in the southern part and shows three disconnected high slip zones separated by low slip zones. The low slip zones are located where the Abiz fault shows geometric complexities and where the aftershocks are located. We interpret this rough slip distribution as three asperities separated by geometrical barriers that impede the rupture propagation. Finally, no shallow slip deficit is found for the overall rupture except on the central segment where it could be due to off-fault deformation in quaternary deposits.

  14. Distributed bearing fault diagnosis based on vibration analysis

    NASA Astrophysics Data System (ADS)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  15. Geometrical and mechanical constraints on the formation of ring-fault calderas

    NASA Astrophysics Data System (ADS)

    Folch, A.; Martí, J.

    2004-04-01

    Ash-flow, plate-subsidence (piston-like) calderas are bounded by a set of arcuated sub-vertical collapse faults named ring-faults. Experimental studies on caldera formation, performed mostly using spherical or cylindrical magma chamber geometries, find that the resulting ring-faults correspond to steeply outward dipping reverse faults, and show that pre-existing fractures developed during pre-eruptive phases of pressure increase may play a major role in controlling the final collapse mechanism, a situation that should be expected in small to medium sized ring-fault calderas developed on top of composite volcanoes or volcanic clusters. On the other hand, some numerical experiments indicate that large sill-like, elongated magma chambers may induce collapse due to roof bending without fault reactivation, as seems to occur in large plate-subsidence calderas formed independently of pre-existing volcanoes. Also, numerical experiments allow the formation of nearly vertical or steeply inward dipping normal ring-faults, in contrast with most of the analogue models. Using a thermoelastic model, we investigate the geometrical and mechanical conditions to form ring-fault calderas, in particular the largest ones, without needing a previous crust fracturing. Results are given in terms of two dimensionless geometrical parameters, namely λ and e. The former is the chamber extension to chamber depth ratio, whereas the latter stands for the chamber eccentricity. We propose that the ( λ, e) pair determinates two different types of ring-fault calderas with different associated collapse regimes. Ring-fault region A is related to large plate-subsidence calderas (i.e. Andean calderas or Western US calderas), for which few depressurisation is needed to set up a collapse initially governed by flexural bending of the chamber roof. In contrast, ring-fault region B is related to small to moderate sized calderas (i.e. composite volcano calderas), for which much depressurisation is needed. Our opinion is that collapse requires, in the latter case, reactivation of pre-existing fractures and it is therefore more complex and history dependent.

  16. Metamorphic core complexes: Expression of crustal extension by ductile-brittle shearing of the geologic column

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1985-01-01

    Metamorphic core complexes and detachment fault terranes in the American Southwest are products of stretching of continental crust in the Tertiary. The physical and geometric properties of the structures, fault rocks, and contact relationships that developed as a consequence of the extension are especially well displayed in southeastern Arizona. The structures and fault rocks, as a system, reflect a ductile-through-brittle continuum of deformation, with individual structures and faults rocks showing remarkably coordinated strain and displacement patterns. Careful mapping and analysis of the structural system has led to the realization that strain and displacement were partitioned across a host of structures, through a spectrum of scales, in rocks of progressively changing rheology. By integrating observations made in different parts of the extensional system, especially at different inferred depth levels, it has been possible to construct a descriptive/kinematic model of the progressive deformation that achieved continental crustal extension in general, and the development of metamorphic core complexes in particular.

  17. Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Bydlon, S. A.; Kozdon, J. E.; Duru, K.; Dunham, E. M.

    2013-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the amplitude of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. Our goal is to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. Using a 2D high order finite difference rupture dynamics code, we nucleate ruptures on either flat or rough faults that obey strongly rate-weakening friction laws. These faults are embedded in domains with spatially varying material properties characterized by Von Karman autocorrelation functions and their associated power spectral density functions, with variations in wave speed of approximately 5 to 10%. Flat fault simulations demonstrate that off-fault material heterogeneity, at least with this particular form and amplitude, has only a minor influence on the rupture process (i.e., fluctuations in slip and rupture velocity). In contrast, ruptures histories on rough faults in both homogeneous and heterogeneous media include much larger short-wavelength fluctuations in slip and rupture velocity. We therefore conclude that source complexity is dominantly influenced by fault geometric complexity. To examine contributions of scattering versus fault geometry on ground motions, we compute spatially averaged root-mean-square (RMS) acceleration values as a function of fault perpendicular distance for a homogeneous medium and several heterogeneous media characterized by different statistical properties. We find that at distances less than ~6 km from the fault, RMS acceleration values from simulations with homogeneous and heterogeneous media are similar, but at greater distances the RMS values associated with heterogeneous media are larger than those associated with homogeneous media. The magnitude of this divergence increases with the amplitude of the heterogeneities. For instance, for a heterogeneous medium with a 10% standard deviation in material property values relative to mean values, RMS accelerations are ~50% larger than for a homogeneous medium at distances greater than 6 km. This finding is attributed to the scattering of coherent pulses into multiple pulses of decreased amplitude that subsequently arrive at later times. In order to understand the robustness of these results, an extension of our dynamic rupture and wave propagation code to 3D is underway.

  18. Reproducing the scaling laws for Slow and Fast ruptures

    NASA Astrophysics Data System (ADS)

    Romanet, Pierre; Bhat, Harsha; Madariaga, Raúl

    2017-04-01

    Modelling long term behaviour of large, natural fault systems, that are geometrically complex, is a challenging problem. This is why most of the research so far has concentrated on modelling the long term response of single planar fault system. To overcome this limitation, we appeal to a novel algorithm called the Fast Multipole Method which was developed in the context of modelling gravitational N-body problems. This method allows us to decrease the computational complexity of the calculation from O(N2) to O(N log N), N being the number of discretised elements on the fault. We then adapted this method to model the long term quasi-dynamic response of two faults, with step-over like geometry, that are governed by rate and state friction laws. We assume the faults have spatially uniform rate weakening friction. The results show that when stress interaction between faults is accounted, a complex spectrum of slip (including slow-slip events, dynamic ruptures and partial ruptures) emerges naturally. The simulated slow-slip and dynamic events follow the scaling law inferred by Ide et al. 2007 i. e. M ∝ T for slow-slip events and M ∝ T2 (in 2D) for dynamic events.

  19. Strike-parallel and strike-normal coordinate system around geometrically complicated rupture traces: use by NGA-West2 and further improvements

    USGS Publications Warehouse

    Spudich, Paul A.; Chiou, Brian

    2015-01-01

    We present a two-dimensional system of generalized coordinates for use with geometrically complex fault ruptures that are neither straight nor continuous. The coordinates are a generalization of the conventional strike-normal and strike-parallel coordinates of a single straight fault. The presented conventions and formulations are applicable to a single curved trace, as well as multiple traces representing the rupture of branching faults or noncontiguous faults. An early application of our generalized system is in the second round of the Next Generation of Ground-Motion Attenuation Model project for the Western United States (NGA-West2), where they were used in the characterization of the hanging-wall effects. We further improve the NGA-West2 strike-parallel formulation for multiple rupture traces with a more intuitive definition of the nominal strike direction. We also derive an analytical expression for the gradient of the generalized strike-normal coordinate. The direction of this gradient may be used as the strike-normal direction in the study of polarization effects on ground motions.

  20. The 2016 Kaikōura Earthquake Revealed by Kinematic Source Inversion and Seismic Wavefield Simulations: Slow Rupture Propagation on a Geometrically Complex Crustal Fault Network

    NASA Astrophysics Data System (ADS)

    Holden, C.; Kaneko, Y.; D'Anastasio, E.; Benites, R.; Fry, B.; Hamling, I. J.

    2017-11-01

    The 2016 Kaikōura (New Zealand) earthquake generated large ground motions and resulted in multiple onshore and offshore fault ruptures, a profusion of triggered landslides, and a regional tsunami. Here we examine the rupture evolution using two kinematic modeling techniques based on analysis of local strong-motion and high-rate GPS data. Our kinematic models capture a complex pattern of slowly (Vr < 2 km/s) propagating rupture from south to north, with over half of the moment release occurring in the northern source region, mostly on the Kekerengu fault, 60 s after the origin time. Both models indicate rupture reactivation on the Kekerengu fault with the time separation of 11 s between the start of the original failure and start of the subsequent one. We further conclude that most near-source waveforms can be explained by slip on the crustal faults, with little (<8%) or no contribution from the subduction interface.

  1. Strike-slip deformation reflects complex partitioning of strain in the Nankai Accretionary Prism (SE Japan)

    NASA Astrophysics Data System (ADS)

    Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.

    2018-01-01

    Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.

  2. A mechanical model for complex fault patterns induced by fluid overpressures due to dehydration reaction within evaporitic rocks

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Collettini, C.; Trippetta, F.; Barchi, M. R.; Minelli, G.

    2006-12-01

    Complex fault patterns, i.e. faults which exhibit a diverse range of strikes, may develop under a weak/absent regional tectonic field (e.g. polygonal faults). We studied a complex synsedimentary fault pattern, geometrically similar to polygonal fault systems, developed during an early Jurassic faulting episode and exposed in the Umbria-Marche Apennines (Italy). Along the passive margin of the African plate, these faults disrupt the Early Jurassic platform overlying the Triassic Evaporites, and bound the subsiding basins where a pelagic succession was successively deposited. We digitised the fault pattern at the regional scale on the grounds of the available geological maps, characterising each fault in terms of attitude, length and throw (i.e. vertical displacement). Fault statistical analysis shows a largely scattered orientation, a high grade of fragmentation, an average length of about 10 km and a constant length/displacement ratio. The measured stratigraphic throw ranges from 300 m to 700 m leading to very low long-term fault slip rates (less than 0.1 mm/yr). We propose a mechanical model where Jurassic faulting has been strongly influenced by the onset of dehydration of the Triassic Evaporites, made of interbedded gypsum layers and dolostones. Dehydration, i.e. anhydritization of the gypsum rich layers, initiated during burial at 1000 m of depth. During initial phases of dehydration increasing fluid pressures trapped at the gypsum-dolostones interface, promote hydrofracturing and faulting within the dolostone layers and subsequent fluid release. Fluid expulsion produces volume contraction of the dehydrating rocks causing vertical thinning and horizontal isotropic extension. This state of non-plane strain is accommodated within the composite gypsum-dolostones sequence by a mix of ductile (flowage and boudinage) and brittle (hydrofracturing and faulting) deformation processes. The stress field caused by the former processes, consistent with an almost isotropic stress distribution within the horizontal plane, explains well the studied complex fault pattern and seems to be dominant over the far-field regional extensional tectonics.

  3. Pragmatic geometric model evaluation

    NASA Astrophysics Data System (ADS)

    Pamer, Robert

    2015-04-01

    Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to calculate basically two model variations that can be seen as geometric extremes of all available input data. This does not lead to a probability distribution for the spatial position of geometric elements but it defines zones of major (or minor resp.) geometric variations due to data uncertainty. Both model evaluations are then analyzed together to give ranges of possible model outcomes in metric units.

  4. The influence of a reverse-reactivated normal fault on natural fracture geometries and relative chronologies at Castle Cove, Otway Basin

    NASA Astrophysics Data System (ADS)

    Debenham, Natalie; King, Rosalind C.; Holford, Simon P.

    2018-07-01

    Despite the ubiquity of normal faults that have undergone compressional inversion, documentation of the structural history of natural fractures around these structures is limited. In this paper, we investigate the geometries and relative chronologies of natural fractures adjacent to a reverse-reactivated normal fault, the Castle Cove Fault in the Otway Basin, southeast Australia. Local variations in strain resulted in greater deformation within the fault damage zone closer to the fault. Structural mapping within the damage zone reveals a complex tectonic history recording both regional and local perturbations in stress and a total of 11 fracture sets were identified, with three sets geometrically related to the Castle Cove Fault. The remaining fracture sets formed in response to local stresses at Castle Cove. Rifting in the late Cretaceous resulted in normal movement of the Castle Cove Fault and associated rollover folding, and the formation of the largest fracture set. Reverse-reactivation of the fault and associated anticlinal folding occurred during late Miocene to Pliocene compression. Rollover folding may have provided structural traps if seals were not breached by fractures, however anticlinal folding likely post-dated the main episodes of hydrocarbon generation and migration in the region. This study highlights the need to conduct careful reconstruction of the structural histories of fault zones that experienced complex reactivation histories when attempting to define off-fault fluid flow properties.

  5. The 2016 M7.8 Kaikōura earthquake revealed by multiple seismic wavefield simulations: slow rupture propagation on a geometrically complex fault network

    NASA Astrophysics Data System (ADS)

    Kaneko, Y.; Francois-Holden, C.; Hamling, I. J.; D'Anastasio, E.; Fry, B.

    2017-12-01

    The 2016 M7.8 Kaikōura (New Zealand) earthquake generated ground motions over 1g across a 200-km long region, resulted in multiple onshore and offshore fault ruptures, a profusion of triggered landslides, and a regional tsunami. Here we examine the rupture evolution during the Kaikōura earthquake multiple kinematic modelling methods based on local strong-motion and high-rate GPS data. Our kinematic models constrained by near-source data capture, in detail, a complex pattern of slowly (Vr < 2km/s) propagating rupture from the south to north, with over half of the moment release occurring in the northern source region, mostly on the Kekerengu fault, 60 seconds after the origin time. Interestingly, both models indicate rupture re-activation on the Kekerengu fault with the time separation of 11 seconds. We further conclude that most near-source waveforms can be explained by slip on the crustal faults, with little (<8%) or no contribution from the subduction interface.

  6. Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation, verification, and application

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Uphoff, Carsten

    2018-05-01

    The dynamics and potential size of earthquakes depend crucially on rupture transfers between adjacent fault segments. To accurately describe earthquake source dynamics, numerical models can account for realistic fault geometries and rheologies such as nonlinear inelastic processes off the slip interface. We present implementation, verification, and application of off-fault Drucker-Prager plasticity in the open source software SeisSol (www.seissol.org). SeisSol is based on an arbitrary high-order derivative modal Discontinuous Galerkin (ADER-DG) method using unstructured, tetrahedral meshes specifically suited for complex geometries. Two implementation approaches are detailed, modelling plastic failure either employing sub-elemental quadrature points or switching to nodal basis coefficients. At fine fault discretizations the nodal basis approach is up to 6 times more efficient in terms of computational costs while yielding comparable accuracy. Both methods are verified in community benchmark problems and by three dimensional numerical h- and p-refinement studies with heterogeneous initial stresses. We observe no spectral convergence for on-fault quantities with respect to a given reference solution, but rather discuss a limitation to low-order convergence for heterogeneous 3D dynamic rupture problems. For simulations including plasticity, a high fault resolution may be less crucial than commonly assumed, due to the regularization of peak slip rate and an increase of the minimum cohesive zone width. In large-scale dynamic rupture simulations based on the 1992 Landers earthquake, we observe high rupture complexity including reverse slip, direct branching, and dynamic triggering. The spatio-temporal distribution of rupture transfers are altered distinctively by plastic energy absorption, correlated with locations of geometrical fault complexity. Computational cost increases by 7% when accounting for off-fault plasticity in the demonstrating application. Our results imply that the combination of fully 3D dynamic modelling, complex fault geometries, and off-fault plastic yielding is important to realistically capture dynamic rupture transfers in natural fault systems.

  7. Oblique reactivation of lithosphere-scale lineaments controls rift physiography - the upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.

    2018-04-01

    Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of the lineament is reactivated in a range of tectonic styles, including both sinistral and dextral strike-slip motions, with the geometry and kinematics of these faults often inconsistent with what may otherwise be inferred from regional tectonics alone. Understanding these different styles of reactivation not only allows us to better understand the influence of sub-crustal lithospheric structure on rifting but also offers insights into the prevailing stress field during regional tectonic events.

  8. Temporal evolution of surface rupture deduced from coseismic multi-mode secondary fractures: Insights from the October 8, 2005 (Mw 7.6) Kashmir earthquake, NW Himalaya

    NASA Astrophysics Data System (ADS)

    Sayab, Mohammad; Khan, Muhammad Asif

    2010-10-01

    Detailed rupture-fracture analyses of some of the well-studied earthquakes have revealed that the geometrical arrangement of secondary faults and fractures can be used as a geological tool to understand the temporal evolution of slip produced during the mainshock. The October 8, 2005 Mw 7.6 Kashmir earthquake, NW Himalaya, surface rupture provides an opportunity to study a complex network of secondary fractures developed on the hanging wall of the fault scarp. The main fault scarp is clearly thrust-type, rupture length is ~ 75 ± 5 km and the overall trend of the rupture is NW-SE. We present the results of our detailed structural mapping of secondary faults and fractures at 1:100 scale, on the hanging wall of the southern end of the rupture in the vicinity of the Sar Pain. Secondary ruptures can be broadly classified as two main types, 1) normal faults and, (2) right-lateral strike-slip 'Riedel' fractures. The secondary normal faults are NW-SE striking, with a maximum 3.3 meter vertical displacement and 2.5 meter horizontal displacement. Estimated total horizontal extension across the secondary normal faults is 3.1-3.5%. We propose that the bending-moment and coseismic stress relaxation can explain the formation of secondary normal faults on the hanging wall of the thrust fault. The strike-slip 'Riedel' fractures form distinct sets of tension (T) and shear fractures (R', R, Y) with right-lateral displacement. Field observations revealed that the 'Riedel' fractures (T) cut the secondary normal faults. In addition, there is kinematic incompatibility and magnitude mismatch between the secondary normal faults and strike-slip 'Riedel' fractures. The cross-cutting relationship, geometric and magnitude incoherence implies a temporal evolution of slip from dip- to strike-slip during the mainshock faulting. The interpretation is consistent with the thrust fault plane solution with minor right-lateral strike-slip component.

  9. The role of bed-parallel slip in the development of complex normal fault zones

    NASA Astrophysics Data System (ADS)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  10. Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.; Schaff, D.P.; Cole, A.

    2004-01-01

    Double-difference locations of ???8000 earthquakes from 1969-2002 on the Parkfield section of the San Andreas Fault reveal detailed fault structures and seismicity that is, although complex, highly organized in both space and time. Distinctive features of the seismicity include: 1) multiple recurrence of earthquakes of the same size at precisely the same location on the fault (multiplets), implying frictional or geometric controls on their location and size; 2) sub-horizontal alignments of hypocenters along the fault plane (streaks), suggestive of rheological transitions within the fault zone and/or stress concentrations between locked and creeping areas; 3) regions devoid of microearthquakes with typical dimensions of 1-5 km (holes), one of which contains the M6 1966 Parkfield earthquake hypocenter. These features represent long lived structures that persist through many cycles of individual event. Copyright 2004 by the American Geophysical Union.

  11. Avionic Air Data Sensors Fault Detection and Isolation by means of Singular Perturbation and Geometric Approach

    PubMed Central

    2017-01-01

    Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673

  12. Destabilizing geometrical and bimaterial effects in frictional sliding

    NASA Astrophysics Data System (ADS)

    Aldam, M.; Bar Sinai, Y.; Svetlizky, I.; Fineberg, J.; Brener, E.; Xu, S.; Ben-Zion, Y.; Bouchbinder, E.

    2017-12-01

    Asymmetry of the two blocks forming a fault plane, i.e. the lack of reflection symmetry with respect to the fault plane, either geometrical or material, gives rise to generic destabilizing effects associated with the elastodynamic coupling between slip and normal stress variations. While geometric asymmetry exists in various geophysical contexts, such as thrust faults and landslide systems, its effect on fault dynamics is often overlooked. In the first part of the talk, I will show that geometrical asymmetry alone can destabilize velocity-strengthening faults, which are otherwise stable. I will further show that geometrical asymmetry accounts for a significant weakening effect observed in rupture propagation and present laboratory data that support the theory. In the second part of the talk, I will focus on material asymmetry and discuss an unexpected property of the well-studied frictional bimaterial effect. I will show that while the bimaterial coupling between slip and normal stress variations is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a non-monotonic dependence on the bimaterial contrast. This non-monotonicity is demonstrated for the stability of steady-sliding and for unsteady rupture propagation in faults described by various friction laws (regularized Coulomb, slip-weakening, rate-and-state friction), using analytic and numerical tools. All in all, the importance of bulk asymmetry to interfacial fault dynamics is highlighted. [1] Michael Aldam, Yohai Bar-Sinai, Ilya Svetlizky, Efim A. Brener, Jay Fineberg, and Eran Bouchbinder. Frictional Sliding without Geometrical Reflection Symmetry. Phys. Rev. X, 6(4):041023, 2016. [2] Michael Aldam, Shiqing Xu, Efim A. Brener, Yehuda Ben-Zion, and Eran Bouchbinder. Non-monotonicity of the frictional bimaterial effect. arXiv:1707.01132, 2017.

  13. Geometry and active tectonics of the Los Osos-Hosgri Fault Intersection in Estero Bay, CA: Reconciling seismicity patterns with near-surface geology

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Hardebeck, J.; Johnson, S. Y.; Kluesner, J.

    2016-12-01

    Characterizing active structures within structurally complex fault intersections is essential for unraveling the deformational history and for assessing the importance of fault intersections in regional earthquake hazard assessments. We employ an integrative, multi-scale geophysical approach to describe the 3D geometry and active tectonics of the offshore Los Osos fault (LOF) in Estero Bay, California. The shallow structure of the LOF, as imaged with multibeam and high-resolution seismic-reflection data, reveals a complex west-diverging zone of active faulting that bends into and joins the Hosgri fault. The down-dip geometry of the LOF as revealed by gravity, magnetic, and industry multi-channel seismic data, is vertical to steeply-dipping and varies along strike. As the LOF extends offshore, it is characterized by SW-side-up motion on a series of W-NW trending, steeply SW-dipping reverse faults. The LOF bends to the north ( 23°) as it approaches the Hosgri fault and dips steeply to the NE along a magnetic basement block. Inversion of earthquake focal mechanisms within Estero Bay yields maximum compressive stress axes that are near-horizontal and trend approximately N15E. This trend is consistent with dextral strike-slip faulting along NW-SE trending structures such as the Hosgri fault and northern LOF, and oblique dip-slip motion along the W-NW trending section of the LOF. Notably, NW-SE trending structures illuminated by seismicity in Estero Bay coincide with, but also appear to cross-cut, LOF structures imaged in the near-surface. We suggest this apparent disconnect reflects ongoing fault reorganization at a dynamic and inherently unstable fault intersection, in which the seismicity reflects active deformation at depth that is not clearly expressed in the near-surface geology. Direct connectivity between the Hosgri and Los Osos faults suggests a combined earthquake rupture is possible; however, the geometrical complexity along the offshore LOF may limit the extent of rupture.

  14. Dynamic ruptures on faults of complex geometry: insights from numerical simulations, from large-scale curvature to small-scale fractal roughness

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.

    2016-12-01

    The geometry of faults is subject to a large degree of uncertainty. As buried structures being not directly observable, their complex shapes may only be inferred from surface traces, if available, or through geophysical methods, such as reflection seismology. As a consequence, most studies aiming at assessing the potential hazard of faults rely on idealized fault models, based on observable large-scale features. Yet, real faults are known to be wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. The influence of roughness on the earthquake rupture process is currently a driving topic in the computational seismology community. From the numerical point of view, rough faults problems are challenging problems that require optimized codes able to run efficiently on high-performance computing infrastructure and simultaneously handle complex geometries. Physically, simulated ruptures hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Incorporating fault geometry on all scales may thus be crucial to model realistic earthquake source processes and to estimate more accurately seismic hazard. In this study, we use the software package SeisSol, based on an ADER-Discontinuous Galerkin scheme, to run our numerical simulations. SeisSol allows solving the spontaneous dynamic earthquake rupture problem and the wave propagation problem with high-order accuracy in space and time efficiently on large-scale machines. In this study, the influence of fault roughness on dynamic rupture style (e.g. onset of supershear transition, rupture front coherence, propagation of self-healing pulses, etc) at different length scales is investigated by analyzing ruptures on faults of varying roughness spectral content. In particular, we investigate the existence of a minimum roughness length scale in terms of rupture inherent length scales below which the rupture ceases to be sensible. Finally, the effect of fault geometry on ground-motions, in the near-field, is considered. Our simulations feature a classical linear slip weakening on the fault and a viscoplastic constitutive model off the fault. The benefits of using a more elaborate fast velocity-weakening friction law will also be considered.

  15. A Classification of Geometric Styles for Paleoseismic Trenches across Normal Faults in the North Island, New Zealand: An Interplay between Tectonic and Erosional/Depositional Processes

    NASA Astrophysics Data System (ADS)

    Villamor, P.; Berryman, K.; Langridge, R.; van Dissen, R.; Persaud, M.; Canora, C.; Nicol, A.; Alloway, B.; Litchfield, N.; Cochran, U.; Stirling, M.; Mouslopoulou, V.; Wilson, K.

    2006-12-01

    Over the last ~15 years we have excavated 73 trenches across active normal faults in the Taupo and Hauraki Rifts, North Island, New Zealand. The stratigraphy in these trenches is quite similar because of the predominance of volcanic and volcanic-derived deposits, sourced from the active Taupo Volcanic Zone. These deposits, whether alluvial (reworked, mainly volcanics) or volcanic (tephra), are all characterized by relative loose, to moderately loose, medium-size gravel and sands, and cohesive (sticky) clays. The homogeneity of the materials and of the sedimentation rates across these paleoseismic trenches has allowed us to assess the influence of different materials on the faulting style. The predominant types of material, their relative thickness, and their stratigraphic order (e.g. whether cohesive materials are overlying or underlying loose materials) in the trench strongly determine the deformation style when subjected to normal faulting. However, the final geometric relation between the sedimentary layers and the faults also depends on the sediment depositional environment (e.g., alluvial vs air fall deposition), the fault dip, and cumulative displacement (i.e., the size of the scarp). For example, the cumulative displacement of the fault conditions the amount of erosion/deposition at/derived from the scarp itself. When we combine observations from the tectonic deformation style and from geometries derived from erosional/depositional processes, we can define at least five "geometric styles" present in paleoseismic trenches in our study area: 1) folding, where the fault does not reach the upper layers, and relative displacement of the fault walls is achieved by folding (dragging of the layer); 2) folding-large cracks, where relative movement of the fault walls is achieved by folding and opening of large fissures; 3) faulting, the most common style where a layer is displaced along the fault plane; 4) faulting- erosion, similar to the previous style but with larger cumulative displacements which cause large amounts of erosion and/or deposition at the fault scarp; and 5) faulting-toppling, when due to gravitational forces the materials on the up-thrown side of the fault topple towards the downthrown side causing rotation of the fault plane itself, which induces a geometry of "false reverse fault". These observations can be used to analyze the criteria to identify individual earthquakes within each "geometric style". We present examples from New Zealand to describe the "geometric styles", their faulting criteria and the uncertainties associated with these criteria.

  16. Geometric incompatibility in a fault system.

    PubMed Central

    Gabrielov, A; Keilis-Borok, V; Jackson, D D

    1996-01-01

    Interdependence between geometry of a fault system, its kinematics, and seismicity is investigated. Quantitative measure is introduced for inconsistency between a fixed configuration of faults and the slip rates on each fault. This measure, named geometric incompatibility (G), depicts summarily the instability near the fault junctions: their divergence or convergence ("unlocking" or "locking up") and accumulation of stress and deformations. Accordingly, the changes in G are connected with dynamics of seismicity. Apart from geometric incompatibility, we consider deviation K from well-known Saint Venant condition of kinematic compatibility. This deviation depicts summarily unaccounted stress and strain accumulation in the region and/or internal inconsistencies in a reconstruction of block- and fault system (its geometry and movements). The estimates of G and K provide a useful tool for bringing together the data on different types of movement in a fault system. An analog of Stokes formula is found that allows determination of the total values of G and K in a region from the data on its boundary. The phenomenon of geometric incompatibility implies that nucleation of strong earthquakes is to large extent controlled by processes near fault junctions. The junctions that have been locked up may act as transient asperities, and unlocked junctions may act as transient weakest links. Tentative estimates of K and G are made for each end of the Big Bend of the San Andreas fault system in Southern California. Recent strong earthquakes Landers (1992, M = 7.3) and Northridge (1994, M = 6.7) both reduced K but had opposite impact on G: Landers unlocked the area, whereas Northridge locked it up again. Images Fig. 1 Fig. 2 PMID:11607673

  17. Fault geometry and slip distribution of the 2008 Mw 7.9 Wenchuan, China earthquake, inferred from GPS and InSAR measurements

    NASA Astrophysics Data System (ADS)

    Wan, Yongge; Shen, Zheng-Kang; Bürgmann, Roland; Sun, Jianbao; Wang, Min

    2017-02-01

    We revisit the problem of coseismic rupture of the 2008 Mw7.9 Wenchuan earthquake. Precise determination of the fault structure and slip distribution provides critical information about the mechanical behaviour of the fault system and earthquake rupture. We use all the geodetic data available, craft a more realistic Earth structure and fault model compared to previous studies, and employ a nonlinear inversion scheme to optimally solve for the fault geometry and slip distribution. Compared to a homogeneous elastic half-space model and laterally uniform layered models, adopting separate layered elastic structure models on both sides of the Beichuan fault significantly improved data fitting. Our results reveal that: (1) The Beichuan fault is listric in shape, with near surface fault dip angles increasing from ˜36° at the southwest end to ˜83° at the northeast end of the rupture. (2) The fault rupture style changes from predominantly thrust at the southwest end to dextral at the northeast end of the fault rupture. (3) Fault slip peaks near the surface for most parts of the fault, with ˜8.4 m thrust and ˜5 m dextral slip near Hongkou and ˜6 m thrust and ˜8.4 m dextral slip near Beichuan, respectively. (4) The peak slips are located around fault geometric complexities, suggesting that earthquake style and rupture propagation were determined by fault zone geometric barriers. Such barriers exist primarily along restraining left stepping discontinuities of the dextral-compressional fault system. (5) The seismic moment released on the fault above 20 km depth is 8.2×1021 N m, corresponding to an Mw7.9 event. The seismic moments released on the local slip concentrations are equivalent to events of Mw7.5 at Yingxiu-Hongkou, Mw7.3 at Beichuan-Pingtong, Mw7.2 near Qingping, Mw7.1 near Qingchuan, and Mw6.7 near Nanba, respectively. (6) The fault geometry and kinematics are consistent with a model in which crustal deformation at the eastern margin of the Tibetan plateau is decoupled by differential motion across a decollement in the mid crust, above which deformation is dominated by brittle reverse faulting and below which deformation occurs by viscous horizontal shortening and vertical thickening.

  18. On the critical or geometrical nature of the observed scaling laws associated with the fracture and faulting processes

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Kopanas, John; Antonopoulos, George; Nomicos, Constantinos; Eftaxias, Konstantinos

    2015-04-01

    One of the largest controversial issues of the materials science community is the interpretation of scaling laws associated with the fracture and faulting processes. Especially, an important open question is whether the spatial and temporal complexity of earthquakes and fault structures, above all the interpretation of the observed scaling laws, emerge from geometrical and material built-in heterogeneities or from the critical behavior inherent to the nonlinear equations governing the earthquake dynamics. Crack propagation is the basic mechanism of material's failure. A number of laboratory studies carried out on a wide range of materials have revealed the existence of EMEs during fracture experiments, while these emissions are ranging in a wide frequency spectrum, i.e., from the kHz to the MHz bands. A crucial feature observed on the laboratory scale is that the MHz EME systematically precedes the corresponding kHz one. The aforementioned crucial feature is observed in geophysical scale, as well. The remarkable asynchronous appearance of these two EMEs both on the laboratory and the geophysical scale implies that they refer to different final stages of faulting process. Accumulated laboratory, theoretical and numerical evidence supports the hypothesis that the MHz EME is emitted during the fracture of process of heterogeneous medium surrounding the family of strong entities (asperities) distributed along the fault sustaining the system. The kHz EME is attributed to the family of asperities themselves. We argue in terms of the fracture induced pre-seismic MHz-kHz EMEs that the scaling laws associated with the fracture of heterogeneous materials emerge from the critical behavior inherent to the nonlinear equations governing their dynamics (second-order phase transition), while the scaling laws associated with the fracture of family of asperities have geometric nature, namely, are rooted in the fractal nature of the population of asperities.

  19. Mapping 3D fault geometry in earthquakes using high-resolution topography: Examples from the 2010 El Mayor-Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Walker, Richard T.; Elliott, John R.; Parsons, Barry

    2016-04-01

    Fault dips are usually measured from outcrops in the field or inferred through geodetic or seismological modeling. Here we apply the classic structural geology approach of calculating dip from a fault's 3-D surface trace using recent, high-resolution topography. A test study applied to the 2010 El Mayor-Cucapah earthquake shows very good agreement between our results and those previously determined from field measurements. To obtain a reliable estimate, a fault segment ≥120 m long with a topographic variation ≥15 m is suggested. We then applied this method to the 2013 Balochistan earthquake, getting dips similar to previous estimates. Our dip estimates show a switch from north to south dipping at the southern end of the main trace, which appears to be a response to local extension within a stepover. We suggest that this previously unidentified geometrical complexity may act as the endpoint of earthquake ruptures for the southern end of the Hoshab fault.

  20. Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Bydlon, S.; Dunham, E. M.; Kozdon, J. E.

    2012-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.

  1. Beyond-laboratory-scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation

    NASA Astrophysics Data System (ADS)

    Ishibashi, Takuya; Watanabe, Noriaki; Hirano, Nobuo; Okamoto, Atsushi; Tsuchiya, Noriyoshi

    2015-01-01

    The present study evaluates aperture distributions and fluid flow characteristics for variously sized laboratory-scale granite fractures under confining stress. As a significant result of the laboratory investigation, the contact area in fracture plane was found to be virtually independent of scale. By combining this characteristic with the self-affine fractal nature of fracture surfaces, a novel method for predicting fracture aperture distributions beyond laboratory scale is developed. Validity of this method is revealed through reproduction of the results of laboratory investigation and the maximum aperture-fracture length relations, which are reported in the literature, for natural fractures. The present study finally predicts conceivable scale dependencies of fluid flows through joints (fractures without shear displacement) and faults (fractures with shear displacement). Both joint and fault aperture distributions are characterized by a scale-independent contact area, a scale-dependent geometric mean, and a scale-independent geometric standard deviation of aperture. The contact areas for joints and faults are approximately 60% and 40%. Changes in the geometric means of joint and fault apertures (µm), em, joint and em, fault, with fracture length (m), l, are approximated by em, joint = 1 × 102 l0.1 and em, fault = 1 × 103 l0.7, whereas the geometric standard deviations of both joint and fault apertures are approximately 3. Fluid flows through both joints and faults are characterized by formations of preferential flow paths (i.e., channeling flows) with scale-independent flow areas of approximately 10%, whereas the joint and fault permeabilities (m2), kjoint and kfault, are scale dependent and are approximated as kjoint = 1 × 10-12 l0.2 and kfault = 1 × 10-8 l1.1.

  2. New Geologic Map and Structural Cross Sections of the Death Valley Extended Terrain (southern Sierra Nevada, California to Spring Mountains, Nevada): Toward 3D Kinematic Reconstructions

    NASA Astrophysics Data System (ADS)

    Lutz, B. M.; Axen, G. J.; Phillips, F. M.

    2017-12-01

    Tectonic reconstructions for the Death Valley extended terrain (S. Sierra Nevada to Spring Mountains) have evolved to include a growing number of offset markers for strike-slip fault systems but are mainly map view (2D) and do not incorporate a wealth of additional constraints. We present a new 1:300,000 digital geologic map and structural cross sections, which provide a geometric framework for stepwise 3D reconstructions of Late Cenozoic extension and transtension. 3D models will decipher complex relationships between strike-slip, normal, and detachment faults and their role in accommodating large magnitude extension/rigid block rotation. Fault coordination is key to understanding how extensional systems and transform margins evolve with changing boundary conditions. 3D geometric and kinematic analysis adds key strain compatibility unavailable in 2D reconstructions. The stratigraphic framework of Fridrich and Thompson (2011) is applied to rocks outside of Death Valley. Cenozoic basin deposits are grouped into 6 assemblages differentiated by age, provenance, and bounding unconformities, which reflect Pacific-North American plate boundary events. Pre-Cenozoic rocks are grouped for utility: for example, Cararra Formation equivalents are grouped because they form a Cordilleran thrust decollement zone. Offset markers are summarized in the associated tectonic map. Other constraints include fault geometries and slip rates, age, geometry and provenance of Cenozoic basins, gravity, cooling histories of footwalls, and limited seismic/well data. Cross sections were constructed parallel to net-transport directions of fault blocks. Surface fault geometries were compiled from previous mapping and projected to depth using seismic/gravity data. Cooling histories of footwalls guided geometric interpretation of uplifted detachment footwalls. Mesh surfaces will be generated from 2D section lines to create a framework for stepwise 3D reconstruction of extension and transtension in the study area. Analysis of all available data in a seamless 3D framework should force more unique solutions to outstanding kinematic problems, provide a better understanding of the Cordilleran thrust belt, and constrain the mechanisms of strain partitioning between the upper and lower crust.

  3. Structural analysis using thrust-fault hanging-wall sequence diagrams: Ogden duplex, Wasatch Range, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirmer, T.W.

    1988-05-01

    Detailed mapping and cross-section traverses provide the control for structural analysis and geometric modeling of the Ogden duplex, a complex thrust system exposed in the Wasatch Mountains, east of Ogden, Utah. The structures consist of east-dipping folded thrust faults, basement-cored horses, lateral ramps and folds, and tear faults. The sequence of thrusting determined by means of lateral overlap of horses, thrust-splay relationships, and a top-to-bottom piggyback development is Willard thrust, Ogden thrust, Weber thrust, and Taylor thrust. Major decollement zones occur in the Cambrian shales and limestones. The Tintic Quartzite is the marker for determining gross geometries of horses. Thismore » exposed duplex serves as a good model to illustrate the method of constructing a hanging-wall sequence diagram - a series of longitudinal cross sections that move forward in time and space, and show how a thrust system formed as it moved updip over various footwall ramps. A hanging wall sequence diagram also shows the complex lateral variations in a thrust system and helps to locate lateral ramps, lateral folds, tear faults, and other features not shown on dip-oriented cross sections. 8 figures.« less

  4. Boundary integral solutions for faults in flowing rock

    NASA Astrophysics Data System (ADS)

    Wei, Wei

    We develop new boundary-integral solutions for faulting in viscous rock and implement solutions numerically with a boundary-element computer program, called Faux_Pas. In the solutions, large permanent rock deformations near faults are treated with velocity discontinuities within linear, incompressible, creeping, viscous flows. The faults may have zero strength or a finite strength that can be a constant or varying with deformation. Large deformations are achieved by integrating step by step with the fourth-order Runge-Kutta method. With this method, the boundaries and passive markers are updated dynamically. Faux_Pas has been applied to straight and curved elementary faults, and to listric and dish compound faults, composed of two or more elementary faults, such as listric faults and dish faults, all subjected to simple shear, shortening and lengthening. It reproduces the essential geometric elements seen in seismic profiles of fault-related folds associated with listric thrust faults in the Bighorn Basin of Wyoming, with dish faults in the Appalachians in Pennsylvania, Parry Islands of Canada and San Fernando Valley, California, and with listric normal faults in the Gulf of Mexico. Faux_Pas also predicts that some of these fault-related structures will include fascinating minor folds, especially in the footwall of the fault, that have been recognized earlier but have not been known to be related to the faulting. Some of these minor folds are potential structural traps. Faux_Pas is superior in several respects to current geometric techniques of balancing profiles, such as the "fault-bend fold" construction. With Faux_Pas, both the hanging wall and footwall are deformable, the faults are mechanical features, the cross sections are automatically balanced and, most important, the solutions are based on the first principles of mechanics. With the geometric techniques, folds are drawn only in the hanging wall, the faults are simply lines, the cross sections are arbitrarily balanced and, most important, the drawings are based on unsubstantiated rules of thumb. Faux_Pas provides the first rational tool for the study of fault-related folds.

  5. Ground-motion signature of dynamic ruptures on rough faults

    NASA Astrophysics Data System (ADS)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.

    2016-04-01

    Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.

  6. First-order and subsidiary faults controlling the time-space evolution of the Central Italy 2016 seismic sequence - a multi-source data detailed 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Lavecchia, Giusy; de nardis, Rita; Ferrarini, Federica; Cirillo, Daniele; Brozzetti, Francesco

    2017-04-01

    The Central Italy 2016 seismic sequence, with its three major events (24 August, Mw 6.0/6.2; 26 October Mw5.9/6.0; 30 October Mw6.5/6.6), activated a well-known active west-dipping extensional fault alignment of central Italy (Vettore-Gorzano faults, VEGO). Soon after the first event, based on geological, interferometric and at that moment available seismological data, a preliminary 3D fault model of VEGO was built. Such a model is here updated and improved at the light of a large amount of relocated earthquake data (time interval 24 August to 30 November 2016, 0.1≤ML ≤6.5, Chiaraluce at al., submitted to SRL) plus additional geological information. The 3D modeling was done using the software package MOVE from the Midland Valley. All the available data were taken into consideration (surface traces, fault-slip data, primary co-seismic surface fractures, geological maps and cross-sections, hypocentral locations and focal mechanisms of both background seismicity and seismic sequences). The VEGO geometric configuration did not substantially changed with respect to the previous model, but some additional structures involved in the sequence were reconstructed. In particular, four additional faults are well evident: a NE-dipping normal fault (dip-angle 50˚ ) antithetic to Vettore Fault, located at depths between 1 and 5 km; a WNW dipping plane (dip-angle 30˚ ) located at depth between 1 and 4 km within the Vettore footwall volume; this structure represents a splay of the late Miocene Sibillini thrust, which is evidently cross-cut and dislocated by the Vettore normal fault; a SW-dipping normal fault representing an unknown northward prosecution of the VEGO alignment, where since 26 October a relevant seismic activity was released; an unknown east-dipping low-angle detachment, where VEGO detaches at a depth of about 10-11 km. An uninterrupted microseismic activity has illuminated such a detachment not only during the overall sequence, but also in the previous months. At the light of the reconstructed geometric pattern integrated with the evidences of primary co-seismic fractures, it results evident that the Central Italy seismic sequence represents a "classic", although complex, intra-Apennine normal-faulting event, reactivating a long-term quiescent seismogenic alignment (e.g. VEGO). The reactivated and inverted compressional structures are confined at shallow depth within the Vettore footwall, and in no way control the major events of the sequence. Conversely, an important regional role is played by the east-dipping detachment. It represents the missing geometric link between the Altotiberina LANF of northern Umbria and the recently discovered LANF of Latium-Abruzzi.

  7. Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Ji, C.; Helmberger, D.V.; Song, T.-R.A.; Ma, K.-F.; Wald, D.J.

    2001-01-01

    We report on the fault complexity of the large (Mw = 7.6) Chi-Chi earthquake obtained by inverting densely and well-distributed static measurements consisting of 119 GPS and 23 doubly integrated strong motion records. We show that the slip of the Chi-Chi earthquake was concentrated on the surface of a "wedge shaped" block. The inferred geometric complexity explains the difference between the strike of the fault plane determined by long period seismic data and surface break observations. When combined with other geophysical and geological observations, the result provides a unique snapshot of tectonic deformation taking place in the form of very large (>10m) displacements of a massive wedge-shaped crustal block which may relate to the changeover from over-thrusting to subducting motion between the Philippine Sea and the Eurasian plates.

  8. Quasi-dynamic earthquake fault systems with rheological heterogeneity

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2009-12-01

    Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.

  9. Why style matters - uncertainty and structural interpretation in thrust belts.

    NASA Astrophysics Data System (ADS)

    Butler, Rob; Bond, Clare; Watkins, Hannah

    2016-04-01

    Structural complexity together with challenging seismic imaging make for significant uncertainty in developing geometric interpretations of fold and thrust belts. Here we examine these issues and develop more realistic approaches to building interpretations. At all scales, the best tests of the internal consistency of individual interpretations come from structural restoration (section balancing), provided allowance is made for heterogeneity in stratigraphy and strain. However, many existing balancing approaches give misleading perceptions of interpretational risk - both on the scale of individual fold-thrust (trap) structures and in regional cross-sections. At the trap-scale, idealised models are widely cited - fault-bend-fold, fault-propagation folding and trishear. These make entirely arbitrary choices for fault localisation and layer-by-layer deformation: precise relationships between faults and fold geometry are generally invalidated by real-world conditions of stratigraphic variation and distributed strain. Furthermore, subsurface predictions made using these idealisations for hydrocarbon exploration commonly fail the test of drilling. Rarely acknowledged, the geometric reliability of seismic images depends on the assigned seismic velocity model, which in turn relies on geological interpretation. Thus iterative approaches are required between geology and geophysics. The portfolio of commonly cited outcrop analogues is strongly biased to examples that simply conform to idealised models - apparently abnormal structures are rarely described - or even photographed! Insight can come from gravity-driven deep-water fold-belts where part of the spectrum of fold-thrust complexity is resolved through seismic imaging. This imagery shows deformation complexity in fold forelimbs and backlimbs. However, the applicability of these, weakly lithified systems to well-lithified successions (e.g. carbonates) of many foreland thrust belts remains conjectural. Examples of lithified systems will be drawn from the foothills of the Colombian Andes and the Papuan fold-belt. These show major forelimb structures with segmented steep-limbs containing substantial oil-columns, suggesting forelimb complexity in lithified sections maybe more common than predicted by idealised models. As with individual fold-thrust structures, regional cross-sections are commonly open to multiple interpretations. To date the over-reliance on comparative approaches with a narrow range of published studies (e.g. Canadian cordilleran foothills) has biased global interpretations of thrust systems. Perhaps the most significant issues relate to establishing a depth to detachment - specifically the involvement of basement at depth - especially the role of pre-existing (rift-originated) faults and their inversion. Not only do these choices impact on the local interpretation, the inferred shortening values, obtained by comparing restored section-lengths, can be radically different. Further issues arise for emergent, syn-depositional thrust systems where sedimentation prohibits flat-on-flat thrusting in favour of continuously ramping thrust trajectories. Inappropriate adoption of geometries gathered from buried (duplex) systems can create geometric interpretations that are tectono-stratigraphically invalid. This presentation illustrates these topics using a variety of thrust systems with the aim of promoting discussion on developing better interpretative strategies than those adopted hitherto.

  10. Space-time evolution of a growth fold (Betic Cordillera, Spain). Evidences from 3D geometrical modelling

    NASA Astrophysics Data System (ADS)

    Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio

    2014-05-01

    We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.

  11. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.

  12. Synthetic Earthquake Statistics From Physical Fault Models for the Lower Rhine Embayment

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zöller, G.

    2012-04-01

    As of today, seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates they fail to provide a link between the observed seismicity and the underlying physical processes. Solving a state-of-the-art fully dynamic description set of all relevant physical processes related to earthquake fault systems is likely not useful since it comes with a large number of degrees of freedom, poor constraints on its model parameters and a huge computational effort. Here, quasi-static and quasi-dynamic physical fault simulators provide a compromise between physical completeness and computational affordability and aim at providing a link between basic physical concepts and statistics of seismicity. Within the framework of quasi-static and quasi-dynamic earthquake simulators we investigate a model of the Lower Rhine Embayment (LRE) that is based upon seismological and geological data. We present and discuss statistics of the spatio-temporal behavior of generated synthetic earthquake catalogs with respect to simplification (e.g. simple two-fault cases) as well as to complication (e.g. hidden faults, geometric complexity, heterogeneities of constitutive parameters).

  13. A seismically active section of the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Wald, David J.; Wallace, Terry C.

    1986-10-01

    The section of the Southwest Indian Ocean Ridge west of the Prince Edward Fracture zone has a large ridge axis offset and a complicated ridge-transform morphology. We have determined the source mechanisms of transform earthquakes along this portion of the ridge from an inversion of long-period P and SH waveforms. The seismicity is characterized by anomalous faulting mechanisms, source complexity and an unexpectedly large seismic moment release. Several earthquakes with dip-slip components of faulting have been recognized on the central section of the Andrew Bain and 32° E transforms suggesting geometrical complexity along the transform. This region has experienced a Mw = 8.0 transform earthquake in 1942, yet we observe a seismic slip rate during the last 20 years that is still comparable to the predicted spreading rate (1.6 cm/yr). The calculated slip rate over a period of 60 years is three times greater than the expected rate of spreading.

  14. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  15. Three-dimensional strain produced by >50 My of episodic extension, Horse Prairie basin area, SW Montana, U.S.A.

    NASA Astrophysics Data System (ADS)

    Vandenburg, Colby J.; Janecke, Susanne U.; McIntosh, William C.

    1998-12-01

    The Horse Prairie basin of southwestern Montana is a complex, east-dipping half-graben that contains three angular unconformity-bounded sequences of Tertiary sedimentary rocks overlying middle Eocene volcanic rocks. New mapping of the basin and its hanging wall indicate that five temporally and geometrically distinct phases of normal faulting and at least three generations of fault-related extensional folding affected the area during the late Mesozoic (?) to Cenozoic. All of these phases of extension are evident over regional or cordilleran-scale domains. The extension direction has rotated ˜90° four times in the Horse Prairie area resulting in a complex three-dimensional strain field with ≫60% east-west and >25% north-south bulk extension. Extensional folds with axes at high angles to the associated normal fault record most of the three-dimensional strain during individual phases of extension (phases 3a, 3b, and 4). Cross-cutting relationships between normal faults and Tertiary volcanic and sedimentary rocks constrain the ages of each distinct phase of deformation and show that extension continued episodically for more than 50 My. Gravitational collapse of the Sevier fold and thrust belt was the ultimate cause of most of the extension.

  16. Site-to-Source Finite Fault Distance Probability Distribution in Probabilistic Seismic Hazard and the Relationship Between Minimum Distances

    NASA Astrophysics Data System (ADS)

    Ortega, R.; Gutierrez, E.; Carciumaru, D. D.; Huesca-Perez, E.

    2017-12-01

    We present a method to compute the conditional and no-conditional probability density function (PDF) of the finite fault distance distribution (FFDD). Two cases are described: lines and areas. The case of lines has a simple analytical solution while, in the case of areas, the geometrical probability of a fault based on the strike, dip, and fault segment vertices is obtained using the projection of spheres in a piecewise rectangular surface. The cumulative distribution is computed by measuring the projection of a sphere of radius r in an effective area using an algorithm that estimates the area of a circle within a rectangle. In addition, we introduce the finite fault distance metrics. This distance is the distance where the maximum stress release occurs within the fault plane and generates a peak ground motion. Later, we can apply the appropriate ground motion prediction equations (GMPE) for PSHA. The conditional probability of distance given magnitude is also presented using different scaling laws. A simple model of constant distribution of the centroid at the geometrical mean is discussed, in this model hazard is reduced at the edges because the effective size is reduced. Nowadays there is a trend of using extended source distances in PSHA, however it is not possible to separate the fault geometry from the GMPE. With this new approach, it is possible to add fault rupture models separating geometrical and propagation effects.

  17. Modeling earthquake magnitudes from injection-induced seismicity on rough faults

    NASA Astrophysics Data System (ADS)

    Maurer, J.; Dunham, E. M.; Segall, P.

    2017-12-01

    It is an open question whether perturbations to the in-situ stress field due to fluid injection affect the magnitudes of induced earthquakes. It has been suggested that characteristics such as the total injected fluid volume control the size of induced events (e.g., Baisch et al., 2010; Shapiro et al., 2011). On the other hand, Van der Elst et al. (2016) argue that the size distribution of induced earthquakes follows Gutenberg-Richter, the same as tectonic events. Numerical simulations support the idea that ruptures nucleating inside regions with high shear-to-effective normal stress ratio may not propagate into regions with lower stress (Dieterich et al., 2015; Schmitt et al., 2015), however, these calculations are done on geometrically smooth faults. Fang & Dunham (2013) show that rupture length on geometrically rough faults is variable, but strongly dependent on background shear/effective normal stress. In this study, we use a 2-D elasto-dynamic rupture simulator that includes rough fault geometry and off-fault plasticity (Dunham et al., 2011) to simulate earthquake ruptures under realistic conditions. We consider aggregate results for faults with and without stress perturbations due to fluid injection. We model a uniform far-field background stress (with local perturbations around the fault due to geometry), superimpose a poroelastic stress field in the medium due to injection, and compute the effective stress on the fault as inputs to the rupture simulator. Preliminary results indicate that even minor stress perturbations on the fault due to injection can have a significant impact on the resulting distribution of rupture lengths, but individual results are highly dependent on the details of the local stress perturbations on the fault due to geometric roughness.

  18. Stratigraphic record of Pliocene-Pleistocene basin evolution and deformation within the Southern San Andreas Fault Zone, Mecca Hills, California

    NASA Astrophysics Data System (ADS)

    McNabb, James C.; Dorsey, Rebecca J.; Housen, Bernard A.; Dimitroff, Cassidy W.; Messé, Graham T.

    2017-11-01

    A thick section of Pliocene-Pleistocene nonmarine sedimentary rocks exposed in the Mecca Hills, California, provides a record of fault-zone evolution along the Coachella Valley segment of the San Andreas fault (SAF). Geologic mapping, measured sections, detailed sedimentology, and paleomagnetic data document a 3-5 Myr history of deformation and sedimentation in this area. SW-side down offset on the Painted Canyon fault (PCF) starting 3.7 Ma resulted in deposition of the Mecca Conglomerate southwest of the fault. The lower member of the Palm Spring Formation accumulated across the PCF from 3.0 to 2.6 Ma during regional subsidence. SW-side up slip on the PCF and related transpressive deformation from 2.6 to 2.3 Ma created a time-transgressive angular unconformity between the lower and upper members of the Palm Spring Formation. The upper member accumulated in discrete fault-bounded depocenters until initiation of modern deformation, uplift, and basin inversion starting at 0.7 Ma. Some spatially restricted deposits can be attributed to the evolution of fault-zone geometric complexities. However, the deformation events at ca. 2.6 Ma and 0.7 Ma are recorded regionally along 80 km of the SAF through Coachella Valley, covering an area much larger than mapped fault-zone irregularities, and thus require regional explanations. We therefore conclude that late Cenozoic deformation and sedimentation along the SAF in Coachella Valley has been controlled by a combination of regional tectonic drivers and local deformation due to dextral slip through fault-zone complexities. We further propose a kinematic link between the 2.6-2.3 Ma angular unconformity and a previously documented but poorly dated reorganization of plate-boundary faults in the northern Gulf of California at 3.3-2.0 Ma. This analysis highlights the potential for high-precision chronologies in deformed terrestrial deposits to provide improved understanding of local- to regional-scale structural controls on basin formation and deformation along an active transform margin.

  19. High Frequency Ground Motion from Finite Fault Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  20. Ground-penetrating radar investigation of active faults along the Dead Sea Transform and implications for seismic hazards within the city of Aqaba, Jordan

    NASA Astrophysics Data System (ADS)

    Slater, Lee; Niemi, Tina M.

    2003-06-01

    Ground-penetrating radar (GPR) was used in an effort to locate a major active fault that traverses Aqaba City, Jordan. Measurements over an exposed (trenched) cross fault outside of the city identify a radar signature consisting of linear events and horizontal offset/flexured reflectors both showing a geometric correlation with two known faults at a control site. The asymmetric linear events are consistent with dipping planar reflectors matching the known direction of dip of the faults. However, other observations regarding this radar signature render the mechanism generating these events more complex and uncertain. GPR measurements in Aqaba City were limited to vacant lots. Seven GPR profiles were conducted approximately perpendicular to the assumed strike of the fault zone, based on regional geological evidence. A radar response very similar to that obtained over the cross fault was observed on five of the profiles in Aqaba City, although the response is weaker than that obtained at the control site. The positions of the identified responses form a near straight line with a strike of 45°. Although subsurface verification of the fault by trenching within the city is needed, the geophysical evidence for fault zone location is strong. The location of the interpreted fault zone relative to emergency services, military bases, commercial properties, and residential areas is defined to within a few meters. This study has significant implications for seismic hazard analysis in this tectonically active and heavily populated region.

  1. Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations

    NASA Astrophysics Data System (ADS)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.; Dunham, Eric M.

    2017-09-01

    Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω-2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.

  2. How much does geometry of seismic sources matter in tsunami modeling? A sensitivity analysis for the Calabrian subduction interface

    NASA Astrophysics Data System (ADS)

    Tonini, R.; Maesano, F. E.; Tiberti, M. M.; Romano, F.; Scala, A.; Lorito, S.; Volpe, M.; Basili, R.

    2017-12-01

    The geometry of seismogenic sources could be one of the most important factors concurring to control the generation and the propagation of earthquake-generated tsunamis and their effects on the coasts. Since the majority of potentially tsunamigenic earthquakes occur offshore, the corresponding faults are generally poorly constrained and, consequently, their geometry is often oversimplified as a planar fault. The rupture area of mega-thrust earthquakes in subduction zones, where most of the greatest tsunamis have occurred, extends for tens to hundreds of kilometers both down dip and along strike, and generally deviates from the planar geometry. Therefore, the larger the earthquake size is, the weaker the planar fault assumption become. In this work, we present a sensitivity analysis aimed to explore the effects on modeled tsunamis generated by seismic sources with different degrees of geometric complexities. We focused on the Calabrian subduction zone, located in the Mediterranean Sea, which is characterized by the convergence between the African and European plates, with rates of up to 5 mm/yr. This subduction zone has been considered to have generated some past large earthquakes and tsunamis, despite it shows only in-slab significant seismic activity below 40 km depth and no relevant seismicity in the shallower portion of the interface. Our analysis is performed by defining and modeling an exhaustive set of tsunami scenarios located in the Calabrian subduction and using different models of the subduction interface with increasing geometrical complexity, from a planar surface to a highly detailed 3D surface. The latter was obtained from the interpretation of a dense network of seismic reflection profiles coupled with the analysis of the seismicity distribution. The more relevant effects due to the inclusion of 3D complexities in the seismic source geometry are finally highlighted in terms of the resulting tsunami impact.

  3. What do data used to develop ground-motion prediction equations tell us about motions near faults?

    USGS Publications Warehouse

    Boore, David M.

    2014-01-01

    A large database of ground motions from shallow earthquakes occurring in active tectonic regions around the world, recently developed in the Pacific Earthquake Engineering Center’s NGA-West2 project, has been used to investigate what such a database can say about the properties and processes of crustal fault zones. There are a relatively small number of near-rupture records, implying that few recordings in the database are within crustal fault zones, but the records that do exist emphasize the complexity of ground-motion amplitudes and polarization close to individual faults. On average over the whole data set, however, the scaling of ground motions with magnitude at a fixed distance, and the distance dependence of the ground motions, seem to be largely consistent with simple seismological models of source scaling, path propagation effects, and local site amplification. The data show that ground motions close to large faults, as measured by elastic response spectra, tend to saturate and become essentially constant for short periods. This saturation seems to be primarily a geometrical effect, due to the increasing size of the rupture surface with magnitude, and not due to a breakdown in self similarity.

  4. What Do Data Used to Develop Ground-Motion Prediction Equations Tell Us About Motions Near Faults?

    NASA Astrophysics Data System (ADS)

    Boore, David M.

    2014-11-01

    A large database of ground motions from shallow earthquakes occurring in active tectonic regions around the world, recently developed in the Pacific Earthquake Engineering Center's NGA-West2 project, has been used to investigate what such a database can say about the properties and processes of crustal fault zones. There are a relatively small number of near-rupture records, implying that few recordings in the database are within crustal fault zones, but the records that do exist emphasize the complexity of ground-motion amplitudes and polarization close to individual faults. On average over the whole data set, however, the scaling of ground motions with magnitude at a fixed distance, and the distance dependence of the ground motions, seem to be largely consistent with simple seismological models of source scaling, path propagation effects, and local site amplification. The data show that ground motions close to large faults, as measured by elastic response spectra, tend to saturate and become essentially constant for short periods. This saturation seems to be primarily a geometrical effect, due to the increasing size of the rupture surface with magnitude, and not due to a breakdown in self similarity.

  5. Ice Surface Morphology and Flow on Malaspina Glacier, Alaska: Implications for Regional Tectonics in the Saint Elias Orogen

    NASA Technical Reports Server (NTRS)

    Cotton, Michelle M.; Bruhn, Ronald L.; Sauber, Jeanne; Burgess, Evan; Forster, Richard R.

    2014-01-01

    The Saint Elias Mountains in southern Alaska are located at a structural syntaxis where the coastal thrust and fold belt of the Fairweather plate boundary intersects thrust faults and folds generated by collision of the Yakutat Terrane. The axial trace of this syntaxis extends southeastward out of the Saint Elias Mountains and beneath Malaspina Glacier where it is hidden from view and cannot be mapped using conventional methods. Here we examine the surface morphology and flow patterns of Malaspina Glacier to infer characteristics of the bedrock topography and organization of the syntaxis. Faults and folds beneath the eastern part of the glacier trend northwest and reflect dextral transpression near the terminus of the Fairweather fault system. Those beneath the western part of the glacier trend northeast and accommodate folding and thrust faulting during collision and accretion of the Yakutat Terrane. Mapping the location and geometry of the structural syntaxis provides important constraints on spatial variations in seismicity, fault kinematics, and crustal shortening beneath Malaspina Glacier, as well as the position of the collisional deformation front within the Yakutat Terrane. We also speculate that the geometrical complexity of intersecting faults within the syntaxis formed a barrier to rupture propagation during two regional Mw 8.1earthquakes in September 1899.

  6. How geometrical constraints contribute to the weakness of mature faults

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.

    1993-01-01

    Increasing evidence that the San Andreas fault has low shear strength1 has fuelled considerable discussion regarding the role of fluid pressure in controlling fault strength. Byerlee2,3 and Rice4 have shown how fluid pressure gradients within a fault zone can produce a fault with low strength while avoiding hydraulic fracture of the surrounding rock due to excessive fluid pressure. It may not be widely realised, however, that the same analysis2-4 shows that even in the absence of fluids, the presence of a relatively soft 'gouge' layer surrounded by harder country rock can also reduce the effective shear strength of the fault. As shown most recently by Byerlee and Savage5, as the shear stress across a fault increases, the stress state within the fault zone evolves to a limiting condition in which the maximum shear stress within the fault zone is parallel to the fault, which then slips with a lower apparent coefficient of friction than the same material unconstrained by the fault. Here we confirm the importance of fault geometry in determining the apparent weakness of fault zones, by showing that the apparent friction on a sawcut granite surface can be predicted from the friction measured in intact rock, given only the geometrical constraints introduced by the fault surfaces. This link between the sliding friction of faults and the internal friction of intact rock suggests a new approach to understanding the microphysical processes that underlie friction in brittle materials.

  7. Extensional faulting in the southern Klamath Mountains, California

    USGS Publications Warehouse

    Schweickert, R.A.; Irwin, W.P.

    1989-01-01

    Large northeast striking normal faults in the southern Klamath Mountains may indicate that substantial crustal extension occurred during Tertiary time. Some of these faults form grabens in the Jurassic and older bedrock of the province. The grabens contain continental Oligocene or Miocene deposits (Weaverville Formation), and in two of them the Oligocene or Miocene is underlain by Lower Cretaceous marine formations (Great Valley sequence). At the La Grange gold placer mine the Oligocene or Miocene strata dip northwest into the gently southeast dipping mylonitic footwall surface of the La Grange fault. The large normal displacement required by the relations at the La Grange mine is also suggested by omission of several kilometers of structural thickness of bedrock units across the northeast continuation of the La Grange fault, as well as by significant changes in bedrock across some northeast striking faults elsewhere in the Central Metamorphic and Eastern Klamath belts. The Trinity ultramafic sheet crops out in the Eastern Klamath terrane as part of a broad northeast trending arch that may be structurally analogous to the domed lower plate of metamorphic core complexes found in eastern parts of the Cordillera. The northeast continuation of the La Grange fault bounds the southeastern side of the Trinity arch in the Eastern Klamath terrane and locally cuts out substantial lower parts of adjacent Paleozoic strata of the Redding section. Faults bounding the northwestem side of the Trinity arch generally trend northeast and juxtapose stacked thrust sheets of lower Paleozoic strata of the Yreka terrane against the Trinity ultramafic sheet. Geometric relations suggest that the Tertiary extension of the southern Klamath Mountains was in NW-SE directions and that the Redding section and the southern part of the Central Metamorphic terrane may be a large Tertiary allochthon detached from the Trinity ultramafic sheet. Paleomagnetic data indicate a lack of rotation about a vertical axis during the extension. We propose that the Trinity ultramafic sheet is structurally analogous to a metamorphic core complex; if so, it is the first core complex to be described that involves ultramafic rocks. We infer that Mesozoic terrane accretion produced a large gravitational instability in the crust that spread laterally during Tertiary extension

  8. Subsurface structural interpretation by applying trishear algorithm: An example from the Lenghu5 fold-and-thrust belt, Qaidam Basin, Northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Pei, Yangwen; Paton, Douglas A.; Wu, Kongyou; Xie, Liujuan

    2017-08-01

    The application of trishear algorithm, in which deformation occurs in a triangle zone in front of a propagating fault tip, is often used to understand fault related folding. In comparison to kink-band methods, a key characteristic of trishear algorithm is that non-uniform deformation within the triangle zone allows the layer thickness and horizon length to change during deformation, which is commonly observed in natural structures. An example from the Lenghu5 fold-and-thrust belt (Qaidam Basin, Northern Tibetan Plateau) is interpreted to help understand how to employ trishear forward modelling to improve the accuracy of seismic interpretation. High resolution fieldwork data, including high-angle dips, 'dragging structures', thinning hanging-wall and thickening footwall, are used to determined best-fit trishear model to explain the deformation happened to the Lenghu5 fold-and-thrust belt. We also consider the factors that increase the complexity of trishear models, including: (a) fault-dip changes and (b) pre-existing faults. We integrate fault dip change and pre-existing faults to predict subsurface structures that are apparently under seismic resolution. The analogue analysis by trishear models indicates that the Lenghu5 fold-and-thrust belt is controlled by an upward-steepening reverse fault above a pre-existing opposite-thrusting fault in deeper subsurface. The validity of the trishear model is confirmed by the high accordance between the model and the high-resolution fieldwork. The validated trishear forward model provides geometric constraints to the faults and horizons in the seismic section, e.g., fault cutoffs and fault tip position, faults' intersecting relationship and horizon/fault cross-cutting relationship. The subsurface prediction using trishear algorithm can significantly increase the accuracy of seismic interpretation, particularly in seismic sections with low signal/noise ratio.

  9. The Kinematics of Central American Fore-Arc Motion in Nicaragua: Geodetic, Geophysical and Geologic Study of Magma-Tectonic Interactions

    NASA Astrophysics Data System (ADS)

    La Femina, P. C.; Geirsson, H.; Saballos, A.; Mattioli, G. S.

    2017-12-01

    A long-standing paradigm in plate tectonics is that oblique convergence results in strain partitioning and the formation of migrating fore-arc terranes accommodated on margin-parallel strike-slip faults within or in close proximity to active volcanic arcs (e.g., the Sumatran fault). Some convergent margins, however, are segmented by margin-normal faults and margin-parallel shear is accommodated by motion on these faults and by vertical axis block rotation. Furthermore, geologic and geophysical observations of active and extinct margins where strain partitioning has occurred, indicate the emplacement of magmas within the shear zones or extensional step-overs. Characterizing the mechanism of accommodation is important for understanding short-term (decadal) seismogenesis, and long-term (millions of years) fore-arc migration, and the formation of continental lithosphere. We investigate the geometry and kinematics of Quaternary faulting and magmatism along the Nicaraguan convergent margin, where historical upper crustal earthquakes have been located on margin-normal, strike-slip faults within the fore arc and arc. Using new GPS time series, other geophysical and geologic data, we: 1) determine the location of the maximum gradient in forearc motion; 2) estimate displacement rates on margin-normal faults; and 3) constrain the geometric moment rate for the fault system. We find that: 1) forearc motion is 11 mm a-1; 2) deformation is accommodated within the active volcanic arc; and 3) that margin-normal faults can have rates of 10 mm a-1 in agreement with geologic estimates from paleoseismology. The minimum geometric moment rate for the margin-normal fault system is 2.62x107 m3 yr-1, whereas the geometric moment rate for historical (1931-2006) earthquakes is 1.01x107 m3/yr. The discrepancy between fore-arc migration and historical seismicity may be due to aseismic accommodation of fore-arc motion by magmatic intrusion along north-trending volcanic alignments within the volcanic arc.

  10. Evolving geometrical heterogeneities of fault trace data

    NASA Astrophysics Data System (ADS)

    Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari

    2010-08-01

    We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.

  11. A synthetic seismicity model for the Middle America Trench

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1991-01-01

    A novel iterative technique, based on the concept of fault segmentation and computed using 2D static dislocation theory, for building models of seismicity and fault interaction which are physically acceptable and geometrically and kinematically correct, is presented. The technique is applied in two steps to seismicity observed at the Middle America Trench. The first constructs generic models which randomly draw segment strengths and lengths from a 2D probability distribution. The second constructs predictive models in which segment lengths and strengths are adjusted to mimic the actual geography and timing of large historical earthquakes. Both types of models reproduce the statistics of seismicity over five units of magnitude and duplicate other aspects including foreshock and aftershock sequences, migration of foci, and the capacity to produce both characteristic and noncharacteristic earthquakes. Over a period of about 150 yr the complex interaction of fault segments and the nonlinear failure conditions conspire to transform an apparently deterministic model into a chaotic one.

  12. Intermittent Granular Dynamics at a Seismogenic Plate Boundary.

    PubMed

    Meroz, Yasmine; Meade, Brendan J

    2017-09-29

    Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10^{-15}  s^{-1}, and released intermittently at intervals >100  yr, in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91±20  km, here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.

  13. Intermittent Granular Dynamics at a Seismogenic Plate Boundary

    NASA Astrophysics Data System (ADS)

    Meroz, Yasmine; Meade, Brendan J.

    2017-09-01

    Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10-15 s-1 , and released intermittently at intervals >100 yr , in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91 ±20 km , here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.

  14. Glossary of fault and other fracture networks

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Nixon, C. W.; Rotevatn, A.; Sanderson, D. J.; Zuluaga, L. F.

    2016-11-01

    Increased interest in the two- and three-dimensional geometries and development of faults and other types of fractures in rock has led to an increasingly bewildering terminology. Here we give definitions for the geometric, topological, kinematic and mechanical relationships between geological faults and other types of fractures, focussing on how they relate to form networks.

  15. The Kumamoto Mw7.1 mainshock: deep initiation triggered by the shallow foreshocks

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Wei, S.

    2017-12-01

    The Kumamoto Mw7.1 earthquake and its Mw6.2 foreshock struck the central Kyushu region in mid-April, 2016. The surface ruptures are characterized with multiple fault segments and a mix of strike-slip and normal motion extended from the intersection area of Hinagu and Futagawa faults to the southwest of Mt. Aso. Despite complex surface ruptures, most of the finite fault inversions use two fault segments to approximate the fault geometry. To study the rupture process and the complex fault geometry of this earthquake, we performed a multiple point source inversion for the mainshock using the data on 93 K-net and Kik-net stations. With path calibration from the Mw6.0 foreshock, we selected the frequency ranges for the Pnl waves (0.02 0.26 Hz) and surface waves (0.02 0.12 Hz), as well as the components that can be well modeled with the 1D velocity model. Our four-point-source results reveal a unilateral rupture towards Mt. Aso and varying fault geometries. The first sub-event is a high angle ( 79°) right-lateral strike-slip event at the depth of 16 km on the north end of the Hinagu fault. Notably the two M>6 foreshocks is located by our previous studies near the north end of the Hinagu fault at the depth of 5 9 km, which may give rise to the stress concentration at depth. The following three sub-events are distributed along the surface rupture of the Futagawa fault, with focal depths within 4 10 km. Their focal mechanisms present similar right-lateral fault slips with relatively small dip angles (62 67°) and apparent normal-fault component. Thus, the mainshock rupture initiated from the relatively deep part of the Hinagu fault and propagated through the fault-bend toward NE along the relatively shallow part of the Futagawa fault until it was terminated near Mt. Aso. Based on the four-point-source solution, we conducted a finite-fault inversion and obtained a kinematic rupture model of the mainshock. We then performed the Coulomb Stress analyses on the two foreshocks and the mainshock. The results support that the stress alternation after the foreshocks may have triggered the failure on the fault plane of the Mw7.1 earthquake. Therefore, the 2016 Kumamoto earthquake sequence is dominated by a series of large triggering events whose initiation is associated with the geometric barrier in the intersection of the Futagawa and Hinagu faults.

  16. Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi; Tsuchida, Kotoyo; Kawakata, Hironori; Yamashita, Futoshi; Mizoguchi, Kazuo; Xu, Shiqing

    2018-05-01

    We were able to successfully capture rupture nucleation processes on a 2-D fault surface during large-scale biaxial friction experiments using metagabbro rock specimens. Several rupture nucleation patterns have been detected by a strain gauge array embedded inside the rock specimens as well as by that installed along the edge walls of the fault. In most cases, the unstable rupture started just after the rupture front touched both ends of the rock specimen (i.e., when rupture front extended to the entire width of the fault). In some cases, rupture initiated at multiple locations and the rupture fronts coalesced to generate unstable ruptures, which could only be detected from the observation inside the rock specimen. Therefore, we need to carefully examine the 2-D nucleation process of the rupture especially when analyzing the data measured only outside the rock specimen. At least the measurements should be done at both sides of the fault to identify the asymmetric rupture propagation on the fault surface, although this is not perfect yet. In the present experiment, we observed three typical types of the 2-D rupture propagation patterns, two of which were initiated at a single location either close to the fault edge or inside the fault. This initiation could be accelerated by the free surface effect at the fault edge. The third one was initiated at multiple locations and had a rupture coalescence at the middle of the fault. These geometrically complicated rupture initiation patterns are important for understanding the earthquake nucleation process in nature.

  17. Sequential development of structural heterogeneity in the Granny Creek oil field of West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T.H.; Zheng, L.; Shumaker, R.C.

    1993-08-01

    Analysis of Vibroseis and weight-drop seismic data over the Granny Creek oil field in the Appalachian foreland of West Virginia indicates that the field's development has been effected by episodic Paleozoic reactivation of fault blocks rooted in the Precambrian crystalline basement. The imprint of structures associated with the Rome trough penetrates the overlying Paleozoic sedimentary cover. Reactivation histories of individual fault blocks vary considerably throughout the Paleozoic. In general, the relative displacement of these basement fault blocks decrease exponentially during the Paleozoic; however, this pattern is interrupted by periods of increased tectonic activity and relative inversion of offsets along somemore » faults. The distribution of late-stage detached structures during the Alleghenian orogeny also appears, in part, to be controlled by mechanical anisotrophy within the detached section related to the reactivation of deeper structures in the crystalline basement. The net effect is a complex time-variable pattern of structures that partly controls the location of the reservoir and heterogeneity within the geometric framework of the reservoir. Structural heterogeneity in the Granny Creek area is subdivided on the basis of scale into structures associated with variations of oil production within the reservoir. Variations of production within the field are related, in part, to small detached structures and reactivated basement faults.« less

  18. Use of non-adiabatic geometric phase for quantum computing by NMR.

    PubMed

    Das, Ranabir; Kumar, S K Karthick; Kumar, Anil

    2005-12-01

    Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant quantum computation. A preliminary requisite of quantum computation is the implementation of controlled dynamics of qubits. In controlled dynamics, one qubit undergoes coherent evolution and acquires appropriate phase, depending on the state of other qubits. If the evolution is geometric, then the phase acquired depend only on the geometry of the path executed, and is robust against certain types of error. This phenomenon leads to an inherently fault-tolerant quantum computation. Here we suggest a technique of using non-adiabatic geometric phase for quantum computation, using selective excitation. In a two-qubit system, we selectively evolve a suitable subsystem where the control qubit is in state |1, through a closed circuit. By this evolution, the target qubit gains a phase controlled by the state of the control qubit. Using the non-adiabatic geometric phase we demonstrate implementation of Deutsch-Jozsa algorithm and Grover's search algorithm in a two-qubit system.

  19. Preliminary Studies of the Structural Characteristics of the Lubao Fault using 2D High Resolution Shallow Seismic Reflection Profile

    NASA Astrophysics Data System (ADS)

    Bonus, A. A. B.; Lagmay, A. M. A.; Rodolfo, K. S.

    2016-12-01

    The Lubao fault, located in the province of Pampanga, Philippines, is part of the Bataan Volcanic Arc Complex (BVAC). Active faults within and around the BVAC include the East Zambales and Iba faults; according to the official active faults map of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) there are no other existing active faults in the area. The Lubao Fault distinctly separates wetlands to the northeast and dry alluvial plains to the northwest of Manila Bay. Long term subsidence and high sedimentation rates were observed in the fault and over the past 1.5 thousand years, the northeastern block has dropped 3.5 meters. Along the southwest flank of Mount Natib, tectonic structures were identified using surface mapping and remote sensing. The Persistent Scattering Interferometric Synthetic Aperture Radar (PSInSAR) data results of Eco et al. in 2015 shows uplifts and subsidence in the BVAC area delineating the Lubao Fault. A 480-meter seismic reflection line was laid down perpendicular to the fault with a recording system consisting of 48 channels of Geometrics geophones spaced 10 meters apart. Acquired data were processed using the standard seismic reflection processing sequence by Yilmaz 2001. This preliminary study produced a high resolution subsurface profile of the Lubao fault in the village of San Rafael, Lubao where it is well manifested. The velocity model integrated by stratigraphic data of drilled core shows subsurface lithology. The depth converted profile reveals clear structures and dipping segments which indicates a history of movement along the Lubao fault. Discontinuity of reflectors, either offsets or breaks, are considered structures along the subsurface of the study area. Additional structural mapping and seismic lines along the projected fault are planned in the future to further detail the characteristics of the Lubao Fault. The surface observations made by other researchers coupled with the subsurface seismic profile mapping of this study hopes to clearly delineate and characterize the Lubao Fault.

  20. Parallel and distributed computation for fault-tolerant object recognition

    NASA Technical Reports Server (NTRS)

    Wechsler, Harry

    1988-01-01

    The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.

  1. Non-double-couple earthquakes. 1. Theory

    USGS Publications Warehouse

    Julian, B.R.; Miller, A.D.; Foulger, G.R.

    1998-01-01

    Historically, most quantitative seismological analyses have been based on the assumption that earthquakes are caused by shear faulting, for which the equivalent force system in an isotropic medium is a pair of force couples with no net torque (a 'double couple,' or DC). Observations of increasing quality and coverage, however, now resolve departures from the DC model for many earthquakes and find some earthquakes, especially in volcanic and geothermal areas, that have strongly non-DC mechanisms. Understanding non-DC earthquakes is important both for studying the process of faulting in detail and for identifying nonshear-faulting processes that apparently occur in some earthquakes. This paper summarizes the theory of 'moment tensor' expansions of equivalent-force systems and analyzes many possible physical non-DC earthquake processes. Contrary to long-standing assumption, sources within the Earth can sometimes have net force and torque components, described by first-rank and asymmetric second-rank moment tensors, which must be included in analyses of landslides and some volcanic phenomena. Non-DC processes that lead to conventional (symmetric second-rank) moment tensors include geometrically complex shear faulting, tensile faulting, shear faulting in an anisotropic medium, shear faulting in a heterogeneous region (e.g., near an interface), and polymorphic phase transformations. Undoubtedly, many non-DC earthquake processes remain to be discovered. Progress will be facilitated by experimental studies that use wave amplitudes, amplitude ratios, and complete waveforms in addition to wave polarities and thus avoid arbitrary assumptions such as the absence of volume changes or the temporal similarity of different moment tensor components.

  2. Constraints and inferences of conditions of seismic slip from analyses of exhumed faults

    NASA Astrophysics Data System (ADS)

    Evans, J. P.

    2008-12-01

    The study of exhumed faults, where constrained by geochemical or geochronologic evidence for depth of deformation, has provided abundant insights into the processes by which the upper crust accommodates strain. What remains elusive in these studies are: a] what evidence do we have for diagnosing [paleo] seismic slip, b ] how do we extrapolate the textures and composition of formerly active faults to constraining the conditions at depth, c] determining the conditions that promote seismic vs. aseismic slip, and d] to what degree do interseismic [healing] and post-slip processes exhumation affect what we see at the surface. Field evidence for the conditions that promote or are of diagnostic seismic vs. aseismic slip, is elusive, as there are few ways to determine seismic rates of slip in faults other than the presence of pseudotachylytes. Recent work on these rocks in a variety of settings and the increase in recognition of the presence of fault- related melts document the relationships between pseudotachylytes and cataclastically deformed rocks in what is thought to be the frictional regime, or with ductily deformed rocks at the base of a fault. Conditions that appear to promote seismic slip are alteration of granitic host rock to lower melting temperature phases and the presence of geometric complexities that may act as stress risers in the faults. Drilling into portions of faults where earthquakes occur at the top of the seismogenic zone have sampled fault-related rocks that have striking similarities to exhumed faults, exhibiting narrow slip surfaces, foliated cataclasites, injected gouge textures, polished slip surfaces, and thermally altered rocks along slip surfaces. We review the recent work from a wide range of studies to suggest that relatively small changes in conditions may initiate seismic slip, and suggest further avenues of investigation.

  3. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duru, Kenneth, E-mail: kduru@stanford.edu; Dunham, Eric M.; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a)more » enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics on rough faults.« less

  4. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    NASA Astrophysics Data System (ADS)

    Duru, Kenneth; Dunham, Eric M.

    2016-01-01

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics on rough faults.

  5. 3D Dynamic Rupture Simulations along the Wasatch Fault, Utah, Incorporating Rough-fault Topography

    NASA Astrophysics Data System (ADS)

    Withers, Kyle; Moschetti, Morgan

    2017-04-01

    Studies have found that the Wasatch Fault has experienced successive large magnitude (>Mw 7.2) earthquakes, with an average recurrence interval near 350 years. To date, no large magnitude event has been recorded along the fault, with the last rupture along the Salt Lake City segment occurring 1300 years ago. Because of this, as well as the lack of strong ground motion records in basins and from normal-faulting earthquakes worldwide, seismic hazard in the region is not well constrained. Previous numerical simulations have modeled deterministic ground motion in the heavily populated regions of Utah, near Salt Lake City, but were primarily restricted to low frequencies ( 1 Hz). Our goal is to better assess broadband ground motions from the Wasatch Fault Zone. Here, we extend deterministic ground motion prediction to higher frequencies ( 5 Hz) in this region by using physics-based spontaneous dynamic rupture simulations along a normal fault with characteristics derived from geologic observations. We use a summation by parts finite difference code (Waveqlab3D) with rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) and include off-fault plasticity to simulate ruptures > Mw 6.5. Geometric complexity along fault planes has previously been shown to generate broadband sources with spectral energy matching that of observations. We investigate the impact of varying the hypocenter location, as well as the influence that multiple realizations of rough-fault topography have on the rupture process and resulting ground motion. We utilize Waveqlab3's computational efficiency to model wave-propagation to a significant distance from the fault with media heterogeneity at both long and short spatial wavelengths. These simulations generate a synthetic dataset of ground motions to compare with GMPEs, in terms of both the median and inter and intraevent variability.

  6. Strike-slip faulting in the Inner California Borderlands, offshore Southern California.

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.

    2015-12-01

    In the Inner California Borderlands (ICB), offshore of Southern California, modern dextral strike-slip faulting overprints a prominent system of basins and ridges formed during plate boundary reorganization 30-15 Ma. Geodetic data indicate faults in the ICB accommodate 6-8 mm/yr of Pacific-North American plate boundary deformation; however, the hazard posed by the ICB faults is poorly understood due to unknown fault geometry and loosely constrained slip rates. We present observations from high-resolution and reprocessed legacy 2D multichannel seismic (MCS) reflection datasets and multibeam bathymetry to constrain the modern fault architecture and tectonic evolution of the ICB. We use a sequence stratigraphy approach to identify discrete episodes of deformation in the MCS data and present the results of our mapping in a regional fault model that distinguishes active faults from relict structures. Significant differences exist between our model of modern ICB deformation and existing models. From east to west, the major active faults are the Newport-Inglewood/Rose Canyon, Palos Verdes, San Diego Trough, and San Clemente fault zones. Localized deformation on the continental slope along the San Mateo, San Onofre, and Carlsbad trends results from geometrical complexities in the dextral fault system. Undeformed early to mid-Pleistocene age sediments onlap and overlie deformation associated with the northern Coronado Bank fault (CBF) and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, we interpret the northern CBF to be inactive, and slip rate estimates based on linkage with the Holocene active Palos Verdes fault are unwarranted. In the western ICB, the San Diego Trough fault (SDTF) and San Clemente fault have robust linear geomorphic expression, which suggests that these faults may accommodate a significant portion of modern ICB slip in a westward temporal migration of slip. The SDTF offsets young sediments between the US/Mexico border and the eastern margin of Avalon Knoll, where the fault is spatially coincident and potentially linked with the San Pedro Basin fault (SPBF). Kinematic linkage between the SDTF and the SPBF increases the potential rupture length for earthquakes on either fault and may allow events nucleating on the SDTF to propagate much closer to the LA Basin.

  7. Geometric Analyses of Rotational Faults.

    ERIC Educational Resources Information Center

    Schwert, Donald Peters; Peck, Wesley David

    1986-01-01

    Describes the use of analysis of rotational faults in undergraduate structural geology laboratories to provide students with applications of both orthographic and stereographic techniques. A demonstration problem is described, and an orthographic/stereographic solution and a reproducible black model demonstration pattern are provided. (TW)

  8. What is the earthquake fracture energy?

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Nielsen, S. B.; Passelegue, F. X.; Spagnuolo, E.; Bistacchi, A.; Fondriest, M.; Murphy, S.; Aretusini, S.; Demurtas, M.

    2016-12-01

    The energy budget of an earthquake is one of the main open questions in earthquake physics. During seismic rupture propagation, the elastic strain energy stored in the rock volume that bounds the fault is converted into (1) gravitational work (relative movement of the wall rocks bounding the fault), (2) in- and off-fault damage of the fault zone rocks (due to rupture propagation and frictional sliding), (3) frictional heating and, of course, (4) seismic radiated energy. The difficulty in the budget determination arises from the measurement of some parameters (e.g., the temperature increase in the slipping zone which constraints the frictional heat), from the not well constrained size of the energy sinks (e.g., how large is the rock volume involved in off-fault damage?) and from the continuous exchange of energy from different sinks (for instance, fragmentation and grain size reduction may result from both the passage of the rupture front and frictional heating). Field geology studies, microstructural investigations, experiments and modelling may yield some hints. Here we discuss (1) the discrepancies arising from the comparison of the fracture energy measured in experiments reproducing seismic slip with the one estimated from seismic inversion for natural earthquakes and (2) the off-fault damage induced by the diffusion of frictional heat during simulated seismic slip in the laboratory. Our analysis suggests, for instance, that the so called earthquake fracture energy (1) is mainly frictional heat for small slips and (2), with increasing slip, is controlled by the geometrical complexity and other plastic processes occurring in the damage zone. As a consequence, because faults are rapidly and efficiently lubricated upon fast slip initiation, the dominant dissipation mechanism in large earthquakes may not be friction but be the off-fault damage due to fault segmentation and stress concentrations in a growing region around the fracture tip.

  9. The source parameters, surface deformation and tectonic setting of three recent earthquakes: thessalonki (Greece), tabas-e-golshan (iran) and carlisle (u.k.).

    PubMed

    King, G; Soufleris, C; Berberian, M

    1981-03-01

    Abstract- Three earthquakes have been studied. These are the Thessaloniki earthquake of 20th June 1978 (Ms = 6.4, Normal faulting), the Tabase-Golshan earthquake of 16th September 1978 (Ms = 7.7 Thrust faulting) and the Carlisle earth-quake of 26th December 1979 (Mb = 5.0, Thrust faulting). The techniques employed to determine source parameters included field studies of SUP face deformation, fault breaks, locations of locally recorded aftershocks and teleseismic studies including joint hypocentral location, first motion methods and waveform modelling. It is clear that these techniques applied together provide more information than the same methods used separately. The moment of the Thessaloniki earthquake determined teleseismically (Force moment 5.2 times 10(25) dyne cm. Geometric moment 1.72 times 10(8) m(3) ) is an order of magnitude greater than that determined using field data (surface ruptures and aftershock depths) (Force moment 4.5 times 10(24) dyne cm. Geometric moment 0.16 times 10(8) m(3) ). It is concluded that for this earthquake the surface rupture only partly reflects the processes on the main rupture plane. This view i s supported by a distribution of aftershocks and damage which extends well outside the region of ground rupture. However, the surface breaks consistently have the same slip vector direction as the fault plane solutions suggesting that they are in this respect related to to the main faulting and are not superficial slumping. Both field studies and waveform studies suggest a low stress drop which may explain the relatively little damage and loss of life as a result of the Thessaloniki earthquake. In contrast, the teleseismic moment of the Tabas-e-Golshan earthquake (Force moment 4.4 times 10(26) dyne cm. Geometric moment 1.5 times 10(9) m(3) ) is similar t o that determined from field studies (Force moment 10.2 times 10(26) dyne cm. Geometric moment 3.4 times 10(9) m(3) ) and the damage and after-shock distributions clearly relate to the surface faulting. It h a s also been observed that high aftershock activity appears beneath gaps in the surface rupture system. The Carlisle earthquake (Force moment 9 times 10(23) dyne cm. Geometric moment 3 times 10(6) m(3) ) produced no surface ruptures. However, dislocation model-ling suggests that surface deformation will be visible on a first order levelling line which passes very close t o the epicentre. A well controlled fault plane solution, the first in the British Isles, derived from an aftershock study shows north-south compression. All three studied earthquakes occurred along major faults which had been reactivated in geological times. The fault on which the Tabas-e-Golshan earthquake occurred could have been identified a s active from evidence of Quaternary motion and previous smaller earthquakes. However, there were no perceptible events in the 12 months preceeding the catastrophic earthquake. In both Thessaloniki and Carlisle, significant foreshocks did occur within 6 months prior to the main shock*

  10. Effect of fault roughness on aftershock distribution and post co-seismic strain accumulation.

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Daub, E. G.

    2017-12-01

    We perform physics-based simulations of earthquake rupture propagation on geometrically complex strike-slip faults. We consider many different realization of the fault roughness and obtain heterogeneous stress fields by performing dynamic rupture simulation of large earthquakes. We calculate the Coulomb failure function (CFF) for all these realizations so that we can quantify zones of stress increase/shadows surrounding the main fault and compare our results to seismic catalogs. To do this comparison, we use relocated earthquake catalogs from Northern and Southern California. We specify the range of fault roughness parameters based on past observational studies. The Hurst exponent (H) varies in range from 0.5 to 1 and RMS height to wavelength ratio ( RMS deviation of a fault profile from planarity) has values between 10-2 to 10-3. For any realization of fault roughness, the Probability density function (PDF) values relative to the mean CFF change show a wider spread near the fault and this spread squeezes into a narrow band as we move away from fault. For lower value of RMS ratio ( 10-3), we see bigger zones of stress change near the hypocenter and for higher value of RMS ratio ( 10-2), we see alternate zones of stress increase/decrease surrounding the fault to have comparable lengths. We also couple short-term dynamic rupture simulation with long-term tectonic modelling. We do this by giving the stress output from one of the dynamic rupture simulation (of a single realization of fault roughness) to long term tectonic model (LTM) as initial condition and then run LTM over duration of seismic cycle. This short term and long term coupling enables us to understand how heterogeneous stresses due to fault geometry influence the dynamics of strain accumulation in the post-seismic and inter-seismic phase of seismic cycle.

  11. Nonadiabatic conditional geometric phase shift with NMR.

    PubMed

    Xiang-Bin, W; Keiji, M

    2001-08-27

    A conditional geometric phase shift gate, which is fault tolerant to certain types of errors due to its geometric nature, was realized recently via nuclear magnetic resonance (NMR) under adiabatic conditions. However, in quantum computation, everything must be completed within the decoherence time. The adiabatic condition makes any fast conditional Berry phase (cyclic adiabatic geometric phase) shift gate impossible. Here we show that by using a newly designed sequence of simple operations with an additional vertical magnetic field, the conditional geometric phase shift gate can be run nonadiabatically. Therefore geometric quantum computation can be done at the same rate as usual quantum computation.

  12. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  13. Controls on Patterns of Repeated Fault Rupture: Examples From the Denali and Bear River Faults

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.

    2013-12-01

    A requirement for estimating seismic hazards is assigning magnitudes to earthquake sources. This relies on anticipating rupture length and slip along faults. Fundamental questions include whether lengths of past surface ruptures can be reasonably determined from fault zone characteristics and whether the variability in length and slip during repeated faulting can be constrained. To address these issues, we look at rupture characteristics and their possible controls from examples in very different tectonic settings: the high slip rate (≥15 mm/yr) Denali fault system, Alaska, and the recently activated Bear River normal fault, Wyoming-Utah. The 2002 rupture of the central Denali fault (CDF) is associated with two noteworthy geometric features. First, rupture initiated where the Susitna Glacier thrust fault (SG) intersects the CDF at depth, near the apex of a structurally complex restraining bend along the Denali. Paleoseismic data show that for the past 700 years the timing of large surface ruptures on the Denali fault west of the 2002 rupture has been distinct from those along the CDF. For the past ~6ka the frequency of SG to Denali ruptures has been ~1:12, indicating that this complexity of the 2002 rupture has not been common. Second, rupture propagated off of one strike-slip fault (CDF) onto another (the Totschunda fault, TF), an occurrence that seldom has been observed. LiDAR mapping of the intersection shows direct connectivity of the two faults--the CDF simply branches into both the TF and the eastern Denali fault (EDF). Differences in the timing of earthquakes during the past 700-800 years at sites surrounding this intersection, and estimates of accumulated slip from slip rates, indicate that for the 2002 rupture sufficient strain had accumulated on the TF to favor its failure. In contrast, the penultimate CDF rupture, with the same slip distribution as in 2002, appears to have stopped at or near the branch point, implying that neither the TF nor the EDF was stressed sufficiently to fail at that time. The Bear River fault zone (BRFZ) is a young normal fault along the eastern margin of basin-range extension that appears to have reactivated a ramp in the Laramide-age Darby-Hogsback thrust. The entire Cenozoic history of the BRFZ may consist of only two surface-rupturing events in the late Holocene (one at ~5 ka and the most recent at ~2.5 ka). The 40-km-long fault comprises synthetic and antithetic scarps extending across a zone up to 5 km wide. Remote sensing, including airborne LiDAR, and field studies show that, despite the complexity, the pattern of faulting was similar (in location and amount) for each of the two events and, at the south end, was strongly influenced by the east-west-trending Uinta Arch. Pre-existing structure clearly has exerted a first-order control on moment release on this immature fault. As shown by these examples, data on timing of surface ruptures, coseismic slip, slip rate, and fault geometry can provide a basis to constrain lengths of past and future earthquake ruptures, including possible alternative rupture scenarios. The difficult question for hazard analysis is whether the available data capture the full range of behavior and with what relative frequency do the alternatives occur?

  14. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    In dynamic rupture models, high stress concentrations at rupture fronts have to to be accommodated by off-fault inelastic processes such as plastic deformation. As presented in (Roten et al., 2014), incorporating plastic yielding can significantly reduce earlier predictions of ground motions in the Los Angeles Basin. Further, an inelastic response of materials surrounding a fault potentially has a strong impact on surface displacement and is therefore a key aspect in understanding the triggering of tsunamis through floor uplifting. We present an implementation of off-fault-plasticity and its verification for the software package SeisSol, an arbitrary high-order derivative discontinuous Galerkin (ADER-DG) method. The software recently reached multi-petaflop/s performance on some of the largest supercomputers worldwide and was a Gordon Bell prize finalist application in 2014 (Heinecke et al., 2014). For the nonelastic calculations we impose a Drucker-Prager yield criterion in shear stress with a viscous regularization following (Andrews, 2005). It permits the smooth relaxation of high stress concentrations induced in the dynamic rupture process. We verify the implementation by comparison to the SCEC/USGS Spontaneous Rupture Code Verification Benchmarks. The results of test problem TPV13 with a 60-degree dipping normal fault show that SeisSol is in good accordance with other codes. Additionally we aim to explore the numerical characteristics of the off-fault plasticity implementation by performing convergence tests for the 2D code. The ADER-DG method is especially suited for complex geometries by using unstructured tetrahedral meshes. Local adaptation of the mesh resolution enables a fine sampling of the cohesive zone on the fault while simultaneously satisfying the dispersion requirements of wave propagation away from the fault. In this context we will investigate the influence of off-fault-plasticity on geometrically complex fault zone structures like subduction zones or branched faults. Studying the interplay of stress conditions and angle dependence of neighbouring branches including inelastic material behaviour and its effects on rupture jumps and seismic activation helps to advance our understanding of earthquake source processes. An application is the simulation of a real large-scale subduction zone scenario including plasticity to validate the coupling of our dynamic rupture calculations to a tsunami model in the framework of the ASCETE project (http://www.ascete.de/). Andrews, D. J. (2005): Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, B01307. Heinecke, A. (2014), A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pelties, A. Bode, W. Barth, K. Vaidyanathan, M. Smelyanskiy and P. Dubey: Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. In Supercomputing 2014, The International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, New Orleans, LA, USA, November 2014. Roten, D. (2014), K. B. Olsen, S.M. Day, Y. Cui, and D. Fäh: Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity, Geophys. Res. Lett., 41, 2769-2777.

  15. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than earthquakes occurring on mature faults. We have identified earthquake pairs in which an interplate-thrust and an intraslab-normal earthquake occurred remarkably close in space and time. The intraslab-normal member of each pair radiated anomalously high amounts of energy compared to its thrust-fault counterpart. These intraslab earthquakes probably ruptured intact slab mantle and are dramatic examples in which Mc (an energy magnitude) is shown to be a far better estimate of the potential for earthquake damage than Mw. This discovery may help explain why loss of life as a result of intraslab earthquakes was greater in the 20th century in Latin America than the fatalities associated with interplate-thrust events that represented much higher total moment release. ?? 2004 RAS.

  16. Maximum spectral demands in the near-fault region

    USGS Publications Warehouse

    Huang, Yin-Nan; Whittaker, Andrew S.; Luco, Nicolas

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed.

  17. Maximum spectral demands in the near-fault region

    USGS Publications Warehouse

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed. ?? 2008, Earthquake Engineering Research Institute.

  18. Fault-tolerant locomotion of the hexapod robot.

    PubMed

    Yang, J M; Kim, J H

    1998-01-01

    In this paper, we propose a scheme for fault detection and tolerance of the hexapod robot locomotion on even terrain. The fault stability margin is defined to represent potential stability which a gait can have in case a sudden fault event occurs to one leg. Based on this, the fault-tolerant quadruped periodic gaits of the hexapod walking over perfectly even terrain are derived. It is demonstrated that the derived quadruped gait is the optimal one the hexapod can have maintaining fault stability margin nonnegative and a geometric condition should be satisfied for the optimal locomotion. By this scheme, when one leg is in failure, the hexapod robot has the modified tripod gait to continue the optimal locomotion.

  19. Geostatistical analysis of the power-law exponents of the size distribution of earthquakes, Quaternary faults and monogenetic volcanoes in the Central Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Mendoza-Ponce, A.; Perez Lopez, R.; Guardiola-Albert, C.; Garduño-Monroy, V. H.; Figueroa-Soto, Á.

    2017-12-01

    The Trans Mexican Volcanic Belt (TMVB) is related to the convergence between the Cocos and Rivera plates beneath the North American plate by the Middle America Trench (MAT). Moreover, there is also intraplate faulting within the TMVB, which is responsible of important earthquakes like the Acambay in 1912 (Mw 7.0) and Maravatío in 1979 (Mb 5.3). In this tectonic scheme, monogenetic volcanoes, active faulting and earthquakes configure a complex tectonic frame where different spatial anisotropy featured this activity. This complexity can be characterized by the power-law of the frequency-size distribution of the monogenetic volcanoes, the faults and the earthquakes. This power-law is determined by the b-value of the Gutenberg-Richter law in case of the earthquakes. The novelty of this work is the application of geostatistics techniques (variograms) for the analysis of spatial distribution of the b-values obtained from the size distribution of the basal diameter for monogenetic volcanoes in the Michoacán-Guanajuato Volcanic Field (bmv), surface area for faults in the Morelia-Acambay fault system (bf) and the seismicity in the Central TMVB (beq). Therefore, the anisotropy in each case was compared and a geometric tectonic model was proposed. The evaluation of the spatial distribution of the b-value maps gives us a general interpretation of the tectonic stress field and the seismic hazard in the zone. Hence, the beq-value map for the seismic catalog shows anomalously low and high values, reveling two different processes, one related to a typical tectonic rupture (low b-values) and the other one related to hydraulic fracturing (high b-values). The resulting bmv-map for the diameter basal cones indicates us the locations of the ages of the monogenetic volcanoes, giving important information about the volcanic hazard. High bmv-values are correlated with the presence of young cinder cones and an increasing probability of a new volcano. For the Morelia-Acambay fault system, the bf-map shows the strongest locations along the system where tectonic stress accumulates.

  20. How do long-offset oceanic transforms adapt to plate motion changes? The example of the Western Pacific-Antarctic plate boundary

    NASA Astrophysics Data System (ADS)

    Lodolo, Emanuele; Coren, Franco; Ben-Avraham, Zvi

    2013-03-01

    Oceanic transform faults respond to changes in the direction of relative plate motion. Studies have shown that short-offset transforms generally adjust with slight bends near the ridge axis, while long-offset ones have a remarkably different behavior. The western Pacific-Antarctic plate boundary highlights these differences. A set of previously unpublished seismic profiles, in combination with magnetic anomaly identifications, shows how across a former, ~1250 km long transform (the Emerald Fracture Zone), plate motion changes have produced a complex geometric readjustment. Three distinct sections are recognized along this plate boundary: an eastern section, characterized by parallel, multiple fault strand lineaments; a central section, shallower than the rest of the ridge system, overprinted by a mantle plume track; and a western section, organized in a cascade of short spreading axes/transform lineaments. This configuration was produced by changes that occurred since 30 Ma in the Australia-Pacific relative plate motion, combined with a gradual clockwise change in Pacific-Antarctic plate motion. These events caused extension along the former Emerald Fracture Zone, originally linking the Pacific-Antarctic spreading ridge system with the Southeast Indian ridge. Then an intra-transform propagating ridge started to develop in response to a ~6 Ma change in the Pacific-Antarctic spreading direction. The close proximity of the Euler poles of rotation amplified the effects of the geometric readjustments that occurred along the transform system. This analysis shows that when a long-offset transform older than 20 Ma is pulled apart by changes in spreading velocity vectors, it responds with the development of multiple discrete, parallel fault strands, whereas in younger lithosphere, locally modified by thermal anisotropies, tensional stresses generate an array of spreading axes offset by closely spaced transforms.

  1. The ADER-DG method for seismic wave propagation and earthquake rupture dynamics

    NASA Astrophysics Data System (ADS)

    Pelties, Christian; Gabriel, Alice; Ampuero, Jean-Paul; de la Puente, Josep; Käser, Martin

    2013-04-01

    We will present the Arbitrary high-order DERivatives Discontinuous Galerkin (ADER-DG) method for solving the combined elastodynamic wave propagation and dynamic rupture problem. The ADER-DG method enables high-order accuracy in space and time while being implemented on unstructured tetrahedral meshes. A tetrahedral element discretization provides rapid and automatized mesh generation as well as geometrical flexibility. Features as mesh coarsening and local time stepping schemes can be applied to reduce computational efforts without introducing numerical artifacts. The method is well suited for parallelization and large scale high-performance computing since only directly neighboring elements exchange information via numerical fluxes. The concept of fluxes is a key ingredient of the numerical scheme as it governs the numerical dispersion and diffusion properties and allows to accommodate for boundary conditions, empirical friction laws of dynamic rupture processes, or the combination of different element types and non-conforming mesh transitions. After introducing fault dynamics into the ADER-DG framework, we will demonstrate its specific advantages in benchmarking test scenarios provided by the SCEC/USGS Spontaneous Rupture Code Verification Exercise. An important result of the benchmark is that the ADER-DG method avoids spurious high-frequency contributions in the slip rate spectra and therefore does not require artificial Kelvin-Voigt damping, filtering or other modifications of the produced synthetic seismograms. To demonstrate the capabilities of the proposed scheme we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes branching and curved fault segments. Furthermore, topography is respected in the discretized model to capture the surface waves correctly. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies.

  2. Distributed and Localized Deformation Along the Lebanese Restraining Bend from Geomorphic Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Castelltort, S.; Klinger, Y.

    2014-12-01

    The Dead Sea Fault System changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh Fault (YF), is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates and strain partitioning in Lebanon still prevail. Here, we use morphometric analysis together with analytical and numerical models to constrain rates and modes of distributed and localized deformation along the Lebanese restraining bend.The rivers that drain the western flank of Mount Lebanon show a consistent counterclockwise rotation with respect to an expected orogen perpendicular orientation. Moreover, a pattern of divide disequilibrium in between these rivers emerges from an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. These geometrical patterns are compatible with simulation results using a landscape evolution model, which imposes a distributed velocity field along a domain that represents the western flank of Mount Lebanon. We further develop an analytical model that relates the river orientation to a set of kinematic parameters that represents a combined pure and simple shear strain field, and we find the parameters that best explain the present orientation of the western Lebanon rivers. Our results indicate that distributed deformation to the west of the YF takes as much as 30% of the relative Arabia-Sinai plate velocity since the late Miocene, and that the average slip rate along the YF during the same time interval has been 3.8-4.4 mm/yr. The theoretical model can further explain the inferred rotation from Paleomagnetic measurements.

  3. Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals

    NASA Astrophysics Data System (ADS)

    Wang, Dong

    2018-05-01

    Thanks to the great efforts made by Antoni (2006), spectral kurtosis has been recognized as a milestone for characterizing non-stationary signals, especially bearing fault signals. The main idea of spectral kurtosis is to use the fourth standardized moment, namely kurtosis, as a function of spectral frequency so as to indicate how repetitive transients caused by a bearing defect vary with frequency. Moreover, spectral kurtosis is defined based on an analytic bearing fault signal constructed from either a complex filter or Hilbert transform. On the other hand, another attractive work was reported by Borghesani et al. (2014) to mathematically reveal the relationship between the kurtosis of an analytical bearing fault signal and the square of the squared envelope spectrum of the analytical bearing fault signal for explaining spectral correlation for quantification of bearing fault signals. More interestingly, it was discovered that the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum corresponds to the raw 4th order moment. Inspired by the aforementioned works, in this paper, we mathematically show that: (1) spectral kurtosis can be decomposed into squared envelope and squared L2/L1 norm so that spectral kurtosis can be explained as spectral squared L2/L1 norm; (2) spectral L2/L1 norm is formally defined for characterizing bearing fault signals and its two geometrical explanations are made; (3) spectral L2/L1 norm is proportional to the square root of the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum; (4) some extensions of spectral L2/L1 norm for characterizing bearing fault signals are pointed out.

  4. Interacting faults

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Nixon, C. W.; Rotevatn, A.; Sanderson, D. J.; Zuluaga, L. F.

    2017-04-01

    The way that faults interact with each other controls fault geometries, displacements and strains. Faults rarely occur individually but as sets or networks, with the arrangement of these faults producing a variety of different fault interactions. Fault interactions are characterised in terms of the following: 1) Geometry - the spatial arrangement of the faults. Interacting faults may or may not be geometrically linked (i.e. physically connected), when fault planes share an intersection line. 2) Kinematics - the displacement distributions of the interacting faults and whether the displacement directions are parallel, perpendicular or oblique to the intersection line. Interacting faults may or may not be kinematically linked, where the displacements, stresses and strains of one fault influences those of the other. 3) Displacement and strain in the interaction zone - whether the faults have the same or opposite displacement directions, and if extension or contraction dominates in the acute bisector between the faults. 4) Chronology - the relative ages of the faults. This characterisation scheme is used to suggest a classification for interacting faults. Different types of interaction are illustrated using metre-scale faults from the Mesozoic rocks of Somerset and examples from the literature.

  5. Anatomy of an Active Seismic Source: the Interplay between Present-Day Seismic Activity and Inherited Fault Zone Architecture (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Demurtas, M.; Bistacchi, A.; Fabrizio, B.; Storti, F.; Valoroso, L.; Di Toro, G.

    2017-12-01

    The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, in terms of both fault geometry and fault rock constitutive properties. In recent years high-resolution seismological techniques yielded new constraints on the geometry and velocity structure of seismogenic faults down to 10s meters length scales. This reduced the gap between geophysical imaging of active seismic sources and field observations of exhumed fault zones. Nevertheless fundamental questions such as the origin of geometrical and kinematic complexities associated to seismic faulting remain open. We addressed these topics by characterizing the internal structure of the Vado di Corno Fault Zone, an active seismogenic normal fault cutting carbonates in the Central Apennines of Italy and comparing it with the present-day seismicity of the area. The fault footwall block, which was exhumed from < 2 km depth, was mapped with high detail (< 1 m spatial resolution) for 2 km of exposure along strike, combining field structural data and photogrammetric surveys in a three dimensional structural model. Three main structural units separated by principal fault strands were recognized: (i) cataclastic unit (20-100 m thick), (ii) damage zone (≤ 300 m thick), (iii) breccia unit ( 20 thick). The cataclastic unit lines the master fault and represents the core of the normal fault zone. In-situ shattering together with evidence of extreme (possibly coseismic) shear strain localization (e.g., mirror-like faults with truncated clasts, ultrafine-grained sheared veins) was recognized. The breccia unit is an inherited thrust zone affected by pervasive veining and secondary dolomitization. It strikes subparallel to the active normal fault and is characterized by a non-cylindrical geometry with 10-100 m long frontal and lateral ramps. The cataclastic unit cuts through thrust flats within the breccia unit, whereas normal to oblique inversion occur on frontal and lateral ramps. A comparable structural setting was imaged South-West of the study area, during the 2009 L'Aquila seismic sequence. Here at 2 km depth, the master normal fault cross-cuts a 10 km long flat structure and clear lateral ramps are illuminated, suggesting the superposition of normal seismic faulting on inherited compressional structures.

  6. The relationship between oceanic transform fault segmentation, seismicity, and thermal structure

    NASA Astrophysics Data System (ADS)

    Wolfson-Schwehr, Monica

    Mid-ocean ridge transform faults (RTFs) are typically viewed as geometrically simple, with fault lengths readily constrained by the ridge-transform intersections. This relative simplicity, combined with well-constrained slip rates, make them an ideal environment for studying strike-slip earthquake behavior. As the resolution of available bathymetric data over oceanic transform faults continues to improve, however, it is being revealed that the geometry and structure of these faults can be complex, including such features as intra-transform pull-apart basins, intra-transform spreading centers, and cross-transform ridges. To better determine the resolution of structural complexity on RTFs, as well as the prevalence of RTF segmentation, fault structure is delineated on a global scale. Segmentation breaks the fault system up into a series of subparallel fault strands separated by an extensional basin, intra-transform spreading center, or fault step. RTF segmentation occurs across the full range of spreading rates, from faults on the ultraslow portion of the Southwest Indian Ridge to faults on the ultrafast portion of the East Pacific Rise (EPR). It is most prevalent along the EPR, which hosts the fastest spreading rates in the world and has undergone multiple changes in relative plate motion over the last couple of million years. Earthquakes on RTFs are known to be small, to scale with the area above the 600°C isotherm, and to exhibit some of the most predictable behaviors in seismology. In order to determine whether segmentation affects the global RTF scaling relations, the scalings are recomputed using an updated seismic catalog and fault database in which RTF systems are broken up according to their degree of segmentation (as delineated from available bathymetric datasets). No statistically significant differences between the new computed scaling relations and the current scaling relations were found, though a few faults were identified as outliers. Finite element analysis is used to model 3-D RTF fault geometry assuming a viscoplastic rheology in order to determine how segmentation affects the underlying thermal structure of the fault. In the models, fault segment length, length and location along fault of the intra-transform spreading center, and slip rate are varied. A new scaling relation is developed for the critical fault offset length (OC) that significantly reduces the thermal area of adjacent fault segments, such that adjacent segments are fully decoupled at ~4 OC . On moderate to fast slipping RTFs, offsets ≥ 5 km are sufficient to significantly reduce the thermal influence between two adjacent transform fault segments. The relationship between fault structure and seismic behavior was directly addressed on the Discovery transform fault, located at 4°S on the East Pacific Rise. One year of microseismicity recorded on an OBS array, and 24 years of Mw ≥ 5.4 earthquakes obtained from the Global Centroid Moment Tensor catalog, were correlated with surface fault structure delineated from high-resolution multibeam bathymetry. Each of the 15 Mw ≥ 5.4 earthquakes was relocated into one of five distinct repeating rupture patches, while microseismicity was found to be reduced within these patches. While the endpoints of these patches appeared to correlate with structural features on the western segment of Discovery, small step-overs in the primary fault trace were not observed at patch boundaries. This indicates that physical segmentation of the fault is not the primary control on the size and location of large earthquakes on Discovery, and that along-strike heterogeneity in fault zone properties must play an important role.

  7. Low-Temperature Fault Creep: Strong vs. Weak, Steady vs. Episodic

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gao, X.

    2017-12-01

    Unless we understand how faults creep, we do not fully understand how they produce earthquakes. However, most of the physics and geology of low-temperature creep is not known. There are two end-member types of low-temperature creep: weak creep of smooth faults and strong creep of rough faults, with a spectrum of intermediate modes in between. Most conceptual and numerical models deal with weak creep, assuming a very smooth fault with a gouge typically weakened by hydrous minerals (Harris, 2017). Less understood is strong creep. For subduction zones, strong creep appears to be common and is often associated with the subduction of large geometrical irregularities such as seamounts and aseismic ridges (Wang and Bilek, 2014). These irregularities generate fracture systems as they push against the resistance of brittle rocks. The resultant heterogeneous stress and structural environment makes it very difficult to lock the fault. The geodetically observed creep under such conditions is accomplished by the complex deformation of a 3D damage zone. Strong-creeping faults dissipate more heat than faults that produce great earthquakes (Gao and Wang, 2014). Although an integrated frictional strength of the fault is still a useful concept, the creeping mechanism is very different from frictional slip of a velocity-strengthening smooth fault. Cataclasis and pressure-solution creep in the fracture systems must be important processes in strong creep. Strong creep is necessarily non-steady and produces small and medium earthquakes. Strong creep of a megathrust can also promote the occurrence of a very special type of weak creep - episodic slow slip around the mantle wedge corner accompanied with tremor (ETS). An example is Hikurangi, where strong creep causes the frictional-viscous transition along the plate interface to occur much shallower than the mantle wedge corner, a necessary condition for ETS (Gao and Wang, 2017). Gao and Wang (2014), Strength of stick-slip and creeping subduction megathrusts from heat flow observations, Science. Gao and Wang (2017), Rheological separation of the megathrust seismogenic zone and Episodic Tremor and Slip, Nature. Harris (2017), Large earthquakes and creeping faults, Rev. Geophys. Wang and Bilek (2014), Fault creep caused by subduction of rough seafloor relief, Tectonophysics.

  8. Late Cretaceous Localized Crustal Thickening as a Primary Control on the 3-D Architecture and Exhumation Histories of Cordilleran Metamorphic Core Complexes

    NASA Astrophysics Data System (ADS)

    Gans, P. B.; Wong, M.

    2014-12-01

    The juxtaposition of mylonitic mid-crustal rocks and faulted supracrustal rocks in metamorphic core complexes (MMCs) is usually portrayed in 2 dimensions and attributed to a single event of large-scale slip ± isostatic doming along a low-angle "detachment fault"/ shear zone. This paradigm does not explain dramatic along strike (3-D) variations in slip magnitude, footwall architecture, and burial / exhumation histories of most MMCs. A fundamental question posed by MMCs is how did their earlier thickening and exhumation histories influence the geometric evolution and 3-D slip distribution on the subsequent detachment faults? New geologic mapping and 40Ar/39Ar thermochronology from the Snake Range-Kern Mts-Deep Creek Mts (SKDC) complex in eastern Nevada offer important insights into this question. Crustal shortening and thickening by large-scale non-cylindrical recumbent folds and associated thrust faults during the late Cretaceous (90-80 Ma) resulted in deep burial (650°C, 20-25 km) of the central part of the footwall, but metamorphic grade decreases dramatically to the N and S in concert with decreasing amplitude on the shortening structures. Subsequent Paleogene extensional exhumation by normal faulting and ESE-directed mylonitic shearing is greatest in areas of maximum earlier thickening and brought highest grade rocks back to depths of~10-12 km. After ≥15 Ma of quiescence, rapid E-directed slip initiated along the brittle Miocene Snake Range detachment at 20 Ma and reactivated the Eocene shear zone. The ≥200°C gradient across the footwall at this time implies that the Miocene slip surface originated as a moderately E-dipping normal fault. This Miocene slip surface can be tracked for more than 100 km along strike, but the greatest amount of Miocene slip also coincides with parts of the footwall that were most deeply buried in the Cretaceous. These relations indicate that not only is the SKDC MMC a composite feature, but that the crustal welt created by early thickening played a fundamental role in controlling the slip distribution on subsequent extensional structures and is still evident in the high modern surface elevations of the portions of the footwall what were most deeply buried.

  9. Estimation of vertical slip rate in an active fault-propagation fold from the analysis of a progressive unconformity at the NE segment of the Carrascoy Fault (SE Iberia)

    NASA Astrophysics Data System (ADS)

    Martin-Banda, Raquel; Insua-Arevalo, Juan Miguel; Garcia-Mayordomo, Julian

    2017-04-01

    Many studies have dealt with the calculation of fault-propagation fold growth rates considering a variety of kinematics models, from limb rotation to hinge migration models. In most cases, the different geometrical and numeric growth models are based on horizontal pre-growth strata architecture and a constant known slip rate. Here, we present the estimation of the vertical slip rate of the NE Segment of the Carrascoy Fault (SE Iberian Peninsula) from the geometrical modeling of a progressive unconformity developed on alluvial fan sediments with a high depositional slope. The NE Segment of the Carrascoy Fault is a left-lateral strike slip fault with reverse component belonging to the Eastern Betic Shear Zone, a major structure that accommodates most of the convergence between Iberian and Nubian tectonics plates in Southern Spain. The proximity of this major fault to the city of Murcia encourages the importance of carrying out paleosismological studies in order to determinate the Quaternary slip rate of the fault, a key geological parameter for seismic hazard calculations. This segment is formed by a narrow fault zone that articulates abruptly the northern edge of the Carrascoy Range with the Guadalentin Depression through high slope, short alluvial fans Upper-Middle Pleistocene in age. An outcrop in a quarry at the foot of this front reveals a progressive unconformity developed on these alluvial fan deposits, showing the important reverse component of the fault. The architecture of this unconformity is marked by well-developed calcretes on the top some of the alluvial deposits. We have determined the age of several of these calcretes by the Uranium-series disequilibrium dating method. The results obtained are consistent with recent published studies on the SW segment of the Carrascoy Fault that together with offset canals observed at a few locations suggest a net slip rate close to 1 m/ka.

  10. Superhot fluids circulating close to magma intrusions: a contribution from analogue modelling

    NASA Astrophysics Data System (ADS)

    Montanari, Domenico; Agostini, Andrea; Bonini, Marco; Corti, Giacomo

    2017-04-01

    Magma overpressure at the time of the emplacement at shallow crustal levels may lead to deformation (i.e. forced folding, fracturing and faulting) in the country rock, both at local and regional scale. To get insights into this process, we reproduced and analysed in the laboratory the fracture/fault network associated with the emplacement of magma at shallow crustal levels. We used a mixture of quartz sand and K-feldspar fine sand as an analogue for the brittle crust, and polyglycerols for the magma. The models were able to reproduce complex 3D architectures of deformation resulting from magma emplacement, with different deformation patterns -invariably dominated by forced folding and associated brittle faulting/fracturing- resulting from variable parameters. These results provide useful hints into geothermal researches. Fractures and faults associated with magma emplacement are indeed expected to significantly influence the distribution and migration of superhot geothermal fluids near the edge of the magma intrusion. These structures can therefore be considered as potential targets for geothermal or mineral deposits exploration. In this perspective, the results of analogue models may provide useful geometric and conceptual constraints for field work, numerical modeling, and particularly seismic interpretation for achieving a better understanding and tuning of the integrated conceptual model concerning the circulation of supercritical fluids. The research leading to these results has received funding from the European Community's Seventh Framework Programme under grant agreement No. 608553 (Project IMAGE).

  11. The 2016-2017 central Italy coseismic surface ruptures and their meaning with respect to foreseen active fault systems segmentation

    NASA Astrophysics Data System (ADS)

    De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.

    2017-12-01

    In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as representative of the VBFS behavior, a discussion on the fault system boundaries persistence, and on the significance of the repeated surface faulting at same location.

  12. Sentinel-1 observation of the 2017 Sangsefid earthquake, northeastern Iran: Rupture of a blind reserve-slip fault near the Eastern Kopeh Dagh

    NASA Astrophysics Data System (ADS)

    Xu, Guangyu; Xu, Caijun; Wen, Yangmao

    2018-04-01

    New satellites are now revealing InSAR-based surface deformation within a week after natural hazard events. Quick hazard responses will be more publically accessible and provide information to responding agencies. Here we used Sentinel-1 interferometric synthetic aperture radar (InSAR) data to investigate coseismic deformation associated with the 2017 Sangsefid earthquake, which occurred in the southeast margin of the Kopeh Dagh fault system. The ascending and descending interferograms indicate thrust-dominated slip, with the maximum line-of-sight displacement of 10.5 and 13.7 cm, respectively. The detailed slip-distribution of the 2017 Sangsefid Mw6.1 earthquake inferred from geodetic data is presented here for the first time. Although the InSAR interferograms themselves do not uniquely constrain what the primary slip surface is, we infer that the source fault dips to southwest by analyzing the 2.5 D displacement field decomposed from the InSAR observations. The determined uniform slip fault model shows that the dip angle of the seimogenic fault is approximately 40°, with a strike of 120° except for a narrower fault width than that predicted by the empirical scaling law. We suggest that geometric complexities near the Kopeh Dagh fault system obstruct the rupture propagation, resulting in high slip occurred within a small area and much higher stress drop than global estimates. The InSAR-determined moment is 1.71 × 1018 Nm with a shear modulus of 3.32 × 1010 N/m2, equivalent to Mw 6.12, which is consistent with seismological results. The finite fault model (the west-dipping fault plane) reveals that the peak slip of 0.90 m occurred at a depth of 6.3 km, with substantial slip at a depth of 4-10 km and a near-uniform slip of 0.1 m at a depth of 0-2.5 km. We suggest that the Sangsefid earthquake occurred on an unknown blind reverse fault dipping southwest, which can also be recognised through observing the long-term surface effects due to the existence of the blind fault.

  13. Missing link between the Hayward and Rodgers Creek faults

    PubMed Central

    Watt, Janet; Ponce, David; Parsons, Tom; Hart, Patrick

    2016-01-01

    The next major earthquake to strike the ~7 million residents of the San Francisco Bay Area will most likely result from rupture of the Hayward or Rodgers Creek faults. Until now, the relationship between these two faults beneath San Pablo Bay has been a mystery. Detailed subsurface imaging provides definitive evidence of active faulting along the Hayward fault as it traverses San Pablo Bay and bends ~10° to the right toward the Rodgers Creek fault. Integrated geophysical interpretation and kinematic modeling show that the Hayward and Rodgers Creek faults are directly connected at the surface—a geometric relationship that has significant implications for earthquake dynamics and seismic hazard. A direct link enables simultaneous rupture of the Hayward and Rodgers Creek faults, a scenario that could result in a major earthquake (M = 7.4) that would cause extensive damage and loss of life with global economic impact. PMID:27774514

  14. Missing link between the Hayward and Rodgers Creek faults

    USGS Publications Warehouse

    Watt, Janet; Ponce, David A.; Parsons, Thomas E.; Hart, Patrick E.

    2016-01-01

    The next major earthquake to strike the ~7 million residents of the San Francisco Bay Area will most likely result from rupture of the Hayward or Rodgers Creek faults. Until now, the relationship between these two faults beneath San Pablo Bay has been a mystery. Detailed subsurface imaging provides definitive evidence of active faulting along the Hayward fault as it traverses San Pablo Bay and bends ~10° to the right toward the Rodgers Creek fault. Integrated geophysical interpretation and kinematic modeling show that the Hayward and Rodgers Creek faults are directly connected at the surface—a geometric relationship that has significant implications for earthquake dynamics and seismic hazard. A direct link enables simultaneous rupture of the Hayward and Rodgers Creek faults, a scenario that could result in a major earthquake (M = 7.4) that would cause extensive damage and loss of life with global economic impact.

  15. A new model for the initiation, crustal architecture, and extinction of pull-apart basins

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G. J.; Abera, R.

    2015-12-01

    We present a new model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal numerical models of deformation, field observations, and fault theory, and answers many of the outstanding questions related to these rifts. In our model, geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step which results from early geometry of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement and the fault tips may propagate beyond the rift basin. Our model predicts that the sediment source areas may thus migrate over time. This implies that, although pull-apart basins lengthen over time, lengthening is accommodated by extension within the pull-apart basin, rather than formation of new faults outside of the rift zone. In this aspect pull-apart basins behave as narrow rifts: with increasing strike-slip the basins deepen but there is no significant younging outward. We explain why pull-apart basins do not go through previously proposed geometric evolutionary stages, which has not been documented in nature. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because strike-slip systems tend to straighten. The model predicts what the favorable step-dimensions are for the formation of such a fault system, and those for which a pull-apart basin may further develop into a short seafloor-spreading ridge. The model also shows that rift shoulder uplift is enhanced if the strike-slip rate is larger than the fault-propagation rate. Crustal compression then contributes to uplift of the rift flanks.

  16. The influence of tectonic inheritance on crustal extension style following failed subduction of continental crust: applications to metamorphic core complexes in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.

    2017-12-01

    The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.

  17. A footwall system of faults associated with a foreland thrust in Montana

    NASA Astrophysics Data System (ADS)

    Watkinson, A. J.

    1993-05-01

    Some recent structural geology models of faulting have promoted the idea of a rigid footwall behaviour or response under the main thrust fault, especially for fault ramps or fault-bend folds. However, a very well-exposed thrust fault in the Montana fold and thrust belt shows an intricate but well-ordered system of subsidiary minor faults in the footwall position with respect to the main thrust fault plane. Considerable shortening has occurred off the main fault in this footwall collapse zone and the distribution and style of the minor faults accord well with published patterns of aftershock foci associated with thrust faults. In detail, there appear to be geometrically self-similar fault systems from metre length down to a few centimetres. The smallest sets show both slip and dilation. The slickensides show essentially two-dimensional displacements, and three slip systems were operative—one parallel to the bedding, and two conjugate and symmetric about the bedding (acute angle of 45-50°). A reconstruction using physical analogue models suggests one possible model for the evolution and sequencing of slip of the thrust fault system.

  18. Mw7.7 2013 Balochistan Earthquake. Slip-Distribution and Deformation Field in Oblique Tectonic Context

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Vallage, A.; Grandin, R.; Delorme, A.; Rosu, A. M.; Pierro-Deseilligny, M.

    2014-12-01

    The Mw7.7 2013 Balochistan earthquake ruptured 200 km of the Hoshab fault, the southern end of the Chaman fault. Azimuth of the fault changes by more than 30° along rupture, from a well-oriented strike-slip fault to a more thrust prone direction. We use the MicMac optical image software to correlate pairs of Landsat images taken before and after the earthquake to access to the horizontal displacement field associated with the earthquake. We combine the horizontal displacement with radar image correlation in range and radar interferometry to derive the co-seismic slip on the fault. The combination of these different datasets actually provides the 3D displacement field. We note that although the earthquake was mainly strike-slip all along the rupture length, some vertical motion patches exist, which locations seem to be controlled by kilometric-scale variations of the fault geometry. 5 pairs of SPOT images were also correlated to derive a 2.5m pixel-size horizontal displacement field, providing unique opportunity to look at deformation in the near field and to obtain high-resolution strike-slip and normal slip-distributions. We note a significant difference, especially in the normal component, between the slip localized at depth on the fault plane and the slip localized closer to the surface, with more apparent slip at the surface. A high-resolution map of ground rupture allows us to locate the distribution of the deformation over the whole rupture length. The rupture map also highlights multiple fault geometric complexities where we could quantify details of the slip distribution. At the rupture length-scale, the local azimuth variations between segments have a large impact on the expression of the localized slip at the surface. The combination of those datasets gives an overview of the large distribution of the deformation in the near field, corresponding to the co-seismic damage zone.

  19. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  20. Seismic profile analysis of the Kangra and Dehradun re-entrant of NW Himalayan Foreland thrust belt, India: A new approach to delineate subsurface geometry

    NASA Astrophysics Data System (ADS)

    Dey, Joyjit; Perumal, R. Jayangonda; Sarkar, Subham; Bhowmik, Anamitra

    2017-08-01

    In the NW Sub-Himalayan frontal thrust belt in India, seismic interpretation of subsurface geometry of the Kangra and Dehradun re-entrant mismatch with the previously proposed models. These procedures lack direct quantitative measurement on the seismic profile required for subsurface structural architecture. Here we use a predictive angular function for establishing quantitative geometric relationships between fault and fold shapes with `Distance-displacement method' (D-d method). It is a prognostic straightforward mechanism to probe the possible structural network from a seismic profile. Two seismic profiles Kangra-2 and Kangra-4 of Kangra re-entrant, Himachal Pradesh (India), are investigated for the fault-related folds associated with the Balh and Paror anticlines. For Paror anticline, the final cut-off angle β =35{°} was obtained by transforming the seismic time profile into depth profile to corroborate the interpreted structures. Also, the estimated shortening along the Jawalamukhi Thrust and Jhor Fault, lying between the Himalayan Frontal Thrust (HFT) and the Main Boundary Thrust (MBT) in the frontal fold-thrust belt, were found to be 6.06 and 0.25 km, respectively. Lastly, the geometric method of fold-fault relationship has been exercised to document the existence of a fault-bend fold above the Himalayan Frontal Thrust (HFT). Measurement of shortening along the fault plane is employed as an ancillary tool to prove the multi-bending geometry of the blind thrust of the Dehradun re-entrant.

  1. Transient cnoidal waves explain the formation and geometry of fault damage zones

    NASA Astrophysics Data System (ADS)

    Veveakis, Manolis; Schrank, Christoph

    2017-04-01

    The spatial footprint of a brittle fault is usually dominated by a wide area of deformation bands and fractures surrounding a narrow, highly deformed fault core. This diffuse damage zone relates to the deformation history of a fault, including its seismicity, and has a significant impact on flow and mechanical properties of faulted rock. Here, we propose a new mechanical model for damage-zone formation. It builds on a novel mathematical theory postulating fundamental material instabilities in solids with internal mass transfer associated with volumetric deformation due to elastoviscoplastic p-waves termed cnoidal waves. We show that transient cnoidal waves triggered by fault slip events can explain the characteristic distribution and extent of deformation bands and fractures within natural fault damage zones. Our model suggests that an overpressure wave propagating away from the slipping fault and the material properties of the host rock control damage-zone geometry. Hence, cnoidal-wave theory may open a new chapter for predicting seismicity, material and geometrical properties as well as the location of brittle faults.

  2. Rupture dynamics along dipping thrust faults: free surface interaction and the case of Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre

    2017-04-01

    To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep propagation high-frequency radiations emerge associated to geometrical and structural complexities or to frictional strength asperities.

  3. Steeply-dipping extension fractures in the Newark basin, New Jersey

    USGS Publications Warehouse

    Herman, G.C.

    2009-01-01

    Late Triassic and Early Jurassic bedrock in the Newark basin is pervasively fractured as a result of Mesozoic rifting of the east-central North American continental margin. Tectonic rifting imparted systematic sets of steeply-dipping, en ??chelon, Mode I, extension fractures in basin strata including ordinary joints and veins. These fractures are arranged in transitional-tensional arrays resembling normal dip-slip shear zones. They contributed to crustal stretching, sagging, and eventual faulting of basin rift deposits. Extension fractures display progressive linkage and spatial clustering that probably controlled incipient fault growth. They cluster into three prominent strike groups correlated to early, intermediate, and late-stage tectonic events reflecting about 50- 60?? of counterclockwise rotation of incremental stretching directions. Finite strain analyses show that extension fractures allowed the stretching of basin strata by a few percent, and these fractures impart stratigraphic dips up to a few degrees in directions opposing fracture dips. Fracture groups display three-dimensional spatial variability but consistent geometric relations. Younger fractures locally cut across and terminate against older fractures having more complex vein-cement morphologies and bed-normal folds from stratigraphic compaction. A fourth, youngest group of extension fractures occur sporadically and strike about E-W in obliquely inverted crustal blocks. A geometric analysis of overlapping fracture sets shows how fracture groups result from incremental rotation of an extending tectonic plate, and that old fractures can reactivate with oblique slip components in the contemporary, compressive stress regime. ?? 2008 Elsevier Ltd. All rights reserved.

  4. Controlling geometric phase optically in a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Yale, Christopher G.

    Geometric phase, or Berry phase, is an intriguing quantum mechanical phenomenon that arises from the cyclic evolution of a quantum state. Unlike dynamical phases, which rely on the time and energetics of the interaction, the geometric phase is determined solely by the geometry of the path travelled in parameter space. As such, it is robust to certain types of noise that preserve the area enclosed by the path, and shows promise for the development of fault-tolerant logic gates. Here, we demonstrate the optical control of geometric phase within a solid-state spin qubit, the nitrogen-vacancy center in diamond. Using stimulated Raman adiabatic passage (STIRAP), we evolve a coherent dark state along `tangerine slice' trajectories on the Bloch sphere and probe these paths through time-resolved state tomography. We then measure the accumulated geometric phase through phase reference to a third ground spin state. In addition, we examine the limits of this control due to adiabatic breakdown as well as the longer timescale effect of far-detuned optical fields. Finally, we intentionally introduce noise into the experimental control parameters, and measure the distributions of the resulting phases to probe the resilience of the phase to differing types of noise. We also examine this robustness as a function of traversal time as well as the noise amplitude. Through these studies, we demonstrate that geometric phase is a promising route toward fault-tolerant quantum information processing. This work is supported by the AFOSR, the NSF, and the German Research Foundation.

  5. Historic surface faulting in continental United States and adjacent parts of Mexico

    USGS Publications Warehouse

    Bonilla, M.G.

    1967-01-01

    This report summarizes geometric aspects of approximately 35 instances of historic faulting of the ground surface in the continental United States and adjacent parts of Mexico. This information is of immediate importance in the selection and evaluation of sites for vital structures such as nuclear power plants. The data are presented in a table and graphs which show the quantitative relations between various aspects of the faulting. Certain items in the table that are uncertain, poorly known, or not in the published literature are briefly described in the text.

  6. Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles.

    PubMed

    Li, Luying; Gan, Zhaofeng; McCartney, Martha R; Liang, Hanshuang; Yu, Hongbin; Gao, Yihua; Wang, Jianbo; Smith, David J

    2013-11-15

    The atomic arrangements of two types of InAs dislocation cores associated by a Z-shape faulted dipole are observed directly by aberration-corrected high-angle annular-dark-field imaging. Single unpaired columns of different atoms in a matrix of dumbbells are clearly resolved, with observable variations of bonding lengths due to excess Coulomb force from bare ions at the dislocation core. The corresponding geometric phase analysis provides confirmation that the dislocation cores serve as origins of strain field inversion while stacking faults maintain the existing strain status.

  7. Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma

    USGS Publications Warehouse

    Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip

    2010-01-01

    The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.

  8. Fault geometry of 2015, Mw7.2 Murghab, Tajikistan earthquake controls rupture propagation: Insights from InSAR and seismological data

    NASA Astrophysics Data System (ADS)

    Sangha, Simran; Peltzer, Gilles; Zhang, Ailin; Meng, Lingsen; Liang, Cunren; Lundgren, Paul; Fielding, Eric

    2017-03-01

    Combining space-based geodetic and array seismology observations can provide detailed information about earthquake ruptures in remote regions. Here we use Landsat-8 imagery and ALOS-2 and Sentinel-1 radar interferometry data combined with data from the European seismology network to describe the source of the December 7, 2015, Mw7.2 Murghab (Tajikistan) earthquake. The earthquake reactivated a ∼79 km-long section of the Sarez-Karakul Fault, a NE oriented sinistral, trans-tensional fault in northern Pamir. Pixel offset data delineate the geometry of the surface break and line of sight ground shifts from two descending and three ascending interferograms constrain the fault dip and slip solution. Two right-stepping, NE-striking segments connected by a more easterly oriented segment, sub-vertical or steeply dipping to the west were involved. The solution shows two main patches of slip with up to 3.5 m of left lateral slip on the southern and central fault segments. The northern segment has a left-lateral and normal oblique slip of up to a meter. Back-projection of high-frequency seismic waves recorded by the European network, processed using the Multitaper-MUSIC approach, focuses sharply along the surface break. The time progression of the high-frequency radiators shows that, after a 10 second initiation phase at slow speed, the rupture progresses in 2 phases at super-shear velocity (∼4.3-5 km/s) separated by a 3 second interval of slower propagation corresponding to the passage through the restraining bend. The intensity of the high-frequency radiation reaches maxima during the initial and middle phases of slow propagation and is reduced by ∼50% during the super-shear phases of the propagation. These findings are consistent with studies of other strike-slip earthquakes in continental domain, showing the importance of fault geometric complexities in controlling the speed of fault propagation and related spatiotemporal pattern of the high-frequency radiation.

  9. Rupture Synchronicity in Complex Fault Systems

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Jordan, T. H.

    2013-12-01

    While most investigators would agree that the timing of large earthquakes within a fault system depends on stress-mediated interactions among its elements, much of the debate relevant to time-dependent forecasting has been centered on single-fault concepts, such as characteristic earthquake behavior. We propose to broaden this discussion by quantifying the multi-fault concept of rupture synchronicity. We consider a finite set of small, fault-spanning volumes {Vk} within a fault system of arbitrary (fractal) complexity. We let Ck be the catalog of length tmax comprising Nk discrete times {ti(k)} that mark when the kth volume participates in a rupture of magnitude > M. The main object of our analysis is the complete set of event time differences {τij(kk') = ti(k) - tj(k')}, which we take to be a random process with an expected density function ρkk'(t). When k = k', we call this function the auto-catalog density function (ACDF); when k ≠ k', we call it the cross-catalog density function (CCDF). The roles of the ACDF and CCDF in synchronicity theory are similar to those of autocorrelation and cross-correlation functions in time-series analysis. For a renewal process, the ACDF can be written in terms of convolutions of the interevent-time distribution, and many of its properties (e.g., large-t asymptote) can be derived analytically. The interesting information in the CCDF, like that in the ACDF, is concentrated near t = 0. If two catalogs are completely asynchronous, the CCDF collapses to an asymptote given by the harmonic mean of the ACDF asymptotes. Synchronicity can therefore be characterized by the variability of the CCDF about this asymptote. The brevity of instrumental catalogs makes the identification of synchronicity at large M difficult, but we will illustrate potentially interesting behaviors through the analysis of a million-year California catalog generated by the earthquake simulator, RSQSim (Deiterich & Richards-Dinger, 2010), which we sampled at a dozen fault-spanning volumes. At the magnitude threshold M = 7, the ACDF can be well fit by renewal models with fairly small aperiodicity parameters (α < 0.2) for all fault volumes but one (on the San Jacinto fault). At interseismic (Reid) time scales, we observe pairs of fault segments that are tightly locked, such as the Cholame and Carrizo sections of the San Andreas Fault (SAF), where the CCDF and two ACDFs are nearly equal; segments out of phase (Carrizo-SAF/Coachella-SAF and Coachella-SAF/San Jacinto), where the CCDF variation is an odd function of time; and segments where events are in phase with integer ratios of recurrence times (2:1 synchronicity of Coachella-SAF/Mojave-SAF and Carrizo-SAF/Mojave-SAF). At near-seismic (Omori) time scales, we observe various modes of clustering, triggering, and shadowing in RSQSim catalogs; e.g., events on Mojave-SAF trigger Garlock events, and events on Coachella-SAF shut down events on San Jacinto. Therefore, despite its geometrical complexity and multiplicity of time scales, the RSQSim model of the San Andreas fault system exhibits a variety of synchronous behaviors that increase the predictability of large ruptures within the system. A key question for earthquake forecasting is whether the real San Andreas system is equally, or much less, synchronous.

  10. Geometric effects resulting from the asymmetry of dipping fault: Hanging wall/ footwall effects

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Xie, Li-Li; Hu, Jin-Jun

    2008-05-01

    Root-mean-square distance D rms with characteristic of weighted-average is introduced in this article firstly. D rms can be used to capture the general proximity of a site to a dipping fault plane comparing with the rupture distance D rup and the seismogenic distance D seis. Then, using D rup, D seis and D rms, the hanging wall/footwall effects on the peak ground acceleration (PGA) during the 1999 Chi-Chi earthquake are evaluated by regression analysis. The logarithm residual shows that the PGA on hanging wall is much greater than that on footwall at the same D rup or D seis when the D rup or D seis is used as site-to-source distance measure. In contrast, there is no significant difference between the PGA on hanging wall and that on footwall at the same D rms when D rms is used. This result confirms that the hanging wall/footwall effect is mainly a geometric effect caused by the asymmetry of dipping fault. Therefore, the hanging wall/footwall effect on the near-fault ground motions can be ignored in the future attenuation analysis if the root-mean-square distance D rms is used as the site-to-source distance measure.

  11. Transfer zones in listric normal fault systems

    NASA Astrophysics Data System (ADS)

    Bose, Shamik

    Listric normal faults are common in passive margin settings where sedimentary units are detached above weaker lithological units, such as evaporites or are driven by basal structural and stratigraphic discontinuities. The geometries and styles of faulting vary with the types of detachment and form landward and basinward dipping fault systems. Complex transfer zones therefore develop along the terminations of adjacent faults where deformation is accommodated by secondary faults, often below seismic resolution. The rollover geometry and secondary faults within the hanging wall of the major faults also vary with the styles of faulting and contribute to the complexity of the transfer zones. This study tries to understand the controlling factors for the formation of the different styles of listric normal faults and the different transfer zones formed within them, by using analog clay experimental models. Detailed analyses with respect to fault orientation, density and connectivity have been performed on the experiments in order to gather insights on the structural controls and the resulting geometries. A new high resolution 3D laser scanning technology has been introduced to scan the surfaces of the clay experiments for accurate measurements and 3D visualizations. Numerous examples from the Gulf of Mexico have been included to demonstrate and geometrically compare the observations in experiments and real structures. A salt cored convergent transfer zone from the South Timbalier Block 54, offshore Louisiana has been analyzed in detail to understand the evolutionary history of the region, which helps in deciphering the kinematic growth of similar structures in the Gulf of Mexico. The dissertation is divided into three chapters, written in a journal article format, that deal with three different aspects in understanding the listric normal fault systems and the transfer zones so formed. The first chapter involves clay experimental models to understand the fault patterns in divergent and convergent transfer zones. Flat base plate setups have been used to build different configurations that would lead to approaching, normal offset and overlapping faults geometries. The results have been analyzed with respect to fault orientation, density, connectivity and 3D geometry from photographs taken from the three free surfaces and laser scans of the top surface of the clay cake respectively. The second chapter looks into the 3D structural analysis of the South Timbalier Block 54, offshore Louisiana in the Gulf of Mexico with the help of a 3D seismic dataset and associated well tops and velocity data donated by ExxonMobil Corporation. This study involves seismic interpretation techniques, velocity modeling, cross section restoration of a series of seismic lines and 3D subsurface modeling using depth converted seismic horizons, well tops and balanced cross sections. The third chapter deals with the clay experiments of listric normal fault systems and tries to understand the controls on geometries of fault systems with and without a ductile substrate. Sloping flat base plate setups have been used and silicone fluid underlain below the clay cake has been considered as an analog for salt. The experimental configurations have been varied with respect to three factors viz. the direction of slope with respect to extension, the termination of silicone polymer with respect to the basal discontinuities and overlap of the base plates. The analyses for the experiments have again been performed from photographs and 3D laser scans of the clay surface.

  12. A formulation of directivity for earthquake sources using isochrone theory

    USGS Publications Warehouse

    Spudich, Paul; Chiou, Brian S.J.; Graves, Robert; Collins, Nancy; Somerville, Paul

    2004-01-01

    A functional form for directivity effects can be derived from isochrone theory, in which the measure of the directivity-induced amplification of an S body wave is c, the isochrone velocity. Ground displacement of the near-, intermediate-, and far-field terms of P and S waves is linear in isochrone velocity for a finite source in a whole space. We have developed an approximation c-tilde-prime of isochrone velocity that can easily be implemented as a predictor of directivity effects in empirical ground motion prediction relations. Typically, for a given fault surface, hypocenter, and site geometry, c-tilde-prime is a simple function of the hypocentral distance, the rupture distance, the crustal shear wave speed in the seismogenic zone, and the rupture velocity. c-tilde-prime typically ranges in the interval 0.44, for rupture away from the station, to about 4, for rupture toward the station. In this version of the theory directivity is independent of period. Additionally, we have created another functional form which is c-tilde-prime modified to include the approximate radiation pattern of a finite fault having a given rake. This functional form can be used to model the spatial variations of fault-parallel and fault-normal horizontal ground motions. The strengths of this formulation are 1) the proposed functional form is based on theory, 2) the predictor is unambiguously defined for all possible site locations and source rakes, and 3) it can easily be implemented for well-studied important previous earthquakes. We compare predictions of our functional form with synthetic ground motions calculated for finite strike-slip and dip-slip faults in the magnitude range 6.5 - 7.5. In general our functional form correlates best with computed fault-normal and fault-parallel motions in the synthetic motions calculated for events with M6.5. Correlation degrades but is still useful for larger events and for the geometric average horizontal motions. We have had limited success applying it to geometrically complicated faults.

  13. Fault diagnosis of sensor networked structures with multiple faults using a virtual beam based approach

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-07-01

    This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.

  14. Reactivation versus reworking of the active continental margin during the Zagros collision: Mahallat-Muteh-Laybid complexes, Sanandaj-Sirjan zone, Iran

    NASA Astrophysics Data System (ADS)

    Aflaki, Mahtab; Shabanian, Esmaeil; Davoodi, Zeinab; Mohajjel, Mohammad

    2017-06-01

    Reactivation of long-lived basement faults has significant influences on further deformation of collision zones. Three major inherited pre-collisional NW-, N- and NE-trending basement discontinuities have played important roles on the structural and tectono-sedimentary evolution of the Iranian micro-continent in the northeastern part of the Gondwana super-continent. Sanandaj-Sirjan zone (SSZ), known as the metamorphic belt of the Zagros orogeny, marks the SW margin of the Central Iran. SSZ is formed as a result of the Arabia-Eurasia collision and its general trend of deformation coincides with the NW structural trend of the collision. The NE-trending Mahallat, Muteh and Laybid complexes in the middle part of the NW-trending SSZ are the exception and have a trend almost normal to the NW-trending Zagros. A combined methodology of remote sensing, geometric and kinematics analyses complemented by field work was used to reconstruct the history of deformation in the Zagros hinterland since the earlier stages of collision to the present-day. Our results reveal the key role of the preexisting discontinuities of the Iranian basement in both the kinematics and structural pattern of the middle part of the SSZ. These basement faults have acted as main boundary conditions changing the collisional fabric perpendicular to its overall trend. Progressive deformation and the related changes during collision have caused drastic changes in the kinematics of the boundary faults. The establishment of dextral transtension in the SSZ has had secondary influences on the pattern of deformation by local clockwise rotation and localized dextral shear in the southern parts of the area of interest. This study highlights the significance of long-lived pre-existing structures in the deformation of collision zones. Such basement faults are capable to change both the pattern and kinematics of deformation of the adjacent areas involved in a continental collision.

  15. Stress analysis of the Mw 7.4 Armería, Colima, Mexico earthquake of 22 January 2003

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D.; Nunez-Cornu, F. J.

    2012-12-01

    On 22 January 2003 a shallow Mw 7.4 earthquake occurred off the Pacific coast of the state of Colima. This event struck near the towns of Tecomán and Armería in western Mexico where a diffuse triple junction between the North American, Cocos and Rivera plates makes the local tectonic setting highly complex. This earthquake is the largest during the twenty-first century in the area. Some seismic studies of this earthquake indicate that this event occurred on a continental intraplate reverse fault, suggesting that the shock and its aftershocks represent partial accommodation of deformation in the continental crust caused by oblique subduction. In contrast, other works propose that the 2003 Armería earthquake was due to faulting along the subduction interface between the Rivera and North American Plates. We assess the suggested sources of this earthquake in terms of stress models that consider the controversial geometrical features that characterize this tectonic area. Also, we explore the implications for seismic hazard that this event could have caused in the Colima region.

  16. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study.

    PubMed

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-06-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.

  17. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study1

    PubMed Central

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-01-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755

  18. An information transfer based novel framework for fault root cause tracing of complex electromechanical systems in the processing industry

    NASA Astrophysics Data System (ADS)

    Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani

    2018-02-01

    As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.

  19. Fault severity assessment for rolling element bearings using the Lempel-Ziv complexity and continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Hong, Hoonbin; Liang, Ming

    2009-02-01

    This paper proposes a new version of the Lempel-Ziv complexity as a bearing fault (single point) severity measure based on the continuous wavelet transform (CWT) results, and attempts to address the issues present in the current version of the Lempel-Ziv complexity measure. To establish the relationship between the Lempel-Ziv complexity and bearing fault severity, an analytical model for a single-point defective bearing is adopted and the factors contributing to the complexity value are explained. To avoid the ambiguity between fault and noise, the Lempel-Ziv complexity is jointly applied with the CWT. The CWT is used to identify the best scale where the fault resides and eliminate the interferences of noise and irrelevant signal components as much as possible. Then, the Lempel-Ziv complexity values are calculated for both the envelope and high-frequency carrier signal obtained from wavelet coefficients at the best scale level. As the noise and other un-related signal components have been largely removed, the Lempel-Ziv complexity value will be mostly contributed by the bearing system and hence can be reliably used as a bearing fault measure. The applications to the bearing inner- and outer-race fault signals have demonstrated that the revised Lempel-Ziv complexity can effectively measure the severity of both inner- and outer-race faults. Since the complexity values are not dependent on the magnitude of the measured signal, the proposed method is less sensitive to the data sets measured under different data acquisition conditions. In addition, as the normalized complexity values are bounded between zero and one, it is convenient to observe the fault growing trend by examining the Lempel-Ziv complexity.

  20. Earthquake Clustering on the Bear River Fault—Influence of Preexisting Structure on the Rupture Behavior of a New Normal Fault

    NASA Astrophysics Data System (ADS)

    Hecker, S.; Schwartz, D. P.

    2017-12-01

    The Bear River normal fault is located on the eastern margin of basin and range extension in the Rocky Mountains of Utah and Wyoming. Interpretation of paleoseismic data from three sites supports the conclusion of an earlier study (West, 1993) that the fault, which appears to have reactivated a thrust ramp in the Sevier orogenic belt, first ruptured to the surface in the late Holocene. Our observations provide evidence and additional age control for two previously identified large earthquakes ( 4500 and 3000 yr B.P.) and for a newly recognized earthquake that occurred c. 200-300 yr B.P. (after development of a topsoil above a deposit with a date of A.D. 1630 and before the beginning of the historical period in 1850). These earthquakes, which were likely high-stress-drop events, cumulatively produced about 6-8 m of net vertical displacement on a zone 40 km long and up to 5 km wide. The complexity and evolution of rupture at the south end of the fault, mapped in detail using airborne lidar imagery, is strongly influenced by interaction with the Uinta arch, an east-west-trending (orthogonal) basement-cored uplift. The relatively rapid flurry of strain release and high slip rate ( 2 mm/yr), which make the Bear River fault one of the most active in the Basin and Range, occurred in a region of low crustal extension (geodetic velocity of <1 mm/yr relative to North America). We postulate that this behavior, which is a clear example of nonuniform strain release (Wallace, 1987), is a consequence of mechanical buttressing of the nascent Bear River fault against and below the strong Uinta arch. This may have implications for the earthquake behavior of other immature faults affected by structural or geometric impediments. In addition, the sudden initiation of faulting in an area of no prior late Cenozoic extension has implications for the size of background earthquakes (M>7) that should be considered for seismic hazard analysis.

  1. Linking fault pattern with groundwater flow in crystalline rocks at the Grimsel Test Site (Switzerland)

    NASA Astrophysics Data System (ADS)

    Schneeberger, Raphael; Berger, Alfons; Mäder, Urs K.; Niklaus Waber, H.; Kober, Florian; Herwegh, Marco

    2017-04-01

    Water flow across crystalline bedrock is of major interest for deep-seated geothermal energy projects as well as for underground disposal of radioactive waste. In crystalline rocks enhanced fluid flow is related to zones of increased permeability, i.e. to fractures that are associated to fault zones. The flow regime around the Grimsel Test Site (GTS, Central Aar massif) was assessed by establishing a 3D fault zone pattern on a local scale in the GTS underground facility (deca-meter scale) and on a regional scale at the surface (km-scale). The study reveals the existence of a dense fault zone network consisting of several km long and few tens of cm to meter wide, sub-vertically oriented major faults that are connected by tens to hundreds of meters long minor bridging faults. This geometrical information was used as input for the generation of a 3D fault zone network model. The faults originate from ductile shear zones that were reactivated as brittle faults under retrograde conditions during exhumation. Embrittlement and associated dilatancy along the faults provide the pathways for today's groundwater flow. Detection of the actual 3D flow paths is, however, challenging since flow seem to be not planar but rather tube-like. Two strategies are applied to constrain the 3D geometry of the flow tubes: (i) Characterization of the groundwater infiltrating into the GTS (location, yield, hydraulic head, and chemical composition) and (ii) stress modelling on the base of the 3D structural model to unravel potential domains of enhanced fluid flow such as fault plane intersections and domains of dilatancy. At the Grimsel Test Site, hydraulic and structural data demonstrate that the groundwater flow is head-driven from the surface towards the GTS located some 450 m below the surface. The residence time of the groundwater in this surface-near section is >60 years as evidenced by absence of detectable tritium. However, hydraulic heads obtained from interval pressure measurements within boreholes are variable and do not correspond to the overburden above the interval. Underground mapping revealed close spatial relation between water inflow points and faults, major water inflows occur in strongly deformed areas of the GTS. Furthermore, persistent differences in the groundwater chemical composition between infiltration points indicate that connectivity between different water flow paths is poor. Different findings indicate complex flow path geometries. However, domains of enhanced dilatancy and domains with increased number of fault intersections correlate with areas in the underground with 'high' water inflow.

  2. Geometry and structure of the pull-apart basins developed along the western South American-Scotia plate boundary (SW Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Esteban, F. D.; Tassone, A.; Isola, J. I.; Lodolo, E.; Menichetti, M.

    2018-04-01

    The South American-Scotia plate boundary is a left-lateral fault system which runs roughly E-W for more than 3000 km across the SW Atlantic Ocean and the Tierra del Fuego Island, reaching to the west the southern Chile Trench. Analyses of a large dataset of single- and multi-channel seismic reflection profiles acquired offshore has allowed to map the trace of the plate boundary from Tierra del Fuego to the Malvinas Trough, a tectonic depression located in the eastern part of the fault system, and to reconstruct the shape and geometry of the basins formed along the principal displacement zone of the fault system. Three main Neogene pull-apart basins that range from 70 to 100 km in length, and from 12 to 22 km in width, have been identified along this segment of the plate boundary. These basins have elongated shapes with their major axes parallel to the ENE-WSW direction of the fault zone. The sedimentary architecture and the infill geometry of the basins suggest that they represent mostly strike-slip dominated transtension basins which propagated from E to W. The basins imaged by seismic data show in some cases geometrical and structural features linked to the possible reactivation of previous wedge-top basins and inherited structures pertaining to the external front of the Magallanes fold-and-thrust compression belt, along which the South American-Scotia fault system has been superimposed. It is suggested that the sequence of the elongated basins occur symmetrically to a thorough going strike-slip fault, in a left-stepping geometrical arrangement, in a manner similar to those basins seen in other transcurrent environments.

  3. What is an Oceanic Core Complex?

    NASA Astrophysics Data System (ADS)

    Schroeder, T.; Cheadle, M. J.

    2007-12-01

    The Mid-Atlantic Ridge (MAR) 75km north and south of the 15-20 Fracture Zone (FZ) has produced upper oceanic lithosphere composed dominantly of mantle peridotite with gabbro intrusions. In the absence of diapirism, mantle peridotite can only be exposed on the seafloor by extensional faulting, thus the sea floor geology and bathymetry provide widespread evidence for extensive low-angle faulting. However, only 3% of the seafloor in this region has the domal morphology characteristic of features that have been termed oceanic core complexes; suggesting that other processes, in addition to low-angle faulting, are responsible for the generation of domal core complexes. Most low-angle faults near the 15-20 FZ form gently dipping (10-15°), 10-15km-wide dip slopes on the flanks of 2000m relief bathymetric ridges that are up to 15-40km long (parallel to the MAR). Core recovered from ODP Leg 209 drill holes in these ridges is dominantly peridotite with small (<50m thick) gabbro intrusions. The peridotite is cut by a very high density of brittle faults dipping at both steep and gentle angles. Several holes also contain long-lived shear zones/faults in their upper reaches in which strain was localized at granulite facies, indicated by mylonitic olivine and cpx, and remained active during cooling to sub-greenschist grade, indicated by cross-cutting of progressively lower-grade syn-deformation mineral assemblages. These observations suggest that seafloor spreading is largely accommodated here by slip on low-angle faults, and that these faults are correctly termed detachment faults. Holes drilled into a domal oceanic core complex north of the 15-20 FZ during Leg 209 (ODP Site 1275) recovered dominantly gabbro and not mantle peridotite. This hole is cut by significantly fewer brittle and ductile faults than the peridotite drilled at the non-core-complex detachment fault sites. The detachment fault in the upper reaches (50m) of Site 1275 was localized at temperatures near feldspar's ductile-to-brittle transition, indicated by cataclasis with minor crystal plastic flow in plagioclase, and a lack of pervasive pure-ductile deformation. Amphibole-plagioclase thermometry in the fault yields equilibrium temperatures from 600-650°C, compared to equilibrium temperatures of 750-850°C for the gabbro outside the fault. The presence of talc- chlorite schists and cataclasites cutting the higher-temperature deformation textures indicate fault activity down- temperature from amphibolite through greenschist facies. This core-complex-bounding fault contrasts with the fault that bounds the Atlantis Bank Core Complex on the Southwest Indian Ridge (SWIR). There, the fault is 100m thick and strain was initially localized at granulite grade (>800°C) (Mehl & Hirth, 2007); significantly hotter than the Site 1275 fault. Therefore, the formation of core-complex morphology does not seem to depend on the initial faulting conditions. Both oceanic core complexes that have been drilled besides Site 1275, Atlantis Massif at 30°N (IODP Hole 1309D) on the MAR and Atlantis Bank on the SWIR (ODP Hole 735B), are also comprised dominantly of gabbro. This suggests that magma supply may be an essential requirement for core complex formation and raises the question whether all domal oceanic core complexes are cored by gabbro? We also ask whether the term 'oceanic core complex' should be restricted to these domal features and not applied to detachment-bound, non- domal, peridotite-cored ridges; or if these should be considered two sub-classes of oceanic core complexes.

  4. Fault detection and isolation for complex system

    NASA Astrophysics Data System (ADS)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  5. Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh fault

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Oskin, M. E.; Liu-zeng, J.; Shao, Y.-X.

    2018-05-01

    Restraining double-bends along strike-slip faults inhibit or permit throughgoing ruptures depending on bend angle, length, and prior rupture history. Modeling predicts that for mature strike-slip faults in a regional stress regime characterized by simple shear, a restraining bend of >18° and >4 km length impedes propagating rupture. Indeed, natural evidence shows that the most recent rupture(s) of the Xorkoli section (90°-93°E) of the eastern Altyn Tagh fault (ATF) ended at large restraining bends. However, when multiple seismic cycles are considered in numerical dynamic rupture modeling, heterogeneous residual stresses enable some ruptures to propagate further, modulating whether the bends persistently serve as barriers. These models remain to be tested using observations of the cumulative effects of multiple earthquake ruptures. Here we investigate whether a large restraining double-bend on the ATF serves consistently as a barrier to rupture by measuring long-term slip rates around the terminus of its most recent surface rupture at the Aksay bend. Our results show a W-E decline in slip as the SATF enters the bend, as would be predicted from repeated rupture terminations there. Prior work demonstrated no Holocene slip on the central, most misoriented portion of the bend, while 19-79 m offsets suggest that multiple ruptures have occurred on the west side of the bend during the Holocene. Thus we conclude the gradient in the SATF's slip rate results from the repeated termination of earthquake ruptures there. However, a finite slip rate east of the bend represents the transmission of some slip, suggesting that a small fraction of ruptures may fully traverse or jump the double-bend. This agreement between natural observations of slip accumulation and multi-cycle models of fault rupture enables us to translate observed slip rates into insight about the dynamic rupture process of individual earthquakes as they encounter geometric complexities along faults.

  6. Control of preexisting faults and near-surface diapirs on geometry and kinematics of fold-and-thrust belts (Internal Prebetic, Eastern Betic Cordillera)

    NASA Astrophysics Data System (ADS)

    Pedrera, Antonio; Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; García-Lobón, José Luis

    2014-07-01

    We have determined, for the first time, the 3D geometry of a sector of the eastern Internal Prebetic comprised between Parcent and Altea diapirs, combining structural, borehole and multichannel seismic reflection data. The tectonic structure of the Jurassic-Cretaceous carbonate series is characterized by regional ENE-WSW fold-and-thrusts that interact with oblique N-S and WNW-ESE folds, detached over Triassic evaporites and clays. The structural style comprises box-shape anticlines, and N-vergent anticlines with vertical to overturned limbs frequently bordered by reverse and strike-slip faults. The anticlines surround a triangular broad synclinal structure, the Tárbena basin, filled by a late Oligocene to Tortonian sedimentary sequence that recorded folding and thrusting history. The location and geometrical characteristics of fold-and-thrusts may be controlled by the positive inversion of pre-existing Mesozoic normal faults, and by the position and shape of near-surface diapirs composed of Triassic rocks. Therefore, we propose an initial near-surface diapir emplacement of Triassic evaporitic rocks driven by late Jurassic to early Cretaceous rifting of the southern Iberian paleomargin. Thrusting and folding started during the latest Oligocene (∼28-23 Ma) roughly orthogonal to the NW-directed shortening. Deformation migrated to the south during Aquitanian (∼23-20 Ma), when tectonic inversion implied the left-lateral transpressive reactivation of N-S striking former normal faults and right-lateral/reverse reactivation of inherited WNW-ESE faults. We show two mechanisms driving the extrusion of the diapirs during contraction: lateral migration of a pre-existing near-surface diapir associated with dextral transpression; and squeezing of a previous near-surface diapir at the front of an anticline. Our study underlines the value of 3D geological modeling to characterize geometry and kinematics of complex fold-and-thrust belts influenced by preexisting faults and near-surface diapirs.

  7. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    NASA Astrophysics Data System (ADS)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First simulations were done under laminar flow conditions, an attempt allowing nonlinear flow with a new released package was implemented later. Preliminary results show that the implementation of the three faults zones with a much lower hydraulic conductivity compared to the aquifer is essential to reproduce properly both situations with and without pumping. This approves the high impact of fault zones on groundwater flow in fractured aquifer systems. Finally, this example shows that numerical modelling can help to reduce the uncertainties of conceptual models.

  8. Indicators of recent geodynamic activity in the Książ Castle area (Świebodzice Unit, Sudetes) in the light of structural analysis and geodetic measurements

    NASA Astrophysics Data System (ADS)

    Kasza, Damian; Kowalski, Aleksander; Wojewoda, Jurand; Kaczorowski, Marek

    2018-01-01

    Abstract. Indicators of recent geodynamic activity in the Książ Castle area are registered by the measuring instruments of the SRC PAS (Space Research Centre of Polish Academy of Sciences) Geodynamic Laboratory at Książ. Over 40 years of continuous observations from quartz horizontal pendulums (since 1974) and over 10 years of observations from water-tube tiltmeters (since 2002) have documented irregularly repeatable strong signals related to the relative displacement of blocks in the rock substrate, on which Książ Castle is located. These signals have dip (rotational) and vertical strike-slip components. Also, the presence of a horizontal strike-slip component is evidenced by geometric anomalies (deformations) of the shape of the Pelcznica river valley, which directly correspond to the orientation of the main faults in the area. Recent geodynamic activity is documented by destruction of (the construction elements in the castle complex. Instrumental indicators of movement, geodetic measurements and structural analysis of the rock massif have allowed for constructing a model showing the main unconformity surfaces in the analysed rock massif. Sinistral, NE-SW and ENE-WSW-oriented strike-slip faults prevail in the laboratory corridors, along with perpendicular WNW-ESE and NW-SSE-oriented clextral and normal faults. Most dislocations are accompanied by zones of intense cataclasys, secondary silification, and Fe and Mn mineralization. Generally, the faults were formed due to reactivation of joint fractures cutting the steeply N-and S-dipping (at 75-90°) deposits of the Książ Conglomerate Formation.

  9. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new outcrops in this area where the surface ruptures of the 1891 Nobi earthquake have not been known. These outcrops have active fault which cut the layer of terrace deposit and slope deposit to the bottom of present soil layer in common. At the locality of Ogotani outcrop, the humic layer which age is from14th century to 15th century by 14C age dating is deformed by the active fault. The vertical displacement of the humic layer is 0.8-0.9m and the terrace deposit layer below the humic layer is ca. 1.3m. For this reason and the existence of fain grain deposit including AT tephra (28ka) in the footwall of the fault, this fault movement occurred more than once since the last glacial age. We conclude that the surface rupture of Nukumi fault in the 1891 Nobi earthquake is continuous to 9km southeast of Nukumi pass. In other words, these findings indicate that there is 10km parallel overlap zone between the surface rupture of the southeastern end of Nukumi fault and the northwestern end of Neodani fault.

  10. Low-angle normal faulting and isostatic response in the Gulf of Suez: Evidence from seismic interpretation and geometric reconstruction

    NASA Technical Reports Server (NTRS)

    Perry, S. K.; Schamel, S.

    1985-01-01

    Tectonic extension within continental crust creates a variety of major features best classed as extensional orogens. These features have come under increasing attention in recent years, with the welding of field observation and theoretical concepts. Most recent advances have come from the Basin and Range Province of the southwestern United States and from the North Sea. Application of these geometric and isostatic concepts, in combination with seismic interpretation, to the southern Gulf of Suez, an active extensional orogen, allows generation of detailed structural maps and geometrically balanced sections which suggest a regional structural model. Geometric models which should prove to be a valuable adjunct to numerical and thermal models for the rifting process are discussed.

  11. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network.

    PubMed

    Sun, Weifang; Yao, Bin; Zeng, Nianyin; Chen, Binqiang; He, Yuchao; Cao, Xincheng; He, Wangpeng

    2017-07-12

    As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault's characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault's characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal's features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear's weak fault features.

  12. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  13. Fernandina caldera collapse morphology in geometric and dynamic comparison to sandbox models, subsidence sinks over nuclear-explosion cavities, and some other calderas

    NASA Astrophysics Data System (ADS)

    Howard, K. A.

    2009-12-01

    The 1968 collapse structure of Fernandina caldera (1.5 km3 collapsed) and also the smaller Darwin Bay caldera in Galápagos each closely resembles morphologically the structural zoning of features found in depressions collapsed into nuclear-explosion cavities (“sinks” of Houser, 1969) and in coherent sandbox-collapse models. Coherent collapses characterized by faulting, folding, and organized structure contrast with spalled pit craters (and lab experiments with collapsed powder) where disorganized piles of floor rubble result from tensile failure of the roof. Subsidence in coherent mode, whether in weak sand in the lab, stronger desert alluvium for nuclear-test sinks, or in hard rock for calderas, exhibits consistent morphologic zones. Characteristically in the sandbox and the nuclear-test analogs these include a first-formed central plug that drops along annular reverse faults. This plug and a surrounding inward-tilted or monoclinal ring (hanging wall of the reverse fault) contract as the structure expands outward by normal faulting, wherein peripheral rings of distending material widen the upper part of the structure along inward-dipping normal faults and compress inner zones and help keep them intact. In Fernandina, a region between the monocline and the outer zone of normal faulting is interpreted, by comparison to the analogs, to overlie the deflation margin of an underlying magma chamber. The same zoning pattern is recognized in structures ranging from sandbox subsidence features centimeters across, to Alae lave lake and nuclear-test sinks tens to hundreds of meters across, to Fenandina’s 2x4 km-wide collapse, to Martian calderas tens of kilometers across. Simple dimensional analysis using the height of cliffs as a proxie for material strength implies that the geometric analogs are good dynamic analogs, and validates that the pattern of both reverse and normal faulting that has been reported consistently from sandbox modeling applies widely to calderas.

  14. Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada

    USGS Publications Warehouse

    Bender, Adrian M.; Haeussler, Peter J.

    2017-05-04

    We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

  15. Crustal-Scale Fault Interaction at Rifted Margins and the Formation of Domain-Bounding Breakaway Complexes: Insights From Offshore Norway

    NASA Astrophysics Data System (ADS)

    Osmundsen, P. T.; Péron-Pinvidic, G.

    2018-03-01

    The large-magnitude faults that control crustal thinning and excision at rifted margins combine into laterally persistent structural boundaries that separate margin domains of contrasting morphology and structure. We term them breakaway complexes. At the Mid-Norwegian margin, we identify five principal breakaway complexes that separate the proximal, necking, distal, and outer margin domains. Downdip and lateral interactions between the faults that constitute breakaway complexes became fundamental to the evolution of the 3-D margin architecture. Different types of fault interaction are observed along and between these faults, but simple models for fault growth will not fully describe their evolution. These structures operate on the crustal scale, cut large thicknesses of heterogeneously layered lithosphere, and facilitate fundamental margin processes such as deformation coupling and exhumation. Variations in large-magnitude fault geometry, erosional footwall incision, and subsequent differential subsidence along the main breakaway complexes likely record the variable efficiency of these processes.

  16. A 3D modeling approach to complex faults with multi-source data

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Xu, Hua; Zou, Xukai; Lei, Hongzhuan

    2015-04-01

    Fault modeling is a very important step in making an accurate and reliable 3D geological model. Typical existing methods demand enough fault data to be able to construct complex fault models, however, it is well known that the available fault data are generally sparse and undersampled. In this paper, we propose a workflow of fault modeling, which can integrate multi-source data to construct fault models. For the faults that are not modeled with these data, especially small-scale or approximately parallel with the sections, we propose the fault deduction method to infer the hanging wall and footwall lines after displacement calculation. Moreover, using the fault cutting algorithm can supplement the available fault points on the location where faults cut each other. Increasing fault points in poor sample areas can not only efficiently construct fault models, but also reduce manual intervention. By using a fault-based interpolation and remeshing the horizons, an accurate 3D geological model can be constructed. The method can naturally simulate geological structures no matter whether the available geological data are sufficient or not. A concrete example of using the method in Tangshan, China, shows that the method can be applied to broad and complex geological areas.

  17. What Do Kinematic Models Imply About the Constitutive Properties of Rocks Deformed in Flat-Ramp-Flat Folds?

    NASA Astrophysics Data System (ADS)

    Cruz, L.; Nevitt, J. M.; Seixas, G.; Hilley, G. E.

    2017-10-01

    Kinematic theories of flat-ramp-flat folds relate fault angles to stratal dips in a way that allows prediction of structural geometries in areas of economic or scientific interest. However, these geometric descriptions imply constitutive properties of rocks that might be discordant with field and laboratory measurements. In this study, we compare deformation resulting from kinematic and mechanical models of flat-ramp-flat folds with identical geometries to determine the conditions over which kinematic models may be reasonably applied to folded rocks. Results show that most mechanical models do not conform to the geometries predicted by the kinematic models, and only low basal friction (μ ≤ 0.1) and shallow ramps (ramp angle ≤10°) produce geometries consistent with kinematic predictions. This implies that the kinematic models might be appropriate for a narrow set of geometric and basal fault friction parameters.

  18. The use of microtomography in structural geology: A new methodology to analyse fault faces

    NASA Astrophysics Data System (ADS)

    Jacques, Patricia D.; Nummer, Alexis Rosa; Heck, Richard J.; Machado, Rômulo

    2014-09-01

    This paper describes a new methodology to kinematically analyze faults in microscale dimensions (voxel size = 40 μm), using images obtained by X-ray computed microtomography (μCT). The equipment used is a GE MS8x-130 scanner. It was developed using rocks samples from Santa Catarina State, Brazil, and constructing micro Digital Elevation Models (μDEMs) for the fault surface, for analysing microscale brittle structures including striations, roughness and steps. Shaded relief images were created for the μDEMs, which enabled the generation of profiles to classify the secondary structures associated with the main fault surface. In the case of a sample with mineral growth that covers the fault surface, it is possible to detect the kinematic geometry even with the mineral cover. This technique proved to be useful for determining the sense of movement of faults, especially when it is not possible to determine striations in macro or microscopic analysis. When the sample has mineral deposit on the surface (mineral cover) this technique allows a relative chronology and geometric characterization between the faults with and without covering.

  19. Geometric-kinematic characteristics of the main faults in the W-SW of the Lut Block (SE Iran)

    NASA Astrophysics Data System (ADS)

    Rashidi Boshrabadi, Ahmad; Khatib, Mohamad Mahdi; Raeesi, Mohamad; Mousavi, Seyed Morteza; Djamour, Yahya

    2018-03-01

    The area to the W-SW of the Lut Block in Iran has experienced numerous historical and recent destructive earthquakes. We examined a number of faults in this area that have high potential for generating destructive earthquakes. In this study a number of faults are introduced and named for the first time. These new faults are Takdar, Dehno, Suru, Hojat Abad, North Faryab, North Kahnoj, Heydarabad, Khatun Abad and South Faryab. For a group of previously known faults, their mechanism and geological offsets are investigated for the first time. This group of faults include East Nayband, West Nayband, Sardueiyeh, Dalfard, Khordum, South Jabal-e-Barez, and North Jabal-e-Barez. The N-S fault systems of Sabzevaran, Gowk, and Nayband induce slip on the E-W, NE-SW and NW-SE fault systems. The faulting patterns appear to preserve different stages of fault development. We investigated the distribution of active faults and the role that they play in accommodating tectonic strain in the SW-Lut. In the study area, the fault systems with en-echelon arrangement create structures such as restraining and releasing stepover, fault bend and pullapart basin. The main mechanism for fault growth in the region seems to be 'segment linkage of preexisting weaknesses' and also for a limited area through 'process zone'. Estimations are made for the likely magnitudes of separate or combined failure of the fault segments. Such magnitudes are used in hazard analysis of the region.

  20. Kinematic Model for the Sierra Nevada Frontal Fault Zone, California: Paleomagnetism of the Eureka Valley Tuff

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D. W.; Luyendyk, B. P.

    2005-12-01

    We document the geometry, timing, rates, and kinematic style of Late Tertiary deformation between Sonora Pass and Mono Basin, central Sierra Nevada, California. Observed mismatches between geodetic and geologic deformation rates in the western Great Basin may be primarily due to underestimates of true geologic deformation. Relatively little attention has been paid to the role of permanent deformation between faults, i.e. folding or crustal block rotation. Current slip discrepancies may be accounted for if a significant component of off-fault transrotational deformation is present. We use geologic and paleomagnetic data to address the kinematic development of the Sierra Nevada frontal fault zone (SNFFZ), and to quantify both the elastic and inelastic strain accumulated across the Sierra Nevada-Basin and Range transition since ~9 Ma. The complex structure of this transition, between the regions of Sonora Pass and Mono Basin, may be a result of three distinct modes of dextral shear accommodation (transtensional, transpressional, and crustal thinning). The study area is characterized by four important structural elements that lie between the SNFFZ and Walker Lane Belt: (1) N- to NNW-striking normal and oblique faults, dominantly E-dipping, and associated W-tilted fault blocks; (2) NW-striking dextral faults; (3) ENE- to NE-striking left-lateral oblique faults that may accommodate overall dextral shear through clockwise vertical axis rotations of fault blocks; (4) E- to NE-trending folds, which may accommodate N-S shortening at large-scale left steps in the dextral transtensional fault system. Between Bridgeport and Mono Basins, a regional E- to NE-trending fold is present that affects both the Tertiary volcanic strata and a Quaternary glacial outwash surface. To the west, normal faulting rates on the SNFFZ are 1-2 mm/yr (Bursik and Sieh, 1989). This slip decreases to the north, into the folded region of the Bodie Hills. This kinematic relationship suggests that the region may be an accommodation zone between two linking faults, possibly an active fold that accommodates N-S shortening at a large-scale left step in the range front fault system. We collected ~200 paleomagnetic samples from the Late Miocene Eureka Valley Tuff of the Stanislaus Group at 21 sites over a 125-km-long, E-W transect (from the Sierra Nevada foothills to east of Mono Basin). Stepwise AF demagnetization reveals a stable characteristic remnant magnetization. Our preliminary data suggest 20-40 degrees of clockwise rotation adjacent to faults of the SNFFZ. An expanded dataset aims to identify specific structural domains, quantify differential vertical axis block rotations, and test geometric models of transrotation (i.e. block-specific versus gradational) during transtensional lithospheric deformation.

  1. Distributed and localized horizontal tectonic deformation as inferred from drainage network geometry and topology: A case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Castelltort, Sébastien; Klinger, Yann

    2016-04-01

    Partitioning of horizontal deformation between localized and distributed modes in regions of oblique tectonic convergence is, in many cases, hard to quantify. As a case study, we consider the Dead Sea Fault System that changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh fault, is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates along the Yammouneh fault and strain partitioning in Lebanon still prevail. In the current work we use the geometry and topology of river basins together with numerical modeling to evaluate modes and rates of the horizontal deformation in Mount Lebanon that is associated with the Arabia-Sinai relative plate motion. We focus on river basins that drain Mount Lebanon to the Mediterranean and originate close to the Yammouneh fault. We quantify a systematic counterclockwise rotation of these basins and evaluate drainage area disequilibrium using an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. The analysis indicates a systematic spatial pattern whereby tributaries of the rotated basins appear to experience drainage area loss or gain with respect to channel length. A kinematic model that is informed by river basin geometry reveals that since the late Miocene, about a quarter of the relative plate motion parallel to the plate boundary has been distributed along a wide band of deformation to the west of the Yammouneh fault. Taken together with previous, shorter-term estimates, the model indicates little variation of slip rate along the Yammouneh fault since the late Miocene. Kinematic model results are compatible with late Miocene paleomagnetic rotations in western Mount Lebanon. A numerical landscape evolution experiment demonstrates the emergence of a similar χ pattern of drainage area disequilibrium in response to progressive distributed shear deformation of river basins with relatively minor drainage network reorganization.

  2. Middle to Late Devonian-Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Koehl, Jean-Baptiste P.; Bergh, Steffen G.; Henningsen, Tormod; Faleide, Jan Inge

    2018-03-01

    The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle-Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Måsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms-Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE-SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya-Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top-NW normal displacement in Middle to Late Devonian-Carboniferous times. The Troms-Finnmark Fault Complex displays a zigzag-shaped pattern of NNE-SSW- and ENE-WSW-trending extensional faults before it terminates to the north as a WNW-ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW-ESE-trending, margin-oblique segment of the Troms-Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden-Komagelva Fault Zone, which is made of WNW-ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden-Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW-ESE-trending segment of the Troms-Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy-Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE-WSW- to NE-SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian-early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya-Ingøya shear zone truncated and decapitated the Trollfjorden-Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden-Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.

  3. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei

    2014-11-01

    In this study, we present a new method for simulating the 3-D dynamic rupture process occurring on a non-planar fault. The method is based on the curved-grid finite-difference method (CG-FDM) proposed by Zhang & Chen and Zhang et al. to simulate the propagation of seismic waves in media with arbitrary irregular surface topography. While keeping the advantages of conventional FDM, that is computational efficiency and easy implementation, the CG-FDM also is flexible in modelling the complex fault model by using general curvilinear grids, and thus is able to model the rupture dynamics of a fault with complex geometry, such as oblique dipping fault, non-planar fault, fault with step-over, fault branching, even if irregular topography exists. The accuracy and robustness of this new method have been validated by comparing with the previous results of Day et al., and benchmarks for rupture dynamics simulations. Finally, two simulations of rupture dynamics with complex fault geometry, that is a non-planar fault and a fault rupturing a free surface with topography, are presented. A very interesting phenomenon was observed that topography can weaken the tendency for supershear transition to occur when rupture breaks out at a free surface. Undoubtedly, this new method provides an effective, at least an alternative, tool to simulate the rupture dynamics of a complex non-planar fault, and can be applied to model the rupture dynamics of a real earthquake with complex geometry.

  4. Intelligent classifier for dynamic fault patterns based on hidden Markov model

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Feng, Yuguang; Yu, Jinsong

    2006-11-01

    It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.

  5. Improved multi-objective ant colony optimization algorithm and its application in complex reasoning

    NASA Astrophysics Data System (ADS)

    Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing

    2013-09-01

    The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.

  6. The SCEC 3D Community Fault Model (CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.

    2014-12-01

    Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from projecting near-surface data down-dip, or modeled from surface strain and potential field data alone.

  7. Oceanic ridges and transform faults: Their intersection angles and resistance to plate motion

    USGS Publications Warehouse

    Lachenbruch, A.H.; Thompson, G.A.

    1972-01-01

    The persistent near-orthogonal pattern formed by oceanic ridges and transform faults defies explanation in terms of rigid plates because it probably depends on the energy associated with deformation. For passive spreading, it is likely that the ridges and transforms adjust to a configuration offering minimum resistance to plate separation. This leads to a simple geometric model which yields conditions for the occurrence of transform faults and an aid to interpretation of structural patterns in the sea floor. Under reasonable assumptions, it is much more difficult for diverging plates to spread a kilometer of ridge than to slip a kilometer of transform fault, and the patterns observed at spreading centers might extend to lithospheric depths. Under these conditions, the resisting force at spreading centers could play a significant role in the dynamics of plate-tectonic systems. ?? 1972.

  8. Fault slip rates in the modern new madrid seismic zone

    PubMed

    Mueller; Champion; Guccione; Kelson

    1999-11-05

    Structural and geomorphic analysis of late Holocene sediments in the Lake County region of the New Madrid seismic zone indicates that they are deformed by fault-related folding above the blind Reelfoot thrust fault. The widths of narrow kink bands exposed in trenches were used to model the Reelfoot scarp as a forelimb on a fault-bend fold; this, coupled with the age of folded sediment, yields a slip rate on the blind thrust of 6.1 +/- 0.7 mm/year for the past 2300 +/- 100 years. An alternative method used structural relief across the scarp and the estimated dip of the underlying blind thrust to calculate a slip rate of 4.8 +/- 0.2 mm/year. Geometric relations suggest that the right lateral slip rate on the New Madrid seismic zone is 1.8 to 2.0 mm/year.

  9. Faults and structure in the Pierre Shale, central south Dakota

    USGS Publications Warehouse

    Nichols, Thomas C.; Collins, Donley S.; Jones-Cecil, Meridee; Swolfs, Henri S.

    1994-01-01

    Numerous faults observed at the surface and (or) determined by geometric and geophysical methods to be present as much as several hundred meters below the surface (near-surface faults) have been mapped in a 2,000-km2 area west of Pierre, S. Dakota. Many of these faults surround an east-west-trending structural high that has been mapped on the lower part of the Virgin Creek Member of the Pierre Shale. Generally, the geometry and displacement of many of the faults precludes slumping from surficial erosion as a mechanism to explain the faults. Seismic-reflection data indicate that several of the faults directly overlie faults in Precambrian basement that have cumulative vertical displacements of as much as 340 m. The structural high is interpreted to have been uplifted by displacements along faults that cut Upper Cretaceous sedimentary rocks. Recent low-level seismicity and fluvial-geomorphic studies of stream patterns, gradients, and orders suggest that rejuvenation of drainages may be taking place as a result of rebound or other tectonic activity. The studies indicate that repeated uplift and subsidence may have been the cause of extensive faulting mapped in the Pierre Shale since its deposition in Cretaceous time. Surficial fault displacements that cause damage to engineered structures are thought to be the result of construction-induced rebound in the Pierre Shale, although tectonic uplift cannot be ruled out as a cause.

  10. Focusing patterns of seismicity with relocation and collapsing

    NASA Astrophysics Data System (ADS)

    Li, Ka Lok; Gudmundsson, Ólafur; Tryggvason, Ari; Bödvarsson, Reynir; Brandsdóttir, Bryndís

    2016-07-01

    Seismicity is generally concentrated on faults or in fault zones of varying, sometimes complex geometry. An earthquake catalog, compiled over time, contains useful information about this geometry, which can help understanding the tectonics of a region. Interpreting the geometrical distribution of events in a catalog is often complicated by the diffuseness of the earthquake locations. Here, we explore a number of strategies to reduce this diffuseness and hence simplify the seismicity pattern of an earthquake catalog. These strategies utilize information about event locations contained in their overall catalog distribution. They apply this distribution as an a priori constraint on relocations of the events, or as an attractor for each individual event in a collapsing scheme, and thereby focus the locations. The latter strategy is not a relocation strategy in a strict sense, although event foci are moved, because the movements are not driven by data misfit. Both strategies simplify the seismicity pattern of the catalog and may help to interpret it. A synthetic example and a real-data example from an aftershock sequence in south west Iceland are presented to demonstrate application of the strategies. Entropy is used to quantify their effect.

  11. Modeling Earthquake Rupture and Corresponding Tsunamis Along a Segment of the Alaskan-Aleutian Megathrust

    NASA Astrophysics Data System (ADS)

    Ryan, K. J.; Geist, E. L.; Oglesby, D. D.; Kyriakopoulos, C.

    2016-12-01

    Motivated by the 2011 Mw 9 Tohoku-Oki event, we explore the effects of realistic fault dynamics on slip, free surface deformation, and the resulting tsunami generation and local propagation from a hypothetical Mw 9 megathrust earthquake along the Alaskan-Aleutian (A-A) Megathrust. We demonstrate three scenarios: a spatially-homogenous prestress and frictional parameter model and two models with rate-strengthening-like friction (e.g., Dieterich, 1992). We use a dynamic finite element code to model 3-D ruptures, using time-weakening friction (Andrews, 2004) as a proxy for rate-strengthening friction, along a portion of the A-A subduction zone. Given geometric, material, and plate-coupling data along the A-A megathrust assembled from the Science Application for Risk Reduction (SAFRR) team (e.g., Bruns et al., 1987; Hayes et al., 2012; Johnson et al., 2004; Santini et al., 2003; Wells at al., 2003), we are able to dynamically model rupture. Adding frictional-strengthening to a region of the fault reduces both average slip and free surface displacement above the strengthening zone, with the magnitude of the reductions depending on the strengthening zone location. Corresponding tsunami models, which use a finite difference method to solve the long-wave equations (e.g., Liu et al., 1995; Satake, 2002; Shuto, 1991), match sea floor displacement, in time, to the free surface displacement from the rupture models. Tsunami models show changes in local peak amplitudes and beaming patterns for each slip distribution. Given these results, other heterogeneous parameterizations, with respect to prestress and friction, still need to be examined. Additionally, a more realistic fault geometry will likely affect the rupture dynamics. Thus, future work will incorporate stochastic stress and friction distributions as well as a more complex fault geometry based on Slab 1.0 (Hayes et al., 2012).

  12. Development, Interaction and Linkage of Normal Fault Segments along the 100-km Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.

    2016-12-01

    Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.

  13. Kinematics and strain distribution of a thrust-related fold system in the Lewis thrust plate, northwestern Montana (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Yin, An; Oertel, Gerhard

    1993-06-01

    In order to understand interactions between motion along thrusts and the associated style of deformation and strain distribution in their hangingwalls, geologic mapping and strain measurements were conducted in an excellently exposed thrust-related fold system in the Lewis thrust plate, northwestern Montana. This system consists of: (1) an E-directed basal thrust (the Gunsight thrust) that has a flat-ramp geometry and a slip of about 3.6 km; (2) an E-verging asymmetric anticline with its nearly vertical forelimb truncated by the basal thrust from below; (3) a 4-km wide fold belt, the frontal fold complex, that lies directly in front of the E-verging anticline; (4) a W-directed bedding-parallel fault (the Mount Thompson fault) that bounds the top of the frontal fold belt and separates it from the undeformed to broadly folded strata above; and (5) regionally developed, W-dipping spaced cleavage. Although the overall geometry of the thrust-related fold system differs from any previously documented fault-related folds, the E-verging anticline itself resembles geometrically a Rich-type fault-bend fold. The observed initial cut-off and fold interlimb angles of this anticline, however, cannot be explained by cross-section balancing models for the development of either a fault-bend fold or a fault propagation fold. Possible origins for the E-verging anticline include (1) the fold initiated as an open fault-bend fold and tightened only later during its emplacement along the basal thrust and (2) the fold started as either a fault-bend or a fault-propagation fold, but simultaneous or subsequent volume change incompatible with any balanced cross-section models altered its shape. Strain in the thrust-related fold system was determined by the preferred orientation of mica and chlorite grains. The direction and magnitude of the post-compaction strain varies from place to place. Strains in the foreclimb of the hangingwall anticline imply bedding-parallel thinning at some localities and thickening at others. This inhomogeneity may be caused by the development of thrusts and folds. Strain in the backlimb of the hangingwall anticline implies bedding-parallel stretching in the thrust transport direction. This could be the effect of bending as the E-verging anticline was tightened and transported across the basal thrust ramp. Strain measured next to the Gunsight thrust again indicates locally varying shortening and extension in the transport direction, perhaps in response to inhomogeneous friction on the fault or else to a history of alternating strain hardening and softening in the basal thrust zone.

  14. Seismic Sources for the Territory of Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N. S.; Varazanashvili, O.

    2011-12-01

    The southern Caucasus is an earthquake prone region where devastating earthquakes have repeatedly caused significant loss of lives, infrastructure and buildings. High geodynamic activity of the region expressed in both seismic and aseismic deformations, is conditioned by the still-ongoing convergence of lithospheric plates and northward propagation of the Afro-Arabian continental block at a rate of several cm/year. The geometry of tectonic deformations in the region is largely determined by the wedge-shaped rigid Arabian block intensively intended into the relatively mobile Middle East-Caucasian region. Georgia is partner of ongoing regional project EMME. The main objective of EMME is calculation of Earthquake hazard uniformly with heights standards. One approach used in the project is the probabilistic seismic hazard assessment. In this approach the first parameter requirement is the definition of seismic source zones. Seismic sources can be either faults or area sources. Seismoactive structures of Georgia are identified mainly on the basis of the correlation between neotectonic structures of the region and earthquakes. Requirements of modern PSH software to geometry of faults is very high. As our knowledge of active faults geometry is not sufficient, area sources were used. Seismic sources are defined as zones that are characterized with more or less uniform seismicity. Poor knowledge of the processes occurring in deep of the Earth is connected with complexity of direct measurement. From this point of view the reliable data obtained from earthquake fault plane solution is unique for understanding the character of a current tectonic life of investigated area. There are two methods of identification if seismic sources. The first is the seimsotectonic approach, based on identification of extensive homogeneous seismic sources (SS) with the definition of probability of occurrence of maximum earthquake Mmax. In the second method the identification of seismic sources will be obtained on the bases of structural geology, parameters of seismicity and seismotectonics. This last approach was used by us. For achievement of this purpose it was necessary to solve following problems: to calculate the parameters of seismotectonic deformation; to reveal regularities in character of earthquake fault plane solution; use obtained regularities to develop principles of an establishment of borders between various hierarchical and scale levels of seismic deformations fields and to give their geological interpretation; Three dimensional matching of active faults with real geometrical dimension and earthquake sources have been investigated. Finally each zone have been defined with the parameters: the geometry, the magnitude-frequency parameters, maximum magnitude, and depth distribution as well as modern dynamical characteristics widely used for complex processes

  15. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. Themore » Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.« less

  16. Sequential Test Strategies for Multiple Fault Isolation

    NASA Technical Reports Server (NTRS)

    Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.

    1997-01-01

    In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.

  17. A Comprehensive Comparison of Multiparty Secure Additions with Differential Privacy

    PubMed Central

    Goryczka, Slawomir; Xiong, Li

    2016-01-01

    This paper considers the problem of secure data aggregation (mainly summation) in a distributed setting, while ensuring differential privacy of the result. We study secure multiparty addition protocols using well known security schemes: Shamir’s secret sharing, perturbation-based, and various encryptions. We supplement our study with our new enhanced encryption scheme EFT, which is efficient and fault tolerant. Differential privacy of the final result is achieved by either distributed Laplace or Geometric mechanism (respectively DLPA or DGPA), while approximated differential privacy is achieved by diluted mechanisms. Distributed random noise is generated collectively by all participants, which draw random variables from one of several distributions: Gamma, Gauss, Geometric, or their diluted versions. We introduce a new distributed privacy mechanism with noise drawn from the Laplace distribution, which achieves smaller redundant noise with efficiency. We compare complexity and security characteristics of the protocols with different differential privacy mechanisms and security schemes. More importantly, we implemented all protocols and present an experimental comparison on their performance and scalability in a real distributed environment. Based on the evaluations, we identify our security scheme and Laplace DLPA as the most efficient for secure distributed data aggregation with privacy. PMID:28919841

  18. A Comprehensive Comparison of Multiparty Secure Additions with Differential Privacy.

    PubMed

    Goryczka, Slawomir; Xiong, Li

    2017-01-01

    This paper considers the problem of secure data aggregation (mainly summation) in a distributed setting, while ensuring differential privacy of the result. We study secure multiparty addition protocols using well known security schemes: Shamir's secret sharing, perturbation-based, and various encryptions. We supplement our study with our new enhanced encryption scheme EFT, which is efficient and fault tolerant. Differential privacy of the final result is achieved by either distributed Laplace or Geometric mechanism (respectively DLPA or DGPA), while approximated differential privacy is achieved by diluted mechanisms. Distributed random noise is generated collectively by all participants, which draw random variables from one of several distributions: Gamma, Gauss, Geometric, or their diluted versions. We introduce a new distributed privacy mechanism with noise drawn from the Laplace distribution, which achieves smaller redundant noise with efficiency. We compare complexity and security characteristics of the protocols with different differential privacy mechanisms and security schemes. More importantly, we implemented all protocols and present an experimental comparison on their performance and scalability in a real distributed environment. Based on the evaluations, we identify our security scheme and Laplace DLPA as the most efficient for secure distributed data aggregation with privacy.

  19. Triggered tremor sweet spots in Alaska

    NASA Astrophysics Data System (ADS)

    Gomberg, Joan; Prejean, Stephanie

    2013-12-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor "sweet spots"—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (< 0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  20. Triggered tremor sweet spots in Alaska

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (<~0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  1. The Fluid Flow Evolution During the Seismic Cycle Within Overpressured Fault Zones

    NASA Astrophysics Data System (ADS)

    de Paola, Nicola; Vanhunen, Jeroen; Collettini, Cristiano; Faulkner, Dan

    2010-05-01

    The integration of seismic reflection profiles with well-located earthquakes shows that the mainshocks of the 1997 Umbria-Marche seismic sequence (Mw < 6) nucleated at about 6 km depth, within the Triassic Evaporites, a 2 km thick sequence made of interbedded anhydrites and dolostones. Two boreholes, drilled northwest of the epicentral area, encountered CO2 fluid overpressures at about 0.8 of the lithostatic load, at about 4 km depth. It has been proposed that the time-space evolution of the 1997 aftershock sequence, was driven by the coseismic release of trapped high-pressure fluids (lv = 0.8), within the Triassic Evaporites. In order to understand whether CO2 fluid overpressure can be maintained up to the coseismic period, and trigger earthquake nucleation, we modelled fluid flow through a mature fault zone within the Triassic Evaporites. We assume that fluid flow within the fault zone occurs in accord with the Darcy's Law. Under this condition, a near lithostatic pore pressure gradient can develop, within the fault zone, when the upward transport of fluid along the fault zone exceeds the fluid loss in a horizontal direction. Our model's parameters are: a) Fault zone structure: model inputs have been obtained from large fault zone analogues derived from field observation. The architecture of large fault zones within the TE is given by a distinct fault core, up to few meters thick, of very fine-grained fault rocks (cataclasites and fault gouge), where most of the shear strain has been accommodated, surrounded by a geometrically complex and heterogeneous damage zone (up to few tens of meters wide). The damage zone is characterized by adjacent zones of heavily fractured rocks (dolostones) and foliated rocks displaying little fracturing (anhydrites). b) Fault zone permeability: field data suggests that the permeability of the fault core is relatively low due to the presence of fine grained fault rocks (k < 10E-18 m2). The permeability of the dolostones, within the damage zone, is likely to be high and controlled by mesoscale fracture patterns (k > 10E-17 m2). For the anhydrites, the permeability and porosity development was continuously measured prior and throughout triaxial loading tests, performed on borehole samples. The permeability of the anhydrites within the damage zone, due to the absence of mesoscale fracture patterns within Ca-sulphates layers, has been assumed to be as low as the values measured during our lab experiments (k = 10E-17 - 10E-20 m2). Our model results show that, during the seismic cycle, the lateral fluid flux, across the fault zone, is always lower than the vertical parallel fluid flux. Under these conditions fluid overpressure within the fault zone can be sustained up to the coseismic period when earthquake nucleation occurs. Our modelling shows that during extensional loading, overpressured fault zones within the Triassic Evaporites may develop and act as asperities, i.e. they are mechanically weaker than faults within the overlain carbonates at hydrostatic (lv = 0.4) pore fluid pressure conditions.

  2. The effects of transistor source-to-gate bridging faults in complex CMOS gates

    NASA Astrophysics Data System (ADS)

    Visweswaran, G. S.; Ali, Akhtar-Uz-Zaman M.; Lala, Parag K.; Hartmann, Carlos R. P.

    1991-06-01

    A study of the effect of gate-to-source bridging faults in the pull-up section of a complex CMOS gate is presented. The manifestation of these faults depends on the resistance value of the connection causing the bridging. It is shown that such faults manifest themselves either as stuck-at or stuck-open faults and can be detected by tests for stuck-at and stuck-open faults generated for the equivalent logic current. It is observed that for transistor channel lengths larger than 1 microns there exists a range of values of the bridging resistance for which the fault behaves as a pseudo-stuck-open fault.

  3. Latest Progress of Fault Detection and Localization in Complex Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi

    2014-01-01

    In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.

  4. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.

    2014-12-01

    Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.

  5. Using high-resolution multibeam bathymetry to identify seafloor surface rupture along the Palos Verdes fault complex in offshore Southern California

    USGS Publications Warehouse

    Marlow, M. S.; Gardner, J.V.; Normark, W.R.

    2000-01-01

    Recently acquired high-resolution multibeam bathymetric data reveal several linear traces that are the surficial expressions of seafloor rupture of Holocene faults on the upper continental slope southeast of the Palos Verdes Peninsula. High-resolution multichannel and boomer seismic-reflection profiles show that these linear ruptures are the surficial expressions of Holocene faults with vertical to steep dips. The most prominent fault on the multibeam bathymetry is about 10 km to the west of the mapped trace of the Palos Verdes fault and extends for at least 14 km between the shelf edge and the base of the continental slope. This fault is informally called the Avalon Knoll fault for the nearby geographic feature of that name. Seismic-reflection profiles show that the Avalon Knoll fault is part of a northwest-trending complex of faults and anticlinal uplifts that are evident as scarps and bathymetric highs on the multibeam bathymetry. This fault complex may extend onshore and contribute to the missing balance of Quaternary uplift determined for the Palos Verdes Hills and not accounted for by vertical uplift along the onshore Palos Verdes fault. We investigate the extent of the newly located offshore Avalon Knoll fault and use this mapped fault length to estimate likely minimum magnitudes for events along this fault.

  6. The Indirect Boundary Element Method (IBEM) for Seismic Response of Topographical Irregularities in Layered Media

    NASA Astrophysics Data System (ADS)

    Contreras Zazueta, M. A.; Perton, M.; Sanchez-Sesma, F. J.; Sánchez-Alvaro, E.

    2013-12-01

    The seismic hazard assessment of extended developments, such as a dam, a bridge or a pipeline, needs the strong ground motion simulation taking into account the effects of surface geology. In many cases the incoming wave field can be obtained from attenuation relations or simulations for layered media using Discrete Wave Number (DWN). Sometimes there is a need to include in simulations the seismic source as well. A number of methods to solve these problems have been developed. Among them the Finite Element and Finite Difference Methods (FEM and FDM) are generally preferred because of the facility of use. Nevertheless, the analysis of realistic dynamic loading induced by earthquakes requires a thinner mesh of the entire domain to consider high frequencies. Consequently this may imply a high computational cost. The Indirect Boundary Element Method (IBEM) can also be employed. Here it is used to study the response of a site to historical seismic activity. This method is particularly suited to model wave propagation through wide areas as it requires only the meshing of boundaries. Moreover, it is well suited to represent finely the diffraction that can occur on a fault. However, the IBEM has been applied mainly to simple geometrical configurations. In this communication significant refinements of the formulation are presented. Using IBEM we can simulate wave propagation in complex geometrical configurations such as a stratified medium crossed by thin faults or having a complex topography. Two main developments are here described; one integrates the DWN method inside the IBEM in order to represent the Green's functions of stratified media with relatively low computational cost but assuming unbounded parallel flat layers, and the other is the extension of IBEM to deal with multi-regions in contact which allows more versatility with a higher computational cost compared to the first one but still minor to an equivalent FEM formulation. The two approaches are fully described here and their results compared within the hazard studies of CFE-Las Cruces, Nayarit, Mexico, hydroelectrical project. ACKNOWLEDGEMENTS. This study is partially supported by DGAPA-UNAM under Project IN104712.

  7. Material and Stress Rotations: Anticipating the 1992 Landers, CA Earthquake

    NASA Astrophysics Data System (ADS)

    Nur, A. M.

    2014-12-01

    "Rotations make nonsense of the two-dimensional reconstructions that are still so popular among structural geologists". (McKenzie, 1990, p. 109-110) I present a comprehensive tectonic model for the strike-slip fault geometry, seismicity, material rotation, and stress rotation, in which new, optimally oriented faults can form when older ones have rotated about a vertical axis out of favorable orientations. The model was successfully tested in the Mojave region using stress rotation and three independent data sets: the alignment of epicenters and fault plane solutions from the six largest central Mojave earthquakes since 1947, material rotations inferred from paleomagnetic declination anomalies, and rotated dike strands of the Independence dike swarm. The model led not only to the anticipation of the 1992 M7.3 Landers, CA earthquake but also accounts for the great complexity of the faulting and seismicity of this event. The implication of this model for crustal deformation in general is that rotations of material (faults and the blocks between them) and of stress provide the key link between the complexity of faults systems in-situ and idealized mechanical theory of faulting. Excluding rotations from the kinematical and mechanical analysis of crustal deformation makes it impossible to explain the complexity of what geologists see in faults, or what seismicity shows us about active faults. However, when we allow for rotation of material and stress, Coulomb's law becomes consistent with the complexity of faults and faulting observed in situ.

  8. Hanging-wall deformation above a normal fault: sequential limit analyses

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoping; Leroy, Yves M.; Maillot, Bertrand

    2015-04-01

    The deformation in the hanging wall above a segmented normal fault is analysed with the sequential limit analysis (SLA). The method combines some predictions on the dip and position of the active fault and axial surface, with geometrical evolution à la Suppe (Groshong, 1989). Two problems are considered. The first followed the prototype proposed by Patton (2005) with a pre-defined convex, segmented fault. The orientation of the upper segment of the normal fault is an unknown in the second problem. The loading in both problems consists of the retreat of the back wall and the sedimentation. This sedimentation starts from the lowest point of the topography and acts at the rate rs relative to the wall retreat rate. For the first problem, the normal fault either has a zero friction or a friction value set to 25o or 30o to fit the experimental results (Patton, 2005). In the zero friction case, a hanging wall anticline develops much like in the experiments. In the 25o friction case, slip on the upper segment is accompanied by rotation of the axial plane producing a broad shear zone rooted at the fault bend. The same observation is made in the 30o case, but without slip on the upper segment. Experimental outcomes show a behaviour in between these two latter cases. For the second problem, mechanics predicts a concave fault bend with an upper segment dip decreasing during extension. The axial surface rooting at the normal fault bend sees its dips increasing during extension resulting in a curved roll-over. Softening on the normal fault leads to a stepwise rotation responsible for strain partitioning into small blocks in the hanging wall. The rotation is due to the subsidence of the topography above the hanging wall. Sedimentation in the lowest region thus reduces the rotations. Note that these rotations predicted by mechanics are not accounted for in most geometrical approaches (Xiao and Suppe, 1992) and are observed in sand box experiments (Egholm et al., 2007, referring to Dahl, 1987). References: Egholm, D. L., M. Sandiford, O. R. Clausen, and S. B. Nielsen (2007), A new strategy for discrete element numerical models: 2. sandbox applications, Journal of Geophysical Research, 112 (B05204), doi:10.1029/2006JB004558. Groshong, R. H. (1989), Half-graben structures: Balanced models of extensional fault-bend folds, Geological Society of America Bulletin, 101 (1), 96-105. Patton, T. L. (2005), Sandbox models of downward-steepening normal faults, AAPG Bulletin, 89 (6), 781-797. Xiao, H.-B., and J. Suppe (1992), Orgin of rollover, AAPG Bulletin, 76 (4), 509-529.

  9. Controls on Early-Rift Geometry: New Perspectives From the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, Å.; Biggs, J.; Mdala, H.

    2018-05-01

    We use the ˜110-km long Bilila-Mtakataka fault in the amagmatic southern East African Rift, Malawi, to investigate the controls on early-rift geometry at the scale of a major border fault. Morphological variations along the 14 ± 8-m high scarp define six 10- to 40-km long segments, which are either foliation parallel or oblique to both foliation and the current regional extension direction. As the scarp is neither consistently parallel to foliation nor well oriented for the current regional extension direction, we suggest that the segmented surface expression is related to the local reactivation of well-oriented weak shallow fabrics above a broadly continuous structure at depth. Using a geometrical model, the geometry of the best fitting subsurface structure is consistent with the local strain field from recent seismicity. In conclusion, within this early-rift, preexisting weaknesses only locally control border fault geometry at subsurface.

  10. Probabilistic seismic hazard study based on active fault and finite element geodynamic models

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco

    2016-04-01

    We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and with their internal variability together with the choice of the ground motion prediction equations (GMPEs) are the most influencing parameter. Both of these parameters have significan affect on the hazard results. Thus having good knowledge of the existence of active faults and their geometric and activity characteristics is of key importance. We also show that PSHA models based exclusively on active faults and geodynamic inputs, which are thus not dependent on past earthquake occurrences, provide a valid method for seismic hazard calculation.

  11. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network

    PubMed Central

    Sun, Weifang; Yao, Bin; Zeng, Nianyin; He, Yuchao; Cao, Xincheng; He, Wangpeng

    2017-01-01

    As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault’s characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault’s characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal’s features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear’s weak fault features. PMID:28773148

  12. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, David A.

    2009-01-01

    A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.

  13. Fault Identification Based on Nlpca in Complex Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yagang; Wang, Zengping; Zhang, Jinfang

    2012-07-01

    The fault is inevitable in any complex systems engineering. Electric power system is essentially a typically nonlinear system. It is also one of the most complex artificial systems in this world. In our researches, based on the real-time measurements of phasor measurement unit, under the influence of white Gaussian noise (suppose the standard deviation is 0.01, and the mean error is 0), we used mainly nonlinear principal component analysis theory (NLPCA) to resolve fault identification problem in complex electrical engineering. The simulation results show that the fault in complex electrical engineering is usually corresponding to the variable with the maximum absolute value coefficient in the first principal component. These researches will have significant theoretical value and engineering practical significance.

  14. Structural development of the Red Hill portion of the Feather River ultramafic complex, Pulmas County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberg, C.W.

    1979-01-01

    The Feather River Ultramafic Complex is a partially serpentinized body of metamorphosed alpine peridotite and gabbro that lies along the northern part of the Melones fault zone, a NNW trending belt in the Northern Sierra Nevada. The complex was studied in the area of Red Hill, near the canyon of the North Fork, Feather River. The complex is separated from the Calaveras Terrain and Arlington Formation country rocks by steep faults; the Melones Fault on the east and the Rich Bar Fault on the west. Units recognized within the complex include Rich Bar metamorphic rocks, peridotite, metaperidotite, tremolite-olivine schist, hornblendemore » schist, and layered metagabbro. The Rich Bar metamorphic rocks are tectonic slices of amphibolite grade hornblende schist, mica schist, and quartzite found along the Rich Bar Fault. The complex shows evidence of 4 major events. E-1 (Pennsylvania-Permian) was formation of the peridotite-gabbro complex. E-2 (Permo-Triassic) consisted of pervasive shearing parallel to the Rich Bar Fault associated with initial emplacement within the Sierra Nevada. E-3 is believed to be compression and metamorphism (serpentinization) associated with the Nevadan orogeny. E-4 was associated with intrusion of nearby plutons. The regional association of the complex with late paleozoic arc volcanics of the Taylorsville area suggest formation near or under an island arc. Metamorphism during emplacement indicates association with the arc at that time. Left-lateral shear during emplacement along the Rich Bar Fault indicates NW directed thrusting when the layering in metagabbro is rotated to horizontal.« less

  15. Pore pressure may control rupture propagation of the 2001 Mw=7.8 Kokoxili earthquake from the Kunlun fault to the Kunlun Pass fault

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Wang, W.; He, J.

    2016-12-01

    The 2001 Mw=7.8 Kokoxili earthquake nucleated on the west-east tending Kunlun strike-slip fault in center of the Tibetan plateau. When the rupture propagated eastward near the Xidatan segment of the Kunlun fault, this earthquake jumped to the Kunlun Pass fault, a less matured fault that, due to the geometric orientation, was obviously clamped by the coseismic deformation before its rupture. To investigate the possible mechanism for the rupture jump, we updated the coseismic rupture model from a joint inversion of the geological, geodetic and seismic wave data. Constrained with the rupture process, a three-dimensional finite element model was developed to calculate the failure stress from elastic and poroelastic deformation of the crust during the rupture propagation. Results show that just before the rupture reached the conjunction of the Xidatan segment and the Kunlun Pass fault, the failure stress induced by elastic deformation is indeed larger on Xidatan segment of the Kunlun fault than on the Kunlun Pass fault. However, if the pore pressure resulted from undrained poroelastic deformation was invoked, the failure stress is significantly increased on the Kunlun Pass fault. Given a reasonable bound on fault friction and on poroelastic parameters, it can be seen that the poroelastic failure stress is 0.3-0.9 Mpa greater on the Kunlun Pass fault than on Xidatan segment of the Kunlun fault. We therefore argue that during the rupture process of the 2001 Mw=7.8 Kokoxili earthquake, pore pressure may play an important role on controlling the rupture propagation from the Kunlun fault to the Kunlun Pass fault.

  16. Geometry and architecture of faults in a syn-rift normal fault array: The Nukhul half-graben, Suez rift, Egypt

    NASA Astrophysics Data System (ADS)

    Wilson, Paul; Gawthorpe, Rob L.; Hodgetts, David; Rarity, Franklin; Sharp, Ian R.

    2009-08-01

    The geometry and architecture of a well exposed syn-rift normal fault array in the Suez rift is examined. At pre-rift level, the Nukhul fault consists of a single zone of intense deformation up to 10 m wide, with a significant monocline in the hanging wall and much more limited folding in the footwall. At syn-rift level, the fault zone is characterised by a single discrete fault zone less than 2 m wide, with damage zone faults up to approximately 200 m into the hanging wall, and with no significant monocline developed. The evolution of the fault from a buried structure with associated fault-propagation folding, to a surface-breaking structure with associated surface faulting, has led to enhanced bedding-parallel slip at lower levels that is absent at higher levels. Strain is enhanced at breached relay ramps and bends inherited from pre-existing structures that were reactivated during rifting. Damage zone faults observed within the pre-rift show ramp-flat geometries associated with contrast in competency of the layers cut and commonly contain zones of scaly shale or clay smear. Damage zone faults within the syn-rift are commonly very straight, and may be discrete fault planes with no visible fault rock at the scale of observation, or contain relatively thin and simple zones of scaly shale or gouge. The geometric and architectural evolution of the fault array is interpreted to be the result of (i) the evolution from distributed trishear deformation during upward propagation of buried fault tips to surface faulting after faults breach the surface; (ii) differences in deformation response between lithified pre-rift units that display high competence contrasts during deformation, and unlithified syn-rift units that display low competence contrasts during deformation, and; (iii) the history of segmentation, growth and linkage of the faults that make up the fault array. This has important implications for fluid flow in fault zones.

  17. Analysis of a Complex Faulted CO 2 Reservoir Using a Three-dimensional Hydro-geochemical-Mechanical Approach

    DOE PAGES

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.; ...

    2017-08-18

    This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less

  18. Analysis of a Complex Faulted CO 2 Reservoir Using a Three-dimensional Hydro-geochemical-Mechanical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.

    This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less

  19. Comparison of Observed Spatio-temporal Aftershock Patterns with Earthquake Simulator Results

    NASA Astrophysics Data System (ADS)

    Kroll, K.; Richards-Dinger, K. B.; Dieterich, J. H.

    2013-12-01

    Due to the complex nature of faulting in southern California, knowledge of rupture behavior near fault step-overs is of critical importance to properly quantify and mitigate seismic hazards. Estimates of earthquake probability are complicated by the uncertainty that a rupture will stop at or jump a fault step-over, which affects both the magnitude and frequency of occurrence of earthquakes. In recent years, earthquake simulators and dynamic rupture models have begun to address the effects of complex fault geometries on earthquake ground motions and rupture propagation. Early models incorporated vertical faults with highly simplified geometries. Many current studies examine the effects of varied fault geometry, fault step-overs, and fault bends on rupture patterns; however, these works are limited by the small numbers of integrated fault segments and simplified orientations. The previous work of Kroll et al., 2013 on the northern extent of the 2010 El Mayor-Cucapah rupture in the Yuha Desert region uses precise aftershock relocations to show an area of complex conjugate faulting within the step-over region between the Elsinore and Laguna Salada faults. Here, we employ an innovative approach of incorporating this fine-scale fault structure defined through seismological, geologic and geodetic means in the physics-based earthquake simulator, RSQSim, to explore the effects of fine-scale structures on stress transfer and rupture propagation and examine the mechanisms that control aftershock activity and local triggering of other large events. We run simulations with primary fault structures in state of California and northern Baja California and incorporate complex secondary faults in the Yuha Desert region. These models produce aftershock activity that enables comparison between the observed and predicted distribution and allow for examination of the mechanisms that control them. We investigate how the spatial and temporal distribution of aftershocks are affected by changes to model parameters such as shear and normal stress, rate-and-state frictional properties, fault geometry, and slip rate.

  20. Crustal structure of norther Oaxaca terrane; The Oaxaca and caltepec faults, and the Tehuacan Valley. A gravity study.

    NASA Astrophysics Data System (ADS)

    Campos-Enriquez, J. O.; Alatorre-Zamora, M. A.; Ramón, V. M.; Belmonte, S.

    2014-12-01

    Northern Oaxaca terrane, southern Mexico, is bound by the Caltepec and Oaxaca faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacan depression. Several gravity profiles across these faults and the Oaxaca terrane (including the Tehuacan Valley) enables us to establish the upper crustal structure of this region. Accordingly, the Oaxaca terrane is downward displaced to the east in two steps. First the Santa Lucia Fault puts into contact the granulitic basamental rocks with Phanerozoic volcanic and sedimentary rocks. Finally, the Gavilan Fault puts into contact the Oaxaca terrane basement (Oaxaca Complex) into contact with the volcano-sedimentary infill of the valley. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex?). A structural high at the western Tehuacan depression accomadates the east dipping faults (Santa Lucia and Gavilan faults) and the west dipping faults of the Oaxaca Fault System. To the west of this high structural we have the depper depocenters. The Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. The faults are regional tectonic structures. They seem to continue northwards below the Trans-Mexican Volcanic Belt. A major E-W to NE-SW discontinuity on the Oaxaca terrane is inferred to exist between profiles 1 and 2. The Tehuacan Valley posses a large groundwater potential.

  1. Postglacial seismic activity along the Isovaara-Riikonkumpu fault complex

    NASA Astrophysics Data System (ADS)

    Ojala, Antti E. K.; Mattila, Jussi; Ruskeeniemi, Timo; Palmu, Jukka-Pekka; Lindberg, Antero; Hänninen, Pekka; Sutinen, Raimo

    2017-10-01

    Analysis of airborne LiDAR-based digital elevation models (DEMs), trenching of Quaternary deposits, and diamond drilling through faulted bedrock was conducted to characterize the geological structure and full slip profiles of the Isovaara-Riikonkumpu postglacial fault (PGF) complex in northern Finland. The PGF systems are recognized from LiDAR DEMs as a complex of surface ruptures striking SW-NE, cutting through late-Weichselian till, and associated with several postglacial landslides within 10 km. Evidence from the terrain rupture characteristics, the deformed and folded structure of late-Weichselian till, and the 14C age of 11,300 cal BP from buried organic matter underneath the Sotka landslide indicates a postglacial origin of the Riikonkumpu fault (PGF). The fracture frequency and lithology of drill cores and fault geometry in the trench log indicate that the Riikonkumpu PGF dips to WNW with a dip angle of 40-45° at the Riikonkumpu site and close to 60° at the Riikonvaara site. A fault length of 19 km and the mean and maximum cumulative vertical displacement of 1.3 m and 4.1 m, respectively, of the Riikonkumpu PGF system indicate that the fault potentially hosted an earthquake with a moment magnitude MW ≈ 6.7-7.3 assuming that slip was accumulated in one seismic event. Our interpretation further suggests that the Riikonkumpu PGF system is linked to the Isovaara PGF system and that, together, they form a larger Isovaara-Riikonkumpu fault complex. Relationships between the 38-km-long rupture of the Isovaara-Riikonkumpu complex and the fault offset parameters, with cumulative displacement of 1.5 and 8.3 m, respectively, indicate that the earthquake(s) contributing to the PGF complex potentially had a moment magnitude of MW ≈ 6.9-7.5. In order to adequately sample the uncertainty space, the moment magnitude was also estimated for each major segment within the Isovaara-Riikonkumpu PGF complex. These estimates vary roughly between MW ≈ 5-8 for the individual segments.

  2. Automatic Fault Characterization via Abnormality-Enhanced Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronevetsky, G; Laguna, I; de Supinski, B R

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help tomore » identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.« less

  3. Fault model of the 2014 Cephalonia seismic sequence - Evidence of spatiotemporal fault segmentation along the NW edge of Aegean Arc

    NASA Astrophysics Data System (ADS)

    Saltogianni, Vasso; Moschas, Fanis; Stiros, Stathis

    2017-04-01

    Finite fault models (FFM) are presented for the two main shocks of the 2014 Cephalonia (Ionian Sea, Greece) seismic sequence (M 6.0) which produced extreme peak ground accelerations ( 0.7g) in the west edge of the Aegean Arc, an area in which the poor coverage by seismological and GPS/INSAR data makes FFM a real challenge. Modeling was based on co-seismic GPS data and on the recently introduced TOPological INVersion algorithm. The latter is a novel uniform grid search-based technique in n-dimensional spaces, is based on the concept of stochastic variables and which can identify multiple unconstrained ("free") solutions in a specified search space. Derived FFMs for the 2014 earthquakes correspond to an essentially strike slip fault and of part of a shallow thrust, the surface projection of both of which run roughly along the west coast of Cephalonia. Both faults correlate with pre-existing faults. The 2014 faults, in combination with the faults of the 2003 and 2015 Leucas earthquakes farther NE, form a string of oblique slip, partly overlapping fault segments with variable geometric and kinematic characteristics along the NW edge of the Aegean Arc. This composite fault, usually regarded as the Cephalonia Transform Fault, accommodates shear along this part of the Arc. Because of the highly fragmented crust, dominated by major thrusts in this area, fault activity is associated with 20km long segments and magnitude 6.0-6.5 earthquakes recurring in intervals of a few seconds to 10 years.

  4. Fault-scale controls on rift geometry: the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, A.; Biggs, J.; Mdala, H. S.

    2017-12-01

    Border faults that develop during initial stages of rifting determine the geometry of rifts and passive margins. At outcrop and regional scales, it has been suggested that border fault orientation may be controlled by reactivation of pre-existing weaknesses. Here, we perform a multi-scale investigation on the influence of anisotropic fabrics along a major developing border fault in the southern East African Rift, Malawi. The 130 km long Bilila-Mtakataka fault has been proposed to have slipped in a single MW 8 earthquake with 10 m of normal displacement. The fault is marked by an 11±7 m high scarp with an average trend that is oblique to the current plate motion. Variations in scarp height are greatest at lithological boundaries and where the scarp switches between following and cross-cutting high-grade metamorphic foliation. Based on the scarp's geometry and morphology, we define 6 geometrically distinct segments. We suggest that the segments link to at least one deeper structure that strikes parallel to the average scarp trend, an orientation consistent with the kinematics of an early phase of rift initiation. The slip required on a deep fault(s) to match the height of the current scarp suggests multiple earthquakes along the fault. We test this hypothesis by studying the scarp morphology using high-resolution satellite data. Our results suggest that during the earthquake(s) that formed the current scarp, the propagation of the fault toward the surface locally followed moderately-dipping foliation well oriented for reactivation. In conclusion, although well oriented pre-existing weaknesses locally influence shallow fault geometry, large-scale border fault geometry appears primarily controlled by the stress field at the time of fault initiation.

  5. "3D_Fault_Offsets," a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults

    NASA Astrophysics Data System (ADS)

    Stewart, N.; Gaudemer, Y.; Manighetti, I.; Serreau, L.; Vincendeau, A.; Dominguez, S.; Mattéo, L.; Malavieille, J.

    2018-01-01

    Measuring fault offsets preserved at the ground surface is of primary importance to recover earthquake and long-term slip distributions and understand fault mechanics. The recent explosion of high-resolution topographic data, such as Lidar and photogrammetric digital elevation models, offers an unprecedented opportunity to measure dense collections of fault offsets. We have developed a new Matlab code, 3D_Fault_Offsets, to automate these measurements. In topographic data, 3D_Fault_Offsets mathematically identifies and represents nine of the most prominent geometric characteristics of common sublinear markers along faults (especially strike slip) in 3-D, such as the streambed (minimum elevation), top, free face and base of channel banks or scarps (minimum Laplacian, maximum gradient, and maximum Laplacian), and ridges (maximum elevation). By calculating best fit lines through the nine point clouds on either side of the fault, the code computes the lateral and vertical offsets between the piercing points of these lines onto the fault plane, providing nine lateral and nine vertical offset measures per marker. Through a Monte Carlo approach, the code calculates the total uncertainty on each offset. It then provides tools to statistically analyze the dense collection of measures and to reconstruct the prefaulted marker geometry in the horizontal and vertical planes. We applied 3D_Fault_Offsets to remeasure previously published offsets across 88 markers on the San Andreas, Owens Valley, and Hope faults. We obtained 5,454 lateral and vertical offset measures. These automatic measures compare well to prior ones, field and remote, while their rich record provides new insights on the preservation of fault displacements in the morphology.

  6. Fold-Thrust mapping using photogrammetry in Western Champsaur basin, SE France

    NASA Astrophysics Data System (ADS)

    Totake, Y.; Butler, R.; Bond, C. E.

    2016-12-01

    There is an increasing demand for high-resolution geometric data for outcropping geological structures - not only to test models for their formation and evolution but also to create synthetic seismic visualisations for comparison with subsurface data. High-resolution 3D scenes reconstructed by modern photogrammetry offer an efficient toolbox for such work. When integrated with direct field measurements and observations, these products can be used to build geological interpretations and models. Photogrammetric techniques using standard equipment are ideally suited to working in the high mountain terrain that commonly offers the best outcrops, as all equipment is readily portable and, in the absence of cloud-cover, not restricted to the meteorological and legal restrictions that can affect some airborne approaches. The workflows and approaches for generating geological models utilising such photogrammetry techniques are the focus of our contribution. Our case study comes from SE France where early Alpine fore-deep sediments have been deformed into arrays of fold-thrust complexes. Over 1500m vertical relief provides excellent outcrop control with surrounding hillsides providing vantage points for ground-based photogrammetry. We collected over 9,400 photographs across the fold-thrust array using a handheld digital camera from 133 ground locations that were individually georeferenced. We processed the photographic images within the software PhotoScan-Pro to build 3D landscape scenes. The built photogrammetric models were then imported into the software Move, along with field measurements, to map faults and sedimentary layers and to produce geological cross sections and 3D geological surfaces. Polylines of sediment beds and faults traced on our photogrammetry models allow interpretation of a pseudo-3D geometry of the deformation structures, and enable prediction of dips and strikes from inaccessible field areas, to map the complex geometries of the thrust faults and deformed strata in detail. The resultant structural geometry of the thrust zones delivers an exceptional analogue to inaccessible subsurface fold-thrust structures which are often challenging to obtain a clear seismic image.

  7. Andean Basin Evolution Associated with Hybrid Thick- and Thin-Skinned Deformation in the Malargüe Fold-Thrust Belt, Western Argentina

    NASA Astrophysics Data System (ADS)

    Horton, B. K.; Fuentes, F.

    2015-12-01

    Andean deformation and basin evolution in the Malargüe fold-thrust belt of western Argentina (34-36°S) has been dominated by basement faults influenced by pre-existing Mesozoic rift structures of the hydrocarbon-rich Neuquen basin. However, the basement structures diverge from classic inversion structures, and the associated retroarc basin system shows a complex Mesozoic-Cenozoic history of mixed extension and contraction, along with an enigmatic early Cenozoic stratigraphic hiatus. New results from balanced structural cross sections (supported by industry seismic, well data, and surface maps), U-Pb geochronology, and foreland deposystem analyses provide improved resolution to examine the duration and kinematic evolution of Andean mixed-mode deformation. The basement structures form large anticlines with steep forelimbs and up to >5 km of structural relief. Once the propagating tips of the deeper basement faults reached cover strata, they fed slip to shallow thrust systems that were transported in piggyback fashion by newly formed basement structures, producing complex structural relationships. Detrital zircon U-Pb ages for the 5-7 km-thick basin fill succession reveal shifts in sedimentation pathways and accumulation rates consistent with (1) local basement sources during Early-Middle Jurassic back-arc extension, (2) variable cratonic and magmatic arc sources during Late Jurassic-Cretaceous postrift thermal subsidence, and (3) Andean arc and thrust-belt sources during irregular Late Cretaceous-Cenozoic shortening. Although pulses of flexural subsidence can be attributed to periods of fault reactivation (inversion) and geometrically linked thin-skinned thrusting, fully developed foreland basin conditions were only achieved in Late Cretaceous and Neogene time. Separating these two contractional episodes is an Eocene-lower Miocene (roughly 40-20 Ma) depositional hiatus within the Cenozoic succession, potentially signifying forebulge passage or neutral to extensional conditions during a transient retreating-slab configuration along the southwestern margin of South America.

  8. Fault pattern at the northern end of the Death Valley - Furnace Creek fault zone, California and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.

  9. Using Remote Sensing Data to Constrain Models of Fault Interactions and Plate Boundary Deformation

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Donnellan, A.; Lyzenga, G. A.; Parker, J. W.; Milliner, C. W. D.

    2016-12-01

    Determining the distribution of slip and behavior of fault interactions at plate boundaries is a complex problem. Field and remotely sensed data often lack the necessary coverage to fully resolve fault behavior. However, realistic physical models may be used to more accurately characterize the complex behavior of faults constrained with observed data, such as GPS, InSAR, and SfM. These results will improve the utility of using combined models and data to estimate earthquake potential and characterize plate boundary behavior. Plate boundary faults exhibit complex behavior, with partitioned slip and distributed deformation. To investigate what fraction of slip becomes distributed deformation off major faults, we examine a model fault embedded within a damage zone of reduced elastic rigidity that narrows with depth and forward model the slip and resulting surface deformation. The fault segments and slip distributions are modeled using the JPL GeoFEST software. GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for modeling solid stress and strain in geophysical and other continuum domain applications [Lyzenga, et al., 2000; Glasscoe, et al., 2004; Parker, et al., 2008, 2010]. New methods to advance geohazards research using computer simulations and remotely sensed observations for model validation are required to understand fault slip, the complex nature of fault interaction and plate boundary deformation. These models help enhance our understanding of the underlying processes, such as transient deformation and fault creep, and can aid in developing observation strategies for sUAV, airborne, and upcoming satellite missions seeking to determine how faults behave and interact and assess their associated hazard. Models will also help to characterize this behavior, which will enable improvements in hazard estimation. Validating the model results against remotely sensed observations will allow us to better constrain fault zone rheology and physical properties, having implications for the overall understanding of earthquake physics, fault interactions, plate boundary deformation and earthquake hazard, preparedness and risk reduction.

  10. Ergodicity and Phase Transitions and Their Implications for Earthquake Forecasting.

    NASA Astrophysics Data System (ADS)

    Klein, W.

    2017-12-01

    Forecasting earthquakes or even predicting the statistical distribution of events on a given fault is extremely difficult. One reason for this difficulty is the large number of fault characteristics that can affect the distribution and timing of events. The range of stress transfer, the level of noise, and the nature of the friction force all influence the type of the events and the values of these parameters can vary from fault to fault and also vary with time. In addition, the geometrical structure of the faults and the correlation of events on different faults plays an important role in determining the event size and their distribution. Another reason for the difficulty is that the important fault characteristics are not easily measured. The noise level, fault structure, stress transfer range, and the nature of the friction force are extremely difficult, if not impossible to ascertain. Given this lack of information, one of the most useful approaches to understanding the effect of fault characteristics and the way they interact is to develop and investigate models of faults and fault systems.In this talk I will present results obtained from a series of models of varying abstraction and compare them with data from actual faults. We are able to provide a physical basis for several observed phenomena such as the earthquake cycle, thefact that some faults display Gutenburg-Richter scaling and others do not, and that some faults exhibit quasi-periodic characteristic events and others do not. I will also discuss some surprising results such as the fact that some faults are in thermodynamic equilibrium depending on the stress transfer range and the noise level. An example of an important conclusion that can be drawn from this work is that the statistical distribution of earthquake events can vary from fault to fault and that an indication of an impending large event such as accelerating moment release may be relevant on some faults but not on others.

  11. Supra-salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea

    NASA Astrophysics Data System (ADS)

    Tvedt, Anette B. M.; Rotevatn, Atle; Jackson, Christopher A.-L.

    2016-10-01

    Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.

  12. Thrust-wrench fault interference in a brittle medium: new insights from analogue modelling experiments

    NASA Astrophysics Data System (ADS)

    Rosas, Filipe; Duarte, Joao; Schellart, Wouter; Tomas, Ricardo; Grigorova, Vili; Terrinha, Pedro

    2015-04-01

    We present analogue modelling experimental results concerning thrust-wrench fault interference in a brittle medium, to try to evaluate the influence exerted by different prescribed interference angles in the formation of morpho-structural interference fault patterns. All the experiments were conceived to simulate simultaneous reactivation of confining strike-slip and thrust faults defining a (corner) zone of interference, contrasting with previously reported discrete (time and space) superposition of alternating thrust and strike-slip events. Different interference angles of 60°, 90° and 120° were experimentally investigated by comparing the specific structural configurations obtained in each case. Results show that a deltoid-shaped morpho-structural pattern is consistently formed in the fault interference (corner) zone, exhibiting a specific geometry that is fundamentally determined by the different prescribed fault interference angle. Such angle determines the orientation of the displacement vector shear component along the main frontal thrust direction, determining different fault confinement conditions in each case, and imposing a complying geometry and kinematics of the interference deltoid structure. Model comparison with natural examples worldwide shows good geometric and kinematic similarity, pointing to the existence of matching underlying dynamic process. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013.

  13. Gear Fault Diagnosis Based on BP Neural Network

    NASA Astrophysics Data System (ADS)

    Huang, Yongsheng; Huang, Ruoshi

    2018-03-01

    Gear transmission is more complex, widely used in machinery fields, which form of fault has some nonlinear characteristics. This paper uses BP neural network to train the gear of four typical failure modes, and achieves satisfactory results. Tested by using test data, test results have an agreement with the actual results. The results show that the BP neural network can effectively solve the complex state of gear fault in the gear fault diagnosis.

  14. Structural evolution of fault zones in sandstone by multiple deformation mechanisms: Moab fault, southeast Utah

    USGS Publications Warehouse

    Davatzes, N.C.; Eichhubl, P.; Aydin, A.

    2005-01-01

    Faults in sandstone are frequently composed of two classes of structures: (1) deformation bands and (2) joints and sheared joints. Whereas the former structures are associated with cataclastic deformation, the latter ones represent brittle fracturing, fragmentation, and brecciation. We investigated the distribution of these structures, their formation, and the underlying mechanical controls for their occurrence along the Moab normal fault in southeastern Utah through the use of structural mapping and numerical elastic boundary element modeling. We found that deformation bands occur everywhere along the fault, but with increased density in contractional relays. Joints and sheared joints only occur at intersections and extensional relays. In all locations , joints consistently overprint deformation bands. Localization of joints and sheared joints in extensional relays suggests that their distribution is controlled by local variations in stress state that are due to mechanical interaction between the fault segments. This interpretation is consistent with elastic boundary element models that predict a local reduction in mean stress and least compressive principal stress at intersections and extensional relays. The transition from deformation band to joint formation along these sections of the fault system likely resulted from the combined effects of changes in remote tectonic loading, burial depth, fluid pressure, and rock properties. In the case of the Moab fault, we conclude that the structural heterogeneity in the fault zone is systematically related to the geometric evolution of the fault, the local state of stress associated with fault slip , and the remote loading history. Because the type and distribution of structures affect fault permeability and strength, our results predict systematic variations in these parameters with fault evolution. ?? 2004 Geological Society of America.

  15. Off-fault tip splay networks: a genetic and generic property of faults indicative of their long-term propagation, and a major component of off-fault damage

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Manighetti, I.; Gaudemer, Y.

    2015-12-01

    Faults grow over the long-term by accumulating displacement and lengthening, i.e., propagating laterally. We use fault maps and fault propagation evidences available in literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimeters to thousands of kilometers and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of parent fault length, slip mode, context, etc, tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (~30 and ~10 % of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). Tip splays more commonly develop on one side only of the parent fault. We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. We suggest that they represent the most recent damage off-the parent fault, formed during the most recent phase of fault lengthening. The scaling relation between parent fault length and width of tip splay network implies that damage zones enlarge as parent fault length increases. Elastic properties of host rocks might thus be modified at large distances away from a fault, up to 10% of its length. During an earthquake, a significant fraction of coseismic slip and stress is dissipated into the permanent damage zone that surrounds the causative fault. We infer that coseismic dissipation might occur away from a rupture zone as far as a distance of 10% of the length of its causative fault. Coseismic deformations and stress transfers might thus be significant in broad regions about principal rupture traces. This work has been published in Comptes Rendus Geoscience under doi:10.1016/j.crte.2015.05.002 (http://www.sciencedirect.com/science/article/pii/S1631071315000528).

  16. Slip Inversion Along Inner Fore-Arc Faults, Eastern Tohoku, Japan

    NASA Astrophysics Data System (ADS)

    Regalla, Christine; Fisher, Donald M.; Kirby, Eric; Oakley, David; Taylor, Stephanie

    2017-11-01

    The kinematics of deformation in the overriding plate of convergent margins may vary across timescales ranging from a single seismic cycle to many millions of years. In Northeast Japan, a network of active faults has accommodated contraction across the arc since the Pliocene, but several faults located along the inner fore arc experienced extensional aftershocks following the 2011 Tohoku-oki earthquake, opposite that predicted from the geologic record. This observation suggests that fore-arc faults may be favorable for stress triggering and slip inversion, but the geometry and deformation history of these fault systems are poorly constrained. Here we document the Neogene kinematics and subsurface geometry of three prominent fore-arc faults in Tohoku, Japan. Geologic mapping and dating of growth strata provide evidence for a 5.6-2.2 Ma initiation of Plio-Quaternary contraction along the Oritsume, Noheji, and Futaba Faults and an earlier phase of Miocene extension from 25 to 15 Ma along the Oritsume and Futaba Faults associated with the opening of the Sea of Japan. Kinematic modeling indicates that these faults have listric geometries, with ramps that dip 40-65°W and sole into subhorizontal detachments at 6-10 km depth. These fault systems can experience both normal and thrust sense slip if they are mechanically weak relative to the surrounding crust. We suggest that the inversion history of Northeast Japan primed the fore arc with a network of weak faults mechanically and geometrically favorable for slip inversion over geologic timescales and in response to secular variations in stress state associated with the megathrust seismic cycle.

  17. Control of large flexible space structures

    NASA Technical Reports Server (NTRS)

    Vandervelde, W. E.

    1986-01-01

    Progress in robust design of generalized parity relations, design of failure sensitive observers using the geometric system theory of Wonham, computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management features, and the design and evaluation od control systems for structures having nonlinear joints are described.

  18. Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge.

    PubMed

    Smith, Deborah K; Cann, Johnson R; Escartín, Javier

    2006-07-27

    Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.

  19. Shallow subsurface structure of the Wasatch fault, Provo segment, Utah, from integrated compressional and shear-wave seismic reflection profiles with implications for fault structure and development

    USGS Publications Warehouse

    McBride, J.H.; Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.; South, J.V.; Brinkerhoff, A.R.; Keach, R.W.; Okojie-Ayoro, A. O.

    2010-01-01

    Integrated vibroseis compressional and experimental hammer-source, shear-wave, seismic reflection profiles across the Provo segment of the Wasatch fault zone in Utah reveal near-surface and shallow bedrock structures caused by geologically recent deformation. Combining information from the seismic surveys, geologic mapping, terrain analysis, and previous seismic first-arrival modeling provides a well-constrained cross section of the upper ~500 m of the subsurface. Faults are mapped from the surface, through shallow, poorly consolidated deltaic sediments, and cutting through a rigid bedrock surface. The new seismic data are used to test hypotheses on changing fault orientation with depth, the number of subsidiary faults within the fault zone and the width of the fault zone, and the utility of integrating separate elastic methods to provide information on a complex structural zone. Although previous surface mapping has indicated only a few faults, the seismic section shows a wider and more complex deformation zone with both synthetic and antithetic normal faults. Our study demonstrates the usefulness of a combined shallow and deeper penetrating geophysical survey, integrated with detailed geologic mapping to constrain subsurface fault structure. Due to the complexity of the fault zone, accurate seismic velocity information is essential and was obtained from a first-break tomography model. The new constraints on fault geometry can be used to refine estimates of vertical versus lateral tectonic movements and to improve seismic hazard assessment along the Wasatch fault through an urban area. We suggest that earthquake-hazard assessments made without seismic reflection imaging may be biased by the previous mapping of too few faults. ?? 2010 Geological Society of America.

  20. Complex quantum network geometries: Evolution and phase transitions

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  1. Complex quantum network geometries: Evolution and phase transitions.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  2. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals

    NASA Astrophysics Data System (ADS)

    Bozchalooi, I. Soltani; Liang, Ming

    2008-05-01

    The vibration signal measured from a bearing contains vital information for the prognostic and health assessment purposes. However, when bearings are installed as part of a complex mechanical system, the measured signal is often heavily clouded by various noises due to the compounded effect of interferences of other machine elements and background noises present in the measuring device. As such, reliable condition monitoring would not be possible without proper de-noising. This is particularly true for incipient bearing faults with very weak signature signals. A new de-noising scheme is proposed in this paper to enhance the vibration signals acquired from faulty bearings. This de-noising scheme features a spectral subtraction to trim down the in-band noise prior to wavelet filtering. The Gabor wavelet is used in the wavelet transform and its parameters, i.e., scale and shape factor are selected in separate steps. The proper scale is found based on a novel resonance estimation algorithm. This algorithm makes use of the information derived from the variable shaft rotational speed though such variation is highly undesirable in fault detection since it complicates the process substantially. The shape factor value is then selected by minimizing a smoothness index. This index is defined as the ratio of the geometric mean to the arithmetic mean of the wavelet coefficient moduli. De-noising results are presented for simulated signals and experimental data acquired from both normal and faulty bearings with defective outer race, inner race, and rolling element.

  3. Regional investigations of tectonic and igneous geology, Iran, Pakistan, and Turkey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. An extension of the trace of the Chaman-Nushki fault was detected and delineated for 42 km, as was the Ornach-Nal fault for 170 km. Two structural intersections responsible for restricted movements in particular segments of the Chaman-Nushki fault were detected and interpreted. The newest and youngest fault named the Quetta-Mustung-Surab system was delineated for 580 km. The igneous complex of the Lasbela area was interpreted and differentiation was made between ultramafic complex, mafic complex, and basaltic lava flows. One oblong feature was also found which was interpreted as a porphyritic basalt plug.

  4. Interpretation of Self-Potential anomalies for investigating fault using the Levenberg-Marquardt method: a study case in Pinggirsari, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Fajriani; Srigutomo, Wahyu; Pratomo, Prihandhanu M.

    2017-04-01

    Self-Potential (SP) method is frequently used to identify subsurface structures based on electrical properties. For fixed geometry problems, SP method is related to simple geometrical shapes of causative bodies such as a sphere, cylinder, and sheet. This approach is implemented to determine the value of parameters such as shape, depth, polarization angle, and electric dipole moment. In this study, the technique was applied for investigation of fault, where the fault is considered as resembling the shape of a sheet representing dike or fault. The investigated fault is located at Pinggirsari village, Bandung regency, West Java, Indonesia. The observed SP anomalies that were measured allegedly above the fault were inverted to estimate all the fault parameters through inverse modeling scheme using the Levenberg-Marquardt method. The inversion scheme was first tested on a synthetic model, where a close agreement between the test parameters and the calculated parameters was achieved. Finally, the schema was carried out to invert the real observed SP anomalies. The results show that the presence of the fault was detected beneath the surface having electric dipole moment K = 41.5 mV, half-fault dimension a = 34 m, depth of the sheet’s center h = 14.6 m, the location of the fault’s center xo = 478.25 m, and the polarization angle to the horizontal plane θ = 334.52° in a clockwise direction.

  5. Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Zafarmand, Bahareh

    2017-08-01

    The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.

  6. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data

    USGS Publications Warehouse

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John

    2014-01-01

    Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.

  7. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    NASA Astrophysics Data System (ADS)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including hanging wall and directivity effects) within modern ground motion prediction equations, can have an influence on the seismic hazard at a site. Yet we also illustrate the conditions under which these effects may be partially tempered when considering the full uncertainty in rupture behaviour within the fault system. The third challenge is the development of efficient means for representing both aleatory and epistemic uncertainties from active fault models in PSHA. In implementing state-of-the-art seismic hazard models into OpenQuake, such as those recently undertaken in California and Japan, new modeling techniques are needed that redefine how we treat interdependence of ruptures within the model (such as mutual exclusivity), and the propagation of uncertainties emerging from geology. Finally, we illustrate how OpenQuake, and GEM's additional toolkits for model preparation, can be applied to address long-standing issues in active fault modeling in PSHA. These include constraining the seismogenic coupling of a fault and the partitioning of seismic moment between the active fault surfaces and the surrounding seismogenic crust. We illustrate some of the possible roles that geodesy can play in the process, but highlight where this may introduce new uncertainties and potential biases into the seismic hazard process, and how these can be addressed.

  8. Early Tertiary Anaconda metamorphic core complex, southwestern Montana

    USGS Publications Warehouse

    O'Neill, J. M.; Lonn, J.D.; Lageson, D.R.; Kunk, Michael J.

    2004-01-01

    A sinuous zone of gently southeast-dipping low-angle Tertiary normal faults is exposed for 100 km along the eastern margins of the Anaconda and Flint Creek ranges in southwest Montana. Faults in the zone variously place Mesoproterozoic through Paleozoic sedimentary rocks on younger Tertiary granitic rocks or on sedimentary rocks older than the overlying detached rocks. Lower plate rocks are lineated and mylonitic at the main fault and, below the mylonitic front, are cut by mylonitic mesoscopic to microscopic shear zones. The upper plate consists of an imbricate stack of younger-on-older sedimentary rocks that are locally mylonitic at the main, lowermost detachment fault but are characteristically strongly brecciated or broken. Kinematic indicators in the lineated mylonite indicate tectonic transport to the east-southeast. Syntectonic sedimentary breccia and coarse conglomerate derived solely from upper plate rocks were deposited locally on top of hanging-wall rocks in low-lying areas between fault blocks and breccia zones. Muscovite occurs locally as mica fish in mylonitic quartzites at or near the main detachment. The 40Ar/39Ar age spectrum obtained from muscovite in one mylonitic quartzite yielded an age of 47.2 + 0.14 Ma, interpreted to be the age of mylonitization. The fault zone is interpreted as a detachment fault that bounds a metamorphic core complex, here termed the Anaconda metamorphic core complex, similar in age and character to the Bitterroot mylonite that bounds the Bitterroot metamorphic core complex along the Idaho-Montana state line 100 km to the west. The Bitterroot and Anaconda core complexes are likely components of a continuous, tectonically integrated system. Recognition of this core complex expands the region of known early Tertiary brittle-ductile crustal extension eastward into areas of profound Late Cretaceous contractile deformation characterized by complex structural interactions between the overthrust belt and Laramide basement uplifts, overprinted by late Tertiary Basin and Range faulting. ?? 2004 NRC Canada.

  9. Optimization of topological quantum algorithms using Lattice Surgery is hard

    NASA Astrophysics Data System (ADS)

    Herr, Daniel; Nori, Franco; Devitt, Simon

    The traditional method for computation in the surface code or the Raussendorf model is the creation of holes or ''defects'' within the encoded lattice of qubits which are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work we turn attention to the Lattice Surgery representation, which realizes encoded logic operations without destroying the intrinsic 2D nearest-neighbor interactions sufficient for braided based logic and achieves universality without using defects for encoding information. In both braided and lattice surgery logic there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult to define and the classical complexity associated with this problem has yet to be determined. In the context of lattice surgery based logic, we can introduce an optimality condition, which corresponds to a circuit with lowest amount of physical qubit requirements, and prove that the complexity of optimizing the geometric (lattice surgery) representation of a quantum circuit is NP-hard.

  10. Numerical modeling of fluid flow in a fault zone: a case of study from Majella Mountain (Italy).

    NASA Astrophysics Data System (ADS)

    Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina; De'Haven Hyman, Jeffrey; Valocchi, Albert J.

    2017-04-01

    The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a numerical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). This fault zone is considered a good analogue for the massive presence of fluid migration in the form of tar. Faults are mechanical features and cause permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead the fault zone to act as a conduit, a barrier, or a combined conduit-barrier system. We integrated existing information and our own structural surveys of the area to better identify the major fault features (e.g., type of fractures, statistical properties, geometrical and petro-physical characteristics). In our model the damage zones of the fault are described as discretely fractured medium, while the core of the fault as a porous one. Our model utilizes the dfnWorks code, a parallelized computational suite, developed at Los Alamos National Laboratory (LANL), that generates three dimensional Discrete Fracture Network (DFN) of the damage zones of the fault and characterizes its hydraulic parameters. The challenge of the study is the coupling between the discrete domain of the damage zones and the continuum one of the core. The field investigations and the basic computational workflow will be described, along with preliminary results of fluid flow simulation at the scale of the fault.

  11. Earthquake rupture process recreated from a natural fault surface

    USGS Publications Warehouse

    Parsons, Thomas E.; Minasian, Diane L.

    2015-01-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.

  12. A fail-safe CMOS logic gate

    NASA Technical Reports Server (NTRS)

    Bobin, V.; Whitaker, S.

    1990-01-01

    This paper reports a design technique to make Complex CMOS Gates fail-safe for a class of faults. Two classes of faults are defined. The fail-safe design presented has limited fault-tolerance capability. Multiple faults are also covered.

  13. Structural Mapping Along the Central San Andreas Fault-zone Using Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Zamudio, K. D.; Bedrosian, P.; Ball, L. B.

    2017-12-01

    Investigations of active fault zones typically focus on either surface expressions or the associated seismogenic zones. However, the largely aseismic upper kilometer can hold significant insight into fault-zone architecture, strain partitioning, and fault-zone permeability. Geophysical imaging of the first kilometer provides a link between surface fault mapping and seismically-defined fault zones and is particularly important in geologically complex regions with limited surface exposure. Additionally, near surface imaging can provide insight into the impact of faulting on the hydrogeology of the critical zone. Airborne electromagnetic (AEM) methods offer a unique opportunity to collect a spatially-large, detailed dataset in a matter of days, and are used to constrain subsurface resistivity to depths of 500 meters or more. We present initial results from an AEM survey flown over a 60 kilometer long segment of the central San Andreas Fault (SAF). The survey is centered near Parkfield, California, the site of the SAFOD drillhole, which marks the transition between a creeping fault segment to the north and a locked zone to the south. Cross sections with a depth of investigation up to approximately 500 meters highlight the complex Tertiary and Mesozoic geology that is dismembered by the SAF system. Numerous fault-parallel structures are imaged across a more than 10 kilometer wide zone centered on the surface trace. Many of these features can be related to faults and folds within Plio-Miocene sedimentary rocks found on both sides of the fault. Northeast of the fault, rocks of the Mesozoic Franciscan and Great Valley complexes are extremely heterogeneous, with highly resistive volcanic rocks within a more conductive background. The upper 300 meters of a prominent fault-zone conductor, previously imaged to 1-3 kilometers depth by magnetotellurics, is restricted to a 20 kilometer long segment of the fault, but is up to 4 kilometers wide in places. Elevated fault-zone conductivity may be related to damage within the fault zone, Miocene marine shales, or some combination of the two.

  14. High-precision relocation for aftershocks of the 2016 ML 5.8 Gyeongju earthquake in South Korea: Stress partitioning controlled by complex fault systems

    NASA Astrophysics Data System (ADS)

    Woo, J. U.; Rhie, J.; Kang, T. S.; Kim, S.; Chai, G.; Cho, E.

    2017-12-01

    Complex inherent fault system is one of key factors controlling the main shock occurrence and the pattern of aftershock sequence. Many field studies have shown that the fault systems in the Korean Peninsula are complex because they formed by various tectonic events since Proterozoic. Apart from that the mainshock is the largest one (ML 5.8) ever recorded in South Korea, the Gyeongju earthquake sequence shows particularly interesting features: ML 5.1 event preceded ML 5.8 event by 50 min and they are located closely to each other ( 1 km). In addition, ML 4.5 event occurred 2 3 km away from the two events after a week of the mainshock. Considering reported focal mechanisms and hypocenters of the three major events, it is unlikely that the earthquake sequence occurs on a single fault plane. To depict the detailed fault geometry associated with the sequence, we precisely determine the relative locations of 1,400 aftershocks recorded by 27 broadband stations, which started to be deployed less than one hour after the mainshock. Double difference algorithm is applied using relative travel time measurements by a waveform cross-correlation method. Relocated hypocenters show that a major fault striking NE-SW and some minor faults get involved in the sequence. In particular, aftershocks immediately following ML 4.5 event seem to occur on a fault striking NW-SE, which is orthogonal to the strike of a major fault. We expect that the Gyeongju earthquake sequence resulted from the stress transfer controlled by the complex inherent fault system in this region.

  15. Fault geometries in basement-induced wrench faulting under different initial stress states

    NASA Astrophysics Data System (ADS)

    Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.

    Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.

  16. Possible origin and significance of extension-parallel drainages in Arizona's metamophic core complexes

    USGS Publications Warehouse

    Spencer, J.E.

    2000-01-01

    The corrugated form of the Harcuvar, South Mountains, and Catalina metamorphic core complexes in Arizona reflects the shape of the middle Tertiary extensional detachment fault that projects over each complex. Corrugation axes are approximately parallel to the fault-displacement direction and to the footwall mylonitic lineation. The core complexes are locally incised by enigmatic, linear drainages that parallel corrugation axes and the inferred extension direction and are especially conspicuous on the crests of antiformal corrugations. These drainages have been attributed to erosional incision on a freshly denuded, planar, inclined fault ramp followed by folding that elevated and preserved some drainages on the crests of rising antiforms. According to this hypothesis, corrugations were produced by folding after subacrial exposure of detachment-fault foot-walls. An alternative hypothesis, proposed here, is as follows. In a setting where preexisting drainages cross an active normal fault, each fault-slip event will cut each drainage into two segments separated by a freshly denuded fault ramp. The upper and lower drainage segments will remain hydraulically linked after each fault-slip event if the drainage in the hanging-wall block is incised, even if the stream is on the flank of an antiformal corrugation and there is a large component of strike-slip fault movement. Maintenance of hydraulic linkage during sequential fault-slip events will guide the lengthening stream down the fault ramp as the ramp is uncovered, and stream incision will form a progressively lengthening, extension-parallel, linear drainage segment. This mechanism for linear drainage genesis is compatible with corrugations as original irregularities of the detachment fault, and does not require folding after early to middle Miocene footwall exhumations. This is desirable because many drainages are incised into nonmylonitic crystalline footwall rocks that were probably not folded under low-temperature, surface conditions. An alternative hypothesis, that drainages were localized by small fault grooves as footwalls were uncovered, is not supported by analysis of a down-plunge fault projection for the southern Rincon Mountains that shows a linear drainage aligned with the crest of a small antiformal groove on the detachment fault, but this process could have been effective elsewhere. Lineation-parallel drainages now plunge gently southwestward on the southwest ends of antiformal corrugations in the South and Buckskin Mountains, but these drainages must have originally plunged northeastward if they formed by either of the two alternative processes proposed here. Footwall exhumation and incision by northeast-flowing streams was apparently followed by core-complex arching and drainage reversal.

  17. Deformation record of 4-d accommodation of strain in the transition from transform to oblique convergent plate margin, southern Alaska (Invited)

    NASA Astrophysics Data System (ADS)

    Roeske, S.; Benowitz, J.; Enkelmann, E.; Pavlis, T. L.

    2013-12-01

    Crustal deformation at the transition from a dextral transform to subduction in the northern Cordillera is complicated by both the bend of the margin and the presence of low-angle subduction of an oceanic plateau, the Yakutat microplate, into the 'corner'. The dextral Denali Fault system located ~400 km inboard of the plate margin shows a similar transition from a dominantly strike-slip to transpressional regime as it curves to the west. Thermochronologic and structural studies in both areas indicate crustal response through the transition region is highly varied along and across strike. Previous thermochronology along the Fairweather fault SE of the St. Elias bend shows the most rapid exhumation occurs in close proximity to the fault, decreasing rapidly away from it. Enkelmann et al. (2010) and more recent detrital zircon FT (Falkowski et al., 2013 AGU abstract) show rapid and deep exhumation concentrated in the syntaxis, but over a fairly broad area continuing north beyond the Fairweather fault. Although the region is dominantly under ice, borders of the rapidly exhuming region appear to be previously identified major high-angle faults. This suggests that structures controlling the extreme exhumation may have significant oblique slip component, or, if flower structure, are reverse faults, and the region may be exhuming by transpression, with a significant component of pure shear. Southwest of the syntaxis, where convergence dominates over strike-slip, thin-skinned fold-and-thrust belts in the Yakutat microplate strata account for the shortening. The long-term record of convergence in this area is more cryptic due to sediment recycling through deep underplating and/or limited exhumation by upper crustal shortening, but a wide range of thermochronologic studies suggests that initial exhumation in the region began ~ 30 Ma and most rapid exhumation in the syntaxis began ~ 5 Ma. In the eastern Alaska Range a significant component of strike-slip, in addition to convergence, has been accommodated along the Denali Fault since E. Miocene. Southeast of the bend there is little evidence of convergence across the fault and Quaternary slip is ~12-13.5 mm/year. The eastern restraining bend of the Denali fault is much broader than the syntaxis and dextral slip continues at rates of ~10 mm/year, but the rock response to increasing obliquity is similar. Low and moderate-T cooling histories determined from a wide range of isotopic systems on minerals from bedrock show exhumation strongly localized on the north side of the high-angle Denali fault, south of the Hines Creek fault, since ~25 Ma. The structural record in ductilely deformed rocks from the most highly exhumed regions shows transpressive deformation over a few km wide region, but above the brittle-ductile transition strain becomes highly partitioned and is accommodated by thrust and normal faults on the north side of the bend. A connector fault between the Fairweather and Totschunda-Denali fault systems has been speculated on but it is not clear whether a single through-going fault is expressed at the surface. Any connector is likely a relatively young structure compared to the Fairweather and Denali systems' histories of long-lived oblique convergence. Overall, in both regions high-angle faults appear to be critical for controlling the location of major deep-seated and/or long-lived exhumation, and deformation at these geometrical complexities is dominated by transpression.

  18. Duplex development and abandonment during evolution of the Lewis thrust system, southern Glacier National Park, Montana

    NASA Astrophysics Data System (ADS)

    Yin, An; Kelty, Thomas K.; Davis, Gregory A.

    1989-09-01

    Geologic mapping in southern Glacier National Park, Montana, reveals the presence of two duplexes sharing the same floor thrust fault, the Lewis thrust. The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.

  19. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  20. Modelling earthquake ruptures with dynamic off-fault damage

    NASA Astrophysics Data System (ADS)

    Okubo, Kurama; Bhat, Harsha S.; Klinger, Yann; Rougier, Esteban

    2017-04-01

    Earthquake rupture modelling has been developed for producing scenario earthquakes. This includes understanding the source mechanisms and estimating far-field ground motion with given a priori constraints like fault geometry, constitutive law of the medium and friction law operating on the fault. It is necessary to consider all of the above complexities of a fault systems to conduct realistic earthquake rupture modelling. In addition to the complexity of the fault geometry in nature, coseismic off-fault damage, which is observed by a variety of geological and seismological methods, plays a considerable role on the resultant ground motion and its spectrum compared to a model with simple planer fault surrounded by purely elastic media. Ideally all of these complexities should be considered in earthquake modelling. State of the art techniques developed so far, however, cannot treat all of them simultaneously due to a variety of computational restrictions. Therefore, we adopt the combined finite-discrete element method (FDEM), which can effectively deal with pre-existing complex fault geometry such as fault branches and kinks and can describe coseismic off-fault damage generated during the dynamic rupture. The advantage of FDEM is that it can handle a wide range of length scales, from metric to kilometric scale, corresponding to the off-fault damage and complex fault geometry respectively. We used the FDEM-based software tool called HOSSedu (Hybrid Optimization Software Suite - Educational Version) for the earthquake rupture modelling, which was developed by Los Alamos National Laboratory. We firstly conducted the cross-validation of this new methodology against other conventional numerical schemes such as the finite difference method (FDM), the spectral element method (SEM) and the boundary integral equation method (BIEM), to evaluate the accuracy with various element sizes and artificial viscous damping values. We demonstrate the capability of the FDEM tool for modelling earthquake ruptures. We then modelled earthquake ruptures allowing for coseismic off-fault damage with appropriate fracture nucleation and growth criteria. We studied the effect of different conditions such as rupture speed (sub-Rayleigh or supershear), the orientation of the initial maximum principal stress with respect to the fault and the magnitude of the initial stress (to mimic depth). The comparison between the sub-Rayleigh and supershear case shows that the coseismic off-fault damage is enhanced in the supershear case when compared with the sub-Rayleigh case. The orientation of the maximum principal stress also has significant difference such that the dynamic off-fault cracking is more likely to occur on the extensional side of the fault for high principal stress orientation. It is found that the coseismic off-fault damage reduces the rupture speed due to the dissipation of the energy by dynamic off-fault cracking generated in the vicinity of the rupture front. In terms of the ground motion amplitude spectra it is shown that the high-frequency radiation is enhanced by the coseismic off-fault damage though it is quickly attenuated. This is caused by the intricate superposition of the radiation generated by the off-fault damage and the perturbation of the rupture speed on the main fault.

  1. Coseismic Contortion and Coupled Nocturnal Ionospheric Perturbations During 2016 Kaikoura, Mw 7.8 New Zealand Earthquake

    NASA Astrophysics Data System (ADS)

    Bagiya, Mala S.; Sunil, P. S.; Sunil, A. S.; Ramesh, D. S.

    2018-02-01

    The oblique-thrust Kaikoura earthquake of Mw 7.8 that struck New Zealand on 13 November 2016 at 11:02:56 UTC (local time at 00:02:56 a.m. on 14 November 2016) was one of the most geometrically and tectonically complex earthquakes recorded onshore in modern seismology. The event ruptured in the region of multisegmented faults and propagated unilaterally northeastward for more than 170 km from the epicenter. The GPS derived coseismic surface displacements reveal a larger widespread horizontal and vertical coseismic surface offsets of 6 m and 2 m, respectively, with two distinct tectonic thrust zones. We study the characteristics of coseismic ionospheric perturbations based on tectonic and nontectonic forcing mechanisms and demonstrate that these perturbations are linked to two distinct surface thrust zones with rotating horizontal reinforcement trending the rupture, rather than merely to the displacements oriented along the rupture propagation direction.

  2. Enabling large-scale viscoelastic calculations via neural network acceleration

    NASA Astrophysics Data System (ADS)

    Robinson DeVries, P.; Thompson, T. B.; Meade, B. J.

    2017-12-01

    One of the most significant challenges involved in efforts to understand the effects of repeated earthquake cycle activity are the computational costs of large-scale viscoelastic earthquake cycle models. Deep artificial neural networks (ANNs) can be used to discover new, compact, and accurate computational representations of viscoelastic physics. Once found, these efficient ANN representations may replace computationally intensive viscoelastic codes and accelerate large-scale viscoelastic calculations by more than 50,000%. This magnitude of acceleration enables the modeling of geometrically complex faults over thousands of earthquake cycles across wider ranges of model parameters and at larger spatial and temporal scales than have been previously possible. Perhaps most interestingly from a scientific perspective, ANN representations of viscoelastic physics may lead to basic advances in the understanding of the underlying model phenomenology. We demonstrate the potential of artificial neural networks to illuminate fundamental physical insights with specific examples.

  3. Pore Pressure Pulse Drove the 2012 Emilia (Italy) Series of Earthquakes

    NASA Astrophysics Data System (ADS)

    Pezzo, Giuseppe; De Gori, Pasquale; Lucente, Francesco Pio; Chiarabba, Claudio

    2018-01-01

    The 2012 Emilia earthquakes sequence is the first debated case in Italy of destructive event possibly induced by anthropic activity. During this sequence, two main earthquakes occurred separated by 9 days on contiguous thrust faults. Scientific commissions engaged by the Italian government reported complementary scenarios on the potential trigger mechanism ascribable to exploitation of a nearby oil field. In this study, we combine a refined geodetic source model constrained by precise aftershock locations and an improved tomographic model of the area to define the geometrical relation between the activated faults and investigate possible triggering mechanisms. An aftershock decay rate that deviates from the classical Omori-like pattern and Vp/Vs changes along the fault system suggests that natural pore pressure pulse drove the space-time evolution of seismicity and the activation of the second main shock.

  4. Geometric comparison of deep-seated gravitational spereading features on Mars (Coprates Chasma, Valles Marineris) and Earth (Ornak, Tatra Mountains)

    NASA Astrophysics Data System (ADS)

    Kromuszczyńska, O.; Mège, D.

    2014-04-01

    Uphill-facing normal faults scarps and crestal grabens, which are characteristic of deep-seated gravitational spreading (DSGS) of topographic ridges, are described in Coprates Chasma in Valles Marineris, Mars, and Ornak ridge and compared. The vertical offset of normal faults in the Martian instances varies from 40 to 1000 meters, with an average of 300 meters. The terrestrial faults offset is between few teens of centimeters up to 34 meters with an average of 10 meters. The values of horizontal displacement in Coprates Chasma vary from 10 to 680 meters, and at Ornak are in a range between 1 and 20 meters. Such difference corresponds with the difference of ridges scale and is due to the topographic gradient which is one order of magnitude higher on Mars than on Earth.

  5. Simulation of Fault Tolerance in a Hypercube Arrangement of Discrete Processors.

    DTIC Science & Technology

    1987-12-01

    Geometric Properties .................... 22 Binary Properties ....................... 26 Intel Hypercube Hardware Arrangement ... 28 IV. Cube-Connected... Properties of the CCC..............35 CCC Redundancy............................... 38 iii 6L V. Re-Configurable Cube-Connected Cycles ....... 40 Global...o........ 74 iv List of Figures Page Figure 1: Hypercubes of Different Dimensions ......... 21 Figure 2: Hypercube Properties

  6. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience

    NASA Astrophysics Data System (ADS)

    Pantosti, Daniela

    2017-04-01

    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active normal faults mapped in the available geological literature is noteworthy. The field data collected suggest a complex coseismic surface faulting pattern along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays. The cumulative surface faulting length has been estimated in about 40 km. The maximum vertical offset is significant, locally exceeding 2 meters along the Mt. Vettore Fault, measured both along bedrock fault planes and free-faces affecting unconsolidated deposits. This enormous collaborative experience has a twofold relevance, on the one side allowed to document in high detail the earthquake ruptures before Winter would destroy them, on the other represent the first large European experience for coseismic effects survey that we should use a leading case to establish a coseismic effects European team to get ready to respond to future seismic crises at the European level.

  7. Geometric and thermal controls on normal fault seismicity from rate-and-state friction models

    NASA Astrophysics Data System (ADS)

    Mark, H. F.; Behn, M. D.; Olive, J. A. L.; Liu, Y.

    2017-12-01

    Seismic and geodetic observations from the last two decades have led to a growing realization that a significant amount of fault slip at plate boundaries occurs aseismically, and that the amount of aseismic displacement varies across settings. Here we investigate controls on the seismogenic behavior of crustal-scale normal faults that accommodate extensional strain at mid-ocean ridges and continental rifts. Seismic moment release rates measured along the fast-spreading East Pacific Rise suggest that the majority of fault growth occurs aseismically with almost no seismic slip. In contrast, at the slow-spreading Mid-Atlantic Ridge seismic slip may represent up to 60% of the total fault displacement. Potential explanations for these variations include heterogeneous distributions of frictional properties on fault surfaces, effects of variable magma supply associated with seafloor spreading, and/or differences in fault geometry and thermal structure. In this study, we use rate-and-state friction models to study the seismic coupling coefficient (the fraction of total fault slip that occurs seismically) for normal faults at divergent plate boundaries, and investigate controls on fault behavior that might produce the variations in the coupling coefficient observed in natural systems. We find that the seismic coupling coefficient scales with W/h*, where W is the downdip width of the seismogenic area of the fault and h* is the critical earthquake nucleation size. At mid-ocean ridges, W is expected to increase with decreasing spreading rate. Thus, the observed relationship between seismic coupling and W/h* explains to first order variations in seismic coupling coefficient as a function of spreading rate. Finally, we use catalog data from the Gulf of Corinth to show that this scaling relationship can be extended into the thicker lithosphere of continental rift systems.

  8. Combined structural analysis and dating of authigenic/synkinematic illite: A step towards unravelling brittle faulting processes in time and space

    NASA Astrophysics Data System (ADS)

    Viola, Giulio

    2017-04-01

    Faulting accommodates momentous deformation and its style reflects the complex interplay of often transient processes such as friction, fluid flow and rheological changes within generally dilatant systems. Brittle faults are thus unique archives of the stress state and the physical and chemical conditions at the time of both initial strain localization and subsequent slip(s) during structural reactivation. Opening those archives, however, may be challenging due to the commonly convoluted (if not even chaotic) nature of brittle fault architectures and fault rocks. This is because, once formed, faults are extremely sensitive to variations in stress field and environmental conditions and are prone to readily slip in a variety of conditions, also in regions affected by only weak, far-field stresses. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for any study aiming at reconstructing the complex framework of brittle deformation. However, considering that present-day exposures of faults only represent the end result of the faults' often protracted and heterogeneous histories, the obtained structural and mechanical results have to be integrated over the life span of the studied fault system. Dating of synkinematic illite/muscovite to constrain the time-integrated evolution of faults is therefore the natural addition to detailed structural studies. By means of selected examples it will be demonstrated how careful structural analysis integrated with illite characterization and K-Ar dating allows the high-resolution reconstruction of brittle deformation histories and, in turn, multiple constraints to be placed on strain localization, deformation mechanisms, fluid flow, mineral alteration and authigenesis within actively deforming brittle fault rocks. Complex and long brittle histories can thus be reconstructed and untangled in any tectonic setting.

  9. Layered Fault Rocks Below the West Salton Detachment Fault (WSDF), CA Record Multiple Seismogenic? Slip Events and Transfer of Material to a Fault Core

    NASA Astrophysics Data System (ADS)

    Axen, G. J.; Luther, A. L.; Selverstone, J.; Mozley, P.

    2011-12-01

    Unique layered cataclasites (LCs) occur locally along footwall splays, S of the ~N-dipping, top-E WSDF. They are well exposed in a NW-plunging antiform that folds the LCs and their upper and lower bounding faults. Layers range from very fine-grained granular shear zones 1-2 mm thick and cm's to m's long, to medium- to coarse-grained isotropic granular cataclasite with floating clasts up to 4-5 cm diameter in layers up to ~30 cm thick and 3 to >10 m long. The top, N-flank contact is ~5 m structurally below the main WSDF. Maximum thickness of the LCs is ~5 m on the S flank of the antiform, where the upper 10-50 cm of LCs are composed of relatively planar layers that are subparallel to the upper fault, which locally displays ultracataclasite. Deeper layers are folded into open to isoclinal folds and are faulted. Most shear-sense indicators show N-side-to-E or -SE slip, and include: (1) aligned biotite flakes and mm-scale shear bands that locally define a weak foliation dipping ~ESE, (2) sharp to granular shears, many of which merge up or down into fine-grained layers and, in the base of the overlying granodiorite, (3) primary reidel shears and (4) folded pegmatite dikes. Biotite is unaltered and feldspars are weakly to strongly altered to clays and zeolites. Zeolites also grew in pores between clasts. XRF analyses suggest minimal chemical alteration. The upper fault is sharp and relatively planar, carries granular to foliated cataclasitic granodiorite that grades up over ~2-4 m into punky, microcracked but plutonic-textured rock with much of the feldspar alteration seen in LC clasts. Some upper-plate reidels bend into parallelism with the top fault and bound newly formed LC layers. The basal fault truncates contorted layers and lacks evidence of layers being added there. We infer that the deeper, contorted layers are older and that the LC package grew upward by transfer of cataclasized slices from the overlying granodiorite while folding was ongoing. Particle-size distributions reflect constrained comminution and shear localization (slopes of ~3-3.5 on log-log plots of grain size vs. no. of grains > grain size). The LCs require episodic slip events that probably record dozens of seismic cycles. Foliation likely records post- or interseismic creep. Geometric complexities among the WSDF footwall splays presumably caused episodic dilation that allowed accumulation and folding of the LCs. Mechanical processes dominated over chemical processes. A key question is why the LCs apparently were stronger than the overlying granodiorite, leading to formation of new LC layers rather than significant reworking of older layers.

  10. Cenozoic pulsed compression of Da'an-Dedu Fault Zone in Songliao Basin (NE China) and its implications for earthquake potential: Evidence from seismic data

    NASA Astrophysics Data System (ADS)

    Yu, Zhongyuan; Zhang, Peizhen; Min, Wei; Wei, Qinghai; Zhao, Bin

    2018-01-01

    The Da'an-Dedu Fault Zone (DDFZ) is a major tectonic feature cutting through the Songliao Basin from south to north in NE China. Pulsed compression deformation of DDFZ during the Cenozoic implies a complex geodynamic process, and the latest stage of which occurred in the Quaternary directly influences the present seismicity of the interior basin. Although most of the evidence for Quaternary deformation about the Songliao Basin in the past decades was concentrated in marginal faults, all five earthquake swarms with magnitudes over 5.0 along the buried DDFZ with no surface expression during the past 30 years suggest it is a main seismogenic structure with seismic potential, which should deserve more attention of geologists. However, limited by the coverage of the Quaternary sedimentary and absence of strong historic and instrumental earthquakes records (M > 7), the geometric pattern, Quaternary activity and seismic potential of the DDFZ remain poorly understood. Thus, unlike previous geophysical studies focused on crust/mantle velocity structure across the fault and the aim of exploring possible mineral resources in the basin, in this study we have integrated a variety of the latest seismic data and drilling holes from petroleum explorations and shallow-depth seismic reflection profiles, to recognize the Cenozoic pulsed compression deformation of the DDFZ, and to discuss its implication for earthquake potential. The results show that at least four stages of compression deformation have occurred along the DDFZ in the Cenozoic: 65 Ma, 23 Ma, 5.3 Ma, and 1.8 Ma, respectively, although the geodynamic process behind which still in dispute. The results also imply that the tectonic style of the DDFZ fits well with the occurrence of modern seismic swarms. Moderate earthquake potential (M ≤ 7.0) is suggested along the DDFZ.

  11. Evolution of oceanic core complex domes and corrugations

    NASA Astrophysics Data System (ADS)

    Cann, J.; Escartin, J.; Smith, D.; Schouten, H.

    2007-12-01

    In regions of the oceans where detachment faulting is developed widely, individual core complex domes (elevated massifs capped by corrugated detachment surfaces) show a consistent morphology. At their outward sides, most core complex domes are attached to a planar slope, interpreted (Smith et al., 2006) as an originally steep inward-facing normal fault that has been rotated to shallower angles. We suggest that the break in slope where the originally steep normal fault meets the domal corrugated surface marks the trace of the brittle-ductile transition at the base of the original normal fault. The steep faults originate within a short distance of the spreading axis. This means that the arcuate shape of the intersection of the steep fault with the dome must indicate the shape of the brittle-ductile transition very close to the spreading axis. The transition must be very shallow close to the summit of the dome and deeper on each flank. Evidence from drilling of some core complexes (McCaig et al, 2007) shows that while the domal detachment faults are active they may channel hydrothermal flow at black smoker temperatures and may be simultaneously injected by magma from below. This indicates a close link between igneous activity, hydrothermal flow and deformation while a core complex is forming. Once the shape of the core complex dome is established, it persists as the ductile footwall mantle rising from below is shaped by the overlying brittle hanging wall that has been cooled by the hydrothermal circulation. The corrugations in the footwall must be moulded into it by irregularities in the brittle hanging wall, as suggested by Spencer (1999). The along-axis arched shape of the hanging wall helps to stabilise the domal shape of the footwall as it rises and cools.

  12. Dynamic rupture modeling of thrust faults with parallel surface traces.

    NASA Astrophysics Data System (ADS)

    Peshette, P.; Lozos, J.; Yule, D.

    2017-12-01

    Fold and thrust belts (such as those found in the Himalaya or California Transverse Ranges) consist of many neighboring thrust faults in a variety of geometries. Active thrusts within these belts individually contribute to regional seismic hazard, but further investigation is needed regarding the possibility of multi-fault rupture in a single event. Past analyses of historic thrust surface traces suggest that rupture within a single event can jump up to 12 km. There is also observational precedent for long distance triggering between subparallel thrusts (e.g. the 1997 Harnai, Pakistan events, separated by 50 km). However, previous modeling studies find a maximum jumping rupture distance between thrust faults of merely 200 m. Here, we present a new dynamic rupture modeling parameter study that attempts to reconcile these differences and determine which geometrical and stress conditions promote jumping rupture. We use a community verified 3D finite element method to model rupture on pairs of thrust faults with parallel surface traces. We vary stress drop and fault strength to determine which conditions produce jumping rupture at different dip angles and different separations between surface traces. This parameter study may help to understand the likelihood of jumping rupture in real-world thrust systems, and may thereby improve earthquake hazard assessment.

  13. Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system

    USGS Publications Warehouse

    Haeussler, Peter J.; Matmon, Ari; Schwartz, David P.; Seitz, Gordon G.

    2017-01-01

    The neotectonics of southern Alaska (USA) are characterized by a several hundred kilometers–wide zone of dextral transpressional that spans the Alaska Range. The Denali fault system is the largest active strike-slip fault system in interior Alaska, and it produced a Mw 7.9 earthquake in 2002. To evaluate the late Quaternary slip rate on the Denali fault system, we collected samples for cosmogenic surface exposure dating from surfaces offset by the fault system. This study includes data from 107 samples at 19 sites, including 7 sites we previously reported, as well as an estimated slip rate at another site. We utilize the interpreted surface ages to provide estimated slip rates. These new slip rate data confirm that the highest late Quaternary slip rate is ∼13 mm/yr on the central Denali fault near its intersection with the eastern Denali and the Totschunda faults, with decreasing slip rate both to the east and west. The slip rate decreases westward along the central and western parts of the Denali fault system to 5 mm/yr over a length of ∼575 km. An additional site on the eastern Denali fault near Kluane Lake, Yukon, implies a slip rate of ∼2 mm/yr, based on geological considerations. The Totschunda fault has a maximum slip rate of ∼9 mm/yr. The Denali fault system is transpressional and there are active thrust faults on both the north and south sides of it. We explore four geometric models for southern Alaska tectonics to explain the slip rates along the Denali fault system and the active fault geometries: rotation, indentation, extrusion, and a combination of the three. We conclude that all three end-member models have strengths and shortcomings, and a combination of rotation, indentation, and extrusion best explains the slip rate observations.

  14. Evolution of triangular topographic facets along active normal faults

    NASA Astrophysics Data System (ADS)

    Balogun, A.; Dawers, N. H.; Gasparini, N. M.; Giachetta, E.

    2011-12-01

    Triangular shaped facets, which are generally formed by the erosion of fault - bounded mountain ranges, are arguably one of the most prominent geomorphic features on active normal fault scarps. Some previous studies of triangular facet development have suggested that facet size and slope exhibit a strong linear dependency on fault slip rate, thus linking their growth directly to the kinematics of fault initiation and linkage. Other studies, however, generally conclude that there is no variation in triangular facet geometry (height and slope) with fault slip rate. The landscape of the northeastern Basin and Range Province of the western United States provides an opportunity for addressing this problem. This is due to the presence of well developed triangular facets along active normal faults, as well as spatial variations in fault scale and slip rate. In addition, the Holocene climatic record for this region suggests a dominant tectonic regime, as the faulted landscape shows little evidence of precipitation gradients associated with tectonic uplift. Using GIS-based analyses of USGS 30 m digital elevation data (DEMs) for east - central Idaho and southwestern Montana, we analyze triangular facet geometries along fault systems of varying number of constituent segments. This approach allows us to link these geometries with established patterns of along - strike slip rate variation. For this study, we consider major watersheds to include only catchments with upstream and downstream boundaries extending from the drainage divide to the mapped fault trace, respectively. In order to maintain consistency in the selection criteria for the analyzed triangular facets, only facets bounded on opposite sides by major watersheds were considered. Our preliminary observations reflect a general along - strike increase in the surface area, average slope, and relief of triangular facets from the tips of the fault towards the center. We attribute anomalies in the along - strike geometric measurements of the triangular facets to represent possible locations of fault segment linkage associated with normal fault evolution.

  15. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis.

    PubMed

    Zhang, Hanyuan; Tian, Xuemin; Deng, Xiaogang; Cao, Yuping

    2018-05-16

    As an attractive nonlinear dynamic data analysis tool, global preserving kernel slow feature analysis (GKSFA) has achieved great success in extracting the high nonlinearity and inherently time-varying dynamics of batch process. However, GKSFA is an unsupervised feature extraction method and lacks the ability to utilize batch process class label information, which may not offer the most effective means for dealing with batch process monitoring. To overcome this problem, we propose a novel batch process monitoring method based on the modified GKSFA, referred to as discriminant global preserving kernel slow feature analysis (DGKSFA), by closely integrating discriminant analysis and GKSFA. The proposed DGKSFA method can extract discriminant feature of batch process as well as preserve global and local geometrical structure information of observed data. For the purpose of fault detection, a monitoring statistic is constructed based on the distance between the optimal kernel feature vectors of test data and normal data. To tackle the challenging issue of nonlinear fault variable identification, a new nonlinear contribution plot method is also developed to help identifying the fault variable after a fault is detected, which is derived from the idea of variable pseudo-sample trajectory projection in DGKSFA nonlinear biplot. Simulation results conducted on a numerical nonlinear dynamic system and the benchmark fed-batch penicillin fermentation process demonstrate that the proposed process monitoring and fault diagnosis approach can effectively detect fault and distinguish fault variables from normal variables. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Superficial simplicity of the 2010 El Mayorg-Cucapah earthquake of Baja California in Mexico

    USGS Publications Warehouse

    Wei, S.; Fielding, E.; Leprince, S.; Sladen, A.; Avouac, J.-P.; Helmberger, D.; Hauksson, E.; Chu, R.; Simons, M.; Hudnut, K.; Herring, T.; Briggs, R.

    2011-01-01

    The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures1-6. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the Mw 7.2 2010 El Mayorg-Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130 ??E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  17. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  18. Fluid Overpressure and Earthquakes Triggering in the Natural Laboratory of the Northern Apennines: Integration of Field and Laboratory Data

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Collettini, C.; Faulkner, D.

    2007-12-01

    The integration of seismic reflection profiles with well-located earthquakes show that the mainshocks of the 1997-1998 Colfiorito seismic sequence (Central Italy) nucleated at a depth of ~6 km within the Triassic Evaporites (TE, anhydrites and dolostones), where CO2 at near lithostatic pressure has been encountered in two deep boreholes (4 km). In order to investigate the deformation processes operating at depth in the source region of the Colfiorito earthquakes we have characterized: 1) fault zone structure by studying exhumed outcrops of the temperature, 100 MPa confining pressure (Pc), and range of pore fluid pressures (Pf). Permeability and porosity development was continuously measured throughout the deformation experiments. The architecture of large fault zones within the TE is given by a distinct fault core, where most of the shear strain has been accommodated, surrounded by a geometrically complex and heterogeneous damage zone. Brittle deformation within the fault core is extremely localized along principal slip surfaces associated with dolomite rich cataclasite seams, running parallel to the fault zone. The damage zone is characterized by adjacent zones of heavily fractured rocks (dolostones) and foliated rocks displaying little fracturing (anhydrites). Static permeability measurements on anhydrite samples show increasing values of permeability for decreasing values of Pe, (k = 10E-20 - 10E-22 m2). During single cycle loading tests the permeability values immediately prior to failure are about three orders of magnitude higher than the initial values. The field data suggests that during the seismic cycle, the permeability of the dolostones, within the damage zone, is likely to be high and controlled by mesoscale fracture patterns. Conversely, the permeability of the anhydrites, due to the absence of mesoscale fracture patterns within Ca-sulphates layers, may be potentially as low as the values measured in the lab experiments (k = 10E-17 - 10E-22 m2). This suggests that fluid overpressure can be maintained in this lithology, within the damage zone, as far as the co-seismic period. Our observations and results can be applied to explain the seismicity of the Northern Apennines and other regions where fluids overpressures play a key role in triggering fault instability and earthquakes.

  19. Fluid Overpressure and Earthquakes Triggering in the Natural Laboratory of the Northern Apennines: Integration of Field and Laboratory Data

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Collettini, C.; Faulkner, D.

    2004-12-01

    The integration of seismic reflection profiles with well-located earthquakes show that the mainshocks of the 1997-1998 Colfiorito seismic sequence (Central Italy) nucleated at a depth of ~6 km within the Triassic Evaporites (TE, anhydrites and dolostones), where CO2 at near lithostatic pressure has been encountered in two deep boreholes (4 km). In order to investigate the deformation processes operating at depth in the source region of the Colfiorito earthquakes we have characterized: 1) fault zone structure by studying exhumed outcrops of the temperature, 100 MPa confining pressure (Pc), and range of pore fluid pressures (Pf). Permeability and porosity development was continuously measured throughout the deformation experiments. The architecture of large fault zones within the TE is given by a distinct fault core, where most of the shear strain has been accommodated, surrounded by a geometrically complex and heterogeneous damage zone. Brittle deformation within the fault core is extremely localized along principal slip surfaces associated with dolomite rich cataclasite seams, running parallel to the fault zone. The damage zone is characterized by adjacent zones of heavily fractured rocks (dolostones) and foliated rocks displaying little fracturing (anhydrites). Static permeability measurements on anhydrite samples show increasing values of permeability for decreasing values of Pe, (k = 10E-20 - 10E-22 m2). During single cycle loading tests the permeability values immediately prior to failure are about three orders of magnitude higher than the initial values. The field data suggests that during the seismic cycle, the permeability of the dolostones, within the damage zone, is likely to be high and controlled by mesoscale fracture patterns. Conversely, the permeability of the anhydrites, due to the absence of mesoscale fracture patterns within Ca-sulphates layers, may be potentially as low as the values measured in the lab experiments (k = 10E-17 - 10E-22 m2). This suggests that fluid overpressure can be maintained in this lithology, within the damage zone, as far as the co-seismic period. Our observations and results can be applied to explain the seismicity of the Northern Apennines and other regions where fluids overpressures play a key role in triggering fault instability and earthquakes.

  20. Discovering the Complexity of Capable Faults in Northern Chile

    NASA Astrophysics Data System (ADS)

    Gonzalez, G.; del Río, I. A.; Rojas Orrego, C., Sr.; Astudillo, L. A., Sr.

    2017-12-01

    Great crustal earthquakes (Mw >7.0) in the upper plate of subduction zones are relatively uncommon and less well documented. We hypothesize that crustal earthquakes are poorly represented in the instrumental record because they have long recurrence intervals. In northern Chile, the extreme long-term aridity permits extraordinary preservation of landforms related to fault activity, making this region a primary target to understand how upper plate faults work at subduction zones. To understand how these faults relate to crustal seismicity in the long-term, we have conducted a detailed palaeoseismological study. We performed a palaeoseismological survey integrating trench logging and photogrammetry based on UAVs. Optically stimulated luminescence (OSL) age determinations were practiced for dating deposits linked to faulting. In this contribution we present the study case of two primary faults located in the Coastal Cordillera of northern Chile between Iquique (21ºS) and Antofagasta (24ºS). We estimate the maximum moment magnitude of earthquakes generated in these upper plate faults, their recurrence interval and the fault-slip rate. We conclude that the studied upper plate faults show a complex kinematics on geological timescales. Faults seem to change their kinematics from normal (extension) to reverse (compression) or from normal to transcurrent (compression) according to the stage of subduction earthquake cycle. Normal displacement is related to coseismic stages and compression is linked to interseismic period. As result this complex interaction these faults are capable of generating Mw 7.0 earthquakes, with recurrence times on the order of thousands of years during every stage of the subduction earthquake cycle.

  1. Interaction between fault systems in a complex tectonic setting: Insights from InSAR and Teleseismic analysis of the 2015 Lake Saurez and 2016 Muji fault earthquake sequence

    NASA Astrophysics Data System (ADS)

    Nanjundiah, P.; Barbot, S.; Wei, S.; Tapponnier, P.; Feng, W.; Wang, T.

    2017-12-01

    The Pamir Plateau is a complex and important component of the India-Eurasia Collision zone. Despite being similar to the Tibetan plateau in elevation and collision processes, quite a bit is still unknown about the structure and the tectonic processes occurring in this region. We aim to better understand the structure, stress and deformation patterns in the northern and central Pamir plateau by analysing InSAR, teleseismic, and optical data for two large earthquakes that occurred in this region between December 2015 (Mw 7.2, Lake Saurez) and November 2016 (Mw 6.6 Muji Fault). We constrain the fault geometry by precisely relocating aftershocks using the double difference technique implemented in HypoDD (Waldhauser & Ellsworth 2000). We used Okada's (1992) Green Functions to invert for slip on the fault with a rectangular dislocation and edgreen to numerically invert for the slip in a layered medium (Wang et al. 2005). The combined datasets highlight the existence of an oblique fault between two major thrust fault systems i.e. the Darwas & the Karakoram faults. The December 2015 event highlights complexity in this fault system. The combination of data sets used in this study highlights the existence of a seismic gap south of Lake Karakul as well as coupling between the Muji and Darwas-Karakoram fault systems. We emphasise the role of smaller faults and their interactions in accommodating the overall strain and tectonics in the Pamir region and their effect on estimating local seismic hazard.

  2. Dynamic rupture simulation of the 2017 Mw 7.8 Kaikoura (New Zealand) earthquake: Is spontaneous multi-fault rupture expected?

    NASA Astrophysics Data System (ADS)

    Ando, R.; Kaneko, Y.

    2017-12-01

    The coseismic rupture of the 2016 Kaikoura earthquake propagated over the distance of 150 km along the NE-SW striking fault system in the northern South Island of New Zealand. The analysis of In-SAR, GPS and field observations (Hamling et al., 2017) revealed that the most of the rupture occurred along the previously mapped active faults, involving more than seven major fault segments. These fault segments, mostly dipping to northwest, are distributed in a quite complex manner, manifested by fault branching and step-over structures. Back-projection rupture imaging shows that the rupture appears to jump between three sub-parallel fault segments in sequence from the south to north (Kaiser et al., 2017). The rupture seems to be terminated on the Needles fault in Cook Strait. One of the main questions is whether this multi-fault rupture can be naturally explained with the physical basis. In order to understand the conditions responsible for the complex rupture process, we conduct fully dynamic rupture simulations that account for 3-D non-planar fault geometry embedded in an elastic half-space. The fault geometry is constrained by previous In-SAR observations and geological inferences. The regional stress field is constrained by the result of stress tensor inversion based on focal mechanisms (Balfour et al., 2005). The fault is governed by a relatively simple, slip-weakening friction law. For simplicity, the frictional parameters are uniformly distributed as there is no direct estimate of them except for a shallow portion of the Kekerengu fault (Kaneko et al., 2017). Our simulations show that the rupture can indeed propagate through the complex fault system once it is nucleated at the southernmost segment. The simulated slip distribution is quite heterogeneous, reflecting the nature of non-planar fault geometry, fault branching and step-over structures. We find that optimally oriented faults exhibit larger slip, which is consistent with the slip model of Hamling et al. (2017). We conclude that the first order characteristics of this event may be interpreted by the effect of irregularity in the fault geometry.

  3. Fault-tolerant, high-level quantum circuits: form, compilation and description

    NASA Astrophysics Data System (ADS)

    Paler, Alexandru; Polian, Ilia; Nemoto, Kae; Devitt, Simon J.

    2017-06-01

    Fault-tolerant quantum error correction is a necessity for any quantum architecture destined to tackle interesting, large-scale problems. Its theoretical formalism has been well founded for nearly two decades. However, we still do not have an appropriate compiler to produce a fault-tolerant, error-corrected description from a higher-level quantum circuit for state-of the-art hardware models. There are many technical hurdles, including dynamic circuit constructions that occur when constructing fault-tolerant circuits with commonly used error correcting codes. We introduce a package that converts high-level quantum circuits consisting of commonly used gates into a form employing all decompositions and ancillary protocols needed for fault-tolerant error correction. We call this form the (I)initialisation, (C)NOT, (M)measurement form (ICM) and consists of an initialisation layer of qubits into one of four distinct states, a massive, deterministic array of CNOT operations and a series of time-ordered X- or Z-basis measurements. The form allows a more flexible approach towards circuit optimisation. At the same time, the package outputs a standard circuit or a canonical geometric description which is a necessity for operating current state-of-the-art hardware architectures using topological quantum codes.

  4. Comparative analysis of techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Hitt, E. F.; Bridgman, M. S.; Robinson, A. C.

    1981-01-01

    Performability analysis is a technique developed for evaluating the effectiveness of fault-tolerant computing systems in multiphase missions. Performability was evaluated for its accuracy, practical usefulness, and relative cost. The evaluation was performed by applying performability and the fault tree method to a set of sample problems ranging from simple to moderately complex. The problems involved as many as five outcomes, two to five mission phases, permanent faults, and some functional dependencies. Transient faults and software errors were not considered. A different analyst was responsible for each technique. Significantly more time and effort were required to learn performability analysis than the fault tree method. Performability is inherently as accurate as fault tree analysis. For the sample problems, fault trees were more practical and less time consuming to apply, while performability required less ingenuity and was more checkable. Performability offers some advantages for evaluating very complex problems.

  5. The effect of roughness on the nucleation and propagation of shear rupture on small faults

    NASA Astrophysics Data System (ADS)

    Tal, Y.; Hager, B. H.

    2016-12-01

    Faults are rough at all scales and can be described as self-affine fractals. This deviation from planarity results in geometric asperities and a locally heterogeneous stress field, which affect the nucleation and propagation of shear rupture. We study this effect numerically and aim to understand the relative effects of different fault geometries, remote stresses, and medium and fault properties, focusing on small earthquakes, in which realistic geometry and friction law parameters can be incorporated in the model. Our numerical approach includes three main features. First, to enable slip that is large relative to the size of the elements near the fault, as well as the variation of normal stress during slip, we implement slip-weakening and rate-and state-friction laws into the Mortar Finite Element Method, in which non-matching meshes are allowed across the fault and the contacts are continuously updated. Second, we refine the mesh near the fault using hanging nodes, thereby enabling accurate representation of the fault geometry. Finally, using a variable time step size, we gradually increase the remote stress and let the rupture nucleate spontaneously. This procedure involves a quasi-static backward Euler scheme for the inter-seismic stages and a dynamic implicit Newmark scheme for the co-seismic stages. In general, under the same range of external loads, rougher faults experience more events but with smaller slips, stress drops, and slip rates, where the roughest faults experience only slow-slip aseismic events. Moreover, the roughness complicates the nucleation process, with asymmetric expansion of the rupture and larger nucleation length. In the propagation phase of the seismic events, the roughness results in larger breakdown zones.

  6. Basin geometry and cumulative offsets in the Eastern Transverse Ranges, southern California: Implications for transrotational deformation along the San Andreas fault system

    USGS Publications Warehouse

    Langenheim, V.E.; Powell, R.E.

    2009-01-01

    The Eastern Transverse Ranges, adjacent to and southeast of the big left bend of the San Andreas fault, southern California, form a crustal block that has rotated clockwise in response to dextral shear within the San Andreas system. Previous studies have indicated a discrepancy between the measured magnitudes of left slip on through-going east-striking fault zones of the Eastern Transverse Ranges and those predicted by simple geometric models using paleomagnetically determined clockwise rotations of basalts distributed along the faults. To assess the magnitude and source of this discrepancy, we apply new gravity and magnetic data in combination with geologic data to better constrain cumulative fault offsets and to define basin structure for the block between the Pinto Mountain and Chiriaco fault zones. Estimates of offset from using the length of pull-apart basins developed within left-stepping strands of the sinistral faults are consistent with those derived by matching offset magnetic anomalies and bedrock patterns, indicating a cumulative offset of at most ???40 km. The upper limit of displacements constrained by the geophysical and geologic data overlaps with the lower limit of those predicted at the 95% confidence level by models of conservative slip located on margins of rigid rotating blocks and the clockwise rotation of the paleomagnetic vectors. Any discrepancy is likely resolved by internal deformation within the blocks, such as intense deformation adjacent to the San Andreas fault (that can account for the absence of basins there as predicted by rigid-block models) and linkage via subsidiary faults between the main faults. ?? 2009 Geological Society of America.

  7. Newport-Inglewood-Carlsbad-Coronado Bank Fault System Nearshore Southern California: Testing models for Quaternary deformation

    NASA Astrophysics Data System (ADS)

    Bennett, J. T.; Sorlien, C. C.; Cormier, M.; Bauer, R. L.

    2011-12-01

    The San Andreas fault system is distributed across hundreds of kilometers in southern California. This transform system includes offshore faults along the shelf, slope and basin- comprising part of the Inner California Continental Borderland. Previously, offshore faults have been interpreted as being discontinuous and striking parallel to the coast between Long Beach and San Diego. Our recent work, based on several thousand kilometers of deep-penetration industry multi-channel seismic reflection data (MCS) as well as high resolution U.S. Geological Survey MCS, indicates that many of the offshore faults are more geometrically continuous than previously reported. Stratigraphic interpretations of MCS profiles included the ca. 1.8 Ma Top Lower Pico, which was correlated from wells located offshore Long Beach (Sorlien et. al. 2010). Based on this age constraint, four younger (Late) Quaternary unconformities are interpreted through the slope and basin. The right-lateral Newport-Inglewood fault continues offshore near Newport Beach. We map a single fault for 25 kilometers that continues to the southeast along the base of the slope. There, the Newport-Inglewood fault splits into the San Mateo-Carlsbad fault, which is mapped for 55 kilometers along the base of the slope to a sharp bend. This bend is the northern end of a right step-over of 10 kilometers to the Descanso fault and about 17 km to the Coronado Bank fault. We map these faults for 50 kilometers as they continue over the Mexican border. Both the San Mateo - Carlsbad with the Newport-Inglewood fault and the Coronado Bank with the Descanso fault are paired faults that form flower structures (positive and negative, respectively) in cross section. Preliminary kinematic models indicate ~1km of right-lateral slip since ~1.8 Ma at the north end of the step-over. We are modeling the slip on the southern segment to test our hypothesis for a kinematically continuous right-lateral fault system. We are correlating four younger Quaternary unconformities across portions of these faults to test whether the post- ~1.8 Ma deformation continues into late Quaternary. This will provide critical information for a meaningful assessment of the seismic hazards facing Newport beach through metropolitan San Diego.

  8. Spatio-temporal mapping of plate boundary faults in California using geodetic imaging

    USGS Publications Warehouse

    Donnellan, Andrea; Arrowsmith, Ramon; DeLong, Stephen B.

    2017-01-01

    The Pacific–North American plate boundary in California is composed of a 400-km-wide network of faults and zones of distributed deformation. Earthquakes, even large ones, can occur along individual or combinations of faults within the larger plate boundary system. While research often focuses on the primary and secondary faults, holistic study of the plate boundary is required to answer several fundamental questions. How do plate boundary motions partition across California faults? How do faults within the plate boundary interact during earthquakes? What fraction of strain accumulation is relieved aseismically and does this provide limits on fault rupture propagation? Geodetic imaging, broadly defined as measurement of crustal deformation and topography of the Earth’s surface, enables assessment of topographic characteristics and the spatio-temporal behavior of the Earth’s crust. We focus here on crustal deformation observed with continuous Global Positioning System (GPS) data and Interferometric Synthetic Aperture Radar (InSAR) from NASA’s airborne UAVSAR platform, and on high-resolution topography acquired from lidar and Structure from Motion (SfM) methods. Combined, these measurements are used to identify active structures, past ruptures, transient motions, and distribution of deformation. The observations inform estimates of the mechanical and geometric properties of faults. We discuss five areas in California as examples of different fault behavior, fault maturity and times within the earthquake cycle: the M6.0 2014 South Napa earthquake rupture, the San Jacinto fault, the creeping and locked Carrizo sections of the San Andreas fault, the Landers rupture in the Eastern California Shear Zone, and the convergence of the Eastern California Shear Zone and San Andreas fault in southern California. These examples indicate that distribution of crustal deformation can be measured using interferometric synthetic aperture radar (InSAR), Global Navigation Satellite System (GNSS), and high-resolution topography and can improve our understanding of tectonic deformation and rupture characteristics within the broad plate boundary zone.

  9. Extensional tectonics during the igneous emplacement of the mafic-ultramafic rocks of the Barberton greenstone belt

    NASA Technical Reports Server (NTRS)

    Dewit, M. J.

    1986-01-01

    The simatic rocks (Onverwacht Group) of the Barberton greenstone belt are part of the Jamestown ophiolite complex. This ophiolite, together with its thick sedimentary cover occupies a complex thrust belt. Field studies have identified two types of early faults which are entirely confined to the simatic rocks and are deformed by the later thrusts and associated folds. The first type of fault (F1a) is regional and always occurs in the simatic rocks along and parallel to the lower contacts of the ophiolite-related cherts (Middle Marker and equivalent layers). These fault zones have previously been referred to both as flaser-banded gneisses and as weathering horizons. In general the zones range between 1-30m in thickness. Displacements along these zones are difficult to estimate, but may be in the order of 1-100 km. The structures indicate that the faults formed close to horizontal, during extensional shear and were therefore low angle normal faults. F1a zones overlap in age with the formation of the ophiolite complex. The second type of faults (F1b) are vertical brittle-ductile shear zones, which crosscut the complex at variable angles and cannot always be traced from plutonic to overlying extrusive (pillowed) simatic rocks. F1b zones are also apparently of penecontemporaneous origin with the intrusive-extrusive igneous processs. F1b zones may either represent transform fault-type activity or represent root zones (steepened extensions) of F1a zones. Both fault types indicate extensive deformation in the rocks of the greenstone belt prior to compressional overthrust tectonics.

  10. Genetic approach to reconstruct complex regional geological setting of the Baltic basin in 3D geological model

    NASA Astrophysics Data System (ADS)

    Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.

    2012-04-01

    Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer thickness was adjusted by taking into account amount of erosion by the presence of the regional unconformities. Borehole data and structural maps of some surfaces were used in creating geological model of the BB. Used approach allowed creating geologically sound geometric model. At first borehole logs were used to reconstruct initial thicknesses of different strata in every tectonic stage, where topography of each strata was obtained sequentially summing thickness to the initial reference surface from structural maps. Thereby each layer reflects the topography and amount of slip along the fault of the overlying layer. Overlying tectonic cycle sequence is implemented into the model structure by using unconformity surface as an initial reference surface. Applied techniques made possible reliably reconstructing and predicting in areas of sparse data layer surface geometry, its thickness distribution and evaluating displacements along the fault planes. Overall results indicate that the used approach has a good potential in development of regional geological models for the sedimentary basins and is valid for spatial interpretation of geological structures, subordinating this process to geological evolution prerequisites. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060.

  11. Vibration signal models for fault diagnosis of planet bearings

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2016-05-01

    Rolling element bearings are key components of planetary gearboxes. Among them, the motion of planet bearings is very complex, encompassing spinning and revolution. Therefore, planet bearing vibrations are highly intricate and their fault characteristics are completely different from those of fixed-axis case, making planet bearing fault diagnosis a difficult topic. In order to address this issue, we derive the explicit equations for calculating the characteristic frequency of outer race, rolling element and inner race fault, considering the complex motion of planet bearings. We also develop the planet bearing vibration signal model for each fault case, considering the modulation effects of load zone passing, time-varying angle between the gear pair mesh and fault induced impact force, as well as the time-varying vibration transfer path. Based on the developed signal models, we derive the explicit equations of Fourier spectrum in each fault case, and summarize the vibration spectral characteristics respectively. The theoretical derivations are illustrated by numerical simulation, and further validated experimentally and all the three fault cases (i.e. outer race, rolling element and inner race localized fault) are diagnosed.

  12. Double-dictionary matching pursuit for fault extent evaluation of rolling bearing based on the Lempel-Ziv complexity

    NASA Astrophysics Data System (ADS)

    Cui, Lingli; Gong, Xiangyang; Zhang, Jianyu; Wang, Huaqing

    2016-12-01

    The quantitative diagnosis of rolling bearing fault severity is particularly crucial to realize a proper maintenance decision. Aiming at the fault feature of rolling bearing, a novel double-dictionary matching pursuit (DDMP) for fault extent evaluation of rolling bearing based on the Lempel-Ziv complexity (LZC) index is proposed in this paper. In order to match the features of rolling bearing fault, the impulse time-frequency dictionary and modulation dictionary are constructed to form the double-dictionary by using the method of parameterized function model. Then a novel matching pursuit method is proposed based on the new double-dictionary. For rolling bearing vibration signals with different fault sizes, the signals are decomposed and reconstructed by the DDMP. After the noise reduced and signals reconstructed, the LZC index is introduced to realize the fault extent evaluation. The applications of this method to the fault experimental signals of bearing outer race and inner race with different degree of injury have shown that the proposed method can effectively realize the fault extent evaluation.

  13. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.

    PubMed

    Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan

    2014-09-12

    At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.

  14. Radar, an optimum remote-sensing tool for detailed plate tectonic analysis and its application to hydrocarbon exploration (an example in Irian Jaya Indonesia)

    NASA Technical Reports Server (NTRS)

    Froidevaux, C. M.

    1980-01-01

    Geometric, geomorphic, and structural information derived from the examination of radar imagery and combined with geologic and geophysical evidences strongly indicates that Salawati Island was attached to the Irian Jaya mainland during the time of Miocene lower Pliocene reef development, and that it was separated in middle Pliocene to Pleistocene time, opening the Sele Strait rift zone. The island moved 17.5 km southwestward after an initial counterclockwise rotation of 13 deg. The rift zone is subsequent to the creation of the large left lateral Sorong fault zone that is part of the transitional area separating the westward-moving Pacific plate from the relatively stable Australian plate. The motion was triggered during a widespread magmatic intrusion of the Sorong fault zone, when the basalt infiltrated a right lateral fault system in the area of the present Sele Strait.

  15. Geo Techno Park potential at Arjuno-Welirang Volcano hosted geothermal area, Batu, East Java, Indonesia (Multi geophysical approach)

    NASA Astrophysics Data System (ADS)

    Maryanto, Sukir

    2017-11-01

    Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.

  16. Constant Fault Slip-Rates Over Hundreds of Millenia Constrained By Deformed Quaternary Palaeoshorelines: the Vibo and Capo D'Orlando Faults, Southern Italy.

    NASA Astrophysics Data System (ADS)

    Meschis, M.; Roberts, G.; Robertson, J.; Houghton, S.; Briant, R. M.

    2017-12-01

    Whether slip-rates on active faults accumulated over multiple seismic events is constant or varying over tens to hundreds of millenia timescales is an open question that can be addressed through study of deformed Quaternary palaeoshorelines. It is important to know the answer so that one can judge whether shorter timescale measurements (e.g. Holocene palaeoseismology or decadal geodesy) are suitable for determining earthquake recurrence intervals for Probabilistic Seismic Hazard Assessment or more suitable for studying temporal earthquake clustering. We present results from the Vibo Fault and the Capo D'Orlando Fault, that lie within the deforming Calabrian Arc, which has experienced damaging seismic events such as the 1908 Messina Strait earthquake ( Mw 7) and the 1905 Capo Vaticano earthquake ( Mw 7). These normal faults deform uplifted Late Quaternary palaeoshorelines, which outcrop mainly within their hangingwalls, but also partially in their footwalls, showing that a regional subduction and mantle-related uplift outpaces local fault-related subsidence. Through (1) field and DEM-based mapping of palaeoshorelines, both up flights of successively higher, older inner edges, and along the strike of the faults, and (2) utilisation of synchronous correlation of non-uniformly-spaced inner edge elevations with non-uniformly spaced sea-level highstand ages, we show that slip-rates decrease towards fault tips and that slip-rates have remained constant since 340 ka (given the time resolution we obtain). The slip-rates for the Capo D'Orlando Fault and Vibo Fault are 0.61mm/yr and 1mm/yr respectively. We show that the along-strike gradients in slip-rate towards fault tips differ for the two faults hinting at fault interaction and also discuss this in terms of other regions of extension like the Gulf of Corinth, Greece, where slip-rate has been shown to change through time through the Quaternary. We make the point that slip-rates may change through time as fault systems grow and fault interaction changes due to geometrical effects.

  17. Along-strike complex geometry of subduction zones - an experimental approach

    NASA Astrophysics Data System (ADS)

    Midtkandal, I.; Gabrielsen, R. H.; Brun, J.-P.; Huismans, R.

    2012-04-01

    Recent knowledge of the great geometric and dynamic complexity insubduction zones, combined with new capacity for analogue mechanical and numerical modeling has sparked a number of studies on subduction processes. Not unexpectedly, such models reveal a complex relation between physical conditions during subduction initiation, strength profile of the subducting plate, the thermo-dynamic conditions and the subduction zones geometries. One rare geometrical complexity of subduction that remains particularly controversial, is the potential for polarity shift in subduction systems. The present experiments were therefore performed to explore the influence of the architecture, strength and strain velocity on complexities in subduction zones, focusing on along-strike variation of the collision zone. Of particular concern were the consequences for the geometry and kinematics of the transition zones between segments of contrasting subduction direction. Although the model design to some extent was inspired by the configuration along the Iberian - Eurasian suture zone, the results are also of significance for other orogens with complex along-strike geometries. The experiments were set up to explore the initial state of subduction only, and were accordingly terminated before slab subduction occurred. The model wasbuilt from layers of silicone putty and sand, tailored to simulate the assumed lithospheric geometries and strength-viscosity profiles along the plate boundary zone prior to contraction, and comprises two 'continental' plates separated by a thinner 'oceanic' plate that represents the narrow seaway. The experiment floats on a substrate of sodiumpolytungstate, representing mantle. 24 experimental runs were performed, varying the thickness (and thus strength) of the upper mantle lithosphere, as well as the strain rate. Keeping all other parameters identical for each experiment, the models were shortened by a computer-controlled jackscrew while time-lapse images were recorded. After completion, the models were saturated with water and frozen, allowing for sectioning and profile inspection. The experiments were invariably characterized by different along-strike patterns of deformation, so that three distinct structural domains could be distinguished in all cases. Model descriptions are subdivided accordingly, including domain CC, simulating a continent-continent collision, domain OC, characterized by continent-ocean-continent collision and domain T, representing the transition zone between domain CC and domain OC. The latter zone varied in width and complexity depending on the contrast in structural style developed in the two other domains; in cases where domain OC developed very differently from domain CC, the transition zone was generally wider and more complex. A typical experiment displayed the following features and strain history: In domain CC two principal thrust sheets are displayed, which obviously developed in an in-sequence foreland-directed fashion. The lowermost detachment nucleated at the base of the High Strength Lithospheric Mantle analogue, whereas the uppermost thrust was anchored within the "lower crust". The two thrusts operated in concert, the surface trace of the deepest dominating in the west, and the shallowest in the east. The kinematic development of domain CC could be subdivided into four stages, including initiation of a symmetrical anticline with a minute amplitude and situated directly above the velocity discontinuity defined by the plate contact (stage 1), contemporaneous development of the two thrusts (stage 2) and an associated asymmetrical anticline (stage 3) with a central collapse graben in the latest phase (stage 4). It is noted that the segment CC as seen in a clear majority of the experiments followed this pattern of development. In contrast, the configuration of domain OC displayed greater variation, and included north and south-directed subduction, folding, growth of pop-up-structures and triangle zones. In the "ocean crust" domain, stage 1 was characterized by the growth of a fault-propagation anticline with an E-W-oriented fold axis, ending with the surfacing of a north-vergent thrust. In stage 2, the contraction was concentrated to the south in the oceanic domain, again ending with the surfacing of a thrust, here with top-south transport. By continued movement (stage 3), the thrust fault propagated towards the east, crossing into the "continental" domain and linking with the fault systems of the segment CC. The structure of domain T is dominated by the interference of faults propagating westwards from the domain CC and eastwards from the domain OC, respectively. The zone of overlap in the experiment was significant, and its central part had the geometry of a double "crocodile structure" (sensuMeissner 1989), separating the two areas of northerly and southerly subduction. Hence, its development is less easily subdivided into stages. Reference: Meissner,R., 1989: Rupture, creep lamellae and crocodiles: happenings in the continental crust. Terra Nova, 1, 17-28.

  18. Aftershocks of the 2010 Mw 7.2 El Mayor-Cucapah earthquake revealcomplex faulting in the Yuha Desert, California

    USGS Publications Warehouse

    Kroll, K.; Cochran, Elizabeth S.; Richards-Dinger, K.; Sumy, Danielle

    2013-01-01

    We detect and precisely locate over 9500 aftershocks that occurred in the Yuha Desert region during a 2 month period following the 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake. Events are relocated using a series of absolute and relative relocation procedures that include Hypoinverse, Velest, and hypoDD. Location errors are reduced to ~40 m horizontally and ~120 m vertically.Aftershock locations reveal a complex pattern of faulting with en echelon fault segments trending toward the northwest, approximately parallel to the North American-Pacific plate boundary and en echelon, conjugate features trending to the northeast. The relocated seismicity is highly correlated with published surface mapping of faults that experienced triggered surface slip in response to the EMC main shock. Aftershocks occurred between 2 km and 11 km depths, consistent with previous studies of seismogenic thickness in the region. Three-dimensional analysis reveals individual and intersecting fault planes that are limited in their along-strike length. These fault planes remain distinct structures at depth, indicative of conjugate faulting, and do not appear to coalesce onto a throughgoing fault segment. We observe a complex spatiotemporal migration of aftershocks, with seismicity that jumps between individual fault segments that are active for only a few days to weeks. Aftershock rates are roughly consistent with the expected earthquake production rates of Dieterich (1994). The conjugate pattern of faulting and nonuniform aftershock migration patterns suggest that strain in the Yuha Desert is being accommodated in a complex manner.

  19. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  20. Active tectonics of the Imperial Valley, southern California: fault damage zones, complex basins and buried faults

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.; Han, L.

    2016-12-01

    Ongoing oblique slip at the Pacific-North America plate boundary in the Salton Trough produced the Imperial Valley. Deformation in this seismically active area is distributed across a complex network of exposed and buried faults resulting in a largely unmapped seismic hazard beneath the growing population centers of El Centro, Calexico and Mexicali. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project (SSIP) to construct a P-wave velocity profile to 15 km depth, and a 3-D velocity model down to 8 km depth including the Brawley Geothermal area. We obtained detailed images of a complex wedge-shaped basin at the southern end of the San Andreas Fault system. Two deep subbasins (VP <5.65 km/s) are located in the western part of the larger Imperial Valley basin, where seismicity trends and active faults play a significant role in shaping the basin edge. Our 3-D VP model reveals previously unrecognized NE-striking cross faults that are interacting with the dominant NW-striking faults to control deformation. New findings in our profile include localized regions of low VP (thickening of a 5.65-5.85 km/s layer) near faults or seismicity lineaments interpreted as possibly faulting-related. Our 3-D model and basement map reveal velocity highs associated with the geothermal areas in the eastern valley. The improved seismic velocity model from this study, and the identification of important unmapped faults or buried interfaces will help refine the seismic hazard for parts of Imperial County, California.

  1. The Non-Regularity of Earthquake Recurrence in California: Lessons From Long Paleoseismic Records in Simple vs Complex Fault Regions (Invited)

    NASA Astrophysics Data System (ADS)

    Rockwell, T. K.

    2010-12-01

    A long paleoseismic record at Hog Lake on the central San Jacinto fault (SJF) in southern California documents evidence for 18 surface ruptures in the past 3.8-4 ka. This yields a long-term recurrence interval of about 210 years, consistent with its slip rate of ~16 mm/yr and field observations of 3-4 m of displacement per event. However, during the past 3800 years, the fault has switched from a quasi-periodic mode of earthquake production, during which the recurrence interval is similar to the long-term average, to clustered behavior with the inter-event periods as short as a few decades. There are also some periods as long as 450 years during which there were no surface ruptures, and these periods are commonly followed by one to several closely-timed ruptures. The coefficient of variation (CV) for the timing of these earthquakes is about 0.6 for the past 4000 years (17 intervals). Similar behavior has been observed on the San Andreas Fault (SAF) south of the Transverse Ranges where clusters of earthquakes have been followed by periods of lower seismic production, and the CV is as high as 0.7 for some portions of the fault. In contrast, the central North Anatolian Fault (NAF) in Turkey, which ruptured in 1944, appears to have produced ruptures with similar displacement at fairly regular intervals for the past 1600 years. With a CV of 0.16 for timing, and close to 0.1 for displacement, the 1944 rupture segment near Gerede appears to have been both periodic and characteristic. The SJF and SAF are part of a broad plate boundary system with multiple parallel strands with significant slip rates. Additional faults lay to the east (Eastern California shear zone) and west (faults of the LA basin and southern California Borderland), which makes the southern SAF system a complex and broad plate boundary zone. In comparison, the 1944 rupture section of the NAF is simple, straight and highly localized, which contrasts with the complex system of parallel faults in southern California. These observations suggest that the complexity of the southern California fault network is partly responsible for the apparent increase in “noise” and non-periodic behavior, perhaps resulting from stress transfer to adjacent faults after a large earthquake on one fault. The simplicity of the central NAF may account for its relatively simple behavior. If correct, the study of simple plate boundary faults may provide new insights into the constitutive elements of fault zones, and may aid in identifying those components that are critical for better forecasting future seismicity in complex systems.

  2. Progressive failure during the 1596 Keicho earthquakes on the Median Tectonic Line active fault zone, southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Toda, S.; Nishizaka, N.; Onishi, K.; Suzuki, S.

    2015-12-01

    Rupture patterns of a long fault system are controlled by spatial heterogeneity of fault strength and stress associated with geometrical characteristics and stress perturbation history. Mechanical process for sequential ruptures and multiple simultaneous ruptures, one of the characteristics of a long fault such as the North Anatolian fault, governs the size and frequency of large earthquakes. Here we introduce one of the cases in southwest Japan and explore what controls rupture initiation, sequential ruptures and fault branching on a long fault system. The Median Tectonic Line active fault zone (hereinafter MTL) is the longest and most active fault in Japan. Based on historical accounts, a series of M ≥ 7 earthquakes occurred on at least a 300-km-long portion of the MTL in 1596. On September 1, the first event occurred on the Kawakami fault segment, in Central Shikoku, and the subsequent events occurred further west. Then on September 5, another rupture initiated from the Central to East Shikoku and then propagated toward the Rokko-Awaji fault zone to Kobe, a northern branch of the MTL, instead of the eastern main extent of the MTL. Another rupture eventually extended to near Kyoto. To reproduce this progressive failure, we applied two numerical models: one is a coulomb stress transfer; the other is a slip-tendency analysis under the tectonic stress. We found that Coulomb stress imparted from historical ruptures have triggered the subsequent ruptures nearby. However, stress transfer does not explain beginning of the sequence and rupture directivities. Instead, calculated slip-tendency values show highly variable along the MTL: high and low seismic potential in West and East Shikoku. The initiation point of the 1596 progressive failure locates near the boundary in the slip-tendency values. Furthermore, the slip-tendency on the Rokko-Awaji fault zone is far higher than that of the MTL in Wakayama, which may explain the rupture directivity toward Kobe-Kyoto.

  3. Seismically-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System (Isla Grande de Tierra del Fuego, Argentina)

    NASA Astrophysics Data System (ADS)

    Onorato, M. Romina; Perucca, Laura; Coronato, Andrea; Rabassa, Jorge; López, Ramiro

    2016-10-01

    In this paper, evidence of paleoearthquake-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System in the Isla Grande de Tierra del Fuego, southern Argentina, has been identified. Well-preserved soft-sediment deformation structures were found in a Holocene sequence of the Udaeta pond. These structures were analyzed in terms of their geometrical characteristics, deformation mechanism, driving force system and possible trigger agent. They were also grouped in different morphological types: sand dykes, convolute lamination, load structures and faulted soft-sediment deformation features. Udaeta, a small pond in Argentina Tierra del Fuego, is considered a Quaternary pull-apart basin related to the Magallanes-Fagnano Fault System. The recognition of these seismically-induced features is an essential tool for paleoseismic studies. Since the three main urban centers in the Tierra del Fuego province of Argentina (Ushuaia, Río Grande and Tolhuin) have undergone an explosive growth in recent years, the results of this study will hopefully contribute to future analyses of the seismic risk of the region.

  4. Distributed deformation and block rotation in 3D

    NASA Technical Reports Server (NTRS)

    Scotti, Oona; Nur, Amos; Estevez, Raul

    1990-01-01

    The authors address how block rotation and complex distributed deformation in the Earth's shallow crust may be explained within a stationary regional stress field. Distributed deformation is characterized by domains of sub-parallel fault-bounded blocks. In response to the contemporaneous activity of neighboring domains some domains rotate, as suggested by both structural and paleomagnetic evidence. Rotations within domains are achieved through the contemporaneous slip and rotation of the faults and of the blocks they bound. Thus, in regions of distributed deformation, faults must remain active in spite of their poor orientation in the stress field. The authors developed a model that tracks the orientation of blocks and their bounding faults during rotation in a 3D stress field. In the model, the effective stress magnitudes of the principal stresses (sigma sub 1, sigma sub 2, and sigma sub 3) are controlled by the orientation of fault sets in each domain. Therefore, adjacent fault sets with differing orientations may be active and may display differing faulting styles, and a given set of faults may change its style of motion as it rotates within a stationary stress regime. The style of faulting predicted by the model depends on a dimensionless parameter phi = (sigma sub 2 - sigma sub 3)/(sigma sub 1 - sigma sub 3). Thus, the authors present a model for complex distributed deformation and complex offset history requiring neither geographical nor temporal changes in the stress regime. They apply the model to the Western Transverse Range domain of southern California. There, it is mechanically feasible for blocks and faults to have experienced up to 75 degrees of clockwise rotation in a phi = 0.1 strike-slip stress regime. The results of the model suggest that this domain may first have accommodated deformation along preexisting NNE-SSW faults, reactivated as normal faults. After rotation, these same faults became strike-slip in nature.

  5. Geometric consequences of ductile fabric development from brittle shear faults in mafic melt sheets: Evidence from the Sudbury Igneous Complex, Canada

    NASA Astrophysics Data System (ADS)

    Lenauer, Iris; Riller, Ulrich

    2012-02-01

    Compared to felsic igneous rocks the genetic relationship between brittle and ductile fabric development and its influence on the geometry of deformed mafic melt sheets has received little attention in structural analyses. We explore these relationships using the Sudbury Igneous Complex (SIC) as an example. The SIC is the relic of a layered impact melt sheet that was transformed into a fold basin, the Sudbury Basin, during Paleoproterozoic deformation at the southern margin of the Archean Superior Province. We studied brittle and ductile strain fabrics on the outcrop and map scales in the southern Sudbury Basin, notably in the Norite and Quartz Gabbro layers of the SIC. Here, deformation is heterogeneous and occurred under variable rheological conditions, evident by the development of brittle shear fractures, brittle-ductile shear zones and pervasive ductile strain. The mineral fabrics formed under low- to middle greenschist-facies metamorphism, whereby brittle deformation caused hydrolytic weakening and ductile fabric development. Principal strain axes inferred from all structural elements are collinear and point to a single deformation regime that led to thinning of SIC layers during progressive deformation. Ductile fabric development profoundly influenced the orientation of SIC material planes, such as lithological contacts and magmatic mineral fabrics. More specifically, these planar structural elements are steep where the SIC underwent large magnitudes of thinning, i.e., in the south limb of the Sudbury Basin. Here, the actual tilt component of material planes is likely smaller than its maximum total rotation (60°) inferred from inclined igneous layering in the Norite. Our field-based study shows that ductile fabric development from brittle faults can have a profound influence on the rotational components of primary material planes in deformed igneous melt sheets.

  6. Geometric modeling of subcellular structures, organelles, and multiprotein complexes

    PubMed Central

    Feng, Xin; Xia, Kelin; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    SUMMARY Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multi-protein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes. PMID:23212797

  7. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    USGS Publications Warehouse

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  8. A Simplified Model for Multiphase Leakage through Faults with Applications for CO2 Storage

    NASA Astrophysics Data System (ADS)

    Watson, F. E.; Doster, F.

    2017-12-01

    In the context of geological CO2 storage, faults in the subsurface could affect storage security by acting as high permeability pathways which allow CO2 to flow upwards and away from the storage formation. To assess the likelihood of leakage through faults and the impacts faults might have on storage security numerical models are required. However, faults are complex geological features, usually consisting of a fault core surrounded by a highly fractured damage zone. A direct representation of these in a numerical model would require very fine grid resolution and would be computationally expensive. Here, we present the development of a reduced complexity model for fault flow using the vertically integrated formulation. This model captures the main features of the flow but does not require us to resolve the vertical dimension, nor the fault in the horizontal dimension, explicitly. It is thus less computationally expensive than full resolution models. Consequently, we can quickly model many realisations for parameter uncertainty studies of CO2 injection into faulted reservoirs. We develop the model based on explicitly simulating local 3D representations of faults for characteristic scenarios using the Matlab Reservoir Simulation Toolbox (MRST). We have assessed the impact of variables such as fault geometry, porosity and permeability on multiphase leakage rates.

  9. S-wave attenuation in northeastern Sonora, Mexico, near the faults that ruptured during the earthquake of 3 May 1887 Mw 7.5.

    PubMed

    Villalobos-Escobar, Gina P; Castro, Raúl R

    2014-01-01

    We used a new data set of relocated earthquakes recorded by the Seismic Network of Northeastern Sonora, Mexico (RESNES) to characterize the attenuation of S-waves in the fault zone of the 1887 Sonora earthquake (M w 7.5). We determined spectral attenuation functions for hypocentral distances (r) between 10 and 140 km using a nonparametric approach and found that in this fault zone the spectral amplitudes decay slower with distance at low frequencies (f < 4 Hz) compared to those reported in previous studies in the region using more distant recordings. The attenuation functions obtained for 23 frequencies (0.4 ≤ f ≤ 63.1 Hz) permit us estimating the average quality factor Q S  = (141 ± 1.1 )f ((0.74 ± 0.04)) and a geometrical spreading term G(r) = 1/r (0.21). The values of Q estimated for S-wave paths traveling along the fault system that rupture during the 1887 event, in the north-south direction, are considerably lower than the average Q estimated using source-station paths from multiple stations and directions. These results indicate that near the fault zone S waves attenuate considerably more than at regional scale, particularly at low frequencies. This may be the result of strong scattering near the faults due to the fractured upper crust and higher intrinsic attenuation due to stress concentration near the faults.

  10. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry

    NASA Astrophysics Data System (ADS)

    Yu, Hongyu; Liu, Yajing; Yang, Hongfeng; Ning, Jieyuan

    2018-05-01

    To assess the potential of catastrophic megathrust earthquakes (MW > 8) along the Manila Trench, the eastern boundary of the South China Sea, we incorporate a 3D non-planar fault geometry in the framework of rate-state friction to simulate earthquake rupture sequences along the fault segment between 15°N-19°N of northern Luzon. Our simulation results demonstrate that the first-order fault geometry heterogeneity, the transitional-segment (possibly related to the subducting Scarborough seamount chain) connecting the steeper south segment and the flatter north segment, controls earthquake rupture behaviors. The strong along-strike curvature at the transitional-segment typically leads to partial ruptures of MW 8.3 and MW 7.8 along the southern and northern segments respectively. The entire fault occasionally ruptures in MW 8.8 events when the cumulative stress in the transitional-segment is sufficiently high to overcome the geometrical inhibition. Fault shear stress evolution, represented by the S-ratio, is clearly modulated by the width of seismogenic zone (W). At a constant plate convergence rate, a larger W indicates on average lower interseismic stress loading rate and longer rupture recurrence period, and could slow down or sometimes stop ruptures that initiated from a narrower portion. Moreover, the modeled interseismic slip rate before whole-fault rupture events is comparable with the coupling state that was inferred from the interplate seismicity distribution, suggesting the Manila trench could potentially rupture in a M8+ earthquake.

  11. Seismotectonics of the Nicobar Swarm and the geodynamic implications for the 2004 Great Sumatran Earthquake

    NASA Astrophysics Data System (ADS)

    Lister, Gordon

    2017-04-01

    The Great Sumatran Earthquake took place on 26th December 2004. One month into the aftershock sequence, a dense swarm of earthquakes took place beneath the Andaman Sea, northeast of the Nicobar Islands. The swarm continued for ˜11 days, rapidly decreasing in intensity towards the end of that period. Unlike most earthquake swarms, the Nicobar cluster was characterised by a large number of shocks with moment magnitude exceeding five. This meant that centroid moment tensor data could be determined, and this data in turn allows geometric analysis of inferred fault plane motions. The classification obtained using program eQuakes shows aftershocks falling into distinct spatial groups. Thrusts dominate in the south (in the Sumatran domain), and normal faults dominate in the north (in the Andaman domain). Strike-slip faults are more evenly spread. They occur on the Sumatran wrench system, for example, but also on the Indian plate itself. Orientation groups readily emerge from such an analysis. Temporal variation in behaviour is immediately evident, changing after ˜12 months. Orientation groups in the first twelve months are consistent with margin perpendicular extension beneath the Andaman Sea (i.e. mode II megathrust behaviour) whereas afterward the pattern of deformation appears to have reverted to that expected in consequence of relative plate motion. In the first twelve months, strike-slip motion appears to have taken place on faults that are sub-parallel to spreading segments in the Andaman Sea. By early 2006 however normal fault clusters formed that showed ˜N-S extension across these spreading segments had resumed, while the overall density of aftershocks in the Andaman segment had considerably diminished. Throughout this entire period the Sumatran segment exhibited aftershock sequences consistent with ongoing Mode I megathrust behaviour. The Nicobar Swarm marks the transition from one sort of slab dynamics to the other. The earthquake swarm may have been facilitated by hydrothermal activity related to a seamount, or by magma intrusion. However, the swarm is located where the transpressional regime of the Sumatran strike-slip fault system changes to that of the 'microplate-bounding' transtensional wrench involved in the Andaman Sea spreading centre. The swarm thus may be the result of the confluence of two tectonic modes of afterslip on the main rupture, with arc-normal compression to the south, and arc-normal extension to the north. The orientations of the controlling faults can be related to the right-lateral Sumatran strike-slip system, and to oceanic transforms in the spreading system. Faults parallel to the Andaman Sea spreading system axis reactivated as left-lateral strike-slip faults during the period of afterslip. Analysis of the orientation groups shows that the swarm involved synchronous but geometrically incompatible movements on opposing but conjugate fault plane sets with trends that are consistent with Mohr-Coulomb failure, even though the orientation groups delineated require slip in many different directions on these planes. The fault planes allow inference of regional deviatoric stress axes with the principal compressive stress parallel to the prior distortion inferred using satellite geodesy.

  12. Geometric and kinematic analysis of structural elements along north front of Bagharan Kuh Mountain, NE Iran

    NASA Astrophysics Data System (ADS)

    Samimi, S.; Gholami, E.

    2017-03-01

    At the end of the western part of Bagharan Kuh Mountain in the northeast of Iran, mountain growth has been stopped toward the west because of the stress having been consumed by the thrusting movements and region rising instead of shear movement. Chahkand fault zone is situated at the western part of this mountain; this fault zone includes several thrust sheets that caused upper cretaceous ophiolite rocks up to younger units, peridotite exposure and fault related fold developing in the surface. In transverse perpendicular to the mountain toward the north, reduction in the parameters like faults dip, amount of deformation, peridotite outcrops show faults growth sequence and thrust sheets growth from mountain to plain, thus structural vergence is toward the northeast in this fault zone. Deformation in the east part of the region caused fault propagation fold with axial trend of WNW-ESE that is compatible with trending of fault plane. In the middle part, two types of folds is observed; in the first type, folding occurred before faulting and folds was cut by back thrust activity; in the second type, faults activity caused fault related folds with N60-90W axial trend. In order to hanging wall strain balance, back thrusts have been developed in the middle and western part which caused popup and fault bend folds with N20-70E trend. Back thrusts activity formed footwall synclines, micro folds, foliations, and uplift in this part of the region. Kinematic analysis of faults show stress axis σ1 = N201.6, 7, σ2 = N292.6, 7.1, σ3 = N64.8, 79.5; stress axis obtained by fold analysis confirm that minimum stress (σ3) is close to vertical so it is compatible with fault analysis. Based on the results, deformation in this region is controlled by compressional stress regime. This stress state is consistent with the direction of convergence between the Arabian and Eurasian plates. Also study of transposition, folded veins, different movements on the fault planes and back thrusts confirm the progressive deformation is dominant in this region that it increases from the east to the west.

  13. Effect Of Long-Period Earthquake Ground Motions On Nonlinear Vibration Of Shells With Variable Thickness

    NASA Astrophysics Data System (ADS)

    Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers

    2010-12-01

    Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The system of nonlinear integro-differential equations (NIDE) with variable coefficients concerning a deflection w=w(x,y) and displacements u=u(x,y), v=v(x,y) was used for construction mathematical model of the problem. The Kichhoff-Love hypothesis was used as basis for description physical and geometrical relations and construction of a discrete model of nonlinear problems dynamic theory of viscoelasticity. The most effective variational Bubnov-Galerkin method was used for obtaining Volterra type system of NIDE. The integration of the obtained equations system was carried out with the help of the numerical method based on quadrature formula. The computer codes on algorithmic language Delphi were created for investigation amplitude-time, deflected mode and torque-time characteristic of vibrations of the viscoelastic shells. For real composite materials at wide ranges of change of physical-mechanical and geometrical parameters the behavior of shells were investigated. Calculations were carried out at different laws of change of thickness. Results will be presented as graphs and tables.

  14. Fluid-injection and the mechanics of frictional stability of shale-bearing faults

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris

    2017-04-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex slip behavior is associated with fault zone compaction and permeability increase as opposite to the dilation hardening mechanism that is usually invoked to quench the instability. We relate this complex fault slip behaviour to the interplay between fault weakening induced by fluid pressurization and the strong rate-strengthening behaviour of shales. Our data show that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.

  15. Activation of preexisting transverse structures in an evolving magmatic rift in East Africa

    NASA Astrophysics Data System (ADS)

    Muirhead, J. D.; Kattenhorn, S. A.

    2018-01-01

    Inherited crustal weaknesses have long been recognized as important factors in strain localization and basin development in the East African Rift System (EARS). However, the timing and kinematics (e.g., sense of slip) of transverse (rift-oblique) faults that exploit these weaknesses are debated, and thus the roles of inherited weaknesses at different stages of rift basin evolution are often overlooked. The mechanics of transverse faulting were addressed through an analysis of the Kordjya fault of the Magadi basin (Kenya Rift). Fault kinematics were investigated from field and remote-sensing data collected on fault and joint systems. Our analysis indicates that the Kordjya fault consists of a complex system of predominantly NNE-striking, rift-parallel fault segments that collectively form a NNW-trending array of en echelon faults. The transverse Kordjya fault therefore reactivated existing rift-parallel faults in ∼1 Ma lavas as oblique-normal faults with a component of sinistral shear. In all, these fault motions accommodate dip-slip on an underlying transverse structure that exploits the Aswa basement shear zone. This study shows that transverse faults may be activated through a complex interplay among magma-assisted strain localization, preexisting structures, and local stress rotations. Rather than forming during rift initiation, transverse structures can develop after the establishment of pervasive rift-parallel fault systems, and may exhibit dip-slip kinematics when activated from local stress rotations. The Kordjya fault is shown here to form a kinematic linkage that transfers strain to a newly developing center of concentrated magmatism and normal faulting. It is concluded that recently activated transverse faults not only reveal the effects of inherited basement weaknesses on fault development, but also provide important clues regarding developing magmatic and tectonic systems as young continental rift basins evolve.

  16. Tectonic evolution of kid metamorphic complex and the recognition of Najd fault system in South East Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Sultan, Yasser M.; El-Shafei, Mohamed K.; Arnous, Mohamed O.

    2017-03-01

    A low-to medium-grade metamorphic belt of a volcano-sedimentary succession occurs in the eastern side of South Sinai as a part of the northernmost extension of the Arabian-Nubian Shield in Egypt. The belt is known as the Kid metamorphic complex. It is considered as one of the major belt among the other exposed metamorphic belts in South Sinai. Here, we detect and investigate the signature of the Najd Fault system in South Sinai based on detailed structural analysis in field and digital image processing. The enhanced satellite image and the geo-spatial distributions confirm that the Kid belt is essentially composed of nine Precambrian units. Field relations and geometrical analysis of the measured structural data revealed that the study area underwent four successive deformational phases (D1-D4). D1 is an upright tight to isoclinal large-scale folds that caused few F1 small-scale folds and a steeply dipping S1 axial plane foliation. The second deformational event D2 produced dominant of sub-horizontal S2 foliation planes accompanied with recumbent isoclinal folds and NW-SE trending L2 lineations. The main sense during D2 was top-to-the-NW with local reversals to the SE. The third folding generations F3 is recorded as axial plane S3-surfaces and is characterized by open concentric folding that overprinting both F1 and F2 folds and has a flexural-slip mechanism. F3 fold hinges plunge to the west-northwest or east-southeast indicate north-northeast-south-southwest shortening during D3. The fourth deformational event D4 is characterized by NE plunging open concentric folding overprint the pre-existing fold generations and formed under flexural slip mechanism reflecting coaxial deformation and indicating change in the stress regime as a result of the change in shortening from NE-SW to NW-SE. This phase is probably accompanied with the final assembly of east and west Gondwana. The dextral NW-SE shear zone that bounded the southwestern portion of the metamorphic belt is probably related to reactivation of the Najd fault system during Oligo-Miocene in South Sinai.

  17. Complex fragmentation and silicification structures in fault zones: quartz crystallization and repeated fragmentation in the Rusey fault zone (Cornwall/UK)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Tim I.; Blenkinsop, Tom; Duschl, Florian; Kruhl, Jörn H.

    2015-04-01

    Silicified fault rocks typically show structures resulting from various stages of fragmentation and quartz crystallization. Both processes interact episodically and result in complex structures on various scales, which require a wide spectrum of analysis tools. Based on field and microstructural data, the spatial-temporal connection between deformation, quartz crystallization and fluid and material flow along the Rusey fault zone was investigated. The fault can be examined in detail in three dimensions on the north Cornwall coast, UK. It occurs within Carboniferous sandstones, siltstones, mudstones and slates of the Culm basin, and is likely to have had a long history. The fault rocks described here formed during the younger events, possibly due to Tertiary strike-slip reactivation. Frequent fragmentation, flow and crystallization events and their interaction led to various generations of complex-structured quartz units, among them quartz-mantled and partly silicified wall-rock fragments, microcrystalline quartz masses of different compositions and structures, and quartz vein patterns of various ages. Lobate boundaries of quartz masses indicate viscous flow. Fragments are separated by quartz infill, which contains cm-sized open pores, in which quartz crystals have pyramidal terminations. Based on frequent occurrence of feathery textures and the infill geometry, quartz crystallization from chalcedony appears likely, and an origin from silica gel is discussed. Fragmentation structures are generally fractal. This allows differentiation between various processes, such as corrosive wear, wear abrasion and hydraulic brecciation. Material transport along the brittle shear zone, and displacement of the wall-rocks, were at least partly governed by flow of mobile fluid-quartz-particle suspensions. The complex meso- to microstructures were generated by repeated processes of fragmentation, quartz precipitation and grain growth. In general, the brittle Rusey fault zone represents a zone of multiple fragmentation, fluid flow, crystallization and quartz dissolution and precipitation, and is regarded as key example of large-scale cyclic interaction of these processes. The geological evidence of interactions between processes implies that feedbacks and highly non-linear mechanical behaviour generated the complex meso- and microstructures. The fault zone rheology may also therefore have been complex.

  18. Interpretation of gravity profiles across the northern Oaxaca terrane, its boundaries and the Tehuacán Valley, southern Mexico

    NASA Astrophysics Data System (ADS)

    Campos-Enríquez, J. O.; Alatorre-Zamora, M. A.; Keppie, J. D.; Belmonte-Jiménez, S. I.; Ramón-Márquez, V. M.

    2014-12-01

    A gravity study was conducted across the northern Oaxaca terrane and its bounding faults: the Caltepec and Oaxaca Faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacán depression. On the west, at depth, the Tehuacán valley is limited by the normal buried Tehuacán Fault. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex). The tectonic depression is filled with Phanerozoic rocks and has a deeper depocenter to the west. The gravity data also indicate that on the west, the Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. A major E-W to NE-SW discontinuity is inferred to exist between profiles 1 and 2.

  19. Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing

    2018-04-01

    Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.

  20. Kinematics of the 2015 San Ramon, California earthquake swarm: Implications for fault zone structure and driving mechanisms

    NASA Astrophysics Data System (ADS)

    Xue, Lian; Bürgmann, Roland; Shelly, David R.; Johnson, Christopher W.; Taira, Taka'aki

    2018-05-01

    Earthquake swarms represent a sudden increase in seismicity that may indicate a heterogeneous fault-zone, the involvement of crustal fluids and/or slow fault slip. Swarms sometimes precede major earthquake ruptures. An earthquake swarm occurred in October 2015 near San Ramon, California in an extensional right step-over region between the northern Calaveras Fault and the Concord-Mt. Diablo fault zone, which has hosted ten major swarms since 1970. The 2015 San Ramon swarm is examined here from 11 October through 18 November using template matching analysis. The relocated seismicity catalog contains ∼4000 events with magnitudes between - 0.2

  1. Seismic interpretation of the deep structure of the Wabash Valley Fault System

    USGS Publications Warehouse

    Bear, G.W.; Rupp, J.A.; Rudman, A.J.

    1997-01-01

    Interpretations of newly available seismic reflection profiles near the center of the Illinois Basin indicate that the Wabash Valley Fault System is rooted in a series of basement-penetrating faults. The fault system is composed predominantly of north-northeast-trending high-angle normal faults. The largest faults in the system bound the 22-km wide 40-km long Grayville Graben. Structure contour maps drawn on the base of the Mount Simon Sandstone (Cambrian System) and a deeper pre-Mount Simon horizon show dip-slip displacements totaling at least 600 meters across the New Harmony fault. In contrast to previous interpretations, the N-S extent of significant fault offsets is restricted to a region north of 38?? latitude and south of 38.35?? latitude. This suggests that the graben is not a NE extension of the structural complex composed of the Rough Creek Fault System and the Reelfoot Rift as previously interpreted. Structural complexity on the graben floor also decreases to the south. Structural trends north of 38?? latitude are offset laterally across several large faults, indicating strike-slip motions of 2 to 4 km. Some of the major faults are interpreted to penetrate to depths of 7 km or more. Correlation of these faults with steep potential field gradients suggests that the fault positions are controlled by major lithologic contacts within the basement and that the faults may extend into the depth range where earthquakes are generated, revealing a potential link between specific faults and recently observed low-level seismicity in the area.

  2. High-resolution seismic profiling reveals faulting associated with the 1934 Ms 6.6 Hansel Valley earthquake (Utah, USA)

    USGS Publications Warehouse

    Bruno, Pier Paolo G.; Duross, Christopher; Kokkalas, Sotirios

    2017-01-01

    The 1934 Ms 6.6 Hansel Valley, Utah, earthquake produced an 8-km-long by 3-km-wide zone of north-south−trending surface deformation in an extensional basin within the easternmost Basin and Range Province. Less than 0.5 m of purely vertical displacement was measured at the surface, although seismologic data suggest mostly strike-slip faulting at depth. Characterization of the origin and kinematics of faulting in the Hansel Valley earthquake is important to understand how complex fault ruptures accommodate regions of continental extension and transtension. Here, we address three questions: (1) How does the 1934 surface rupture compare with faults in the subsurface? (2) Are the 1934 fault scarps tectonic or secondary features? (3) Did the 1934 earthquake have components of both strike-slip and dip-slip motion? To address these questions, we acquired a 6.6-km-long, high-resolution seismic profile across Hansel Valley, including the 1934 ruptures. We observed numerous east- and west-dipping normal faults that dip 40°−70° and offset late Quaternary strata from within a few tens of meters of the surface down to a depth of ∼1 km. Spatial correspondence between the 1934 surface ruptures and subsurface faults suggests that ruptures associated with the earthquake are of tectonic origin. Our data clearly show complex basin faulting that is most consistent with transtensional tectonics. Although the kinematics of the 1934 earthquake remain underconstrained, we interpret the disagreement between surface (normal) and subsurface (strike-slip) kinematics as due to slip partitioning during fault propagation and to the effect of preexisting structural complexities. We infer that the 1934 earthquake occurred along an ∼3-km wide, off-fault damage zone characterized by distributed deformation along small-displacement faults that may be alternatively activated during different earthquake episodes.

  3. Slip Potential of Faults in the Fort Worth Basin

    NASA Astrophysics Data System (ADS)

    Hennings, P.; Osmond, J.; Lund Snee, J. E.; Zoback, M. D.

    2017-12-01

    Similar to other areas of the southcentral United States, the Fort Worth Basin of NE Texas has experienced an increase in the rate of seismicity which has been attributed to injection of waste water in deep saline aquifers. To assess the hazard of induced seismicity in the basin we have integrated new data on location and character of previously known and unknown faults, stress state, and pore pressure to produce an assessment of fault slip potential which can be used to investigate prior and ongoing earthquake sequences and for development of mitigation strategies. We have assembled data on faults in the basin from published sources, 2D and 3D seismic data, and interpretations provided from petroleum operators to yield a 3D fault model with 292 faults ranging in strike-length from 116 to 0.4 km. The faults have mostly normal geometries, all cut the disposal intervals, and most are presumed to cut into the underlying crystalline and metamorphic basement. Analysis of outcrops along the SW flank of the basin assist with geometric characterization of the fault systems. The interpretation of stress state comes from integration of wellbore image and sonic data, reservoir stimulation data, and earthquake focal mechanisms. The orientation of SHmax is generally uniform across the basin but stress style changes from being more strike-slip in the NE part of the basin to normal faulting in the SW part. Estimates of pore pressure come from a basin-scale hydrogeologic model as history-matched to injection test data. With these deterministic inputs and appropriate ranges of uncertainty we assess the conditional probability that faults in our 3D model might slip via Mohr-Coulomb reactivation in response to increases in injected-related pore pressure. A key component of the analysis is constraining the uncertainties associated with each of the principal parameters. Many of the faults in the model are interpreted to be critically-stressed within reasonable ranges of uncertainty.

  4. Extensional Fault Evolution and its Flexural Isostatic Response During Iberia-Newfoundland Rifted Margin Formation

    NASA Astrophysics Data System (ADS)

    Gómez-Romeu, J.; Kusznir, N.; Manatschal, G.; Roberts, A.

    2017-12-01

    During the formation of magma-poor rifted margins, upper lithosphere thinning and stretching is achieved by extensional faulting, however, there is still debate and uncertainty how faults evolve during rifting leading to breakup. Seismic data provides an image of the present-day structural and stratigraphic configuration and thus initial fault geometry is unknown. To understand the geometric evolution of extensional faults at rifted margins it is extremely important to also consider the flexural response of the lithosphere produced by fault displacement resulting in footwall uplift and hangingwall subsidence. We investigate how the flexural isostatic response to extensional faulting controls the structural development of rifted margins. To achieve our aim, we use a kinematic forward model (RIFTER) which incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. Inputs for RIFTER are derived from seismic reflection interpretation and outputs of RIFTER are the prediction of the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. Using RIFTER we model the simultaneous tectonic development of the Iberia-Newfoundland conjugate rifted margins along the ISE01-SCREECH1 and TGS/LG12-SCREECH2 seismic lines. We quantitatively test and calibrate the model against observed target data restored to breakup time. Two quantitative methods are used to obtain this target data: (i) gravity anomaly inversion which predicts Moho depth and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling to give water and Moho depths at breakup time. We show that extensional faulting occurs on steep ( 60°) normal faults in both proximal and distal parts of rifted margins. Extensional faults together with their flexural isostatic response produce not only sub-horizontal exhumed footwall surfaces (i.e. the rolling hinge model) and highly rotated (60° or more) pre- and syn-rift stratigraphy, but also extensional allochthons underlain by apparent horizontal detachments. These detachment faults were never active in this sub-horizontal geometry; they were only active as steep faults which were isostatically rotated to their present sub-horizontal position.

  5. Orion GN&C Fault Management System Verification: Scope And Methodology

    NASA Technical Reports Server (NTRS)

    Brown, Denise; Weiler, David; Flanary, Ronald

    2016-01-01

    In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.

  6. Seismic Hazard Analysis on a Complex, Interconnected Fault Network

    NASA Astrophysics Data System (ADS)

    Page, M. T.; Field, E. H.; Milner, K. R.

    2017-12-01

    In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.

  7. Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence

    NASA Astrophysics Data System (ADS)

    Cesca, S.; Zhang, Y.; Mouslopoulou, V.; Wang, R.; Saul, J.; Savage, M.; Heimann, S.; Kufner, S.-K.; Oncken, O.; Dahm, T.

    2017-11-01

    The M7.8 Kaikoura Earthquake that struck the northeastern South Island, New Zealand, on November 14, 2016 (local time), is one of the largest ever instrumentally recorded earthquakes in New Zealand. It occurred at the southern termination of the Hikurangi subduction margin, where the subducting Pacific Plate transitions into the dextral Alpine transform fault. The earthquake produced significant distributed uplift along the north-eastern part of the South Island, reaching a peak amplitude of ∼8 m, which was accompanied by large (≥10 m) horizontal coseismic displacements at the ground surface along discrete active faults. The seismic waveforms' expression of the main shock indicate a complex rupture process. Early automated centroid moment tensor solutions indicated a strong non-double-couple term, which supports a complex rupture involving multiple faults. The hypocentral distribution of aftershocks, which appears diffuse over a broad region, clusters spatially along lineaments with different orientations. A key question of global interest is to shed light on the mechanism with which such a complex rupture occurred, and whether the underlying plate-interface was involved in the rupture. The consequences for seismic hazard of such a distributed, shallow faulting is important to be assessed. We perform a broad seismological analysis, combining regional and teleseismic seismograms, GPS and InSAR, to determine the rupture process of the main shock and moment tensors of 118 aftershocks down to Mw 4.2. The joint interpretation of the main rupture and aftershock sequence allow reconstruction of the geometry, and suggests sequential activation and slip distribution on at least three major active fault domains. We find that the rupture nucleated as a weak strike-slip event along the Humps Fault, which progressively propagated northward onto a shallow reverse fault, where most of the seismic moment was released, before it triggered slip on a second set of strike-slip faults at the northern end of the rupture. The northern and southern strike-slip fault domains have the same orientation but are spatially separated by >15 km. In our model, the low angle splay thrust fault is located above the slab and connects the strike-slip faults kinematically. During the aftershock phase, the entire fault system remained active.

  8. Near Surface Structure of the Frijoles Strand of the San Gregorio Fault, Point Año Nuevo, San Mateo County, California, from Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Catchings, R. D.; Rymer, M. J.; Goldman, M.; Weber, G. E.

    2012-12-01

    The San Gregorio Fault Zone (SGFZ) is one of the major faults of the San Andreas Fault (SAF) system in the San Francisco Bay region of California. The SGFZ is nearly 200 km long, trends subparallel to the SAF, and is located primarily offshore with two exceptions- between Point Año Nuevo and San Gregorio Beach and between Pillar Point and Moss Beach. It has a total width of 2 to 3 km and is comprised of seven known fault strands with Quaternary activity, five of which also demonstrate late Holocene activity. The fault is clearly a potential source of significant earthquakes and has been assigned a maximum likely magnitude of 7.3. To better understand the structure, geometry, and shallow-depth P-wave velocities associated with the SGFZ, we acquired a 585-m-long, high-resolution, combined seismic reflection and refraction profile across the Frijoles strand of the SGFZ at Point Año Nuevo State Park. Both P- and S-wave data were acquired, but here we present only the P-wave data. We used two 60-channel Geometrics RX60 seismographs and 120 40-Hz single-element geophones connected via cable to record Betsy Seisgun seismic sources (shots). Both shots and geophones were approximately co-located and spaced at 5-m intervals along the profile, with the shots offset laterally from the geophones by 1 m. We measured first-arrival refractions from all shots and geophones to develop a seismic refraction tomography velocity model of the upper 70 m. P-wave velocities range from about 600 m/s near the surface to more than 2400 m/s at 70 m depth. We used the refraction tomography image to infer the depth to the top of the groundwater table on the basis of the 1500 m/s velocity contour. The image suggests that the depth, along the profile, to the top of groundwater varies by about 18 m, with greater depth on the west side of the fault. At about 46 m depth, a 60- to 80-m-wide, low-velocity zone, which is consistent with faulting, is observed southwest of the Frijoles strand of the SGFZ. Projection of this low-velocity zone to the surface location of the Frijoles strand suggests a 45° southwest dip on the fault. We also stacked the seismic data to generate a reflection image of the subsurface along the profile. Our seismic reflection image also shows evidence of a southwest-dipping main trace, as well as a second fault located approximately 183 m west of the main Frijoles strand. It appears that there is a component of reverse motion in the upper 200 m. Due to the presence of offset reflectors near the top of the image, we infer that faulting extends to the near surface, but the age of the most recent ruptures cannot be determined without additional paleoseismic investigations. The width and complexity (including reverse motion) of the faults inferred in our seismic images suggests that rupture and strong shaking may occur over a relatively wide area during the next large-magnitude earthquake on the Frijoles strand of the SGFZ.

  9. A fault‐based model for crustal deformation in the western United States based on a combined inversion of GPS and geologic inputs

    USGS Publications Warehouse

    Zeng, Yuehua; Shen, Zheng-Kang

    2017-01-01

    We develop a crustal deformation model to determine fault‐slip rates for the western United States (WUS) using the Zeng and Shen (2014) method that is based on a combined inversion of Global Positioning System (GPS) velocities and geological slip‐rate constraints. The model consists of six blocks with boundaries aligned along major faults in California and the Cascadia subduction zone, which are represented as buried dislocations in the Earth. Faults distributed within blocks have their geometrical structure and locking depths specified by the Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) and the 2008 U.S. Geological Survey National Seismic Hazard Map Project model. Faults slip beneath a predefined locking depth, except for a few segments where shallow creep is allowed. The slip rates are estimated using a least‐squares inversion. The model resolution analysis shows that the resulting model is influenced heavily by geologic input, which fits the UCERF3 geologic bounds on California B faults and ±one‐half of the geologic slip rates for most other WUS faults. The modeled slip rates for the WUS faults are consistent with the observed GPS velocity field. Our fit to these velocities is measured in terms of a normalized chi‐square, which is 6.5. This updated model fits the data better than most other geodetic‐based inversion models. Major discrepancies between well‐resolved GPS inversion rates and geologic‐consensus rates occur along some of the northern California A faults, the Mojave to San Bernardino segments of the San Andreas fault, the western Garlock fault, the southern segment of the Wasatch fault, and other faults. Off‐fault strain‐rate distributions are consistent with regional tectonics, with a total off‐fault moment rate of 7.2×1018">7.2×1018 and 8.5×1018  N·m/year">8.5×1018  N⋅m/year for California and the WUS outside California, respectively.

  10. Development of kink bands in granodiorite: Effect of mechanical heterogeneities, fault geometry, and friction

    NASA Astrophysics Data System (ADS)

    Chheda, T. D.; Nevitt, J. M.; Pollard, D. D.

    2014-12-01

    The formation of monoclinal right-lateral kink bands in Lake Edison granodiorite (central Sierra Nevada, CA) is investigated through field observations and mechanics based numerical modeling. Vertical faults act as weak surfaces within the granodiorite, and vertical granodiorite slabs bounded by closely-spaced faults curve into a kink. Leucocratic dikes are observed in association with kinking. Measurements were made on maps of Hilgard, Waterfall, Trail Fork, Kip Camp (Pollard and Segall, 1983b) and Bear Creek kink bands (Martel, 1998). Outcrop scale geometric parameters such as fault length andspacing, kink angle, and dike width are used to construct a representative geometry to be used in a finite element model. Three orders of fault were classified, length = 1.8, 7.2 and 28.8 m, and spacing = 0.3, 1.2 and 3.6 m, respectively. The model faults are oriented at 25° to the direction of shortening (horizontal most compressive stress), consistent with measurements of wing crack orientations in the field area. The model also includes a vertical leucocratic dike, oriented perpendicular to the faults and with material properties consistent with aplite. Curvature of the deformed faults across the kink band was used to compare the effects of material properties, strain, and fault and dike geometry. Model results indicate that the presence of the dike, which provides a mechanical heterogeneity, is critical to kinking in these rocks. Keeping properties of the model granodiorite constant, curvature increased with decrease in yield strength and Young's modulus of the dike. Curvature increased significantly as yield strength decreased from 95 to 90 MPa, and below this threshold value, limb rotation for the kink band was restricted to the dike. Changing Poisson's ratio had no significant effect. The addition of small faults between bounding faults, decreasing fault spacing or increasing dike width increases the curvature. Increasing friction along the faults decreases slip, so the shortening is accommodated by more kinking. Analysis of these parameters also gives us an insight concerning the kilometer-scale kink band in the Mount Abbot Quadrangle, where the Rosy Finch Shear Zone may provide the mechanical heterogeneity that is necessary to cause kinking.

  11. Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems

    NASA Astrophysics Data System (ADS)

    Matrau, Rémi; Klinger, Yann; Van der Woerd, Jérôme; Liu-Zeng, Jing; Li, Zhanfei; Xu, Xiwei

    2017-04-01

    Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems Matrau Rémi, Klinger Yann, Van der Woerd Jérôme, Liu-Zeng Jing, Li Zhanfei, Xu Xiwei The Haiyuan fault in Gansu Province, China, is a major left-lateral strike-slip fault forming the northeastern boundary of the Tibetan plateau and accommodating part of the deformation from the India-Asia collision. Geomorphic and geodetic studies of the Haiyuan fault show slip rates ranging from 4 mm/yr to 19 mm/yr from east to west along 500 km of the fault. Such discrepancy could be explained by the complex geometry of the fault system, leading to slip distribution on multiple branches. Combining displacement measurements of alluvial terraces from high-resolution Pléiades images and 10Be - 26Al cosmogenic radionuclides (CRN) dating, we bracket the late Quaternary slip rate along the Hasi Shan fault segment (37°00' N, 104°25' E). At our calibration site, terrace riser offsets for 5 terraces ranging from 6 m to 227 m and CRN ages ranging from 6.5±0.6 kyr to 41±4 kyr - yield geological left-lateral slip rates from 2.0 mm/yr to 4.4 mm/yr. We measured consistent terrace riser offset values along the entire 25 km-long segment, which suggests that some external forcing controls the regional river-terrace emplacement, regardless of each specific catchment. Hence, we extend our slip rate determination to the entire Hasi Shan fault segment to be 4.0±1.0 mm/yr since the last 40 kyr. This rate is consistent with other long-term rates of 4 mm/yr to 5 mm/yr east and west of Hasi Shan - as well as geodetic rates of 4 mm/yr to 6 mm/yr west of Hasi Shan. However, Holocene terraces and moraines offsets have suggested higher rates of 15 to 20 mm/yr further west. Such disparate rates may be explained by slip distribution on multiple branches. In particular, the Zhongwei fault splay in the central part of the Haiyuan fault, with a slip rate of 4-5 mm/yr could partly explain the faster rates on the western single stranded Haiyuan fault. In addition we constrained 0.55±0.1 mm/yr of uplift rate along the Hasi Shan, where the fault strike veers southward, indicating slip partitioning. Our slip rate along the Hasi Shan segment is consistent with most of the long-term and short-term slip rates ( 5 mm/yr) measured along the central and eastern parts of the Haiyuan fault. However the discrepancy with other studies to the west highlights the major implication of complex geometries on the slip distribution over large fault systems.

  12. Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Lock, James A.

    1991-01-01

    The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielectric sphere are calculated in the context of the Debye series expansion of the Mie scattering amplitudes. Also, the contributions of geometrical rays are reviewed and compared with the Debye series. Interference effects between surface waves, complex waves, and geometrical waves are calculated, and the possibility of observing these interference effects is discussed. Experimental data supporting the observation of a surface wave-geometrical pattern is presented.

  13. Upper Neogene stratigraphy and tectonics of Death Valley - A review

    USGS Publications Warehouse

    Knott, J.R.; Sarna-Wojcicki, A. M.; Machette, M.N.; Klinger, R.E.

    2005-01-01

    New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe-Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ???3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post -3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone. ?? 2005 Elsevier B.V. All rights reserved.

  14. Climate change and mountain-front morphology: Estimating Late Glacial to Holocene erosion rates from the shape of fault-bounded hillslopes

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; McCoy, S. W.; Whittaker, A. C.; Roberts, G.; Lancaster, S. T.; Phillips, R. J.

    2011-12-01

    The existence of well-preserved Holocene bedrock fault scarps along active normal faults in the Mediterranean region and elsewhere suggests a dramatic reduction in rates of rock weathering and erosion that correlates with the transition from glacial to interglacial climate. We test and quantify this interpretation using a case study in the Italian Central Apennines. Holocene rates are derived from measurements of weathering-pit depth along the Magnola scarp, where previous cosmogenic 36Cl analyses constrain exposure history. To estimate the average hillslope erosion rate over ˜105 years, we introduce a simple geometric model of normal-fault footwall slope evolution. The model predicts that the gradient of a weathering-limited footwall hillslope is set by fault dip angle and by the ratio of slip rate to erosion rate; if either slip or erosion rate is known, the other can be derived. Applying this model to the Magnola fault yields an estimated average weathering rate on the order of 0.2-0.4 mm/yr, more than 10x higher than either the Holocene scarp weathering rate or modern regional limestone weathering rates. A numerical model of footwall growth and erosion, in which erosion rate tracks the oxygen-isotope curve, reproduces the main features of hillslope and scarp morphology and suggests that the hillslope erosion rate has varied by about a factor of 30 over the past one to two glacial cycles. We conclude that preservation of carbonate fault scarps reflects strong climatic control on rock breakdown by frost cracking.

  15. Implementation of a research prototype onboard fault monitoring and diagnosis system

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Abbott, Kathy H.; Schutte, Paul C.; Ricks, Wendell R.

    1987-01-01

    Due to the dynamic and complex nature of in-flight fault monitoring and diagnosis, a research effort was undertaken at NASA Langley Research Center to investigate the application of artificial intelligence techniques for improved situational awareness. Under this research effort, concepts were developed and a software architecture was designed to address the complexities of onboard monitoring and diagnosis. This paper describes the implementation of these concepts in a computer program called FaultFinder. The implementation of the monitoring, diagnosis, and interface functions as separate modules is discussed, as well as the blackboard designed for the communication of these modules. Some related issues concerning the future installation of FaultFinder in an aircraft are also discussed.

  16. Aftershocks of the 2014 South Napa, California, Earthquake: Complex faulting on secondary faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Shelly, David R.

    2016-01-01

    We investigate the aftershock sequence of the 2014 MW6.0 South Napa, California, earthquake. Low-magnitude aftershocks missing from the network catalog are detected by applying a matched-filter approach to continuous seismic data, with the catalog earthquakes serving as the waveform templates. We measure precise differential arrival times between events, which we use for double-difference event relocation in a 3D seismic velocity model. Most aftershocks are deeper than the mainshock slip, and most occur west of the mapped surface rupture. While the mainshock coseismic and postseismic slip appears to have occurred on the near-vertical, strike-slip West Napa fault, many of the aftershocks occur in a complex zone of secondary faulting. Earthquake locations in the main aftershock zone, near the mainshock hypocenter, delineate multiple dipping secondary faults. Composite focal mechanisms indicate strike-slip and oblique-reverse faulting on the secondary features. The secondary faults were moved towards failure by Coulomb stress changes from the mainshock slip. Clusters of aftershocks north and south of the main aftershock zone exhibit vertical strike-slip faulting more consistent with the West Napa Fault. The northern aftershocks correspond to the area of largest mainshock coseismic slip, while the main aftershock zone is adjacent to the fault area that has primarily slipped postseismically. Unlike most creeping faults, the zone of postseismic slip does not appear to contain embedded stick-slip patches that would have produced on-fault aftershocks. The lack of stick-slip patches along this portion of the fault may contribute to the low productivity of the South Napa aftershock sequence.

  17. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive wasmore » emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.« less

  18. Strike-Slip Fault Deformation and Its Control in Hydrocarbon Trapping in Ketaling Area, Jambi Subbasin, Indonesia

    NASA Astrophysics Data System (ADS)

    Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi

    2018-03-01

    Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.

  19. Using the 3D active fault model to estimate the surface deformation, a study on HsinChu area, Taiwan.

    NASA Astrophysics Data System (ADS)

    Lin, Y. K.; Ke, M. C.; Ke, S. S.

    2016-12-01

    An active fault is commonly considered to be active if they have moved one or more times in the last 10,000 years and likely to have another earthquake sometime in the future. The relationship between the fault reactivation and the surface deformation after the Chi-Chi earthquake (M=7.2) in 1999 has been concerned up to now. According to the investigations of well-known disastrous earthquakes in recent years, indicated that surface deformation is controlled by the 3D fault geometric shape. Because the surface deformation may cause dangerous damage to critical infrastructures, buildings, roads, power, water and gas lines etc. Therefore it's very important to make pre-disaster risk assessment via the 3D active fault model to decrease serious economic losses, people injuries and deaths caused by large earthquake. The approaches to build up the 3D active fault model can be categorized as (1) field investigation (2) digitized profile data and (3) build the 3D modeling. In this research, we tracked the location of the fault scarp in the field first, then combined the seismic profiles (had been balanced) and historical earthquake data to build the underground fault plane model by using SKUA-GOCAD program. Finally compared the results come from trishear model (written by Richard W. Allmendinger, 2012) and PFC-3D program (Itasca) and got the calculated range of the deformation area. By analysis of the surface deformation area made from Hsin-Chu Fault, we concluded the result the damage zone is approaching 68 286m, the magnitude is 6.43, the offset is 0.6m. base on that to estimate the population casualties, building damage by the M=6.43 earthquake in Hsin-Chu area, Taiwan. In the future, in order to be applied accurately on earthquake disaster prevention, we need to consider further the groundwater effect and the soil structure interaction inducing by faulting.

  20. Effects of structural heterogeneity on frictional heating from biomarker thermal maturity analysis of the Muddy Mountain thrust, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Coffey, G. L.; Savage, H. M.; Polissar, P. J.; Rowe, C. D.

    2017-12-01

    Faults are generally heterogeneous along-strike, with changes in thickness and structural complexity that should influence coseismic slip. However, observational limitations (e.g. limited outcrop or borehole samples) can obscure this complexity. Here we investigate the heterogeneity of frictional heating determined from biomarker thermal maturity and microstructural observations along a well-exposed fault to understand whether coseismic stress and frictional heating are related to structural complexity. We focus on the Muddy Mountain thrust, Nevada, a Sevier-age structure that has continuous exposure of its fault core and considerable structural variability for up to 50 m, to explore the distribution of earthquake slip and temperature rise along strike. We present new biomarker thermal maturity results that capture the heating history of fault rocks. Biomarkers are organic molecules produced by living organisms and preserved in the rock record. During heating, their structure is altered systematically with increasing time and temperature. Preliminary results show significant variability in thermal maturity along-strike at the Muddy Mountain thrust, suggesting differences in coseismic temperature rise on the meter- scale. Temperatures upwards of 500°C were generated in the principal slip zone at some locations, while in others, no significant temperature rise occurred. These results demonstrate that stress or slip heterogeneity occurred along the Muddy Mountain thrust at the meter-scale and considerable along-strike complexity existed, highlighting the importance of careful interpretation of whole-fault behavior from observations at a single point on a fault.

  1. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, Marion Y.; Bhat, Harsha S.

    2018-05-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  2. Model-Based Diagnostics for Propellant Loading Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Foygel, Michael; Smelyanskiy, Vadim N.

    2011-01-01

    The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are necessary to quickly identify when a fault occurs, so that recovery actions can be taken or an abort procedure can be initiated. Model-based diagnosis solutions, established using an in-depth analysis and understanding of the underlying physical processes, offer the advanced capability to quickly detect and isolate faults, identify their severity, and predict their effects on system performance. We develop a physics-based model of a cryogenic propellant loading system, which describes the complex dynamics of liquid hydrogen filling from a storage tank to an external vehicle tank, as well as the influence of different faults on this process. The model takes into account the main physical processes such as highly nonequilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydrogen and vapor flows inside the system in the presence of helium gas. Since the model incorporates multiple faults in the system, it provides a suitable framework for model-based diagnostics and prognostics algorithms. Using this model, we analyze the effects of faults on the system, derive symbolic fault signatures for the purposes of fault isolation, and perform fault identification using a particle filter approach. We demonstrate the detection, isolation, and identification of a number of faults using simulation-based experiments.

  3. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, M. Y.; Bhat, H. S.

    2017-12-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  4. Fault-tolerant logical gates in quantum error-correcting codes

    NASA Astrophysics Data System (ADS)

    Pastawski, Fernando; Yoshida, Beni

    2015-01-01

    Recently, S. Bravyi and R. König [Phys. Rev. Lett. 110, 170503 (2013), 10.1103/PhysRevLett.110.170503] have shown that there is a trade-off between fault-tolerantly implementable logical gates and geometric locality of stabilizer codes. They consider locality-preserving operations which are implemented by a constant-depth geometrically local circuit and are thus fault tolerant by construction. In particular, they show that, for local stabilizer codes in D spatial dimensions, locality-preserving gates are restricted to a set of unitary gates known as the D th level of the Clifford hierarchy. In this paper, we explore this idea further by providing several extensions and applications of their characterization to qubit stabilizer and subsystem codes. First, we present a no-go theorem for self-correcting quantum memory. Namely, we prove that a three-dimensional stabilizer Hamiltonian with a locality-preserving implementation of a non-Clifford gate cannot have a macroscopic energy barrier. This result implies that non-Clifford gates do not admit such implementations in Haah's cubic code and Michnicki's welded code. Second, we prove that the code distance of a D -dimensional local stabilizer code with a nontrivial locality-preserving m th -level Clifford logical gate is upper bounded by O (LD +1 -m) . For codes with non-Clifford gates (m >2 ), this improves the previous best bound by S. Bravyi and B. Terhal [New. J. Phys. 11, 043029 (2009), 10.1088/1367-2630/11/4/043029]. Topological color codes, introduced by H. Bombin and M. A. Martin-Delgado [Phys. Rev. Lett. 97, 180501 (2006), 10.1103/PhysRevLett.97.180501; Phys. Rev. Lett. 98, 160502 (2007), 10.1103/PhysRevLett.98.160502; Phys. Rev. B 75, 075103 (2007), 10.1103/PhysRevB.75.075103], saturate the bound for m =D . Third, we prove that the qubit erasure threshold for codes with a nontrivial transversal m th -level Clifford logical gate is upper bounded by 1 /m . This implies that no family of fault-tolerant codes with transversal gates in increasing level of the Clifford hierarchy may exist. This result applies to arbitrary stabilizer and subsystem codes and is not restricted to geometrically local codes. Fourth, we extend the result of Bravyi and König to subsystem codes. Unlike stabilizer codes, the so-called union lemma does not apply to subsystem codes. This problem is avoided by assuming the presence of an error threshold in a subsystem code, and a conclusion analogous to that of Bravyi and König is recovered.

  5. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    NASA Astrophysics Data System (ADS)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault, possibly inherited from compressional tectonics. These earthquakes raise serious concerns on our understanding of fault segmentation and seismicity evolution during sequences of normal faulting earthquakes. Finally, the retrieved rupture history has important implications on seismic hazard assessment and on the maximum expected magnitude in a given tectonic area.

  6. Geometric and Algebraic Approaches in the Concept of Complex Numbers

    ERIC Educational Resources Information Center

    Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.

    2006-01-01

    This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…

  7. Rapid modeling of complex multi-fault ruptures with simplistic models from real-time GPS: Perspectives from the 2016 Mw 7.8 Kaikoura earthquake

    NASA Astrophysics Data System (ADS)

    Crowell, B.; Melgar, D.

    2017-12-01

    The 2016 Mw 7.8 Kaikoura earthquake is one of the most complex earthquakes in recent history, rupturing across at least 10 disparate faults with varying faulting styles, and exhibiting intricate surface deformation patterns. The complexity of this event has motivated the need for multidisciplinary geophysical studies to get at the underlying source physics to better inform earthquake hazards models in the future. However, events like Kaikoura beg the question of how well (or how poorly) such earthquakes can be modeled automatically in real-time and still satisfy the general public and emergency managers. To investigate this question, we perform a retrospective real-time GPS analysis of the Kaikoura earthquake with the G-FAST early warning module. We first perform simple point source models of the earthquake using peak ground displacement scaling and a coseismic offset based centroid moment tensor (CMT) inversion. We predict ground motions based on these point sources as well as simple finite faults determined from source scaling studies, and validate against true recordings of peak ground acceleration and velocity. Secondly, we perform a slip inversion based upon the CMT fault orientations and forward model near-field tsunami maximum expected wave heights to compare against available tide gauge records. We find remarkably good agreement between recorded and predicted ground motions when using a simple fault plane, with the majority of disagreement in ground motions being attributable to local site effects, not earthquake source complexity. Similarly, the near-field tsunami maximum amplitude predictions match tide gauge records well. We conclude that even though our models for the Kaikoura earthquake are devoid of rich source complexities, the CMT driven finite fault is a good enough "average" source and provides useful constraints for rapid forecasting of ground motion and near-field tsunami amplitudes.

  8. Disjointness of Stabilizer Codes and Limitations on Fault-Tolerant Logical Gates

    NASA Astrophysics Data System (ADS)

    Jochym-O'Connor, Tomas; Kubica, Aleksander; Yoder, Theodore J.

    2018-04-01

    Stabilizer codes are among the most successful quantum error-correcting codes, yet they have important limitations on their ability to fault tolerantly compute. Here, we introduce a new quantity, the disjointness of the stabilizer code, which, roughly speaking, is the number of mostly nonoverlapping representations of any given nontrivial logical Pauli operator. The notion of disjointness proves useful in limiting transversal gates on any error-detecting stabilizer code to a finite level of the Clifford hierarchy. For code families, we can similarly restrict logical operators implemented by constant-depth circuits. For instance, we show that it is impossible, with a constant-depth but possibly geometrically nonlocal circuit, to implement a logical non-Clifford gate on the standard two-dimensional surface code.

  9. Fault trees and sequence dependencies

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta; Boyd, Mark A.; Bavuso, Salvatore J.

    1990-01-01

    One of the frequently cited shortcomings of fault-tree models, their inability to model so-called sequence dependencies, is discussed. Several sources of such sequence dependencies are discussed, and new fault-tree gates to capture this behavior are defined. These complex behaviors can be included in present fault-tree models because they utilize a Markov solution. The utility of the new gates is demonstrated by presenting several models of the fault-tolerant parallel processor, which include both hot and cold spares.

  10. Physical fault tolerance of nanoelectronics.

    PubMed

    Szkopek, Thomas; Roychowdhury, Vwani P; Antoniadis, Dimitri A; Damoulakis, John N

    2011-04-29

    The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.

  11. Progressive deformation of the Chugach accretionary complex, Alaska, during a paleogene ridge-trench encounter

    USGS Publications Warehouse

    Kusky, Timothy M.

    1997-01-01

    The Mesozoic accretionary wedge of south-central Alaska is cut by an array of faults including dextral and sinistral strike-slip faults, synthetic and antithetic thrust faults, and synthetic and antithetic normal faults. The three fault sets are characterized by quartz ± calcite ± chlorite ± prehnite slickensides, and are all relatively late, i.e. all truncate ductile fabrics of the host rocks. Cross-cutting relationships suggest that the thrust fault sets predate the late normal and strike-slip fault sets. Together, the normal and strike-slip fault system exhibits orthorhombic symmetry. Thrust faulting shortened the wedge subhorizontally perpendicular to strike, and then normal and strike-slip faulting extended the wedge oblique to orogenic strike. Strongly curved slickenlines on some faults of each set reveal that displacement directions changed over time. On dip-slip faults (thrust and normal), slickenlines tend to become steeper with younger increments of slip, whereas on strike-slip faults, slickenlines become shallower with younger strain increments. These patterns may result from progressive exhumation of the accretionary wedge while the faults were active, with the curvature of the slickenlines tracking the change from a non-Andersonian stress field at depth to a more Andersonian system (σ1 or σ2 nearly vertical) at shallower crustal levels.We interpret this complex fault array as a progressive deformation that is one response to Paleocene-Eocene subduction of the Kula-Farallon spreading center beneath the accretionary complex because: (1) on the Kenai Peninsula, ENE-striking dextral faults of this array exhibit mutually cross-cutting relationships with Paleocene-Eocene dikes related to ridge subduction; and (2) mineralized strike-slip and normal faults of the orthorhombic system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Both features are diachronous along-strike, having formed at circa 65 Ma in the west and 50 Ma in the east. Exhumation of deeper levels of the southern Alaska accretionary wedge and formation of this late fault array is interpreted as a critical taper adjustment to subduction of progressively younger oceanic lithosphere yielding a shallower basal de´collement dip as the Kula-Farallon ridge approached the accretionary prism. The late structures also record different kinematic regimes associated with subduction of different oceanic plates, before and after ridge subduction. Prior to triple junction passage, subduction of the Farallon plate occurred at nearly right angles to the trench axis, whereas after triple junction migration, subduction of the Kula plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. The changes in kinematics are apparent in the sequence of late structures from: (1) thrusting; (2) near-trench plutonism associated with normal + strike-slip faulting; (3) very late gouge-filled dextral faults.

  12. Influence of low-angle normal faulting on radial fracture pattern associated to pluton emplacement in Tuscany, Italy

    NASA Astrophysics Data System (ADS)

    Balsamo, F.; Rossetti, F.; Salvini, F.

    2003-04-01

    Fault-related fracture distribution significantly influences fluid flow in the sub-surface. Fault zone can act either as barriers or conduits to fluid migration, or as mixed conduit/barrier systems, depending on several factors that include the enviromental condition of deformation (pore fluid pressure, regional stress fields, overburden etc.), the kinematics of the fault and its geometry, and the rock type. The aim of this study is to estimate the boundary conditions of deformation along the Boccheggiano Fault, in the central Appennines. Seismic and deep well data are avaible for the Boccheggiano area, where a fossil geothermal system is exposed. The dominant structural feature of the studied area is a NW-SE trending low-angle detachment fault (Boccheggiano fault, active since the upper Miocene times), separating non-metamorphic sedimentary sequences of the Tuscan meso-cenozoic pelagiac succession and oceanic-derived Ligurids in the hangingwall, from green-schists facies metamorphic rocks of Paleozoic age in the footwall. Gouge-bearing mineralized damage zone (about 100 m thick) is present along the fault. The deep geometry of the Boccheggiano Fault is well imaged in the seismic profiles. The fault is shallow-dipping toward NE and flattens at the top of a magmatic intrusion, which lies at about 1000 m below the ground-level. Geometrical relationships indicate syn-tectonic pluton emplacement at the footwall of the Boccheggiano fault. Statistical analysis of fracture distribution pointed out a strong control of both azimuth and frequency by their position with respect to the Boccheggiano Fault: (i) a NW-SE trending fracture set within the fault zone, (ii) a radial pattern associated away from fault zone. Interpretation of structural and seismic data suggest an interplay between the near-field deformation associated with the rising intrusion during its emplacement (radial fracturing) and the NE-SW far-field extensional tectonic regime (NW-SE fractures) recognized in the area, responsible for the fault development. The 3-D geometry of the Boccheggiano Fault was simulated in a numerical tool specifically designed to model the 3-D distribution of fractures (joints and solution surfaces) along fault. Comparison between the actual fracture distribution and the predicted ones at different boundary conditions allowed to estimate the resulting stress field (both far field and near field) and the pore fluid pressure acting during fault motion and co-eval pluton emplacement. Numerical modelling predictions indicate transfer segments along the main fault as more permeable sectors. This justify the location intense mineralisation zones and abandoned mines.

  13. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk

    NASA Astrophysics Data System (ADS)

    Bourne, S. J.; Oates, S. J.; van Elk, J.

    2018-06-01

    Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.

  14. Extreme Threshold Failures Within a Heterogeneous Elastic Thin Sheet and the Spatial-Temporal Development of Induced Seismicity Within the Groningen Gas Field

    NASA Astrophysics Data System (ADS)

    Bourne, S. J.; Oates, S. J.

    2017-12-01

    Measurements of the strains and earthquakes induced by fluid extraction from a subsurface reservoir reveal a transient, exponential-like increase in seismicity relative to the volume of fluids extracted. If the frictional strength of these reactivating faults is heterogeneously and randomly distributed, then progressive failures of the weakest fault patches account in a general manner for this initial exponential-like trend. Allowing for the observable elastic and geometric heterogeneity of the reservoir, the spatiotemporal evolution of induced seismicity over 5 years is predictable without significant bias using a statistical physics model of poroelastic reservoir deformations inducing extreme threshold frictional failures of previously inactive faults. This model is used to forecast the temporal and spatial probability density of earthquakes within the Groningen natural gas reservoir, conditional on future gas production plans. Probabilistic seismic hazard and risk assessments based on these forecasts inform the current gas production policy and building strengthening plans.

  15. Delineation of faulting and basin geometry along a seismic reflection transect in urbanized San Bernardino Valley, California

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.K.; Williams, R.A.; Anderson, M.L.

    2002-01-01

    Fourteen kilometers of continuous, shallow seismic reflection data acquired through the urbanized San Bernardino Valley, California, have revealed numerous faults between the San Jacinto and San Andreas faults as well as a complex pattern of downdropped and uplifted blocks. These data also indicate that the Loma Linda fault continues northeastward at least 4.5 km beyond its last mapped location on the southern edge of the valley and to within at least 2 km of downtown San Bernardino. Previously undetected faults within the valley northeast of the San Jacinto fault are also imaged, including the inferred western extension of the Banning fault and several unnamed faults. The Rialto-Colton fault is interpreted southwest of the San Jacinto fault. The seismic data image the top of the crystalline basement complex across 70% of the profile length and show that the basement has an overall dip of roughly 10?? southwest between Perris Hill and the San Jacinto fault. Gravity and aeromagnetic data corroborate the interpreted location of the San Jacinto fault and better constrain the basin depth along the seismic profile to be as deep as 1.7 km. These data also corroborate other fault locations and the general dip of the basement surface. At least 1.2 km of apparent vertical displacement on the basement is observed across the San Jacinto fault at the profile location. The basin geometry delineated by these data was used to generate modeled ground motions that show peak horizontal amplifications of 2-3.5 above bedrock response in the 0.05- to 1.0-Hz frequency band, which is consistent with recorded earthquake data in the valley.

  16. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  17. Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G.; Abera, R.

    2017-11-01

    We present a model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal elastic models of deformation, field observations, and fault theory, and is generally applicable to basin-scale features, but predicts some intra-basin structural features. Geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step-over, which results from the forming phase of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement, and the fault tips propagate beyond the rift basin, increasing the distance between the fault tips and pull-apart basin center. Because uplift is concentrated near the fault tips, the sediment source areas may rejuvenate and migrate over time. Rift flank uplift results from compression along the flank of the basin. With increasing strike-slip movement the basins deepen and lengthen. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because basin-bounding strike-slip systems tend to straighten and connect as they evolve. The models show that larger length-to-width ratios with overlapping faults are least likely to form basin-crossing faults, and pull-apart basins with this geometry are thus most likely to progress to continental rupture. In the Gulf of California, larger length-to-width ratios are found in the southern Gulf, which is the region where continental breakup occurred rapidly. The initial geometry in the northern Gulf of California and Salton Trough at 6 Ma may have been one of widely-spaced master strike-slip faults (lower length-to-width ratios), which our models suggest inhibits continental breakup and favors straightening of the strike-slip system by formation of basin-crossing faults within the step-over, as began 1.2 Ma when the San Jacinto and Elsinore - Cerro Prieto fault systems formed.

  18. Complex permeability structure of a fault zone crosscutting a sequence of sandstones and shales and its influence on hydraulic head distribution

    NASA Astrophysics Data System (ADS)

    Cilona, A.; Aydin, A.; Hazelton, G.

    2013-12-01

    Characterization of the structural architecture of a 5 km-long, N40°E-striking fault zone provides new insights for the interpretation of hydraulic heads measured across and along the fault. Of interest is the contaminant transport across a portion of the Upper Cretaceous Chatsworth Formation, a 1400 m-thick turbidite sequence of sandstones and shales exposed in the Simi Hills, south California. Local bedding consistently dips about 20° to 30° to NW. Participating hydrogeologists monitor the local groundwater system by means of numerous boreholes used to define the 3D distribution of the groundwater table around the fault. Sixty hydraulic head measurements consistently show differences of 10s of meters, except for a small area. In this presentation, we propose a link between this distribution and the fault zone architecture. Despite an apparent linear morphological trend, the fault is made up of at least three distinct segments named here as northern, central and southern segments. Key aspects of the fault zone architecture have been delineated at two sites. The first is an outcrop of the central segment and the second is a borehole intersecting the northern segment at depth. The first site shows the fault zone juxtaposing sandstones against shales. Here the fault zone consists of a 13 meter-wide fault rock including a highly deformed sliver of sandstone on the northwestern side. In the sandstone, shear offset was resolved along N42°E striking and SE dipping fracture surfaces localized within a 40 cm thick strand. Here the central core of the fault zone is 8 m-wide and contains mostly shale characterized by highly diffuse deformation. It shows a complex texture overprinted by N30°E-striking carbonate veins. At the southeastern edge of the fault zone exposure, a shale unit dipping 50° NW towards the fault zone provides the key information that the shale unit was incorporated into the fault zone in a manner consistent with shale smearing. At the second site, a borehole more than 194 meter-long intersects the fault zone at its bottom. Based on an optical televiewer image supplemented by limited recovered rock cores, a juxtaposition plane (dipping 75° SE) between a fractured sandstone and a highly-deformed shale fault rock has been interpreted as the southeastern boundary of the fault zone. The shale fault rock estimated to be thicker than 4 meters is highly folded and brecciated with locally complex cataclastic texture. The observations and interpretations of the fault architecture presented above suggest that the drop of hydraulic head detected across the fault segments is due primarily to the low-permeability shaly fault rock incorporated into the fault zone by a shale smearing mechanism. Interestingly, at around the step between the northern and the central fault segments, where the fault offset is expected to diminish (no hard link and no significant shaly fault rock), the groundwater levels measured on either sides of the fault zone are more-or-less equal.

  19. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet

    NASA Astrophysics Data System (ADS)

    Zuza, Andrew V.; Yin, An

    2016-05-01

    Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~< 10% of the maximum slip) at their terminations. The along-strike variation of fault offsets and pervasive off-fault deformation create a strain pattern that departs from the expectations of the classic plate-like rigid-body motion and flow-like distributed deformation end-member models for continental tectonics. Here we propose a non-rigid bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east-west direction. Thus, any single north-south cross section and its kinematic reconstruction through the region do not properly quantify the complex deformational processes of plateau formation.

  20. Dynamic Rupture and Energy Partition in Models of Earthquake Faults

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Needleman, A.; Ben-Zion, Y.

    2006-12-01

    We study properties of dynamic rupture and the partition of energy between radiation and dissipative mechanisms using 2D finite element calculations. The goal is to improve the understanding of these processes on faults at different evolutionary stages associated with different levels of geometrical complexity and possible presence of contrasting elastic properties across the fault. The initial calculations employ homogeneous media and a planar internal interface governed by a general rate- and state-dependent friction law that accounts for the gradual response of shear stress to abrupt changes of normal stress. Ruptures are initiated by gradually increasing the shear traction in a limited nucleation zone near the origin. By changing the rate dependency of the friction law and the size of the nucleation zone, we obtain four rupture modes: (i) supershear crack-like rupture; (ii) subshear crack-like rupture; (iii) subshear single pulse; and (iv) supershear train of pulses. Increasing the initial shear stress produces a transition from a subshear crack to a supershear crack, while increasing the rate dependency of the friction produces self-healing and the transition from a crack-like to a pulse mode of rupture. Properties of the nucleation process can strongly affect the rupture mode. In the cases examined, the total release of strain energy (over the same propagation distance) decreases following the order: supershear crack, subshear crack, train of pulses and single pulse. The ratio of the radiated kinetic energy to the energy dissipated in friction is about 5% for the supershear crack case and about 2% for the other three cases. Future work will involve similar calculations accounting for the generation of plastic strain in the bulk, the material contrast across the fault, and the addition of cohesive surfaces in the bulk to allow for the generation of new surfaces. The study may provide fundamental information on rupture processes in geologically-relevant circumstances and improve the understanding of physical limits on extreme ground motion. The results may be used to check assumptions made in observational works and may help to guide new observational research.

  1. 3D seismic attribute expressions of deep offshore Niger Delta

    NASA Astrophysics Data System (ADS)

    Anyiam, Uzonna Okenna

    Structural and stratigraphic interpretation of 3D seismic data for reservoir characterization in an area affected by dense faulting, such as the Niger Delta, is typically difficult and strongly model driven because of problems with imaging. In the Freeman field, located about 120km offshore southwestern Niger Delta at about 1300m water depth, 3D seismic attribute-based analogs, and structural and stratigraphic based geometric models are combined to help enhance and constrain the interpretation. The objectives being to show how 3D seismic attribute analysis enhances seismic interpretation, develop structural style and stratigraphic architecture models and identify trap mechanisms in the study area; with the main purpose of producing structural and stratigraphic framework analogs to aid exploration and production companies, as well as researchers in better understanding the structural style, stratigraphic framework and trap mechanism of the Miocene to Pliocene Agbada Formation reservoirs in the deep Offshore Niger Delta Basin. A multidisciplinary approach which involved analyses of calculated variance-based coherence cube, spectral decomposition box probe and root-mean-square amplitude attributes, sequence stratigraphy based well correlation, and structural modeling; were undertaken to achieve these objectives. Studies reveal a massive northwest-southeast trending shale cored detachment fold anticline, with associated normal faults; interpreted to have been folded and faulted by localized compression resulting from a combination of differential loading on the deep-seated overpressured-ductile-undercompacted-marine Akata shale, and gravitational collapse of the Niger delta continental slope due to influx of sediments. Crestal extension resulting from this localized compression, is believed to have given rise to the synthetic, antithetic and newly observed crossing conjugate normal faults in the study area. This structure is unique to the existing types of principal oil field structures in the Niger Delta. Stratigraphic results show that the Mid-Miocene to Pliocene Agbada Formation reservoirs of the Freeman field occur as part of a channelized fan system; mostly deposited as turbidites in an unconfined distributary environment; except one that occurs as channel sand within a submarine canyon that came across and eroded previously deposited distributary fan complex, at the time. Hence, prospective area for hydrocarbon exploration is suggested southwest of the Freeman field.

  2. Single Event Analysis and Fault Injection Techniques Targeting Complex Designs Implemented in Xilinx-Virtex Family Field Programmable Gate Array (FPGA) Devices

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth; Kim, Hak

    2014-01-01

    An informative session regarding SRAM FPGA basics. Presenting a framework for fault injection techniques applied to Xilinx Field Programmable Gate Arrays (FPGAs). Introduce an overlooked time component that illustrates fault injection is impractical for most real designs as a stand-alone characterization tool. Demonstrate procedures that benefit from fault injection error analysis.

  3. Complex Ordered Patterns in Mechanical Instability Induced Geometrically Frustrated Triangular Cellular Structures

    NASA Astrophysics Data System (ADS)

    Kang, Sung Hoon; Shan, Sicong; Košmrlj, Andrej; Noorduin, Wim L.; Shian, Samuel; Weaver, James C.; Clarke, David R.; Bertoldi, Katia

    2014-03-01

    Geometrical frustration arises when a local order cannot propagate throughout the space because of geometrical constraints. This phenomenon plays a major role in many systems leading to disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that buckling induces complex ordered patterns which can be tuned by controlling the porosity of the structures. Our analysis reveals that the connected geometry of the cellular structure plays a crucial role in the generation of ordered states in this frustrated system.

  4. Magnetic properties of cores from the Wenchuan Earthquake Fault Scientific Drilling Hole-2 (WFSD-2), China

    NASA Astrophysics Data System (ADS)

    Zhang, L., Jr.; Sun, Z.; Li, H.; Cao, Y.; Ye, X.; Wang, L.; Zhao, Y.; Han, S.

    2015-12-01

    During an earthquake, seismic slip and frictional heating may cause the physical and chemical alterations of magnetic minerals within the fault zone. Rock magnetism provides a method for understanding earthquake dynamics. The Wenchuan earthquake Fault Scientific Drilling Project (WFSD) started right after 2008 Mw7.9 Wenchuan earthquake, to investigate the earthquake faulting mechanism. Hole 2 (WFSD-2) is located in the Pengguan Complex in the Bajiaomiao village (Dujiangyan, Sichuan), and reached the Yingxiu-Beichuan fault (YBF). We measured the surface magnetic susceptibility of the cores in WFSD-2 from 500 m to 1530 m with an interval of 1 cm. Rocks at 500-599.31 m-depth and 1211.49-1530 m-depth are from the Neoproterozoic Pengguang Complex while the section from 599.31 m to 1211.49 m is composed of Late Triassic sediments. The magnetic susceptibility values of the first part of the Pengguan Complex range from 1 to 25 × 10-6 SI, while the second part ranges from 10 to 200 × 10-6 SI, which indicate that the two parts are not from the same rock units. The Late Triassic sedimentary rocks have a low magnetic susceptibility values, ranging from -5 to 20 × 10-6 SI. Most fault zones coincide with the high value of magnetic susceptibility in the WFSD-2 cores. Fault rocks, mainly fault breccia, cataclasite, gouge and pseudotachylite within the WFSD-2 cores, and mostly display a significantly higher magnetic susceptibility than host rocks (5:1 to 20:1). In particular, in the YBF zone of the WFSD-2 cores (from 600 to 960 m), dozens of stages with high values of magnetic susceptibility have been observed. The multi-layered fault rocks with high magnetic susceptibility values might indicate that the YBF is a long-term active fault. The magnetic susceptibility values change with different types of fault rocks. The gouge and pseudotachylite have higher values of magnetic susceptibility than other fault rocks. Other primary rock magnetism analyses were then performed to investigate the mechanisms. We consider that the principal mechanism for the high magnetic susceptibility of these fault rocks is most likely the production of new magnetite from iron-bearing paramagnetic minerals (such as silicates or clays). These new magnetites might originate from frictional heating on a seismic fault slip plane or seismic fluid during an earthquake.

  5. New High-Resolution 3D Imagery of Fault Deformation and Segmentation of the San Onofre and San Mateo Trends in the Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.; Bormann, J. M.; Harding, A. J.

    2015-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC fault system Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC fault complex are the San Mateo and San Onofre fault trends along the continental slope. Previous work concluded that these were part of a strike-slip system that eventually merged with the NIRC complex. Others have interpreted these trends as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D P-Cable seismic surveys (3.125 m bin resolution) of the San Mateo and San Onofre trends as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on the new 3D sparker seismic data, our preferred interpretation for the San Mateo and San Onofre fault trends is they are transpressional features associated with westward jogs along right lateral fault strands splaying off the NIRC fault. Such a scenario also is consistent with observations from the 3D boomer volume along the shelf and upper slope that images westward stepping faults splaying off the NIRC system.

  6. Geomorphic Evidence of a Complex late-Cenozoic Uplift and Lateral Displacement History Along the 2013 M7.7 Baluchistan, Pakistan Strike-slip Rupture

    NASA Astrophysics Data System (ADS)

    Harbor, D. J.; Barnhart, W. D.

    2017-12-01

    The 2013 M7.7 Baluchistan earthquake in southern Pakistan ruptured 200 km of the north-dipping Hoshab reverse fault with dominantly lateral motion, clearly at odds with the regional topography created by previous reverse fault offsets. The kinematics of this earthquake led to the hypotheses that the Hoshab fault may alternatively slip in a reverse and lateral sense (bi-modal slip), and that the southeast Makran rotates as a uniform block around the fault (ball-and-socket rotation). Here, we use river profiles, regional relief, fault locations, and detailed geomorphic maps derived from optical imagery and DEMs to evaluate the recent uplift history of this region. We find that late Cenozoic fault zone geomorphology supports a spatially complex transition from lateral-dominated offsets in the NE to reverse-dominated offsets in the SW. Additionally, fault zone geomorphology suggests that the location of the Hoshab fault itself may change through time, leading to active incision of footwall alluvial fans and pediments. Stream profiles likewise record incision patterns that vary along the Hoshab fault. Incision and deposition in the SW are illustrative of relative footwall subsidence, consistent with recent uplift on the Hoshab fault; whereas incision and deposition in the NE are illustrative of relative footwall uplift consistent with ongoing regional uplift due to ball-and-socket rotations and dominantly lateral offsets along the northern Hoshab fault. The largest streams also record multiple, discrete, base-level drops, including the presence of convex-up river profiles in the hanging wall of the Hoshab fault. These profiles along hanging wall streams highlight a complex spatial and temporal history of reverse offset, lateral channel offset, and base-level resetting in regional streams that are altogether inconsistent with the kinematics of the 2013 earthquake alone, but that are consistent with the bi-modal slip model. Additionally, the evidence of footwall uplift in the NE is consistent with regional uplift due to ball-and-socket rotations superimposed on the Hoshab fault. These results indicate that the styles of fault slip in the Makran change in time and space in response to ongoing convergence and block rotations despite negligible uplift during the 2013 earthquake.

  7. Geometric Representations of Condition Queries on Three-Dimensional Vector Fields

    NASA Technical Reports Server (NTRS)

    Henze, Chris

    1999-01-01

    Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.

  8. Modelling Fault Zone Evolution: Implications for fluid flow.

    NASA Astrophysics Data System (ADS)

    Moir, H.; Lunn, R. J.; Shipton, Z. K.

    2009-04-01

    Flow simulation models are of major interest to many industries including hydrocarbon, nuclear waste, sequestering of carbon dioxide and mining. One of the major uncertainties in these models is in predicting the permeability of faults, principally in the detailed structure of the fault zone. Studying the detailed structure of a fault zone is difficult because of the inaccessible nature of sub-surface faults and also because of their highly complex nature; fault zones show a high degree of spatial and temporal heterogeneity i.e. the properties of the fault change as you move along the fault, they also change with time. It is well understood that faults influence fluid flow characteristics. They may act as a conduit or a barrier or even as both by blocking flow across the fault while promoting flow along it. Controls on fault hydraulic properties include cementation, stress field orientation, fault zone components and fault zone geometry. Within brittle rocks, such as granite, fracture networks are limited but provide the dominant pathway for flow within this rock type. Research at the EU's Soultz-sous-Forệt Hot Dry Rock test site [Evans et al., 2005] showed that 95% of flow into the borehole was associated with a single fault zone at 3490m depth, and that 10 open fractures account for the majority of flow within the zone. These data underline the critical role of faults in deep flow systems and the importance of achieving a predictive understanding of fault hydraulic properties. To improve estimates of fault zone permeability, it is important to understand the underlying hydro-mechanical processes of fault zone formation. In this research, we explore the spatial and temporal evolution of fault zones in brittle rock through development and application of a 2D hydro-mechanical finite element model, MOPEDZ. The authors have previously presented numerical simulations of the development of fault linkage structures from two or three pre-existing joints, the results of which compare well to features observed in mapped exposures. For these simple simulations from a small number of pre-existing joints the fault zone evolves in a predictable way: fault linkage is governed by three key factors: Stress ratio of s1 (maximum compressive stress) to s3(minimum compressive stress), original geometry of the pre-existing structures (contractional vs. dilational geometries) and the orientation of the principle stress direction (σ1) to the pre-existing structures. In this paper we present numerical simulations of the temporal and spatial evolution of fault linkage structures from many pre-existing joints. The initial location, size and orientations of these joints are based on field observations of cooling joints in granite from the Sierra Nevada. We show that the constantly evolving geometry and local stress field perturbations contribute significantly to fault zone evolution. The location and orientations of linkage structures previously predicted by the simple simulations are consistent with the predicted geometries in the more complex fault zones, however, the exact location at which individual structures form is not easily predicted. Markedly different fault zone geometries are predicted when the pre-existing joints are rotated with respect to the maximum compressive stress. In particular, fault surfaces range from evolving smooth linear structures to producing complex ‘stepped' fault zone geometries. These geometries have a significant effect on simulations of along and across-fault flow.

  9. Methods of treating complex space vehicle geometry for charged particle radiation transport

    NASA Technical Reports Server (NTRS)

    Hill, C. W.

    1973-01-01

    Current methods of treating complex geometry models for space radiation transport calculations are reviewed. The geometric techniques used in three computer codes are outlined. Evaluations of geometric capability and speed are provided for these codes. Although no code development work is included several suggestions for significantly improving complex geometry codes are offered.

  10. Complex faulting in the Quetta Syntaxis: fault source modeling of the October 28, 2008 earthquake sequence in Baluchistan, Pakistan, based on ALOS/PALSAR InSAR data

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Furuya, Masato

    2015-09-01

    The Quetta Syntaxis in western Baluchistan, Pakistan, is the result of an oroclinal bend of the western mountain belt and serves as a junction for different faults. As this area also lies close to the left-lateral strike-slip Chaman fault, which marks the boundary between the Indian and Eurasian plates, the resulting seismological behavior of this regime is very complex. In the region of the Quetta Syntaxis, close to the fold and thrust belt of the Sulaiman and Kirthar Ranges, an earthquake with a magnitude of 6.4 (Mw) occurred on October 28, 2008, which was followed by a doublet on the very next day. Six more shocks associated with these major events then occurred (one foreshock and five aftershocks), with moment magnitudes greater than 4. Numerous researchers have tried to explain the source of this sequence based on seismological, GPS, and Environmental Satellite (ENVISAT)/Advanced Synthetic Aperture Radar (ASAR) data. Here, we used Advanced Land Observing Satellite (ALOS)/Phased Array-type L-band Synthetic Aperture Radar (PALSAR) InSAR data sets from both ascending and descending orbits that allow us to more completely detect the deformation signals around the epicentral region. The results indicated that the shock sequence can be explained by two right-lateral and two left-lateral strike-slip faults that also included reverse slip. The right-lateral faults have a curved geometry. Moreover, whereas previous studies have explained the aftershock crustal deformation with a different fault source, we found that the same left-lateral segment of the conjugate fault was responsible for the aftershocks. We thus confirmed the complex surface deformation signals from the moderate-sized earthquake. Intra-plate crustal bending and shortening often seem to be accommodated as conjugate faulting, without any single preferred fault orientation. We also detected two possible landslide areas along with the crustal deformation pattern.

  11. A Discrete Element Modeling Approach to Exploring the Transition Between Fault-related Folding Styles

    NASA Astrophysics Data System (ADS)

    Hughes, A. N.; Benesh, N. P.; Alt, R. C., II; Shaw, J. H.

    2011-12-01

    Contractional fault-related folds form as stratigraphic layers of rock are deformed due to displacement on an underlying fault. Specifically, fault-bend folds form as rock strata are displaced over non-planar faults, and fault-propagation folds form at the tips of faults as they propagate upward through sedimentary layers. Both types of structures are commonly observed in fold and thrust belts and passive margin settings throughout the world. Fault-bend and fault-propagation folds are often seen in close proximity to each other, and kinematic analysis of some fault-related folds suggests that they have undergone a transition in structural style from fault-bend to fault-propagation folding during their deformational history. Because of the similarity in conditions in which both fault-bend and fault-propagation folds are found, the circumstances that promote the formation of one of these structural styles over the other is not immediately evident. In an effort to better understand this issue, we have investigated the role of mechanical and geometric factors in the transition between fault-bend folding and fault-propagation folding using a series of models developed with the discrete element method (DEM). The DEM models employ an aggregate of circular, frictional disks that incorporate bonding at particle contacts to represent the numerical stratigraphy. A vertical wall moving at a fixed velocity drives displacement of the hanging-wall section along a pre-defined fault ramp and detachment. We utilize this setup to study the transition between fault-bend and fault-propagation folding by varying mechanical strength, stratigraphic layering, fault geometries, and boundary conditions of the model. In most circumstances, displacement of the hanging-wall leads to the development of an emergent fold as the hanging-wall material passes across the fault bend. However, in other cases, an emergent fault propagates upward through the sedimentary section, associated with the development of a steep, narrow front-limb, characteristic of fault-propagation folding. We find that the boundary conditions imposed on the far wall of the model have the strongest influence on structural style, but that other factors, such as fault dip and mechanical strengths, play secondary roles. By testing a range of values for each of the parameters, we are able to identify the range of values under which the transition occurs. Additionally, we find that the transition between fault-bend and fault-propagation folding is gradual, with structures in the transitional regime showing evidence of each structural style during a portion of their history. The primary role that boundary conditions play in determining fault-related folding style implies that the growth of natural structures may be affected by the emergence of adjacent structures, or in distal variations in detachment strengths. We explore these relationships using natural examples from various fold-and-thrust belts.

  12. Impact of fault models on probabilistic seismic hazard assessment: the example of the West Corinth rift.

    NASA Astrophysics Data System (ADS)

    Chartier, Thomas; Scotti, Oona; Boiselet, Aurelien; Lyon-Caen, Hélène

    2016-04-01

    Including faults in probabilistic seismic hazard assessment tends to increase the degree of uncertainty in the results due to the intrinsically uncertain nature of the fault data. This is especially the case in the low to moderate seismicity regions of Europe, where slow slipping faults are difficult to characterize. In order to better understand the key parameters that control the uncertainty in the fault-related hazard computations, we propose to build an analytic tool that provides a clear link between the different components of the fault-related hazard computations and their impact on the results. This will allow identifying the important parameters that need to be better constrained in order to reduce the resulting uncertainty in hazard and also provide a more hazard-oriented strategy for collecting relevant fault parameters in the field. The tool will be illustrated through the example of the West Corinth rifts fault-models. Recent work performed in the gulf has shown the complexity of the normal faulting system that is accommodating the extensional deformation of the rift. A logic-tree approach is proposed to account for this complexity and the multiplicity of scientifically defendable interpretations. At the nodes of the logic tree, different options that could be considered at each step of the fault-related seismic hazard will be considered. The first nodes represent the uncertainty in the geometries of the faults and their slip rates, which can derive from different data and methodologies. The subsequent node explores, for a given geometry/slip rate of faults, different earthquake rupture scenarios that may occur in the complex network of faults. The idea is to allow the possibility of several faults segments to break together in a single rupture scenario. To build these multiple-fault-segment scenarios, two approaches are considered: one based on simple rules (i.e. minimum distance between faults) and a second one that relies on physically-based simulations. The following nodes represents for each rupture scenario different rupture forecast models (i.e; characteristic or Gutenberg-Richter) and for a given rupture forecast, two probability models commonly used in seismic hazard assessment: poissonian or time-dependent. The final node represents an exhaustive set of ground motion prediction equations chosen in order to be compatible with the region. Finally, the expected probability of exceeding a given ground motion level is computed at each sites. Results will be discussed for a few specific localities of the West Corinth Gulf.

  13. Complex surface rupturing and related formation mechanisms in the Xiaoyudong area for the 2008 Mw 7.9 Wenchuan Earthquake, China

    NASA Astrophysics Data System (ADS)

    Tan, Xi-bin; Yuan, Ren-mao; Xu, Xi-wei; Chen, Gui-hua; Klinger, Yann; Chang, Chung-Pai; Ren, Jun-jie; Xu, Chong; Li, Kang

    2012-09-01

    The large oblique reverse slip shock of the 2008 Mw = 7.9 Wenchuan earthquake, China, produced one of the longest and most complicated surface ruptures ever known. The complexity is particularly evident in the Xiaoyudong area, where three special phenomena occurred: the 7 km long Xiaoyudong rupture perpendicular to the Beichuan-Yingxiu fault; the occurrence of two parallel faults rupturing simultaneously, and apparent discontinuity of the Beichuan-Yingxiu rupture. This paper systematically documents these co-seismic rupture phenomena for the Xiaoyudong area. The discussion and results are based on field investigations and analyses of faulting mechanisms and prevalent stress conditions. The results show that the Beichuan-Yingxiu fault formed a 3.5 km wide restraining stepover at the Xiaoyudong area. The Xiaoyudong fault is not a tear fault suggested by previous researches, but a frontal reverse fault induced by the oblique compression at this stepover; it well accommodates the 'deformation gap' of the Beichuan-Yingxiu fault in the Xiaoyudong area. Further, stress along the Peng-Guan fault plane doubles due to a change in dip angle of the Beichuan-Yingxiu fault across the Xiaoyudong restraining stepover. This resulted in two faults rupturing the ground's surface simultaneously, to the north of the Xiaoyudong area. These results are helpful in deepening our understanding of the dynamic processes that produced surface ruptures during the Wenchuan earthquake. Furthermore, the results suggest more attention be focused on the influence of dextral slip component, the change of the control fault's attitude, and property differences in rocks on either side of faults when discussing the formation mechanism of surface ruptures.

  14. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    USGS Publications Warehouse

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.

    2004-01-01

    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed alternative tectonic models by evaluating (1) the cumulative effects of multiple deformational episodes that can produce complex, difficult-to-interpret fault geometries, patterns, and senses of displacement; (2) the difficult imaging of high-angle fault planes and horizontal fault separations on seismic reflection data; and (3) the effects of strain partitioning that yield coeval strike-slip faults and associated fold and thrust belts.

  15. Flower-strucutre deformation pattern of theTian Shan mountains as revealed by Late Quaternary geological and modern Geodesy slip rates

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhang, P.; Zheng, W.; Wang, H.; Zhang, Z.; Ren, Z.; Zheng, D.; Yu, J.; Wu, G.

    2017-12-01

    The deformation pattern and strain distribution of the Tian Shan is a hot issue.Previous studies mainly focus on the thrust-fold systems on both sides of Tian Shan, the strike-slip faults within the mountains are rarely reported. The understanding about the deformation characteristics of Tian Shan is not complete for lacking information of these strike-slip faults.Our studies show the NEE trending structures of Maidan fault and Nalati fault in the southwestern Tian Shan are all active during the Holence. These faults are characterized by sinistral strike-slip and thrust movement. The minimum average sinistral strike-slip rate of the Maidan fault is 1.07 ± 0.13 mm/yr. During the late Quaternary, the average shortening rate and sinistral strike-slip rate of the Nalati fault are 2.1 ±0.4 mm/yr and 2.56 ±0.25 mm/yr, respectively . In the interior of the Tian Shan area, two groups of strike-slip faults were developed. The NEE trending faults with sinistral strike-slipmovement, and the NWW trending faults with dextral strike-slip movement show the shape of "X"in geometrical structure. The piedmont thrust faults and the thrust strike-slip faults in the interior mountain constitute the tectonic framework of Tian Shan. Threegroups of active fault systems are the main seismogenic and geological structures, which control the current tectonic deformation pattern of Tian Shan (Figure 1). GPS observation data also showthe similar deformation characteristics with the geological results (Figures 2, 3). In addition to the crustal shortening, there is a certain strike-slip shear movement in the interior of the Tian Shan.The strike-slip rate defined by the geological and GPS data is approximately consistent with each other near the same longitude. We suggest the two groups of strike-slip faults in the interior of mountains is a set of conjugate structures. The whole Tian Shan forms a large flower-structure in a profile view. The complete tectonic deformation of the Tian Shan mountains consists ofthe shortening deformationof the N-S direction and the lateral extrusion of the E-W direction (Figure 2). The late Cenozoic deformation of the Tian Shan mountains is due to the northward subduction of Tarim Block. Although the activedeformation of the Tian Shan decrease eastward, the geological sturcutrein eastern Tian Shan is similar.

  16. The interaction between active normal faulting and large scale gravitational mass movements revealed by paleoseismological techniques: A case study from central Italy

    NASA Astrophysics Data System (ADS)

    Moro, M.; Saroli, M.; Gori, S.; Falcucci, E.; Galadini, F.; Messina, P.

    2012-05-01

    Paleoseismological techniques have been applied to characterize the kinematic behaviour of large-scale gravitational phenomena located in proximity of the seismogenic fault responsible for the Mw 7.0, 1915 Avezzano earthquake and to identify evidence of a possible coseismic reactivation. The above mentioned techniques were applied to the surface expression of the main sliding planes of the Mt. Serrone gravitational deformation, located in the southeastern border of the Fucino basin (central Italy). The approach allows us to detect instantaneous events of deformation along the uphill-facing scarp. These events are testified by the presence of faulted deposits and colluvial wedges. The identified and chronologically-constrained episodes of rapid displacement can be probably correlated with seismic events determined by the activation of the Fucino seismogenic fault, affecting the toe of the gravitationally unstable rock mass. Indeed this fault can produce strong, short-term dynamic stresses able to trigger the release of local gravitational stress accumulated by Mt. Serrone's large-scale gravitational phenomena. The applied methodology could allow us to better understand the geometric and kinematic relationships between active tectonic structures and large-scale gravitational phenomena. It would be more important in seismically active regions, since deep-seated gravitational slope deformations can evolve into a catastrophic collapse and can strongly increase the level of earthquake-induced hazards.

  17. Structural Controls of the Friction Constitutive Properties of Carbonate-bearing Faults

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Collettini, C.; Scuderi, M.; Marone, C.

    2012-12-01

    The identification of hetereogenous and complex post-seismic slip for the 2009, Mw = 6.3, L'Aquila earthquake highlights the importance of fault zone structure and frictional behavior. Many of the Mw 6 to 7 earthquakes that occur on normal faults in the active Apennines, such as L'Aquila, nucleate at depths where the lithology is dominated by carbonate rocks. Due to the complex structure observed in exhumed faults (i.e. the presence of highly polished principal slip surfaces, cemented cataclasites, and phyllosilicate-bearing, foliated fault gouge) as well as the large spectrum of fault slip behaviors identified world wide, we designed a suite of experiments using intact and powdered samples to better constrain the possible slip behaviors of these carbonate bearing faults. We collected samples from the exposed Rocchetta Fault, a ~10km long, normal fault with approximately 600m of total offset. The exposed principal slip surface cuts through the Calcare Massiccio formation, which is present throughout central Italy at depths of earthquake nucleation. We collected intact specimens of the natural slip surface and cemented cataclasite, as well as fragments of both which were later pulverized. Furthermore, we collected an intact sample of the hanging wall cataclasite and footwall limestone that contained the principal slip surface. We performed friction experiments in a variety of different configurations (slip surface on slip surface, slip surface on powdered cataclasite, etc.) in order to investigate heterogeneity in frictional behavior as controlled by fault structure. We sheared saturated samples at a constant normal stress of 10 MPa at room temperature. Velocity-stepping tests were performed from 1 to 300 μm/s to identify the friction constitutive parameters of this fault material. Furthermore, a series slide-hold-slide tests were performed (holds of 3 to 1000 seconds) to measure the amount of frictional healing and determine the frictional healing rate. Results from experiments designed to reactivate slip between the principal slip surface and cemented cataclasite show a peak friction value of ~0.95 followed by a ~3 MPa stress drop as the fault surface fails. Our other results suggest that earthquakes will easily nucleate in areas of the fault where two slip surfaces are in contact and are likely to propagate in areas where pulverized fault gouge is in contact with the slip surface. Our data show that samples collected from a single fault can exhibit a large range of slip behaviors. Heterogeneous frictional behavior documented in the lab must be combined with field observations of complex fault structure and seismological observations of the different modes of fault slip to further our understanding of fault slip. Future work will consist of thin section and XRD analysis of all experimental material.

  18. Reliability issues in active control of large flexible space structures

    NASA Technical Reports Server (NTRS)

    Vandervelde, W. E.

    1986-01-01

    Efforts in this reporting period were centered on four research tasks: design of failure detection filters for robust performance in the presence of modeling errors, design of generalized parity relations for robust performance in the presence of modeling errors, design of failure sensitive observers using the geometric system theory of Wonham, and computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management

  19. Tearing the terroir: Details and implications of surface rupture and deformation from the 24 August 2014 M6.0 South Napa earthquake, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Donnellan, Andrea; Ponti, Daniel J.; Rubin, Ron S.; Lienkaemper, James J.; Prentice, Carol S.; Dawson, Timothy E.; Seitz, Gordon G.; Schwartz, David P.; Hudnut, Kenneth W.; Rosa, Carla M.; Pickering, Alexandra J; Parker, Jay W.

    2016-01-01

    The Mw 6.0 South Napa earthquake of 24 August 2014 caused slip on several active fault strands within the West Napa Fault Zone (WNFZ). Field mapping identified 12.5 km of surface rupture. These field observations, near-field geodesy and space geodesy, together provide evidence for more than ~30 km of surface deformation with a relatively complex distribution across a number of subparallel lineaments. Along a ~7 km section north of the epicenter, the surface rupture is confined to a single trace that cuts alluvial deposits, reoccupying a low-slope scarp. The rupture continued northward onto at least four other traces through subparallel ridges and valleys. Postseismic slip exceeded coseismic slip along much of the southern part of the main rupture trace with total slip 1 year postevent approaching 0.5 m at locations where only a few centimeters were measured the day of the earthquake. Analysis of airborne interferometric synthetic aperture radar data provides slip distributions along fault traces, indicates connectivity and extent of secondary traces, and confirms that postseismic slip only occurred on the main trace of the fault, perhaps indicating secondary structures ruptured as coseismic triggered slip. Previous mapping identified the WNFZ as a zone of distributed faulting, and this was generally borne out by the complex 2014 rupture pattern. Implications for hazard analysis in similar settings include the need to consider the possibility of complex surface rupture in areas of complex topography, especially where multiple potentially Quaternary-active fault strands can be mapped.

  20. The Maradi fault zone: 3-D imagery of a classic wrench fault in Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhaus, D.

    1993-09-01

    The Maradi fault zone extends for almost 350 km in a north-northwest-south-southeast direction from the Oman Mountain foothills into the Arabian Sea, thereby dissecting two prolific hydrocarbon provinces, the Ghaba and Fahud salt basins. During its major Late Cretaceous period of movement, the Maradi fault zone acted as a left-lateral wrench fault. An early exploration campaign based on two-dimensional seismic targeted at fractured Cretaceous carbonates had mixed success and resulted in the discovery of one producing oil field. The structural complexity, rapidly varying carbonate facies, and uncertain fracture distribution prevented further drilling activity. In 1990 a three-dimensional (3-D) seismic surveymore » covering some 500 km[sup 2] was acquired over the transpressional northern part of the Maradi fault zone. The good data quality and the focusing power of 3-D has enabled stunning insight into the complex structural style of a [open quotes]textbook[close quotes] wrench fault, even at deeper levels and below reverse faults hitherto unexplored. Subtle thickness changes within the carbonate reservoir and the unconformably overlying shale seal provided the tool for the identification of possible shoals and depocenters. Horizon attribute maps revealed in detail the various structural components of the wrench assemblage and highlighted areas of increased small-scale faulting/fracturing. The results of four recent exploration wells will be demonstrated and their impact on the interpretation discussed.« less

  1. Tectonic reversal of the western Doruneh Fault System: Implications for Central Asian tectonics

    NASA Astrophysics Data System (ADS)

    Javadi, Hamid Reza; Esterabi Ashtiani, Marzieh; Guest, Bernard; Yassaghi, Ali; Ghassemi, Mohammad Reza; Shahpasandzadeh, Majid; Naeimi, Amir

    2015-10-01

    The left-lateral Doruneh Fault System (DFS) bounds the north margin of the Central Iranian microplate and has played an important role in the structural evolution of the Turkish-Iranian plateau. The western termination of the DFS is a sinistral synthetic branch fault array that shows clear kinematic evidence of having undergone recent slip sense inversion from a dextral array to a sinistral array in the latest Neogene or earliest Quaternary. Similarly, kinematic evidence from the Anarak Metamorphic complex suggests that this complex initially developed at a transpressive left-stepping termination of the DFS and that it was inverted in the latest Neogene to a transtensional fault termination. The recognition that the DFS and other faults in NE Iran were inverted from dextral to sinistral strike slip in the latest Neogene and the likely connection between the DFS and the Herat Fault of Afghanistan suggests that prior to the latest Miocene, all of the north Iranian and northern Afghan ranges were part of a distributed dextral fault network that extended from the west Himalayan syntaxes to the western Alborz. Also, the recognition that regional slip sense inversion occurred across northern and northeastern Iran after the latest Miocene invalidates tectonic models that extrapolate Pleistocene to recent fault slip kinematics and rates back beyond this time.

  2. Deformation along the leading edge of the Maiella thrust sheet in central Italy

    NASA Astrophysics Data System (ADS)

    Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio

    2010-09-01

    The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.

  3. A multiple fault rupture model of the November 13 2016, M 7.8 Kaikoura earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Benites, R. A.; Francois-Holden, C.; Langridge, R. M.; Kaneko, Y.; Fry, B.; Kaiser, A. E.; Caldwell, T. G.

    2017-12-01

    The rupture-history of the November 13 2016 MW7.8 Kaikoura earthquake recorded by near- and intermediate-field strong-motion seismometers and 2 high-rate GPS stations reveals a complex cascade of multiple crustal fault rupture. In spite of such complexity, we show that the rupture history of each fault is well approximated by simple kinematic model with uniform slip and rupture velocity. Using 9 faults embedded in a crustal layer 19 km thick, each with a prescribed slip vector and rupture velocity, this model accurately reproduces the displacement waveforms recorded at the near-field strong-motion and GPS stations. This model includes the `Papatea Fault' with a mixed thrust and strike-slip mechanism based on in-situ geological observations with up to 8 m of uplift observed. Although the kinematic model fits the ground-motion at the nearest strong station, it doesn not reproduce the one sided nature of the static deformation field observed geodetically. This suggests a dislocation based approach does not completely capture the mechanical response of the Papatea Fault. The fault system as a whole extends for approximately 150 km along the eastern side of the Marlborough fault system in the South Island of New Zealand. The total duration of the rupture was 74 seconds. The timing and location of each fault's rupture suggests fault interaction and triggering resulting in a northward cascade crustal ruptures. Our model does not require rupture of the underlying subduction interface to explain the data.

  4. Fault management for the Space Station Freedom control center

    NASA Technical Reports Server (NTRS)

    Clark, Colin; Jowers, Steven; Mcnenny, Robert; Culbert, Chris; Kirby, Sarah; Lauritsen, Janet

    1992-01-01

    This paper describes model based reasoning fault isolation in complex systems using automated digraph analysis. It discusses the use of the digraph representation as the paradigm for modeling physical systems and a method for executing these failure models to provide real-time failure analysis. It also discusses the generality, ease of development and maintenance, complexity management, and susceptibility to verification and validation of digraph failure models. It specifically describes how a NASA-developed digraph evaluation tool and an automated process working with that tool can identify failures in a monitored system when supplied with one or more fault indications. This approach is well suited to commercial applications of real-time failure analysis in complex systems because it is both powerful and cost effective.

  5. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire SBM block, the slow rates of slip, and the geomorphic expression of these faults add difficulty for assessing fault-slip evolution. Although evidence for diffuse dextral faulting exists within the formerly uplifted SBM block, future work is needed along these faults to determine if the ECSZ is migrating west.

  6. A sensor network based virtual beam-like structure method for fault diagnosis and monitoring of complex structures with Improved Bacterial Optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-02-01

    This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.

  7. The role of major rift faults in the evolution of deformation bands in the Rio do Peixe Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Hilario Bezerra, Francisco; Araujo, Renata; Maciel, Ingrid; Cezar Nogueira, Francisco; Balsamo, Fabrizio; Storti, Fabrizio; Souza, Jorge Andre; Carvalho, Bruno

    2017-04-01

    Many studies have investigated on the evolution and properties of deformation bands, but their occurrence and relationships with basin-boundary faults remain elusive when the latter form by brittle reactivation of structural inheritance in crystalline basements. The main objective of our study was to systematically record the location, kinematics, geometry, and density of deformation bands in the early Cretaceous Rio do Peixe basin, NE Brazil, and analyze their relationship with major syn-rift fault zones. Reactivation in early Cretaceous times of continental-scale ductile shear zones led to the development of rift basins in NE Brazil. These shear zones form a network of NE- and E-W-trending structures hundreds of kilometers long and 3-10 km wide. They were active in the Brasiliano orogeny at 540-740 Ma. Brittle reactivation of these structures occurred in Neocomian times ( 140-120 Ma) prior the breakup between the South American and African plates in the late Cretaceous. The Rio do Peixe basin formed at the intersection between the NE-SW-striking Portalegre shear zone and the E-W-striking Patos shear zone. The brittle fault systems developed by the shear zone reactivation are the Portalegre Fault and the Malta Fault, respectively. In this research we used field structural investigations and drone imagery with centimetric resolution. Our results indicate that deformation bands occur in poorly sorted, medium to coarse grain size sandstones and localize in 3-4 km wide belts in the hanging wall of the two main syn-rifts fault systems. Deformation bands formed when sandstones were not completely lithified. They strike NE along the Portalegre Fault and E-W along the Malta Fault and have slip lineations with rake values ranging from 40 to 90. The kinematics recorded in deformation bands is consistent with that characterizing major rift fault systems, i.e. major extension with a strike-slip component. Since deformations bands are typical sub-seismic features, our findings can have implications for the prediction of deformation band occurrence in sedimentary basins and their geometric and kinematic relations with major basin-boundary fault systems.

  8. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Cheng, Junsheng

    2017-02-01

    To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.

  9. 3D resistivity survey for shallow subsurface fault investigations

    NASA Astrophysics Data System (ADS)

    Petrit, Kraipat; Klamthim, Poonnapa; Duerrast, Helmut

    2018-03-01

    The shallow subsurface is subject to various human activities, and the place of occurrence of geohazards, e.g. shallow active faults. The identification of the location and orientation of such faults can be vital for infrastructure development. The aim of this study was to develop a low-cost 3D resistivity survey system, with reasonable survey time for shallow fault investigations. The study area in Songkhla Province, Thailand is located in an old quarry where faults could be identified in outcrops. The study area was designed to cover the expected fault with 100 electrodes arranged in a 10×10 square grid with an electrode spacing of 3 meters in x and y axis. Each electrode in turn was used as a current and potential electrode using a dipole-dipole array. Field data have been processed and interpreted using 3DResINV. Results, presented in horizontal depth slices and vertical xz- and yz-cross sections, revealed through differences in resistivity down to 8 m depths a complex structural setting with two shallow faults and dipping sedimentary rock layers. In conclusion, this study has shown that a 3D resistivity survey can imagine complex tectonic structures, thus providing a far more insight into the shallow subsurface.

  10. Model Transformation for a System of Systems Dependability Safety Case

    NASA Technical Reports Server (NTRS)

    Murphy, Judy; Driskell, Stephen B.

    2010-01-01

    Software plays an increasingly larger role in all aspects of NASA's science missions. This has been extended to the identification, management and control of faults which affect safety-critical functions and by default, the overall success of the mission. Traditionally, the analysis of fault identification, management and control are hardware based. Due to the increasing complexity of system, there has been a corresponding increase in the complexity in fault management software. The NASA Independent Validation & Verification (IV&V) program is creating processes and procedures to identify, and incorporate safety-critical software requirements along with corresponding software faults so that potential hazards may be mitigated. This Specific to Generic ... A Case for Reuse paper describes the phases of a dependability and safety study which identifies a new, process to create a foundation for reusable assets. These assets support the identification and management of specific software faults and, their transformation from specific to generic software faults. This approach also has applications to other systems outside of the NASA environment. This paper addresses how a mission specific dependability and safety case is being transformed to a generic dependability and safety case which can be reused for any type of space mission with an emphasis on software fault conditions.

  11. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2017-03-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  12. Deformation style and controlling geodynamic processes at the eastern Guadalquivir foreland basin (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.

    2017-06-01

    The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.

  13. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand.

    PubMed

    Hamling, Ian J; Hreinsdóttir, Sigrún; Clark, Kate; Elliott, John; Liang, Cunren; Fielding, Eric; Litchfield, Nicola; Villamor, Pilar; Wallace, Laura; Wright, Tim J; D'Anastasio, Elisabetta; Bannister, Stephen; Burbidge, David; Denys, Paul; Gentle, Paula; Howarth, Jamie; Mueller, Christof; Palmer, Neville; Pearson, Chris; Power, William; Barnes, Philip; Barrell, David J A; Van Dissen, Russ; Langridge, Robert; Little, Tim; Nicol, Andrew; Pettinga, Jarg; Rowland, Julie; Stirling, Mark

    2017-04-14

    On 14 November 2016, northeastern South Island of New Zealand was struck by a major moment magnitude ( M w ) 7.8 earthquake. Field observations, in conjunction with interferometric synthetic aperture radar, Global Positioning System, and seismology data, reveal this to be one of the most complex earthquakes ever recorded. The rupture propagated northward for more than 170 kilometers along both mapped and unmapped faults before continuing offshore at the island's northeastern extent. Geodetic and field observations reveal surface ruptures along at least 12 major faults, including possible slip along the southern Hikurangi subduction interface; extensive uplift along much of the coastline; and widespread anelastic deformation, including the ~8-meter uplift of a fault-bounded block. This complex earthquake defies many conventional assumptions about the degree to which earthquake ruptures are controlled by fault segmentation and should motivate reevaluation of these issues in seismic hazard models. Copyright © 2017, American Association for the Advancement of Science.

  14. Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.

    2017-12-01

    The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol (www.seissol.org) which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip distribution. We observe a high sensitivity of cascading dynamics on fault-step over distance and off-fault energy dissipation.

  15. Seismic reflection images of shallow faulting, northernmost Mississippi embayment, north of the New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Nelson, W.J.

    2001-01-01

    High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.

  16. Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot

    USGS Publications Warehouse

    Watson-Lamprey, J. A.; Boore, D.M.

    2007-01-01

    In the seismic design of structures, estimates of design forces are usually provided to the engineer in the form of elastic response spectra. Predictive equations for elastic response spectra are derived from empirical recordings of ground motion. The geometric mean of the two orthogonal horizontal components of motion is often used as the response value in these predictive equations, although it is not necessarily the most relevant estimate of forces within the structure. For some applications it is desirable to estimate the response value on a randomly chosen single component of ground motion, and in other applications the maximum response in a single direction is required. We give adjustment factors that allow converting the predictions of geometric-mean ground-motion predictions into either of these other two measures of seismic ground-motion intensity. In addition, we investigate the relation of the strike-normal component of ground motion to the maximum response values. We show that the strike-normal component of ground motion seldom corresponds to the maximum horizontal-component response value (in particular, at distances greater than about 3 km from faults), and that focusing on this case in exclusion of others can result in the underestimation of the maximum component. This research provides estimates of the maximum response value of a single component for all cases, not just near-fault strike-normal components. We provide modification factors that can be used to convert predictions of ground motions in terms of the geometric mean to the maximum spectral acceleration (SaMaxRot) and the random component of spectral acceleration (SaArb). Included are modification factors for both the mean and the aleatory standard deviation of the logarithm of the motions.

  17. Geometrical and Structural Asperities on Fault Surfaces

    NASA Astrophysics Data System (ADS)

    Sagy, A.; Brodsky, E. E.; van der Elst, N.; Agosta, F.; di Toro, G.; Collettini, C.

    2007-12-01

    Earthquake dynamics are strongly affected by fault zone structure and geometry. Fault surface irregularities and the nearby structure control the rupture nucleation and propagation, the fault strength, the near-field stress orientations and the hydraulic properties. New field observations demonstrate the existence of asperities in faults as displayed by topographical bumps on the fault surface and hardening of the internal structure near them. Ground-based LIDAR measurements on more than 30 normal and strike slip faults in different lithologies demonstrate that faults are not planar surfaces and roughness is strongly dependent on fault displacement. In addition to the well-understood roughness exemplified by abrasive striations and fracture segmentation, we found semi-elliptical topographical bumps with wavelengths of a few meters. In many faults the bumps are not spread equally on the surface and zones can be bumpier than others. The bumps are most easily identified on faults with total displacement of dozens to hundreds of meters. Smaller scale roughness on these faults is smoothed by abrasive processes. A key site in southern Oregon shows that the topographic bumps are closely tied to the internal structure of the fault zone. At this location, we combine LiDAR data with detailed structural analysis of the fault zone embedded in volcanic rocks. Here the bumps correlate with an abrupt change in the width of the cohesive cataclasite layer that is exposed under a thin ultracataclasite zone. In most of the exposures the cohesive layer thickness is 10-20 cm. However, under protruding bumps the layer is always thickened and the width can locally exceed one meter. Field and microscopic analyses show that the layer contains grains with dimensions ranging from less than 10 μ up to a few centimeters. There is clear evidence of internal flow, rotation and fracturing of the grains in the layer. X-Ray diffraction measurements of samples from the layer show that the bulk mineralogy is identical to that of the host rock, although thin section analysis suggests that some alteration and secondary mineralization of the grains also occurs. We infer that the cohesiveness of the layer is a consequence of repacking and cementation similar to deformation bands in granular material. By comparing the thickness of the cohesive layer on several secondary faults in this fault area we found that the average thickness of the layer increases with total slip. The correlation is nonlinear and the thickening rate decreases with increasing slip. We conclude that granular flow decreasing with increasing slip and thus the deformation is continually localized.

  18. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Baines, A. Graham; Cheadle, Michael J.; Dick, Henry J. B.; Hosford Scheirer, Allegra; John, Barbara E.; Kusznir, Nick J.; Matsumoto, Takeshi

    2003-12-01

    Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ˜1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10° change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.

  19. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge

    USGS Publications Warehouse

    Baines, A.G.; Cheadle, Michael J.; Dick, H.J.B.; Scheirer, A.H.; John, Barbara E.; Kusznir, N.J.; Matsumoto, T.

    2003-01-01

    Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ???1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10?? change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.

  20. Tectonic context of the penetrative fracture system origin in the Early Paleozoic shale complex (Baltic Basin, Poland/Sweden).

    NASA Astrophysics Data System (ADS)

    Jarosiński, Marek; Gluszynski, Andrzej; Bobek, Kinga; Dyrka, Ireneusz

    2017-04-01

    Characterization of natural fracture and fault pattern play significant role for reservoir stimulation design and evaluation of its results. Having structural observations limited to immediate borehole surrounding it is a common need to build up a fracture model of reservoir in a range of stimulation reservoir volume or even beyond. To do this we need both a 3D seismic model and a consistent concept of the regional tectonic evolution. We present the result of integrated tectonic study in several deep boreholes target the Lower Paleozoic shale complex of Baltic Basin (BB), combined with analysis of 3D seismic survey and outcrop screening in Scania (Swedish part of the BB). During deposition of shale complex in the Ordovician and Silurian the research area was located 200-300 km away from the continental margin of Baltica involved in the Caledonian collision with the Eastern Avalonia. This distance allowed the shale complex to avoid significant tectonic deformation. Regional seismic cross section reveals the general pattern of the BB infill characteristic for the foreland basin underwent post-collisional isostatic rebound. Due to stress changes in collisional context the shale complex was cross-cut by steep, mostly inverse faults trending NW-SE and NE-SW. The fault zones oriented NW-SE are associated with an array of en echelon faults characteristic for strike-slip displacement. In our interpretation, these faults of Silurian (Wenlock) age create pattern of the regional pop-up structure, which is simultaneously involved in the plate flexure extension. Seismic attributes (e.g. curvature or ant tracking) highlight lineaments which mostly mimic the faults orientation. However, attributes show also some artefacts that come from regular array of seismic sources and receivers, which mimic the orthogonal joint system. Structural observations on borehole core lead us to conclusion that regular, orthogonal fracture system developed after maximum burial of the complex, triggered by mechanism of natural hydraulic fracturing due to hydrocarbon generation. These fractures create veins filled with calcite that growth was controlled by mechanical layering and the TOC content of the shale complex. The main joint fracture pattern is stable across at least 300 hundred kilometers, from the Polish to Swedish portion of Baltic Basin. Therefore a major tectonic event is expected to govern its origin. The Late Carboniferous thin-skinned compression exerted at the edge of the East European Craton, is preferred tectonic fracture triggering factor. This age of jointing is confirmed by the strike of principal joint set characteristic for Variscan compression. In addition, principal joint system is sensitive (=younger) to a presence of the Caledonian-age faults in Pomerania but insensitive (=older) to the Mesozoic faults in Scania. Above genetic considerations should be taken into account while building the self-consistent discrete fracture network of faults and fractures for the purpose of shale reservoir stimulation.

  1. Thrust Belt Architecture of the Central and Southern Western Foothills of Taiwan

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Wiltschko, D.

    2006-12-01

    A structural model of the central and southern Western Foothills Fold and Thrust Belt (WFFTB) was constructed from serial balanced cross sections using available surface, drill, seismic and thermochronologic data. The WFFTB is composed of four main thrust sheets with minor splays. On the east, the Tulungwan fault, which separates the sedimentary rocks of the WFFTB from the low grade meta-sediments of the Slate Belt, evolves from a basement cored fold in the north (around 24°10' N) where the conformable contact between foothills sediments and meta-sediments from the Slate Belt on its western flank is present. At this point the tip of the fault is below the unconformity and the displacement amount is small. To the south this fault breaks the back limb of the fold and gains displacement, and continues gaining displacement to the south. The next thrust sheet to the west includes the Schuantung, Fenghuangchan, Luku, Tatou, Hopiya, and Pingchi faults. This fault system is interpreted as characterized by a long flat with small ramps along a Miocene detachment, not a series of imbricates, as it has been interpreted before. The next thrust sheet to the west is the Chulungupu-Chukou-Lunhou, this system appears to gain displacement to the south as the Schuantung fault system decreases in amount of displacement. The Chulungpu-Chukou-Lunhou fault system contains a wide monocline in the central foothills related with the Chulungpu fault and two wide synclines in the southern part, the Yuching and Tinpligling synclines. Modeling of these two last structures shows that both are uplifted with respect to the regional level above a wide and flat feature; the footwall of the Lunhou fault is a monocline. A geometric solution to lift the Lunhou system involves a major fault-bend-fold anticline with a long ramp and a detachment at ~13 km of depth. It explains, 1) the frontal monocline, which is the from limb of this fault-bend- fold, 2) the minor structures associated with minor back-thrusts and wedging, and 3) the uplift of the structures above the regional level over a wide anticlinal crest. The last thrust system toward the west shows a series of structures which closely associated with the Peikang high implying that the structures are either inversion structures or new thrust faults whose ramps are located in pre-existing normal faults.

  2. Origin and structure of major orogen-scale exhumed strike-slip

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz

    2016-04-01

    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San Andreas Fault, Alpine Fault in New Zealand) and transtensional rift zones such as the East African rift. In many cases, subsequent shortening exhumes such faults from depth to the surface. A major aspect of many exhumed strike-slip faults is its lateral thermal gradient induced by the juxtaposition of hot and cool levels of the crust controlling relevant properties of such fault zones, e.g. the overall fault architecture (e.g., fault core, damage zone, shear lenses, fault rocks) and the thermal structure. These properties and the overall fault architecture include strength of fault rocks, permeability and porosity, the hydrological regime, as well as the nature and origin of circulating hydrothermal fluids.

  3. A dynamic fault tree model of a propulsion system

    NASA Technical Reports Server (NTRS)

    Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila

    2006-01-01

    We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.

  4. Visualizing the Arithmetic of Complex Numbers

    ERIC Educational Resources Information Center

    Soto-Johnson, Hortensia

    2014-01-01

    The Common Core State Standards Initiative stresses the importance of developing a geometric and algebraic understanding of complex numbers in their different forms (i.e., Cartesian, polar and exponential). Unfortunately, most high school textbooks do not offer such explanations much less exercises that encourage students to bridge geometric and…

  5. Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; McDougal, John; Barley, Bryan; Stephens Karen; Fesq, Lorraine M.

    2010-01-01

    Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the findings and recommendations from that workshop, particularly as fault management development issues affect operations and the development of operations capabilities.

  6. The history of late holocene surface-faulting earthquakes on the central segments of the Wasatch fault zone, Utah

    USGS Publications Warehouse

    Duross, Christopher; Personius, Stephen; Olig, Susan S; Crone, Anthony J.; Hylland, Michael D.; Lund, William R; Schwartz, David P.

    2017-01-01

    The Wasatch fault (WFZ)—Utah’s longest and most active normal fault—forms a prominent eastern boundary to the Basin and Range Province in northern Utah. To provide paleoseismic data for a Wasatch Front regional earthquake forecast, we synthesized paleoseismic data to define the timing and displacements of late Holocene surface-faulting earthquakes on the central five segments of the WFZ. Our analysis yields revised histories of large (M ~7) surface-faulting earthquakes on the segments, as well as estimates of earthquake recurrence and vertical slip rate. We constrain the timing of four to six earthquakes on each of the central segments, which together yields a history of at least 24 surface-faulting earthquakes since ~6 ka. Using earthquake data for each segment, inter-event recurrence intervals range from about 0.6 to 2.5 kyr, and have a mean of 1.2 kyr. Mean recurrence, based on closed seismic intervals, is ~1.1–1.3 kyr per segment, and when combined with mean vertical displacements per segment of 1.7–2.6 m, yield mean vertical slip rates of 1.3–2.0 mm/yr per segment. These data refine the late Holocene behavior of the central WFZ; however, a significant source of uncertainty is whether structural complexities that define the segments of the WFZ act as hard barriers to ruptures propagating along the fault. Thus, we evaluate fault rupture models including both single-segment and multi-segment ruptures, and define 3–17-km-wide spatial uncertainties in the segment boundaries. These alternative rupture models and segment-boundary zones honor the WFZ paleoseismic data, take into account the spatial and temporal limitations of paleoseismic data, and allow for complex ruptures such as partial-segment and spillover ruptures. Our data and analyses improve our understanding of the complexities in normal-faulting earthquake behavior and provide geological inputs for regional earthquake-probability and seismic hazard assessments.

  7. Geologic Inheritance and Earthquake Rupture Processes: The 1905 M ≥ 8 Tsetserleg-Bulnay Strike-Slip Earthquake Sequence, Mongolia

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu

    2018-02-01

    In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.

  8. Analogue modelling for localization of deformation in the extensional pull-apart basins: comparison with the west part of NAF, Turkey

    NASA Astrophysics Data System (ADS)

    Bulkan, Sibel; Storti, Fabrizio; Cavozzi, Cristian; Vannucchi, Paola

    2017-04-01

    Analogue modelling remains one of the best methods for investigating progressive deformation of pull apart systems in strike slip faults that are poorly known. Analogue model experiments for the North Anatolian Fault (NAF) system around the Sea of Marmara are extremely rare in the geological literature. Our purpose in this work is to monitor the relation between the horizontal propagation and branching of the strike slip fault, and the structural and topographic expression resulting from this process. These experiments may provide insights into the geometric evolution and kinematic of west part of the NAF system. For this purpose, we run several 3D sand box experiments, appropriately scaled. Plexiglass sheets were purposely cut to simulate the geometry of the NAF. Silicone was placed on the top of these to simulate the viscous lower crust, while the brittle upper crust was simulated with pure dry sand. Dextral relative fault motion was imposed as well using different velocities to reproduce different strain rates and pull apart formation at the releasing bend. Our experiments demonstrate the variation of the shear zone shapes and how the master-fault propagates during the deformation, helping to cover the gaps between geodetic and geologic slip information. Lower crustal flow may explain how the deformation is transferred to the upper crust, and stress partitioned among the strike slip faults and pull-apart basin systems. Stress field evolution seems to play an interesting role to help strain localization. We compare the results of these experiments with natural examples around the western part of NAF and with seismic observations.

  9. Basic research on machinery fault diagnostics: Past, present, and future trends

    NASA Astrophysics Data System (ADS)

    Chen, Xuefeng; Wang, Shibin; Qiao, Baijie; Chen, Qiang

    2018-06-01

    Machinery fault diagnosis has progressed over the past decades with the evolution of machineries in terms of complexity and scale. High-value machineries require condition monitoring and fault diagnosis to guarantee their designed functions and performance throughout their lifetime. Research on machinery Fault diagnostics has grown rapidly in recent years. This paper attempts to summarize and review the recent R&D trends in the basic research field of machinery fault diagnosis in terms of four main aspects: Fault mechanism, sensor technique and signal acquisition, signal processing, and intelligent diagnostics. The review discusses the special contributions of Chinese scholars to machinery fault diagnostics. On the basis of the review of basic theory of machinery fault diagnosis and its practical applications in engineering, the paper concludes with a brief discussion on the future trends and challenges in machinery fault diagnosis.

  10. Summary of the geology and physical properties of the Climax Stock, Nevada Test Site

    USGS Publications Warehouse

    Maldonado, Florian

    1977-01-01

    The Climax stock is a composite stock of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes sedimentary rocks of Paleozoic and Precambrian age. Tertiary rocks consisting of tuff, welded tuff, and breccia overlie the stock and sedimentary rocks. Hydrothermal alteration of the granodiorite and quartz monzonite is found mainly along the joints and is extensive, but the intensity of alteration varies from place to place. The surrounding sedimentary rocks (carbonates) have been metasomatically altered to tactite and marble as much as 1,500 feet (457 m) from contact with stock; the degree of metamorphism decreasing away from the intrusive. The major faults found in the vicinity of the Climax stock are the Tippinip fault, the Boundary fault, and the Yucca fault. In the stock three prominent joint sets and their average attitudes are N. 32? W., 22? NE.; N 64? W., vertical; and N 35? E., vertical. Two major tunnel complexes have been driven into the Climax stock?the Tiny Tot tunnel complex and Pile Driver-Hard Hat tunnel complex. In the Pile Driver-Hard Hat complex two underground nuclear tests have been conducted.

  11. Sensitivity of Tsunami Waves and Coastal Inundation/Runup to Seabed Displacement Models: Application to the Cascadia Subduction zone

    NASA Astrophysics Data System (ADS)

    Jalali Farahani, R.; Fitzenz, D. D.; Nyst, M.

    2015-12-01

    Major components of tsunami hazard modeling include earthquake source characterization, seabed displacement, wave propagation, and coastal inundation/run-up. Accurate modeling of these components is essential to identify the disaster risk exposures effectively, which would be crucial for insurance industry as well as policy makers to have tsunami resistant design of structures and evacuation planning (FEMA, 2008). In this study, the sensitivity and variability of tsunami coastal inundation due to Cascadia megathrust subduction earthquake are studied by considering the different approaches for seabed displacement model. The first approach is the analytical expressions that were proposed by Okada (1985, 1992) for the surface displacements and strains of rectangular sources. The second approach was introduced by Meade (2006) who introduced analytical solutions for calculating displacements, strains, and stresses on triangular sources. In this study, the seabed displacement using triangular representation of geometrically complex fault surfaces is compared with the Okada rectangular representations for the Cascadia subduction zone. In the triangular dislocation algorithm, the displacement is calculated using superposition of two angular dislocations for each of the three triangle legs. The triangular elements could give a better and gap-free representation of the fault surfaces. In addition, the rectangular representation gives large unphysical vertical displacement along the shallow-depth fault edge that generates unrealistic short-wavelength waves. To study the impact of these two different algorithms on the final tsunami inundation, the initial tsunami wave as well as wave propagation and the coastal inundation are simulated. To model the propagation of tsunami waves and coastal inundation, 2D shallow water equations are modeled using the seabed displacement as the initial condition for the numerical model. Tsunami numerical simulation has been performed on high-resolution bathymetric/topographic computational grids to identify accurate tsunami impact and flooding limits for the west of USA.

  12. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2013-04-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  13. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Pelties, C.; Gabriel, A.

    2012-12-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  14. Geological perspectives of shallow slow earthquakes deduced from deformation in subduction mélanges

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Saishu, H.; Kinoshita, T.; Nishiyama, N.; Otsubo, M.; Ohta, K.; Yamashita, Y.; Ito, Y.

    2017-12-01

    Shallow (< 15 km depth) slow earthquakes are important to understand, as they occur along the subduction thrust where devastating tsunamis are generated. Geophysical studies have revealed that shallow slow earthquakes are not restricted to specific temperature conditions and depths but occur in regions of high fluid pressure. In the Nankai subduction zone, the shallow slow slip appears to trigger tremor and very-low-frequency-earthquake. However, the geologic perspectives for shallow slow earthquakes remain enigmatic. The Makimine mélange in the Late Cretaceous Shimanto accretionary complex of southwest Japan was formed during the subduction of young oceanic plate. Within the mélange, the quartz-filled veins and viscous shear zones are concentrated in the zones of 10 to 60 m-thick. The veins consist of shear veins showing low-angle thrust or normal faulting mechanisms and extension veins parallel or at high angle to mélange foliation. The geometrical relationship between shear and extension veins indicates that shear slip and tensile fracturing occur by small differential stress under elevated fluid pressure. The shear and extension veins typically show crack-seal textures defined by the solid inclusions bands. The time scale of each crack-seal event, which is determined from the quartz kinetics considering inclusion band spacing and vein length, is a few years. The shear slip increments estimated from the spacing of inclusions bands at dilational jogs are 0.1 mm. The viscous shear is accommodated by pressure solution creep and consistently shows low-angle thrust shear sense. These geologic features are suggested to explain seismogenic environment for shallow slow earthquakes. The shear veins and viscous shear zones showing low-angle thrust faulting mechanism could represent episodic tremor and slip, while the shear veins showing low-angle normal faulting mechanism may represent the tremor that occurred after the passage of slow slip front.

  15. Heterogeneous State of Stress and Seismicity Distribution Along the San Andreas Fault in Southern California: New Insights into Rupture Terminations of Past Earthquakes

    NASA Astrophysics Data System (ADS)

    Hauksson, E.; Ross, Z. E.; Yu, C.

    2016-12-01

    The southern San Andreas Fault (SAF) accommodates 80% of the plate motion between the Pacific and North America plates in southern California. We image complex patterns of the state of stress, style of faulting, and seismicity adjacent to the SAF, both along strike and away from the fault. This complexity is not captured in previous one-dimensional profiles of stress orientations across the fault. On average the maximum principal stress (S1) rotates from N30°E in central California, along the Cholame segment, to N0°-20°W along the Mojave and San Bernardino segments. Farther south, along the Coachella Valley segment the orientation is again N30°E. On a broad scale these changes in S1 orientation coincide with the more westerly strike of the SAF across the Mojave Desert but in detail they suggest significant variations in frictional coefficient or strength along strike. Similarly, on a more detailed scale, the size of the S1 rotations is spatially heterogeneous, with the largest rotations associated with the two bends in the SAF, at Gorman and Cajon Pass. In each location a major fault, Garlock fault and San Jacinto fault, intersects the SAF. In these intersected regions, the seismicity is more abundant and the S1 orientation is more likely to exhibit abrupt changes in trend by up to 10° across the fault. The GPS maximum principal strain rate orientations exhibit a similar but smoother pattern with mostly west of north orientations along the Mojave and San Bernardino segments. The style of faulting as derived from stress inversion is similarly heterogeneous with a mixture of strike-slip and thrust faulting forming complex spatial patterns. The D95% maximum depth of earthquakes changes abruptly both along and across the SAF suggesting that local variations in composition affect the maximum seismicity depth. The heterogeneity in the state of stress is not influenced by the average heat flow, which is similar along the whole length of the southern SAF. The crustal composition, background seismicity, and the strength of the SAF vary along strike, with the strongest fault segments being near the two bends, Gorman and Cajon Pass, where past major earthquake ruptures may have preferentially terminated.

  16. The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.R.; Julian, F.E.

    1993-02-01

    The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used tomore » describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.« less

  17. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.; Markowski, D.

    2015-12-01

    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella Valley to join the blind Palm Spring dextral fault- a source of microearthquakes and differential subsidence. The ESS may also continue north parallel to the margin of the Salton Trough or have both a NW and NE branch. The risk of a future large earthquake directly beneath the greater Palm Springs metropolitan area may be larger if the first or last options are correct.

  18. The influence of joint parameters on normal fault evolution and geometry: a parameter study using analogue modeling

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.

    2017-04-01

    Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small joint spacing results in fault strands that only localize at the pre-existing joints, and secondary fractures that are oriented at high angles to the pre-existing joints. With this new set of experiments we can now quantitatively constrain how (i) the angle between joints and basement fault, (ii) the joint depth and (iii) the joint spacing affect fault zone parameters such as (1) the damage zone width, (2) the density of secondary fractures, (3) map-view area of open gaps or (4) the fracture connectivity. We apply these results to predict subsurface geometries of joint-fault networks in cohesive rocks, e.g. basaltic sequences in Iceland and sandstones in the Canyonlands NP, USA.

  19. A geophysical investigation of shallow deformation along an anomalous section of the Wasatch fault zone, Utah, USA

    USGS Publications Warehouse

    McBride, J.H.; Stephenson, W.J.; Thompson, T.J.; Harper, M.P.; Eipert, A.A.; Hoopes, J.C.; Tingey, D.G.; Keach, R.W.; Okojie-Ayoro, A. O.; Gunderson, K.L.; Meirovitz, C.D.; Hicks, T.C.; Spencer, C.J.; Yaede, J.R.; Worley, D.M.

    2008-01-01

    We report the results of a geophysical study of the Wasatch fault zone near the Provo and Salt Lake City segment boundary. This area is anomalous because the fault zone strikes more east-west than north-south. Vibroseis was used to record a common mid-point (CMP) profile that provides information to depths of ???500 m. A tomographic velocity model, derived from first breaks, constrained source and receiver static corrections; this was required due to complex terrain and significant lateral velocity contrasts. The profile reveals an ???250-m-wide graben in the hanging wall of the main fault that is associated with both synthetic and antithetic faults. Faults defined by apparent reflector offsets propagate upward toward topographic gradients. Faults mapped from a nearby trench and the seismic profile also appear to correlate with topographic alignments on LiDAR gradient maps. The faults as measured in the trench show a wide range of apparent dips, 20??-90??, and appear to steepen with depth on the seismic section. Although the fault zone is likely composed of numerous small faults, the broad asymmetric structure in the hanging wall is fairly simple and dominated by two inward-facing ruptures. Our results indicate the feasibility of mapping fault zones in rugged terrain and complex near-surface geology using low-frequency vibroseis. Further, the integration of geologic mapping and seismic reflection can extend surface observations in areas where structural deformation is obscured by poorly stratified or otherwise unmappable deposits. Therefore, the vibroseis technique, when integrated with geological information, provides constraints for assessing geologic hazards in areas of potential development.

  20. Mechanics of Multifault Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  1. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault

    USGS Publications Warehouse

    Shelly, David R.

    2010-01-01

    The San Andreas fault is one of the most extensively studied faults in the world, yet its physical character and deformation mode beneath the relatively shallow earthquake-generating portion remain largely unconstrained. Tectonic ‘non-volcanic’ tremor, a recently discovered seismic signal probably generated by shear slip on the deep extension of some major faults, can provide new insight into the deep fate of such faults, including that of the San Andreas fault near Parkfield, California. Here I examine continuous seismic data from mid-2001 to 2008, identifying tremor and decomposing the signal into different families of activity based on the shape and timing of the waveforms at multiple stations. This approach allows differentiation between activities from nearby patches of the deep fault and begins to unveil rich and complex patterns of tremor occurrence. I find that tremor exhibits nearly continuous migration, with the most extensive episodes propagating more than 20 kilometres along fault strike at rates of 15–80 kilometres per hour. This suggests that the San Andreas fault remains a localized through-going structure, at least to the base of the crust, in this area. Tremor rates and recurrence behaviour changed markedly in the wake of the 2004 magnitude-6.0 Parkfield earthquake, but these changes were far from uniform within the tremor zone, probably reflecting heterogeneous fault properties and static and dynamic stresses decaying away from the rupture. The systematic recurrence of tremor demonstrated here suggests the potential to monitor detailed time-varying deformation on this portion of the deep San Andreas fault, deformation which unsteadily loads the shallower zone that last ruptured in the 1857 magnitude-7.9 Fort Tejon earthquake.

  2. Simulation-based reasoning about the physical propagation of fault effects

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan; Li, Dalu

    1990-01-01

    The research described deals with the effects of faults on complex physical systems, with particular emphasis on aircraft and spacecraft systems. Given that a malfunction has occurred and been diagnosed, the goal is to determine how that fault will propagate to other subsystems, and what the effects will be on vehicle functionality. In particular, the use of qualitative spatial simulation to determine the physical propagation of fault effects in 3-D space is described.

  3. Complex rupture during the 12 January 2010 Haiti earthquake

    USGS Publications Warehouse

    Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.

    2010-01-01

    Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  4. High resolution digital elevation modelling from TLS and UAV campaign reveals structural complexity at the 2014/15 Holuhraun eruption site, Iceland

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Walter, Thomas R.; Schöpa, Anne; Witt, Tanja; Steinke, Bastian; Gudmundsson, Magnús T.; Dürig, Tobias

    2017-07-01

    Fissure eruptions are commonly linked to magma dikes at depth, associated with elastic and anelastic surface deformation. Elastic deformation is well described by subsidence above, uplift and lateral widening perpendicular to the dike plane. The anelastic part is associated with the formation of a graben, bordered by graben parallel faults that might express as sets of fractures at the surface. Additionally secondary structures, like push ups, bends and step overs yield information about the deforming domain. The formation of such structures associated with fissure eruptions, however, is barely preserved in nature because of the rapid erosion or sediment coverage. Therefore, simple normal fault displacements are commonly assumed at dikes. At the 2014/2015 Holuhraun eruption sites (Iceland), evidence is increasing that the developing fractures are showing variations in their displacement modes. In an attempt to investigate these variations, a fieldwork mapping project combining Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) based aerophoto analysis was realized. From this data, we generated locally high resolution Digital Elevation Models (DEMs) and a structural map that allows for identification of kinematic indicators and assessing particularities of the observed structures. We identified 315 fracture segments from satellite data. For single segments we measured strike directions including the amount of opening and opening angles, indicating that many of the measured fractures show transtensional dislocations. Out of these, 81 % are showing significant left-lateral slip, only 17% right-lateral slip and 2% pure tensile opening. We show that local complexities in the fracture traces and geometries are closely related to variations in the transtensional opening direction. Moreover, we identified local changes in fracture azimuths and offsets close to eruption sites, which we speculate to be associated with geometrical changes in the magma feeder itself. Results highlight that opening of fractures associated with an erupting fissure commonly show transtensional modes having both, left-lateral and right-lateral slip, with important implications for interpreting the expression of surface structures at rift zones elsewhere. Results further highlight the great value of UAV based high resolution data to contribute to the integrity of observations of structural complexities at local geologic events.

  5. Character of High Temperature Mylonitic Shear Zones Associated with Oceanic Detachment Faults at the Ultra-Slow Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Marr, C.; John, B. E.; Cheadle, M. J.; German, C. R.

    2014-12-01

    Two well-preserved core complexes at the Mid-Cayman Rise (MCR), Mt Dent and Mt Hudson, provide an opportunity to examine the deformation history and rheology of detachment faults at an ultra-slow spreading ridge. Samples from the CAYTROUGH (1976-77) project and the Nautilus NA034 cruise (2013) were selected for detailed petrographic and microstructural study. Surface samples from Mt. Dent (near the center of the MCR) provide insight into lateral variation in footwall rock type and deformation history across a core complex in both the across and down dip directions. In contrast, sampling of Mt. Hudson (SE corner of the MCR) focuses on a high-angle, crosscutting normal fault scarp, which provides a cross section of the detachment fault system. Sampling across Mt Dent reveals that the footwall is composed of heterogeneously-distributed gabbro (47%) and peridotite (20%) with basaltic cover (33%) dominating the top of the core complex. Sampling of Mt Hudson is restricted to the normal fault scarp cutting the core complex and suggests the interior is dominated by gabbro (85% gabbro, 11% peridotite, 4% basalt). At Mt. Dent, peridotite is exposed within ~4km of the breakaway indicating that the Mt. Dent detachment does not cut Penrose-style oceanic crust. The sample set provides evidence of a full down-temperature sequence of detachment related-fault rocks, from possible granulite and clear amphibolite mylonitizatization to prehnite-pumpellyite brittle deformation. Both detachments show low-temperature brittle deformation overprinting higher temperature plastic fabrics. Fe-Ti oxide gabbro mylonites dominate the sample set, and plastic deformation of plagioclase is recorded in samples collected as near as ~4km from the inferred breakaway along the southern flank of Mt. Dent, suggesting the brittle-plastic transition was initially at ~3km depth. Recovered samples suggest strain associated with both detachment systems is localized into discrete mylonitic shear zones (~1-10cm thick), implying that the plastic portion of the fault consists of a broad zone of thin, anastomosing shear zones. Concentrations of Ti-rich magmatic hornblende and interstitial Fe-Ti oxides in the high strain horizons are consistent with the lowermost part of the fault(s) localizing in the margins of the mush zone of a shallow magma chamber.

  6. NASA Spacecraft Fault Management Workshop Results

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen

    2010-01-01

    Fault Management is a critical aspect of deep-space missions. For the purposes of this paper, fault management is defined as the ability of a system to detect, isolate, and mitigate events that impact, or have the potential to impact, nominal mission operations. The fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the findings and recommendations from that workshop, as well as opportunities identified for future investment in tools, processes, and products to facilitate the development of space flight fault management capabilities.

  7. Slip complexity and frictional heterogeneities in dynamic fault models

    NASA Astrophysics Data System (ADS)

    Bizzarri, A.

    2005-12-01

    The numerical modeling of earthquake rupture requires the specification of the fault system geometry, the mechanical properties of the media surrounding the fault, the initial conditions and the constitutive law for fault friction. The latter accounts for the fault zone properties and allows for the description of processes of nucleation, propagation, healing and arrest of a spontaneous rupture. In this work I solve the fundamental elasto-dynamic equation for a planar fault, adopting different constitutive equations (slip-dependent and rate- and state-dependent friction laws). We show that the slip patterns may be complicated by different causes. The spatial heterogeneities of constitutive parameters are able to cause the healing of slip, like barrier-healing or slip pulses. Our numerical experiments show that the heterogeneities of the parameter L affect the dynamic rupture propagation and weakly modify the dynamic stress drop and the rupture velocity. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way: a velocity strengthening area (a > b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties. Moreover, the slip distribution on the fault plane is complicated considering the effects of the rake rotation during the propagation: depending on the position on the fault plane, the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of the initial stress and on its distribution. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone, where the breakdown processes take places. Finally, the rupture behavior, the fault slip distribution and the traction evolution may be changed and complicated including additional physical phenomena, like thermal pressurization of pore fluid (due to frictional heating). Our results involve interesting implications for slip duration and fracture energy.

  8. Evolving transpressional strain fields along the San Andreas fault in southern California: implications for fault branching, fault dip segmentation and strain partitioning

    NASA Astrophysics Data System (ADS)

    Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil

    2014-05-01

    The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding, renewed strike-slip movements and contractile fold-thrust belt structures. Notably, the strike-slip movements on the San Andreas fault were transformed outward into the surrounding rocks as oblique-reverse faults to link up with the subsidiary Skeleton Canyon fault in the Mecca Hills. Instead of a classic flower structure model for this transpressional uplift, the San Andreas fault strands were segmented into domains that record; (i) early strike-slip motion, (ii) later oblique shortening with distributed deformation (en echelon fold domains), followed by (iii) localized fault-parallel deformation (strike-slip) and (iv) superposed out-of-sequence faulting and fault-normal, partitioned deformation (fold-thrust belt domains). These results contribute well to the question if spatial and temporal fold-fault branching and migration patterns evolving along non-vertical strike-slip fault segments can play a role in the localization of earthquakes along the San Andreas fault.

  9. Constraining geometrical, hydrodynamical and mechanical properties of a fault zone at hourly time scales from ground surface tilt data

    NASA Astrophysics Data System (ADS)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédéric

    2017-04-01

    Flow through reservoirs such as fractured media is powered by pressure gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of ground surface deformation and sub-surface fluid pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Amongst all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically-induced deformation over a broad range of time scales with a remarkable precision (1 nanoradian). Here, we investigate the information content of transient surface tilt generated by flow in a kilometer scale sub-vertical fault zone and its surrounding fractured rock matrix. Our approach involves the combined analysis of field data and results of a fully coupled poroelastic model, where fault and matrix are represented as equivalent homogeneous domains. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in: 1) tilt time series alone from a set of 4 instruments; 2) the ratio of tilt over pressure. With the model, we evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. In particular, we show a few well placed tiltmeters (on each side of a fault) give more information on the medium's properties than well spatialized surface displacement maps. Furthermore, the ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone, and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated to fault zone hydrogeology at short time scales, where space-borne surveying methods fail to seize any deformation signal.

  10. Geometry and slip rates of active blind thrusts in a reactivated back-arc rift using shallow seismic imaging: Toyama basin, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin; Toda, Shigeru; Kobayashi, Kenta

    2017-10-01

    Active blind thrust faults, which can be a major seismic hazard in urbanized areas, are commonly difficult to image with seismic reflection surveys. To address these challenges in coastal plains, we collected about 8 km-long onshore high-resolution two-dimensional (2D) seismic reflection data using a dense array of 800 geophones across compressionally reactivated normal faults within a failed rift system located along the southwestern extension of the Toyama trough in the Sea of Japan. The processing of the seismic reflection data illuminated their detailed subsurface structures to depths of about 3 km. The interpreted depth-converted section, correlated with nearby Neogene stratigraphy, indicated the presence of and along-strike variation of previously unrecognized complex thrust-related structures composed of active fault-bend folds coupled with pairs of flexural slip faults within the forelimb and newly identified frontal active blind thrusts beneath the alluvial plain. In addition, growth strata and fold scarps that deform lower to upper Pleistocene units record the recent history of their structural growth and fault activity. This case shows that shallow seismic reflection imaging with densely spaced seismic recorders is a useful tool in defining locations, recent fault activity, and complex geometry of otherwise inaccessible active blind thrust faults.

  11. Brittle extension of the continental crust along a rooted system of low-angle normal faults: Colorado River extensional corridor

    NASA Technical Reports Server (NTRS)

    John, B. E.; Howard, K. A.

    1985-01-01

    A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.

  12. Software Fault Tolerance: A Tutorial

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2000-01-01

    Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.

  13. SABRE: a bio-inspired fault-tolerant electronic architecture.

    PubMed

    Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-03-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.

  14. Seismic Reflection Imaging of the Tucson Basin and Subsurface Relations Between the Catalina Detachment System and the Santa Rita Fault, SE Arizona

    NASA Astrophysics Data System (ADS)

    Wagner, F. T.; Johnson, R. A.

    2003-12-01

    Industry seismic reflection data collected in SE Arizona in the 1970's imaged the structure of the Tucson basin, the low-angle Catalina detachment fault, and the Santa Rita fault. Recent reprocessing of these data, including detailed near-surface statics compensation and modern event-migration techniques, have served to better focus the subsurface images. The Tucson basin occupies an area of approximately 2600 km2 and is bounded to the northeast by the Catalina-Rincon metamorphic core complex and to the south by the Santa Rita Mountains. The basin is characterized by an apparent half-graben structure down dropped along the eastern side and filled with up to 3700 m of Oligocene to recent volcanic and sedimentary rocks. In the northern portion of the basin, the gently-dipping ( ˜30 degrees) Catalina detachment fault is imaged from the western flank of the core complex dipping to the southwest beneath the Tucson basin. The detachment surface is evident to several seconds two-way-time in the seismic data and is characterized by broad corrugations parallel to extension with wavelengths of tens of kilometers. In the southern portion of the basin, the Santa Rita fault is imaged at the northwest side of the Santa Rita Mountains and dips ˜20 degrees to the northwest beneath the Tucson basin. Large, rotated hanging-wall blocks are also imaged above both the Catalina detachment and Santa Rita faults. While the Catalina detachment fault is no longer active, geomorphic analysis of fault scarps along the western flank of the Santa Rita Mountains supports recent (60-100 ka) movement on the Santa Rita fault. Preliminary results indicate that the Santa Rita fault terminates against the Catalina detachment fault beneath the central basin, suggesting that the recent movement observed on this fault may be, in part, a reactivation of the older fault surface.

  15. Preliminary geologic map of the Murrieta 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Kennedy, Michael P.; Morton, Douglas M.

    2003-01-01

    The Murrieta quadrangle is located in the northern part of the Peninsular Ranges Province and includes parts of two structural blocks, or structural subdivisions of the province. The quadrangle is diagonally crossed by the active Elsinore fault zone, a major fault zone of the San Andreas fault system, and separates the Santa Ana Mountains block to the west from the Perris block to the east. Both blocks are relatively stable internally and within the quadrangle are characterized by the presence of widespread erosional surfaces of low relief. The Santa Ana Mountains block, in the Murrieta quadrangle, is underlain by undifferentiated, thick-layered, granular, impure quartzite and well-layered, fissile, phyllitic metamorphic rock of low metamorphic grade. Both quartzite and phyllitic rocks are Mesozoic. Unconformably overlying the metamorphic rocks are remnants of basalt flows having relatively unmodified flow surfaces. The age of the basalt is about 7-8Ma. Large shallow depressions on the surface of the larger basalt remnants form vernal ponds that contain an endemic flora. Beneath the basalt the upper part of the metamorphic rocks is deeply weathered. The weathering appears to be the same as the regional Paleocene saprolitic weathering in southern California. West of the quadrangle a variable thickness sedimentary rock, physically resembling Paleogene rocks, occurs between the basalt and metamorphic rock. Where not protected by the basalt, the weathered rock has been removed by erosion. The dominant feature on the Perris block in the Murrieta quadrangle is the south half of the Paloma Valley ring complex, part of the composite Peninsular Ranges batholith. The complex is elliptical in plan view and consists of an older ring-dike with two subsidiary short-arced dikes that were emplaced into gabbro by magmatic stoping. Small to large stoped blocks of gabbro are common within the ring-dikes. A younger ring-set of hundreds of thin pegmatite dikes occur largely within the central part of the complex. These pegmatite dikes were emplaced into a domal fracture system, apparently produced by cauldron subsidence, and include in the center of the complex, a number of flat-floored granophyre bodies. The granophyre is interpreted to be the result of pressure quenching of pegmatite magma. Along the eastern edge of the quadrangle is the western part of a large septum of medium metamorphic grade Mesozoic schist. A dissected basalt flow caps the Hogbacks northeast of Temecula, and represents remnants of a channel filling flow. Beneath the basalt is a thin deposit of stream gravel. Having an age of about 10Ma, this basalt is about 2-3Ma older than the basalt flows in the Santa Ana Mountains. The Elsinore fault zone forms a complex of pull-apart basins. The west edge of the fault zone, the Willard Fault, is marked by the high, steep eastern face of the Santa Ana Mountains. The east side of the zone, the Wildomar Fault, forms a less pronounced physiographic step. In the center of the quadrangle a major splay of the fault zone, the Murrieta Hot Springs Fault, strikes east. Branching of the fault zone causes the development of a broad alluvial valley between the Willard Fault and the Murrieta Hot Springs Fault. All but the axial part of the zone between the Willard and Wildomar Faults consist of dissected Pleistocene sedimentary units. The axial part of the zone is underlain by Holocene and latest Pleistocene sedimentary units.

  16. Automatic translation of digraph to fault-tree models

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    1992-01-01

    The author presents a technique for converting digraph models, including those models containing cycles, to a fault-tree format. A computer program which automatically performs this translation using an object-oriented representation of the models has been developed. The fault-trees resulting from translations can be used for fault-tree analysis and diagnosis. Programs to calculate fault-tree and digraph cut sets and perform diagnosis with fault-tree models have also been developed. The digraph to fault-tree translation system has been successfully tested on several digraphs of varying size and complexity. Details of some representative translation problems are presented. Most of the computation performed by the program is dedicated to finding minimal cut sets for digraph nodes in order to break cycles in the digraph. Fault-trees produced by the translator have been successfully used with NASA's Fault-Tree Diagnosis System (FTDS) to produce automated diagnostic systems.

  17. Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,

  18. The earthquake prediction experiment at Parkfield, California

    USGS Publications Warehouse

    Roeloffs, E.; Langbein, J.

    1994-01-01

    Since 1985, a focused earthquake prediction experiment has been in progress along the San Andreas fault near the town of Parkfield in central California. Parkfield has experienced six moderate earthquakes since 1857 at average intervals of 22 years, the most recent a magnitude 6 event in 1966. The probability of another moderate earthquake soon appears high, but studies assigning it a 95% chance of occurring before 1993 now appear to have been oversimplified. The identification of a Parkfield fault "segment" was initially based on geometric features in the surface trace of the San Andreas fault, but more recent microearthquake studies have demonstrated that those features do not extend to seismogenic depths. On the other hand, geodetic measurements are consistent with the existence of a "locked" patch on the fault beneath Parkfield that has presently accumulated a slip deficit equal to the slip in the 1966 earthquake. A magnitude 4.7 earthquake in October 1992 brought the Parkfield experiment to its highest level of alert, with a 72-hour public warning that there was a 37% chance of a magnitude 6 event. However, this warning proved to be a false alarm. Most data collected at Parkfield indicate that strain is accumulating at a constant rate on this part of the San Andreas fault, but some interesting departures from this behavior have been recorded. Here we outline the scientific arguments bearing on when the next Parkfield earthquake is likely to occur and summarize geophysical observations to date.

  19. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  20. Complex Mapping of Aerofoils--A Different Perspective

    ERIC Educational Resources Information Center

    Matthews, Miccal T.

    2012-01-01

    In this article an application of conformal mapping to aerofoil theory is studied from a geometric and calculus point of view. The problem is suitable for undergraduate teaching in terms of a project or extended piece of work, and brings together the concepts of geometric mapping, parametric equations, complex numbers and calculus. The Joukowski…

  1. Complexity of Geometric Inductive Reasoning Tasks: Contribution to the Understanding of Fluid Intelligence.

    ERIC Educational Resources Information Center

    Primi, Ricardo

    2002-01-01

    Created two geometric inductive reasoning matrix tests by manipulating four sources of complexity orthogonally. Results for 313 undergraduates show that fluid intelligence is most strongly associated with the part of the central executive component of working memory that is related to controlled attention processing and selective encoding. (SLD)

  2. Advanced Fault Diagnosis Methods in Molecular Networks

    PubMed Central

    Habibi, Iman; Emamian, Effat S.; Abdi, Ali

    2014-01-01

    Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally. PMID:25290670

  3. Magnitude, Timing, and Geometry of Extension in the Southern Sevier Desert Basin From Piercing Points, Seismic-Stratigraphic Reconstruction, and Deep well Data

    NASA Astrophysics Data System (ADS)

    Coogan, J. C.; Decelles, P. G.

    2007-12-01

    Palinspastic reconstruction of Mesozoic thrust sheets provides the main constraint for an estimated 47 km of Cenozoic extensional displacement along the Sevier Desert detachment (SDD) in the central Sevier Desert Basin. Hanging wall and footwall piercing points indicate that the SDD accommodated a minimum of 35 km of extensional displacement in the narrower southern part of the basin. The piercing points for the SDD are defined by the intersection of the SDD, the Canyon Range thrust (CRT), and a regional early Cenozoic erosion surface (ES). The hanging wall piercing point lies immediately northeast of the Cricket Mountains, where the SDD-CRT- ES intersection is narrowly defined by intersecting structure maps derived from published seismic reflection data. The footwall piercing point lies in the southern foothills of the Canyon Range, where the SDD breakaway plane is well constrained by an industry seismic line that lies within 2 km of the exposed intersection of the CRT with the base of the Oligocene Oak City Formation. Timing of extension in the southern Sevier Desert basin is constrained by a kinematic reconstruction of detachment and imbricate fault displacement, footwall uplift, and supradetachment sedimentation for Oligocene, Miocene, and Plio-Pleistocene seismic sequences. The reconstruction is centered on a seismic reflection and gravity interpretation along the published Pan Canadian profiles 2 and 3 that is tied to dated intervals in six industry wells. Fault restoration indicates that Oligocene and Miocene phases of slip each accounted for about 40 percent of the total displacement. Simultaneous backstripping of the Oligocene, Miocene, and Plio-Pleistocene supradetachment sequences records hanging wall subsidence simultaneous with footwall uplift, with a footwall burial history that is consistent with published Miocene apatite and zircon fission-track ages of footwall samples. The geometric evolution of the southern SDD extensional system is consistent with its development above a broad westward-migrating "rolling hinge" zone associated with isostatic uplift of the detachment footwall. Hanging wall normal faults east of the footwall crest exhibit small post-Miocene displacement, with demonstrable Quaternary slip restricted to the crest and western limb of the uplift, most notably along the Black Rock and Clear Lake fault zones. Early abandonment of the eastern part of the detachment may explain the indistinct geomorphic and structural expression of the break-away zone at the surface. The deepest level of the southern SDD also presents a complex geometry and kinematic history. The 1996 Chevron 1-29 Black Rock Federal well through the western basin margin penetrated a normal fault that places Jurassic over lower Cambrian strata at 4650 m measured depth, well above the principal SDD seismic reflection. The fault is not correlated to any large- displacement high-angle fault at shallow levels, and may form the abandoned roof to an extensional duplex.

  4. Fault zone characteristics and basin complexity in the southern Salton Trough, California

    USGS Publications Warehouse

    Persaud, Patricia; Ma, Yiran; Stock, Joann M.; Hole, John A.; Fuis, Gary S.; Han, Liang

    2016-01-01

    Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A VP = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.

  5. Fast and accurate spectral estimation for online detection of partial broken bar in induction motors

    NASA Astrophysics Data System (ADS)

    Samanta, Anik Kumar; Naha, Arunava; Routray, Aurobinda; Deb, Alok Kanti

    2018-01-01

    In this paper, an online and real-time system is presented for detecting partial broken rotor bar (BRB) of inverter-fed squirrel cage induction motors under light load condition. This system with minor modifications can detect any fault that affects the stator current. A fast and accurate spectral estimator based on the theory of Rayleigh quotient is proposed for detecting the spectral signature of BRB. The proposed spectral estimator can precisely determine the relative amplitude of fault sidebands and has low complexity compared to available high-resolution subspace-based spectral estimators. Detection of low-amplitude fault components has been improved by removing the high-amplitude fundamental frequency using an extended-Kalman based signal conditioner. Slip is estimated from the stator current spectrum for accurate localization of the fault component. Complexity and cost of sensors are minimal as only a single-phase stator current is required. The hardware implementation has been carried out on an Intel i7 based embedded target ported through the Simulink Real-Time. Evaluation of threshold and detectability of faults with different conditions of load and fault severity are carried out with empirical cumulative distribution function.

  6. Microstructural and fabric characterization of brittle-ductile transitional deformation of middle crustal rocks along the Jinzhou detachment fault zone, Northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Juyi; Jiang, Hao; Liu, Junlai

    2017-04-01

    Detachment fault zones (DFZs) of metamorphic core complexes generally root into the middle crust. Exhumed DFZs therefore generally demonstrate structural, microstructural and fabric features characteristic of middle to upper crustal deformation. The Jinzhou detachment fault zone from the Liaonan metamorphic core complex is characterized by the occurrence of a sequence of fault rocks due to progressive shearing along the fault zone during exhumation of the lower plate. From the exhumed fabric zonation, cataclastic rocks formed in the upper crust occur near the Jinzhou master detachment fault, and toward the lower plate gradually changed to mylonites, mylonitic gneisses and migmatitic gneisses. Correspondingly, these fault rocks have various structural, microstructural and fabric characteristics that were formed by different deformation and recrystallization mechanisms from middle to upper crustal levels. At the meanwhile, various structural styles for strain localization were formed in the DFZ. As strain localization occurs, rapid changes in deformation mechanisms are attributed to increases in strain rates or involvement of fluid phases during the brittle-ductile shearing. Optical microscopic studies reveal that deformed quartz aggregates in the lower part of the detachment fault zone are characterized by generation of dynamically recrystallized grains via SGR and BLG recrystallization. Quartz rocks from the upper part of the DFZ have quartz porphyroclasts in a matrix of very fine recrystallized grains. The porphyroclasts have mantles of sub-grains and margins grain boundary bulges. Electron backscattered diffraction technique (EBSD) quartz c-axis fabric analysis suggests that quartz grain aggregates from different parts of the DFZ possess distinct fabric complexities. The c-axis fabrics of deformed quartz aggregates from mylonitic rocks in the lower part of the detachment fault zone preserve Y-maxima which are ascribed to intermediate temperature deformation (500-630˚ C), whereas complicated fabric patterns (e.g. asymmetric single girdles) are formed in fault rocks from the upper part of the DFZ. The increasing fabric complexity is here interpreted as the result of progressive superposition of fault rocks by shearing either at relatively shallow levels or high rate of strain, during exhumation of the lower plate and shear zone rocks. The above observations and interpretations imply that dislocation creep processes contribute to the dynamic recrystallization of quartz in the middle crustal brittle-ductile transition. Progressive shearing as a consequence of exhumation of the lower plate of the MCC contributed to the obvious structural, microstructural and fabric superpositions. Strain localization occurs as the progressive shearing proceeded. Transition of mechanisms of deformation and dynamic recrystallization during strain localization may be resulted from changes in temperature conditions, in strain rates or addition of minor amount water.

  7. What lies beneath: geophysical mapping of a concealed Precambrian intrusive complex along the Iowa–Minnesota border

    USGS Publications Warehouse

    Drenth, Benjamin J.; Anderson, Raymond R.; Schulz, Klaus J.; Feinberg, Joshua M.; Chandler, Val W.; Cannon, William F.

    2015-01-01

    Large-amplitude gravity and magnetic highs over northeast Iowa are interpreted to reflect a buried intrusive complex composed of mafic–ultramafic rocks, the northeast Iowa intrusive complex (NEIIC), intruding Yavapai province (1.8–1.72 Ga) rocks. The age of the complex is unproven, although it has been considered to be Keweenawan (∼1.1 Ga). Because only four boreholes reach the complex, which is covered by 200–700 m of Paleozoic sedimentary rocks, geophysical methods are critical to developing a better understanding of the nature and mineral resource potential of the NEIIC. Lithologic and cross-cutting relations interpreted from high-resolution aeromagnetic and airborne gravity gradient data are presented in the form of a preliminary geologic map of the basement Precambrian rocks. Numerous magnetic anomalies are coincident with airborne gravity gradient (AGG) highs, indicating widespread strongly magnetized and dense rocks of likely mafic–ultramafic composition. A Yavapai-age metagabbro unit is interpreted to be part of a layered intrusion with subvertical dip. Another presumed Yavapai unit has low density and weak magnetization, observations consistent with felsic plutons. Northeast-trending, linear magnetic lows are interpreted to reflect reversely magnetized diabase dikes and have properties consistent with Keweenawan rocks. The interpreted dikes are cut in places by normally magnetized mafic–ultramafic rocks, suggesting that the latter represent younger Keweenawan rocks. Distinctive horseshoe-shaped magnetic and AGG highs correspond with a known gabbro, and surround rocks with weaker magnetization and lower density. Here, informally called the Decorah complex, the source body has notable geophysical similarities to Keweenawan alkaline ring complexes, such as the Coldwell and Killala Lake complexes, and Mesoproterozoic anorogenic complexes, such as the Kiglapait, Hettasch, and Voisey’s Bay intrusions in Labrador. Results presented here suggest that much of the NEIIC is composed of such complexes, and broadly speaking, may be a discontinuous group of several intrusive bodies. Most units are cut by suspected northwest-trending faults imaged as magnetic lineaments, and one produces apparent sinistral fault separation of a dike in the eastern part of the survey area. The location, trend, and apparent sinistral sense of motion are consistent with the suspected faults being part of the Belle Plaine fault zone, a complex transform fault zone within the Midcontinent rift system that is here proposed to correspond with a major structural discontinuity.

  8. Advanced Techniques for Ultrasonic Imaging in the Presence of Material and Geometrical Complexity

    NASA Astrophysics Data System (ADS)

    Brath, Alexander Joseph

    The complexity of modern engineering systems is increasing in several ways: advances in materials science are leading to the design of materials which are optimized for material strength, conductivity, temperature resistance etc., leading to complex material microstructure; the combination of additive manufacturing and shape optimization algorithms are leading to components with incredibly intricate geometrical complexity; and engineering systems are being designed to operate at larger scales in ever harsher environments. As a result, at the same time that there is an increasing need for reliable and accurate defect detection and monitoring capabilities, many of the currently available non-destructive evaluation techniques are rendered ineffective by this increasing material and geometrical complexity. This thesis addresses the challenges posed by inspection and monitoring problems in complex engineering systems with a three-part approach. In order to address material complexities, a model of wavefront propagation in anisotropic materials is developed, along with efficient numerical techniques to solve for the wavefront propagation in inhomogeneous, anisotropic material. Since material and geometrical complexities significantly affect the ability of ultrasonic energy to penetrate into the specimen, measurement configurations are tailored to specific applications which utilize arrays of either piezoelectric (PZT) or electromagnetic acoustic transducers (EMAT). These measurement configurations include novel array architectures as well as the exploration of ice as an acoustic coupling medium. Imaging algorithms which were previously developed for isotropic materials with simple geometry are adapted to utilize the more powerful wavefront propagation model and novel measurement configurations.

  9. Fault management for data systems

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann

    1993-01-01

    Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.

  10. Tectonic inheritance, reactivation and long term fault weakening processes

    NASA Astrophysics Data System (ADS)

    Holdsworth, Bob

    2017-04-01

    This talk gives a geological review of weakening processes in faults and their long-term effect on reactivation and tectonic inheritance during crustal deformation. Examples will be drawn from the Atlantic margins, N America, Japan and the Alps. Tectonic inheritance and reactivation are fundamentally controlled by the processes of stress concentration and shear localisation manifested at all scales in the continental lithosphere. Lithosphere-scale controls include crustal thickness, thermal age and the boundary conditions imposed by the causative plate tectonic processes during extension. At the other end of the scale range, grain-scale controls include local environmental controls (depth, stress, strain rate), rock composition, grainsize, fabric intensity and the presence of fluids or melt. Intermediate-scale geometric controls are largely related to the size, orientation and interconnectivity of pre-existing anisotropies. If reactivation of pre-existing structures occurs, it likely requires a combination of processes across all three scale ranges to be favourable. This can make the unequivocal recognition of inheritance and reactivation difficult. Large (e.g. crustal-scale) pre-existing structures are especially important due to their ability to efficiently concentrate stress and localise strain. For big faults (San Andreas, Great Glen, Median Tectonic Line), detailed studies of the associated exposed fault rocks indicate that reactivation is linked to the development of strongly anisotropic phyllosilicate-rich fault rocks that are weak (e.g. friction coefficients as low as 0.2 or less) under a broad range of deformation conditions. In the case of pre-existing regional dyke swarms (S Atlantic, NW Scotland) - which may themselves track deep mantle fabrics at depth - multiple reactivation of dyke margins is widespread and may preclude reactivation of favourably oriented local basement fabrics. In a majority of cases, pre-existing structures in the crust are significantly oblique (<70°) to far field stress orientations. As a result, even quite modest amounts of reactivation will inevitably lead to transtensional/transpressional strains involving variable components of strike-slip and extension or shortening. The occurrence of bulk non-coaxial, non-plane strain leads to strain partitioning and/or (non-Andersonian) multimodal fracturing where the deformation cannot be described or reconstructed in single 2D cross-sectional or map view. Further complications can arise due to repeated seismogenic rupturing of larger offset faults leading to local stress transfer and reactivation of widely distributed smaller pre-existing structures in the wall rocks (e.g. Adamello Massif, Alps). The Atlantic margins demonstrate that pre-existing structures can influence deformation patterns across a range of scales, but such reactivation should never be assumed to be the norm. In many cases, the scales of faulting and displacement magnitudes associated with these reactivation events are modest compared to the regional-scale deformation of the margin. However, reactivation most certainly does influence the kilometre and smaller-scale complexity of faults, fractures and folds. It will therefore impact significantly on the development of geological architectures and their economic importance, e.g. location and nature of fluid channelways, trap geometries, reservoir performance, etc.

  11. New Structural Interpretation of the Central Confusion Range, Western Utah, Based On Balanced Cross Sections

    NASA Astrophysics Data System (ADS)

    Yezerski, D.; Greene, D. C.

    2009-12-01

    The Confusion Range is a topographically low mountain range in the Basin and Range of west-central Utah, located east of and in the hanging wall of the Snake Range core complex. Previous workers have used a gravity sliding model to interpret the Confusion Range as a large structural trough or synclinorium (e.g. Hose, 1977). Based on existing mapping (Hose, 1965; Hintze, 1974) and new field data, we use balanced and restored cross sections to reinterpret the structure of the Confusion Range as an east-vergent fold-and-thrust belt formed during the Sevier Orogeny. The Confusion Range consists of Cambro-Ordovician through Triassic strata, with predominantly thick-bedded, competent carbonate rocks in the lower Paleozoic (lPz) section and incompetent shales and thin-bedded carbonates in the upper Paleozoic (uPz) section. The contrasting mechanical behavior of these stratigraphic sections results in faulted folds within uPz carbonates above detachments in shale-rich units, deforming in response to ramp-flat thrust faulting of the underlying lPz units. East of the axis of the Conger Mountain (Mtn) syncline, we attribute the increase in structural elevation of lPz rocks to a subsurface thrust sheet consisting of lPz strata that advanced eastward via a high-angle ramp from a lower detachment in the Kanosh Shale to an upper detachment in the Pilot Shale. The doubling of lPz strata that resulted continues through the eastern Confusion Range where a series of small-displacement thrust faults comprising the Kings Canyon thrust system gently tilt strata to the west. In the Conger Range, west of the Conger Mtn syncline, our analysis focuses on reinterpreting the geometrically unlikely folding depicted in previous cross sections as more admissible, fault-cored, asymmetric, detached folding. In our interpretation, resistance created by a steeply-dipping thrust ramp in the lPz section west of Conger Mtn resulted in folding of uPz strata into an east-vergent anticline. Continued east-vergent contraction against the ramp resulted in the west-dipping limb of the anticline, consisting of Ely Limestone, developing into an overturned, west-vergent, synclinal backfold detached in the Chainman Shale. Further contraction exceeded the fold capacity of the detachment fold and resulted in the formation of the Browns Wash fault as an east-vergent thrust fault. The Browns Wash fault is a key component in the development of the present structural geometry, emplacing a west-vergent overturned syncline (detachment fold) in the hanging wall against an east-vergent overturned syncline (footwall syncline) in the footwall. Further west, underlying the western Conger Range and Buckskin Hills, lPz strata are exposed in what we interpret to be a ramp anticline overlying a subsurface thrust ramp. This interpretation implies a lateral ramp separating lPz rocks in the Buckskin Hills from uPz rocks exposed in the Knoll Hill anticline to the north. UPz and Mesozoic strata exposed to the west on the edge of Snake Valley were emplaced by a Tertiary west-dipping normal fault that truncated the west limb of the ramp anticline.

  12. Coseismic stresses indicated by pseudotachylytes in the Outer Hebrides Fault Zone, UK.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy; Lloyd, Geoffrey; Phillips, Richard; Holdsworth, Robert; Walcott, Rachel

    2015-04-01

    During the few seconds of earthquake slip, dynamic behaviour is predicted for stress, slip velocity, friction and temperature, amongst other properties. Fault-derived pseudotachylyte is a coseismic frictional melt and provides a unique snapshot of the rupture environment. Exhumation of ancient fault zones to seismogenic depths can reveal the structure and distribution of seismic slip as pseudotachylyte bearing fault planes. An example lies in NW Scotland along the Outer Hebrides Fault Zone (OHFZ) - this long-lived fault zone displays a suite of fault rocks developed under evolving kinematic regimes, including widespread pseudotachylyte veining which is distributed both on and away from the major faults. This study adds data derived from the OHFZ pseudotachylytes to published datasets from well-constrained fault zones, in order to explore the use of existing methodologies on more complex faults and to compare the calculated results. Temperature, stress and pressure are calculated from individual fault veins and added to existing datasets. The results pose questions on the physical meaning of the derived trends, the distribution of seismic energy release across scattered cm-scale faults and the range of earthquake magnitudes calculated from faults across any given fault zone.

  13. Dynamic Simulation of the 2011 M9.0 Tohoku Earthquake with Geometric Complexity on a Rate- and State-dependent Subduction Plane

    NASA Astrophysics Data System (ADS)

    Luo, B.; Duan, B.

    2015-12-01

    The Mw 9.0 Tohoku megathrust earthquake on 11 March 2011 is a great surprise to the scientific community due to its unexpected occurrence on the subduction zone of Japan Trench where earthquakes of magnitude ~7 to 8 are expected based on historical records. Slip distribution and kinematic slip history inverted from seismic data, GPS and tsunami recordings reveal two major aspects of this big event: a strong asperity near the hypocenter and large slip near the trench. To investigate physical conditions of these two aspects, we perform dynamic rupture simulations on a shallow-dipping rate- and state-dependent subduction plane with topographic relief. Although existence of a subducted seamount just up-dip of the hypocenter is still an open question, high Vp anomalies [Zhao et al., 2011] and low Vp/Vs anomalies [Yamamoto et al., 2014] there strongly suggest some kind of topographic relief exists there. We explicitly incorporate a subducted seamount on the subduction surface into our models. Our preliminary results show that the subducted seamount play a significant role in dynamic rupture propagation due to the alteration of the stress state around it. We find that a subducted seamount can act as a strong barrier to many earthquakes, but its ultimate failure after some earthquake cycles results in giant earthquakes. Its failure gives rise to large stress drop, resulting in a strong asperity in slip distribution as revealed in kinematic inversions. Our preliminary results also suggest that the rate- and state- friction law plays an important role in rupture propagation of geometrically complex faults. Although rate-strengthening behavior near the trench impedes rupture propagation, an energetic rupture can break such a barrier and manage to reach the trench, resulting in significant uplift at seafloor and hence devastating tsunami to human society.

  14. The Ionian and Alfeo-Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea?

    NASA Astrophysics Data System (ADS)

    Polonia, A.; Torelli, L.; Artoni, A.; Carlini, M.; Faccenna, C.; Ferranti, L.; Gasperini, L.; Govers, R.; Klaeschen, D.; Monaco, C.; Neri, G.; Nijholt, N.; Orecchio, B.; Wortel, R.

    2016-04-01

    The Calabrian Arc is a narrow subduction-rollback system resulting from Africa/Eurasia plate convergence. While crustal shortening is taken up in the accretionary wedge, transtensive deformation accounts for margin segmentation along transverse lithospheric faults. One of these structures is the NNW-SSE transtensive fault system connecting the Alfeo seamount and the Etna volcano (Alfeo-Etna Fault, AEF). A second, NW-SE crustal discontinuity, the Ionian Fault (IF), separates two lobes of the CA subduction complex (Western and Eastern Lobes) and impinges on the Sicilian coasts south of the Messina Straits. Analysis of multichannel seismic reflection profiles shows that: 1) the IF and the AEF are transfer crustal tectonic features bounding a complex deformation zone, which produces the downthrown of the Western lobe along a set of transtensive fault strands; 2) during Pleistocene times, transtensive faulting reactivated structural boundaries inherited from the Mesozoic Tethyan domain which acted as thrust faults during the Messinian and Pliocene; and 3) the IF and the AEF, and locally the Malta escarpment, accommodate a recent tectonic event coeval and possibly linked to the Mt. Etna formation. Regional geodynamic models show that, whereas AEF and IF are neighboring fault systems, their individual roles are different. Faulting primarily resulting from the ESE retreat of the Ionian slab is expressed in the northwestern part of the IF. The AEF, on the other hand, is part of the overall dextral shear deformation, resulting from differences in Africa-Eurasia motion between the western and eastern sectors of the Tyrrhenian margin of northern Sicily, and accommodating diverging motions in the adjacent compartments, which results in rifting processes within the Western Lobe of the Calabrian Arc accretionary wedge. As such, it is primarily associated with Africa-Eurasia relative motion.

  15. Blueschist- and Eclogite facies Pseudotachylytes: Products of Earthquakes in Collision- and Subduction zones

    NASA Astrophysics Data System (ADS)

    Andersen, T. B.; Austrheim, H.; John, T.; Medvedev, S.; Mair, K.

    2009-04-01

    Pseudotachylytes are the products of violent geological processes such as metorite impacts and seismic faulting. The fault-rock weakening processes leading to release of earthquakes are commonly related to phenomena such as grain size reduction and gouge formation, pressurization of pore-fluids and in some cases to melting by frictional heating. Explaining the frequently observed intermediate and deep earthquakes by brittle failure is, however, inherently difficult to reconcile because of extremely high normal stresses occuring at depth. In recent years several mechanisms for seismic events on deep faults have been suggested. These include: a) The most commonly accepted mechanism, dehydration embrittlement coupled to prograde metamorphic dehydration of wet rocks, such as serpentinites, at depth. b) Grain-size dependent flow-laws coupled with shear heating instability has been suggested as an alternative to explain repeated seismic faulting in Wadati-Benioff zones. c) Self-localized-thermal-runaway (SLTR) has been forwarded as a mechanism for ultimate failure of visco-elastic materials and as mechanism to explain the co-existence of shear zones and pseudotachylyte fault veins formed at eclogite facies conditions. All these mechanism point to the importance of metamorphism and/or metasomatism in understanding the mechanism(s) of intermediate- and deep earthquakes. Exhumed high to ultra-high pressure [(U)HP] metamorphic rocks are recognized in many orogenic belts. These complexes provide avenues to study a number of important products of geological processes including earthquakes with hypocentres at great depths. (U)HP co-seismic fault rocks are difficult to find in the field; nevertheless, a number of occurrences of co-seismic fault rocks from such complexes have been described after the initial discovery of such rocks in Norway (see: Austrheim and Boundy, Science 1994). In this talk we review some observations and interpretations based on these hitherto rarely observed but important co-seismic fault rocks from deep-crust and mantle complexes.

  16. Analysis of Multilayered Printed Circuit Boards using Computed Tomography

    DTIC Science & Technology

    2014-05-01

    complex PCBs that present a challenge for any testing or fault analysis. Set-to- work testing and fault analysis of any electronic circuit require...Electronic Warfare and Radar Division in December 2010. He is currently in Electro- Optic Countermeasures Group. Samuel works on embedded system design...and software optimisation of complex electro-optical systems, including the set to work and characterisation of these systems. He has a Bachelor of

  17. Irregular earthquake recurrence patterns and slip variability on a plate-boundary Fault

    NASA Astrophysics Data System (ADS)

    Wechsler, N.; Rockwell, T. K.; Klinger, Y.

    2015-12-01

    The Dead Sea fault in the Levant represents a simple, segmented plate boundary from the Gulf of Aqaba northward to the Sea of Galilee, where it changes its character into a complex plate boundary with multiple sub-parallel faults in northern Israel, Lebanon and Syria. The studied Jordan Gorge (JG) segment is the northernmost part of the simple section, before the fault becomes more complex. Seven fault-crossing buried paleo-channels, offset by the Dead Sea fault, were investigated using paleoseismic and geophysical methods. The mapped offsets capture the long-term rupture history and slip-rate behavior on the JG fault segment for the past 4000 years. The ~20 km long JG segment appears to be more active (in term of number of earthquakes) than its neighboring segments to the south and north. The rate of movement on this segment varies considerably over the studied period: the long-term slip-rate for the entire 4000 years is similar to previously observed rates (~4 mm/yr), yet over shorter time periods the rate varies from 3-8 mm/yr. Paleoseismic data on both timing and displacement indicate a high COV >1 (clustered) with displacement per event varying by nearly an order of magnitude. The rate of earthquake production does not produce a time predictable pattern over a period of 2 kyr. We postulate that the seismic behavior of the JG fault is influenced by stress interactions with its neighboring faults to the north and south. Coulomb stress modelling demonstrates that an earthquake on any neighboring fault will increase the Coulomb stress on the JG fault and thus promote rupture. We conclude that deriving on-fault slip-rates and earthquake recurrence patterns from a single site and/or over a short time period can produce misleading results. The definition of an adequately long time period to resolve slip-rate is a question that needs to be addressed and requires further work.

  18. Kinematics of Faulting and Structural Evolution of Neogene Supra-detachment Basins on the Menderes Metamorphic Core Complex, Western Anatolia

    NASA Astrophysics Data System (ADS)

    Dilek, Y.; Oner, Z.; Davis, E. A.

    2007-12-01

    The Menderes metamorphic massif (MM) in western Anatolia is a classic core complex with exhumed high-grade crustal rocks intruded by granodioritic plutons and overlain by syn-extensional sedimentary rocks. Timing and the mechanism(s) of the initial exhumation of the MM are controversial, and different hypotheses exist in the literature. Major structural grabens (i.e. Alasehir, Buyuk Menderes) within the MM that are bounded by high-angle and seismically active faults are late-stage brittle structures, which characterize the block-faulting phase in the extensional history of the core complex and are filled with Quaternary sediments. On the southern shoulder of the Alasehir graben high-grade metamorphic rocks of the MM are overlain by the Miocene and younger sedimentary rocks above a N-dipping detachment surface. The nearly 100-m-thick cataclastic shear zone beneath this surface contain S-C fabrics, microfaults, Riedel shears, mica-fish structures and shear bands, all consistently indicating top-to-the North shearing. Granodioritic plutons crosscutting the MM and the detachment surface are exposed within this cataclastic zone, displaying extensional ductile and brittle structures. The oldest sedimentary rocks onlapping the cataclastic shear zone of the MM here are the Middle Miocene lacustrine shale and limestone units, unconformably overlain by the Upper Miocene fluvial and alluvial fan deposits. Extensive development of these alluvial fan deposits by the Late Miocene indicates the onset of range-front faulting in the MM by this time, causing a surge of coarse clastic deposition along the northern edge of the core complex. The continued exhumation and uplift of the MM provided the necessary relief and detrital material for the Plio-Pleistocene fluvial systems in the Alasehir supradetachment basin (ASDB). A combination of rotational normal faulting and scissor faulting in the extending ASDB affected the depositional patterns and drainage systems, and produced local unconformities within the basinal stratigraphy. High-angle, oblique-slip scissor faults crosscutting the MM rocks, the detachment surface and the basinal strata offset them for more than few 100 meters and the fault blocks locally show different structural architecture and metamorphic grades, suggesting differential uplift along these scissor faults. This fault kinematics and the distribution of range-parallel and range-perpendicular faults strongly controlled the shape and depth of the accommodation space within the ASDB. At a more regional scale scissor faulting across the MM seems to have controlled the foci of Plio-Pleistocene point-source volcanism in the Aegean extensional province (e.g. Kula area). There are no major interruptions in the syn-extensional depositional history of the ASDB, ruling out the pulsed-extension models suggesting a period of contractional deformation in the late Cenozoic evolution of the MM. The onset of exhumation and extensional tectonics in the MM and western Anatolia was a result of thermal weakening of the orogenic crust, following a widespread episode of post-collisional magmatism in the broader Aegean region during the Eocene through Miocene.

  19. The 10 April 2014 Nicaraguan Crustal Earthquake: Evidence of Complex Deformation of the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; Muñoz, Angélica; Farraz, Isaac A.; Talavera, Emilio; Tenorio, Virginia; Novelo-Casanova, David A.; Sánchez, Antonio

    2016-10-01

    On 10 April 2014, an M w 6.1 earthquake struck central Nicaragua. The main event and the aftershocks were clearly recorded by the Nicaraguan national seismic network and other regional seismic stations. These crustal earthquakes were strongly felt in central Nicaragua but caused relatively little damage. This is in sharp contrast to the destructive effects of the 1972 earthquake in the capital city of Managua. The differences in damage stem from the fact that the 1972 earthquake occurred on a fault beneath the city; in contrast, the 2014 event lies offshore, under Lake Managua. The distribution of aftershocks of the 2014 event shows two clusters of seismic activity. In the northwestern part of Lake Managua, an alignment of aftershocks suggests a northwest to southeast striking fault, parallel to the volcanic arc. The source mechanism agrees with this right-lateral, strike-slip motion on a plane with the same orientation as the aftershock sequence. For an earthquake of this magnitude, seismic scaling relations between fault length and magnitude predict a sub-surface fault length of approximately 16 km. This length is in good agreement with the extent of the fault defined by the aftershock sequence. A second cluster of aftershocks beneath Apoyeque volcano occurred simultaneously, but spatially separated from the first. There is no clear alignment of the epicenters in this cluster. Nevertheless, the decay of the number of earthquakes beneath Apoyeque as a function of time shows the typical behavior of an aftershock sequence and not of a volcanic swarm. The northeast-southwest striking Tiscapa/Ciudad Jardín and Estadio faults that broke during the 1972 and 1931 Managua earthquakes are orthogonal to the fault where the 10 April earthquake occurred. These orthogonal faults in close geographic proximity show that Central Nicaragua is being deformed in a complex tectonic setting. The Nicaraguan forearc sliver, between the trench and the volcanic arc, moves to the northwest relative to the Caribbean plate at a rate of 14 mm/year. Part of the deformation is apparently accommodated by strain partitioning in the form of bookshelf faulting, on a system of orthogonal faults. The sinistral faults striking northeast-southwest rotate blocks of the Caribbean plate in a clockwise manner. The recent crustal earthquakes in central Nicaragua in 1931, 1972 and 2005 earthquakes took place on these left-lateral faults. The motion of the forearc sliver is also accommodated by a second set of right-lateral, strike-slip faults oriented parallel to the volcanic arc. Faults with this orientation and direction of motion are responsible for the 2014 and possibly the 1955 earthquakes. The presence of this geometry of orthogonal crustal faults highlights the seismic hazard posed by this complex faulting system, not only in the capital city of Managua, but also to the major Nicaraguan cities, which lie close to the volcanic arc.

  20. Spatial and temporal patterns of fault creep across an active salt system, Canyonlands National Park, Utah

    NASA Astrophysics Data System (ADS)

    Kravitz, K.; Mueller, K. J.; Furuya, M.; Tiampo, K. F.

    2017-12-01

    First order conditions that control creeping behavior on faults include the strength of faulted materials, fault maturity and stress changes associated with seismic cycles. We present mapping of surface strain from differential interferometric synthetic aperture radar (DInSAR) of actively creeping faults in Eastern Utah that form by reactivation of older joints and faults. A nine-year record of displacement across the region using descending ERS scenes from 1992-2001 suggests maximum slip rates of 1 mm/yr. Time series analysis shows near steady rates across the region consistent with the proposed ultra-weak nature of these faults as suggested by their dilating nature, based on observations of sinkholes, pit chains and recently opened fissures along their lengths. Slip rates along the faults in the main part of the array are systematically faster with closer proximity to the Colorado River Canyon, consistent with mechanical modeling of the boundary conditions that control the overall salt system. Deeply incised side tributaries coincide with and control the edges of the region with higher strain rates. Comparison of D:L scaling at decadal scales in fault bounded grabens (as defined by InSAR) with previous measurements of total slip (D) to length (L) is interpreted to suggest that faults reached nearly their current lengths relatively quickly (i.e. displaying low displacement to length scaling). We argue this may then have been followed by along strike slip distributions where the centers of the grabens slip more rapidly than their endpoints, resulting in a higher D:L ratio over time. InSAR mapping also points to an increase in creep rates in overlap zones where two faults became hard-linked at breached relay ramps. Additionally, we see evidence for soft-linkage, where displacement profiles along a graben coincide with obvious fault segments. While an endmember case (ultra-weak faults sliding above a plastic substrate), structures in this region highlight mechanical behavior driven by rheological conditions that promote steady state slip in a complex array of extensional faults. Besides defining how creep varies along strike on individual faults, our work also hints at how strain rates may vary within the context of ongoing strain and fault linkage in a complex fault array.

  1. Rupture geometry and slip distribution of the 2016 January 21st Ms6.4 Menyuan, China earthquake inferred from Sentinel-1A InSAR measurements

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2016-12-01

    On 21 January 2016, an Ms6.4 earthquake stroke Menyuan country, Qinghai Province, China. The epicenter of the main shock and locations of its aftershocks indicate that the Menyuan earthquake occurred near the left-lateral Lenglongling fault. However, the focal mechanism suggests that the earthquake should take place on a thrust fault. In addition, field investigation indicates that the earthquake did not rupture the ground surface. Therefore, the rupture geometry is unclear as well as coseismic slip distribution. We processed two pairs of InSAR images acquired by the ESA Sentinel-1A satellite with the ISCE software, and both ascending and descending orbits were included. After subsampling the coseismic InSAR images into about 800 pixels, coseismic displacement data along LOS direction are inverted for earthquake source parameters. We employ an improved mixed linear-nonlinear Bayesian inversion method to infer fault geometric parameters, slip distribution, and the Laplacian smoothing factor simultaneously. This method incorporates a hybrid differential evolution algorithm, which is an efficient global optimization algorithm. The inversion results show that the Menyuan earthquake ruptured a blind thrust fault with a strike of 124°and a dip angle of 41°. This blind fault was never investigated before and intersects with the left-lateral Lenglongling fault, but the strikes of them are nearly parallel. The slip sense is almost pure thrusting, and there is no significant slip within 4km depth. The max slip value is up to 0.3m, and the estimated moment magnitude is Mw5.93, in agreement with the seismic inversion result. The standard error of residuals between InSAR data and model prediction is as small as 0.5cm, verifying the correctness of the inversion results.

  2. Rupture geometry and slip distribution of the 2016 January 21st Ms6.4 Menyuan, China earthquake

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2017-12-01

    On 21 January 2016, an Ms6.4 earthquake stroke Menyuan country, Qinghai Province, China. The epicenter of the main shock and locations of its aftershocks indicate that the Menyuan earthquake occurred near the left-lateral Lenglongling fault. However, the focal mechanism suggests that the earthquake should take place on a thrust fault. In addition, field investigation indicates that the earthquake did not rupture the ground surface. Therefore, the rupture geometry is unclear as well as coseismic slip distribution. We processed two pairs of InSAR images acquired by the ESA Sentinel-1A satellite with the ISCE software, and both ascending and descending orbits were included. After subsampling the coseismic InSAR images into about 800 pixels, coseismic displacement data along LOS direction are inverted for earthquake source parameters. We employ an improved mixed linear-nonlinear Bayesian inversion method to infer fault geometric parameters, slip distribution, and the Laplacian smoothing factor simultaneously. This method incorporates a hybrid differential evolution algorithm, which is an efficient global optimization algorithm. The inversion results show that the Menyuan earthquake ruptured a blind thrust fault with a strike of 124°and a dip angle of 41°. This blind fault was never investigated before and intersects with the left-lateral Lenglongling fault, but the strikes of them are nearly parallel. The slip sense is almost pure thrusting, and there is no significant slip within 4km depth. The max slip value is up to 0.3m, and the estimated moment magnitude is Mw5.93, in agreement with the seismic inversion result. The standard error of residuals between InSAR data and model prediction is as small as 0.5cm, verifying the correctness of the inversion results.

  3. Dissipative Intraplate Faulting During the 2016 Mw 6.2 Tottori, Japan Earthquake

    NASA Astrophysics Data System (ADS)

    Ross, Zachary E.; Kanamori, Hiroo; Hauksson, Egill; Aso, Naofumi

    2018-02-01

    The 2016 Mw 6.2 Tottori earthquake occurred on 21 October 2016 and produced thousands of aftershocks. Here we analyze high-resolution-relocated seismicity together with source properties of the mainshock to better understand the rupture process and energy budget. We use a matched-filter algorithm to detect and precisely locate >10,000 previously unidentified aftershocks, which delineate a network of sharp subparallel lineations exhibiting significant branching and segmentation. Seismicity below 8 km depth forms highly localized fault structures subparallel to the mainshock strike. Shallow seismicity near the main rupture plane forms more diffuse clusters and lineations that often are at a high angle (in map view) to the mainshock strike. An empirical Green's function technique is used to derive apparent source time functions for the mainshock, which show a large amplitude pulse 2-4 s long. We invert the apparent source time functions for a slip distribution and observe a 16 km2 patch with average slip 3.2 m. 93% of the seismic moment is below 8 km depth, which is approximately the depth below which the seismicity becomes very localized. These observations suggest that the mainshock rupture area was entirely within the lower half of the seismogenic zone. The radiated seismic energy is estimated to be 5.7 × 1013 J, while the static stress drop is estimated to be 18-27 MPa. These values yield a radiation efficiency of 5-7%, which indicates that the Tottori mainshock was extremely dissipative. We conclude that this inefficiency in energy radiation is likely a product of the immature intraplate environment and the underlying geometric complexity.

  4. Using a coupled hydro-mechanical fault model to better understand the risk of induced seismicity in deep geothermal projects

    NASA Astrophysics Data System (ADS)

    Abe, Steffen; Krieger, Lars; Deckert, Hagen

    2017-04-01

    The changes of fluid pressures related to the injection of fluids into the deep underground, for example during geothermal energy production, can potentially reactivate faults and thus cause induced seismic events. Therefore, an important aspect in the planning and operation of such projects, in particular in densely populated regions such as the Upper Rhine Graben in Germany, is the estimation and mitigation of the induced seismic risk. The occurrence of induced seismicity depends on a combination of hydraulic properties of the underground, mechanical and geometric parameters of the fault, and the fluid injection regime. In this study we are therefore employing a numerical model to investigate the impact of fluid pressure changes on the dynamics of the faults and the resulting seismicity. The approach combines a model of the fluid flow around a geothermal well based on a 3D finite difference discretisation of the Darcy-equation with a 2D block-slider model of a fault. The models are coupled so that the evolving pore pressure at the relevant locations of the hydraulic model is taken into account in the calculation of the stick-slip dynamics of the fault model. Our modelling approach uses two subsequent modelling steps. Initially, the fault model is run by applying a fixed deformation rate for a given duration and without the influence of the hydraulic model in order to generate the background event statistics. Initial tests have shown that the response of the fault to hydraulic loading depends on the timing of the fluid injection relative to the seismic cycle of the fault. Therefore, multiple snapshots of the fault's stress- and displacement state are generated from the fault model. In a second step, these snapshots are then used as initial conditions in a set of coupled hydro-mechanical model runs including the effects of the fluid injection. This set of models is then compared with the background event statistics to evaluate the change in the probability of seismic events. The event data such as location, magnitude, and source characteristics can be used as input for numerical wave propagation models. This allows the translation of seismic event statistics generated by the model into ground shaking probabilities.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Seth Carpenter; Suzette J. Payne; Annette L. Schafer

    We recognize a discrepancy in magnitudes estimated for several Basin and Range, U.S.A. faults. For example, magnitudes predicted for the Wasatch (Utah), Lost River (Idaho), and Lemhi (Idaho) faults from fault segment lengths (L{sub seg}) where lengths are defined between geometrical, structural, and/or behavioral discontinuities assumed to persistently arrest rupture, are consistently less than magnitudes calculated from displacements (D) along these same segments. For self-similarity, empirical relationships (e.g. Wells and Coppersmith, 1994) should predict consistent magnitudes (M) using diverse fault dimension values for a given fault (i.e. M {approx} L{sub seg}, should equal M {approx} D). Typically, the empirical relationshipsmore » are derived from historical earthquake data and parameter values used as input into these relationships are determined from field investigations of paleoearthquakes. A commonly used assumption - grounded in the characteristic-earthquake model of Schwartz and Coppersmith (1984) - is equating L{sub seg} with surface rupture length (SRL). Many large historical events yielded secondary and/or sympathetic faulting (e.g. 1983 Borah Peak, Idaho earthquake) which are included in the measurement of SRL and used to derive empirical relationships. Therefore, calculating magnitude from the M {approx} SRL relationship using L{sub seg} as SRL leads to an underestimation of magnitude and the M {approx} L{sub seg} and M {approx} D discrepancy. Here, we propose an alternative approach to earthquake magnitude estimation involving a relationship between moment magnitude (Mw) and length, where length is L{sub seg} instead of SRL. We analyze seven historical, surface-rupturing, strike-slip and normal faulting earthquakes for which segmentation of the causative fault and displacement data are available and whose rupture included at least one entire fault segment, but not two or more. The preliminary Mw {approx} L{sub seg} results are strikingly consistent with Mw {approx} D calculations using paleoearthquake data for the Wasatch, Lost River, and Lemhi faults, demonstrating self-similarity and implying that the Mw {approx} L{sub seg} relationship should supplant M {approx} SRL relationships currently employed in seismic hazard analyses. The relationship will permit reliable use of L{sub seg} data from field investigations and proper use and weighting of multiple-segment-rupture scenarios in seismic hazard analyses, and eliminate the need to reconcile the Mw {approx} SRL and Mw {approx} D differences in a multiple-parameter relationship for segmented faults.« less

  6. On the mechanisms governing dike arrest: Insight from the 2000 Miyakejima dike injection

    NASA Astrophysics Data System (ADS)

    Maccaferri, F.; Rivalta, E.; Passarelli, L.; Aoki, Y.

    2016-01-01

    Magma stored beneath volcanoes is sometimes transported out of the magma chambers by means of laterally propagating dikes, which can lead to fissure eruptions if they intersect the Earth's surface. The driving force for lateral dike propagation can be a lateral tectonic stress gradient, the stress gradient due to the topographic loads, the overpressure of the magma chamber, or a combination of those forces. The 2000 dike intrusion at Miyakejima volcano, Izu arc, Japan, propagated laterally for about 30 km and stopped in correspondence of a strike-slip system, sub-perpendicular to the dike plane. Then the dike continued to inflate, without further propagation. Abundant seismicity was produced, including five M > 6 earthquakes, one of which occurred on the pre-existing fault system close to the tip of the dike, at approximately the time of arrest. It has been proposed that the main cause for the dike arrest was the fault-induced stress. Here we use a boundary element numerical approach to study the interplay between a propagating dike and a pre-stressed strike-slip fault and check the relative role played by dike-fault interaction and topographic loading in arresting the Miyakejima dike. We calibrate the model parameters according to previous estimates of dike opening and fault displacement based on crustal deformation observations. By computing the energy released during the propagation, our model indicates whether the dike will stop at a given location. We find that the stress gradient induced by the topography is needed for an opening distribution along the dike consistent with the observed seismicity, but it cannot explain its arrest at the prescribed location. On the other hand, the interaction of dike with the fault explains the arrest but not the opening distribution. The joint effect of the topographic load and the stress interaction with strike-slip fault is consistent with the observations, provided the pre-existing fault system is pre-loaded with a significant stress, released gradually during the dike-fault interplay. Our results reveal how the mechanical interaction between dikes and faults may affect the propagation of magmatic intrusions in general. This has implications for our understanding of the geometrical arrangement of rift segments and transform faults in Mid Ocean Ridges, and for the interplay between dikes and dike-induced graben systems.

  7. Maturation during short-duration heating of carbonaceous material: A new indicator for frictional heat during earthquake slip

    NASA Astrophysics Data System (ADS)

    Mukoyoshi, H.; Hirono, T.

    2016-12-01

    Estimation of frictional heating of deep to shallow portion of ancient megasplay fault is important for understanding of weakening mechanism (e.g., thermal pressurization, melt lubrication) of present plate boundary fault and megasplay fault. Raman spectroscopy has recently been used to estimate the thermal metamorphic grade of organic matter in sedimentary rocks and applying the method in order to estimate the temperature of fast heating like frictional heating during earthquake. We performed microstructural observation and Raman spectroscopic analyses of carbonaceous materials (CM) in the fault rock of 2.5-5.5 km depth of an ancient megasplay fault (an out-of sequence thrust in the Shimant accretionary complex) and 1-4 km depth of a thrust in the Emi group, Hota accretionary complex, exposed on Japan. We also conducted heating experiment of CM in host rock of these fault with anaerobic condition (range: 100-1300ºC, intervals: 100ºC, rate of temperature increase: 20 K/min) in order to investigate the effects of fast heating rate like frictional heating during earthquake. Raman spectrum of CM of both fault is similar to spectrum of 400˜600 ºC heating experiment of CM. This result shows that both fault had heating history of 400˜600 ºC by frictional heating. To evaluate the levels of friction, Raman spectrum of the short time maturated experimented CM is useful as calibration tool.

  8. An automation simulation testbed

    NASA Technical Reports Server (NTRS)

    Cook, George E.; Sztipanovits, Janos; Biegl, Csaba; Karsai, Gabor; Springfield, James F.; Mutammara, Atheel

    1988-01-01

    The work being done in porting ROBOSIM (a graphical simulation system developed jointly by NASA-MSFC and Vanderbilt University) to the HP350SRX graphics workstation is described. New additional ROBOSIM features, like collision detection and new kinematics simulation methods are also discussed. Based on the experiences of the work on ROBOSIM, a new graphics structural modeling environment is suggested which is intended to be a part of a new knowledge-based multiple aspect modeling testbed. The knowledge-based modeling methodologies and tools already available are described. Three case studies in the area of Space Station automation are also reported. First a geometrical structural model of the station is presented. This model was developed using the ROBOSIM package. Next the possible application areas of an integrated modeling environment in the testing of different Space Station operations are discussed. One of these possible application areas is the modeling of the Environmental Control and Life Support System (ECLSS), which is one of the most complex subsystems of the station. Using the multiple aspect modeling methodology, a fault propagation model of this system is being built and is described.

  9. Computer-Aided Reliability Estimation

    NASA Technical Reports Server (NTRS)

    Bavuso, S. J.; Stiffler, J. J.; Bryant, L. A.; Petersen, P. L.

    1986-01-01

    CARE III (Computer-Aided Reliability Estimation, Third Generation) helps estimate reliability of complex, redundant, fault-tolerant systems. Program specifically designed for evaluation of fault-tolerant avionics systems. However, CARE III general enough for use in evaluation of other systems as well.

  10. Geologic Map of the Eastern Three-Quarters of the Cuyama 30' x 60' Quadrangle, California

    USGS Publications Warehouse

    Kellogg, Karl S.; Minor, Scott A.; Cossette, Pamela M.

    2008-01-01

    The map area encompasses a large part of the western Transverse Ranges and southern Coast Ranges of southern California. The San Andreas fault (SAF) cuts the northern part of the map. The area south of the SAF, about 80 percent of the map area, encompasses several distinct tectonic blocks bounded by major thrust or reverse faults, including the Santa Ynez fault, Big Pine fault (and structurally continuous Pine Mountain fault), Tule Creek fault, Nacimiento fault, Ozena fault, Munson Creek fault, Morales fault, and Frazier Mountain Thrust System. Movement on these faults is as old as Miocene and some faults may still be active. In addition, the Paleocene Sawmill Mountain Thrust south of the SAF and the Pastoria Thrust north of the SAF place Cretaceous and older crystalline rocks above Pelona Schist (south of the SAF) and Rand Schist (north of the SAF). South of the SAF, each tectonic block contains a unique stratigraphy, reflecting either large-scale movement on bounding faults or different depositional environments within each block. On Mount Pinos and Frazier Mountain, intrusive and metamorphic rocks as old as Mesoproterozoic, but including voluminous Cretaceous granitoid rocks, underlie or are thrust above non-marine sedimentary rocks as old as Miocene. Elsewhere, marine and non-marine sedimentary rocks are as old as Cretaceous, dominated by thick sequences of both Eocene and Cretaceous marine shales and sandstones. Middle Miocene to early Oligocene volcanic rocks crop out in the Caliente Hills (part of Caliente Formation) and south of Mount Pinos (part of the Plush Ranch Formation). Fault-bounded windows of Jurassic Franciscan Complex ophiolitic rocks are evident in the southwest corner of the area. North of the SAF, marine and non-marine sedimentary rocks as old as Eocene and Miocene volcanic rocks overlie a crystalline basement complex. Basement rocks include Cretaceous intrusive rocks that range from monzogranite to diorite, and Jurassic to late Paleozoic intrusive and metamorphic rocks. The Jurassic to late Paleozoic intrusive rocks include diorite, gabbro, and ultramafic rocks, and the metasedimentary rocks include marble, quartzite, schist, and gneiss.

  11. Earthquake cycle modeling of multi-segmented faults: dynamic rupture and ground motion simulation of the 1992 Mw 7.3 Landers earthquake.

    NASA Astrophysics Data System (ADS)

    Petukhin, A.; Galvez, P.; Somerville, P.; Ampuero, J. P.

    2017-12-01

    We perform earthquake cycle simulations to study the characteristics of source scaling relations and strong ground motions and in multi-segmented fault ruptures. For earthquake cycle modeling, a quasi-dynamic solver (QDYN, Luo et al, 2016) is used to nucleate events and the fully dynamic solver (SPECFEM3D, Galvez et al., 2014, 2016) is used to simulate earthquake ruptures. The Mw 7.3 Landers earthquake has been chosen as a target earthquake to validate our methodology. The SCEC fault geometry for the three-segmented Landers rupture is included and extended at both ends to a total length of 200 km. We followed the 2-D spatial correlated Dc distributions based on Hillers et. al. (2007) that associates Dc distribution with different degrees of fault maturity. The fault maturity is related to the variability of Dc on a microscopic scale. Large variations of Dc represents immature faults and lower variations of Dc represents mature faults. Moreover we impose a taper (a-b) at the fault edges and limit the fault depth to 15 km. Using these settings, earthquake cycle simulations are performed to nucleate seismic events on different sections of the fault, and dynamic rupture modeling is used to propagate the ruptures. The fault segmentation brings complexity into the rupture process. For instance, the change of strike between fault segments enhances strong variations of stress. In fact, Oglesby and Mai (2012) show the normal stress varies from positive (clamping) to negative (unclamping) between fault segments, which leads to favorable or unfavorable conditions for rupture growth. To replicate these complexities and the effect of fault segmentation in the rupture process, we perform earthquake cycles with dynamic rupture modeling and generate events similar to the Mw 7.3 Landers earthquake. We extract the asperities of these events and analyze the scaling relations between rupture area, average slip and combined area of asperities versus moment magnitude. Finally, the simulated ground motions will be validated by comparison of simulated response spectra with recorded response spectra and with response spectra from ground motion prediction models. This research is sponsored by the Japan Nuclear Regulation Authority.

  12. Insights into the relationship between surface and subsurface activity from mechanical modeling of the 1992 Landers M7.3 earthquake

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Pollard, D. D.

    2009-12-01

    Multi-fault, strike-slip earthquakes have proved difficult to incorporate into seismic hazard analyses due to the difficulty of determining the probability of these ruptures, despite collection of extensive data associated with such events. Modeling the mechanical behavior of these complex ruptures contributes to a better understanding of their occurrence by elucidating the relationship between surface and subsurface earthquake activity along transform faults. This insight is especially important for hazard mitigation, as multi-fault systems can produce earthquakes larger than those associated with any one fault involved. We present a linear elastic, quasi-static model of the southern portion of the 28 June 1992 Landers earthquake built in the boundary element software program Poly3D. This event did not rupture the extent of any one previously mapped fault, but trended 80km N and NW across segments of five sub-parallel, N-S and NW-SE striking faults. At M7.3, the earthquake was larger than the potential earthquakes associated with the individual faults that ruptured. The model extends from the Johnson Valley Fault, across the Landers-Kickapoo Fault, to the Homestead Valley Fault, using data associated with a six-week time period following the mainshock. It honors the complex surface deformation associated with this earthquake, which was well exposed in the desert environment and mapped extensively in the field and from aerial photos in the days immediately following the earthquake. Thus, the model incorporates the non-linearity and segmentation of the main rupture traces, the irregularity of fault slip distributions, and the associated secondary structures such as strike-slip splays and thrust faults. Interferometric Synthetic Aperture Radar (InSAR) images of the Landers event provided the first satellite images of ground deformation caused by a single seismic event and provide constraints on off-fault surface displacement in this six-week period. Insight is gained by comparing the density, magnitudes and focal plane orientations of relocated aftershocks for this time frame with the magnitude and orientation of planes of maximum Coulomb shear stress around the fault planes at depth.

  13. Towards "realistic" fault zones in a 3D structure model of the Thuringian Basin, Germany

    NASA Astrophysics Data System (ADS)

    Kley, J.; Malz, A.; Donndorf, S.; Fischer, T.; Zehner, B.

    2012-04-01

    3D computer models of geological architecture are evolving into a standard tool for visualization and analysis. Such models typically comprise the bounding surfaces of stratigraphic layers and faults. Faults affect the continuity of aquifers and can themselves act as fluid conduits or barriers. This is one reason why a "realistic" representation of faults in 3D models is desirable. Still so, many existing models treat faults in a simplistic fashion, e.g. as vertical downward projections of fault traces observed at the surface. Besides being geologically and mechanically unreasonable, this also causes technical difficulties in the modelling workflow. Most natural faults are inclined and may change dips according to rock type or flatten into mechanically weak layers. Boreholes located close to a fault can therefore cross it at depth, resulting in stratigraphic control points allocated to the wrong block. Also, faults tend to split up into several branches, forming fault zones. Obtaining a more accurate representation of faults and fault zones is therefore challenging. We present work-in-progress from the Thuringian Basin in central Germany. The fault zone geometries are never fully constrained by data and must be extrapolated to depth. We use balancing of serial, parallel cross-sections to constrain subsurface extrapolations. The structure sections are checked for consistency by restoring them to an undeformed state. If this is possible without producing gaps or overlaps, the interpretation is considered valid (but not unique) for a single cross-section. Additional constraints are provided by comparison of adjacent cross-sections. Structures should change continuously from one section to another. Also, from the deformed and restored cross-sections we can measure the strain incurred during deformation. Strain should be compatible among the cross-sections: If at all, it should vary smoothly and systematically along a given fault zone. The stratigraphic contacts and faults in the resulting grid of parallel balanced sections are then interpolated into a gOcad model containing stratigraphic boundaries and faults as triangulated surfaces. The interpolation is also controlled by borehole data located off the sections and the surface traces of stratigraphic boundaries. We have written customized scripts to largely automatize this step, with particular attention to a seamless fit between stratigraphic surfaces and fault planes which share the same nodes and segments along their contacts. Additional attention was paid to the creation of a uniform triangulated grid with maximized angles. This ensures that uniform triangulated volumes can be created for further use in numerical flow modelling. An as yet unsolved problem is the implementation of the fault zones and their hydraulic properties in a large-scale model of the entire basin. Short-wavelength folds and subsidiary faults control which aquifers and seals are juxtaposed across the fault zones. It is impossible to include these structures in the regional model, but neglecting them would result in incorrect assessments of hydraulic links or barriers. We presently plan to test and calibrate the hydraulic properties of the fault zones in smaller, high-resolution models and then to implement geometrically simple "equivalent" fault zones with appropriate, variable transmissivities between specific aquifers.

  14. Cross-Layer Resilience Exploration

    DTIC Science & Technology

    2015-03-31

    complex 563 server-class systems) and any arbitrary fault model (permanent, transient, multi-bit, etc.) System Design Analysis Using flip- flop ...level fault injection, we rank the vulnerability of each flip- flop in the processor in terms of its likelihood to propagate faults [3]. This allows the...hardened flip- flops , which are flip- flops designed to uphold the bit representation of their output circuit even under particle strikes [1, 6, 10

  15. Research on complex 3D tree modeling based on L-system

    NASA Astrophysics Data System (ADS)

    Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li

    2018-03-01

    L-system as a fractal iterative system could simulate complex geometric patterns. Based on the field observation data of trees and knowledge of forestry experts, this paper extracted modeling constraint rules and obtained an L-system rules set. Using the self-developed L-system modeling software the L-system rule set was parsed to generate complex tree 3d models.The results showed that the geometrical modeling method based on l-system could be used to describe the morphological structure of complex trees and generate 3D tree models.

  16. Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.

    PubMed

    Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F

    2011-03-01

    This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.

  17. Change in stress with seismic cycles identified at an out of sequence thrust in an on-land accretionary complex: The Nobeoka thrust, Shimanto Belt, Kyusyu, SW Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M.; Hashimoto, Y.; Yamaguchi, A.; Kimura, G.

    2011-12-01

    Seismic surveys along accretionary prisms have revealed that the out-of sequence thrusts (OSTs) are commonly developed within accretionary wedges branching from seismogenic subduction plate boundaries. The OSTs are also recognized in on-land accretionary complexes as large thrust faults cutting paleo-thermal structures. The OSTs are thought to play a role in tsunami genesis at a coseismic event. Stress history on OSTs is significant to understand the OSTs' role in seismic cycles. We estimated, thus palaeostresses from micro-faults along an OST in an on-land accretionary complexes. We focused on the Nobeoka fault which is an OST in an on-land accretionary complex, the Shimato Belt, Kyusyu, SW Japan. A gap in paleothermal temperature (up to 70 degree C) is observed at the fault. The Nobeoka thrust strikes almost EW at coastline. The Cretaceous Makimine formation and Paleogene Kitagawa formation are located at the hanging wall of the fault, comprising mainly of pelitic schist. The footwall of the fault is the Paleogene Hyuga formation composed mainly of shale. A lot of micro-faults are well developed just below the thrust for a few hundred meters to the south. Those micro faults are considered to be related to the Nobeoka thurst because slip direction and sense of the micro-faults are consistent with that of the Nobeoka thrust. The micro-faults are commonly accompanied by mineral veins of quartz and ankerite. Yamaguchi et al. (2010) suggested that the differences of mineral veins are possibly related to the seismic cycle. In this study, we conducted stress inversion analysis for the micro-faults to examine the change in stress between them, which might be related to the seismic cycle. We divided the micro-fault into two as a micro-fault with quartz veins and that with ankerite veins. Slip direction from slicken fibers and slip sense by slicken steps were obtained. HIM (hough inversion method) by Yamaji et al. (2006) was used to estimate the stress. Two stress states and three stress states are identified in the results for ankerite veins and quartz veins, respectively. For ankerite veins, SE oriented and relatively higher dipping sigma3 with axial extension and SE oriented and relatively lower dipping sigma1 with axial compression are recognized. For quartz veins, SE oriented and relatively higher dipping sigma3 with axial extension, NE oriented and almost horizontal sigma1 with triaxial stress ratio, and NW oriented and lower dipping sigma1 with axial compression are observed. While NW-SE axial stress states are observed both from ankelite and quatz veins, NE oriented triaxial stress is identified only from quartz veins. The change in stress states from NW-SE axial stress to NE triaxial stress might be explained by the dynamic Coulomb wedge model suggested by Wang and Hu (2006). The model predicts that the stress within accretionary wedge can be change with seismic cycle, horizontal sigma1 with axial compression at the co-seismic slip and relatively higher dipping sigma1 with triaxial stress in inter-seimsic period.

  18. Managing systems faults on the commercial flight deck: Analysis of pilots' organization and prioritization of fault management information

    NASA Technical Reports Server (NTRS)

    Rogers, William H.

    1993-01-01

    In rare instances, flight crews of commercial aircraft must manage complex systems faults in addition to all their normal flight tasks. Pilot errors in fault management have been attributed, at least in part, to an incomplete or inaccurate awareness of the fault situation. The current study is part of a program aimed at assuring that the types of information potentially available from an intelligent fault management aiding concept developed at NASA Langley called 'Faultfinde' (see Abbott, Schutte, Palmer, and Ricks, 1987) are an asset rather than a liability: additional information should improve pilot performance and aircraft safety, but it should not confuse, distract, overload, mislead, or generally exacerbate already difficult circumstances.

  19. Three-Dimensional Geologic Model of Complex Fault Structures in the Upper Seco Creek Area, Medina and Uvalde Counties, South-Central Texas

    USGS Publications Warehouse

    Pantea, Michael P.; Cole, James C.; Smith, Bruce D.; Faith, Jason R.; Blome, Charles D.; Smith, David V.

    2008-01-01

    This multimedia report shows and describes digital three-dimensional faulted geologic surfaces and volumes of the lithologic units of the Edwards aquifer in the upper Seco Creek area of Medina and Uvalde Counties in south-central Texas. This geologic framework model was produced using (1) geologic maps and interpretations of depositional environments and paleogeography; (2) lithologic descriptions, interpretations, and geophysical logs from 31 drill holes; (3) rock core and detailed lithologic descriptions from one drill hole; (4) helicopter electromagnetic geophysical data; and (5) known major and minor faults in the study area. These faults were used because of their individual and collective effects on the continuity of the aquifer-forming units in the Edwards Group. Data and information were compared and validated with each other and reflect the complex relationships of structures in the Seco Creek area of the Balcones fault zone. This geologic framework model can be used as a tool to visually explore and study geologic structures within the Seco Creek area of the Balcones fault zone and to show the connectivity of hydrologic units of high and low permeability between and across faults. The software can be used to display other data and information, such as drill-hole data, on this geologic framework model in three-dimensional space.

  20. Comparison of coseismic near-field and off-fault surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes: Implications for controls on the distribution of surface strain

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.

    2016-10-01

    Subpixel correlation of preevent and postevent air photos reveal the complete near-field, horizontal surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine ruptures. Total surface displacement values for both earthquakes are systematically larger than "on-fault" displacements from geologic field surveys, indicating significant distributed, inelastic deformation occurred along these ruptures. Comparison of these two data sets shows that 46 ± 10% and 39 ± 22% of the total surface deformation were distributed over fault zones averaging 154 m and 121 m in width for the Landers and Hector Mine events, respectively. Spatial variations of distributed deformation along both ruptures show correlations with the type of near-surface lithology and degree of fault complexity; larger amounts of distributed shear occur where the rupture propagated through loose unconsolidated sediments and areas of more complex fault structure. These results have basic implications for geologic-geodetic rate comparisons and probabilistic seismic hazard analysis.

  1. Volcanic facies architecture of an intra-arc strike-slip basin, Santa Rita Mountains, Southern Arizona

    NASA Astrophysics Data System (ADS)

    Busby, Cathy J.; Bassett, Kari N.

    2007-09-01

    The three-dimensional arrangement of volcanic deposits in strike-slip basins is not only the product of volcanic processes, but also of tectonic processes. We use a strike-slip basin within the Jurassic arc of southern Arizona (Santa Rita Glance Conglomerate) to construct a facies model for a strike-slip basin dominated by volcanism. This model is applicable to releasing-bend strike-slip basins, bounded on one side by a curved and dipping strike-slip fault, and on the other by curved normal faults. Numerous, very deep unconformities are formed during localized uplift in the basin as it passes through smaller restraining bends along the strike-slip fault. In our facies model, the basin fill thins and volcanism decreases markedly away from the master strike-slip fault (“deep” end), where subsidence is greatest, toward the basin-bounding normal faults (“shallow” end). Talus cone-alluvial fan deposits are largely restricted to the master fault-proximal (deep) end of the basin. Volcanic centers are sited along the master fault and along splays of it within the master fault-proximal (deep) end of the basin. To a lesser degree, volcanic centers also form along the curved faults that form structural highs between sub-basins and those that bound the distal ends of the basin. Abundant volcanism along the master fault and its splays kept the deep (master fault-proximal) end of the basin overfilled, so that it could not provide accommodation for reworked tuffs and extrabasinally-sourced ignimbrites that dominate the shallow (underfilled) end of the basin. This pattern of basin fill contrasts markedly with that of nonvolcanic strike-slip basins on transform margins, where clastic sedimentation commonly cannot keep pace with subsidence in the master fault-proximal end. Volcanic and subvolcanic rocks in the strike-slip basin largely record polygenetic (explosive and effusive) small-volume eruptions from many vents in the complexly faulted basin, referred to here as multi-vent complexes. Multi-vent complexes like these reflect proximity to a continuously active fault zone, where numerous strands of the fault frequently plumb small batches of magma to the surface. Releasing-bend extension promotes small, multivent styles of volcanism in preference to caldera collapse, which is more likely to form at releasing step-overs along a strike-slip fault.

  2. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (<2 Ma). The initiation of these young faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  3. Ontology-Based Method for Fault Diagnosis of Loaders.

    PubMed

    Xu, Feixiang; Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-02-28

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study.

  4. Ontology-Based Method for Fault Diagnosis of Loaders

    PubMed Central

    Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-01-01

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study. PMID:29495646

  5. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex

    PubMed Central

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-01-01

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. PMID:26105966

  6. The geometric nature of weights in real complex networks

    NASA Astrophysics Data System (ADS)

    Allard, Antoine; Serrano, M. Ángeles; García-Pérez, Guillermo; Boguñá, Marián

    2017-01-01

    The topology of many real complex networks has been conjectured to be embedded in hidden metric spaces, where distances between nodes encode their likelihood of being connected. Besides of providing a natural geometrical interpretation of their complex topologies, this hypothesis yields the recipe for sustainable Internet's routing protocols, sheds light on the hierarchical organization of biochemical pathways in cells, and allows for a rich characterization of the evolution of international trade. Here we present empirical evidence that this geometric interpretation also applies to the weighted organization of real complex networks. We introduce a very general and versatile model and use it to quantify the level of coupling between their topology, their weights and an underlying metric space. Our model accurately reproduces both their topology and their weights, and our results suggest that the formation of connections and the assignment of their magnitude are ruled by different processes.

  7. Postmylonitic deformation in the Raft River metamorphic core complex, northwestern Utah: Evidence of a rolling hinge

    NASA Astrophysics Data System (ADS)

    Manning, Andrew H.; Bartley, John M.

    1994-06-01

    Much of the recent debate over low-angle normal faults exposed in metamorphic core complexes has centered on the rolling hinge model. The model predicts tilting of seismogenic high-angle normal faults to lower dips by footwall deformation in response to isostatic forces caused by footwall exhumation. This shallow brittle deformation should visibly overprint the mylonitic fabric in the footwall of a metamorphic core complex. The predicted style and magnitude of rolling hinge strain depends upon the macroscopic mechanism by which the footwall deforms. Two end-members have been proposed: subvertical simple shear and flexural failure. Each mechanism should generate a distinctive pattern of structures that strike perpendicular to the regional extension direction. Subvertical simple shear (SVSS) should generate subvertical faults and kink bands with a shear sense antithetic to the detachment. For an SVSS hinge, the hinge-related strain magnitude should depend only on initial fault dip; rolling hinge structures should shorten the mylonitic foliation by >13% for an initial fault dip of >30°. In flexural failure the footwall behaves as a flexed elastic beam that partially fails in response to bending stresses. Resulting structures include conjugate faults and kink bands that both extend and contract the mylonitic foliation. Extensional sets could predominate as a result of superposition of far-field and flexural stresses. Strain magnitudes do not depend on fault dip but depend on the thickness and radius of curvature of the flexed footwall beam and vary with location within that beam. Postmylonitic structures were examined in the footwall of the Raft River metamorphic core complex in northwestern Utah to test these predictions. Observed structures strike perpendicular to the regional extension direction and include joints, normal faults, tension-gash arrays, and both extensional and contractional kink bands. Aside from the subvertical joints, the extensional structures dip moderately to steeply and are mainly either synthetic to the detachment or form conjugate sets. Range-wide, the extensional structures accomplish about 4% elongation of the mylonitic foliation. Contractional structures dip steeply, mainly record shear antithetic to the detachment, and accomplish <1% contraction of the foliation. These observations are consistent with the presence of a rolling hinge in the Raft River Mountains, but a rolling hinge that reoriented a high-angle normal fault by SVSS is excluded. The pattern and magnitudes of strain favor hinge-related deformation mainly by flexural failure with a subordinate component of SVSS.

  8. HOT Faults", Fault Organization, and the Occurrence of the Largest Earthquakes

    NASA Astrophysics Data System (ADS)

    Carlson, J. M.; Hillers, G.; Archuleta, R. J.

    2006-12-01

    We apply the concept of "Highly Optimized Tolerance" (HOT) for the investigation of spatio-temporal seismicity evolution, in particular mechanisms associated with largest earthquakes. HOT provides a framework for investigating both qualitative and quantitative features of complex feedback systems that are far from equilibrium and punctuated by rare, catastrophic events. In HOT, robustness trade-offs lead to complexity and power laws in systems that are coupled to evolving environments. HOT was originally inspired by biology and engineering, where systems are internally very highly structured, through biological evolution or deliberate design, and perform in an optimum manner despite fluctuations in their surroundings. Though faults and fault systems are not designed in ways comparable to biological and engineered structures, feedback processes are responsible in a conceptually comparable way for the development, evolution and maintenance of younger fault structures and primary slip surfaces of mature faults, respectively. Hence, in geophysical applications the "optimization" approach is perhaps more aptly replaced by "organization", reflecting the distinction between HOT and random, disorganized configurations, and highlighting the importance of structured interdependencies that evolve via feedback among and between different spatial and temporal scales. Expressed in the terminology of the HOT concept, mature faults represent a configuration optimally organized for the release of strain energy; whereas immature, more heterogeneous fault networks represent intermittent, suboptimal systems that are regularized towards structural simplicity and the ability to generate large earthquakes more easily. We discuss fault structure and associated seismic response pattern within the HOT concept, and outline fundamental differences between this novel interpretation to more orthodox viewpoints like the criticality concept. The discussion is flanked by numerical simulations of a 2D fault model, where we investigate different feedback mechanisms and their effect on seismicity evolution. We introduce an approach to estimate the state of a fault and thus its capability of generating a large (system-wide) event assuming likely heterogeneous distributions of hypocenters and stresses, respectively.

  9. Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (~33.5° S), using active seismic and electric methods

    NASA Astrophysics Data System (ADS)

    Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.

    2014-08-01

    The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault surface rupture propagation, fault splays and fault segment transfer zones.

  10. Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (∼33.5° S), using active seismic and electric methods

    NASA Astrophysics Data System (ADS)

    Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.

    2014-01-01

    The crustal-scale west-vergent San Ramón thrust fault system at the foot of the main Andean Cordillera in central Chile is a geologically active structure with Quaternary manifestations of complex surface rupture along fault segments in the eastern border of Santiago city. From the comparison of geophysical and geological observations, we assessed the subsurface structure pattern affecting sedimentary cover and rock-substratum topography across fault scarps, which is critic for evaluating structural modeling and associated seismic hazard along this kind of faults. We performed seismic profiles with an average length of 250 m, using an array of twenty-four geophones (GEODE), and 25 shots per profile, supporting high-resolution seismic tomography for interpreting impedance changes associated to deformed sedimentary cover. The recorded traveltime refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both velocities and reflections interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps supported subsurface resistivity tomographic profiles, which revealed systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, clearly limited by well-defined east-dipping resistivity boundaries. The latter can be interpreted in terms of structurally driven fluid content-change between the hanging wall and the footwall of a permeability boundary associated with the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ∼55° E at subsurface levels in piedmont sediments, with local complexities being probably associated to fault surface rupture propagation, fault-splay and fault segment transfer zones.

  11. The Jocotán Ophiolite: A new ophiolite along the Jocotán fault, eastern Guatemala

    NASA Astrophysics Data System (ADS)

    Harlow, G. E.; Flores-Reyes, K.; Sisson, V. B.; Nelson, C.; Cacao, A.

    2011-12-01

    The North American - Caribbean plate boundary traverses central Guatemala and northern Honduras, dispersed along three left lateral faults systems, which from north to south are the Chixoy-Polochic, the Motagua, and the Jocotán-Camelecón faults, with the Motagua as the present active strand. The Motagua Suture Zone (MSZ), which encompasses this area, consists of multiple paleo-convergent boundaries. It includes slices of ultramafic-mafic complexes including both antigorite (Atg) serpentinite mélanges containing high-pressure / low-temperature (HP/LT) blocks, and lizardite-chrysotile (Lzd-Ctl) serpentinites with associated pillow lavas, radiolarian chert, and marine sediments, typically labeled as ophiolites. Guatemala Suture Zone would be a preferable term to MSZ because the area extends over all three faults, not just the Motagua. The MSZ includes the Sierra de Santa Cruz ophiolite north of the east end of the Polochic fault, the Baja Verapaz ultramafic complex (considered an ophiolite in most of the literature) lies just south of the western portion of the Polochic fault and a series of Atg-serpentinite-dominant mélanges (with HP/LT blocks) that decorate both sides of the Motagua fault. In addition, there is the El Tambor Formation, south of the Motagua fault (but west of the known limit of the Jocotán fault), which contains mafic & sedimentary units and has been called an ophiolite. However, no mafic-ultramafic bodies appear on maps that cover the Jocotán fault in eastern Guatemala. Geologic mapping by one of the co-authors located a small suite of ultramafic rocks sandwiched between the Jocotán and Camotán faults in eastern Guatemala, a short distance from the town of Camotán. Outcrops exposed for 3 km along a road and in a small river consist of sheared Lzd-Ctl serpentinite, metagabbro, overturned altered pillow lavas, listwaenite and rodingite dikes, cherts and pelagic metasediments. These units represent fault slivers subparallel to the steeply dipping local faults sandwiched between mostly phyllites, schists, limestones and metabasites. The latter are similar to the Las Ovejas Complex and/or the San Diego Phyllite which bound the El Tambor Formation and mélanges further west. The newly observed lithologic package, although small in areal extent, has clear affinities with an ophiolite. No HP/LT metamorphic blocks, or even true amphibolites were observed, so consistent with the presence of Lzd-Ctl in the serpentinite, the unit is not a subduction related mélange. The potential relationship with the El Tambor Formation to the west requires further analysis and comparison.

  12. Fault architecture and deformation processes within poorly lithified rift sediments, Central Greece

    NASA Astrophysics Data System (ADS)

    Loveless, Sian; Bense, Victor; Turner, Jenni

    2011-11-01

    Deformation mechanisms and resultant fault architecture are primary controls on the permeability of faults in poorly lithified sediments. We characterise fault architecture using outcrop studies, hand samples, thin sections and grain-size data from a minor (1-10 m displacement) normal-fault array exposed within Gulf of Corinth rift sediments, Central Greece. These faults are dominated by mixed zones with poorly developed fault cores and damage zones. In poorly lithified sediment deformation is distributed across the mixed zone as beds are entrained and smeared. We find particulate flow aided by limited distributed cataclasis to be the primary deformation mechanism. Deformation may be localised in more competent sediments. Stratigraphic variations in sediment competency, and the subsequent alternating distributed and localised strain causes complexities within the mixed zone such as undeformed blocks or lenses of cohesive sediment, or asperities at the mixed zone/protolith boundary. Fault tip bifurcation and asperity removal are important processes in the evolution of these fault zones. Our results indicate that fault zone architecture and thus permeability is controlled by a range of factors including lithology, stratigraphy, cementation history and fault evolution, and that minor faults in poorly lithified sediment may significantly impact subsurface fluid flow.

  13. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    NASA Astrophysics Data System (ADS)

    Haddad, David Elias

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the interpretation of paleoseismically derived slip rates that are used to form earthquake forecasts. The final part of my research evaluates a set of Earth science-themed lesson plans that I designed for elementary-level learning-disabled students. My findings show that a combination of concept delivery techniques is most effective for learning-disabled students and should incorporate interactive slide presentations, tactile manipulatives, teacher-assisted concept sketches, and student-led teaching to help learning-disabled students grasp Earth science concepts.

  14. Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2017-12-01

    Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.

  15. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie

    2017-04-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake, the 1994 Northridge earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  16. Tectonic control of complex slope failures in the Ameka River Valley (Lower Gibe Area, central Ethiopia): Implications for landslide formation

    NASA Astrophysics Data System (ADS)

    Kycl, Petr; Rapprich, Vladislav; Verner, Kryštof; Novotný, Jan; Hroch, Tomáš; Mišurec, Jan; Eshetu, Habtamu; Tadesse Haile, Ezra; Alemayehu, Leta; Goslar, Tomasz

    2017-07-01

    Even though major faults represent important landslide controlling factors, the role the tectonic setting in actively spreading rifts plays in the development of large complex landslides is seldom discussed. The Ameka complex landslide area is located on the eastern scarp of the Gibe Gorge, approximately 45 km to the west of the Main Ethiopian Rift and 175 km to the southwest of Addis Ababa. Investigation of the complex landslide failures required a combination of satellite and airborne data-based geomorphology, geological field survey complemented with structural analysis, radiocarbon geochronology and vertical electric sounding. The obtained observations confirmed the multiphase evolution of the landslide area. We have documented that, apart from climatic and lithological conditions, the main triggering factor of the Ameka complex landslide is the tectonic development of this area. The E-W extension along the NNE-SSW trending Main Ethiopian Rift is associated with the formation of numerous parallel normal faults, such as the Gibe Gorge fault and the almost perpendicular scissor faults. The geometry of the slid blocks of coherent lithology have inherited the original tectonic framework, which suggests the crucial role tectonics play in the fragmentation of the compact rock-masses, and the origin and development of the Ameka complex landslide area. Similarly, the main scarps were also parallel to the principal tectonic features. The local tectonic framework is dominated by faults of the same orientation as the regional structures of the Main Ethiopian Rift. Such parallel tectonic frameworks display clear links between the extension of the Main Ethiopian Rift and the tectonic development of the landslide area. The Ameka complex landslide developed in several episodes over thousands of years. According to the radiocarbon data, the last of the larger displaced blocks (representing only 2% of the total area) most likely slid down in the seventh century AD. The main scarps, namely the high scarps in the western part, are unstable over the long term and toppling and falling-type slope movements can be expected here in the future.

  17. A Study on Micropipetting Detection Technology of Automatic Enzyme Immunoassay Analyzer.

    PubMed

    Shang, Zhiwu; Zhou, Xiangping; Li, Cheng; Tsai, Sang-Bing

    2018-04-10

    In order to improve the accuracy and reliability of micropipetting, a method of micro-pipette detection and calibration combining the dynamic pressure monitoring in pipetting process and quantitative identification of pipette volume in image processing was proposed. Firstly, the normalized pressure model for the pipetting process was established with the kinematic model of the pipetting operation, and the pressure model is corrected by the experimental method. Through the pipetting process pressure and pressure of the first derivative of real-time monitoring, the use of segmentation of the double threshold method as pipetting fault evaluation criteria, and the pressure sensor data are processed by Kalman filtering, the accuracy of fault diagnosis is improved. When there is a fault, the pipette tip image is collected through the camera, extract the boundary of the liquid region by the background contrast method, and obtain the liquid volume in the tip according to the geometric characteristics of the pipette tip. The pipette deviation feedback to the automatic pipetting module and deviation correction is carried out. The titration test results show that the combination of the segmented pipetting kinematic model of the double threshold method of pressure monitoring, can effectively real-time judgment and classification of the pipette fault. The method of closed-loop adjustment of pipetting volume can effectively improve the accuracy and reliability of the pipetting system.

  18. The repetition of large-earthquake ruptures.

    PubMed Central

    Sieh, K

    1996-01-01

    This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events. Images Fig. 3 Fig. 7 Fig. 9 PMID:11607662

  19. Tectonic lineations and frictional faulting on a relatively simple body (Ariel)

    NASA Astrophysics Data System (ADS)

    Nyffenegger, Paul; Davis, Dan M.; Consolmagno, Guy J.

    1997-09-01

    Anderson's model of faulting and the Mohr-Coulomb failure criterion can predict the orientations of faults generated in laboratory triaxial compression experiments, but do a much poorer job of explaining the orientations of outcrop- and map-scale faults on Earth. This failure may be due to the structural complexity of the Earth's lithosphere, the failure of laboratory experiments to predict accurately the strength of natural faults, or some fundamental flaw in the model. A simpler environment, such as the lithosphere of an icy satellite, allows us to test whether this model can succeed in less complex settings. A mathematical method is developed to analyze patterns in fracture orientations that can be applied to fractures in the lithospheres of icy satellites. In a initial test of the method, more than 300 lineations on Uranus' satellite Ariel are examined. A nonrandom pattern of lineations is looked for, and the source of the stresses that caused those features and the strength of the material in which they occur are constrained. It is impossible to observe directly the slip on these fractures. However, their orientations are clearly nonrandom and appear to be consistent with Andersonian strike-slip faulting in a relatively weak frictional lithosphere during one or more episodes of tidal flexing.

  20. Structural Analysis of the Pärvie Fault in Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Baeckstroem, A.; Rantakokko, N.; Ask, M. V.

    2011-12-01

    The Pärvie fault is the largest known postglacial fault in the world with a length of about 160 km. The structure has a dominating fault scarp as its western perimeter but in several locations it is rather a system of several faults. The current fault scarps, mainly caused by reverse faulting, are on average, 10-15 m in height and are thought to have been formed during one momentous event near the end of the latest glaciation (the Weichselian, 9,500-115,000 BP ) (Lagerbäck & Sundh, 2008). This information has been learnt from studying deformation features in sediments from the latest glaciation. However, the fault is believed to have been formed as early as the Precambrian, and it has been reactivated repeatedly throughout its history. The earlier history of this fault zone is still largely unknown. Here we present a pre-study to the scientific drilling project "Drilling Active Faults in Northern Europe", that was submitted to the International Continental Scientific Drilling Program (ICDP) in 2009 (Kukkonen et al. 2010) with an ICDP-sponsored workshop in 2010 (Kukkonen et al. 2011). During this workshop a major issue to be addressed before the start of drilling was to reveal whether the fault scarps were formed by one big earthquake or by several small ones (Kukkonen et al. 2011). Initial results from a structural analysis by Riad (1990) have produced information of the latest kinematic event where it is suggested that the latest event coincides with the recent stress field, causing a transpressional effect. The geometrical model suggested for an extensive area of several fault scarps along the structure is the compressive tulip structure. In the southern part, where the fault dips steeply E, the structure is parallel to the foliation of the country rock and earlier breccias, thus indicating a dependence of earlier structures. Modelling of the stress field during the latest glaciation show that a reverse background stress field together with excess pore pressure governs the destabilization of a structure, such as the Pärvie fault, rather than the induced stresses from the weight of ice-sheet (Lund, 2005). This is a presentation of the first part of the structural analysis of the brittle structures around the Pärvie fault in order to evaluate its brittle deformation history and to attempt to constrain the paleostress fields causing these deformations. References Kukkonen, I.T., Olesen, O., Ask, M.V.S., and the PFDP Working Group, 2010. Postglacial faults in Fennoscandia: targets for scientific drilling. GFF, 132:71-81. Kukkonen, I.T., Ask, M.V.S., Olesen, O., 2011. Postglacial Fault Drilling in Northern Europe: Workshop in Skokloster, Sweden. Scientific Drilling, 11, doi:10.2204/iodp.sd.11.08.2011. Lagerbäck, R. & Sundh, M., 2008. Early Holocene faulting and paleoseismicity in northern Sweden. Geological survey of Sweden. Research paper, C 836. 80 p. Lund, B., Schmidt, P., Hieronymus, C., 2009. Stress evolution and fault stability during the Weichselian glacial cycle. Swedish Nuclear Fuel and Waste Management Co., Stockholm. TR-09-15. 106 p. Riad, L., 1990. The Pärvie fault, Northern Sweden, Uppsala University. Research report 63. 48 p

  1. The role of fault surface geometry in the evolution of the fault deformation zone: comparing modeling with field example from the Vignanotica normal fault (Gargano, Southern Italy).

    NASA Astrophysics Data System (ADS)

    Maggi, Matteo; Cianfarra, Paola; Salvini, Francesco

    2013-04-01

    Faults have a (brittle) deformation zone that can be described as the presence of two distintive zones: an internal Fault core (FC) and an external Fault Damage Zone (FDZ). The FC is characterized by grinding processes that comminute the rock grains to a final grain-size distribution characterized by the prevalence of smaller grains over larger, represented by high fractal dimensions (up to 3.4). On the other hand, the FDZ is characterized by a network of fracture sets with characteristic attitudes (i.e. Riedel cleavages). This deformation pattern has important consequences on rock permeability. FC often represents hydraulic barriers, while FDZ, with its fracture connection, represents zones of higher permability. The observation of faults revealed that dimension and characteristics of FC and FDZ varies both in intensity and dimensions along them. One of the controlling factor in FC and FDZ development is the fault plane geometry. By changing its attitude, fault plane geometry locally alter the stress component produced by the fault kinematics and its combination with the bulk boundary conditions (regional stress field, fluid pressure, rocks rheology) is responsible for the development of zones of higher and lower fracture intensity with variable extension along the fault planes. Furthermore, the displacement along faults provides a cumulative deformation pattern that varies through time. The modeling of the fault evolution through time (4D modeling) is therefore required to fully describe the fracturing and therefore permeability. In this presentation we show a methodology developed to predict distribution of fracture intensity integrating seismic data and numerical modeling. Fault geometry is carefully reconstructed by interpolating stick lines from interpreted seismic sections converted to depth. The modeling is based on a mixed numerical/analytical method. Fault surface is discretized into cells with their geometric and rheological characteristics. For each cell, the acting stress and strength are computed by analytical laws (Coulomb failure). Total brittle deformation for each cell is then computed by cumulating the brittle failure values along the path of each cell belonging to one side onto the facing one. The brittle failure value is provided by the DF function, that is the difference between the computed shear and the strength of the cell at each step along its path by using the Frap in-house developed software. The width of the FC and the FDZ are computed as a function of the DF distribution and displacement around the fault. This methodology has been successfully applied to model the brittle deformation pattern of the Vignanotica normal fault (Gargano, Southern Italy) where fracture intensity is expressed by the dimensionless H/S ratio representing the ratio between the dimension and the spacing of homologous fracture sets (i.e., group of parallel fractures that can be ascribed to the same event/stage/stress field).

  2. An Integrated Crustal Dynamics Simulator

    NASA Astrophysics Data System (ADS)

    Xing, H. L.; Mora, P.

    2007-12-01

    Numerical modelling offers an outstanding opportunity to gain an understanding of the crustal dynamics and complex crustal system behaviour. This presentation provides our long-term and ongoing effort on finite element based computational model and software development to simulate the interacting fault system for earthquake forecasting. A R-minimum strategy based finite-element computational model and software tool, PANDAS, for modelling 3-dimensional nonlinear frictional contact behaviour between multiple deformable bodies with the arbitrarily-shaped contact element strategy has been developed by the authors, which builds up a virtual laboratory to simulate interacting fault systems including crustal boundary conditions and various nonlinearities (e.g. from frictional contact, materials, geometry and thermal coupling). It has been successfully applied to large scale computing of the complex nonlinear phenomena in the non-continuum media involving the nonlinear frictional instability, multiple material properties and complex geometries on supercomputers, such as the South Australia (SA) interacting fault system, South California fault model and Sumatra subduction model. It has been also extended and to simulate the hot fractured rock (HFR) geothermal reservoir system in collaboration of Geodynamics Ltd which is constructing the first geothermal reservoir system in Australia and to model the tsunami generation induced by earthquakes. Both are supported by Australian Research Council.

  3. Field based geothermal exploration: Structural controls in the Tarutung Basin/North Central Sumatra (Indonesia)

    NASA Astrophysics Data System (ADS)

    Nukman, M.; Moeck, I.

    2012-04-01

    The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last two million years due to the increase in sea-floor spreading rate of the Indian-Australian plate. The combination of regional clockwise rotation of Sumatra with local clockwise rotation caused by simple shear along the dextral SFS might generate the complex fault pattern which controls fluid flow of thermal water and placement of hot springs. Acknowledgements : Deutscher Akademischer Austausch Dienst, DAAD. German Ministry for Education and Research, BMBF. Badan Geologi - KESDM Bandung, Indonesia.

  4. Illite authigenesis during faulting and fluid flow - a microstructural study of fault rocks

    NASA Astrophysics Data System (ADS)

    Scheiber, Thomas; Viola, Giulio; van der Lelij, Roelant; Margreth, Annina

    2017-04-01

    Authigenic illite can form synkinematically during slip events along brittle faults. In addition it can also crystallize as a result of fluid flow and associated mineral alteration processes in hydrothermal environments. K-Ar dating of illite-bearing fault rocks has recently become a common tool to constrain the timing of fault activity. However, to fully interpret the derived age spectra in terms of deformation ages, a careful investigation of the fault deformation history and architecture at the outcrop-scale, ideally followed by a detailed mineralogical analysis of the illite-forming processes at the micro-scale, are indispensable. Here we integrate this methodological approach by presenting microstructural observations from the host rock immediately adjacent to dated fault gouges from two sites located in the Rolvsnes granodiorite (Bømlo, western Norway). This granodiorite experienced multiple episodes of brittle faulting and fluid-induced alteration, starting in the Mid Ordovician (Scheiber et al., 2016). Fault gouges are predominantly associated with normal faults accommodating mainly E-W extension. K-Ar dating of illites separated from representative fault gouges constrains deformation and alteration due to fluid ingress from the Permian to the Cretaceous, with a cluster of ages for the finest (<0.1 µm) fraction in the early to middle Jurassic. At site one, high-resolution thin section structural mapping reveals a complex deformation history characterized by several coexisting types of calcite veins and seven different generations of cataclasite, two of which contain a significant amount of authigenic and undoubtedly deformation-related illite. At site two, fluid ingress along and adjoining the fault core induced pervasive alteration of the host granodiorite. Quartz is crosscut by calcite veinlets whereas plagioclase, K-feldspar and biotite are almost completely replaced by the main alteration products kaolin, quartz and illite. Illite-bearing micro-domains were physically separated by means of microsawing and drilling devices. K-Ar and XRD data from these separates are compared with bulk K-Ar and XRD data from the adjacent fault gouges, which may help to further unravel complex histories archived in multiply activated brittle fault zones. Scheiber, T., Viola, G., Wilkinson, C.M., Ganerød, M., Skår, Ø., and D. Gasser (2016): Direct 40Ar/39Ar dating of Late-Ordovician and Silurian brittle faulting in the southwestern Norwegian Caledonides. Terra Nova 28, 374-382.

  5. Bulk-friction modeling of afterslip and the modified Omori law

    USGS Publications Warehouse

    Wennerberg, Leif; Sharp, Robert V.

    1997-01-01

    Afterslip data from the Superstition Hills fault in southern California, a creep event on the same fault, the modified Omori law, and cumulative moments from aftershocks of the 1957 Aleutian Islands earthquake all indicate that the original formulation by Dieterich (1981) [Constitutive properties of faults with simulated gouge. AGU, Geophys. Monogr. 24, 103–120] for friction evolution is more appropriate for systems far from instability than the commonly used approximation developed by Ruina (1983) [Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370] to study instability. The mathematical framework we use to test the friction models is a one-dimensional, massless spring-slider under the simplifying assumption, proposed by Scholz (1990) [The Mechanics of Earthquakes and Faulting. Cambridge University Press] and used by Marone et al. (1991) [On the mechanics of earthquake afterslip. J. Geophys. Res., 96: 8441–8452], that the state variable takes on its velocity-dependent steady-state value throughout motion in response to a step in stress. This assumption removes explicit state-variable dependence from the model, obviating the need to consider state-variable evolution equations. Anti-derivatives of the modified Omori law fit our data very well and are very good approximate solutions to our model equations. A plausible friction model with Omori-law solutions used by Wesson (1988) [Dynamics of fault creep. J. Geophys. Res. 93, 8929–8951] to model fault creep and generalized by Rice (1983) [Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys. 121, 443–475] to a rate-and-state variable friction model yields exactly Omori's law with exponents greater than 1, but yields unstable solutions for Omori exponents less than 1. We estimate from the Dieterich formulation the dimensionless parameter a∗ which is equal to the product of the nominal coefficient of friction and the more commonly reported friction parameter a. We find that a∗ is typically positive, qualitatively consistent with laboratory observations, although our observations are considerably larger than laboratory values. However, we also find good model fits for a∗ < 0 when data correspond to Omori exponents less than 1. A modification of the stability analysis by Rice and Ruina (1983) [Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349] indicates that a∗ < 0 is not a consequence of our assumption regarding state-variable evolution. A consistent interpretation of a∗ < 0 in terms of laboratory models appears to be that the data are from later portions of processes better characterized by two-state-variable friction models. a∗ < 0 is explained by assuming that our data cannot resolve the co-seismic evolution of a short-length-scale state variable to a velocity-weakening state; our parameterization leads to an apparent negative instantaneous viscosity. We estimate the largest critical slip distance associated with afterslip to be ∼1–10 cm, consistent with other estimates for near-surface materials. We assume that our observed large values for a∗ reflect the fact that our model ignores the geometrical complexities of three-dimensional stresses in fractured crustal materials around a fault zone with frictional stresses that vary on a fault surface. Our one-dimensional model parameters reflect spatially averaged, bulk, stress and frictional properties of a fault zone, where we clearly cannot specify the details of the averaging process. Our analysis of Omori's law suggests that bulk-frictional properties of a fault zone are well described by our simple laboratory-based models, but they would need to change during the seismic cycle for a mainshock instability to recur, unless a mainshock-aftershock sequence were characterized by a process similar to the arrested instabilities possible in two-state-variable systems.

  6. Bulk-friction modeling of afterslip and the modified Omori law

    NASA Astrophysics Data System (ADS)

    Wennerberg, Leif; Sharp, Robert V.

    1997-08-01

    Afterslip data from the Superstition Hills fault in southern California, a creep event on the same fault, the modified Omori law, and cumulative moments from aftershocks of the 1957 Aleutian Islands earthquake all indicate that the original formulation by Dieterich (1981) [Constitutive properties of faults with simulated gouge. AGU, Geophys. Monogr. 24, 103-120] for friction evolution is more appropriate for systems far from instability than the commonly used approximation developed by Ruina (1983) [Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359-10370] to study instability. The mathematical framework we use to test the friction models is a one-dimensional, massless spring-slider under the simplifying assumption, proposed by Scholz (1990) [The Mechanics of Earthquakes and Faulting. Cambridge University Press] and used by Marone et al. (1991) [On the mechanics of earthquake afterslip. J. Geophys. Res., 96: 8441-8452], that the state variable takes on its velocity-dependent steady-state value throughout motion in response to a step in stress. This assumption removes explicit state-variable dependence from the model, obviating the need to consider state-variable evolution equations. Anti-derivatives of the modified Omori law fit our data very well and are very good approximate solutions to our model equations. A plausible friction model with Omori-law solutions used by Wesson (1988) [Dynamics of fault creep. J. Geophys. Res. 93, 8929-8951] to model fault creep and generalized by Rice (1983) [Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys. 121, 443-475] to a rate-and-state variable friction model yields exactly Omori's law with exponents greater than 1, but yields unstable solutions for Omori exponents less than 1. We estimate from the Dieterich formulation the dimensionless parameter a∗ which is equal to the product of the nominal coefficient of friction and the more commonly reported friction parameter a. We find that a∗ is typically positive, qualitatively consistent with laboratory observations, although our observations are considerably larger than laboratory values. However, we also find good model fits for a∗ < 0 when data correspond to Omori exponents less than 1. A modification of the stability analysis by Rice and Ruina (1983) [Stability of steady frictional slipping. J. Appl. Mech. 50, 343-349] indicates that a∗ < 0 is not a consequence of our assumption regarding state-variable evolution. A consistent interpretation of a∗ < 0 in terms of laboratory models appears to be that the data are from later portions of processes better characterized by two-state-variable friction models. a∗ < 0 is explained by assuming that our data cannot resolve the co-seismic evolution of a short-length-scale state variable to a velocity-weakening state; our parameterization leads to an apparent negative instantaneous viscosity. We estimate the largest critical slip distance associated with afterslip to be ˜1-10 cm, consistent with other estimates for near-surface materials. We assume that our observed large values for a∗ reflect the fact that our model ignores the geometrical complexities of three-dimensional stresses in fractured crustal materials around a fault zone with frictional stresses that vary on a fault surface. Our one-dimensional model parameters reflect spatially averaged, bulk, stress and frictional properties of a fault zone, where we clearly cannot specify the details of the averaging process. Our analysis of Omori's law suggests that bulk-frictional properties of a fault zone are well described by our simple laboratory-based models, but they would need to change during the seismic cycle for a mainshock instability to recur, unless a mainshock-aftershock sequence were characterized by a process similar to the arrested instabilities possible in two-state-variable systems.

  7. Structural Inventory of Great Basin Geothermal Systems and Definition of Favorable Structural Settings

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California, southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings of more than 240 sites. However, we found that many “systems” consisted of little more than a warm or hot well in the central part of a basin. Such “systems” were difficult to evaluate in terms of structural setting in areas lacking in geophysical data. Developed database for structural catalogue in a master spreadsheet. Data components include structural setting, primary fault orientation, presence or absence of Quaternary faulting, reservoir lithology, geothermometry, presence or absence of recent magmatism, and distinguishing blind systems from those that have surface expressions. Reviewed site locations for all 426 geothermal systems– Confirmed and/or relocated spring and geothermal sites based on imagery, maps, and other information for master database. Many systems were mislocated in the original database. In addition, some systems that included several separate springs spread over large areas were divided into two or more distinct systems. Further, all hot wells were assigned names based on their location to facilitate subsequent analyses. We catalogued systems into the following eight major groups, based on the dominant pattern of faulting (Figure 1): - Major normal fault segments (i.e., near displacement maxima). - Fault bends. - Fault terminations or tips. - Step‐overs or relay ramps in normal faults. - Fault intersections. - Accommodation zones (i.e., belts of intermeshing oppositely dipping normal faults), - Displacement transfer zones whereby strike‐slip faults terminate in arrays of normal faults. - Transtensional pull‐aparts. These settings form a hierarchal pattern with respect to fault complexity. - Major normal faults and fault bends are the simplest. - Fault terminations are typically more complex than mid‐segments, as faults commonly break up into multiple strands or horsetail near their ends. - A fault intersection is generally more complex, as it generally contains both multiple fault strands and can include discrete di...

  8. Understanding strain transfer and basin evolution complexities in the Salton pull-apart basin near the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Kell, A. M.; Sahakian, V. J.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Baskin, R. L.; Barth, M.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2015-12-01

    Active source seismic data in the Salton Sea provide insight into the complexity of the pull-apart system development. Seismic reflection data combined with tomographic cross sections give constraints on the timing of basin development and strain partitioning between the two dominant dextral faults in the region; the Imperial fault to the southwest and the Southern San Andreas fault (SSAF) to the northeast. Deformation associated with this step-over appears young, having formed in the last 20-40 k.a. The complexity seen in the Salton Sea is similar to that seen in pull-apart basins worldwide. In the southern basin of the Salton Sea, a zone of transpression is noted near the southern termination of the San Andreas fault, though this stress regime quickly transitions to a region of transtension in the northern reaches of the sea. The evolution seen in the basin architecture is likely related to a transition of the SSAF dying to the north, and giving way to youthful segments of the Brawley seismic zone and Imperial fault. Stratigraphic signatures seen in seismic cross-sections also reveal a long-term component of slip to the southwest on a fault 1-2 km west of the northeastern Salton Sea shoreline. Numerous lines of evidence, including seismic reflection data, high-resolution bathymetry within the Salton Sea, and folding patterns in the Borrego Formation to the east of the sea support an assertion of a previously unmapped fault, the Salton Trough fault (STF), parallel to the SAF and just offshore within the Salton Sea. Seismic observations are seen consistently within two datasets of varying vertical resolutions, up to depths of 4-5 km, suggesting that this fault strand is much longer-lived than the evolution seen in the southern sub-basin. The existence of the STF unifies discrepancies between the onshore seismic studies and data collected within the sea. The STF likely serves as the current bounding fault to the active pull-apart system, as it aligns with the "rung-and-ladder" seismicity seen within the Salton Sea. Additionally, the presence of the STF may explain the gaps seen in the paleoseismic record along the SSAF (i.e. Philibosian et al., 2011), which shows an extended period of non-rupture. The STF may play a role in strain release along the SSAF, so a combined history may yield improved insight to the long periods of quiescence.

  9. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    USGS Publications Warehouse

    Rizza, M.; Ritz, J.-F.; Braucher, R.; Vassallo, R.; Prentice, C.; Mahan, S.; McGill, S.; Chauvet, A.; Marco, S.; Todbileg, M.; Demberel, S.; Bourles, D.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans-particularly well preserved in the arid environment of the Gobi region-allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is ~1 mm yr-1 along the WIB and EIB segments and ~0.5 mm yr-1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78-7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of ~2500-5200 yr for past earthquakes along the different segments of the western Bogd Fault. This suggests that the three western segments of the Bogd Fault and the Gurvan Bulag thrust fault (a reverse fault bounding the southern side of the Ih Bogd range that ruptured during the 1957 earthquake) have similar average recurrence times, and therefore may have ruptured together in previous earthquakes as they did in 1957. These results suggest that the western part of the Bogd Fault system, including the Gurvan Bulag thrust fault, usually behaves in a 'characteristic earthquake' mode. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  10. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    USGS Publications Warehouse

    Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500–5200 yr for past earthquakes along the different segments of the western Bogd Fault. This suggests that the three western segments of the Bogd Fault and the Gurvan Bulag thrust fault (a reverse fault bounding the southern side of the Ih Bogd range that ruptured during the 1957 earthquake) have similar average recurrence times, and therefore may have ruptured together in previous earthquakes as they did in 1957. These results suggest that the western part of the Bogd Fault system, including the Gurvan Bulag thrust fault, usually behaves in a ‘characteristic earthquake’ mode.

  11. Old stories and lost pieces of the Eastern Mediterranean puzzle: a new approach to the tectonic evolution of the Western Anatolia and the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem

    2015-04-01

    During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200 km. Therefore the original NE-SW extension records on the core complexes rotated to the N-S orientation and replace 45o in reference to the core complexes in Greece, 6. During this stage, the left-lateral shear along the Burdur-Fethiye Shear Zone indicates the southern part of the counterclockwise rotation. 7. The North Anatolian Fault started to form as the result of the collision of the Arabian Microplate and the Eurasian Plate in the late Miocene. This continental transform fault propagated into the Marmara Region in the late Pliocene. Its late westward escape by cutting the Trakya-Eskişehir Fault Zone on three points generates its transportation through Trakya-Eskişehir Fault Zone splays. 8. During the Miocene, while Greece was rotating 20o clockwise and continuing to be shaped by the NW-SE normal faults, which were formed as a result of back-arc tectonic, the late westward escape of the Anatolia changed the orientation of the NEE-SWW striking oblique-extensional fault-controlled Miocene basins to NE-SW direction. The rotational E-W basins, which had developed by the North Anatolian Fault tectonics, superimposed with these Miocene basins .

  12. Indoor radon risk associated to post-tectonic biotite granites from Vila Pouca de Aguiar pluton, northern Portugal.

    PubMed

    Martins, L M O; Gomes, M E P; Teixeira, R J S; Pereira, A J S C; Neves, L J P F

    2016-11-01

    At Vila Pouca de Aguiar area, northern Portugal, crops out a post-tectonic Variscan granite pluton, related with the Régua-Vila Real-Verín fault zone, comprising three types of biotite granites. Among these granites, PSG granite yield the highest average contents of U, probably due to its enrichment in accessory U-bearing minerals such as zircon. In the proximity of faults and joints, these granites are often affected by different degrees of hydrothermal alteration, forming reddish altered rocks, commonly known as "episyenites". These altered rocks are probably associated to the occurrence of hydrothermal processes, which led to uranium enrichment in the most advanced stages of episyenitization. In these granites, both average gamma absorbed dose rates in outdoor and indoor air are higher than those of the world average. Furthermore, even in the worst usage scenario, all these granites can be used as a building material, since their annual effective doses are similar to the limit defined by the European Commission. The geometric mean of radon activity of 91 dwellings located at the Vila Pouca de Aguiar pluton is 568Bqm(-3), exceeding that of other northern Portuguese granites. Measurements carried out during a winter season, indicate that 62.6% of the analysed dwellings yield higher indoor radon average values than the Portuguese legislation limit (400Bqm(-3)), and annual effective doses due higher than the world's average value (1.2mSvy(-1)). The interaction of geogenic, architectural and anthropogenic features is crucial to explain the variance in the geometric mean of radon activity of dwellings from Vila Pouca de Aguiar pluton, but the role of geologic faults is probably the most important decisive factor to increase the indoor radon concentration in dwellings. Hence, the development of awareness campaigns in order to inform population about the incurred radiological risks to radon exposure are highly recommended for this specific area. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Fluid overpressure estimates from the aspect ratios of mineral veins

    NASA Astrophysics Data System (ADS)

    Philipp, Sonja L.

    2012-12-01

    Several hundred calcite veins and (mostly) normal faults were studied in limestone and shale layers of a Mesozoic sedimentary basin next to the village of Kilve at the Bristol Channel (SW-England). The veins strike mostly E-W (239 measurements), that is, parallel with the associated normal faults. The mean vein dip is 73°N (44 measurements). Field observations indicate that these faults transported the fluids up into the limestone layers. The vein outcrop (trace) length (0.025-10.3 m) and thickness (0.1-28 mm) size distributions are log-normal. Taking the thickness as the dependent variable and the outcrop length as the independent variable, linear regression gives a coefficient of determination (goodness of fit) of R2 = 0.74 (significant with 99% confidence), but natural logarithmic transformation of the thickness-length data increases the coefficient of determination to R2 = 0.98, indicating that nearly all the variation in thickness can be explained in terms of variation in trace length. The geometric mean of the aspect (length/thickness) ratio, 451, gives the best representation of the data set. With 95% confidence, the true geometric mean of the aspect ratios of the veins lies in the interval 409-497. Using elastic crack theory, appropriate elastic properties of the host rock, and the mean aspect ratio, the fluid overpressure (that is, the total fluid pressure minus the normal stress on the fracture plane) at the time of vein formation is estimated at around 18 MPa. From these results, and using the average host rock and water densities, the depth to the sources of the fluids (below the present exposures) forming the veins is estimated at between around 300 m and 1200 m. These results are in agreement to those obtained by independent isotopic studies and indicate that the fluids were of rather local origin, probably injected from sill-like sources (water sills) inside the sedimentary basin.

  14. Structural styles of Paleozoic intracratonic fault reactivation: A case study of the Grays Point fault zone in southeastern Missouri, USA

    USGS Publications Warehouse

    Clendenin, C.W.; Diehl, S.F.

    1999-01-01

    A pronounced, subparallel set of northeast-striking faults occurs in southeastern Missouri, but little is known about these faults because of poor exposure. The Commerce fault system is the southernmost exposed fault system in this set and has an ancestry related to Reelfoot rift extension. Recent published work indicates that this fault system has a long history of reactivation. The northeast-striking Grays Point fault zone is a segment of the Commerce fault system and is well exposed along the southeast rim of an inactive quarry. Our mapping shows that the Grays Point fault zone also has a complex history of polyphase reactivation, involving three periods of Paleozoic reactivation that occurred in Late Ordovician, Devonian, and post-Mississippian. Each period is characterized by divergent, right-lateral oblique-slip faulting. Petrographic examination of sidwall rip-out clasts in calcite-filled faults associated with the Grays Point fault zone supports a minimum of three periods of right-lateral oblique-slip. The reported observations imply that a genetic link exists between intracratonic fault reactivation and strain produced by Paleozoic orogenies affecting the eastern margin of Laurentia (North America). Interpretation of this link indicate that right-lateral oblique-slip has occurred on all of the northeast-striking faults in southeastern Missouri as a result of strain influenced by the convergence directions of the different Paleozoic orogenies.

  15. A distributed fault-detection and diagnosis system using on-line parameter estimation

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1991-01-01

    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.

  16. Method and apparatus for transfer function simulator for testing complex systems

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1985-01-01

    A method and apparatus for testing the operation of a complex stabilization circuit in a closed loop system is presented. The method is comprised of a programmed analog or digital computing system for implementing the transfer function of a load thereby providing a predictable load. The digital computing system employs a table stored in a microprocessor in which precomputed values of the load transfer function are stored for values of input signal from the stabilization circuit over the range of interest. This technique may be used not only for isolating faults in the stabilization circuit, but also for analyzing a fault in a faulty load by so varying parameters of the computing system as to simulate operation of the actual load with the fault.

  17. Reconnaissance geologic map of the Kuskokwim Bay region, southwest Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mohadjer, Solmaz; Coonrad, Warren L.

    2013-01-01

    The rocks of the map area range from Proterozoic age metamorphic rocks of the Kanektok metamorphic complex (Kilbuck terrane) to Quaternary age mafic volcanic rocks of Nunivak Island. The map area encompasses much of the type area of the Togiak-Tikchik Complex. The geologic maps used to construct this compilation were, for the most part, reconnaissance studies done in the time period from the 1950s to 1990s. Pioneering work in the map area by J.M. Hoare and W.L. Coonrad forms the basis for much of this map, either directly or as the stepping off point for later studies compiled here. Physiographically, the map area ranges from glaciated mountains, as much as 1,500 m high, in the Ahklun Mountains to the coastal lowlands of northern Bristol Bay and the Kuskokwim River delta. The mountains and the finger lakes (drowned fiords) on the east have been strongly affected by Pleistocene and Holocene glaciation. Within the map area are a number of major faults. The Togiak-Tikchik Fault and its extension to the northeast, the Holitna Fault, are considered extensions of the Denali fault system of central Alaska. Other sub-parallel faults include the Golden Gate, Sawpit, Goodnews, and East Kulukak Faults. Northwest-trending strike-slip faults crosscut and offset northeast-trending fault systems. Rocks of the area are assigned to a number of distinctive lithologic packages. Most distinctive among these packages are the high-grade metamorphic rocks of the Kanektok metamorphic complex or Kilbuck terrane, composed of a high-grade metamorphic orthogneiss core surrounded by greenschist and amphibolite facies schist, gneiss, and rare marble and quartzite. These rocks have yielded radiometric ages strongly suggestive of a 2.05 Ga emplacement age. Poorly known Paleozoic rocks, including Ordovician to Devonian and Permian limestone, are found east of the Kanektok metamorphic complex. A Triassic(?) ophiolite complex is on the southeast side of Kuskokwim Bay; otherwise only minor Triassic rock units are known. The most widespread rocks of the area are Jurassic and Early Cretaceous(?) volcanic and volcaniclastic rocks. The Kuskokwim Group flysch is restricted largely to the northeast part of the map area. It consists primarily of shelf and minor nearshore facies rocks. Primarily exposed in the lowlands west of the Ahklun Mountains, extensive latest Tertiary and Quaternary alkalic basalt flows and lesser pyroclastic rocks form much of the bedrock of the remaining area. On Saint Matthew Island, Cretaceous volcanic and pyroclastic rocks occur that are not found elsewhere within the map area. The Kuskokwim Group and older rocks, including on Saint Matthew Island, but not the Kanektok metamorphic complex, are intruded by widely dispersed Late Cretaceous and (or) Early Tertiary granitic rocks. Much of the lowland area is mantled by unconsolidated deposits that include glacial, alluvial and fluvial, marine, estuarine, and eolian deposits. These formed during several episodes of Quaternary glaciation.

  18. Redundant Asynchronous Microprocessor System

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Johnston, J. O.; Dunn, W. R.

    1985-01-01

    Fault-tolerant computer structure called RAMPS (for redundant asynchronous microprocessor system) has simplicity of static redundancy but offers intermittent-fault handling ability of complex, dynamically redundant systems. New structure useful wherever several microprocessors are employed for control - in aircraft, industrial processes, robotics, and automatic machining, for example.

  19. Characteristics of aperiodic sequence of slip events caused by interaction between seismic patches and that caused be self-organized stress heterogeneity

    NASA Astrophysics Data System (ADS)

    Kato, N.

    2017-12-01

    Numerical simulations of earthquake cycles are conducted to investigate the origin of complexity of earthquake recurrence. There are two main causes of the complexity. One is self-organized stress heterogeneity due to dynamical effect. The other is the effect of interaction between some fault patches. In the model, friction on the fault is assumed to obey a rate- and state-dependent friction law. Circular patches of velocity-weakening frictional property are assumed on the fault. On the remaining areas of the fault, velocity-strengthening friction is assumed. We consider three models: Single patch model, two-patch model, and three-patch model. In the first model, the dynamical effect is mainly examined. The latter two models take into consideration the effect of interaction as well as the dynamical effect. Complex multiperiodic or aperiodic sequences of slip events occur when slip behavior changes from the seismic to aseismic, and when the degree of interaction between seismic patches is intermediate. The former is observed in all the models, and the latter is observed in the two-patch model and the three-patch model. Evolution of spatial distribution of shear stress on the fault suggests that aperiodicity at the transition from seismic to aseismic slip is caused by self-organized stress heterogeneity. The iteration maps of recurrence intervals of slip events in aperiodic sequences are examined, and they are approximately expressed by simple curves for aperiodicity at the transition from seismic to aseismic slip. In contrast, the iteration maps for aperiodic sequences caused by interaction between seismic patches are scattered and they are not expressed by simple curves. This result suggests that complex sequences caused by different mechanisms may be distinguished.

  20. Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Boulton, Carolyn; Menzies, Catriona D.; Toy, Virginia G.; Townend, John; Sutherland, Rupert

    2017-01-01

    Oblique dextral motion on the central Alpine Fault in the last circa 5 Ma has exhumed garnet-oligoclase facies mylonitic fault rocks from ˜35 km depth. During exhumation, deformation, accompanied by fluid infiltration, has generated complex lithological variations in fault-related rocks retrieved during Deep Fault Drilling Project (DFDP-1) drilling at Gaunt Creek, South Island, New Zealand. Lithological, geochemical, and mineralogical results reveal that the fault comprises a core of highly comminuted cataclasites and fault gouges bounded by a damage zone containing cataclasites, protocataclasites, and fractured mylonites. The fault core-alteration zone extends ˜20-30 m from the principal slip zone (PSZ) and is characterized by alteration of primary phases to phyllosilicate minerals. Alteration associated with distinct mineral phases occurred proximal the brittle-to-plastic transition (T ≤ 300-400°C, 6-10 km depth) and at shallow depths (T = 20-150°C, 0-3 km depth). Within the fault core-alteration zone, fractures have been sealed by precipitation of calcite and phyllosilicates. This sealing has decreased fault normal permeability and increased rock mass competency, potentially promoting interseismic strain buildup.

Top