NASA Technical Reports Server (NTRS)
McCloud, Peter L.
2010-01-01
Thermal Protection System (TPS) Cavity Heating is predicted using Computational Fluid Dynamics (CFD) on unstructured grids for both simplified cavities and actual cavity geometries. Validation was performed using comparisons to wind tunnel experimental results and CFD predictions using structured grids. Full-scale predictions were made for simplified and actual geometry configurations on the Space Shuttle Orbiter in a mission support timeframe.
Computer-Aided Geometry Modeling
NASA Technical Reports Server (NTRS)
Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)
1984-01-01
Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.
NASA Technical Reports Server (NTRS)
Thorp, Scott A.
1992-01-01
This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.
Computational Fluid Dynamics: Past, Present, And Future
NASA Technical Reports Server (NTRS)
Kutler, Paul
1988-01-01
Paper reviews development of computational fluid dynamics and explores future prospects of technology. Report covers such topics as computer technology, turbulence, development of solution methodology, developemnt of algorithms, definition of flow geometries, generation of computational grids, and pre- and post-data processing.
Faster Aerodynamic Simulation With Cart3D
NASA Technical Reports Server (NTRS)
2003-01-01
A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1996-01-01
The purpose of this paper is to discuss the use of Computer-Aided Design (CAD) geometry in a Multi-Disciplinary Design Optimization (MDO) environment. Two techniques are presented to facilitate the use of CAD geometry by different disciplines, such as Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM). One method is to transfer the load from a CFD grid to a CSM grid. The second method is to update the CAD geometry for CSM deflection.
Fuel Injector Design Optimization for an Annular Scramjet Geometry
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.
2003-01-01
A four-parameter, three-level, central composite experiment design has been used to optimize the configuration of an annular scramjet injector geometry using computational fluid dynamics. The computational fluid dynamic solutions played the role of computer experiments, and response surface methodology was used to capture the simulation results for mixing efficiency and total pressure recovery within the scramjet flowpath. An optimization procedure, based upon the response surface results of mixing efficiency, was used to compare the optimal design configuration against the target efficiency value of 92.5%. The results of three different optimization procedures are presented and all point to the need to look outside the current design space for different injector geometries that can meet or exceed the stated mixing efficiency target.
Computer Aided Grid Interface: An Interactive CFD Pre-Processor
NASA Technical Reports Server (NTRS)
Soni, Bharat K.
1997-01-01
NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.
Computer Aided Grid Interface: An Interactive CFD Pre-Processor
NASA Technical Reports Server (NTRS)
Soni, Bharat K.
1996-01-01
NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.
Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai
2015-11-01
Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.
Numerical Modeling of Internal Flow Aerodynamics. Part 2: Unsteady Flows
2004-01-01
fluid- structure coupling, ...). • • • • • Prediction: in this simulation, we want to assess the effect of a change in SRM geometry, propellant...surface reaches the structure ). The third characteristic time describes the slow evolution of the internal geometry. The last characteristic time...incorporates fluid- structure coupling facility, and is parallel. MOPTI® manages exchanges between two principal computational modules: • • A varying
Effects of walking in deep venous thrombosis: a new integrated solid and fluid mechanics model.
López, Josep M; Fortuny, Gerard; Puigjaner, Dolors; Herrero, Joan; Marimon, Francesc; Garcia-Bennett, Josep
2017-05-01
Deep venous thrombosis (DVT) is a common disease. Large thrombi in venous vessels cause bad blood circulation and pain; and when a blood clot detaches from a vein wall, it causes an embolism whose consequences range from mild to fatal. Walking is recommended to DVT patients as a therapeutical complement. In this study the mechanical effects of walking on a specific patient of DVT were simulated by means of an unprecedented integration of 3 elements: a real geometry, a biomechanical model of body tissues, and a computational fluid dynamics study. A set of computed tomography images of a patient's leg with a thrombus in the popliteal vein was employed to reconstruct a geometry model. Then a biomechanical model was used to compute the new deformed geometry of the vein as a function of the fiber stretch level of the semimembranosus muscle. Finally, a computational fluid dynamics study was performed to compute the blood flow and the wall shear stress (WSS) at the vein and thrombus walls. Calculations showed that either a lengthening or shortening of the semimembranosus muscle led to a decrease of WSS levels up to 10%. Notwithstanding, changes in blood viscosity properties or blood flow rate may easily have a greater impact in WSS. Copyright © 2016 John Wiley & Sons, Ltd.
On the Use of CAD-Native Predicates and Geometry in Surface Meshing
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.
1999-01-01
Several paradigms for accessing computer-aided design (CAD) geometry during surface meshing for computational fluid dynamics are discussed. File translation, inconsistent geometry engines, and nonnative point construction are all identified as sources of nonrobustness. The paper argues in favor of accessing CAD parts and assemblies in their native format, without translation, and for the use of CAD-native predicates and constructors in surface mesh generation. The discussion also emphasizes the importance of examining the computational requirements for exact evaluation of triangulation predicates during surface meshing.
Methods for Computationally Efficient Structured CFD Simulations of Complex Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.; Chen, Jen-Ping
2012-01-01
This research presents more efficient computational methods by which to perform multi-block structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-fidelity solutions of complicated geometries and their associated flows. This computational framework offers flexibility in allocating resources to balance process count and wall-clock computation time, while facilitating research interests of simulating axial compressor stall inception with more complete gridding of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows. These methods are validated and demonstrate improved computational efficiency when applied to complicated geometries and flows.
Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment
NASA Technical Reports Server (NTRS)
Wei, H.; Shang, H. M.; Chen, Y. S.
2001-01-01
The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.
Geometry definition and grid generation for a complete fighter aircraft
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1986-01-01
Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.
Geometry definition and grid generation for a complete fighter aircraft
NASA Technical Reports Server (NTRS)
Edwards, Thomas A.
1986-01-01
Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. A procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system is presented. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.
Geometry-dependent viscosity reduction in sheared active fluids
NASA Astrophysics Data System (ADS)
Słomka, Jonasz; Dunkel, Jörn
2017-04-01
We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction, and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of nonequilibrium fluids by tuning confinement geometry and pattern scale selection.
Predictive models for moving contact line flows
NASA Technical Reports Server (NTRS)
Rame, Enrique; Garoff, Stephen
2003-01-01
Modeling flows with moving contact lines poses the formidable challenge that the usual assumptions of Newtonian fluid and no-slip condition give rise to a well-known singularity. This singularity prevents one from satisfying the contact angle condition to compute the shape of the fluid-fluid interface, a crucial calculation without which design parameters such as the pressure drop needed to move an immiscible 2-fluid system through a solid matrix cannot be evaluated. Some progress has been made for low Capillary number spreading flows. Combining experimental measurements of fluid-fluid interfaces very near the moving contact line with an analytical expression for the interface shape, we can determine a parameter that forms a boundary condition for the macroscopic interface shape when Ca much les than l. This parameter, which plays the role of an "apparent" or macroscopic dynamic contact angle, is shown by the theory to depend on the system geometry through the macroscopic length scale. This theoretically established dependence on geometry allows this parameter to be "transferable" from the geometry of the measurement to any other geometry involving the same material system. Unfortunately this prediction of the theory cannot be tested on Earth.
The application of CFD to the modelling of fires in complex geometries
NASA Astrophysics Data System (ADS)
Burns, A. D.; Clarke, D. S.; Guilbert, P.; Jones, I. P.; Simcox, S.; Wilkes, N. S.
The application of Computational Fluid Dynamics (CFD) to industrial safety is a challenging activity. In particular it involves the interaction of several different physical processes, including turbulence, combustion, radiation, buoyancy, compressible flow and shock waves in complex three-dimensional geometries. In addition, there may be multi-phase effects arising, for example, from sprinkler systems for extinguishing fires. The FLOW3D software (1-3) from Computational Fluid Dynamics Services (CFDS) is in widespread use in industrial safety problems, both within AEA Technology, and also by CFDS's commercial customers, for example references (4-13). This paper discusses some other applications of FLOW3D to safety problems. These applications illustrate the coupling of the gas flows with radiation models and combustion models, particularly for complex geometries where simpler radiation models are not applicable.
Turbomachinery computational fluid dynamics: asymptotes and paradigm shifts.
Dawes, W N
2007-10-15
This paper reviews the development of computational fluid dynamics (CFD) specifically for turbomachinery simulations and with a particular focus on application to problems with complex geometry. The review is structured by considering this development as a series of paradigm shifts, followed by asymptotes. The original S1-S2 blade-blade-throughflow model is briefly described, followed by the development of two-dimensional then three-dimensional blade-blade analysis. This in turn evolved from inviscid to viscous analysis and then from steady to unsteady flow simulations. This development trajectory led over a surprisingly small number of years to an accepted approach-a 'CFD orthodoxy'. A very important current area of intense interest and activity in turbomachinery simulation is in accounting for real geometry effects, not just in the secondary air and turbine cooling systems but also associated with the primary path. The requirements here are threefold: capturing and representing these geometries in a computer model; making rapid design changes to these complex geometries; and managing the very large associated computational models on PC clusters. Accordingly, the challenges in the application of the current CFD orthodoxy to complex geometries are described in some detail. The main aim of this paper is to argue that the current CFD orthodoxy is on a new asymptote and is not in fact suited for application to complex geometries and that a paradigm shift must be sought. In particular, the new paradigm must be geometry centric and inherently parallel without serial bottlenecks. The main contribution of this paper is to describe such a potential paradigm shift, inspired by the animation industry, based on a fundamental shift in perspective from explicit to implicit geometry and then illustrate this with a number of applications to turbomachinery.
A Parametric Geometry Computational Fluid Dynamics (CFD) Study Utilizing Design of Experiments (DOE)
NASA Technical Reports Server (NTRS)
Rhew, Ray D.; Parker, Peter A.
2007-01-01
Design of Experiments (DOE) techniques were applied to the Launch Abort System (LAS) of the NASA Crew Exploration Vehicle (CEV) parametric geometry Computational Fluid Dynamics (CFD) study to efficiently identify and rank the primary contributors to the integrated drag over the vehicles ascent trajectory. Typical approaches to these types of activities involve developing all possible combinations of geometries changing one variable at a time, analyzing them with CFD, and predicting the main effects on an aerodynamic parameter, which in this application is integrated drag. The original plan for the LAS study team was to generate and analyze more than1000 geometry configurations to study 7 geometric parameters. By utilizing DOE techniques the number of geometries was strategically reduced to 84. In addition, critical information on interaction effects among the geometric factors were identified that would not have been possible with the traditional technique. Therefore, the study was performed in less time and provided more information on the geometric main effects and interactions impacting drag generated by the LAS. This paper discusses the methods utilized to develop the experimental design, execution, and data analysis.
Practical quality control tools for curves and surfaces
NASA Technical Reports Server (NTRS)
Small, Scott G.
1992-01-01
Curves (geometry) and surfaces created by Computer Aided Geometric Design systems in the engineering environment must satisfy two basic quality criteria: the geometric shape must have the desired engineering properties; and the objects must be parameterized in a way which does not cause computational difficulty for geometric processing and engineering analysis. Interactive techniques are described which are in use at Boeing to evaluate the quality of aircraft geometry prior to Computational Fluid Dynamic analysis, including newly developed methods for examining surface parameterization and its effects.
NASA Astrophysics Data System (ADS)
Kumar, K. Ravi; Cheepu, Muralimohan; Srinivas, B.; Venkateswarlu, D.; Pramod Kumar, G.; Shiva, Apireddi
2018-03-01
In solar air heater, artificial roughness on absorber plate become prominent technique to improving heat transfer rate of air flowing passage as a result of laminar sublayer. The selection of rib geometries plays important role on friction characteristics and heat transfer rate. Many researchers studying the roughness shapes over the years to investigate the effect of geometries on the performance of friction factor and heat transfer of the solar air heater. The present study made an attempt to develop the different rib shapes utilised for creating artificial rib roughness and its comparison to investigate higher performance of the geometries. The use of computational fluid dynamics software resulted in correlation of friction factor and heat transfer rate. The simulations studies were performed on 2D computational fluid dynamics model and analysed to identify the most effective parameters of relative roughness of the height, width and pitch on major considerations of friction factor and heat transfer. The Reynolds number is varied in a range from 3000 to 20000, in the current study and modelling has conducted on heat transfer and turbulence phenomena by using Reynolds number. The modelling results showed the formation of strong vortex in the main stream flow due to the right angle triangle roughness over the square, rectangle, improved rectangle and equilateral triangle geometries enhanced the heat transfer extension in the solar air heater. The simulation of the turbulence kinetic energy of the geometry suggests the local turbulence kinetic energy has been influenced strongly by the alignments of the right angle triangle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardle, K.E.
2013-07-01
Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor aremore » reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.« less
NASA Technical Reports Server (NTRS)
Tezduyar, Tayfun E.
1998-01-01
This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.
NASA Technical Reports Server (NTRS)
Ziebarth, John P.; Meyer, Doug
1992-01-01
The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.
Dynamic Mesh CFD Simulations of Orion Parachute Pendulum Motion During Atmospheric Entry
NASA Technical Reports Server (NTRS)
Halstrom, Logan D.; Schwing, Alan M.; Robinson, Stephen K.
2016-01-01
This paper demonstrates the usage of computational fluid dynamics to study the effects of pendulum motion dynamics of the NASAs Orion Multi-Purpose Crew Vehicle parachute system on the stability of the vehicles atmospheric entry and decent. Significant computational fluid dynamics testing has already been performed at NASAs Johnson Space Center, but this study sought to investigate the effect of bulk motion of the parachute, such as pitching, on the induced aerodynamic forces. Simulations were performed with a moving grid geometry oscillating according to the parameters observed in flight tests. As with the previous simulations, OVERFLOW computational fluid dynamics tool is used with the assumption of rigid, non-permeable geometry. Comparison to parachute wind tunnel tests is included for a preliminary validation of the dynamic mesh model. Results show qualitative differences in the flow fields of the static and dynamic simulations and quantitative differences in the induced aerodynamic forces, suggesting that dynamic mesh modeling of the parachute pendulum motion may uncover additional dynamic effects.
Canstein, C; Cachot, P; Faust, A; Stalder, A F; Bock, J; Frydrychowicz, A; Küffer, J; Hennig, J; Markl, M
2008-03-01
The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used to transform aortic geometries as measured by contrast-enhanced MR angiography into realistic vascular models with large anatomical coverage. Integration into a flow circuit with patient-specific pulsatile in-flow conditions and application of flow-sensitive 4D MRI permitted detailed analysis of local and global 3D flow dynamics in a realistic vascular geometry. Visualization of characteristic 3D flow patterns and quantitative comparisons of the in vitro experiments with in vivo data and CFD simulations in identical vascular geometries were performed to evaluate the accuracy of vascular model systems. The results indicate the potential of such patient-specific model systems for detailed experimental simulation of realistic vascular hemodynamics. Further studies are warranted to examine the influence of refined boundary conditions of the human circulatory system such as fluid-wall interaction and their effect on normal and pathological blood flow characteristics associated with vascular geometry. (c) 2008 Wiley-Liss, Inc.
Research in Parallel Algorithms and Software for Computational Aerosciences
DOT National Transportation Integrated Search
1996-04-01
Phase I is complete for the development of a Computational Fluid Dynamics : with automatic grid generation and adaptation for the Euler : analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian : grid code developed at Lockheed...
Yan, Xiaoxu; Wu, Qing; Sun, Jianyu; Liang, Peng; Zhang, Xiaoyuan; Xiao, Kang; Huang, Xia
2016-01-01
Geometry property would affect the hydrodynamics of membrane bioreactor (MBR), which was directly related to membrane fouling rate. The simulation of a bench-scale MBR by computational fluid dynamics (CFD) showed that the shear stress on membrane surface could be elevated by 74% if the membrane was sandwiched between two baffles (baffled MBR), compared with that without baffles (unbaffled MBR). The effects of horizontal geometry characteristics of a bench-scale membrane tank were discussed (riser length index Lr, downcomer length index Ld, tank width index Wt). Simulation results indicated that the average cross flow of the riser was negatively correlated to the ratio of riser and downcomer cross-sectional area. A relatively small tank width would also be preferable in promoting shear stress on membrane surface. The optimized MBR had a shear elevation of 21.3-91.4% compared with unbaffled MBR under same aeration intensity. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6
NASA Technical Reports Server (NTRS)
1989-01-01
Presentations given at the NASA Computational Fluid Dynamics (CFD) Conference held at the NASA Ames Research Center, Moffett Field, California, March 7-9, 1989 are given. Topics covered include research facility overviews of CFD research and applications, validation programs, direct simulation of compressible turbulence, turbulence modeling, advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations, grid generation and invicid flow computation around aircraft geometries, numerical simulation of rotorcraft, and viscous drag prediction for rotor blades.
Application of electron closures in extended MHD
NASA Astrophysics Data System (ADS)
Held, Eric; Adair, Brett; Taylor, Trevor
2017-10-01
Rigorous closure of the extended MHD equations in plasma fluid codes includes the effects of electron heat conduction along perturbed magnetic fields and contributions of the electron collisional friction and stress to the extended Ohms law. In this work we discuss application of a continuum numerical solution to the Chapman-Enskog-like electron drift kinetic equation using the NIMROD code. The implementation is a tightly-coupled fluid/kinetic system that carefully addresses time-centering in the advance of the fluid variables with their kinetically-computed closures. Comparisons of spatial accuracy, computational efficiency and required velocity space resolution are presented for applications involving growing magnetic islands in cylindrical and toroidal geometry. The reduction in parallel heat conduction due to particle trapping in toroidal geometry is emphasized. Work supported by DOE under Grant Nos. DE-FC02-08ER54973 and DE-FG02-04ER54746.
Conversion of Component-Based Point Definition to VSP Model and Higher Order Meshing
NASA Technical Reports Server (NTRS)
Ordaz, Irian
2011-01-01
Vehicle Sketch Pad (VSP) has become a powerful conceptual and parametric geometry tool with numerous export capabilities for third-party analysis codes as well as robust surface meshing capabilities for computational fluid dynamics (CFD) analysis. However, a capability gap currently exists for reconstructing a fully parametric VSP model of a geometry generated by third-party software. A computer code called GEO2VSP has been developed to close this gap and to allow the integration of VSP into a closed-loop geometry design process with other third-party design tools. Furthermore, the automated CFD surface meshing capability of VSP are demonstrated for component-based point definition geometries in a conceptual analysis and design framework.
Janiga, G; Berg, P; Sugiyama, S; Kono, K; Steinman, D A
2015-03-01
Rupture risk assessment for intracranial aneurysms remains challenging, and risk factors, including wall shear stress, are discussed controversially. The primary purpose of the presented challenge was to determine how consistently aneurysm rupture status and rupture site could be identified on the basis of computational fluid dynamics. Two geometrically similar MCA aneurysms were selected, 1 ruptured, 1 unruptured. Participating computational fluid dynamics groups were blinded as to which case was ruptured. Participants were provided with digitally segmented lumen geometries and, for this phase of the challenge, were free to choose their own flow rates, blood rheologies, and so forth. Participants were asked to report which case had ruptured and the likely site of rupture. In parallel, lumen geometries were provided to a group of neurosurgeons for their predictions of rupture status and site. Of 26 participating computational fluid dynamics groups, 21 (81%) correctly identified the ruptured case. Although the known rupture site was associated with low and oscillatory wall shear stress, most groups identified other sites, some of which also experienced low and oscillatory shear. Of the 43 participating neurosurgeons, 39 (91%) identified the ruptured case. None correctly identified the rupture site. Geometric or hemodynamic considerations favor identification of rupture status; however, retrospective identification of the rupture site remains a challenge for both engineers and clinicians. A more precise understanding of the hemodynamic factors involved in aneurysm wall pathology is likely required for computational fluid dynamics to add value to current clinical decision-making regarding rupture risk. © 2015 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Zhu, Minjie; Scott, Michael H.
2017-07-01
Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.
Interfacial gauge methods for incompressible fluid dynamics
Saye, Robert
2016-01-01
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide computational modelers with very accurate solid and surface models for use in computational fluid dynamics studies and experimentalists with increased insight into the operating characteristics of their injectors.« less
Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan; ...
2017-03-14
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide computational modelers with very accurate solid and surface models for use in computational fluid dynamics studies and experimentalists with increased insight into the operating characteristics of their injectors.« less
Using stroboscopic flow imaging to validate large-scale computational fluid dynamics simulations
NASA Astrophysics Data System (ADS)
Laurence, Ted A.; Ly, Sonny; Fong, Erika; Shusteff, Maxim; Randles, Amanda; Gounley, John; Draeger, Erik
2017-02-01
The utility and accuracy of computational modeling often requires direct validation against experimental measurements. The work presented here is motivated by taking a combined experimental and computational approach to determine the ability of large-scale computational fluid dynamics (CFD) simulations to understand and predict the dynamics of circulating tumor cells in clinically relevant environments. We use stroboscopic light sheet fluorescence imaging to track the paths and measure the velocities of fluorescent microspheres throughout a human aorta model. Performed over complex physiologicallyrealistic 3D geometries, large data sets are acquired with microscopic resolution over macroscopic distances.
Tensor methodology and computational geometry in direct computational experiments in fluid mechanics
NASA Astrophysics Data System (ADS)
Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Julia
2017-07-01
The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite - element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate systems with direct and inverse transformations. So new method for mathematical representation and synthesis of computational experiment based on large particle method is proposed.
Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P
2013-02-01
Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 μm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Three-dimensional echocardiography was used to obtain systolic leaflet geometry. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet (V ~ 0.6 m/s) was observed during peak systole with minimal out-of-plane velocities. In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, this work represents the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations.
Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P.
2012-01-01
Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 µm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Threedimensional echocardiography was used to obtain systolic leaflet geometry for direct comparison of resultant leaflet kinematics. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet was observed during peak systole, with minimal out-of-plane velocities (V~0.6m/s). In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, these data represent the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations. PMID:22965640
Borojeni, Azadeh A.T.; Frank-Ito, Dennis O.; Kimbell, Julia S.; Rhee, John S.; Garcia, Guilherme J. M.
2016-01-01
Virtual surgery planning based on computational fluid dynamics (CFD) simulations has the potential to improve surgical outcomes for nasal airway obstruction (NAO) patients, but the benefits of virtual surgery planning must outweigh the risks of radiation exposure. Cone beam computed tomography (CBCT) scans represent an attractive imaging modality for virtual surgery planning due to lower costs and lower radiation exposures compared with conventional CT scans. However, to minimize the radiation exposure, the CBCT sinusitis protocol sometimes images only the nasal cavity, excluding the nasopharynx. The goal of this study was to develop an idealized nasopharynx geometry for accurate representation of outlet boundary conditions when the nasopharynx geometry is unavailable. Anatomically-accurate models of the nasopharynx created from thirty CT scans were intersected with planes rotated at different angles to obtain an average geometry. Cross sections of the idealized nasopharynx were approximated as ellipses with cross-sectional areas and aspect ratios equal to the average in the actual patient-specific models. CFD simulations were performed to investigate whether nasal airflow patterns were affected when the CT-based nasopharynx was replaced by the idealized nasopharynx in 10 NAO patients. Despite the simple form of the idealized geometry, all biophysical variables (nasal resistance, airflow rate, and heat fluxes) were very similar in the idealized vs. patient-specific models. The results confirmed the expectation that the nasopharynx geometry has a minimal effect in the nasal airflow patterns during inspiration. The idealized nasopharynx geometry will be useful in future CFD studies of nasal airflow based on medical images that exclude the nasopharynx. PMID:27525807
Computational Systems for Multidisciplinary Applications
NASA Technical Reports Server (NTRS)
Soni, Bharat; Haupt, Tomasz; Koomullil, Roy; Luke, Edward; Thompson, David
2002-01-01
In this paper, we briefly describe our efforts to develop complex simulation systems. We focus first on four key infrastructure items: enterprise computational services, simulation synthesis, geometry modeling and mesh generation, and a fluid flow solver for arbitrary meshes. We conclude by presenting three diverse applications developed using these technologies.
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2016-04-01
We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.
Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu
2015-12-01
Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.
Applied Computational Fluid Dynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
1994-01-01
The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.
Fluid Resistance Studies with an Atwood Machine
NASA Astrophysics Data System (ADS)
Taylor, Ken; Aragon, Omar; Braun, Russell; Fessahaie, Ellias
2008-03-01
An Atwood machine in which one of its masses moves through water is used to study fluid resistance. In particular, efforts are made to compare the effects of the water resistance for objects of similar geometry but different densities. The presentation describes the apparatus, the computer system used for data acquisition and the various schemes used in the investigation.
Interfacial gauge methods for incompressible fluid dynamics
Saye, R.
2016-06-10
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less
Piro, M.H.A; Wassermann, F.; Grundmann, S.; ...
2017-05-23
The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, M.H.A; Wassermann, F.; Grundmann, S.
The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less
2014-05-21
simulating air-water free -surface flow, fluid-object interaction (FOI), and fluid-structure interaction (FSI) phenomena for complex geometries, and...with no limitations on the motion of the free surface, and with particular emphasis on ship hydrodynamics. The following specific research objectives...were identified for this project: 1) Development of a theoretical framework for free -surface flow, FOI and FSI that is a suitable starting point
Numerical investigation of the effects of channel geometry on platelet activation and blood damage.
Wu, Jingshu; Yun, B Min; Fallon, Anna M; Hanson, Stephen R; Aidun, Cyrus K; Yoganathan, Ajit P
2011-02-01
Thromboembolic complications in Bileaflet mechanical heart valves (BMHVs) are believed to be due to the combination of high shear stresses and large recirculation regions. Relating blood damage to design geometry is therefore essential to ultimately optimize the design of BMHVs. The aim of this research is to quantitatively study the effect of 3D channel geometry on shear-induced platelet activation and aggregation, and to choose an appropriate blood damage index (BDI) model for future numerical simulations. The simulations in this study use a recently developed lattice-Boltzmann with external boundary force (LBM-EBF) method [Wu, J., and C. K. Aidun. Int. J. Numer. Method Fluids 62(7):765-783, 2010; Wu, J., and C. K. Aidun. Int. J. Multiphase flow 36:202-209, 2010]. The channel geometries and flow conditions are re-constructed from recent experiments by Fallon [The Development of a Novel in vitro Flow System to Evaluate Platelet Activation and Procoagulant Potential Induced by Bileaflet Mechanical Heart Valve Leakage Jets in School of Chemical and Biomolecular Engineering. Atlanta: Georgia Institute of Technology] and Fallon et al. [Ann. Biomed. Eng. 36(1):1]. The fluid flow is computed on a fixed regular 'lattice' using the LBM, and each platelet is mapped onto a Lagrangian frame moving continuously throughout the fluid domain. The two-way fluid-solid interactions are determined by the EBF method by enforcing a no-slip condition on the platelet surface. The motion and orientation of the platelet are obtained from Newtonian dynamics equations. The numerical results show that sharp corners or sudden shape transitions will increase blood damage. Fallon's experimental results were used as a basis for choosing the appropriate BDI model for use in future computational simulations of flow through BMHVs.
NASA Astrophysics Data System (ADS)
Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.
2005-04-01
One of NASA"s objectives is to be able to perform a complete pre-flight evaluation of possible cardiovascular changes in astronauts scheduled for prolonged space missions. Blood flow is an important component of cardiovascular function. Lately, attention has focused on using computational fluid dynamics (CFD) to analyze flow with realistic vessel geometries. MRI can provide detailed geometrical information and is the only clinical technique to measure all three spatial velocity components. The objective of this study was to investigate the reliability of MRI-based model reconstruction for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction using different resolution settings. The vessel walls were identified and the geometry was reconstructed using existing software. The geometry was then imported into a commercial CFD package for meshing and numerical solution. MRI velocity acquisitions provided true inlet boundary conditions for steady flow, as well as three-directional velocity data at several locations. In addition, an idealized version of each geometry was created from the model drawings. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with mean differences <10%. CFD results from different MRI resolution settings did not show significant differences (<5%). This study showed quantitatively that reliable CFD simulations can be performed in models reconstructed from MRI acquisitions and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system is possible.
NASA Astrophysics Data System (ADS)
Kong, Fande; Cai, Xiao-Chuan
2017-07-01
Nonlinear fluid-structure interaction (FSI) problems on unstructured meshes in 3D appear in many applications in science and engineering, such as vibration analysis of aircrafts and patient-specific diagnosis of cardiovascular diseases. In this work, we develop a highly scalable, parallel algorithmic and software framework for FSI problems consisting of a nonlinear fluid system and a nonlinear solid system, that are coupled monolithically. The FSI system is discretized by a stabilized finite element method in space and a fully implicit backward difference scheme in time. To solve the large, sparse system of nonlinear algebraic equations at each time step, we propose an inexact Newton-Krylov method together with a multilevel, smoothed Schwarz preconditioner with isogeometric coarse meshes generated by a geometry preserving coarsening algorithm. Here "geometry" includes the boundary of the computational domain and the wet interface between the fluid and the solid. We show numerically that the proposed algorithm and implementation are highly scalable in terms of the number of linear and nonlinear iterations and the total compute time on a supercomputer with more than 10,000 processor cores for several problems with hundreds of millions of unknowns.
GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA
NASA Astrophysics Data System (ADS)
Ren, Qinlong
Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1,000 US dollars. The release of NVIDIA's CUDA architecture which includes both hardware and programming environment in 2007 makes GPU computing attractive. Due to its highly parallel nature, lattice Boltzmann method is successfully ported into GPU with a performance benefit during the recent years. In the current work, LBM CUDA code is developed for different fluid flow and heat transfer problems. In this dissertation, lattice Boltzmann method and immersed boundary method are used to study natural convection in an enclosure with an array of conduting obstacles, double-diffusive convection in a vertical cavity with Soret and Dufour effects, PCM melting process in a latent heat thermal energy storage system with internal fins, mixed convection in a lid-driven cavity with a sinusoidal cylinder, and AC electrothermal pumping in microfluidic systems on a CUDA computational platform. It is demonstrated that LBM is an efficient method to simulate complex heat transfer problems using GPU on CUDA.
Warren, K M; Mpagazehe, J N; LeDuc, P R; Higgs, C F
2016-02-07
The response of individual cells at the micro-scale in cell mechanics is important in understanding how they are affected by changing environments. To control cell stresses, microfluidics can be implemented since there is tremendous control over the geometry of the devices. Designing microfluidic devices to induce and manipulate stress levels on biological cells can be aided by computational modeling approaches. Such approaches serve as an efficient precursor to fabricating various microfluidic geometries that induce predictable levels of stress on biological cells, based on their mechanical properties. Here, a three-dimensional, multiphase computational fluid dynamics (CFD) modeling approach was implemented for soft biological materials. The computational model incorporates the physics of the particle dynamics, fluid dynamics and solid mechanics, which allows us to study how stresses affect the cells. By using an Eulerian-Lagrangian approach to treat the fluid domain as a continuum in the microfluidics, we are conducting studies of the cells' movement and the stresses applied to the cell. As a result of our studies, we were able to determine that a channel with periodically alternating columns of obstacles was capable of stressing cells at the highest rate, and that microfluidic systems can be engineered to impose heterogenous cell stresses through geometric configuring. We found that when using controlled geometries of the microfluidics channels with staggered obstructions, we could increase the maximum cell stress by nearly 200 times over cells flowing through microfluidic channels with no obstructions. Incorporating computational modeling in the design of microfluidic configurations for controllable cell stressing could help in the design of microfludic devices for stressing cells such as cell homogenizers.
External-Compression Supersonic Inlet Design Code
NASA Technical Reports Server (NTRS)
Slater, John W.
2011-01-01
A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.
Computational Fluid Dynamics Analysis of Thoracic Aortic Dissection
NASA Astrophysics Data System (ADS)
Tang, Yik; Fan, Yi; Cheng, Stephen; Chow, Kwok
2011-11-01
Thoracic Aortic Dissection (TAD) is a cardiovascular disease with high mortality. An aortic dissection is formed when blood infiltrates the layers of the vascular wall, and a new artificial channel, the false lumen, is created. The expansion of the blood vessel due to the weakened wall enhances the risk of rupture. Computational fluid dynamics analysis is performed to study the hemodynamics of this pathological condition. Both idealized geometry and realistic patient configurations from computed tomography (CT) images are investigated. Physiological boundary conditions from in vivo measurements are employed. Flow configuration and biomechanical forces are studied. Quantitative analysis allows clinicians to assess the risk of rupture in making decision regarding surgical intervention.
Hydrodynamic design of generic pump components
NASA Technical Reports Server (NTRS)
Eastland, A. H. J.; Dodson, H. C.
1991-01-01
Inducer and impellar base geometries were defined for a fuel pump for a generic generator cycle. Blade surface data and inlet flowfield definition are available in sufficient detail to allow computational fluid dynamic analysis of the two components.
Flow dynamic environment data base development for the SSME
NASA Technical Reports Server (NTRS)
Sundaram, C. V.
1985-01-01
The fluid flow-induced vibration of the Space Shuttle main engine (SSME) components are being studied with a view to correlating the frequency characteristics of the pressure fluctuations in a rocket engine to its operating conditions and geometry. An overview of the data base development for SSME test firing results and the interactive computer software used to access, retrieve, and plot or print the results selectively for given thrust levels, engine numbers, etc., is presented. The various statistical methods available in the computer code for data analysis are discussed. Plots of test data, nondimensionalized using parameters such as fluid flow velocities, densities, and pressures, are presented. Results are compared with those available in the literature. Correlations between the resonant peaks observed at higher frequencies in power spectral density plots with pump geometry and operating conditions are discussed. An overview of the status of the investigation is presented and future directions are discussed.
NASA geometry data exchange specification for computational fluid dynamics (NASA IGES)
NASA Technical Reports Server (NTRS)
Blake, Matthew W.; Kerr, Patricia A.; Thorp, Scott A.; Jou, Jin J.
1994-01-01
This document specifies a subset of an existing product data exchange specification that is widely used in industry and government. The existing document is called the Initial Graphics Exchange Specification. This document, a subset of IGES, is intended for engineers analyzing product performance using tools such as computational fluid dynamics (CFD) software. This document specifies how to define mathematically and exchange the geometric model of an object. The geometry is represented utilizing nonuniform rational B-splines (NURBS) curves and surfaces. Only surface models are represented; no solid model representation is included. This specification does not include most of the other types of product information available in IGES (e.g., no material properties or surface finish properties) and does not provide all the specific file format details of IGES. The data exchange protocol specified in this document is fully conforming to the American National Standard (ANSI) IGES 5.2.
Computational Fluid Dynamics Modeling of Bacillus anthracis ...
Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict
NASA Astrophysics Data System (ADS)
Zhou, Yingfang; Helland, Johan Olav; Hatzignatiou, Dimitrios G.
2014-07-01
We present a semi-analytical, combinatorial approach to compute three-phase capillary entry pressures for gas invasion into pore throats with constant cross-sections of arbitrary shapes that are occupied by oil and/or water. For a specific set of three-phase capillary pressures, geometrically allowed gas/oil, oil/water and gas/water arc menisci are determined by moving two circles in opposite directions along the pore/solid boundary for each fluid pair such that the contact angle is defined at the front circular arcs. Intersections of the two circles determine the geometrically allowed arc menisci for each fluid pair. The resulting interfaces are combined systematically to allow for all geometrically possible three-phase configuration changes. The three-phase extension of the Mayer and Stowe - Princen method is adopted to calculate capillary entry pressures for all determined configuration candidates, from which the most favorable gas invasion configuration is determined. The model is validated by comparing computed three-phase capillary entry pressures and corresponding fluid configurations with analytical solutions in idealized triangular star-shaped pores. It is demonstrated that the model accounts for all scenarios that have been analyzed previously in these shapes. Finally, three-phase capillary entry pressures and associated fluid configurations are computed in throat cross-sections extracted from segmented SEM images of Bentheim sandstone. The computed gas/oil capillary entry pressures account for the expected dependence of oil/water capillary pressure in spreading and non-spreading fluid systems at the considered wetting conditions. Because these geometries are irregular and include constrictions, we introduce three-phase displacements that have not been identified previously in pore-network models that are based on idealized pore shapes. However, in the limited number of pore geometries considered in this work, we find that the favorable displacements are not generically different from those already encountered in network models previously, except that the size and shape of oil layers that are surrounded by gas and water are described more realistically. The significance of the results for describing oil connectivity in porous media accurately can only be evaluated by including throats with more complex cross-sections in three-phase pore-network models.
A Novel Shape Parameterization Approach
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1999-01-01
This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
NASA Technical Reports Server (NTRS)
Radke, C. R.; Meyer, T. R.
2014-01-01
The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, X-ray radiography allowed for investigation of sheet thickness and breakup length to be quantified for different recess exit diameters and inlet pressures. Finally, computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.
NASA Technical Reports Server (NTRS)
Radke, C. R.; Meyer, T. R.
2014-01-01
The spray characteristics of a Liquid-Liquid Double Swirl Coaxial Injector were studied using noninvasive Optical, Laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler Particle Analysis characterized droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, x-ray radiographs allowed for investigations of sheet thickness and breakup length to be quantified for different recess exits and inlet pressures. Finally Computed Tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.
Optimizing the Entrainment Geometry of a Dry Powder Inhaler: Methodology and Preliminary Results.
Kopsch, Thomas; Murnane, Darragh; Symons, Digby
2016-11-01
For passive dry powder inhalers (DPIs) entrainment and emission of the aerosolized drug dose depends strongly on device geometry and the patient's inhalation manoeuvre. We propose a computational method for optimizing the entrainment part of a DPI. The approach assumes that the pulmonary delivery location of aerosol can be determined by the timing of dose emission into the tidal airstream. An optimization algorithm was used to iteratively perform computational fluid dynamic (CFD) simulations of the drug emission of a DPI. The algorithm seeks to improve performance by changing the device geometry. Objectives were to achieve drug emission that was: A) independent of inhalation manoeuvre; B) similar to a target profile. The simulations used complete inhalation flow-rate profiles generated dependent on the device resistance. The CFD solver was OpenFOAM with drug/air flow simulated by the Eulerian-Eulerian method. To demonstrate the method, a 2D geometry was optimized for inhalation independence (comparing two breath profiles) and an early-bolus delivery. Entrainment was both shear-driven and gas-assisted. Optimization for a delay in the bolus delivery was not possible with the chosen geometry. Computational optimization of a DPI geometry for most similar drug delivery has been accomplished for an example entrainment geometry.
Bayatian, Majid; Ashrafi, Khosro; Azari, Mansour Rezazadeh; Jafari, Mohammad Javad; Mehrabi, Yadollah
2018-04-01
There has been an increasing concern about the continuous and the sudden release of volatile organic pollutants from petroleum refineries and occupational and environmental exposures. Benzene is one of the most prevalent volatile compounds, and it has been addressed by many authors for its potential toxicity in occupational and environmental settings. Due to the complexities of sampling and analysis of benzene in routine and accidental situations, a reliable estimation of the benzene concentration in the outdoor setting of refinery using a computational fluid dynamics (CFD) could be instrumental for risk assessment of occupational exposure. In the present work, a computational fluid dynamic model was applied for exposure risk assessment with consideration of benzene being released continuously from a reforming unit of a refinery. For simulation of benzene dispersion, GAMBIT, FLUENT, and CFD post software are used as preprocessing, processing, and post-processing, respectively. Computational fluid dynamic validation was carried out by comparing the computed data with the experimental measurements. Eventually, chronic daily intake and lifetime cancer risk for routine operations through the two seasons of a year are estimated through the simulation model. Root mean square errors are 0.19 and 0.17 for wind speed and concentration, respectively. Lifetime risk assessments of workers are 0.4-3.8 and 0.0096-0.25 per 1000 workers in stable and unstable atmospheric conditions, respectively. Exposure risk is unacceptable for the head of shift work, chief engineer, and general workers in 141 days (38.77%) in a year. The results of this study show that computational fluid dynamics is a useful tool for modeling of benzene exposure in a complex geometry and can be used to estimate lifetime risks of occupation groups in a refinery setting.
Integrated geometry and grid generation system for complex configurations
NASA Technical Reports Server (NTRS)
Akdag, Vedat; Wulf, Armin
1992-01-01
A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.
Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code
NASA Technical Reports Server (NTRS)
Mathur, Sanjay
2011-01-01
A solution has been developed to the challenges of computation of derivatives with respect to geometry, which is not straightforward because these are not typically direct inputs to the computational fluid dynamics (CFD) solver. To overcome these issues, a procedure has been devised that can be used without having access to the mesh generator, while still being applicable to all types of meshes. The basic approach is inspired by the mesh motion algorithms used to deform the interior mesh nodes in a smooth manner when the surface nodes, for example, are in a fluid structure interaction problem. The general idea is to model the mesh edges and nodes as constituting a spring-mass system. Changes to boundary node locations are propagated to interior nodes by allowing them to assume their new equilibrium positions, for instance, one where the forces on each node are in balance. The main advantage of the technique is that it is independent of the volumetric mesh generator, and can be applied to structured, unstructured, single- and multi-block meshes. It essentially reduces the problem down to defining the surface mesh node derivatives with respect to the geometry parameters of interest. For analytical geometries, this is quite straightforward. In the more general case, one would need to be able to interrogate the underlying parametric CAD (computer aided design) model and to evaluate the derivatives either analytically, or by a finite difference technique. Because the technique is based on a partial differential equation (PDE), it is applicable not only to forward mode problems (where derivatives of all the output quantities are computed with respect to a single input), but it could also be extended to the adjoint problem, either by using an analytical adjoint of the PDE or a discrete analog.
Wang, Weixiong; Graziano, Francesca; Russo, Vittorio; Ulm, Arthur J; De Kee, Daniel; Khismatullin, Damir B
2013-01-01
The endovascular treatment of intracranial aneurysms remains a challenge, especially when the aneurysm is large in size and has irregular, non-spherical geometry. In this paper, we use computational fluid dynamics to simulate blood flow in a vertebro-basilar junction giant aneurysm for the following three cases: (1) an empty aneurysm, (2) an aneurysm filled with platinum coils, and (3) an aneurysm filled with a yield stress fluid material. In the computational model, blood and the coil-filled region are treated as a non-Newtonian fluid and an isotropic porous medium, respectively. The results show that yield stress fluids can be used for aneurysm embolization provided the yield stress value is 20 Pa or higher. Specifically, flow recirculation in the aneurysm and the size of the inflow jet impingement zone on the aneurysm wall are substantially reduced by yield stress fluid treatment. Overall, this study opens up the possibility of using yield stress fluids for effective embolization of large-volume intracranial aneurysms.
Light-cone reduction vs. TsT transformations: a fluid dynamics perspective
NASA Astrophysics Data System (ADS)
Dutta, Suvankar; Krishna, Hare
2018-05-01
We compute constitutive relations for a charged (2+1) dimensional Schrödinger fluid up to first order in derivative expansion, using holographic techniques. Starting with a locally boosted, asymptotically AdS, 4 + 1 dimensional charged black brane geometry, we uplift that to ten dimensions and perform TsT transformations to obtain an effective five dimensional local black brane solution with asymptotically Schrödinger isometries. By suitably implementing the holographic techniques, we compute the constitutive relations for the effective fluid living on the boundary of this space-time and extract first order transport coefficients from these relations. Schrödinger fluid can also be obtained by reducing a charged relativistic conformal fluid over light-cone. It turns out that both the approaches result the same system at the end. Fluid obtained by light-cone reduction satisfies a restricted class of thermodynamics. Here, we see that the charged fluid obtained holographically also belongs to the same restricted class.
Requirements for a geometry programming language for CFD applications
NASA Technical Reports Server (NTRS)
Gentry, Arvel E.
1992-01-01
A number of typical problems faced by the aerodynamicist in using computational fluid dynamics are presented to illustrate the need for a geometry programming language. The overall requirements for such a language are illustrated by examples from the Boeing Aero Grid and Paneling System (AGPS). Some of the problems in building such a system are also reviewed along with suggestions as to what to look for when evaluating new software problems.
Toma, Milan; Bloodworth, Charles H; Einstein, Daniel R; Pierce, Eric L; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S
2016-12-01
The diversity of mitral valve (MV) geometries and multitude of surgical options for correction of MV diseases necessitates the use of computational modeling. Numerical simulations of the MV would allow surgeons and engineers to evaluate repairs, devices, procedures, and concepts before performing them and before moving on to more costly testing modalities. Constructing, tuning, and validating these models rely upon extensive in vitro characterization of valve structure, function, and response to change due to diseases. Micro-computed tomography ([Formula: see text]CT) allows for unmatched spatial resolution for soft tissue imaging. However, it is still technically challenging to obtain an accurate geometry of the diastolic MV. We discuss here the development of a novel technique for treating MV specimens with glutaraldehyde fixative in order to minimize geometric distortions in preparation for [Formula: see text]CT scanning. The technique provides a resulting MV geometry which is significantly more detailed in chordal structure, accurate in leaflet shape, and closer to its physiological diastolic geometry. In this paper, computational fluid-structure interaction (FSI) simulations are used to show the importance of more detailed subject-specific MV geometry with 3D chordal structure to simulate a proper closure validated against [Formula: see text]CT images of the closed valve. Two computational models, before and after use of the aforementioned technique, are used to simulate closure of the MV.
NASA Astrophysics Data System (ADS)
Trevino, S., III; Hickey, M. S.; Everett, M. E.
2017-12-01
Controlled-Source Electromagnetics (CSEM) can be used to monitor the movement and extent of injection fluid during a hydraulic fracture. The response of the fluid to energization by a CSEM source is dependent upon the electrical conductivity difference between the fluid and background geological formation. An important property that must be taken into account when modeling and interpreting CSEM responses is that electrical conductivity may be anisotropic. We study the effect of electrical anisotropy in both the background formation and the fluid-injection zone. First, various properties of the background formation can affect anisotropy including variations in grain size, composition and bedding-plane orientation. In certain formations, such as shale, the horizontal component of the conductivity can be more than an order of magnitude larger than the vertical component. We study this effect by computing differences in surface CSEM responses using the analytic 1-D anisotropic primary solution of a horizontal electric dipole positioned at the surface. Second, during hydraulic fracturing, the injected fluid can create new fractures and infill existing natural fractures. To include the explicit fracture geometry in modeling, a large increase in the number of nodes and computational time is required which may not be feasible. An alternative is to instead model the large-scale fracture geometry as a uniform slab with an appropriate bulk conductivity. Micro-scale fracture geometry may cause preferential fluid propagation in a single direction or plane which can be represented by electrical anisotropy of the slab. To study such effects of bulk anisotropy on CSEM responses we present results from multiple scenarios of surface to surface hydraulic fracture monitoring using 3-D finite element modeling. The model uses Coulomb-gauged potentials to solve Maxwell's equations in the frequency domain and we have updated the code to allow a triaxial electrical conductivity tensor to be specified. By allowing for formation and target electrical anisotropy these modeling results contribute to a better understanding and faster interpretation of field data.
FaCSI: A block parallel preconditioner for fluid-structure interaction in hemodynamics
NASA Astrophysics Data System (ADS)
Deparis, Simone; Forti, Davide; Grandperrin, Gwenol; Quarteroni, Alfio
2016-12-01
Modeling Fluid-Structure Interaction (FSI) in the vascular system is mandatory to reliably compute mechanical indicators in vessels undergoing large deformations. In order to cope with the computational complexity of the coupled 3D FSI problem after discretizations in space and time, a parallel solution is often mandatory. In this paper we propose a new block parallel preconditioner for the coupled linearized FSI system obtained after space and time discretization. We name it FaCSI to indicate that it exploits the Factorized form of the linearized FSI matrix, the use of static Condensation to formally eliminate the interface degrees of freedom of the fluid equations, and the use of a SIMPLE preconditioner for saddle-point problems. FaCSI is built upon a block Gauss-Seidel factorization of the FSI Jacobian matrix and it uses ad-hoc preconditioners for each physical component of the coupled problem, namely the fluid, the structure and the geometry. In the fluid subproblem, after operating static condensation of the interface fluid variables, we use a SIMPLE preconditioner on the reduced fluid matrix. Moreover, to efficiently deal with a large number of processes, FaCSI exploits efficient single field preconditioners, e.g., based on domain decomposition or the multigrid method. We measure the parallel performances of FaCSI on a benchmark cylindrical geometry and on a problem of physiological interest, namely the blood flow through a patient-specific femoropopliteal bypass. We analyze the dependence of the number of linear solver iterations on the cores count (scalability of the preconditioner) and on the mesh size (optimality).
Unraveling the Geometry Dependence of In-Nozzle Cavitation in High-Pressure Injectors
Im, Kyoung-Su; Cheong, Seong-Kyun; Powell, Christopher F.; Lai, Ming-chia D.; Wang, Jin
2013-01-01
Cavitation is an intricate multiphase phenomenon that interplays with turbulence in fluid flows. It exhibits clear duality in characteristics, being both destructive and beneficial in our daily lives and industrial processes. Despite the multitude of occurrences of this phenomenon, highly dynamic and multiphase cavitating flows have not been fundamentally well understood in guiding the effort to harness the transient and localized power generated by this process. In a microscale, multiphase flow liquid injection system, we synergistically combined experiments using time-resolved x-radiography and a novel simulation method to reveal the relationship between the injector geometry and the in-nozzle cavitation quantitatively. We demonstrate that a slight alteration of the geometry on the micrometer scale can induce distinct laminar-like or cavitating flows, validating the multiphase computational fluid dynamics simulation. Furthermore, the simulation identifies a critical geometric parameter with which the high-speed flow undergoes an intriguing transition from non-cavitating to cavitating. PMID:23797665
Aeroelastic Deflection of NURBS Geometry
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1998-01-01
The purpose of this paper is to present an algorithm for using NonUniform Rational B-Spline (NURBS) representation in an aeroelastic loop. The algorithm is based on creating a least-squares NURBS surface representing the aeroelastic defection. The resulting NURBS surfaces are used to update either the original Computer- Aided Design (CAD) model, Computational Structural Mechanics (CSM) grid or the Computational Fluid Dynamics (CFD) grid. Results are presented for a generic High-Speed Civil Transport (HSCT).
Experimental and computational fluid dynamic studies of mixing for complex oral health products
NASA Astrophysics Data System (ADS)
Garcia, Marti Cortada; Mazzei, Luca; Angeli, Panagiota
2015-11-01
Mixing high viscous non-Newtonian fluids is common in the consumer health industry. Sometimes this process is empirical and involves many pilot plants trials which are product specific. The first step to study the mixing process is to build on knowledge on the rheology of the fluids involved. In this research a systematic approach is used to validate the rheology of two liquids: glycerol and a gel formed by polyethylene glycol and carbopol. Initially, the constitutive equation is determined which relates the viscosity of the fluids with temperature, shear rate, and concentration. The key variable for the validation is the power required for mixing, which can be obtained both from CFD and experimentally using a stirred tank and impeller of well-defined geometries at different impeller speeds. A good agreement between the two values indicates a successful validation of the rheology and allows the CFD model to be used for the study of mixing in the complex vessel geometries and increased sizes encountered during scale up.
NASA Astrophysics Data System (ADS)
Remillieux, Marcel C.; Pasareanu, Stephanie M.; Svensson, U. Peter
2013-12-01
Exterior propagation of impulsive sound and its transmission through three-dimensional, thin-walled elastic structures, into enclosed cavities, are investigated numerically in the framework of linear dynamics. A model was developed in the time domain by combining two numerical tools: (i) exterior sound propagation and induced structural loading are computed using the image-source method for the reflected field (specular reflections) combined with an extension of the Biot-Tolstoy-Medwin method for the diffracted field, (ii) the fully coupled vibro-acoustic response of the interior fluid-structure system is computed using a truncated modal-decomposition approach. In the model for exterior sound propagation, it is assumed that all surfaces are acoustically rigid. Since coupling between the structure and the exterior fluid is not enforced, the model is applicable to the case of a light exterior fluid and arbitrary interior fluid(s). The structural modes are computed with the finite-element method using shell elements. Acoustic modes are computed analytically assuming acoustically rigid boundaries and rectangular geometries of the enclosed cavities. This model is verified against finite-element solutions for the cases of rectangular structures containing one and two cavities, respectively.
Nonaxisymmetric modelling in BOUT++; toward global edge fluid turbulence in stellarators
NASA Astrophysics Data System (ADS)
Shanahan, Brendan; Hill, Peter; Dudson, Ben
2016-10-01
As Wendelstein 7-X has been optimized for neoclassical transport, turbulent transport could potentially become comparable to neoclassical losses. Furthermore, the imminent installation of an island divertor merits global edge modelling to determine heat flux profiles and the efficacy of the system. Currently, however, nonaxisymmetric edge plasma modelling is limited to either steady state (non-turbulent) transport modelling, or computationally expensive gyrokinetics. The implementation of the Flux Coordinate Independent (FCI) approach to parallel derivatives has allowed the extension of the BOUT++ edge fluid turbulence framework to nonaxisymmetric geometries. Here we first investigate the implementation of the FCI method in BOUT++ by modelling diffusion equations in nonaxisymmetric geometries with and without boundary interaction, and quantify the inherent error. We then present the results of non-turbulent transport modelling and compare with analytical theory. The ongoing extension of BOUT++ to nonaxisymmetric configurations, and the prospects of stellarator edge fluid turbulence simulations will be discussed.
Kong, Fande; Cai, Xiao-Chuan
2017-03-24
Nonlinear fluid-structure interaction (FSI) problems on unstructured meshes in 3D appear many applications in science and engineering, such as vibration analysis of aircrafts and patient-specific diagnosis of cardiovascular diseases. In this work, we develop a highly scalable, parallel algorithmic and software framework for FSI problems consisting of a nonlinear fluid system and a nonlinear solid system, that are coupled monolithically. The FSI system is discretized by a stabilized finite element method in space and a fully implicit backward difference scheme in time. To solve the large, sparse system of nonlinear algebraic equations at each time step, we propose an inexactmore » Newton-Krylov method together with a multilevel, smoothed Schwarz preconditioner with isogeometric coarse meshes generated by a geometry preserving coarsening algorithm. Here ''geometry'' includes the boundary of the computational domain and the wet interface between the fluid and the solid. We show numerically that the proposed algorithm and implementation are highly scalable in terms of the number of linear and nonlinear iterations and the total compute time on a supercomputer with more than 10,000 processor cores for several problems with hundreds of millions of unknowns.« less
A Comparison of Computed and Experimental Flowfields of the RAH-66 Helicopter
NASA Technical Reports Server (NTRS)
vanDam, C. P.; Budge, A. M.; Duque, E. P. N.
1996-01-01
This paper compares and evaluates numerical and experimental flowfields of the RAH-66 Comanche helicopter. The numerical predictions were obtained by solving the Thin-Layer Navier-Stokes equations. The computations use actuator disks to investigate the main and tail rotor effects upon the fuselage flowfield. The wind tunnel experiment was performed in the 14 x 22 foot facility located at NASA Langley. A suite of flow conditions, rotor thrusts and fuselage-rotor-tail configurations were tested. In addition, the tunnel model and the computational geometry were based upon the same CAD definition. Computations were performed for an isolated fuselage configuration and for a rotor on configuration. Comparisons between the measured and computed surface pressures show areas of correlation and some discrepancies. Local areas of poor computational grid-quality and local areas of geometry differences account for the differences. These calculations demonstrate the use of advanced computational fluid dynamic methodologies towards a flight vehicle currently under development. It serves as an important verification for future computed results.
Analysis of electrophoresis performance
NASA Technical Reports Server (NTRS)
Roberts, Glyn O.
1988-01-01
A flexible efficient computer code is being developed to simulate electrophoretic separation phenomena, in either a cylindrical or a rectangular geometry. The code will computer the evolution in time of the concentrations of an arbitrary number of chemical species, and of the temperature, pH distribution, conductivity, electric field, and fluid motion. Use of nonuniform meshes and fast accurate implicit time-stepping will yield accurate answers at economical cost.
Potential application of artificial concepts to aerodynamic simulation
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.; Andrews, A.
1984-01-01
The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.
Complex fluid flow and heat transfer analysis inside a calandria based reactor using CFD technique
NASA Astrophysics Data System (ADS)
Kulkarni, P. S.
2017-04-01
Series of numerical experiments have been carried out on a calandria based reactor for optimizing the design to increase the overall heat transfer efficiency by using Computational Fluid Dynamic (CFD) technique. Fluid flow and heat transfer inside the calandria is governed by many geometric and flow parameters like orientation of inlet, inlet mass flow rate, fuel channel configuration (in-line, staggered, etc.,), location of inlet and outlet, etc.,. It was well established that heat transfer is more wherever forced convection dominates but for geometries like calandria it is very difficult to achieve forced convection flow everywhere, intern it strongly depends on the direction of inlet jet. In the present paper the initial design was optimized with respect to inlet jet angle, the optimized design has been numerically tested for different heat load mass flow conditions. To further increase the heat removal capacity of a calandria, further numerical studies has been carried out for different inlet geometry. In all the analysis same overall geometry size and same number of tubes has been considered. The work gives good insight into the fluid flow and heat transfer inside the calandria and offer a guideline for optimizing the design and/or capacity enhancement of a present design.
NASA Astrophysics Data System (ADS)
Gerke, Kirill M.; Vasilyev, Roman V.; Khirevich, Siarhei; Collins, Daniel; Karsanina, Marina V.; Sizonenko, Timofey O.; Korost, Dmitry V.; Lamontagne, Sébastien; Mallants, Dirk
2018-05-01
Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.
A computational DFT study of structural transitions in textured solid-fluid interfaces
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Parry, Andrew O.; Kalliadasis, Serafim
2015-11-01
Fluids adsorbed at walls, in capillary pores and slits, and in more exotic, sculpted geometries such as grooves and wedges can exhibit many new phase transitions, including wetting, pre-wetting, capillary-condensation and filling, compared to their bulk counterparts. As well as being of fundamental interest to the modern statistical mechanical theory of inhomogeneous fluids, these are also relevant to nanofluidics, chemical- and bioengineering. In this talk we will show using a microscopic Density Functional Theory (DFT) for fluids how novel, continuous, interfacial transitions associated with the first-order prewetting line, can occur on steps, in grooves and in wedges, that are sensitive to both the range of the intermolecular forces and interfacial fluctuation effects. These transitions compete with wetting, filling and condensation producing very rich phase diagrams even for relatively simple geometries. We will also discuss practical aspects of DFT calculations, and demonstrate how this statistical-mechanical framework is capable of yielding complex fluid structure, interfacial tensions, and regions of thermodynamic stability of various fluid configurations. As a side note, this demonstrates that DFT is an excellent tool for the investigations of complex multiphase systems. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, Jozsef; Christon, Mark A.; Francois, Marianne M.
This report describes the work carried out for completion of the Thermal Hydraulics Methods (THM) Level 3 Milestone THM.CFD.P5.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL). A series body-fitted computational meshes have been generated by Numeca's Hexpress/Hybrid, a.k.a. 'Spider', meshing technology for the V5H 3x3 and 5x5 rod bundle geometry used to compute the fluid dynamics of grid-to-rod fretting (GTRF). Spider is easy to use, fast, and automatically generates high-quality meshes for extremely complex geometries, required for the GTRF problem. Hydra-TH has been used to carry out large-eddy simulations on both 3x3 and 5x5 geometries, usingmore » different mesh resolutions. The results analyzed show good agreement with Star-CCM+ simulations and experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, Jozsef; Christon, Mark A.; Francois, Marianne M.
This report describes the work carried out for completion of the Thermal Hydraulics Methods (THM) Level 3 Milestone THM.CFD.P5.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL). A series of body-fitted computational meshes have been generated by Numeca's Hexpress/Hybrid, a.k.a. 'Spider', meshing technology for the V5H 3 x 3 and 5 x 5 rod bundle geometries and subsequently used to compute the fluid dynamics of grid-to-rod fretting (GTRF). Spider is easy to use, fast, and automatically generates high-quality meshes for extremely complex geometries, required for the GTRF problem. Hydra-TH has been used to carry out large-eddy simulationsmore » on both 3 x 3 and 5 x 5 geometries, using different mesh resolutions. The results analyzed show good agreement with Star-CCM+ simulations and experimental data.« less
Acevedo-Bolton, Gabriel; Jou, Liang-Der; Dispensa, Bradley P; Lawton, Michael T; Higashida, Randall T; Martin, Alastair J; Young, William L; Saloner, David
2006-08-01
The goal of this study was to use phase-contrast magnetic resonance imaging and computational fluid dynamics to estimate the hemodynamic outcome that might result from different interventional options for treating a patient with a giant fusiform aneurysm. We followed a group of patients with giant intracranial aneurysms who have no clear surgical options. One patient demonstrated dramatic aneurysm growth and was selected for further analysis. The aneurysm geometry and input and output flow conditions were measured with contrast-enhanced magnetic resonance angiography and phase-contrast magnetic resonance imaging. The data was imported into a computational fluid dynamics program and the velocity fields and wall shear stress distributions were calculated for the presenting physiological condition and for cases in which the opposing vertebral arteries were either occluded or opened. These models were validated with in vitro flow experiments using a geometrically exact silicone flow phantom. Simulation indicated that altering the flow ratio in the two vertebrals would deflect the main blood jet into the aneurysm belly, and that this would likely reduce the extent of the region of low wall shear stress in the growth zone. Computational fluid dynamics flow simulations in a complex patient-specific aneurysm geometry were validated by in vivo and in vitro phase-contrast magnetic resonance imaging, and were shown to be useful in modeling the likely hemodynamic impact of interventional treatment of the aneurysm.
NASA Astrophysics Data System (ADS)
Zimoń, Małgorzata; Sawko, Robert; Emerson, David; Thompson, Christopher
2017-11-01
Uncertainty quantification (UQ) is increasingly becoming an indispensable tool for assessing the reliability of computational modelling. Efficient handling of stochastic inputs, such as boundary conditions, physical properties or geometry, increases the utility of model results significantly. We discuss the application of non-intrusive generalised polynomial chaos techniques in the context of fluid engineering simulations. Deterministic and Monte Carlo integration rules are applied to a set of problems, including ordinary differential equations and the computation of aerodynamic parameters subject to random perturbations. In particular, we analyse acoustic wave propagation in a heterogeneous medium to study the effects of mesh resolution, transients, number and variability of stochastic inputs. We consider variants of multi-level Monte Carlo and perform a novel comparison of the methods with respect to numerical and parametric errors, as well as computational cost. The results provide a comprehensive view of the necessary steps in UQ analysis and demonstrate some key features of stochastic fluid flow systems.
Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces
Wang, Chenglong; Xu, Fei; Hsu, Ming-Chen; Krishnamurthy, Adarsh
2017-01-01
Computational fluid dynamics (CFD) simulations of flow over complex objects have been performed traditionally using fluid-domain meshes that conform to the shape of the object. However, creating shape conforming meshes for complicated geometries like automobiles require extensive geometry preprocessing. This process is usually tedious and requires modifying the geometry, including specialized operations such as defeaturing and filling of small gaps. Hsu et al. (2016) developed a novel immersogeometric fluid-flow method that does not require the generation of a boundary-fitted mesh for the fluid domain. However, their method used the NURBS parameterization of the surfaces for generating the surface quadrature points to enforce the boundary conditions, which required the B-rep model to be converted completely to NURBS before analysis can be performed. This conversion usually leads to poorly parameterized NURBS surfaces and can lead to poorly trimmed or missing surface features. In addition, converting simple geometries such as cylinders to NURBS imposes a performance penalty since these geometries have to be dealt with as rational splines. As a result, the geometry has to be inspected again after conversion to ensure analysis compatibility and can increase the computational cost. In this work, we have extended the immersogeometric method to generate surface quadrature points directly using analytic surfaces. We have developed quadrature rules for all four kinds of analytic surfaces: planes, cones, spheres, and toroids. We have also developed methods for performing adaptive quadrature on trimmed analytic surfaces. Since analytic surfaces have frequently been used for constructing solid models, this method is also faster to generate quadrature points on real-world geometries than using only NURBS surfaces. To assess the accuracy of the proposed method, we perform simulations of a benchmark problem of flow over a torpedo shape made of analytic surfaces and compare those to immersogeometric simulations of the same model with NURBS surfaces. We also compare the results of our immersogeometric method with those obtained using boundary-fitted CFD of a tessellated torpedo shape, and quantities of interest such as drag coefficient are in good agreement. Finally, we demonstrate the effectiveness of our immersogeometric method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of a truck that has a large percentage of analytic surfaces. Using analytic surfaces over NURBS avoids unnecessary surface type conversion and significantly reduces model-preprocessing time, while providing the same accuracy for the aerodynamic quantities of interest. PMID:29051678
NASA Technical Reports Server (NTRS)
Baez, Marivell; Vickerman, Mary; Choo, Yung
2000-01-01
SmaggIce (Surface Modeling And Grid Generation for Iced Airfoils) is one of NASNs aircraft icing research codes developed at the Glenn Research Center. It is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils. It includes tools which complement the 2D grid-based Computational Fluid Dynamics (CFD) process: geometry probing; surface preparation for gridding: smoothing and re-discretization of geometry. Future releases will also include support for all aspects of gridding: domain decomposition; perimeter discretization; grid generation and modification.
2015-09-01
lift and drag forces on two model car geometries (designated as the VRAK model and the S80 model). For the VRAK model the OpenFOAM drag coefficient was...lift coefficient was 16.5% higher than the Fluent value. Both model car geometries were meshed using Harpoon, which is a commercial software package...2. Clarke, G., Vun, S., Giacobello, M. and Reddy, R., “Estimation of ARH Tiger Fuselage Aerodynamic Characteristics Using Computational Fluid
Dudley, Peter N; Bonazza, Riccardo; Porter, Warren P
2013-07-01
Animal momentum and heat transfer analysis has historically used direct animal measurements or approximations to calculate drag and heat transfer coefficients. Research can now use modern 3D rendering and computational fluid dynamics software to simulate animal-fluid interactions. Key questions are the level of agreement between simulations and experiments and how superior they are to classical approximations. In this paper we compared experimental and simulated heat transfer and drag calculations on a scale model solid aluminum African elephant casting. We found good agreement between experimental and simulated data and large differences from classical approximations. We used the simulation results to calculate coefficients for heat transfer and drag of the elephant geometry. Copyright © 2013 Wiley Periodicals, Inc.
2D Automatic body-fitted structured mesh generation using advancing extraction method
USDA-ARS?s Scientific Manuscript database
This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like...
2D automatic body-fitted structured mesh generation using advancing extraction method
USDA-ARS?s Scientific Manuscript database
This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like...
CAPRI: Using a Geometric Foundation for Computational Analysis and Design
NASA Technical Reports Server (NTRS)
Haimes, Robert
2002-01-01
CAPRI (Computational Analysis Programming Interface) is a software development tool intended to make computerized design, simulation and analysis faster and more efficient. The computational steps traditionally taken for most engineering analysis (Computational Fluid Dynamics (CFD), structural analysis, etc.) are: Surface Generation, usually by employing a Computer Aided Design (CAD) system; Grid Generation, preparing the volume for the simulation; Flow Solver, producing the results at the specified operational point; Post-processing Visualization, interactively attempting to understand the results. It should be noted that the structures problem is more tractable than CFD; there are fewer mesh topologies used and the grids are not as fine (this problem space does not have the length scaling issues of fluids). For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. In most cases, the output from a CAD system could go IGES files. The output from Grid Generators and Solvers do not really have standards though there are a couple of file formats that can be used for a subset of the gridding (i.e. PLOT3D) data formats and the upcoming CGNS). The user would have to patch up the data or translate from one format to another to move to the next step. Sometimes this could take days. Instead of the serial approach to analysis, CAPRI takes a geometry centric approach. CAPRI is a software building tool-kit that refers to two ideas: (1) A simplified, object-oriented, hierarchical view of a solid part integrating both geometry and topology definitions, and (2) programming access to this part or assembly and any attached data. The connection to the geometry is made through an Application Programming Interface (API) and not a file system.
Computational aeroelasticity using a pressure-based solver
NASA Astrophysics Data System (ADS)
Kamakoti, Ramji
A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.
Calculation of three-dimensional, inviscid, supersonic, steady flows
NASA Technical Reports Server (NTRS)
Moretti, G.
1981-01-01
A detailed description of a computational program for the evaluation of three dimensional supersonic, inviscid, steady flow past airplanes is presented. Emphasis was put on how a powerful, automatic mapping technique is coupled to the fluid mechanical analysis. Each of the three constituents of the analysis (body geometry, mapping technique, and gas dynamical effects) was carefully coded and described. Results of computations based on sample geometrics and discussions are also presented.
Research in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.
Shek, Tina L T; Tse, Leonard W; Nabovati, Aydin; Amon, Cristina H
2012-12-01
The technique of crossing the limbs of bifurcated modular stent grafts for endovascular aneurysm repair (EVAR) is often employed in the face of splayed aortic bifurcations to facilitate cannulation and prevent device kinking. However, little has been reported about the implications of cross-limb EVAR, especially in comparison to conventional EVAR. Previous computational fluid dynamics studies of conventional EVAR grafts have mostly utilized simplified planar stent graft geometries. We herein examined the differences between conventional and cross-limb EVAR by comparing their hemodynamic flow fields (i.e., in the "direct" and "cross" configurations, respectively). We also added a "planar" configuration, which is commonly found in the literature, to identify how well this configuration compares to out-of-plane stent graft configurations from a hemodynamic perspective. A representative patient's cross-limb stent graft geometry was segmented using computed tomography imaging in Mimics software. The cross-limb graft geometry was used to build its direct and planar counterparts in SolidWorks. Physiologic velocity and mass flow boundary conditions and blood properties were implemented for steady-state and pulsatile transient simulations in ANSYS CFX. Displacement forces, wall shear stress (WSS), and oscillatory shear index (OSI) were all comparable between the direct and cross configurations, whereas the planar geometry yielded very different predictions of hemodynamics compared to the out-of-plane stent graft configurations, particularly for displacement forces. This single-patient study suggests that the short-term hemodynamics involved in crossing the limbs is as safe as conventional EVAR. Higher helicity and improved WSS distribution of the cross-limb configuration suggest improved flow-related thrombosis resistance in the short term. However, there may be long-term fatigue implications to stent graft use in the cross configuration when compared to the direct configuration.
NASA Technical Reports Server (NTRS)
Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.
2004-01-01
One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.
Chiastra, Claudio; Wu, Wei; Dickerhoff, Benjamin; Aleiou, Ali; Dubini, Gabriele; Otake, Hiromasa; Migliavacca, Francesco; LaDisa, John F
2016-07-26
The optimal stenting technique for coronary artery bifurcations is still debated. With additional advances computational simulations can soon be used to compare stent designs or strategies based on verified structural and hemodynamics results in order to identify the optimal solution for each individual's anatomy. In this study, patient-specific simulations of stent deployment were performed for 2 cases to replicate the complete procedure conducted by interventional cardiologists. Subsequent computational fluid dynamics (CFD) analyses were conducted to quantify hemodynamic quantities linked to restenosis. Patient-specific pre-operative models of coronary bifurcations were reconstructed from CT angiography and optical coherence tomography (OCT). Plaque location and composition were estimated from OCT and assigned to models, and structural simulations were performed in Abaqus. Artery geometries after virtual stent expansion of Xience Prime or Nobori stents created in SolidWorks were compared to post-operative geometry from OCT and CT before being extracted and used for CFD simulations in SimVascular. Inflow boundary conditions based on body surface area, and downstream vascular resistances and capacitances were applied at branches to mimic physiology. Artery geometries obtained after virtual expansion were in good agreement with those reconstructed from patient images. Quantitative comparison of the distance between reconstructed and post-stent geometries revealed a maximum difference in area of 20.4%. Adverse indices of wall shear stress were more pronounced for thicker Nobori stents in both patients. These findings verify structural analyses of stent expansion, introduce a workflow to combine software packages for solid and fluid mechanics analysis, and underscore important stent design features from prior idealized studies. The proposed approach may ultimately be useful in determining an optimal choice of stent and position for each patient. Copyright © 2015 Elsevier Ltd. All rights reserved.
Barresi, Antonello A; Rasetto, Valeria; Marchisio, Daniele L
2018-05-15
This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular, the freeze-dryer chamber and the duct connecting the chamber with the condenser, with the valves and vanes eventually present are analysed in this work. In Part 1, it will be shown how CFD can be employed to improve specific designs, to perform geometry optimization, to evaluate different design choices and how it is useful to evaluate the effect on product drying and batch variance. Such an approach allows an in-depth process understanding and assessment of the critical aspects of lyophilisation. This can be done by running either steady-state or transient simulations with imposed sublimation rates or with multi-scale approaches. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating the influence of the equipment geometry and shelf inter-distance. The effect of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions will be instead investigated in Part 2. Copyright © 2018. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Spirka, T. A.; Myers, J. G.; Setser, R. M.; Halliburton, S. S.; White, R. D.; Chatzimavroudis, G. P.
2005-01-01
A priority of NASA is to identify and study possible risks to astronauts health during prolonged space missions [l]. The goal is to develop a procedure for a preflight evaluation of the cardiovascular system of an astronaut and to forecast how it will be affected during the mission. To predict these changes, a computational cardiovascular model must be constructed. Although physiology data can be used to make a general model, a more desirable subject-specific model requires anatomical, functional, and flow data from the specific astronaut. MRI has the unique advantage of providing images with all of the above information, including three-directional velocity data which can be used as boundary conditions in a computational fluid dynamics (CFD) program [2,3]. MRI-based CFD is very promising for reproduction of the flow patterns of a specific subject and prediction of changes in the absence of gravity. The aim of this study was to test the feasibility of this approach by reconstructing the geometry of MRI-scanned arterial models and reproducing the MRI-measured velocities using CFD simulations on these geometries.
Numerical and experimental characterization of a novel modular passive micromixer.
Pennella, Francesco; Rossi, Massimiliano; Ripandelli, Simone; Rasponi, Marco; Mastrangelo, Francesco; Deriu, Marco A; Ridolfi, Luca; Kähler, Christian J; Morbiducci, Umberto
2012-10-01
This paper reports a new low-cost passive microfluidic mixer design, based on a replication of identical mixing units composed of microchannels with variable curvature (clothoid) geometry. The micromixer presents a compact and modular architecture that can be easily fabricated using a simple and reliable fabrication process. The particular clothoid-based geometry enhances the mixing by inducing transversal secondary flows and recirculation effects. The role of the relevant fluid mechanics mechanisms promoting the mixing in this geometry were analysed using computational fluid dynamics (CFD) for Reynolds numbers ranging from 1 to 110. A measure of mixing potency was quantitatively evaluated by calculating mixing efficiency, while a measure of particle dispersion was assessed through the lacunarity index. The results show that the secondary flow arrangement and recirculation effects are able to provide a mixing efficiency equal to 80 % at Reynolds number above 70. In addition, the analysis of particles distribution promotes the lacunarity as powerful tool to quantify the dispersion of fluid particles and, in turn, the overall mixing. On fabricated micromixer prototypes the microscopic-Laser-Induced-Fluorescence (μLIF) technique was applied to characterize mixing. The experimental results confirmed the mixing potency of the microdevice.
Computational System For Rapid CFD Analysis In Engineering
NASA Technical Reports Server (NTRS)
Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.
1995-01-01
Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Chacón, L.; Cappello, S.
2010-08-01
With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacón, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code in cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonfiglio, Daniele; Chacon, Luis; Cappello, Susanna
2010-01-01
With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacon, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code inmore » cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.« less
Computational Fluid Dynamics (CFD) Simulation of Drag Reduction by Riblets on Automobile
NASA Astrophysics Data System (ADS)
Ghazali, N. N. N.; Yau, Y. H.; Badarudin, A.; Lim, Y. C.
2010-05-01
One of the ongoing automotive technological developments is the reduction of aerodynamic drag because this has a direct impact on fuel reduction, which is a major topic due to the influence on many other requirements. Passive drag reduction techniques stand as the most portable and feasible way to be implemented in real applications. One of the passive techniques is the longitudinal microgrooves aligned in the flow direction, known as riblets. In this study, the simulation of turbulent flows over an automobile in a virtual wind tunnel has been conducted by computational fluid dynamics (CFD). Three important aspects of this study are: the drag reduction effect of riblets on smooth surface automobile, the position and geometry of the riblets on drag reduction. The simulation involves three stages: geometry modeling, meshing, solving and analysis. The simulation results show that the attachment of riblets on the rear roof surface reduces the drag coefficient by 2.74%. By adjusting the attachment position of the riblets film, reduction rates between the range 0.5%-9.51% are obtained, in which the position of the top middle roof optimizes the effect. Four riblet geometries are investigated, among them the semi-hexagon trapezoidally shaped riblets is considered the most effective. Reduction rate of drag is found ranging from -3.34% to 6.36%.
Andreykiv, A; van Keulen, F; Prendergast, P J
2008-10-01
The geometry of an implant surface to best promote osseointegration has been the subject of several experimental studies, with porous beads and woven mesh surfaces being among the options available. Furthermore, it is unlikely that one surface geometry is optimal for all loading conditions. In this paper, a computational method is used to simulate tissue differentiation and osseointegration on a smooth surface, a surface covered with sintered beads (this simulated the experiment (Simmons, C., and Pilliar, R., 2000, Biomechanical Study of Early Tissue Formation Around Bone-Interface Implants: The Effects of Implant Surface Geometry," Bone Engineering, J. E. Davies, ed., Emsquared, Chap. A, pp. 369-379) and established that the method gives realistic results) and a surface covered by porous tantalum. The computational method assumes differentiation of mesenchymal stem cells in response to fluid flow and shear strain and models cell migration and proliferation as continuum processes. The results of the simulation show a higher rate of bone ingrowth into the surfaces with porous coatings as compared with the smooth surface. It is also shown that a thicker interface does not increase the chance of fixation failure.
Analysis of a Channeled Centerbody Supersonic Inlet for F-15B Flight Research
NASA Technical Reports Server (NTRS)
Ratnayake, Nalin A.
2010-01-01
The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on the NASA F-15B airplane, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. The first experiment that is to be flown on the test fixture is the Channeled Centerbody Inlet Experiment. The objectives of this project at Dryden are twofold: 1) flight evaluation of an innovative new approach to variable geometry for high-speed inlets, and 2) flight validation of channeled inlet performance prediction by complex computational fluid dynamics codes. The inlet itself is a fixed-geometry version of a mixed-compression, variable-geometry, supersonic in- let developed by TechLand Research, Inc. (North Olmsted, Ohio) to improve the efficiency of supersonic flight at off-nominal conditions. The concept utilizes variable channels in the centerbody section to vary the mass flow of the inlet, enabling efficient operation at a range of flight conditions. This study is particularly concerned with the starting characteristics of the inlet. Computational fluid dynamics studies were shown to align well with analytical predictions, showing the inlet to remain unstarted as designed at the primary test point of Mach 1.5 at an equivalent pressure altitude of 29,500 ft local conditions. Mass-flow-related concerns such as the inlet start problem, as well as inlet efficiency in terms of total pressure loss, are assessed using the flight test geometry.
Structural analysis of two different stent configurations.
Simão, M; Ferreira, J M; Mora-Rodriguez, J; Ramos, H M
2017-06-01
Two different stent configurations (i.e. the well known Palmaz-Schatz (PS) and a new stent configuration) are mechanically investigated. A finite element model was used to study the two geometries under combining loads and a computational fluid dynamic model based on fluid structure interaction was developed investigating the plaque and the artery wall reactions in a stented arterial segment. These models determine the stress and displacement fields of the two stents under internal pressure conditions. Results suggested that stent designs cause alterations in vascular anatomy that adversely affect arterial stress distributions within the wall, which have impact in the vessel responses such as the restenosis. The hemodynamic analysis shows the use of new stent geometry suggests better biofluid mechanical response such as the deformation and the progressive amount of plaque growth.
Parcheta, Carolyn; Fagents, Sarah; Swanson, Donald A.; Houghton, Bruce F.; Ericksen, Todd; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
Geometries of shallow magmatic pathways feeding volcanic eruptions are poorly constrained, yet many key interpretations about eruption dynamics depend on knowledge of these geometries. Direct quantification is difficult because vents typically become blocked with lava at the end of eruptions. Indirect geophysical techniques have shed light on some volcanic conduit geometries, but the scales are too coarse to resolve narrow fissures (widths typically 1 m). Kīlauea's Mauna Ulu eruption, which started with <50 m high Hawaiian fountains along a 4.5 km fissure on 24 May 1969, provides a unique opportunity to measure the detailed geometry of a shallow magmatic pathway, as the western vents remain unobstructed to depths >30 m. Direct measurements at the ground surface were augmented by tripod-mounted lidar measurements to quantify the shallow conduit geometry for three vents at a resolution <4 cm. We define the form of the fissure in terms of aspect ratio, flaring ratio, irregularity, sinuosity, and segmentation and discuss the factors influencing these parameters. In the past, simplified first-order fissure geometries have been used in computational modeling. Our data can provide more accurate conduit shapes for better understanding of shallow fissure fluid dynamics and how it controls eruptive behavior, especially if incorporated into computer models.
A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy.
Bianchi, Daniele; Monaldo, Elisabetta; Gizzi, Alessio; Marino, Michele; Filippi, Simonetta; Vairo, Giuseppe
2017-09-01
A novel fluid-structure computational framework for vascular applications is herein presented. It is developed by combining the double multi-scale nature of vascular physiopathology in terms of both tissue properties and blood flow. Addressing arterial tissues, they are modelled via a nonlinear multiscale constitutive rationale, based only on parameters having a clear histological and biochemical meaning. Moreover, blood flow is described by coupling a three-dimensional fluid domain (undergoing physiological inflow conditions) with a zero-dimensional model, which allows to reproduce the influence of the downstream vasculature, furnishing a realistic description of the outflow proximal pressure. The fluid-structure interaction is managed through an explicit time-marching approach, able to accurately describe tissue nonlinearities within each computational step for the fluid problem. A case study associated to a patient-specific aortic abdominal aneurysmatic geometry is numerically investigated, highlighting advantages gained from the proposed multiscale strategy, as well as showing soundness and effectiveness of the established framework for assessing useful clinical quantities and risk indexes. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Numerical modeling tools for chemical vapor deposition
NASA Technical Reports Server (NTRS)
Jasinski, Thomas J.; Childs, Edward P.
1992-01-01
Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.
Linearly resummed hydrodynamics in a weakly curved spacetime
NASA Astrophysics Data System (ADS)
Bu, Yanyan; Lublinsky, Michael
2015-04-01
We extend our study of all-order linearly resummed hydrodynamics in a flat space [1, 2] to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS5 geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid's energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. [1, 2], we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. [3], the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.
A Non-Cut Cell Immersed Boundary Method for Use in Icing Simulations
NASA Technical Reports Server (NTRS)
Sarofeen, Christian M.; Noack, Ralph W.; Kreeger, Richard E.
2013-01-01
This paper describes a computational fluid dynamic method used for modelling changes in aircraft geometry due to icing. While an aircraft undergoes icing, the accumulated ice results in a geometric alteration of the aerodynamic surfaces. In computational simulations for icing, it is necessary that the corresponding geometric change is taken into consideration. The method used, herein, for the representation of the geometric change due to icing is a non-cut cell Immersed Boundary Method (IBM). Computational cells that are in a body fitted grid of a clean aerodynamic geometry that are inside a predicted ice formation are identified. An IBM is then used to change these cells from being active computational cells to having properties of viscous solid bodies. This method has been implemented in the NASA developed node centered, finite volume computational fluid dynamics code, FUN3D. The presented capability is tested for two-dimensional airfoils including a clean airfoil, an iced airfoil, and an airfoil in harmonic pitching motion about its quarter chord. For these simulations velocity contours, pressure distributions, coefficients of lift, coefficients of drag, and coefficients of pitching moment about the airfoil's quarter chord are computed and used for comparison against experimental results, a higher order panel method code with viscous effects, XFOIL, and the results from FUN3D's original solution process. The results of the IBM simulations show that the accuracy of the IBM compares satisfactorily with the experimental results, XFOIL results, and the results from FUN3D's original solution process.
Decoupled CFD-based optimization of efficiency and cavitation performance of a double-suction pump
NASA Astrophysics Data System (ADS)
Škerlavaj, A.; Morgut, M.; Jošt, D.; Nobile, E.
2017-04-01
In this study the impeller geometry of a double-suction pump ensuring the best performances in terms of hydraulic efficiency and reluctance of cavitation is determined using an optimization strategy, which was driven by means of the modeFRONTIER optimization platform. The different impeller shapes (designs) are modified according to the optimization parameters and tested with a computational fluid dynamics (CFD) software, namely ANSYS CFX. The simulations are performed using a decoupled approach, where only the impeller domain region is numerically investigated for computational convenience. The flow losses in the volute are estimated on the base of the velocity distribution at the impeller outlet. The best designs are then validated considering the computationally more expensive full geometry CFD model. The overall results show that the proposed approach is suitable for quick impeller shape optimization.
van Bakel, Theodorus M J; Lau, Kevin D; Hirsch-Romano, Jennifer; Trimarchi, Santi; Dorfman, Adam L; Figueroa, C Alberto
2018-04-01
Computational fluid dynamics (CFD) is a modeling technique that enables calculation of the behavior of fluid flows in complex geometries. In cardiovascular medicine, CFD methods are being used to calculate patient-specific hemodynamics for a variety of applications, such as disease research, noninvasive diagnostics, medical device evaluation, and surgical planning. This paper provides a concise overview of the methods to perform patient-specific computational analyses using clinical data, followed by a case study where CFD-supported surgical planning is presented in a patient with Fontan circulation complicated by unilateral pulmonary arteriovenous malformations. In closing, the challenges for implementation and adoption of CFD modeling in clinical practice are discussed.
Nonlinear Fluid Computations in a Distributed Environment
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.; Smith, Merritt H.
1995-01-01
The performance of a loosely and tightly-coupled workstation cluster is compared against a conventional vector supercomputer for the solution the Reynolds- averaged Navier-Stokes equations. The application geometries include a transonic airfoil, a tiltrotor wing/fuselage, and a wing/body/empennage/nacelle transport. Decomposition is of the manager-worker type, with solution of one grid zone per worker process coupled using the PVM message passing library. Task allocation is determined by grid size and processor speed, subject to available memory penalties. Each fluid zone is computed using an implicit diagonal scheme in an overset mesh framework, while relative body motion is accomplished using an additional worker process to re-establish grid communication.
An analytical solution for the squeeze film between a nondeformable sphere and groove
NASA Technical Reports Server (NTRS)
Allen, C. W.; Wilson, M. P.
1972-01-01
An analysis is presented to compute the film thickness, pressure and load relations between a rigid ball and rigid groove in normal approach when lubricated by a fluid with an exponential pressure-viscosity relationship. The geometry of the ball-groove system is reduced to the equivalent system of a paraboloid approaching a flat plate. Exact and approximate solutions are presented for the load and pressure relations. There is found to be a limiting load for a given geometry and lubricant regardless of the rate of approach.
Thermal Analysis of Magnetically-Coupled Pump for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Senocak, Inanc; Udaykumar, H. S.; Ndri, Narcisse; Francois, Marianne; Shyy, Wei
1999-01-01
Magnetically-coupled pump is under evaluation at Kennedy Space Center for possible cryogenic applications. A major concern is the impact of low temperature fluid flows on the pump performance. As a first step toward addressing this and related issues, a computational fluid dynamics and heat transfer tool has been adopted in a pump geometry. The computational tool includes (i) a commercial grid generator to handle multiple grid blocks and complicated geometric definitions, and (ii) an in-house computational fluid dynamics and heat transfer software developed in the Principal Investigator's group at the University of Florida. Both pure-conduction and combined convection-conduction computations have been conducted. A pure-conduction analysis gives insufficient information about the overall thermal distribution. Combined convection-conduction analysis indicates the significant influence of the coolant over the entire flow path. Since 2-D simulation is of limited help, future work on full 3-D modeling of the pump using multi-materials is needed. A comprehensive and accurate model can be developed to take into account the effect of multi-phase flow in the cooling flow loop, and the magnetic interactions.
Centrifuge in space fluid flow visualization experiment
NASA Technical Reports Server (NTRS)
Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.
1993-01-01
A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.
Sinking bubbles in stout beers
NASA Astrophysics Data System (ADS)
Lee, W. T.; Kaar, S.; O'Brien, S. B. G.
2018-04-01
A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.
An Initial Multi-Domain Modeling of an Actively Cooled Structure
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur
1997-01-01
A methodology for the simulation of turbine cooling flows is being developed. The methodology seeks to combine numerical techniques that optimize both accuracy and computational efficiency. Key components of the methodology include the use of multiblock grid systems for modeling complex geometries, and multigrid convergence acceleration for enhancing computational efficiency in highly resolved fluid flow simulations. The use of the methodology has been demonstrated in several turbo machinery flow and heat transfer studies. Ongoing and future work involves implementing additional turbulence models, improving computational efficiency, adding AMR.
NASA Astrophysics Data System (ADS)
Verma, Rahul; Icardi, Matteo; Prodanović, Maša
2018-05-01
Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimized for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry and dynamics, where usually many sources of errors are interplaying.
Unstructured mesh generation and adaptivity
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1995-01-01
An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.
Flexible Inhibitor Fluid-Structure Interaction Simulation in RSRM.
NASA Astrophysics Data System (ADS)
Wasistho, Bono
2005-11-01
We employ our tightly coupled fluid/structure/combustion simulation code 'Rocstar-3' for solid propellant rocket motors to study 3D flows past rigid and flexible inhibitors in the Reusable Solid Rocket Motor (RSRM). We perform high resolution simulations of a section of the rocket near the center joint slot at 100 seconds after ignition, using inflow conditions based on less detailed 3D simulations of the full RSRM. Our simulations include both inviscid and turbulent flows (using LES dynamic subgrid-scale model), and explore the interaction between the inhibitor and the resulting fluid flow. The response of the solid components is computed by an implicit finite element solver. The internal mesh motion scheme in our block-structured fluid solver enables our code to handle significant changes in geometry. We compute turbulent statistics and determine the compound instabilities originated from the natural hydrodynamic instabilities and the inhibitor motion. The ultimate goal is to studdy the effect of inhibitor flexing on the turbulent field.
Impact of geometrical properties on permeability and fluid phase distribution in porous media
NASA Astrophysics Data System (ADS)
Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.
2008-09-01
To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.
Einstein, Daniel R.; Del Pin, Facundo; Jiao, Xiangmin; Kuprat, Andrew P.; Carson, James P.; Kunzelman, Karyn S.; Cochran, Richard P.; Guccione, Julius M.; Ratcliffe, Mark B.
2009-01-01
SUMMARY The remodeling that occurs after a posterolateral myocardial infarction can alter mitral valve function by creating conformational abnormalities in the mitral annulus and in the posteromedial papillary muscle, leading to mitral regurgitation (MR). It is generally assumed that this remodeling is caused by a volume load and is mediated by an increase in diastolic wall stress. Thus, mitral regurgitation can be both the cause and effect of an abnormal cardiac stress environment. Computational modeling of ischemic MR and its surgical correction is attractive because it enables an examination of whether a given intervention addresses the correction of regurgitation (fluid-flow) at the cost of abnormal tissue stress. This is significant because the negative effects of an increased wall stress due to the intervention will only be evident over time. However, a meaningful fluid-structure interaction model of the left heart is not trivial; it requires a careful characterization of the in-vivo cardiac geometry, tissue parameterization though inverse analysis, a robust coupled solver that handles collapsing Lagrangian interfaces, automatic grid-generation algorithms that are capable of accurately discretizing the cardiac geometry, innovations in image analysis, competent and efficient constitutive models and an understanding of the spatial organization of tissue microstructure. In this manuscript, we profile our work toward a comprehensive fluid-structure interaction model of the left heart by reviewing our early work, presenting our current work and laying out our future work in four broad categories: data collection, geometry, fluid-structure interaction and validation. PMID:20454531
Advanced Supercritical Carbon Dioxide Brayton Cycle Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Sienicki, James; Moisseytsev, Anton
2015-10-21
Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO 2 (S-CO 2)more » or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO 2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see-through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO 2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO 2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO 2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.« less
Aortic root dynamism, geometry, and function after the remodeling operation: Clinical relevance.
Yacoub, Magdi H; Aguib, Heba; Gamrah, Mazen Abou; Shehata, Nairouz; Nagy, Mohamed; Donia, Mohamed; Aguib, Yasmine; Saad, Hesham; Romeih, Soha; Torii, Ryo; Afifi, Ahmed; Lee, Su-Lin
2018-04-13
Valve-conserving operations for aneurysms of the ascending aorta and root offer many advantages, and their use is steadily increasing. Optimizing the results of these operations depends on providing the best conditions for normal function and durability of the new root. Multimodality imaging including 2-dimensional echocardiography, multislice computed tomography, and cardiovascular magnetic resonance combined with image processing and computational fluid dynamics were used to define geometry, dynamism and aortic root function, before and after the remodeling operation. This was compared with 4 age-matched controls. The size and shape of the ascending aorta, aortic root, and its component parts showed considerable changes postoperatively, with preservation of dynamism. The postoperative size of the aortic annulus was reduced without the use of external bands or foreign material. Importantly, the elliptical shape of the annulus was maintained and changed during the cardiac cycle (Δ ellipticity index was 15% and 28% in patients 1 and 2, respectively). The "cyclic" area of the annulus changed in size (Δarea: 11.3% in patient 1 and 13.1% in patient 2). Functional analysis showed preserved reservoir function of the aortic root, and computational fluid dynamics demonstrated normalized pattern of flow in the ascending aorta, sinuses of Valsalva, and distal aorta. The remodeling operation results in near-normal geometry of the aortic root while maintaining dynamism of the aortic root and its components. This could have very important functional implications; the influence of these effects on both early- and long-term outcomes needs to be studied further. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, S.; Suffield, S. R.; Recknagle, K. P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathingmore » conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditionsmore » using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.« less
NASA Astrophysics Data System (ADS)
Dorschner, B.; Chikatamarla, S. S.; Karlin, I. V.
2017-06-01
Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work [B. Dorschner, S. Chikatamarla, F. Bösch, and I. Karlin, J. Comput. Phys. 295, 340 (2015), 10.1016/j.jcp.2015.04.017] as well as for three-dimensional one-way coupled simulations of engine-type geometries in B . Dorschner, F. Bösch, S. Chikatamarla, K. Boulouchos, and I. Karlin [J. Fluid Mech. 801, 623 (2016), 10.1017/jfm.2016.448] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases, including two-way coupling between fluid and structure and then turbulence and deforming geometries. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil in the transitional regime at a Reynolds number of Re =40 000 and, finally, to access the model's performance for deforming geometries, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.
Design Aspects of the Rayleigh Convection Code
NASA Astrophysics Data System (ADS)
Featherstone, N. A.
2017-12-01
Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.
NASA Technical Reports Server (NTRS)
Kanevsky, Alex
2004-01-01
My goal is to develop and implement efficient, accurate, and robust Implicit-Explicit Runge-Kutta (IMEX RK) methods [9] for overcoming geometry-induced stiffness with applications to computational electromagnetics (CEM), computational fluid dynamics (CFD) and computational aeroacoustics (CAA). IMEX algorithms solve the non-stiff portions of the domain using explicit methods, and isolate and solve the more expensive stiff portions using implicit methods. Current algorithms in CEM can only simulate purely harmonic (up to lOGHz plane wave) EM scattering by fighter aircraft, which are assumed to be pure metallic shells, and cannot handle the inclusion of coatings, penetration into and radiation out of the aircraft. Efficient MEX RK methods could potentially increase current CEM capabilities by 1-2 orders of magnitude, allowing scientists and engineers to attack more challenging and realistic problems.
Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis
2013-02-01
Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.
Pore-scale modeling of moving contact line problems in immiscible two-phase flow.
NASA Astrophysics Data System (ADS)
Kucala, A.; Noble, D.; Martinez, M. J.
2016-12-01
Two immiscible fluids in static equilibrium form a common interface along a solid surface, characterized as the static contact (wetting) angle and is a function of surface geometry, intermolecular forces, and interfacial surface energies manifested as interfacial tension. This static configuration may become perturbed due to external force imbalances (mass injection, pressure gradients, buoyancy, etc.) and the contact line location and interface curvature becomes dynamic. Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. The moving two-phase interface is tracked using the level set method and discretized with the conformal decomposition finite element method (CDFEM), allowing for surface tension effects to be computed at the exact interface location. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
NASA Astrophysics Data System (ADS)
Claessens, M.; Möller, K.; Thiel, H. G.
1997-07-01
Computational fluid dynamics calculations for high- and low-current arcs in an interrupter of the self-blast type have been performed. The mixing process of the hot PTFE cloud with the cold 0022-3727/30/13/011/img6 in the pressure chamber is strongly inhomogeneous. The existence of two different species has been taken into account by interpolation of the material functions according to their mass fraction in each grid cell. Depending on the arcing time, fault current and interrupter geometry, blow temperatures of up to 2000 K have been found. The simulation results for a decaying arc immediately before current zero yield a significantly reduced arc cooling at the stagnation point for high blow temperatures.
Ito, Yasushi; Cheng, Gary C.; Shih, Alan M.; Koomullil, Roy P.; Soni, Bharat K.; Sittitavornwong, Somsak; Waite, Peter D.
2011-01-01
The objective of this paper is the reconstruction of upper airway geometric models as hybrid meshes from clinically used Computed Tomography (CT) data sets in order to understand the dynamics and behaviors of the pre- and postoperative upper airway systems of Obstructive Sleep Apnea Syndrome (OSAS) patients by viscous Computational Fluid Dynamics (CFD) simulations. The selection criteria for OSAS cases studied are discussed because two reasonable pre- and postoperative upper airway models for CFD simulations may not be created for every case without a special protocol for CT scanning. The geometry extraction and manipulation methods are presented with technical barriers that must be overcome so that they can be used along with computational simulation software as a daily clinical evaluation tool. Eight cases are presented in this paper, and each case consists of pre- and postoperative configurations. The results of computational simulations of two cases are included in this paper as demonstration. PMID:21625395
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equation and the additional infrastructure that is needed to solve moving boundary problems and fully coupled fluid-structure interaction is described. All the methods described in this paper were implemented in NASA's LAVA solver framework. The underlying immersed boundary method is based on the locally stabilized immersed boundary method that was previously introduced by the authors. In the present paper this method is extended to account for all aspects that are involved for fluid structure interaction simulations, such as fast geometry queries and stencil computations, the treatment of freshly cleared cells, and the coupling of the computational fluid dynamics solver with a linear structural finite element method. The current approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems in 2D and 3D. As part of the validation procedure, results from the second AIAA aeroelastic prediction workshop are also presented. The current paper is regarded as a proof of concept study, while more advanced methods for fluid structure interaction are currently being investigated, such as geometric and material nonlinearities, and advanced coupling approaches.
Theoretical and Experimental Particle Velocity in Cold Spray
NASA Astrophysics Data System (ADS)
Champagne, Victor K.; Helfritch, Dennis J.; Dinavahi, Surya P. G.; Leyman, Phillip F.
2011-03-01
In an effort to corroborate theoretical and experimental techniques used for cold spray particle velocity analysis, two theoretical and one experimental methods were used to analyze the operation of a nozzle accelerating aluminum particles in nitrogen gas. Two-dimensional (2D) axi-symmetric computations of the flow through the nozzle were performed using the Reynolds averaged Navier-Stokes code in a computational fluid dynamics platform. 1D, isentropic, gas-dynamic equations were solved for the same nozzle geometry and initial conditions. Finally, the velocities of particles exiting a nozzle of the same geometry and operated at the same initial conditions were measured by a dual-slit velocimeter. Exit plume particle velocities as determined by the three methods compared reasonably well, and differences could be attributed to frictional and particle distribution effects.
Advanced Methodology for Simulation of Complex Flows Using Structured Grid Systems
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Modiano, David
1995-01-01
Detailed simulations of viscous flows in complicated geometries pose a significant challenge to current capabilities of Computational Fluid Dynamics (CFD). To enable routine application of CFD to this class of problems, advanced methodologies are required that employ (a) automated grid generation, (b) adaptivity, (c) accurate discretizations and efficient solvers, and (d) advanced software techniques. Each of these ingredients contributes to increased accuracy, efficiency (in terms of human effort and computer time), and/or reliability of CFD software. In the long run, methodologies employing structured grid systems will remain a viable choice for routine simulation of flows in complex geometries only if genuinely automatic grid generation techniques for structured grids can be developed and if adaptivity is employed more routinely. More research in both these areas is urgently needed.
A dissipative particle dynamics method for arbitrarily complex geometries
NASA Astrophysics Data System (ADS)
Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em
2018-02-01
Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its effectiveness is demonstrated by examining the rich dynamics of surfactant micelles, which are flowing around multiple small cylinders and stenotic regions in the microfluidic device without wall penetration. In addition to stationary arbitrary-shape objects, the new method is particularly useful for problems involving moving and deformable boundaries, because it only uses local information of neighboring particles and satisfies the desired boundary conditions on-the-fly.
NASA Technical Reports Server (NTRS)
Canacci, Victor A.; Braun, M. Jack
1994-01-01
The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.
Pore-scale mechanisms of gas flow in tight sand reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.
2010-11-30
Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at whichmore » the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.« less
NASA Technical Reports Server (NTRS)
Spradley, L. W.
1975-01-01
The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.
NASA Technical Reports Server (NTRS)
Chow, Chuen-Yen; Ryan, James S.
1987-01-01
While the zonal grid system of Transonic Navier-Stokes (TNS) provides excellent modeling of complex geometries, improved shock capturing, and a higher Mach number range will be required if flows about hypersonic aircraft are to be modeled accurately. A computational fluid dynamics (CFD) code, the Compressible Navier-Stokes (CNS), is under development to combine the required high Mach number capability with the existing TNS geometry capability. One of several candidate flow solvers for inclusion in the CNS is that of F3D. This upwinding flow solver promises improved shock capturing, and more accurate hypersonic solutions overall, compared to the solver currently used in TNS.
Modeling Complex Biological Flows in Multi-Scale Systems using the APDEC Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trebotich, D
We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA-laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscousmore » flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.« less
Modeling complex biological flows in multi-scale systems using the APDEC framework
NASA Astrophysics Data System (ADS)
Trebotich, David
2006-09-01
We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling☆
Kuprat, A.P.; Kabilan, S.; Carson, J.P.; Corley, R.A.; Einstein, D.R.
2012-01-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton’s Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. Research funded by the National Heart and Blood Institute Award 1RO1HL073598. PMID:24347680
A bidirectional coupling procedure applied to multiscale respiratory modeling
NASA Astrophysics Data System (ADS)
Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. Research funded by the National Heart and Blood Institute Award 1RO1HL073598.
Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields
NASA Technical Reports Server (NTRS)
Daines, Russell L.; Merkle, Charles L.
1994-01-01
Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.
A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry
NASA Astrophysics Data System (ADS)
Al-Marouf, M.; Samtaney, R.
2017-05-01
We present an embedded ghost fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.
1994-01-01
A viewgraph presentation is made showing the capabilities of the computer code SPIRALI. Overall capabilities of SPIRALI include: computes rotor dynamic coefficients, flow, and power loss for cylindrical and face seals; treats turbulent, laminar, Couette, and Poiseuille dominated flows; fluid inertia effects are included; rotor dynamic coefficients in three (face) or four (cylindrical) degrees of freedom; includes effects of spiral grooves; user definable transverse film geometry including circular steps and grooves; independent user definable friction factor models for rotor and stator; and user definable loss coefficients for sudden expansions and contractions.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.; Shapiro, Wibur
2005-01-01
This is the source listing of the computer code SPIRALI which predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures.
Computations of Internal and External Axisymmetric Nozzle Aerodynamics at Transonic Speeds
NASA Technical Reports Server (NTRS)
Dalbello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo
2003-01-01
Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles have been completed in support of NASA's Next Generation Launch Technology Program to investigate the effects of high-speed nozzle geometries on the nozzle internal flow and the surrounding boattail regions. These computations span the very difficult transonic flight regime, with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined in Wind, including an Explicit Algebraic Stress model (EASM). Computations on two nozzle geometries have been completed at freestream Mach numbers ranging from 0.6 to 0.9, driven by nozzle pressure ratios (NPR) ranging from 2.9 to 5. Results obtained on converging-only geometry indicate reasonable agreement to experimental data, with the EASM and Shear Stress Transport (SST) turbulence models providing the best agreement. Calculations completed on a converging-diverging geometry involving large-scale internal flow separation did not converge to a true steady-state solution when run with variable timestepping (steady-state). Calculations obtained using constant timestepping (time-accurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was found to be the result of difficulties in using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show fairly good agreement with experimental data. The SST turbulence model demonstrates the best over-all agreement with experimental data.
Influence of the hole geometry on the flow distribution in ventricular catheters for hydrocephalus.
Giménez, Ángel; Galarza, Marcelo; Pellicer, Olga; Valero, José; Amigó, José M
2016-07-15
Hydrocephalus is a medical condition consisting of an abnormal accumulation of cerebrospinal fluid within the brain. A catheter is inserted in one of the brain ventricles and then connected to an external valve to drain the excess of cerebrospinal fluid. The main drawback of this technique is that, over time, the ventricular catheter ends up getting blocked by the cells and macromolecules present in the cerebrospinal fluid. A crucial factor influencing this obstruction is a non-uniform flow pattern through the catheter, since it facilitates adhesion of suspended particles to the walls. In this paper we focus on the effects that tilted holes as well as conical holes have on the flow distribution and shear stress. We have carried out 3D computational simulations to study the effect of the hole geometry on the cerebrospinal fluid flow through ventricular catheters. All the simulations were done with the OpenFOAM® toolbox. In particular, three different groups of models were investigated by varying (i) the tilt angles of the holes, (ii) the inner and outer diameters of the holes, and (iii) the distances between the so-called hole segments. The replacement of cylindrical holes by conical holes was found to have a strong influence on the flow distribution and to lower slightly the shear stress. Tilted holes did not involve flow distribution changes when the hole segments are sufficiently separated, but the mean shear stress was certainly reduced. The authors present new results about the behavior of the fluid flow through ventricular catheters. These results complete earlier work on this topic by adding the influence of the hole geometry. The overall objective pursued by this research is to provide guidelines to improve existing commercially available ventricular catheters.
Two-Phase Flow Simulations through Experimentally Studied Porous Media Analogies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, D.M.; Ahmadi, G.; Smith, D.H.
2007-07-01
The amount of CO2 that can be sequestered in deep brine reservoirs is dependant on fluid-fluid-solid interactions within heterogeneous porous media. Displacement of an in-place fluid by a less viscous invading fluid does not displace 100% of the defending fluid, due to capillary and viscous fingering. This has been studied experimentally and numerically with the use of pore-throat flow cells and pore-level models, respectively, in the last two decades. This current work solves the full Navier-Stokes and continuity equations in a random pore-throat geometry using the Volume of Fluid (VOF) method. To verify that the VOF model can be accuratelymore » applied within narrow apertures, qualitative agreement with the well-documented phenomenon of viscous fingering in a Hele-Shaw cell is first presented. While this motion is similar to the fingering observed in geological media, the random structure of rock restricts flow patterns not captured by flow in Hele-Shaw cells. To mimic this heterogeneous natural geometry, a novel experimental flowcell was created. Experiments of constant-rate injection of air into the water saturated model are described. This situation, where a non-wetting, invading fluid displaces a surface-wetting, more-viscous fluid, is known as drainage. As the injection flow rate was increased, a change from stable displacement fronts to dendritic fingering structures was observed, with a corresponding decrease in the fractal dimension of the interface and a decrease in the final saturation of invading air. Predictions of the VOF computational modeling within the same flowcell geometry are then shown to be in good agreement with the experimental results. Percent saturation and the fractal dimension of the invading fluid were calculated from the numerical model and shown to be similar to the experimental findings for air invasion of a watersaturated domain. The fluid properties (viscosity and density) were than varied and the viscosity ratio and capillary number of the fluids were shown to affect the percent of displaced fluid, with lower capillary number and higher viscosity ratio displacing a greater amount of the wetting fluid. Displacement of a non-wetting, in-place fluid by a less viscous, wetting fluid (the case of imbibition; contact angle > 90°) is then studied with the numerical model. The invading fluid is shown to preferentially move into small throats and displace a larger percent of the in-place fluid than observed in the drainage case. The interface was also observed to have a higher fractal dimension, closer to 2. These results highlight the potential for greater fundamental understanding of liquid-gas-solid interactions in heterogeneous, porous media that can be obtained from computational fluid dynamics (CFD). Situations, which are difficult to experimentally study, can be examined with CFD in a manner that more accurately accounts for the geological conditions relevant to CO2 sequestration. This allows for greater accuracy in the prediction of storage capacity within known geological structures. This study shows that as the contact angle between the invading fluid and the defending fluid increase, a greater portion of the porous medium is invaded. Thus, a greater portion of CO2 can be sequestered in reservoirs that are not strongly water wet. Low flow rates are shown to increase the final percent saturation of the invading fluid as well, regardless of wetting conditions.« less
Saho, Tatsunori; Onishi, Hideo
2016-07-01
In this study, we evaluated the hemodynamics of carotid artery bifurcation with various geometries using simulated and volunteer models based on magnetic resonance imaging (MRI). Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM. The velocity distribution, streamline, and wall shear stress (WSS) were evaluated in a simulated model with known bifurcation angles (30°, 40°, 50°, 60°, derived from patients' data) and in three-dimensional (3D) healthy volunteer models. Separated flow was observed at the outer side of the bifurcation, and large bifurcation models represented upstream transfer of the point. Local WSS values at the outer bifurcation [both simulated (<30 Pa) and volunteer (<50 Pa) models] were lower than those in the inner region (>100 Pa). The bifurcation angle had a significant negative correlation with the WSS value (p<0.05). The results of this study show that the carotid artery bifurcation angle is related to the WSS value. This suggests that hemodynamic stress can be estimated based on the carotid artery geometry. The construction of a clinical database for estimation of developing atherosclerosis is warranted.
Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.
Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P
2015-10-01
Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.
Effect of image scaling and segmentation in digital rock characterisation
NASA Astrophysics Data System (ADS)
Jones, B. D.; Feng, Y. T.
2016-04-01
Digital material characterisation from microstructural geometry is an emerging field in computer simulation. For permeability characterisation, a variety of studies exist where the lattice Boltzmann method (LBM) has been used in conjunction with computed tomography (CT) imaging to simulate fluid flow through microscopic rock pores. While these previous works show that the technique is applicable, the use of binary image segmentation and the bounceback boundary condition results in a loss of grain surface definition when the modelled geometry is compared to the original CT image. We apply the immersed moving boundary (IMB) condition of Noble and Torczynski as a partial bounceback boundary condition which may be used to better represent the geometric definition provided by a CT image. The IMB condition is validated against published work on idealised porous geometries in both 2D and 3D. Following this, greyscale image segmentation is applied to a CT image of Diemelstadt sandstone. By varying the mapping of CT voxel densities to lattice sites, it is shown that binary image segmentation may underestimate the true permeability of the sample. A CUDA-C-based code, LBM-C, was developed specifically for this work and leverages GPU hardware in order to carry out computations.
Advanced Computational Aeroacoustics Methods for Fan Noise Prediction
NASA Technical Reports Server (NTRS)
Envia, Edmane (Technical Monitor); Tam, Christopher
2003-01-01
Direct computation of fan noise is presently not possible. One of the major difficulties is the geometrical complexity of the problem. In the case of fan noise, the blade geometry is critical to the loading on the blade and hence the intensity of the radiated noise. The precise geometry must be incorporated into the computation. In computational fluid dynamics (CFD), there are two general ways to handle problems with complex geometry. One way is to use unstructured grids. The other is to use body fitted overset grids. In the overset grid method, accurate data transfer is of utmost importance. For acoustic computation, it is not clear that the currently used data transfer methods are sufficiently accurate as not to contaminate the very small amplitude acoustic disturbances. In CFD, low order schemes are, invariably, used in conjunction with unstructured grids. However, low order schemes are known to be numerically dispersive and dissipative. dissipative errors are extremely undesirable for acoustic wave problems. The objective of this project is to develop a high order unstructured grid Dispersion-Relation-Preserving (DRP) scheme. would minimize numerical dispersion and dissipation errors. contains the results of the funded portion of the project. scheme on an unstructured grid has been developed. constructed in the wave number space. The characteristics of the scheme can be improved by the inclusion of additional constraints. Stability of the scheme has been investigated. Stability can be improved by adopting the upwinding strategy.
NASA Astrophysics Data System (ADS)
López, J.; Hernández, J.; Gómez, P.; Faura, F.
2018-02-01
The VOFTools library includes efficient analytical and geometrical routines for (1) area/volume computation, (2) truncation operations that typically arise in VOF (volume of fluid) methods, (3) area/volume conservation enforcement (VCE) in PLIC (piecewise linear interface calculation) reconstruction and(4) computation of the distance from a given point to the reconstructed interface. The computation of a polyhedron volume uses an efficient formula based on a quadrilateral decomposition and a 2D projection of each polyhedron face. The analytical VCE method is based on coupling an interpolation procedure to bracket the solution with an improved final calculation step based on the above volume computation formula. Although the library was originally created to help develop highly accurate advection and reconstruction schemes in the context of VOF methods, it may have more general applications. To assess the performance of the supplied routines, different tests, which are provided in FORTRAN and C, were implemented for several 2D and 3D geometries.
Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank
NASA Technical Reports Server (NTRS)
Ng, Wanyi; Benson, David
2017-01-01
The objective of this fluids analysis is to model propellant slosh for the Europa Clipper mission using a two-pendulum model, such that controls engineers can predict slosh behavior during the mission. Propellant slosh causes shifts in center of mass and exerts forces and torques on the spacecraft which, if not adequately controlled, can lead to mission failure. The two-pendulum model provides a computationally simple model that can be used to predict slosh for the Europa Clipper tank geometry. The Europa Clipper tank is cylindrical with a domed top and bottom and includes a propellant management device (PMD). Due to the lack of experimental data in low gravity environments, computational fluid dynamics (CFD) simulation results were used as 'real' slosh behavior for two propellants at three fill fractions. Key pendulum parameters were derived that allow the pendulum model's center of mass, forces, and moments to closely match the CFD data. The parameter trends were examined as a function of tank fill fraction and compared with solutions to analytic equations that describe the frequency of slosh in tanks with simple geometries. The trends were monotonic as expected, and parameters resembled analytical predictions; any differences could be explained by the specific differences in the geometry of the tank. This paper summarizes the new method developed at Goddard Space Flight Center (GSFC) for deriving pendulum parameters for two-pendulum equivalent sloshing models. It presents the results of this method and discusses the validity of the results. This analysis is at a completed stage and will be applied in the immediate future to the evolving tank geometry as Europa Clipper moves past its preliminary design review (PDR) phase.
Advantageous new conic cannula for spine cement injection.
González, Sergio Gómez; Vlad, María Daniela; López, José López; Aguado, Enrique Fernández
2014-09-01
Experimental study to characterize the influence of the cannula geometry on both, the pressure drop and the cement flow velocity established along the cannula. To investigate how the new experimental geometry of cannulas can affect the extravertebral injection pressure and the velocity profiles established along the cannula during the injection process. Vertebroplasty procedure is being used to treat vertebral compression fractures. Vertebra infiltration is favored by the use of suitable: (1) syringes or injector devices; (2) polymer or ceramic bone cements; and (3) cannulas. However, the clinical use of ceramic bone cement has been limited due to press-filtering problems. Thus, new approaches concerning the cannula geometry are needed to minimize the press-filtering of calcium phosphate-based bone cements and thereby broaden its possible applications. Straight, conic, and combined conic-straight new cannulas with different proximal and distal both length and diameter ratios were drawn with computer-assisted design software. The new geometries were theoretically analyzed by: (1) Hagen-Poisseuille law; and (2) computational fluid dynamics. Some experimental models were manufactured and tested for extrusion in order to confirm and further advance the theoretical results. The results confirm that the totally conic cannula model, having proximal to distal diameter ratio equal 2, requires the lowest injection pressure. Furthermore, its velocity profile showed no discontinuity at all along the cannula length, compared with other known combined proximal and distal straight cannulas, where discontinuity was produced at the proximal-distal transition zone. The conclusion is that the conic cannulas: (a) further reduced the extravertebral pressure during the injection process; (b) showed optimum fluid flow velocity profiles to minimize filter-pressing problems, especially when ceramic cements are used; and (c) can be easily manufactured. In this sense, the new conic cannulas should favor the use of calcium phosphate bone cements in the spine. N/A.
NASA Technical Reports Server (NTRS)
1995-01-01
A computational fluid dynamics (CFD) analysis has been performed on the aft slot region of the Titan 4 Solid Rocket Motor Upgrade (SRMU). This analysis was performed in conjunction with MSFC structural modeling of the propellant grain to determine if the flow field induced stresses would adversely alter the propellant geometry to the extent of causing motor failure. The results of the coupled CFD/stress analysis have shown that there is a continual increase of flow field resistance at the aft slot due to the aft segment propellant grain being progressively moved radially toward the centerline of the motor port. This 'bootstrapping' effect between grain radial movement and internal flow resistance is conducive to causing a rapid motor failure.
Efficient modeling of laser-plasma accelerator staging experiments using INF&RNO
NASA Astrophysics Data System (ADS)
Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.
2017-03-01
The computational framework INF&RNO (INtegrated Fluid & paRticle simulatioN cOde) allows for fast and accurate modeling, in 2D cylindrical geometry, of several aspects of laser-plasma accelerator physics. In this paper, we present some of the new features of the code, including the quasistatic Particle-In-Cell (PIC)/fluid modality, and describe using different computational grids and time steps for the laser envelope and the plasma wake. These and other features allow for a speedup of several orders of magnitude compared to standard full 3D PIC simulations while still retaining physical fidelity. INF&RNO is used to support the experimental activity at the BELLA Center, and we will present an example of the application of the code to the laser-plasma accelerator staging experiment.
NASA Technical Reports Server (NTRS)
Boyalakuntla, Kishore; Soni, Bharat K.; Thornburg, Hugh J.; Yu, Robert
1996-01-01
During the past decade, computational simulation of fluid flow around complex configurations has progressed significantly and many notable successes have been reported, however, unsteady time-dependent solutions are not easily obtainable. The present effort involves unsteady time dependent simulation of temporally deforming geometries. Grid generation for a complex configuration can be a time consuming process and temporally varying geometries necessitate the regeneration of such grids for every time step. Traditional grid generation techniques have been tried and demonstrated to be inadequate to such simulations. Non-Uniform Rational B-splines (NURBS) based techniques provide a compact and accurate representation of the geometry. This definition can be coupled with a distribution mesh for a user defined spacing. The present method greatly reduces cpu requirements for time dependent remeshing, facilitating the simulation of more complex unsteady problems. A thrust vectoring nozzle has been chosen to demonstrate the capability as it is of current interest in the aerospace industry for better maneuverability of fighter aircraft in close combat and in post stall regimes. This current effort is the first step towards multidisciplinary design optimization which involves coupling the aerodynamic heat transfer and structural analysis techniques. Applications include simulation of temporally deforming bodies and aeroelastic problems.
Development of Switchable Polarity Solvent Draw Solutes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Aaron D.
Results of a computational fluid dynamic (CFD) study of flow and heat transfer in a printed circuit heat exchanger (PCHE) geometry are presented. CFD results obtained from a two-plate model are compared to corresponding experimental results for the validation. This process provides the basis for further application of the CFD code to PCHE design and performance analysis in a variety of internal flow geometries. As a part of the code verification and validation (V&V) process, CFD simulation of a single semicircular straight channel under laminar isothermal conditions was also performed and compared to theoretical results. This comparison yielded excellent agreementmore » with the theoretical values. The two-plate CFD model based on the experimental PCHE design overestimated the effectiveness and underestimated the pressure drop. However, it is found that the discrepancy between the CFD result and experimental data was mainly caused by the uncertainty in the geometry of heat exchanger during the fabrication. The CFD results obtained using a slightly smaller channel diameter yielded good agreement with the experimental data. A separate investigation revealed that the average channel diameter of the OSU PCHE after the diffusion-bonding was 1.93 mm on the cold fluid side and 1.90 mm on the hot fluid side which are both smaller than the nominal design value. Consequently, the CFD code was shown to have sufficient capability to evaluate the heat exchanger thermal-hydraulic performance.« less
Designing a Robust Micromixer Based on Fluid Stretching
NASA Astrophysics Data System (ADS)
Mott, David; Gautam, Dipesh; Voth, Greg; Oran, Elaine
2010-11-01
A metric for measuring fluid stretching based on finite-time Lyapunov exponents is described, and the use of this metric for optimizing mixing in microfluidic components is explored. The metric is implemented within an automated design approach called the Computational Toolbox (CTB). The CTB designs components by adding geometric features, such a grooves of various shapes, to a microchannel. The transport produced by each of these features in isolation was pre-computed and stored as an "advection map" for that feature, and the flow through a composite geometry that combines these features is calculated rapidly by applying the corresponding maps in sequence. A genetic algorithm search then chooses the feature combination that optimizes a user-specified metric. Metrics based on the variance of concentration generally require the user to specify the fluid distributions at inflow, which leads to different mixer designs for different inflow arrangements. The stretching metric is independent of the fluid arrangement at inflow. Mixers designed using the stretching metric are compared to those designed using a variance of concentration metric and show excellent performance across a variety of inflow distributions and diffusivities.
Numerical simulation of evolutionary erodible bedforms using the particle finite element method
NASA Astrophysics Data System (ADS)
Bravo, Rafael; Becker, Pablo; Ortiz, Pablo
2017-07-01
This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO2) capture to predict the CO2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive and reactive massmore » transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
Wang, Chao; Xu, Zhijie; Lai, Canhai; ...
2018-03-27
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.; Shi, Y.
1991-01-01
The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.
Numerical Simulations of the Boundary Layer Transition Flight Experiment
NASA Technical Reports Server (NTRS)
Tang, Chun Y.; Trumble, Kerry A.; Campbell, Charles H.; Lessard, Victor R.; Wood, William A.
2010-01-01
Computational Fluid Dynamics (CFD) simulations were used to study the possible effects that the Boundary Layer Transition (BLT) Flight Experiments may have on the heating environment of the Space Shuttle during its entry to Earth. To investigate this issue, hypersonic calculations using the Data-Parallel Line Relaxation (DPLR) and Langley Aerothermodynamic Upwind Relaxation (LAURA) CFD codes were computed for a 0.75 tall protuberance at flight conditions of Mach 15 and 18. These initial results showed high surface heating on the BLT trip and the areas surrounding the protuberance. Since the predicted peak heating rates would exceed the thermal limits of the materials selected to construct the BLT trip, many changes to the geometry were attempted in order to reduce the surface heat flux. The following paper describes the various geometry revisions and the resulting heating environments predicted by the CFD codes.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2
NASA Technical Reports Server (NTRS)
Sanandres, Luis
1994-01-01
The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.
Trash Diverter Orientation Angle Optimization at Run-Off River Type Hydro-power Plant using CFD
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Kamal, Ahmad; Shuaib, Norshah Hafeez; Yusoff, Mohd. Zamri; Hasini, Hasril; Rashid, Azri Zainol; Thangaraju, Savithry K.; Hamid, Hazha
2010-06-01
Tenom Pangi Hydro Power Station in Tenom, Sabah is suffering from poor river quality with a lot of suspended trashes. This problem necessitates the need for a trash diverter to divert the trash away from the intake region. Previously, a trash diverter (called Trash Diverter I) was installed at the site but managed to survived for a short period of time due to an impact with huge log as a results of a heavy flood. In the current project, a second trash diverter structure is designed (called Trash Diverter II) with improved features compared to Trash Diverter I. The Computational Fluid Dynamics (CFD) analysis is done to evaluate the river flow interaction onto the trash diverter from the fluid flow point of view, Computational Fluids Dynamics is a numerical approach to solve fluid flow profile for different inlet conditions. In this work, the river geometry is modeled using commercial CFD code, FLUENT®. The computational model consists of Reynolds Averaged Navier-Stokes (RANS) equations coupled with other related models using the properties of the fluids under investigation. The model is validated with site-measurements done at Tenom Pangi Hydro Power Station. Different operating condition of river flow rate and weir opening is also considered. The optimum angle is determined in this simulation to further use the data for 3D simulation and structural analysis.
Fluid and structure coupling analysis of the interaction between aqueous humor and iris.
Wang, Wenjia; Qian, Xiuqing; Song, Hongfang; Zhang, Mindi; Liu, Zhicheng
2016-12-28
Glaucoma is the primary cause of irreversible blindness worldwide associated with high intraocular pressure (IOP). Elevated intraocular pressure will affect the normal aqueous humor outflow, resulting in deformation of iris. However, the deformation ability of iris is closely related to its material properties. Meanwhile, the passive deformation of the iris aggravates the pupillary block and angle closure. The nature of the interaction mechanism of iris deformation and aqueous humor fluid flow has not been fully understood and has been somewhat a controversial issue. The purpose here was to study the effect of IOP, localization, and temperature on the flow of the aqueous humor and the deformation of iris interacted by aqueous humor fluid flow. Based on mechanisms of aqueous physiology and fluid dynamics, 3D model of anterior chamber (AC) was constructed with the human anatomical parameters as a reference. A 3D idealized standard geometry of anterior segment of human eye was performed. Enlarge the size of the idealization geometry model 5 times to create a simulation device by using 3D printing technology. In this paper, particle image velocimetry technology is applied to measure the characteristic of fluid outflow in different inlet velocity based on the device. Numerically calculations were made by using ANSYS 14.0 Finite Element Analysis. Compare of the velocity distributions to confirm the validity of the model. The fluid structure interaction (FSI) analysis was carried out in the valid geometry model to study the aqueous flow and iris change. In this paper, the validity of the model is verified through computation and comparison. The results indicated that changes of gravity direction of model significantly affected the fluid dynamics parameters and the temperature distribution in anterior chamber. Increased pressure and the vertical position increase the velocity of the aqueous humor fluid flow, with the value increased of 0.015 and 0.035 mm/s. The results act on the iris showed that, gravity direction from horizontal to vertical decrease the equivalent stress in the normal IOP model, while almost invariably in the high IOP model. With the increased of the iris elasticity modulus, the equivalent strain and the total deformation of iris is decreased. The maximal value of equivalent strain of iris in high IOP model is higher than that of in normal IOP model. The maximum deformation of iris is lower in the high IOP model than in the normal IOP model. The valid model of idealization geometry of human eye could be helpful to study the relationship between localization, iris deformation and IOP. So far the FSI analysis was carried out in that idealization geometry model of anterior segment to study aqueous flow and iris change.
Computational Flow Modeling of Human Upper Airway Breathing
NASA Astrophysics Data System (ADS)
Mylavarapu, Goutham
Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady Large Eddy simulations (LES) and a steady Reynolds Averaged Navier Stokes (RANS) approaches in CFD modeling are discussed. The more challenging FSI approach is modeled first in simple two-dimensional anatomical geometry and then extended to simplified three dimensional geometry and finally in three dimensionally accurate geometries. The concepts of virtual surgery and the differences to CFD are discussed. Finally, the influence of various drug delivery parameters on particle deposition efficiency in airway anatomy are investigated through particle-flow simulations in a nasal airway model.
Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation
NASA Technical Reports Server (NTRS)
Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim
2003-01-01
A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain circulation under auto-regulation.
Wing Leading Edge Concepts for Noise Reduction
NASA Technical Reports Server (NTRS)
Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.
2010-01-01
This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.
Geometry-induced phase transition in fluids: Capillary prewetting
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim
2013-02-01
We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.
NASA Astrophysics Data System (ADS)
Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye
2015-11-01
In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.
Liquid rocket combustor computer code development
NASA Technical Reports Server (NTRS)
Liang, P. Y.
1985-01-01
The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.
NASA Astrophysics Data System (ADS)
Chen, Hudong
2001-06-01
There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward-facing steps, flows over a curved hill and typical NACA airfoils at various angles of attack including prediction of stall angle. We further provide numerous engineering cases, ranging from external aerodynamics around various car bodies to internal flows involved in various industrial devices. We conclude with a discussion of certain future extensions for complex fluids.
NASA Astrophysics Data System (ADS)
Song, Yang; Srinivasan, Bhuvana
2017-10-01
The discontinuous Galerkin (DG) method has the advantage of resolving shocks and sharp gradients that occur in neutral fluids and plasmas. An unstructured DG code has been developed in this work to study plasma instabilities using the two-fluid plasma model. Unstructured meshes are known to produce small and randomized grid errors compared to traditional structured meshes. Computational tests for Rayleigh-Taylor instabilities in radially-converging flows are performed using the MHD model. Choice of grid geometry is not obvious for simulations of instabilities in these circular configurations. Comparisons of the effects for different grids are made. A 2D magnetic nozzle simulation using the two-fluid plasma model is also performed. A vacuum boundary condition technique is applied to accurately solve the Riemann problem on the edge of the plume.
NASA Technical Reports Server (NTRS)
Deese, J. E.; Agarwal, R. K.
1989-01-01
Computational fluid dynamics has an increasingly important role in the design and analysis of aircraft as computer hardware becomes faster and algorithms become more efficient. Progress is being made in two directions: more complex and realistic configurations are being treated and algorithms based on higher approximations to the complete Navier-Stokes equations are being developed. The literature indicates that linear panel methods can model detailed, realistic aircraft geometries in flow regimes where this approximation is valid. As algorithms including higher approximations to the Navier-Stokes equations are developed, computer resource requirements increase rapidly. Generation of suitable grids become more difficult and the number of grid points required to resolve flow features of interest increases. Recently, the development of large vector computers has enabled researchers to attempt more complex geometries with Euler and Navier-Stokes algorithms. The results of calculations for transonic flow about a typical transport and fighter wing-body configuration using thin layer Navier-Stokes equations are described along with flow about helicopter rotor blades using both Euler/Navier-Stokes equations.
Characterization of Fuego for laminar and turbulent natural convection heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, Nicholas Donald, Jr.; .)
2005-08-01
A computational fluid dynamics (CFD) analysis is conducted for internal natural convection heat transfer using the low Mach number code Fuego. The flow conditions under investigation are primarily laminar, transitional, or low-intensity level turbulent flows. In the case of turbulent boundary layers at low-level turbulence or transitional Reynolds numbers, the use of standard wall functions no longer applies, in general, for wall-bounded flows. One must integrate all the way to the wall in order to account for gradients in the dependent variables in the viscous sublayer. Fuego provides two turbulence models in which resolution of the near-wall region is appropriate.more » These models are the v2-f turbulence model and a Launder-Sharma, low-Reynolds number turbulence model. Two standard geometries are considered: the annulus formed between horizontal concentric cylinders and a square enclosure. Each geometry emphasizes wall shear flow and complexities associated with turbulent or near turbulent boundary layers in contact with a motionless core fluid. Overall, the Fuego simulations for both laminar and turbulent flows compared well to measured data, for both geometries under investigation, and to a widely accepted commercial CFD code (FLUENT).« less
Mikhal, Julia; Geurts, Bernard J
2013-12-01
A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.
Optimization and surgical design for applications in pediatric cardiology
NASA Astrophysics Data System (ADS)
Marsden, Alison; Bernstein, Adam; Taylor, Charles; Feinstein, Jeffrey
2007-11-01
The coupling of shape optimization to cardiovascular blood flow simulations has potential to improve the design of current surgeries and to eventually allow for optimization of surgical designs for individual patients. This is particularly true in pediatric cardiology, where geometries vary dramatically between patients, and unusual geometries can lead to unfavorable hemodynamic conditions. Interfacing shape optimization to three-dimensional, time-dependent fluid mechanics problems is particularly challenging because of the large computational cost and the difficulty in computing objective function gradients. In this work a derivative-free optimization algorithm is coupled to a three-dimensional Navier-Stokes solver that has been tailored for cardiovascular applications. The optimization code employs mesh adaptive direct search in conjunction with a Kriging surrogate. This framework is successfully demonstrated on several geometries representative of cardiovascular surgical applications. We will discuss issues of cost function choice for surgical applications, including energy loss and wall shear stress distribution. In particular, we will discuss the creation of new designs for the Fontan procedure, a surgery done in pediatric cardiology to treat single ventricle heart defects.
NASA Astrophysics Data System (ADS)
Randles, Amanda Elizabeth
Accurate and reliable modeling of cardiovascular hemodynamics has the potential to improve understanding of the localization and progression of heart diseases, which are currently the most common cause of death in Western countries. However, building a detailed, realistic model of human blood flow is a formidable mathematical and computational challenge. The simulation must combine the motion of the fluid, the intricate geometry of the blood vessels, continual changes in flow and pressure driven by the heartbeat, and the behavior of suspended bodies such as red blood cells. Such simulations can provide insight into factors like endothelial shear stress that act as triggers for the complex biomechanical events that can lead to atherosclerotic pathologies. Currently, it is not possible to measure endothelial shear stress in vivo, making these simulations a crucial component to understanding and potentially predicting the progression of cardiovascular disease. In this thesis, an approach for efficiently modeling the fluid movement coupled to the cell dynamics in real-patient geometries while accounting for the additional force from the expansion and contraction of the heart will be presented and examined. First, a novel method to couple a mesoscopic lattice Boltzmann fluid model to the microscopic molecular dynamics model of cell movement is elucidated. A treatment of red blood cells as extended structures, a method to handle highly irregular geometries through topology driven graph partitioning, and an efficient molecular dynamics load balancing scheme are introduced. These result in a large-scale simulation of the cardiovascular system, with a realistic description of the complex human arterial geometry, from centimeters down to the spatial resolution of red-blood cells. The computational methods developed to enable scaling of the application to 294,912 processors are discussed, thus empowering the simulation of a full heartbeat. Second, further extensions to enable the modeling of fluids in vessels with smaller diameters and a method for introducing the deformational forces exerted on the arterial flows from the movement of the heart by borrowing concepts from cosmodynamics are presented. These additional forces have a great impact on the endothelial shear stress. Third, the fluid model is extended to not only recover Navier-Stokes hydrodynamics, but also a wider range of Knudsen numbers, which is especially important in micro- and nano-scale flows. The tradeoffs of many optimizations methods such as the use of deep halo level ghost cells that, alongside hybrid programming models, reduce the impact of such higher-order models and enable efficient modeling of extreme regimes of computational fluid dynamics are discussed. Fourth, the extension of these models to other research questions like clogging in microfluidic devices and determining the severity of co-arctation of the aorta is presented. Through this work, a validation of these methods by taking real patient data and the measured pressure value before the narrowing of the aorta and predicting the pressure drop across the co-arctation is shown. Comparison with the measured pressure drop in vivo highlights the accuracy and potential impact of such patient specific simulations. Finally, a method to enable the simulation of longer trajectories in time by discretizing both spatially and temporally is presented. In this method, a serial coarse iterator is used to initialize data at discrete time steps for a fine model that runs in parallel. This coarse solver is based on a larger time step and typically a coarser discretization in space. Iterative refinement enables the compute-intensive fine iterator to be modeled with temporal parallelization. The algorithm consists of a series of prediction-corrector iterations completing when the results have converged within a certain tolerance. Combined, these developments allow large fluid models to be simulated for longer time durations than previously possible.
Acoustic resonances in cylinder bundles oscillating in a compressibile fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.H.; Raptis, A.C.
1984-12-01
This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determinedmore » from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.« less
Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
Okamoto, Eiji; Hashimoto, Takuya; Mitamura, Yoshinori
2003-01-01
In this study, we developed a new miniature motor-driven pulsatile left ventricular assist device (LVAD) for implantation into a Japanese patient of average build by means of computer-aided design and manufacturing (CAD/CAM) technology. A specially designed miniature ball-screw and a high-performance brushless DC motor were used in an artificial heart actuator to allow miniaturization. A blood pump chamber (stroke volume 55 ml) and an inflow and outflow port were designed by computational fluid dynamics (CFD) analysis. The geometry of the blood pump was evaluated using the value of index of pump geometry (IPG) = (Reynolds shear stress) x (occupied volume) as a quantitative index for optimization. The calculated value of IPG varied from 20.6 Nm to 49.1 Nm, depending on small variations in pump geometry. We determined the optimum pump geometry based on the results of quantitative evaluation using IPG and qualitative evaluation using the flow velocity distribution with blood flow tracking. The geometry of the blood pump that gave lower shear stress had more optimum spiral flow around the diaphragm-housing (D-H) junction. The volume and weight of the new LVAD, made of epoxy resin, is 309 ml and 378 g, but further miniaturization will be possible by improving the geometry of both the blood pump and the back casing. Our results show that our new design method for an implantable LVAD using CAD/CAM promises to improve blood compatibility with greater miniaturization.
B-spline Method in Fluid Dynamics
NASA Technical Reports Server (NTRS)
Botella, Olivier; Shariff, Karim; Mansour, Nagi N. (Technical Monitor)
2001-01-01
B-spline functions are bases for piecewise polynomials that possess attractive properties for complex flow simulations : they have compact support, provide a straightforward handling of boundary conditions and grid nonuniformities, and yield numerical schemes with high resolving power, where the order of accuracy is a mere input parameter. This paper reviews the progress made on the development and application of B-spline numerical methods to computational fluid dynamics problems. Basic B-spline approximation properties is investigated, and their relationship with conventional numerical methods is reviewed. Some fundamental developments towards efficient complex geometry spline methods are covered, such as local interpolation methods, fast solution algorithms on cartesian grid, non-conformal block-structured discretization, formulation of spline bases of higher continuity over triangulation, and treatment of pressure oscillations in Navier-Stokes equations. Application of some of these techniques to the computation of viscous incompressible flows is presented.
National Combustion Code: A Multidisciplinary Combustor Design System
NASA Technical Reports Server (NTRS)
Stubbs, Robert M.; Liu, Nan-Suey
1997-01-01
The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.
Extended MHD modeling of nonlinear instabilities in fusion and space plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germaschewski, Kai
A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements ofmore » the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.« less
Effects of Froude number and geometry on water entry of a 2-D ellipse
NASA Astrophysics Data System (ADS)
Zhang, Xu; Liu, Pei-qing; Qu, Qiu-lin; Wang, Rui; Agarwal, Ramesh K.
2018-05-01
By using the finite volume method with volume of fluid model and global dynamic mesh technique, the effects of Froude number and geometry on the water entry process of a 2-D ellipse are investigated numerically. For the time history of the vertical force, the computational fluid dynamics (CFD) results match the experimental data much better than the classical potential-flow theories due to the consideration of the viscosity, turbulence, surface tension, gravity, and compressibility. The results show that the position of peak pressure on ellipse shifts from the spray root to the bottom of ellipse at a critical time. The critical time changes with the geometry and Froude number. By studying the vertical force, the ellipse water entry process can be divided into the initial and late stages based on the critical dimensionless time of about 0.1. The geometry of the ellipse plays a dominant role in the initial stage, while the Froude number is more important in the late stage of entry. The classical Wagner theory is extended to the ellipse water entry, and the predicted maximum value of vertical force coefficient in the initial stage is 4πa/b that matches the CFD results very well, where a and b are the horizontal axis and vertical axis of the ellipse parallel and perpendicular to the initial calm water surface, respectively.
An analytical formula for the longitudinal resonance frequencies of a fluid-filled crack
NASA Astrophysics Data System (ADS)
Maeda, Y.; Kumagai, H.
2013-12-01
The fluid-filled crack model (Chouet, 1986, JGR) simulates the resonances of a rectangular crack filled with an inviscid fluid embedded in a homogeneous isotropic elastic medium. The model demonstrates the existence of a slow wave, known as the crack wave, that propagates along the solid-fluid interfaces. The wave velocity depends on the crack stiffness. The model has been used to interpret the peak frequencies of long-period (LP) and very long period (VLP) seismic events at various volcanoes (Chouet and Matoza, 2013, JVGR). Up to now, crack model simulations have been performed using the finite difference (Chouet, 1986) and boundary integral (Yamamoto and Kawakatsu, 2008, GJI) methods. These methods require computationally extensive procedures to estimate the complex frequencies of crack resonance modes. Establishing an easier way to calculate the frequencies of crack resonances would help understanding of the observed frequencies. In this presentation, we propose a simple analytical formula for the longitudinal resonance frequencies of a fluid-filled crack. We first evaluated the analytical expression proposed by Kumagai (2009, Encyc. Complex. Sys. Sci.) through a comparison of the expression with the peak frequencies computed by a 2D version of the FDM code of Chouet (1986). Our comparison revealed that the equation of Kumagai (2009) shows discrepancies with the resonant frequencies computed by the FDM. We then modified the formula as fmL = (m-1)a/[2L(1+2ɛmLC)1/2], (1) where L is the crack length, a is the velocity of sound in the fluid, C is the crack stiffness, m is a positive integer defined such that the wavelength of the normal displacement on the crack surface is 2L/m, and ɛmL is a constant that depends on the longitudinal resonance modes. Excellent fits were obtained between the peak frequencies calculated by the FDM and by Eq. (1), suggesting that this equation is suitable for the resonant frequencies. We also performed 3D FDM computations of the longitudinal mode resonances. The peak frequencies computed by the FDM are well fitted by Eq. (1). The best-fit ɛmL values are different from those for 2D and depend on W/L, where W is the crack width. Eq. (1) shows that fmL is a simple analytical function of a/L and C given m and W/L. This enables simple and rapid interpretations of the source processes of LP events, including estimation of the fluid properties and crack geometries as well as identification of the resonance modes of the individual peak frequencies. LP events at volcanoes often exhibit peak frequency variations. In such cases, the frequency variations can be easily converted to variations in the fluid properties and crack geometries. We showed that Eq. (1) is consistent with the analytical solution for an infinite crack given by Ferrazzini and Aki (1987, JGR). Although a theoretical derivation of Eq. (1) was not obtained yet, Eq. (1) is consistent with the frequencies expected from the wavelengths of the fluid pressure variation.
Design and Analysis Tool for External-Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.
2012-01-01
A computational tool named SUPIN has been developed to design and analyze external-compression supersonic inlets for aircraft at cruise speeds from Mach 1.6 to 2.0. The inlet types available include the axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced Busemann inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flowfield is divided into parts to provide a framework for the geometry and aerodynamic modeling and the parts are defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick analysis. SUPIN provides inlet geometry in the form of coordinates and surface grids useable by grid generation methods for higher-fidelity computational fluid dynamics (CFD) analysis. SUPIN is demonstrated through a series of design studies and CFD analyses were performed to verify some of the analysis results.
An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.
2005-01-01
An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.
NASA Astrophysics Data System (ADS)
Passerini, Tiziano; Veneziani, Alessandro; Sangalli, Laura; Secchi, Piercesare; Vantini, Simone
2010-11-01
In cerebral blood circulation, the interplay of arterial geometrical features and flow dynamics is thought to play a significant role in the development of aneurysms. In the framework of the Aneurisk project, patient-specific morphology reconstructions were conducted with the open-source software VMTK (www.vmtk.org) on a set of computational angiography images provided by Ospedale Niguarda (Milano, Italy). Computational fluid dynamics (CFD) simulations were performed with a software based on the library LifeV (www.lifev.org). The joint statistical analysis of geometries and simulations highlights the possible association of certain spatial patterns of radius, curvature and shear load along the Internal Carotid Artery (ICA) with the presence, position and previous event of rupture of an aneurysm in the entire cerebral vasculature. Moreover, some possible landmarks are identified to be monitored for the assessment of a Potential Rupture Risk Index.
Modeling flow for modified concentric cylinder rheometer geometry
NASA Astrophysics Data System (ADS)
Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz
2016-11-01
Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; White, Susan; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff
2016-11-01
Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the upper airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The ultimate goal of this research is the development of a versatile numerical tool for simulation of air-tissue interactions in the patient specific upper airway geometry. This tool is expected to capture several phenomena, including flow-induced vibration (snoring) and large deformations during airway collapse of the complex airway geometry in respiratory flow conditions. Here, we present our ongoing progress toward this goal. To avoid mesh regeneration, for flow model, a sharp-interface embedded boundary method is used on Cartesian grids for resolving the fluid-structure interface, while for the structural model, a cut-cell finite element method is used. Also, to properly resolve large displacements, non-linear elasticity model is used. The fluid and structure solvers are connected with the strongly coupled iterative algorithm. The parallel computation is achieved with the numerical library PETSc. Some two- and three- dimensional preliminary results are shown to demonstrate the ability of this tool.
Liu, Gang; Jayathilake, Pahala G; Khoo, Boo Cheong; Han, Feng; Liu, Dian Kui
2012-02-01
The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid. © 2012 Acoustical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J
A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less
Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes
2011-01-01
Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance. PMID:21711901
Solving Partial Differential Equations on Overlapping Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henshaw, W D
2008-09-22
We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less
SCISEAL: A CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Althavale, Mahesh M.; Ho, Yin-Hsing; Przekwas, Andre J.
1996-01-01
A 3D CFD code, SCISEAL, has been developed and validated. Its capabilities include cylindrical seals, and it is employed on labyrinth seals, rim seals, and disc cavities. State-of-the-art numerical methods include colocated grids, high-order differencing, and turbulence models which account for wall roughness. SCISEAL computes efficient solutions for complicated flow geometries and seal-specific capabilities (rotor loads, torques, etc.).
Dynamic and thermal analysis of high speed tapered roller bearings under combined loading
NASA Technical Reports Server (NTRS)
Crecelius, W. J.; Milke, D. R.
1973-01-01
The development of a computer program capable of predicting the thermal and kinetic performance of high-speed tapered roller bearings operating with fluid lubrication under applied axial, radial and moment loading (five degrees of freedom) is detailed. Various methods of applying lubrication can be considered as well as changes in bearing internal geometry which occur as the bearing is brought to operating speeds, loads and temperatures.
Mechanism of failure of the Cabrol procedure: A computational fluid dynamic analysis.
Poullis, M; Pullan, M
2015-12-01
Sudden failure of the Cabrol graft is common and frequently fatal. We utilised the technique of computational fluid dynamic (CFD) analysis to evaluate the mechanism of failure and potentially improve on the design of the Cabrol procedure. CFD analysis of the classic Cabrol procedure and a number of its variants was performed. Results from this analysis was utilised to generate further improved geometric options for the Cabrol procedure. These were also subjected to CFD analysis. All current Cabrol and variations of the Cabrol procedure are predicated by CFD analysis to be prone to graft thrombosis, secondary to stasis around the right coronary artery button. The right coronary artery flow characteristics were found to be the dominant reason for Cabrol graft failure. A simple modification of the Cabrol geometry is predicated to virtually eliminate any areas of blood stasis, and graft failure. Modification of the Cabrol graft geometry, due to CFD analysis may help reduce the incidence of graft thrombosis. A C shaped Cabrol graft with the right coronary button anastomosed to its side along its course from the aorta to the left coronary button is predicted to have the least thrombotic tendency. Clinical correlation is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Höfler, K; Schwarzer, S
2000-06-01
Building on an idea of Fogelson and Peskin [J. Comput. Phys. 79, 50 (1988)] we describe the implementation and verification of a simulation technique for systems of non-Brownian particles in fluids at Reynolds numbers up to about 20 on the particle scale. This direct simulation technique fills a gap between simulations in the viscous regime and high-Reynolds-number modeling. It also combines sufficient computational accuracy with numerical efficiency and allows studies of several thousand, in principle arbitrarily shaped, extended and hydrodynamically interacting particles on regular work stations. We verify the algorithm in two and three dimensions for (i) single falling particles and (ii) a fluid flowing through a bed of fixed spheres. In the context of sedimentation we compute the volume fraction dependence of the mean sedimentation velocity. The results are compared with experimental and other numerical results both in the viscous and inertial regime and we find very satisfactory agreement.
Savoy, Elizabeth S; Escobedo, Fernando A
2012-11-20
When in contact with a rough solid surface, fluids with low surface tension, such as oils and alkanes, have their lowest free energy in the fully wetted state. For applications where nonwetting by these phillic fluids is desired, some barrier must be introduced to maintain the nonwetted composite state. One way to create this free-energy barrier is to fabricate roughness with reentrant geometry, but the question remains as to whether the free-energy barrier is sufficiently high to prevent wetting. Our goal is to quantify the free-energy landscape for the wetting transition of an oily fluid on a surface of nails and identify significant surface features and conditions that maximize the wetting free-energy barrier (ΔGfwd*). This is a departure from most work on wetting, which focuses on the equilibrium composite and wetted states. We use boxed molecular dynamics (BXD) (Glowacki, D. R.; Paci, E.; Shalashilin, D. V. J. Phys. Chem. B2009, 113, 16603-16611) with a modified control scheme to evaluate both the thermodynamics and kinetics of the transition over a range of surface affinities (chemistry). We find that the reentrant geometry of the nails does create a free-energy barrier to transition for phillic chemistry whereas a corresponding system on straight posts wets spontaneously and, that doubling the nail height more than doubles ΔGfwd*. For neutral to phillic chemistry, the dewetting free-energy barrier is at least an order of magnitude higher than that for wetting, indicating an essentially irreversible wetting transition. Transition rates from BXD simulations and the associated trends agree well with those in our previous study that used forward flux sampling to compute transition rates for similar systems.
Comparison of particle tracking algorithms in commercial CFD packages: sedimentation and diffusion.
Robinson, Risa J; Snyder, Pam; Oldham, Michael J
2007-05-01
Computational fluid dynamic modeling software has enabled microdosimetry patterns of inhaled toxins and toxicants to be predicted and visualized, and is being used in inhalation toxicology and risk assessment. These predicted microdosimetry patterns in airway structures are derived from predicted airflow patterns within these airways and particle tracking algorithms used in computational fluid dynamics (CFD) software packages. Although these commercial CFD codes have been tested for accuracy under various conditions, they have not been well tested for respiratory flows in general. Nor has their particle tracking algorithm accuracy been well studied. In this study, three software packages, Fluent Discrete Phase Model (DPM), Fluent Fine Particle Model (FPM), and ANSYS CFX, were evaluated. Sedimentation and diffusion were each isolated in a straight tube geometry and tested for accuracy. A range of flow rates corresponding to adult low activity (minute ventilation = 10 L/min) and to heavy exertion (minute ventilation = 60 L/min) were tested by varying the range of dimensionless diffusion and sedimentation parameters found using the Weibel symmetric 23 generation lung morphology. Numerical results for fully developed parabolic and uniform (slip) profiles were compared respectively, to Pich (1972) and Yu (1977) analytical sedimentation solutions. Schum and Yeh (1980) equations for sedimentation were also compared. Numerical results for diffusional deposition were compared to analytical solutions of Ingham (1975) for parabolic and uniform profiles. Significant differences were found among the various CFD software packages and between numerical and analytical solutions. Therefore, it is prudent to validate CFD predictions against analytical solutions in idealized geometry before tackling the complex geometries of the respiratory tract.
Pediatric in vitro and in silico models of deposition via oral and nasal inhalation.
Carrigy, Nicholas B; Ruzycki, Conor A; Golshahi, Laleh; Finlay, Warren H
2014-06-01
Respiratory tract deposition models provide a useful method for optimizing the design and administration of inhaled pharmaceutical aerosols, and can be useful for estimating exposure risks to inhaled particulate matter. As aerosol must first pass through the extrathoracic region prior to reaching the lungs, deposition in this region plays an important role in both cases. Compared to adults, much less extrathoracic deposition data are available with pediatric subjects. Recently, progress in magnetic resonance imaging and computed tomography scans to develop pediatric extrathoracic airway replicas has facilitated addressing this issue. Indeed, the use of realistic replicas for benchtop inhaler testing is now relatively common during the development and in vitro evaluation of pediatric respiratory drug delivery devices. Recently, in vitro empirical modeling studies using a moderate number of these realistic replicas have related airway geometry, particle size, fluid properties, and flow rate to extrathoracic deposition. Idealized geometries provide a standardized platform for inhaler testing and exposure risk assessment and have been designed to mimic average in vitro deposition in infants and children by replicating representative average geometrical dimensions. In silico mathematical models have used morphometric data and aerosol physics to illustrate the relative importance of different deposition mechanisms on respiratory tract deposition. Computational fluid dynamics simulations allow for the quantification of local deposition patterns and an in-depth examination of aerosol behavior in the respiratory tract. Recent studies have used both in vitro and in silico deposition measurements in realistic pediatric airway geometries to some success. This article reviews the current understanding of pediatric in vitro and in silico deposition modeling via oral and nasal inhalation.
Castro, M A; Putman, C M; Cebral, J R
2006-09-01
The purpose of this study is to show the influence of the upstream parent artery geometry on intraaneurysmal hemodynamics of cerebral aneurysms. Patient-specific models of 4 cerebral aneurysms (1 posterior communicating artery [PcomA], 2 middle cerebral artery [MCA], and 1 anterior communicating artery [AcomA]) were constructed from 3D rotational angiography images. Two geometric models were constructed for each aneurysm. One model had the native parent vessel geometry; the second model was truncated approximately 1 cm upstream from the aneurysm, and the parent artery replaced with a straight cylinder. Corresponding finite element grids were generated and computational fluid dynamics simulations were carried out under pulsatile flow conditions. The intra-aneurysmal flow patterns and wall shear stress (WSS) distributions were visualized and compared. Models using the truncated parent vessel underestimated the WSS in the aneurysms in all cases and shifted the impaction zone to the neck compared with the native geometry. These effects were more pronounced in the PcomA and AcomA aneurysms where upstream curvature was substantial. The MCA aneurysm with a long M1 segment was the least effected. The more laminar flow pattern within the parent vessel in truncated models resulted in a less complex intra-aneurysmal flow patterns with fewer vortices and less velocity at the dome. Failure to properly model the inflow stream contributed by the upstream parent artery can significantly influence the results of intra-aneurysmal hemodynamic models. The upstream portion of the parent vessel of cerebral aneurysms should be included to accurately represent the intra-aneurysmal hemodynamics.
Study of the flow unsteadiness in the human airway using large eddy simulation
NASA Astrophysics Data System (ADS)
Bernate, Jorge A.; Geisler, Taylor S.; Padhy, Sourav; Shaqfeh, Eric S. G.; Iaccarino, Gianluca
2017-08-01
The unsteady flow in a patient-specific geometry of the airways is studied. The geometry comprises the oral cavity, orophrarynx, larynx, trachea, and the bronchial tree extending to generations 5-8. Simulations are carried out for a constant inspiratory flow rate of 60 liters/min, corresponding to a Reynolds number of 4213 for a nominal tracheal diameter of 2 cm. The computed mean flow field is compared extensively with magnetic resonance velocimetry measurements by Banko et al. [Exp. Fluids 56, 117 (2015), 10.1007/s00348-015-1966-y] carried out in the same computed-tomography-based geometry, showing good agreement. In particular, we focus on the dynamics of the flow in the bronchial tree. After becoming unsteady at a constriction in the oropharynx, the flow is found to be chaotic, exhibiting fluctuations with broad-band spectra even at the most distal airways in which the Reynolds numbers are as low as 300. An inertial range signature is present in the trachea but not in the bronchial tree where a narrower range of scales is observed. The unsteadiness is attributed to the convection of turbulent structures produced at the larynx as well as to local kinetic energy production throughout the bronchial tree. Production occurs predominantly at shear layers bounding geometry-induced separation regions.
Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers
NASA Astrophysics Data System (ADS)
Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.
2018-05-01
Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.
Journal and Wave Bearing Impedance Calculation Software
NASA Technical Reports Server (NTRS)
Hanford, Amanda; Campbell, Robert
2012-01-01
The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.
Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion.
Barclay, Paul L; Lukes, Jennifer R
2016-12-01
A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.
NASA Astrophysics Data System (ADS)
Glasa, J.; Valasek, L.; Weisenpacher, P.; Halada, L.
2013-02-01
Recent advances in computer fluid dynamics (CFD) and rapid increase of computational power of current computers have led to the development of CFD models capable to describe fire in complex geometries incorporating a wide variety of physical phenomena related to fire. In this paper, we demonstrate the use of Fire Dynamics Simulator (FDS) for cinema fire modelling. FDS is an advanced CFD system intended for simulation of the fire and smoke spread and prediction of thermal flows, toxic substances concentrations and other relevant parameters of fire. The course of fire in a cinema hall is described focusing on related safety risks. Fire properties of flammable materials used in the simulation were determined by laboratory measurements and validated by fire tests and computer simulations
Modeling of a Sequential Two-Stage Combustor
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Liu, N.-S.; Gallagher, J. R.; Ryder, R. C.; Brankovic, A.; Hendricks, J. A.
2005-01-01
A sequential two-stage, natural gas fueled power generation combustion system is modeled to examine the fundamental aerodynamic and combustion characteristics of the system. The modeling methodology includes CAD-based geometry definition, and combustion computational fluid dynamics analysis. Graphical analysis is used to examine the complex vortical patterns in each component, identifying sources of pressure loss. The simulations demonstrate the importance of including the rotating high-pressure turbine blades in the computation, as this results in direct computation of combustion within the first turbine stage, and accurate simulation of the flow in the second combustion stage. The direct computation of hot-streaks through the rotating high-pressure turbine stage leads to improved understanding of the aerodynamic relationships between the primary and secondary combustors and the turbomachinery.
Three-dimensional elliptic grid generation technique with application to turbomachinery cascades
NASA Technical Reports Server (NTRS)
Chen, S. C.; Schwab, J. R.
1988-01-01
Described is a numerical method for generating 3-D grids for turbomachinery computational fluid dynamic codes. The basic method is general and involves the solution of a quasi-linear elliptic partial differential equation via pointwise relaxation with a local relaxation factor. It allows specification of the grid point distribution on the boundary surfaces, the grid spacing off the boundary surfaces, and the grid orthogonality at the boundary surfaces. A geometry preprocessor constructs the grid point distributions on the boundary surfaces for general turbomachinery cascades. Representative results are shown for a C-grid and an H-grid for a turbine rotor. Two appendices serve as user's manuals for the basic solver and the geometry preprocessor.
NASA Astrophysics Data System (ADS)
Hsu, S. Y.; Chen, H.; Huang, Q. Z.; Lee, T. Y.; Chiu, Y.; Chang, L. C.; Lamorski, K.; Sławiński, C.; Tsao, C. W.
2017-12-01
The interplay between resident ("old") fluid already in the vadose zone and infiltrating ("new") fluid was examined with micromodel experiments. The geometric patterns of the micromodels are based on a pore doublet and a 2D pore geometry of a sand-packing soil scanned by Micro X-Ray CT. We studied the old and new fluid interaction during imbibition process subject to different evaporation times (different the initial old fluid saturations). The results found that, in the pore-doublet micromodel experiment, the old fluid was mixed and displaced by the new fluid, and an increase in the initial old fluid saturation led to a decrease in the amount of old fluid displaced by the new fluid. On the other hand, the most of the old fluid in the micromodel of 2D sand-packing pore geometry was displaced by and mixed with the new fluid. However, a small amount of the initial old fluid that occupied pore throats remained untouched by the new fluid due to the air blockage. The amount of untouched old fluid increased as the initial old fluid saturation decreased. Our finding reveals the effect of pore geometry and inital old fluid distribution on the interaction between resident and infiltrating fluids.
A novel patient-specific model to compute coronary fractional flow reserve.
Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo
2014-09-01
The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.
Three-dimensional aerodynamic shape optimization of supersonic delta wings
NASA Technical Reports Server (NTRS)
Burgreen, Greg W.; Baysal, Oktay
1994-01-01
A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.
Computational Modeling in Plasma Processing for 300 mm Wafers
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
Migration toward 300 mm wafer size has been initiated recently due to process economics and to meet future demands for integrated circuits. A major issue facing the semiconductor community at this juncture is development of suitable processing equipment, for example, plasma processing reactors that can accomodate 300 mm wafers. In this Invited Talk, scaling of reactors will be discussed with the aid of computational fluid dynamics results. We have undertaken reactor simulations using CFD with reactor geometry, pressure, and precursor flow rates as parameters in a systematic investigation. These simulations provide guidelines for scaling up in reactor design.
Computational Fluid Dynamics of Whole-Body Aircraft
NASA Astrophysics Data System (ADS)
Agarwal, Ramesh
1999-01-01
The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.
MPT Prediction of Aircraft-Engine Fan Noise
NASA Technical Reports Server (NTRS)
Connell, Stuart D.
2004-01-01
A collection of computer programs has been developed that implements a procedure for predicting multiple-pure-tone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise MPTs. Stagger angle differences as small as 0.1 can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an unstarted mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user s computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: (1) The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user s file format using the API. (2) The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh, the second file defines the geometry variations of each blade in a complete fan. Superposition is used to predict the spectra resulting from the geometric variations.
Wu, Binxin
2010-12-01
In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.
NASA Astrophysics Data System (ADS)
Martin, R.; Orgogozo, L.; Noiriel, C. N.; Guibert, R.; Golfier, F.; Debenest, G.; Quintard, M.
2013-05-01
In the context of biofilm growth in porous media, we developed high performance computing tools to study the impact of biofilms on the fluid transport through pores of a solid matrix. Indeed, biofilms are consortia of micro-organisms that are developing in polymeric extracellular substances that are generally located at a fluid-solid interfaces like pore interfaces in a water-saturated porous medium. Several applications of biofilms in porous media are encountered for instance in bio-remediation methods by allowing the dissolution of organic pollutants. Many theoretical studies have been done on the resulting effective properties of these modified media ([1],[2], [3]) but the bio-colonized porous media under consideration are mainly described following simplified theoretical media (stratified media, cubic networks of spheres ...). Therefore, recent experimental advances have provided tomography images of bio-colonized porous media which allow us to observe realistic biofilm micro-structures inside the porous media [4]. To solve closure system of equations related to upscaling procedures in realistic porous media, we solve the velocity field of fluids through pores on complex geometries that are described with a huge number of cells (up to billions). Calculations are made on a realistic 3D sample geometry obtained by X micro-tomography. Cell volumes are coming from a percolation experiment performed to estimate the impact of precipitation processes on the properties of a fluid transport phenomena in porous media [5]. Average permeabilities of the sample are obtained from velocities by using MPI-based high performance computing on up to 1000 processors. Steady state Stokes equations are solved using finite volume approach. Relaxation pre-conditioning is introduced to accelerate the code further. Good weak or strong scaling are reached with results obtained in hours instead of weeks. Factors of accelerations of 20 up to 40 can be reached. Tens of geometries can now be computed by sending batteries of codes in a mass production procedure. Some constraints can now be provided for poro-elastic imaging at the scale of reservoirs, for CO2 storage monitoring or geophysical exploration. 1. Golfier F. et al., Biofilms in porous media: Development of macroscopic transport equations va volume averaging with closure for local mass equilibrium conditions, Advances in Water Resources, 32, 463-485 (2009). 2. Orgogozo L. et al., Upscaling of transport processes in porous media with biofilms in non-equilibrium conditions, Advances in Water Resources, 33(5), 585-600 (2010). 3. Davit Y. et al., Modeling non-equilibrium mass transport in biologically reactive porous media, Advances in Water Resources, 33, 1075-1093, (2010). 4. Davit Y. et al., Imaging biofilm in porous media using X-ray computed micro-tomography, Journal of Microscopy, 242(1), 15-25 (2010). 5. Noiriel C. et al., Upscaling calcium carbonate precipitation rates from pore to continuum scale, Chemical Geology, 318-319, 60-74 (2012).
Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, A; Chatelain, P; Heineck, J
2004-04-13
Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive needmore » to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, Jozsef; Christon, Mark A.; Francois, Marianne M.
Progress is reported on computational capabilities for the grid-to-rod-fretting (GTRF) problem of pressurized water reactors. Numeca's Hexpress/Hybrid mesh generator is demonstrated as an excellent alternative to generating computational meshes for complex flow geometries, such as in GTRF. Mesh assessment is carried out using standard industrial computational fluid dynamics practices. Hydra-TH, a simulation code developed at LANL for reactor thermal-hydraulics, is demonstrated on hybrid meshes, containing different element types. A series of new Hydra-TH calculations has been carried out collecting turbulence statistics. Preliminary results on the newly generated meshes are discussed; full analysis will be documented in the L3 milestone, THM.CFD.P5.05,more » Sept. 2012.« less
Analog geometry in an expanding fluid from AdS/CFT perspective
NASA Astrophysics Data System (ADS)
Bilić, Neven; Domazet, Silvije; Tolić, Dijana
2015-04-01
The dynamics of an expanding hadron fluid at temperatures below the chiral transition is studied in the framework of AdS/CFT correspondence. We establish a correspondence between the asymptotic AdS geometry in the 4 + 1 dimensional bulk with the analog spacetime geometry on its 3 + 1 dimensional boundary with the background fluid undergoing a spherical Bjorken type expansion. The analog metric tensor on the boundary depends locally on the soft pion dispersion relation and the four-velocity of the fluid. The AdS/CFT correspondence provides a relation between the pion velocity and the critical temperature of the chiral phase transition.
On the application of the lattice Boltzmann method to the investigation of glottal flow
Kucinschi, Bogdan R.; Afjeh, Abdollah A.; Scherer, Ronald C.
2008-01-01
The production of voice is directly related to the vibration of the vocal folds, which is generated by the interaction between the glottal flow and the tissue of the vocal folds. In the current study, the aerodynamics of the symmetric glottis is investigated numerically for a number of static configurations. The numerical investigation is based on the lattice Boltzmann method (LBM), which is an alternative approach within computational fluid dynamics. Compared to the traditional Navier–Stokes computational fluid dynamics methods, the LBM is relatively easy to implement and can deal with complex geometries without requiring a dedicated grid generator. The multiple relaxation time model was used to improve the numerical stability. The results obtained with LBM were compared to the results provided by a traditional Navier–Stokes solver and experimental data. It was shown that LBM results are satisfactory for all the investigated cases. PMID:18646995
Numerical, analytical, experimental study of fluid dynamic forces in seals
NASA Technical Reports Server (NTRS)
Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.
1992-01-01
NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.
Saho, Tatsunori; Onishi, Hideo
2015-07-01
In this study, we evaluated hemodynamics using simulated models and determined how cerebral aneurysms develop in simulated and patient-specific models based on medical images. Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM software. Flow velocity, stream line, and wall shear stress (WSS) were evaluated in a simulated model aneurysm with known geometry and in a three-dimensional angiographic model. The ratio of WSS at the aneurysm compared with that at the basilar artery was 1:10 in simulated model aneurysms with a diameter of 10 mm and 1:18 in the angiographic model, indicating similar tendencies. Vortex flow occurred in both model aneurysms, and the WSS decreased in larger model aneurysms. The angiographic model provided accurate CFD information, and the tendencies of simulated and angiographic models were similar. These findings indicate that hemodynamic effects are involved in the development of aneurysms.
A fast non-Fourier method for Landau-fluid operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimits, A. M., E-mail: dimits1@llnl.gov; Joseph, I.; Umansky, M. V.
An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of “delocalization kernels” [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost andmore » memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.« less
A fast non-Fourier method for Landau-fluid operatorsa)
NASA Astrophysics Data System (ADS)
Dimits, A. M.; Joseph, I.; Umansky, M. V.
2014-05-01
An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of "delocalization kernels" [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost and memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.
Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach.
Luca, Adrian; Marchiano, Regis; Chassaing, Jean-Camille
2016-06-01
This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.
NASA Astrophysics Data System (ADS)
Antao, Dion Savio
Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization of the systems over a wide range of operating conditions helped to better understand the factors that govern and affect the performance of the PTR. The operating frequency of the linear motor driving the PTR affected the systems' performance the most. Other parameters that resulted in performance variations were the mean operating pressure, the pressure amplitude output from the linear motor, and the geometry of the inertance tube. The effect of the inertance tube's geometry was controlled by a single parameter labeled the "inertance". External/ambient conditions affected the performance of the cryocoolers too. To prevent the influence of the ambient conditions on the performance, a vacuum chamber was fabricated to isolate the low temperature regions of the PTR from the variable ambient atmosphere. The experiments provided important information and guidelines for the simulation studies of the PTR that were carried out concurrently. A time-dependent high fidelity computational fluid dynamic model of the entire PTR system was developed to gain a better understanding of internal interactions between the refrigerant fluid and the porous heat-exchangers in its various components and to facilitate better design of PTR systems based on the knowledge gained. The compressible forms of the conservation of mass, momentum and energy equations are solved in the gas and porous media (appropriate estimation of fluid dynamics in heat-exchangers) regions. The heat transfer in the porous regions is governed by a thermal non-equilibrium heat transfer model that calculates a separate gas and solid temperature and accounts for heat transfer between the two. The numerical model was validated using both temporal and quasi-steady state results obtained from the experimental studies. The validated model was applied to study the effects of different operating parameters (frequency, pressure and geometry of the components) on the PTR's performance. The simulations revealed interesting steady-periodic flow patterns that develop in the pulse tube due to the fluctuations caused by the piston and the presence of the inertance tube. Similar to the experiments, the simulations provided important information that help guide the design of efficient PTR systems.
NASA Technical Reports Server (NTRS)
Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel
2012-01-01
Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.
Ridgway, Cathy J.; Schoelkopf, Joachim; Matthews, G. Peter; Gane, Patrick A. C.; James, Philip W.
2001-07-15
The absorption (permeation) of alcohols into porous blocks of calcium carbonate has been studied experimentally and with a computer model. The experimental measurement was of change in apparent weight of a block with time after contact with liquid. The modeling used the previously developed 'Pore-Cor' model, based on unit cells of 1000 cubic pores connected by cylindrical throats. To gain some insight into absorption into voids of complex geometry, and to provide a representation of heterogeneities in surface interaction energy, the cylindrical throats were converted to double cones. Relative to cylinders, such geometries caused hold-ups of the percolation of nonwetting fluids with respect to increasing applied pressure, and a change in the rate of absorption of wetting fluids. Both the measured absorption of the alcohols and the simulated absorption of the alcohols and of water showed significant deviations from that predicted by an effective hydraulic radius approximation. The simulation demonstrated the development of a highly heterogeneous wetting front, and of preferred wetting pathways that were perturbed by inertial retardation. The findings are useful in the design of high-performance, low-waste pigments for paper coatings, and environmentally friendly printing inks, as well as in wider industrial, environmental, and geological contexts. Copyright 2001 Academic Press.
Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft
NASA Astrophysics Data System (ADS)
Boozer, Charles Maxwell
A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.
Introduction. Computational aerodynamics.
Tucker, Paul G
2007-10-15
The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.
NASA Astrophysics Data System (ADS)
Aycock, Kenneth; Sastry, Shankar; Kim, Jibum; Shontz, Suzanne; Campbell, Robert; Manning, Keefe; Lynch, Frank; Craven, Brent
2013-11-01
A computational methodology for simulating inferior vena cava (IVC) filter placement and IVC hemodynamics was developed and tested on two patient-specific IVC geometries: a left-sided IVC, and an IVC with a retroaortic left renal vein. Virtual IVC filter placement was performed with finite element analysis (FEA) using non-linear material models and contact modeling, yielding maximum vein displacements of approximately 10% of the IVC diameters. Blood flow was then simulated using computational fluid dynamics (CFD) with four cases for each patient IVC: 1) an IVC only, 2) an IVC with a placed filter, 3) an IVC with a placed filter and a model embolus, all at resting flow conditions, and 4) an IVC with a placed filter and a model embolus at exercise flow conditions. Significant hemodynamic differences were observed between the two patient IVCs, with the development of a right-sided jet (all cases) and a larger stagnation region (cases 3-4) in the left-sided IVC. These results support further investigation of the effects of IVC filter placement on a patient-specific basis.
SUPIN: A Computational Tool for Supersonic Inlet Design
NASA Technical Reports Server (NTRS)
Slater, John W.
2016-01-01
A computational tool named SUPIN is being developed to design and analyze the aerodynamic performance of supersonic inlets. The inlet types available include the axisymmetric pitot, three-dimensional pitot, axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flow-field is divided into parts to provide a framework for the geometry and aerodynamic modeling. Each part of the inlet is defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick design and analysis. SUPIN provides inlet geometry in the form of coordinates, surface angles, and cross-sectional areas. SUPIN can generate inlet surface grids and three-dimensional, structured volume grids for use with higher-fidelity computational fluid dynamics (CFD) analysis. Capabilities highlighted in this paper include the design and analysis of streamline-traced external-compression inlets, modeling of porous bleed, and the design and analysis of mixed-compression inlets. CFD analyses are used to verify the SUPIN results.
Opportunities for Breakthroughs in Large-Scale Computational Simulation and Design
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Alter, Stephen J.; Atkins, Harold L.; Bey, Kim S.; Bibb, Karen L.; Biedron, Robert T.; Carpenter, Mark H.; Cheatwood, F. McNeil; Drummond, Philip J.; Gnoffo, Peter A.
2002-01-01
Opportunities for breakthroughs in the large-scale computational simulation and design of aerospace vehicles are presented. Computational fluid dynamics tools to be used within multidisciplinary analysis and design methods are emphasized. The opportunities stem from speedups and robustness improvements in the underlying unit operations associated with simulation (geometry modeling, grid generation, physical modeling, analysis, etc.). Further, an improved programming environment can synergistically integrate these unit operations to leverage the gains. The speedups result from reducing the problem setup time through geometry modeling and grid generation operations, and reducing the solution time through the operation counts associated with solving the discretized equations to a sufficient accuracy. The opportunities are addressed only at a general level here, but an extensive list of references containing further details is included. The opportunities discussed are being addressed through the Fast Adaptive Aerospace Tools (FAAST) element of the Advanced Systems Concept to Test (ASCoT) and the third Generation Reusable Launch Vehicles (RLV) projects at NASA Langley Research Center. The overall goal is to enable greater inroads into the design process with large-scale simulations.
Long Penetration Mode Counterflowing Jets for Supersonic Slender Configurations - A Numerical Study
NASA Technical Reports Server (NTRS)
Venkatachari, Balaji Shankar; Cheng, Gary; Chang, Chau-Layn; Zichettello, Benjamin; Bilyeu, David L.
2013-01-01
A novel approach of using counterflowing jets positioned strategically on the aircraft and exploiting its long penetration mode (LPM) of interaction towards sonic-boom mitigation forms the motivation for this study. Given that most previous studies on the counterflowing LPM jet have all been on blunt bodies and at high supersonic or hypersonic flow conditions, exploring the feasibility to obtain a LPM jet issuing from a slender body against low supersonic freestream conditions is the main focus of this study. Computational fluid dynamics computations of axisymmetric models (cone-cylinder and quartic geometry), of relevance to NASA's High Speed project, are carried out using the space-time conservation element solution element viscous flow solver with unstructured meshes. A systematic parametric study is conducted to determine the optimum combination of counterflowing jet size, mass flow rate, and nozzle geometry for obtaining LPM jets. Details from these computations will be used to assess the potential of the LPM counterflowing supersonic jet as a means of active flow control for enabling supersonic flight over land and to establish the knowledge base for possible future implementation of such technologies.
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard;
2008-01-01
Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.
Computational Simulation of Acoustic Modes in Rocket Combustors
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.
2004-01-01
A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.
Automated divertor target design by adjoint shape sensitivity analysis and a one-shot method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dekeyser, W., E-mail: Wouter.Dekeyser@kuleuven.be; Reiter, D.; Baelmans, M.
As magnetic confinement fusion progresses towards the development of first reactor-scale devices, computational tokamak divertor design is a topic of high priority. Presently, edge plasma codes are used in a forward approach, where magnetic field and divertor geometry are manually adjusted to meet design requirements. Due to the complex edge plasma flows and large number of design variables, this method is computationally very demanding. On the other hand, efficient optimization-based design strategies have been developed in computational aerodynamics and fluid mechanics. Such an optimization approach to divertor target shape design is elaborated in the present paper. A general formulation ofmore » the design problems is given, and conditions characterizing the optimal designs are formulated. Using a continuous adjoint framework, design sensitivities can be computed at a cost of only two edge plasma simulations, independent of the number of design variables. Furthermore, by using a one-shot method the entire optimization problem can be solved at an equivalent cost of only a few forward simulations. The methodology is applied to target shape design for uniform power load, in simplified edge plasma geometry.« less
Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil
NASA Technical Reports Server (NTRS)
Jun, GaRam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching
2014-01-01
The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Centers Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.
Geometry Modeling and Grid Generation for Design and Optimization
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1998-01-01
Geometry modeling and grid generation (GMGG) have played and will continue to play an important role in computational aerosciences. During the past two decades, tremendous progress has occurred in GMGG; however, GMGG is still the biggest bottleneck to routine applications for complicated Computational Fluid Dynamics (CFD) and Computational Structures Mechanics (CSM) models for analysis, design, and optimization. We are still far from incorporating GMGG tools in a design and optimization environment for complicated configurations. It is still a challenging task to parameterize an existing model in today's Computer-Aided Design (CAD) systems, and the models created are not always good enough for automatic grid generation tools. Designers may believe their models are complete and accurate, but unseen imperfections (e.g., gaps, unwanted wiggles, free edges, slivers, and transition cracks) often cause problems in gridding for CSM and CFD. Despite many advances in grid generation, the process is still the most labor-intensive and time-consuming part of the computational aerosciences for analysis, design, and optimization. In an ideal design environment, a design engineer would use a parametric model to evaluate alternative designs effortlessly and optimize an existing design for a new set of design objectives and constraints. For this ideal environment to be realized, the GMGG tools must have the following characteristics: (1) be automated, (2) provide consistent geometry across all disciplines, (3) be parametric, and (4) provide sensitivity derivatives. This paper will review the status of GMGG for analysis, design, and optimization processes, and it will focus on some emerging ideas that will advance the GMGG toward the ideal design environment.
Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil
NASA Technical Reports Server (NTRS)
Jun, Garam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching
2014-01-01
The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Center's Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.
Kamensky, David; Hsu, Ming-Chen; Schillinger, Dominik; Evans, John A.; Aggarwal, Ankush; Bazilevs, Yuri; Sacks, Michael S.; Hughes, Thomas J. R.
2014-01-01
In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations. PMID:25541566
3D CFD Simulation of Plug Dynamics and Splitting through a Bifurcating Airway Model
NASA Astrophysics Data System (ADS)
Hoi, Cory; Raessi, Mehdi
2017-11-01
Respiratory distress syndrome (RDS) occurs because of pulmonary surfactant insufficiency in the lungs of preterm infants. The common medical procedure to treat RDS, called surfactant respiratory therapy (SRT), involves instilling liquid surfactant plugs into the pulmonary airways. SRT's effectiveness highly depends on the ability to deliver surfactant through the complex branching airway network. Experimental and computational efforts have been made to understand complex fluid dynamics of liquid plug motion through the lung airways in order to increase SRT's response rate. However, previous computational work used 2D airway model geometries and studied plug dynamics of a pre-split plug. In this work, we present CFD simulations of surfactant plug motion through a 3D bifurcating airway model. In our 3D y-tube geometry representing the lung airways, we are not limited by 2D or pre-split plug assumptions. The airway walls are covered with a pre-existing liquid film. Using a passive scalar marking the surfactant plug, the plug splitting and surfactant film deposition is studied under various airway orientations. Exploring the splitting process and liquid distribution in a 3D geometry will advance our understanding of surfactant delivery and will increase the effectiveness of SRT.
Nonlinear multimodal model for TLD of irregular tank geometry and small fluid depth
NASA Astrophysics Data System (ADS)
Love, J. S.; Tait, M. J.
2013-11-01
Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy. TLDs of irregular or complex tank geometry may be required in practice to avoid tank interference with fixed structural or mechanical components. The literature offers few analytical models to predict the response of this type of TLD, particularly when the fluid depth is small. In this paper, a multimodal model is developed utilizing a Boussinesq-type modal theory which is valid for small TLD fluid depths. The Bateman-Luke variational principle is employed to develop a system of coupled nonlinear ordinary differential equations which describe the fluid response when the tank is subjected to base excitation. Energy dissipation is incorporated into the model from the inclusion of damping screens. The fluid model is used to describe the response of a 2D structure-TLD system when the structure is subjected to external loading and the TLD tank geometry is irregular.
Stability of Capillary Surfaces in Rectangular Containers: The Right Square Cylinder
NASA Technical Reports Server (NTRS)
Weislogel, M. M.; Hsieh, K. C.
1998-01-01
The linearized governing equations for an ideal fluid are presented for numerical analysis for the stability of free capillary surfaces in rectangular containers against unfavorable disturbances (accelerations,i.e. Rayleigh-Taylor instability). The equations are solved for the case of the right square cylinder. The results are expressed graphically in term of a critical Bond number as a function of system contact angle. A critical wetting phenomena in the corners is shown to significantly alter the region of stability for such containers in contrast to simpler geometries such as the right circular cylinder or the infinite rectangular slot. Such computational results provide additional constraints for the design of fluids systems for space-based applications.
NASA Astrophysics Data System (ADS)
Hsu, Ming-Chen; Kamensky, David; Xu, Fei; Kiendl, Josef; Wang, Chenglong; Wu, Michael C. H.; Mineroff, Joshua; Reali, Alessandro; Bazilevs, Yuri; Sacks, Michael S.
2015-06-01
This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.
The Properties of Confined Water and Fluid Flow at the Nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwegler, E; Reed, J; Lau, E
This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membranemore » flow, materials properties in confined media and nanofluidic devices.« less
Multi-d CFD Modeling of a Free-piston Stirling Convertor at NASA Glenn
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Ibrahim, Mounir B.
2004-01-01
A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multidimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. Simulations of the Stirling convertors for the SRG will help characterize the thermodynamic losses resulting from fluid flow and heat transfer between the working gas and solid walls. The current CFD simulation represents approximated 2-dimensional convertor geometry. The simulation solves the Navier Stokes equations for an ideal helium gas oscillating at low speeds. The current simulation results are discussed.
Changes to the geometry and fluid mechanics of the carotid siphon in the pediatric Moyamoya disease.
Jamil, Muhammad; Tan, Germaine Xin Yi; Huq, Mehnaz; Kang, Heidi; Lee, Zhi Rui; Tang, Phua Hwee; Hu, Xi Hong; Yap, Choon Hwai
2016-12-01
The Moyamoya disease is a cerebrovascular disease that causes occlusion of the distal end of the internal carotid artery, leading to the formation of multiple tiny collateral arteries. To date, the pathogenesis of Moyamoya is unknown. Improved understanding of the changes to vascular geometry and fluid mechanics of the carotid siphon during disease may improve understanding of the pathogenesis, prognosis techniques and disease management. A retrospective analysis of Magnetic Resonance Angiography (MRA) images was performed for Moyamoya pediatric patients (MMD) (n = 23) and control (Ctrl) pediatric patients (n = 20). The Ctrl group was composed of patients who complained of headache and had normal MRA. We performed segmentation of MRA images to quantify geometric parameters of the artery. Computational fluid dynamics (CFD) was performed to quantify the hemodynamic parameters. MMD internal carotid and carotid siphons were smaller in cross-sectional areas, and shorter in curved vascular length. Vascular curvature remained constant over age and vascular size and did not change between Ctrl and MMD, but MMD carotid siphon had lower tortuosity in the posterior bend, and higher torsion in the anterior bend. Wall shear stress and secondary flows were significantly lower in MMD, but the ratio of secondary flow kinetic energy to primary flow kinetic energy were similar between MMD and Ctrl. There were alterations to both the geometry and the flow mechanics of the carotid siphons of Moyamoya patients but it is unclear whether hemodynamics is the cause or the effect of morphological changes observed.
Multiple grid problems on concurrent-processing computers
NASA Technical Reports Server (NTRS)
Eberhardt, D. S.; Baganoff, D.
1986-01-01
Three computer codes were studied which make use of concurrent processing computer architectures in computational fluid dynamics (CFD). The three parallel codes were tested on a two processor multiple-instruction/multiple-data (MIMD) facility at NASA Ames Research Center, and are suggested for efficient parallel computations. The first code is a well-known program which makes use of the Beam and Warming, implicit, approximate factored algorithm. This study demonstrates the parallelism found in a well-known scheme and it achieved speedups exceeding 1.9 on the two processor MIMD test facility. The second code studied made use of an embedded grid scheme which is used to solve problems having complex geometries. The particular application for this study considered an airfoil/flap geometry in an incompressible flow. The scheme eliminates some of the inherent difficulties found in adapting approximate factorization techniques onto MIMD machines and allows the use of chaotic relaxation and asynchronous iteration techniques. The third code studied is an application of overset grids to a supersonic blunt body problem. The code addresses the difficulties encountered when using embedded grids on a compressible, and therefore nonlinear, problem. The complex numerical boundary system associated with overset grids is discussed and several boundary schemes are suggested. A boundary scheme based on the method of characteristics achieved the best results.
Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion
NASA Technical Reports Server (NTRS)
Camarena, Ernesto; Vu, Bruce T.
2011-01-01
The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.
A computational study of systemic hydration in vocal fold collision.
Bhattacharya, Pinaki; Siegmund, Thomas
2014-01-01
Mechanical stresses develop within vocal fold (VF) soft tissues due to phonation-associated vibration and collision. These stresses in turn affect the hydration of VF tissue and thus influence voice health. In this paper, high-fidelity numerical computations are described, taking into account fully 3D geometry, realistic tissue and air properties, and high-amplitude vibration and collision. A segregated solver approach is employed, using sophisticated commercial solvers for both the VF tissue and glottal airflow domains. The tissue viscoelastic properties were derived from a biphasic formulation. Two cases were considered, whereby the tissue viscoelastic properties corresponded to two different volume fractions of the fluid phase of the VF tissue. For each case, hydrostatic stresses occurring as a result of vibration and collision were investigated. Assuming the VF tissue to be poroelastic, interstitial fluid movement within VF tissue was estimated from the hydrostatic stress gradient. Computed measures of overall VF dynamics (peak airflow velocity, magnitude of VF deformation, frequency of vibration and contact pressure) were well within the range of experimentally observed values. The VF motion leading to mechanical stresses within the VFs and their effect on the interstitial fluid flux is detailed. It is found that average deformation and vibration of VFs tend to increase the state of hydration of the VF tissue, whereas VF collision works to reduce hydration.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Childress, Emily M; Kleinstreuer, Clement
2014-03-01
Direct targeting of solid tumors with chemotherapeutic drugs and/or radioactive microspheres can be a treatment option which minimizes side-effects and reduces cost. Briefly, computational analysis generates particle release maps (PRMs) which visually link upstream particle injection regions in the main artery with associated exit branches, some connected to tumors. The overall goal is to compute patient-specific PRMs realistically, accurately, and cost-effectively, which determines the suitable radial placement of a micro-catheter for optimal particle injection. Focusing in this paper on new steps towards realism and accuracy, the impact of fluid-structure interaction on direct drug-targeting is evaluated, using a representative hepatic artery system with liver tumor as a test bed. Specifically, the effect of arterial wall motion was demonstrated by modeling a two-way fluid-structure interaction analysis with Lagrangian particle tracking in the bifurcating arterial system. Clearly, rapid computational evaluation of optimal catheter location for tumor-targeting in a clinical application is very important. Hence, rigid-wall cases were also compared to the flexible scenario to establish whether PRMs generated when based on simplifying assumptions could provide adequate guidance towards ideal catheter placement. It was found that the best rigid (i.e., time-averaged) geometry is the physiological one that occurs during the diastolic targeting interval.
NASA Astrophysics Data System (ADS)
Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.
2008-02-01
This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.
Persak, Steven C; Sin, Sanghun; McDonough, Joseph M; Arens, Raanan; Wootton, David M
2011-12-01
Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal breathing at 10 increments of tidal volume through the respiratory cycle. Each geometry was meshed with an unstructured grid and solved using a low-Reynolds number k-ω turbulence model driven by flow data averaged over 12 consecutive breathing cycles. Combining gated imaging with CFD modeling created a dynamic three-dimensional view of airway anatomy and mechanics, including the evolution of airway collapse and flow resistance and estimates of the local effective compliance. The upper airways of subjects with OSAS were generally much more compliant during tidal breathing. Compliance curves (pressure vs. cross-section area), derived for different locations along the airway, quantified local differences along the pharynx and between OSAS subjects. In one subject, the distal oropharynx was more compliant than the nasopharynx (1.028 vs. 0.450 mm(2)/Pa) and had a lower theoretical limiting flow rate, confirming the distal oropharynx as the flow-limiting segment of the airway in this subject. Another subject had a more compliant nasopharynx (0.053 mm(2)/Pa) during inspiration and apparent stiffening of the distal oropharynx (C = 0.0058 mm(2)/Pa), and the theoretical limiting flow rate indicated the nasopharynx as the flow-limiting segment. This new method may help to differentiate anatomical and functional factors in airway collapse.
Computation of flow through the oesophagogastric junction.
McMahon, Barry P; Odie, Karl D; Moloney, Kenneth W; Gregersen, Hans
2007-03-07
Whilst methods exist to indirectly measure the effects of increased flow or gastro-oesophageal refluxing, they cannot quantitatively measure the amount of acid travelling back up into the oesophagus during reflux, nor can they indicate the flow rate through the oesophago-gastric junction (OGJ). Since OGJ dysfunction affects flow it seems most appropriate to describe the geometry of the OGJ and its effect on the flow. A device known as the functional lumen imaging probe (FLIP) has been shown to reliably measure the geometry of and pressure changes in the OGJ. FLIP cannot directly measure flow but the data gathered from the probe can be used to model flow through the junction by using computational flow dynamics (CFD). CFD uses a set of equations known as the Navier-Stokes equations to predict flow patterns and is a technique widely used in engineering. These equations are complex and require appropriate assumptions to provide simplifications before useful data can be obtained. With the assumption that the cross-sectional areas obtained via FLIP are circular, the radii of these circles can be obtained. A cubic interpolation scheme can then be applied to give a high-resolution geometry for the OGJ. In the case of modelling a reflux scenario, it can be seen that at the narrowest section a jet of fluid squirts into the oesophagus at a higher velocity than the fluid surrounding it. This jet has a maximum velocity of almost 2 ms(-1) that occurs where the OGJ is at its narrowest. This simple prediction of acid 'squirting' into the oesophagus illustrates how the use of numerical methods can be used to develop a better understanding of the OGJ. This initial work using CFD shows some considerable promise for the future.
NASA Technical Reports Server (NTRS)
Nielsen, Tanner; West, Jeff
2015-01-01
The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The pressure waves that propagate from the mobile launcher (ML) exhaust hole are defined as the ignition overpressure (IOP), while the portion of the pressure waves that exit the duct or trench are the duct overpressure (DOP). Distinguishing the IOP and DOP in scale model test data has been difficult in past experiences and in early SMAT results, due to the effects of scaling the geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs in full scale. However, the SMAT geometry is twenty times smaller, allowing the pressure waves to move down the exhaust hole, through the trench and duct, and impact the vehicle model much faster than occurs at full scale. The DOP waves impact portions of the vehicle at the same time as the IOP waves, making it difficult to distinguish the different waves and fully understand the data. To better understand the SMAT data, a computational fluid dynamics (CFD) analysis was performed with a fictitious geometry that isolates the IOP and DOP. The upper and lower portions of the domain were segregated to accomplish the isolation in such a way that the flow physics were not significantly altered. The Loci/CHEM CFD software program was used to perform this analysis.
Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
1992-01-01
One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology.
NASA Technical Reports Server (NTRS)
Steele, Gynelle C.
1999-01-01
The NASA Lewis Research Center and Flow Parametrics will enter into an agreement to commercialize the National Combustion Code (NCC). This multidisciplinary combustor design system utilizes computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. This integrated system can facilitate and enhance various phases of the design and analysis process.
A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Auria, F; Rohatgi, Upendra S.
The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.
Computational fluid dynamics (CFD) simulation of a newly designed passive particle sampler.
Sajjadi, H; Tavakoli, B; Ahmadi, G; Dhaniyala, S; Harner, T; Holsen, T M
2016-07-01
In this work a series of computational fluid dynamics (CFD) simulations were performed to predict the deposition of particles on a newly designed passive dry deposition (Pas-DD) sampler. The sampler uses a parallel plate design and a conventional polyurethane foam (PUF) disk as the deposition surface. The deposition of particles with sizes between 0.5 and 10 μm was investigated for two different geometries of the Pas-DD sampler for different wind speeds and various angles of attack. To evaluate the mean flow field, the k-ɛ turbulence model was used and turbulent fluctuating velocities were generated using the discrete random walk (DRW) model. The CFD software ANSYS-FLUENT was used for performing the numerical simulations. It was found that the deposition velocity increased with particle size or wind speed. The modeled deposition velocities were in general agreement with the experimental measurements and they increased when flow entered the sampler with a non-zero angle of attack. The particle-size dependent deposition velocity was also dependent on the geometry of the leading edge of the sampler; deposition velocities were more dependent on particle size and wind speeds for the sampler without the bend in the leading edge of the deposition plate, compared to a flat plate design. Foam roughness was also found to have a small impact on particle deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design
NASA Technical Reports Server (NTRS)
Mcconnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.
1993-01-01
Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.
Qian, Fuping; Wang, Haigang
2010-04-15
The gas-solid two-phase flows in the plain wave fabric filter were simulated by computational fluid dynamics (CFD) technology, and the warps and wefts of the fabric filter were made of filaments with different dimensions. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. The filtration performances of the plain wave fabric filter with different geometry parameters and operating condition, including the horizontal distance, the vertical distance and the face velocity were calculated. The effects of geometry parameters and operating condition on filtration efficiency and pressure drop were studied using response surface methodology (RSM) by means of the statistical software (Minitab V14), and two second-order polynomial models were obtained with regard to the effect of the three factors as stated above. Moreover, the models were modified by dismissing the insignificant terms. The results show that the horizontal distance, vertical distance and the face velocity all play an important role in influencing the filtration efficiency and pressure drop of the plane wave fabric filters. The horizontal distance of 3.8 times the fiber diameter, the vertical distance of 4.0 times the fiber diameter and Reynolds number of 0.98 are found to be the optimal conditions to achieve the highest filtration efficiency at the same face velocity, while maintaining an acceptable pressure drop. 2009 Elsevier B.V. All rights reserved.
Dust in the wind: challenges for urban aerodynamics
NASA Astrophysics Data System (ADS)
Boris, Jay P.
2007-04-01
The fluid dynamics of airflow through a city controls the transport and dispersion of airborne contaminants. This is urban aerodynamics, not meteorology. The average flow, large-scale fluctuations and turbulence are closely coupled to the building geometry. Buildings create large "rooster-tail" wakes; there are systematic fountain flows up the backs of tall buildings; and dust in the wind can move perpendicular to or even against the locally prevailing wind. Requirements for better prediction accuracy demand time-dependent, three-dimensional CFD computations that include solar heating and buoyancy, complete landscape and building geometry specification including foliage and, realistic wind fluctuations. This fundamental prediction capability is necessary to assess urban visibility and line-of-sight sensor performance in street canyons and rugged terrain. Computing urban aerodynamics accurately is clearly a time-dependent High Performance Computing (HPC) problem. In an emergency, on the other hand, prediction technology to assess crisis information, sensor performance, and obscured line-of-sight propagation in the face of industrial spills, transportation accidents, or terrorist attacks has very tight time requirements that suggest simple approximations which tend to produce inaccurate results. In the past we have had to choose one or the other: a fast, inaccurate model or a slow accurate model. Using new fluid-dynamic principles, an urban-oriented emergency assessment system called CT-Analyst® was invented that solves this dilemma. It produces HPC-quality results for airborne contaminant scenarios nearly instantly and has unique new capabilities suited to sensor optimization. This presentation treats the design and use of CT-Analyst and discusses the developments needed for widespread use with advanced sensor and communication systems.
NASA Technical Reports Server (NTRS)
Mcdonald, Gary H.
1987-01-01
The MSFC bearing seal material tester (BSMT) can be used to evaluate the SSME high pressure oxygen turbopump (HPOTP) bearing performance. The four HPOTP bearings have both an imposed radial and axial load. These radial and axial loads are caused by the HPOTP's shaft, main impeller, preburner impeller, turbine and by the LOX coolant flow through the bearings, respectively. These loads coupled with bearing geometry and operating speed can define bearing contact angle, contact Hertz stress, and heat generation rates. The BSMT has the capability of operating at HPOTP shaft speeds, provide proper coolant flowrates but can only apply an axial load. Due to the inability to operate the bearings in the BSMT with an applied radial load, it is important to develop an equivalency between the applied axial loads and the actual HPOTP loadings. A shaft-bearing-thermal computer code (SHABERTH/SINDA) is used to simulate the BSMT bearing-shaft geometry and thermal-fluid operating conditions.
NASA Technical Reports Server (NTRS)
Kemp, Victoria R.
1992-01-01
A fluid-dynamic, digital-transient computer model of an integrated, parallel propulsion system was developed for the CDC mainframe and the SUN workstation computers. Since all STME component designs were used for the integrated system, computer subroutines were written characterizing the performance and geometry of all the components used in the system, including the manifolds. Three transient analysis reports were completed. The first report evaluated the feasibility of integrated engine systems in regards to the start and cutoff transient behavior. The second report evaluated turbopump out and combined thrust chamber/turbopump out conditions. The third report presented sensitivity study results in staggered gas generator spin start and in pump performance characteristics.
Behaviour of two typical stents towards a new stent evolution.
Simão, M; Ferreira, J M; Mora-Rodriguez, J; Fragata, J; Ramos, H M
2017-06-01
This study explores the analysis of a new stent geometry from two typical stents used to treat the coronary artery disease. Two different finite element methods are applied with different boundary conditions to investigate the stenosis region. Computational fluid dynamics (CFD) models including fluid-structure interaction are used to assess the haemodynamic impact of two types of coronary stents implantation: (1) type 1-based on a strut-link stent geometry and (2) type 2-a continuous helical stent. Using data from a recent clinical stenosis, flow disturbances and consequent shear stress alterations introduced by the stent treatment are investigated. A relationship between stenosis and the induced flow fields for the two types of stent designs is analysed as well as the correlation between haemodynamics and vessel wall biomechanical factors during the initiation and development of stenosis formation in the coronary artery. Both stents exhibit a good performance in reducing the obstruction artery. However, stent type 1 presents higher radial deformation than the type 2. This deformation can be seen as a limitation with a long-term clinical impact.
Application of CART3D to Complex Propulsion-Airframe Integration with Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2012-01-01
Vehicle Sketch Pad (VSP) is an easy-to-use modeler used to generate aircraft geometries for use in conceptual design and analysis. It has been used in the past to generate metageometries for aerodynamic analyses ranging from handbook methods to Navier-Stokes computational fluid dynamics (CFD). As desirable as it is to bring high order analyses, such as CFD, into the conceptual design process, this has been difficult and time consuming in practice due to the manual nature of both surface and volume grid generation. Over the last couple of years, VSP has had a major upgrade of its surface triangulation and export capability. This has enhanced its ability to work with Cart3D, an inviscid, three dimensional fluid flow toolset. The combination of VSP and Cart3D allows performing inviscid CFD on complex geometries with relatively high productivity. This paper will illustrate the use of VSP with Cart3D through an example case of a complex propulsion-airframe integration (PAI) of an over-wing nacelle (OWN) airliner configuration.
Pore-scale modeling of moving contact line problems in immiscible two-phase flow
NASA Astrophysics Data System (ADS)
Kucala, Alec; Noble, David; Martinez, Mario
2016-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Discrete differential geometry: The nonplanar quadrilateral mesh
NASA Astrophysics Data System (ADS)
Twining, Carole J.; Marsland, Stephen
2012-06-01
We consider the problem of constructing a discrete differential geometry defined on nonplanar quadrilateral meshes. Physical models on discrete nonflat spaces are of inherent interest, as well as being used in applications such as computation for electromagnetism, fluid mechanics, and image analysis. However, the majority of analysis has focused on triangulated meshes. We consider two approaches: discretizing the tensor calculus, and a discrete mesh version of differential forms. While these two approaches are equivalent in the continuum, we show that this is not true in the discrete case. Nevertheless, we show that it is possible to construct mesh versions of the Levi-Civita connection (and hence the tensorial covariant derivative and the associated covariant exterior derivative), the torsion, and the curvature. We show how discrete analogs of the usual vector integral theorems are constructed in such a way that the appropriate conservation laws hold exactly on the mesh, rather than only as approximations to the continuum limit. We demonstrate the success of our method by constructing a mesh version of classical electromagnetism and discuss how our formalism could be used to deal with other physical models, such as fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnack, D. D.; Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706; Cheng, J.
We perform linear stability studies of the ion temperature gradient (ITG) instability in unsheared slab geometry using kinetic and extended magnetohydrodynamics (MHD) models, in the regime k{sub ∥}/k{sub ⊥}≪1. The ITG is a parallel (to B) sound wave that may be destabilized by finite ion Larmor radius (FLR) effects in the presence of a gradient in the equilibrium ion temperature. The ITG is stable in both ideal and resistive MHD; for a given temperature scale length L{sub Ti0}, instability requires that either k{sub ⊥}ρ{sub i} or ρ{sub i}/L{sub Ti0} be sufficiently large. Kinetic models capture FLR effects to all ordersmore » in either parameter. In the extended MHD model, these effects are captured only to lowest order by means of the Braginskii ion gyro-viscous stress tensor and the ion diamagnetic heat flux. We present the linear electrostatic dispersion relations for the ITG for both kinetic Vlasov and extended MHD (two-fluid) models in the local approximation. In the low frequency fluid regime, these reduce to the same cubic equation for the complex eigenvalue ω=ω{sub r}+iγ. An explicit solution is derived for the growth rate and real frequency in this regime. These are found to depend on a single non-dimensional parameter. We also compute the eigenvalues and the eigenfunctions with the extended MHD code NIMROD, and a hybrid kinetic δf code that assumes six-dimensional Vlasov ions and isothermal fluid electrons, as functions of k{sub ⊥}ρ{sub i} and ρ{sub i}/L{sub Ti0} using a spatially dependent equilibrium. These solutions are compared with each other, and with the predictions of the local kinetic and fluid dispersion relations. Kinetic and fluid calculations agree well at and near the marginal stability point, but diverge as k{sub ⊥}ρ{sub i} or ρ{sub i}/L{sub Ti0} increases. There is good qualitative agreement between the models for the shape of the unstable global eigenfunction for L{sub Ti0}/ρ{sub i}=30 and 20. The results quantify how far fluid calculations can be extended accurately into the kinetic regime. We conclude that for the linear ITG problem in slab geometry with unsheared magnetic field when k{sub ∥}/k{sub ⊥}≪1, the extended MHD model may be a reliable physical model for this problem when ρ{sub i}/L{sub Ti0}<10{sup −2} and k{sub ⊥}ρ{sub i}<0.2.« less
Nanoscale Pore Features and Associated Fluid Behavior in Shale
NASA Astrophysics Data System (ADS)
Cole, D. R.; Striolo, A.
2017-12-01
Unconventional hydrocarbons occurring in economic abundance require greater than industry-standard levels of technology or investment to exploit. Geological formations that host unconventional oil and gas are extraordinarily heterogeneous and exhibit a wide range of physical and chemical features that can vary over many orders of magnitude in length scale. The size, distribution and connectivity of these confined geometries, the chemistry of the solid, the chemistry of the fluids and their physical properties collectively dictate how fluids migrate into and through these micro- and nano-environments, wet and ultimately react with the solid surfaces. Our current understanding of the rates and mechanisms of fluid and mass transport and interaction within these multiporosity systems at the molecular scale is far less robust than we would like. This presentation will take a two-fold approach to this topic area. First, a brief overview is provided that highlights the use of advanced electron microscopy and neutrons scattering methods to quantify the nature of the nanopore system that hosts hydrocarbons in representative gas shale formations such as the Utica, Marcellus and Eagle Ford. Second, results will be presented that leverage the application of state-of-the-art experimental, analytical and computational tools to assess key features of the fluid-matrix interaction relevant to shale settings. The multidisciplinary approaches highlighted will include neutron scattering and NMR experiments, thermodynamic measurements and molecular-level simulations to quantitatively assess molecular properties of C-O-H fluids confined to well-characterized porous media, subjected to temperatures and pressures relevant to subsurface energy systems. These studies conducted in concert are beginning to provide a fundamental understanding at the molecular level of how intrinsically different hydrocarbon-bearing fluids behave in confined geometries compared to bulk systems, and shed light on key geochemical processes such as fluid wetting, competitive sorption and the onset of mineral dissolution and precipitation.
Micromechanical Aspects of Hydraulic Fracturing Processes
NASA Astrophysics Data System (ADS)
Galindo-torres, S. A.; Behraftar, S.; Scheuermann, A.; Li, L.; Williams, D.
2014-12-01
A micromechanical model is developed to simulate the hydraulic fracturing process. The model comprises two key components. Firstly, the solid matrix, assumed as a rock mass with pre-fabricated cracks, is represented by an array of bonded particles simulated by the Discrete Element Model (DEM)[1]. The interaction is ruled by the spheropolyhedra method, which was introduced by the authors previously and has been shown to realistically represent many of the features found in fracturing and communition processes. The second component is the fluid, which is modelled by the Lattice Boltzmann Method (LBM). It was recently coupled with the spheropolyhedra by the authors and validated. An advantage of this coupled LBM-DEM model is the control of many of the parameters of the fracturing fluid, such as its viscosity and the injection rate. To the best of the authors' knowledge this is the first application of such a coupled scheme for studying hydraulic fracturing[2]. In this first implementation, results are presented for a two-dimensional situation. Fig. 1 shows one snapshot of the LBM-DEM coupled simulation for the hydraulic fracturing where the elements with broken bonds can be identified and the fracture geometry quantified. The simulation involves a variation of the underground stress, particularly the difference between the two principal components of the stress tensor, to explore the effect on the fracture path. A second study focuses on the fluid viscosity to examine the effect of the time scales of different injection plans on the fracture geometry. The developed tool and the presented results have important implications for future studies of the hydraulic fracturing process and technology. references 1. Galindo-Torres, S.A., et al., Breaking processes in three-dimensional bonded granular materials with general shapes. Computer Physics Communications, 2012. 183(2): p. 266-277. 2. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes. Computer Methods in Applied Mechanics and Engineering, 2013. 265(0): p. 107-119.
Biasetti, Jacopo; Hussain, Fazle; Gasser, T Christian
2011-10-07
Abdominal aortic aneurysms (AAAs) are frequently characterized by the development of an intra-luminal thrombus (ILT), which is known to have multiple biochemical and biomechanical implications. Development of the ILT is not well understood, and shear-stress-triggered activation of platelets could be the first step in its evolution. Vortical structures (VSs) in the flow affect platelet dynamics, which motivated the present study of a possible correlation between VS and ILT formation in AAAs. VSs educed by the λ(2)-method using computational fluid dynamics simulations of the backward-facing step problem, normal aorta, fusiform AAA and saccular AAA were investigated. Patient-specific luminal geometries were reconstructed from computed tomography scans, and Newtonian and Carreau-Yasuda models were used to capture salient rheological features of blood flow. Particularly in complex flow domains, results depended on the constitutive model. VSs developed all along the normal aorta, showing that a clear correlation between VSs and high wall shear stress (WSS) existed, and that VSs started to break up during late systole. In contrast, in the fusiform AAA, large VSs developed at sites of tortuous geometry and high WSS, occupying the entire lumen, and lasting over the entire cardiac cycle. Downward motion of VSs in the AAA was in the range of a few centimetres per cardiac cycle, and with a VS burst at that location, the release (from VSs) of shear-stress-activated platelets and their deposition to the wall was within the lower part of the diseased artery, i.e. where the thickest ILT layer is typically observed. In the saccular AAA, only one VS was found near the healthy portion of the aorta, while in the aneurysmatic bulge, no VSs occurred. We present a fluid-dynamics-motivated mechanism for platelet activation, convection and deposition in AAAs that has the potential of improving our current understanding of the pathophysiology of fluid-driven ILT growth.
Anderson, Kimberly R.; Anthony, T. Renée
2014-01-01
An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1–0.4 m s−1). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111
NASA Astrophysics Data System (ADS)
Saye, Robert
2017-09-01
In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.
NASA Astrophysics Data System (ADS)
Saye, Robert
2017-09-01
In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.
Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin
2010-03-01
Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.
Validation of Magnetic Resonance Thermometry by Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Rydquist, Grant; Owkes, Mark; Verhulst, Claire M.; Benson, Michael J.; Vanpoppel, Bret P.; Burton, Sascha; Eaton, John K.; Elkins, Christopher P.
2016-11-01
Magnetic Resonance Thermometry (MRT) is a new experimental technique that can create fully three-dimensional temperature fields in a noninvasive manner. However, validation is still required to determine the accuracy of measured results. One method of examination is to compare data gathered experimentally to data computed with computational fluid dynamics (CFD). In this study, large-eddy simulations have been performed with the NGA computational platform to generate data for a comparison with previously run MRT experiments. The experimental setup consisted of a heated jet inclined at 30° injected into a larger channel. In the simulations, viscosity and density were scaled according to the local temperature to account for differences in buoyant and viscous forces. A mesh-independent study was performed with 5 mil-, 15 mil- and 45 mil-cell meshes. The program Star-CCM + was used to simulate the complete experimental geometry. This was compared to data generated from NGA. Overall, both programs show good agreement with the experimental data gathered with MRT. With this data, the validity of MRT as a diagnostic tool has been shown and the tool can be used to further our understanding of a range of flows with non-trivial temperature distributions.
Zero side force volute development
NASA Technical Reports Server (NTRS)
Anderson, P. G.; Franz, R. J.; Farmer, R. C.; Chen, Y. S.
1995-01-01
Collector scrolls on high performance centrifugal pumps are currently designed with methods which are based on very approximate flowfield models. Such design practices result in some volute configurations causing excessive side loads even at design flowrates. The purpose of this study was to develop and verify computational design tools which may be used to optimize volute configurations with respect to avoiding excessive loads on the bearings. The new design methodology consisted of a volute grid generation module and a computational fluid dynamics (CFD) module to describe the volute geometry and predict the radial forces for a given flow condition, respectively. Initially, the CFD module was used to predict the impeller and the volute flowfields simultaneously; however, the required computation time was found to be excessive for parametric design studies. A second computational procedure was developed which utilized an analytical impeller flowfield model and an ordinary differential equation to describe the impeller/volute coupling obtained from the literature, Adkins & Brennen (1988). The second procedure resulted in 20 to 30 fold increase in computational speed for an analysis. The volute design analysis was validated by postulating a volute geometry, constructing a volute to this configuration, and measuring the steady radial forces over a range of flow coefficients. Excellent agreement between model predictions and observed pump operation prove the computational impeller/volute pump model to be a valuable design tool. Further applications are recommended to fully establish the benefits of this new methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Tarasankar DebRoy
In recent years, applications of numerical heat transfer and fluid flow models of fusion welding have resulted in improved understanding of both the welding processes and welded materials. They have been used to accurately calculate thermal cycles and fusion zone geometry in many cases. Here we report the following three major advancements from this project. First, we show how microstructures, grain size distribution and topology of welds of several important engineering alloys can be computed starting from better understanding of the fusion welding process through numerical heat transfer and fluid flow calculations. Second, we provide a conclusive proof that themore » reliability of numerical heat transfer and fluid flow calculations can be significantly improved by optimizing several uncertain model parameters. Third, we demonstrate how the numerical heat transfer and fluid flow models can be combined with a suitable global optimization program such as a genetic algorithm for the tailoring of weld attributes such as attaining a specified weld geometry or a weld thermal cycle. The results of the project have been published in many papers and a listing of these are included together with a list of the graduate thesis that resulted from this project. The work supported by the DOE award has resulted in several important national and international awards. A listing of these awards and the status of the graduate students are also presented in this report.« less
Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.
2009-01-01
Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.
Computational and experimental analysis of the flow in an annular centrifugal contactor
NASA Astrophysics Data System (ADS)
Wardle, Kent E.
The annular centrifugal contactor has been developed for solvent extraction processes for recycling used nuclear fuel. The compact size and high efficiency of these contactors have made them the choice for advanced reprocessing schemes and a key equipment for a proposed future advanced fuel cycle facility. While a sufficient base of experience exists to facilitate successful operation of current contactor technology, a more complete understanding of the fluid flow within the contactor would enable further advancements in design and operation of future units and greater confidence for use of such contactors in a variety of other solvent extraction applications. This research effort has coupled computational fluid dynamics modeling with a variety of experimental measurements and observations to provide a valid detailed analysis of the flow within the centrifugal contactor. CFD modeling of the free surface flow in the annular mixing zone using the Volume of Fluid (VOF) volume tracking method combined with Large Eddy Simulation (LES) of turbulence was found to have very good agreement with the experimental measurements and observations. A detailed study of the flow and mixing for different housing vane geometries was performed and it was found that the four straight mixing vane geometry had greater mixing for the flow rate simulated and more predictable operation over a range of low to moderate flow rates. The separation zone was also modeled providing a useful description of the flow in this region and identifying critical design features. It is anticipated that this work will form a foundation for additional efforts at improving the design and operation of centrifugal contactors and provide a framework for progress towards simulation of solvent extraction processes.
CFD analysis of a diaphragm free-piston Stirling cryocooler
NASA Astrophysics Data System (ADS)
Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan
2016-10-01
This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.
Techniques to derive geometries for image-based Eulerian computations
Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.
2014-01-01
Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID:25750470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, Emilian L.; Pointer, William David
This work assesses the influence of assumptions made when generating a mesh of a wire-wrappedgeometry. The contact region between a wire and its adjacent pin is commonly modeled by eitherembedding the wire to the adjacent pin or trimming the wire so that a gap separates the wire from itsadjacent pin. These models are referred to as close-gap and open-gap approaches herein and are applied totwo geometries. The first geometry consists of a single pin wire-wrapped subchannel. A polyhedral meshand a hexahedral mesh are generated. The second and third geometry are a 7-pin and a 19-pinwire-wrapped bundles meshed with polyhedral elementsmore » only. Pressure drops are obtained with theSTAR-CCM+computational fluid dynamic package. Sensitivity analyses of the mesh density, the meshtype, and the turbulent models are performed. Numerical results show that the best match to theexperimental data and to the Cheng-Todreas correlation is obtained with the combination of a hexahedralmesh, the shear stress transport (SST) turbulent model, and the open-gap approach. In the case of the 7-pingeometry, the best results are obtained with the open-gap approach and the SST turbulent model. The19-pin geometry yields contradictory results to the 7-pin geometry results, and thus will require furtherinvestigations.« less
Transport and Clogging of Particulate Flow in Fracture Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplik, Joel
The aim of the project is to understand the effects of confinement in narrow rough-walled fractures on the transport behavior of fluids and suspended particles in subsurface hydro- carbon reservoirs. A key motivation for the study is that such fracture systems provide the highest throughput in oil and gas extraction and have been the focus of recent industrial activity. The scientific challenge is to understand how the confined geometry alters transport phenomena, and in particular its influence on (diagnostic) tracer transport and the effects of flow channeling and clogging on fluid motion. An important complicating feature of geological fractures ismore » the self-affine fractal nature of their surface roughness, leading to irregular but correlated fluid and particle motion. The key technique used is computer simulation, augmented by analytical calculations and collaboration with outside experimental colleagues when possible. The principal topics studied were fluid permeability, tracer dispersion, flow channeling and anisotropy, particle transport in narrow channels and particle trapping in tight fractures.« less
NASA Technical Reports Server (NTRS)
Martin, J. J.; Holt, J. B.
2000-01-01
This report details the results of a series of fluid motion experiments to investigate the use of magnets to orient fluids in a low-gravity environment. The fluid of interest for this project was liquid oxygen (LO2) since it exhibits a paramagnetic behavior (is attracted to magnetic fields). However, due to safety and handling concerns, a water-based ferromagnetic mixture (produced by Ferrofluidics Corporation) was selected to simplify procedures. Three ferromagnetic fluid mixture strengths and a nonmagnetic water baseline were tested using three different initial fluid positions with respect to the magnet. Experiment accelerometer data were used with a modified computational fluid dynamics code termed CFX-4 (by AEA Technologies) to predict fluid motion. These predictions compared favorably with experiment video data, verifying the code's ability to predict fluid motion with and without magnetic influences. Additional predictions were generated for LO2 with the same test conditions and geometries used in the testing. Test hardware consisted of a cylindrical Plexiglas tank (6-in. bore with 10-in. length), a 6,000-G rare Earth magnet (10-in. ring), three-axis accelerometer package, and a video recorder system. All tests were conducted aboard the NASA Reduced-Gravity Workshop, a KC-135A aircraft.
A Geometry Based Infra-Structure for Computational Analysis and Design
NASA Technical Reports Server (NTRS)
Haimes, Robert
1998-01-01
The computational steps traditionally taken for most engineering analysis suites (computational fluid dynamics (CFD), structural analysis, heat transfer and etc.) are: (1) Surface Generation -- usually by employing a Computer Assisted Design (CAD) system; (2) Grid Generation -- preparing the volume for the simulation; (3) Flow Solver -- producing the results at the specified operational point; (4) Post-processing Visualization -- interactively attempting to understand the results. For structural analysis, integrated systems can be obtained from a number of commercial vendors. These vendors couple directly to a number of CAD systems and are executed from within the CAD Graphical User Interface (GUI). It should be noted that the structural analysis problem is more tractable than CFD; there are fewer mesh topologies used and the grids are not as fine (this problem space does not have the length scaling issues of fluids). For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. In most cases, the output from a CAD system could go to Initial Graphics Exchange Specification (IGES) or Standard Exchange Program (STEP) files. The output from Grid Generators and Solvers do not really have standards though there are a couple of file formats that can be used for a subset of the gridding (i.e. PLOT3D data formats). The user would have to patch up the data or translate from one format to another to move to the next step. Sometimes this could take days. Specifically the problems with this procedure are:(1) File based -- Information flows from one step to the next via data files with formats specified for that procedure. File standards, when they exist, are wholly inadequate. For example, geometry from CAD systems (transmitted via IGES files) is defined as disjoint surfaces and curves (as well as masses of other information of no interest for the Grid Generator). This is particularly onerous for modern CAD systems based on solid modeling. The part was a proper solid and in the translation to IGES has lost this important characteristic. STEP is another standard for CAD data that exists and supports the concept of a solid. The problem with STEP is that a solid modeling geometry kernel is required to query and manipulate the data within this type of file. (2) 'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in tens of minutes (even with a complex configuration) using unstructured techniques. Adroit multi-block methods are not far behind. This means that a million node steady-state solution can be computed on the order of hours (using current high performance computers) starting from this 'good' geometry. Unfortunately, the geometry usually transmitted from the CAD system is not 'good' in the grid generator sense. The grid generator needs smooth closed solid geometry. It can take a week (or more) of interaction with the CAD output (sometimes by hand) before the process can begin. One way Communication. (3) One-way Communication -- All information travels on from one phase to the next. This makes procedures like node adaptation difficult when attempting to add or move nodes that sit on bounding surfaces (when the actual surface data has been lost after the grid generation phase). Until this process can be automated, more complex problems such as multi-disciplinary analysis or using the above procedure for design becomes prohibitive. There is also no way to easily deal with this system in a modular manner. One can only replace the grid generator, for example, if the software reads and writes the same files. Instead of the serial approach to analysis as described above, CAPRI takes a geometry centric approach. This makes the actual geometry (not a discretized version) accessible to all phases of the analysis. The connection to the geometry is made through an Application Programming Interface (API) and NOT a file system. This API isolates the top-level applications (grid generators, solvers and visualization components) from the geometry engine. Also this allows the replacement of one geometry kernel with another, without effecting these top-level applications. For example, if UniGraphics is used as the CAD package then Parasolid (UG's own geometry engine) can be used for all geometric queries so that no solid geometry information is lost in a translation. This is much better than STEP because when the data is queried, the same software is executed as used in the CAD system. Therefore, one analyzes the exact part that is in the CAD system. CAPRI uses the same idea as the commercial structural analysis codes but does not specify control. Software components of the CAD system are used, but the analysis suite, not the CAD operator, specifies the control of the software session. This also means that the license issues (may be) minimized and individuals need not have to know how to operate a CAD system in order to run the suite.
Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress.
Lu, Yiling; Lu, Xiyun; Zhuang, Lixian; Wang, Wen
2002-01-01
Non-planarity in blood vessels is known to influence arterial flows and wall shear stress. To gain insight, computational fluid dynamics (CFD) has been used to investigate effects of curvature and out-of-plane geometry on the distribution of fluid flows and wall shear stresses in a hypothetical non-planar bifurcation. Three-dimensional Navier-Stokes equations for a steady state Newtonian fluid were solved numerically using a finite element method. Non-planarity in one of the two daughter vessels is found to deflect flow from the inner wall of the vessel to the outer wall and to cause changes in the distribution of wall shear stresses. Results from this study agree to experimental observations and CFD simulations in the literature, and support the view that non-planarity in blood vessels is a factor with important haemodynamic significance and may play a key role in vascular biology and pathophysiology.
NASA Technical Reports Server (NTRS)
French, K. W., Jr.
1985-01-01
The flexibility of the PHOENICS computational fluid dynamics package was assessed along two general avenues; parallel modeling and analog modeling. In parallel modeling the dependent and independent variables retain their identity within some scaling factors, even though the boundary conditions and especially the constitutive relations do not correspond to any realistic fluid dynamic situation. PHOENICS was used to generate a CFD model that should exhibit the physical anomalies of a granular medium and permit reasonable similarity with boundary conditions typical to membrane or porous piston loading. A considerable portion of the study was spent prying into the existing code with a prejudice toward rate type and disarming any inherent fluid behavior. The final stages of the study were directed at the more specific problem of multiaxis loading of cylindrical geometry with a concern for the appearance of bulging, cross slab shear failure modes.
Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long
2016-01-01
We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229
Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
DeLoach, R.; Rayos, E. M.; Campbell, C. H.; Rickman, S. L.
2006-01-01
Computational tools have been developed to estimate thermal and mechanical reentry loads experienced by the Space Shuttle Orbiter as the result of cavities in the Thermal Protection System (TPS). Such cavities can be caused by impact from ice or insulating foam debris shed from the External Tank (ET) on liftoff. The reentry loads depend on cavity geometry and certain Shuttle state variables, among other factors. Certain simplifying assumptions have been made in the tool development about the cavity geometry variables. For example, the cavities are all modeled as shoeboxes , with rectangular cross-sections and planar walls. So an actual cavity is typically approximated with an idealized cavity described in terms of its length, width, and depth, as well as its entry angle, exit angle, and side angles (assumed to be the same for both sides). As part of a comprehensive assessment of the uncertainty in reentry loads estimated by the debris impact assessment tools, an effort has been initiated to quantify the component of the uncertainty that is due to imperfect geometry specifications for the debris impact cavities. The approach is to compute predicted loads for a set of geometry factor combinations sufficient to develop polynomial approximations to the complex, nonparametric underlying computational models. Such polynomial models are continuous and feature estimable, continuous derivatives, conditions that facilitate the propagation of independent variable errors. As an additional benefit, once the polynomial models have been developed, they require fewer computational resources to execute than the underlying finite element and computational fluid dynamics codes, and can generate reentry loads estimates in significantly less time. This provides a practical screening capability, in which a large number of debris impact cavities can be quickly classified either as harmless, or subject to additional analysis with the more comprehensive underlying computational tools. The polynomial models also provide useful insights into the sensitivity of reentry loads to various cavity geometry variables, and reveal complex interactions among those variables that indicate how the sensitivity of one variable depends on the level of one or more other variables. For example, the effect of cavity length on certain reentry loads depends on the depth of the cavity. Such interactions are clearly displayed in the polynomial response models.
A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes
NASA Astrophysics Data System (ADS)
Lundquist, Tomas; Malan, Arnaud; Nordström, Jan
2018-06-01
We develop a general interface procedure to couple both structured and unstructured parts of a hybrid mesh in a non-collocated, multi-block fashion. The target is to gain optimal computational efficiency in fluid dynamics simulations involving complex geometries. While guaranteeing stability, the proposed procedure is optimized for accuracy and requires minimal algorithmic modifications to already existing schemes. Initial numerical investigations confirm considerable efficiency gains compared to non-hybrid calculations of up to an order of magnitude.
O-Charoen, Sirimon; Srivannavit, Onnop; Gulari, Erdogan
2008-01-01
Microfluidic microarrays have been developed for economical and rapid parallel synthesis of oligonucleotide and peptide libraries. For a synthesis system to be reproducible and uniform, it is crucial to have a uniform reagent delivery throughout the system. Computational fluid dynamics (CFD) is used to model and simulate the microfluidic microarrays to study geometrical effects on flow patterns. By proper design geometry, flow uniformity could be obtained in every microreactor in the microarrays. PMID:17480053
Viscous streaming for locomotion and transport
NASA Astrophysics Data System (ADS)
Gazzola, Mattia; Parthasarathy, Tejaswin
2017-11-01
Rectified and oscillatory flows associated with vibrating boundaries have been employed in a variety of tasks, especially in microfluidics. The associated fluid mechanics is well known in the case of simple geometries, cylinders in particular, yet little is known in the case of active, complex systems. Motivated by potential applications in swimming mini-bots, we established an accurate and robust computational framework to investigate the flow behavior associated with oscillations of multiple and deforming shapes with an emphasis on streaming assisted locomotion and transport systems.
Simulation of Inviscid Compressible Multi-Phase Flow with Condensation
NASA Technical Reports Server (NTRS)
Kelleners, Philip
2003-01-01
Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.
Kelly, Sinead; O'Rourke, Malachy
2012-04-01
This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given study.
Vortex lattices and defect-mediated viscosity reduction in active liquids
NASA Astrophysics Data System (ADS)
Slomka, Jonasz; Dunkel, Jorn
2016-11-01
Generic pattern-formation and viscosity-reduction mechanisms in active fluids are investigated using a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, defect-mediated low-viscosity phases and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.
NASA Astrophysics Data System (ADS)
Melka, Bartlomiej; Gracka, Maria; Adamczyk, Wojciech; Rojczyk, Marek; Golda, Adam; Nowak, Andrzej J.; Białecki, Ryszard A.; Ostrowski, Ziemowit
2017-08-01
In the research, a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analysed. A real geometry of aorta and its thoracic branches of an 8-year old patient diagnosed with a congenital heart defect - coarctation of the aorta was used. The inlet boundary condition was implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase using Euler-Euler approach. Plasma was set as the primary and dominant fluid phase, with the volume fraction of 0.585. The morphological elements (RBC and WBC) were set as dispersed phases being the remaining volume fraction.
Analytical and numerical performance models of a Heisenberg Vortex Tube
NASA Astrophysics Data System (ADS)
Bunge, C. D.; Cavender, K. A.; Matveev, K. I.; Leachman, J. W.
2017-12-01
Analytical and numerical investigations of a Heisenberg Vortex Tube (HVT) are performed to estimate the cooling potential with cryogenic hydrogen. The Ranque-Hilsch Vortex Tube (RHVT) is a device that tangentially injects a compressed fluid stream into a cylindrical geometry to promote enthalpy streaming and temperature separation between inner and outer flows. The HVT is the result of lining the inside of a RHVT with a hydrogen catalyst. This is the first concept to utilize the endothermic heat of para-orthohydrogen conversion to aid primary cooling. A review of 1st order vortex tube models available in the literature is presented and adapted to accommodate cryogenic hydrogen properties. These first order model predictions are compared with 2-D axisymmetric Computational Fluid Dynamics (CFD) simulations.
Fractional vector calculus and fluid mechanics
NASA Astrophysics Data System (ADS)
Lazopoulos, Konstantinos A.; Lazopoulos, Anastasios K.
2017-04-01
Basic fluid mechanics equations are studied and revised under the prism of fractional continuum mechanics (FCM), a very promising research field that satisfies both experimental and theoretical demands. The geometry of the fractional differential has been clarified corrected and the geometry of the fractional tangent spaces of a manifold has been studied in Lazopoulos and Lazopoulos (Lazopoulos KA, Lazopoulos AK. Progr. Fract. Differ. Appl. 2016, 2, 85-104), providing the bases of the missing fractional differential geometry. Therefore, a lot can be contributed to fractional hydrodynamics: the basic fractional fluid equations (Navier Stokes, Euler and Bernoulli) are derived and fractional Darcy's flow in porous media is studied.
Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W
2002-10-01
Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of the experimental kinematics, are useful when determining trends in force production, but do not provide accurate estimates of the magnitudes of the forces produced. By contrast, unsteady computations about the deforming pectoral fins using experimentally measured fin kinematics were found to give excellent agreement, both in the time history of force production throughout the flapping strokes and in the magnitudes of the generated forces.
Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk
NASA Astrophysics Data System (ADS)
Long, C. C.; Marsden, A. L.; Bazilevs, Y.
2014-10-01
In this paper we perform shape optimization of a pediatric pulsatile ventricular assist device (PVAD). The device simulation is carried out using fluid-structure interaction (FSI) modeling techniques within a computational framework that combines FEM for fluid mechanics and isogeometric analysis for structural mechanics modeling. The PVAD FSI simulations are performed under realistic conditions (i.e., flow speeds, pressure levels, boundary conditions, etc.), and account for the interaction of air, blood, and a thin structural membrane separating the two fluid subdomains. The shape optimization study is designed to reduce thrombotic risk, a major clinical problem in PVADs. Thrombotic risk is quantified in terms of particle residence time in the device blood chamber. Methods to compute particle residence time in the context of moving spatial domains are presented in a companion paper published in the same issue (Comput Mech, doi: 10.1007/s00466-013-0931-y, 2013). The surrogate management framework, a derivative-free pattern search optimization method that relies on surrogates for increased efficiency, is employed in this work. For the optimization study shown here, particle residence time is used to define a suitable cost or objective function, while four adjustable design optimization parameters are used to define the device geometry. The FSI-based optimization framework is implemented in a parallel computing environment, and deployed with minimal user intervention. Using five SEARCH/ POLL steps the optimization scheme identifies a PVAD design with significantly better throughput efficiency than the original device.
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2016-11-01
Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.
Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae.
Toma, Milan; Bloodworth, Charles H; Pierce, Eric L; Einstein, Daniel R; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S
2017-03-01
The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations.
Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae
Toma, Milan; Bloodworth, Charles H.; Pierce, Eric L.; Einstein, Daniel R.; Cochran, Richard P.; Yoganathan, Ajit P.; Kunzelman, Karyn S.
2016-01-01
The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations. PMID:27624659
NASA Astrophysics Data System (ADS)
Herrick, Gregory Paul
The quest to accurately capture flow phenomena with length-scales both short and long and to accurately represent complex flow phenomena within disparately sized geometry inspires a need for an efficient, high-fidelity, multi-block structured computational fluid dynamics (CFD) parallel computational scheme. This research presents and demonstrates a more efficient computational method by which to perform multi-block structured CFD parallel computational simulations, thus facilitating higher-fidelity solutions of complicated geometries (due to the inclusion of grids for "small'' flow areas which are often merely modeled) and their associated flows. This computational framework offers greater flexibility and user-control in allocating the resource balance between process count and wall-clock computation time. The principal modifications implemented in this revision consist of a "multiple grid block per processing core'' software infrastructure and an analytic computation of viscous flux Jacobians. The development of this scheme is largely motivated by the desire to simulate axial compressor stall inception with more complete gridding of the flow passages (including rotor tip clearance regions) than has been previously done while maintaining high computational efficiency (i.e., minimal consumption of computational resources), and thus this paradigm shall be demonstrated with an examination of instability in a transonic axial compressor. However, the paradigm presented herein facilitates CFD simulation of myriad previously impractical geometries and flows and is not limited to detailed analyses of axial compressor flows. While the simulations presented herein were technically possible under the previous structure of the subject software, they were much less computationally efficient and thus not pragmatically feasible; the previous research using this software to perform three-dimensional, full-annulus, time-accurate, unsteady, full-stage (with sliding-interface) simulations of rotating stall inception in axial compressors utilized tip clearance periodic models, while the scheme here is demonstrated by a simulation of axial compressor stall inception utilizing gridded rotor tip clearance regions. As will be discussed, much previous research---experimental, theoretical, and computational---has suggested that understanding clearance flow behavior is critical to understanding stall inception, and previous computational research efforts which have used tip clearance models have begged the question, "What about the clearance flows?''. This research begins to address that question.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flathers, M.B.; Bache, G.E.
1999-10-01
Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute weremore » analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.« less
A patient-specific aortic valve model based on moving resistive immersed implicit surfaces.
Fedele, Marco; Faggiano, Elena; Dedè, Luca; Quarteroni, Alfio
2017-10-01
In this paper, we propose a full computational framework to simulate the hemodynamics in the aorta including the valve. Closed and open valve surfaces, as well as the lumen aorta, are reconstructed directly from medical images using new ad hoc algorithms, allowing a patient-specific simulation. The fluid dynamics problem that accounts from the movement of the valve is solved by a new 3D-0D fluid-structure interaction model in which the valve surface is implicitly represented through level set functions, yielding, in the Navier-Stokes equations, a resistive penalization term enforcing the blood to adhere to the valve leaflets. The dynamics of the valve between its closed and open position is modeled using a reduced geometric 0D model. At the discrete level, a finite element formulation is used and the SUPG stabilization is extended to include the resistive term in the Navier-Stokes equations. Then, after time discretization, the 3D fluid and 0D valve models are coupled through a staggered approach. This computational framework, applied to a patient-specific geometry and data, allows to simulate the movement of the valve, the sharp pressure jump occurring across the leaflets, and the blood flow pattern inside the aorta.
Toker, S M; Canadinc, D; Maier, H J; Birer, O
2014-03-01
A systematic set of ex-situ experiments were carried out on Nickel-Titanium (NiTi) shape memory alloy (SMA) in order to identify the dependence of its biocompatibility on sample geometry and body location. NiTi samples with three different geometries were immersed into three different fluids simulating different body parts. The changes observed in alloy surface and chemical content of fluids upon immersion experiments designed for four different time periods were analyzed in terms of ion release, oxide layer formation, and chemical composition of the surface layer. The results indicate that both sample geometry and immersion fluid significantly affect the alloy biocompatibility, as evidenced by the passive oxide layer formation on the alloy surface and ion release from the samples. Upon a 30 day immersion period, all three types of NiTi samples exhibited lower ion release than the critical value for clinic applications. However; a significant amount of ion release was detected in the case of gastric fluid, warranting a thorough investigation prior to utility of NiTi in gastrointestinal treatments involving long-time contact with tissue. Furthermore, certain geometries appear to be safer than the others for each fluid, providing a new set of guidelines to follow while designing implants making use of NiTi SMAs to be employed in treatments targeting specific body parts. Copyright © 2013 Elsevier B.V. All rights reserved.
Studies of the Wetting of Gaps in Weightlessness
NASA Astrophysics Data System (ADS)
Collicott, Steven H.; Chen, Yongkang
2010-10-01
The geometry of a thin sheet metal vane terminating near a wall in a surface tension propellant management device (PMD) is common in devices designed by various people. A research program into the capillary fluid physics of the common vane-wall gap began in 1998 with the arrival of the second author at the School of Aeronautics and Astronautics at Purdue University. Drop tower experiments, Surface Evolver computations, and analysis were combined to explore the details of the fluid behavior in the vane-wall gap geometry. Results of four vane-wall gap experiment topics: critical wetting, advance rates, sensitivity to vane orientation, and effect of imperfect initial conditions, are discussed here. This work led to a desire by Weislogel to incorporate this type of geometry into his "Capillary Fluids Experiment" (CFE) that operated flawlessly on the International Space Station in 2006 and 2007. It is found that the wetting of vane-wall gaps is predicted correctly through use of the critical wetting analysis of Concus and Finn. Furthermore, the dynamics of the wetting flows are found to have scaling of flow rates versus time similar to those known for capillary advances in solid corners. In some cases, a seemingly misaligned vane is found to have more rapid capillary advance than for the same vane and gap but with the vane normal to the tank wall. An initial drop tower study of sensitivity to imperfect initial conditions shows that a critical wetting flow is largely immune to small tilts in the initial test orientation but that larger errors can be seen in cases that lack critical wetting and in the measurements of the time history of the meniscus minimum point.
NASA Astrophysics Data System (ADS)
Leclaire, Sébastien; Parmigiani, Andrea; Malaspinas, Orestis; Chopard, Bastien; Latt, Jonas
2017-03-01
This article presents a three-dimensional numerical framework for the simulation of fluid-fluid immiscible compounds in complex geometries, based on the multiple-relaxation-time lattice Boltzmann method to model the fluid dynamics and the color-gradient approach to model multicomponent flow interaction. New lattice weights for the lattices D3Q15, D3Q19, and D3Q27 that improve the Galilean invariance of the color-gradient model as well as for modeling the interfacial tension are derived and provided in the Appendix. The presented method proposes in particular an approach to model the interaction between the fluid compound and the solid, and to maintain a precise contact angle between the two-component interface and the wall. Contrarily to previous approaches proposed in the literature, this method yields accurate solutions even in complex geometries and does not suffer from numerical artifacts like nonphysical mass transfer along the solid wall, which is crucial for modeling imbibition-type problems. The article also proposes an approach to model inflow and outflow boundaries with the color-gradient method by generalizing the regularized boundary conditions. The numerical framework is first validated for three-dimensional (3D) stationary state (Jurin's law) and time-dependent (Washburn's law and capillary waves) problems. Then, the usefulness of the method for practical problems of pore-scale flow imbibition and drainage in porous media is demonstrated. Through the simulation of nonwetting displacement in two-dimensional random porous media networks, we show that the model properly reproduces three main invasion regimes (stable displacement, capillary fingering, and viscous fingering) as well as the saturating zone transition between these regimes. Finally, the ability to simulate immiscible two-component flow imbibition and drainage is validated, with excellent results, by numerical simulations in a Berea sandstone, a frequently used benchmark case used in this field, using a complex geometry that originates from a 3D scan of a porous sandstone. The methods presented in this article were implemented in the open-source PALABOS library, a general C++ matrix-based library well adapted for massive fluid flow parallel computation.
User's Manual for Thermal Analysis Program of Axially Grooved Heat Pipe (HTGAP)
NASA Technical Reports Server (NTRS)
Kamotani, Y.
1978-01-01
A computer program that numerically predicts the steady state temperature distribution inside an axially grooved heat pipe wall for a given groove geometry and working fluid under various heat input and output modes is described. The program computes both evaporator and condenser film coefficients. The program is able to handle both axisymmetric and nonaxisymmetric heat transfer cases. Non-axisymmetric heat transfer results either from non-uniform input at the evaporator or non-uniform heat removal from the condenser, or from both. The presence of a liquid pool in the condenser region under one-g condition also causes non-axisymmetric heat transfer, and its effect on the pipe wall temperature distribution is included in the present program. The hydrodynamic aspect of an axially grooved heat pipe is studied in the Groove Analysis Program (GAP). The present thermal analysis program assumes that the GAP program (or other similar programs) is run first so that the heat transport limit and optimum fluid charge of the heat pipe are known a priori.
NASA Astrophysics Data System (ADS)
Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Bobkova, M. S.; Krivoshapkin, A. L.; Orlov, K. Yu
2016-06-01
In this paper a computer simulation of a blood flow in cerebral vessels with a giant saccular aneurysm at the bifurcation of the basilar artery is performed. The modelling is based on patient-specific clinical data (both flow domain geometry and boundary conditions for the inlets and outlets). The hydrodynamic and mechanical parameters are calculated in the frameworks of three models: rigid-wall assumption, one-way FSI approach, and full (two-way) hydroelastic model. A comparison of the numerical solutions shows that mutual fluid- solid interaction can result in qualitative changes in the structure of the fluid flow. Other characteristics of the flow (pressure, stress, strain and displacement) qualitatively agree with each other in different approaches. However, the quantitative comparison shows that accounting for the flow-vessel interaction, in general, decreases the absolute values of these parameters. Solving of the hydroelasticity problem gives a more detailed solution at a cost of highly increased computational time.
The design and development of transonic multistage compressors
NASA Technical Reports Server (NTRS)
Ball, C. L.; Steinke, R. J.; Newman, F. A.
1988-01-01
The development of the transonic multistage compressor is reviewed. Changing trends in design and performance parameters are noted. These changes are related to advances in compressor aerodynamics, computational fluid mechanics and other enabling technologies. The parameters normally given to the designer and those that need to be established during the design process are identified. Criteria and procedures used in the selection of these parameters are presented. The selection of tip speed, aerodynamic loading, flowpath geometry, incidence and deviation angles, blade/vane geometry, blade/vane solidity, stage reaction, aerodynamic blockage, inlet flow per unit annulus area, stage/overall velocity ratio, and aerodynamic losses are considered. Trends in these parameters both spanwise and axially through the machine are highlighted. The effects of flow mixing and methods for accounting for the mixing in the design process are discussed.
Lagrangian formulation for penny-shaped and Perkins-Kern geometry models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.S.
1989-09-01
This paper discusses basic theories for vertical penny-shaped and Perkins-Kern (PK) geometry models developed with a Lagrangian formulation combined with a virtual-work analysis. The Lagrangian formulation yields a pair of nonlinear equations in R/sub f/ or L/sub f/ and b/sub f/, the fracture radius or length and half-width. By introduction of a virtual-work analysis, a simple equation is obtained that can be solved numerically. This equation is written in a form that can be used to determine fracture geometry when the fluid-loss coefficient of the fracturing fluid is known. Also, this equation, coupled with a material-balance equation after shut-in, canmore » be used to analyze pressure-decline data after shut-in to determine the effective fluid-loss coefficient and fracture geometry.« less
A high-order 3D spectral difference solver for simulating flows about rotating geometries
NASA Astrophysics Data System (ADS)
Zhang, Bin; Liang, Chunlei
2017-11-01
Fluid flows around rotating geometries are ubiquitous. For example, a spinning ping pong ball can quickly change its trajectory in an air flow; a marine propeller can provide enormous amount of thrust to a ship. It has been a long-time challenge to accurately simulate these flows. In this work, we present a high-order and efficient 3D flow solver based on unstructured spectral difference (SD) method and a novel sliding-mesh method. In the SD method, solution and fluxes are reconstructed using tensor products of 1D polynomials and the equations are solved in differential-form, which leads to high-order accuracy and high efficiency. In the sliding-mesh method, a computational domain is decomposed into non-overlapping subdomains. Each subdomain can enclose a geometry and can rotate relative to its neighbor, resulting in nonconforming sliding interfaces. A curved dynamic mortar approach is designed for communication on these interfaces. In this approach, solutions and fluxes are projected from cell faces to mortars to compute common values which are then projected back to ensures continuity and conservation. Through theoretical analysis and numerical tests, it is shown that this solver is conservative, free-stream preservative, and high-order accurate in both space and time.
Computational Study of Scenarios Regarding Explosion Risk Mitigation
NASA Astrophysics Data System (ADS)
Vlasin, Nicolae-Ioan; Mihai Pasculescu, Vlad; Florea, Gheorghe-Daniel; Cornel Suvar, Marius
2016-10-01
Exploration in order to discover new deposits of natural gas, upgrading techniques to exploit these resources and new ways to convert the heat capacity of these gases into industrial usable energy is the research areas of great interest around the globe. But all activities involving the handling of natural gas (exploitation, transport, combustion) are subjected to the same type of risk: the risk to explosion. Experiments carried out physical scenarios to determine ways to reduce this risk can be extremely costly, requiring suitable premises, equipment and apparatus, manpower, time and, not least, presenting the risk of personnel injury. Taking in account the above mentioned, the present paper deals with the possibility of studying the scenarios of gas explosion type events in virtual domain, exemplifying by performing a computer simulation of a stoichiometric air - methane explosion (methane is the main component of natural gas). The advantages of computer-assisted imply are the possibility of using complex virtual geometries of any form as the area of deployment phenomenon, the use of the same geometry for an infinite number of settings of initial parameters as input, total elimination the risk of personnel injury, decrease the execution time etc. Although computer simulations are hardware resources consuming and require specialized personnel to use the CFD (Computational Fluid Dynamics) techniques, the costs and risks associated with these methods are greatly diminished, presenting, in the same time, a major benefit in terms of execution time.
Engineering Fracking Fluids with Computer Simulation
NASA Astrophysics Data System (ADS)
Shaqfeh, Eric
2015-11-01
There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.
An Integrated Approach to Swept Wing Icing Simulation
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.; Broeren, Andy P.
2017-01-01
This paper describes the various elements of a simulation approach used to develop a database of ice shape geometries and the resulting aerodynamic performance data for a representative commercial transport wing model exposed to a variety of icing conditions. This effort included testing in the NASA Icing Research Tunnel, the Wichita State University Walter H. Beech Wind Tunnel, and the ONERA F1 Subsonic Wind Tunnel as well as the use of ice accretion codes, an inviscid design code, and computational fluid dynamics codes. Additionally, methods for capturing full three-dimensional ice shape geometries, geometry interpolation along the span of the wing, and creation of artificial ice shapes based upon that geometric data were developed for this effort. The icing conditions used for this effort were representative of actual ice shape encounter scenarios and run the gamut from ice roughness to full three-dimensional scalloped ice shapes. The effort is still underway so this paper is a status report of work accomplished to date and a description of the remaining elements of the effort.
Comparing nonlinear MHD simulations of low-aspect-ratio RFPs to RELAX experiments
NASA Astrophysics Data System (ADS)
McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.
2016-10-01
Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, with applications in general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we simulate the nonlinear evolution of RFP plasmas similar to those in the RELAX experiment. The experiment's modest Lundquist numbers S (as low as a few times 104) make closely matching MHD simulations tractable given present computing resources. Its low aspect ratio ( 2) motivates a comparison study using cylindrical and toroidal geometries in NIMROD. We present initial results from nonlinear single-fluid runs at S =104 for both geometries and a range of equilibrium parameters, which preliminarily show that the magnetic fluctuations are roughly similar between the two geometries and between simulation and experiment, though there appear to be some qualitative differences in their temporal evolution. Runs at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.
Description of the F-16XL Geometry and Computational Grids Used in CAWAPI
NASA Technical Reports Server (NTRS)
Boelens, O. J.; Badcock, K. J.; Gortz, S.; Morton, S.; Fritz, W.; Karman, S. L., Jr.; Michal, T.; Lamar, J. E.
2009-01-01
The objective of the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) was to allow a comprehensive validation of Computational Fluid Dynamics methods against the CAWAP flight database. A major part of this work involved the generation of high-quality computational grids. Prior to the grid generation an IGES file containing the air-tight geometry of the F-16XL aircraft was generated by a cooperation of the CAWAPI partners. Based on this geometry description both structured and unstructured grids have been generated. The baseline structured (multi-block) grid (and a family of derived grids) has been generated by the National Aerospace Laboratory NLR. Although the algorithms used by NLR had become available just before CAWAPI and thus only a limited experience with their application to such a complex configuration had been gained, a grid of good quality was generated well within four weeks. This time compared favourably with that required to produce the unstructured grids in CAWAPI. The baseline all-tetrahedral and hybrid unstructured grids has been generated at NASA Langley Research Center and the USAFA, respectively. To provide more geometrical resolution, trimmed unstructured grids have been generated at EADS-MAS, the UTSimCenter, Boeing Phantom Works and KTH/FOI. All grids generated within the framework of CAWAPI will be discussed in the article. Both results obtained on the structured grids and the unstructured grids showed a significant improvement in agreement with flight test data in comparison with those obtained on the structured multi-block grid used during CAWAP.
Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L
2009-08-01
Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.
Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids
NASA Astrophysics Data System (ADS)
Sezer-Uzol, Nilay
In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.
Development of a New Arterial-Line Filter Design Using Computational Fluid Dynamics Analysis
Herbst, Daniel P.; Najm, Hani K.
2012-01-01
Abstract: Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics softwarewere used to inform decisions on model refinements and how to achieve initial design goals of ≤225 mL prime volume and ≤500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56° from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking. PMID:23198394
Development of a new arterial-line filter design using computational fluid dynamics analysis.
Herbst, Daniel P; Najm, Hani K
2012-09-01
Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics software were used to inform decisions on model refinements and how to achieve initial design goals of < or = 225 mL prime volume and < or = 500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56 degrees from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking.
A Computational Study of Systemic Hydration in Vocal Fold Collision
Bhattacharya, Pinaki; Siegmund, Thomas
2013-01-01
Mechanical stresses develop within vocal fold (VF) soft tissues, due to phonation-associated vibration and collision. These stresses in turn affect the hydration of VF tissue and thus influence voice health. In this paper, high-fidelty numerical computations are described taking into account fully three-dimensional geometry, realistic tissue and air properties, and high-amplitude vibration and collision. A segregated solver approach is employed, using sophisticated commercial solvers for both the VF tissue and glottal airflow domains. The tissue viscoelastic properties were derived from a biphasic formulation. Two cases were considered, whereby the tissue viscoelastic properties corresponded to two different volume fractions of the fluid phase of the VF tissue. For each case, hydrostatic stresses occurring as a result of vibration and collision were investigated. Assuming the VF tissue to be poroelastic, interstitial fluid movement within VF tissue was estimated from the hydrostatic stress gradient. Computed measures of overall VF dynamics (peak air-flow velocity, magnitude of VF deformation, frequency of vibration and contact pressure) were well within the range of experimentally observed values. The VF motion leading to mechanical stresses within the VFs and their effect on the interstitial fluid flux is detailed. It is found that average deformation and vibration of VFs tends to increase the state of hydration of the VF tissue whereas VF collision works to reduce hydration. PMID:23531170
Rodriguez, G Y; Valverde-Ramírez, M; Mendes, C E; Béttega, R; Badino, A C
2015-11-01
Global variables play a key role in evaluation of the performance of pneumatic bioreactors and provide criteria to assist in system selection and design. The purpose of this work was to use experimental data and computational fluid dynamics (CFD) simulations to determine the global performance parameters gas holdup ([Formula: see text]) and volumetric oxygen transfer coefficient (k L a), and conduct an analysis of liquid circulation velocity, for three different geometries of pneumatic bioreactors: bubble column, concentric-tube airlift, and split tube airlift. All the systems had 5 L working volumes and two Newtonian fluids of different viscosities were used in the experiments: distilled water and 10 cP glycerol solution. Considering the high oxygen demand in certain types of aerobic fermentations, the assays were carried out at high flow rates. In the present study, the performances of three pneumatic bioreactors with different geometries and operating with two different Newtonian fluids were compared. A new CFD modeling procedure was implemented, and the simulation results were compared with the experimental data. The findings indicated that the concentric-tube airlift design was the best choice in terms of both gas holdup and volumetric oxygen transfer coefficient. The CFD results for gas holdup were consistent with the experimental data, and indicated that k L a was strongly influenced by bubble diameter and shape.
Turbulent shear layers in confining channels
NASA Astrophysics Data System (ADS)
Benham, Graham P.; Castrejon-Pita, Alfonso A.; Hewitt, Ian J.; Please, Colin P.; Style, Rob W.; Bird, Paul A. D.
2018-06-01
We present a simple model for the development of shear layers between parallel flows in confining channels. Such flows are important across a wide range of topics from diffusers, nozzles and ducts to urban air flow and geophysical fluid dynamics. The model approximates the flow in the shear layer as a linear profile separating uniform-velocity streams. Both the channel geometry and wall drag affect the development of the flow. The model shows good agreement with both particle image velocimetry experiments and computational turbulence modelling. The simplicity and low computational cost of the model allows it to be used for benchmark predictions and design purposes, which we demonstrate by investigating optimal pressure recovery in diffusers with non-uniform inflow.
Ladisa, John F; Olson, Lars E; Ropella, Kristina M; Molthen, Robert C; Haworth, Steven T; Kersten, Judy R; Warltier, David C; Pagel, Paul S
2005-08-01
Restenosis caused by neointimal hyperplasia (NH) remains an important clinical problem after stent implantation. Restenosis varies with stent geometry, and idealized computational fluid dynamics (CFD) models have indicated that geometric properties of the implanted stent may differentially influence NH. However, 3D studies capturing the in vivo flow domain within stented vessels have not been conducted at a resolution sufficient to detect subtle alterations in vascular geometry caused by the stent and the subsequent temporal development of NH. We present the details and limitations of a series of post-processing operations used in conjunction with microfocal X-ray CT imaging and reconstruction to generate geometrically accurate flow domains within the localized region of a stent several weeks after implantation. Microfocal X-ray CT reconstruction volumes were subjected to an automated program to perform arterial thresholding, spatial orientation, and surface smoothing of stented and unstented rabbit iliac arteries several weeks after antegrade implantation. A transfer function was obtained for the current post-processing methodology containing reconstructed 16 mm stents implanted into rabbit iliac arteries for up to 21 days after implantation and resolved at circumferential and axial resolutions of 32 and 50 microm, respectively. The results indicate that the techniques presented are sufficient to resolve distributions of WSS with 80% accuracy in segments containing 16 surface perturbations over a 16 mm stented region. These methods will be used to test the hypothesis that reductions in normalized wall shear stress (WSS) and increases in the spatial disparity of WSS immediately after stent implantation may spatially correlate with the temporal development of NH within the stented region.
Braun, Katharina; Böhnke, Frank; Stark, Thomas
2012-06-01
We present a complete geometric model of the human cochlea, including the segmentation and reconstruction of the fluid-filled chambers scala tympani and scala vestibuli, the lamina spiralis ossea and the vibrating structure (cochlear partition). Future fluid-structure coupled simulations require a reliable geometric model of the cochlea. The aim of this study was to present an anatomical model of the human cochlea, which can be used for further numerical calculations. Using high resolution micro-computed tomography (µCT), we obtained images of a cut human temporal bone with a spatial resolution of 5.9 µm. Images were manually segmented to obtain the three-dimensional reconstruction of the cochlea. Due to the high resolution of the µCT data, a detailed examination of the geometry of the twisted cochlear partition near the oval and the round window as well as the precise illustration of the helicotrema was possible. After reconstruction of the lamina spiralis ossea, the cochlear partition and the curved geometry of the scala vestibuli and the scala tympani were presented. The obtained data sets were exported as standard lithography (stl) files. These files represented a complete framework for future numerical simulations of mechanical (acoustic) wave propagation on the cochlear partition in the form of mathematical mechanical cochlea models. Additional quantitative information concerning heights, lengths and volumes of the scalae was found and compared with previous results.
NASA Astrophysics Data System (ADS)
Zaghi, S.
2014-07-01
OFF, an open source (free software) code for performing fluid dynamics simulations, is presented. The aim of OFF is to solve, numerically, the unsteady (and steady) compressible Navier-Stokes equations of fluid dynamics by means of finite volume techniques: the research background is mainly focused on high-order (WENO) schemes for multi-fluids, multi-phase flows over complex geometries. To this purpose a highly modular, object-oriented application program interface (API) has been developed. In particular, the concepts of data encapsulation and inheritance available within Fortran language (from standard 2003) have been stressed in order to represent each fluid dynamics "entity" (e.g. the conservative variables of a finite volume, its geometry, etc…) by a single object so that a large variety of computational libraries can be easily (and efficiently) developed upon these objects. The main features of OFF can be summarized as follows: Programming LanguageOFF is written in standard (compliant) Fortran 2003; its design is highly modular in order to enhance simplicity of use and maintenance without compromising the efficiency; Parallel Frameworks Supported the development of OFF has been also targeted to maximize the computational efficiency: the code is designed to run on shared-memory multi-cores workstations and distributed-memory clusters of shared-memory nodes (supercomputers); the code's parallelization is based on Open Multiprocessing (OpenMP) and Message Passing Interface (MPI) paradigms; Usability, Maintenance and Enhancement in order to improve the usability, maintenance and enhancement of the code also the documentation has been carefully taken into account; the documentation is built upon comprehensive comments placed directly into the source files (no external documentation files needed): these comments are parsed by means of doxygen free software producing high quality html and latex documentation pages; the distributed versioning system referred as git has been adopted in order to facilitate the collaborative maintenance and improvement of the code; CopyrightsOFF is a free software that anyone can use, copy, distribute, study, change and improve under the GNU Public License version 3. The present paper is a manifesto of OFF code and presents the currently implemented features and ongoing developments. This work is focused on the computational techniques adopted and a detailed description of the main API characteristics is reported. OFF capabilities are demonstrated by means of one and two dimensional examples and a three dimensional real application.
Plontke, Stefan K; Siedow, Norbert; Wegener, Raimund; Zenner, Hans-Peter; Salt, Alec N
2007-01-01
Cochlear fluid pharmacokinetics can be better represented by three-dimensional (3D) finite-element simulations of drug dispersal. Local drug deliveries to the round window membrane are increasingly being used to treat inner ear disorders. Crucial to the development of safe therapies is knowledge of drug distribution in the inner ear with different delivery methods. Computer simulations allow application protocols and drug delivery systems to be evaluated, and may permit animal studies to be extrapolated to the larger cochlea of the human. A finite-element 3D model of the cochlea was constructed based on geometric dimensions of the guinea pig cochlea. Drug propagation along and between compartments was described by passive diffusion. To demonstrate the potential value of the model, methylprednisolone distribution in the cochlea was calculated for two clinically relevant application protocols using pharmacokinetic parameters derived from a prior one-dimensional (1D) model. In addition, a simplified geometry was used to compare results from 3D with 1D simulations. For the simplified geometry, calculated concentration profiles with distance were in excellent agreement between the 1D and the 3D models. Different drug delivery strategies produce very different concentration time courses, peak concentrations and basal-apical concentration gradients of drug. In addition, 3D computations demonstrate the existence of substantial gradients across the scalae in the basal turn. The 3D model clearly shows the presence of drug gradients across the basal scalae of guinea pigs, demonstrating the necessity of a 3D approach to predict drug movements across and between scalae with larger cross-sectional areas, such as the human, with accuracy. This is the first model to incorporate the volume of the spiral ligament and to calculate diffusion through this structure. Further development of the 3D model will have to incorporate a more accurate geometry of the entire inner ear and incorporate more of the specific processes that contribute to drug removal from the inner ear fluids. Appropriate computer models may assist in both drug and drug delivery system design and can thus accelerate the development of a rationale-based local drug delivery to the inner ear and its successful establishment in clinical practice. Copyright 2007 S. Karger AG, Basel.
Plontke, Stefan K.; Siedow, Norbert; Wegener, Raimund; Zenner, Hans-Peter; Salt, Alec N.
2006-01-01
Hypothesis: Cochlear fluid pharmacokinetics can be better represented by three-dimensional (3D) finite-element simulations of drug dispersal. Background: Local drug deliveries to the round window membrane are increasingly being used to treat inner ear disorders. Crucial to the development of safe therapies is knowledge of drug distribution in the inner ear with different delivery methods. Computer simulations allow application protocols and drug delivery systems to be evaluated, and may permit animal studies to be extrapolated to the larger cochlea of the human. Methods: A finite-element 3D model of the cochlea was constructed based on geometric dimensions of the guinea pig cochlea. Drug propagation along and between compartments was described by passive diffusion. To demonstrate the potential value of the model, methylprednisolone distribution in the cochlea was calculated for two clinically relevant application protocols using pharmacokinetic parameters derived from a prior one-dimensional (1D) model. In addition, a simplified geometry was used to compare results from 3D with 1D simulations. Results: For the simplified geometry, calculated concentration profiles with distance were in excellent agreement between the 1D and the 3D models. Different drug delivery strategies produce very different concentration time courses, peak concentrations and basal-apical concentration gradients of drug. In addition, 3D computations demonstrate the existence of substantial gradients across the scalae in the basal turn. Conclusion: The 3D model clearly shows the presence of drug gradients across the basal scalae of guinea pigs, demonstrating the necessity of a 3D approach to predict drug movements across and between scalae with larger cross-sectional areas, such as the human, with accuracy. This is the first model to incorporate the volume of the spiral ligament and to calculate diffusion through this structure. Further development of the 3D model will have to incorporate a more accurate geometry of the entire inner ear and incorporate more of the specific processes that contribute to drug removal from the inner ear fluids. Appropriate computer models may assist in both drug and drug delivery system design and can thus accelerate the development of a rationale-based local drug delivery to the inner ear and its successful establishment in clinical practice. PMID:17119332
Sardinha, Ana Gabriella de Oliveira; Oyama, Ceres Nunes de Resende; de Mendonça Maroja, Armando; Costa, Ivan F
2016-01-01
The aim of this paper is to provide a general discussion, algorithm, and actual working programs of the deformation method for fast simulation of biological tissue formed by fibers and fluid. In order to demonstrate the benefit of the clinical applications software, we successfully used our computational program to deform a 3D breast image acquired from patients, using a 3D scanner, in a real hospital environment. The method implements a quasi-static solution for elastic global deformations of objects. Each pair of vertices of the surface is connected and defines an elastic fiber. The set of all the elastic fibers defines a mesh of smaller size than the volumetric meshes, allowing for simulation of complex objects with less computational effort. The behavior similar to the stress tensor is obtained by the volume conservation equation that mixes the 3D coordinates. Step by step, we show the computational implementation of this approach. As an example, a 2D rectangle formed by only 4 vertices is solved and, for this simple geometry, all intermediate results are shown. On the other hand, actual implementations of these ideas in the form of working computer routines are provided for general 3D objects, including a clinical application.
A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.
Yu, Hai; Engel, Sebastian; Janiga, Gábor; Thévenin, Dominique
2017-07-01
Flow-induced hemolysis is a crucial issue for many biomedical applications; in particular, it is an essential issue for the development of blood-transporting devices such as left ventricular assist devices, and other types of blood pumps. In order to estimate red blood cell (RBC) damage in blood flows, many models have been proposed in the past. Most models have been validated by their respective authors. However, the accuracy and the validity range of these models remains unclear. In this work, the most established hemolysis models compatible with computational fluid dynamics of full-scale devices are described and assessed by comparing two selected reference experiments: a simple rheometric flow and a more complex hemodialytic flow through a needle. The quantitative comparisons show very large deviations concerning hemolysis predictions, depending on the model and model parameter. In light of the current results, two simple power-law models deliver the best compromise between computational efficiency and obtained accuracy. Finally, hemolysis has been computed in an axial blood pump. The reconstructed geometry of a HeartMate II shows that hemolysis occurs mainly at the tip and leading edge of the rotor blades, as well as at the leading edge of the diffusor vanes. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Sources of spurious force oscillations from an immersed boundary method for moving-body problems
NASA Astrophysics Data System (ADS)
Lee, Jongho; Kim, Jungwoo; Choi, Haecheon; Yang, Kyung-Soo
2011-04-01
When a discrete-forcing immersed boundary method is applied to moving-body problems, it produces spurious force oscillations on a solid body. In the present study, we identify two sources of these force oscillations. One source is from the spatial discontinuity in the pressure across the immersed boundary when a grid point located inside a solid body becomes that of fluid with a body motion. The addition of mass source/sink together with momentum forcing proposed by Kim et al. [J. Kim, D. Kim, H. Choi, An immersed-boundary finite volume method for simulations of flow in complex geometries, Journal of Computational Physics 171 (2001) 132-150] reduces the spurious force oscillations by alleviating this pressure discontinuity. The other source is from the temporal discontinuity in the velocity at the grid points where fluid becomes solid with a body motion. The magnitude of velocity discontinuity decreases with decreasing the grid spacing near the immersed boundary. Four moving-body problems are simulated by varying the grid spacing at a fixed computational time step and at a constant CFL number, respectively. It is found that the spurious force oscillations decrease with decreasing the grid spacing and increasing the computational time step size, but they depend more on the grid spacing than on the computational time step size.
Numerical design of advanced multi-element airfoils
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Cummings, Russell M.
1994-01-01
The current study extends the application of computational fluid dynamics to three-dimensional high-lift systems. Structured, overset grids are used in conjunction with an incompressible Navier-Stokes flow solver to investigate flow over a two-element high-lift configuration. The computations were run in a fully turbulent mode using the one-equation Baldwin-Barth turbulence model. The geometry consisted of an unswept wing which spanned a wind tunnel test section. Flows over full and half-span Fowler flap configurations were computed. Grid resolution issues were investigated in two dimensional studies of the flapped airfoil. Results of the full-span flap wing agreed well with experimental data and verified the method. Flow over the wing with the half-span was computed to investigate the details of the flow at the free edge of the flap. The results illustrated changes in flow streamlines, separation locations, and surface pressures due to the vortex shed from the flap edge.
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.
2010-01-01
Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.
NASA Technical Reports Server (NTRS)
Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.
2012-01-01
Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.
OpenFOAM: Open source CFD in research and industry
NASA Astrophysics Data System (ADS)
Jasak, Hrvoje
2009-12-01
The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.
NASA Astrophysics Data System (ADS)
Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed
2018-05-01
Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.
A level set method for determining critical curvatures for drainage and imbibition.
Prodanović, Masa; Bryant, Steven L
2006-12-15
An accurate description of the mechanics of pore level displacement of immiscible fluids could significantly improve the predictions from pore network models of capillary pressure-saturation curves, interfacial areas and relative permeability in real porous media. If we assume quasi-static displacement, at constant pressure and surface tension, pore scale interfaces are modeled as constant mean curvature surfaces, which are not easy to calculate. Moreover, the extremely irregular geometry of natural porous media makes it difficult to evaluate surface curvature values and corresponding geometric configurations of two fluids. Finally, accounting for the topological changes of the interface, such as splitting or merging, is nontrivial. We apply the level set method for tracking and propagating interfaces in order to robustly handle topological changes and to obtain geometrically correct interfaces. We describe a simple but robust model for determining critical curvatures for throat drainage and pore imbibition. The model is set up for quasi-static displacements but it nevertheless captures both reversible and irreversible behavior (Haines jump, pore body imbibition). The pore scale grain boundary conditions are extracted from model porous media and from imaged geometries in real rocks. The method gives quantitative agreement with measurements and with other theories and computational approaches.
Benchmark for Numerical Models of Stented Coronary Bifurcation Flow.
García Carrascal, P; García García, J; Sierra Pallares, J; Castro Ruiz, F; Manuel Martín, F J
2018-09-01
In-stent restenosis ails many patients who have undergone stenting. When the stented artery is a bifurcation, the intervention is particularly critical because of the complex stent geometry involved in these structures. Computational fluid dynamics (CFD) has been shown to be an effective approach when modeling blood flow behavior and understanding the mechanisms that underlie in-stent restenosis. However, these CFD models require validation through experimental data in order to be reliable. It is with this purpose in mind that we performed particle image velocimetry (PIV) measurements of velocity fields within flows through a simplified coronary bifurcation. Although the flow in this simplified bifurcation differs from the actual blood flow, it emulates the main fluid dynamic mechanisms found in hemodynamic flow. Experimental measurements were performed for several stenting techniques in both steady and unsteady flow conditions. The test conditions were strictly controlled, and uncertainty was accurately predicted. The results obtained in this research represent readily accessible, easy to emulate, detailed velocity fields and geometry, and they have been successfully used to validate our numerical model. These data can be used as a benchmark for further development of numerical CFD modeling in terms of comparison of the main flow pattern characteristics.
Efficient swimming of a plunging elastic plate in a viscous fluid
NASA Astrophysics Data System (ADS)
Yeh, Peter; Alexeev, Alexander
2014-03-01
We use three dimensional computer simulations to examine the combined hydrodynamics and structural response of a plunging elastic plate submerged in a viscous fluid with Reynolds number of 250. The plate is actuated at the root with a prescribed vertical sinusoidal displacement and a zero slope (clamped) boundary condition. We explore the steady state swimming velocity and the associated input power as a function of driving frequency, added mass, and aspect ratio. We find a universal bending pattern independent of geometry and added mass that maximizes the distance traveled per unit applied work. This bending pattern is associated with minimizing center of mass oscillations normal to the direction of travel. Subsequently, the flow around the sides of the swimmer, which does not aid in propulsion, is minimized, thereby reducing viscous losses.
NASA Astrophysics Data System (ADS)
Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.
2016-09-01
In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).
NASA Technical Reports Server (NTRS)
Weed, Richard Allen; Sankar, L. N.
1994-01-01
An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.
Transverse Injection into Subsonic Crossflow with Various Injector Orifice Geometries
NASA Technical Reports Server (NTRS)
Foster, Lancert E.; Zaman, Khairul B.
2010-01-01
Computational and experimental results are presented for a case study of single injectors employed in 90 deg transverse injection into a non-reacting subsonic flow. Different injector orifice shapes are used (including circular, square, diamond-shaped, and wide rectangular slot), all with constant cross-sectional area, to observe the effects of this variation on injector penetration and mixing. Whereas the circle, square, and diamond injector produce similar jet plumes, the wide rectangular slot produces a plume with less vertical penetration than the others. There is also some evidence that the diamond injector produces slightly faster penetration with less mixing of the injected fluid. In addition, a variety of rectangular injectors were analyzed, with varying length/width ratios. Both experimental and computational data show improved plume penetration with increased streamwise orifice length. 3-D Reynolds-Averaged Navier-Stokes (RANS) results are obtained for the various injector geometries using NCC (National Combustion Code) with the kappa-epsilon turbulence model in multi-species modes on an unstructured grid. Grid sensitivity results are also presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid refinement.
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less
NASA Astrophysics Data System (ADS)
Spotts, Nathan
As modern trends in commercial aircraft design move toward high-bypass-ratio fan systems of increasing diameter with shorter, nonaxisymmetric nacelle geometries, inlet distortion is becoming common in all operating regimes. The distortion may induce aerodynamic instabilities within the fan system, leading to catastrophic damage to fan blades, should the surge margin be exceeded. Even in the absence of system instability, the heterogeneity of the flow affects aerodynamic performance significantly. Therefore, an understanding of fan-distortion interaction is critical to aircraft engine system design. This thesis research elucidates the complex fluid dynamics and fan-distortion interaction by means of computational fluid dynamics (CFD) modeling of a complete engine fan system; including rotor, stator, spinner, nacelle and nozzle; under conditions typical of those encountered by commercial aircraft. The CFD simulations, based on a Reynolds-averaged Navier-Stokes (RANS) approach, were unsteady, three-dimensional, and of a full-annulus geometry. A thorough, systematic validation has been performed for configurations from a single passage of a rotor to a full-annulus system by comparing the predicted flow characteristics and aerodynamic performance to those found in literature. The original contributions of this research include the integration of a complete engine fan system, based on the NASA rotor 67 transonic stage and representative of the propulsion systems in commercial aircraft, and a benchmark case for unsteady RANS simulations of distorted flow in such a geometry under realistic operating conditions. This study is unique in that the complex flow dynamics, resulting from fan-distortion interaction, were illustrated in a practical geometry under realistic operating conditions. For example, the compressive stage is shown to influence upstream static pressure distributions and thus suppress separation of flow on the nacelle. Knowledge of such flow physics is valuable for engine system design.
Multi-blocking strategies for the INS3D incompressible Navier-Stokes code
NASA Technical Reports Server (NTRS)
Gatlin, Boyd
1990-01-01
With the continuing development of bigger and faster supercomputers, computational fluid dynamics (CFD) has become a useful tool for real-world engineering design and analysis. However, the number of grid points necessary to resolve realistic flow fields numerically can easily exceed the memory capacity of available computers. In addition, geometric shapes of flow fields, such as those in the Space Shuttle Main Engine (SSME) power head, may be impossible to fill with continuous grids upon which to obtain numerical solutions to the equations of fluid motion. The solution to this dilemma is simply to decompose the computational domain into subblocks of manageable size. Computer codes that are single-block by construction can be modified to handle multiple blocks, but ad-hoc changes in the FORTRAN have to be made for each geometry treated. For engineering design and analysis, what is needed is generalization so that the blocking arrangement can be specified by the user. INS3D is a computer program for the solution of steady, incompressible flow problems. It is used frequently to solve engineering problems in the CFD Branch at Marshall Space Flight Center. INS3D uses an implicit solution algorithm and the concept of artificial compressibility to provide the necessary coupling between the pressure field and the velocity field. The development of generalized multi-block capability in INS3D is described.
Intelligent Patching of Conceptual Geometry for CFD Analysis
NASA Technical Reports Server (NTRS)
Li, Wu
2010-01-01
The iPatch computer code for intelligently patching surface grids was developed to convert conceptual geometry to computational fluid dynamics (CFD) geometry (see figure). It automatically uses bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometric components (such as wing and fuselage) can be intersected to form a watertight CFD geometry. The software also computes the intersection curves of surface patches at any resolution (up to 10.4 accuracy) specified by the user, and it writes the B-spline surface patches, and the corresponding boundary points, for the watertight CFD geometry in the format that can be directly used by the grid generation tool VGRID. iPatch requires that input geometry be in PLOT3D format where each component surface is defined by a rectangular grid {(x(i,j), y(i,j), z(i,j)):1less than or equal to i less than or equal to m, 1 less than or equal to j less than or equal to n} that represents a smooth B-spline surface. All surfaces in the PLOT3D file conceptually represent a watertight geometry of components of an aircraft on the half-space y greater than or equal to 0. Overlapping surfaces are not allowed, but could be fixed by a utility code "fixp3d". The fixp3d utility code first finds the two grid lines on the two surface grids that are closest to each other in Hausdorff distance (a metric to measure the discrepancies of two sets); then uses one of the grid lines as the transition line, extending grid lines on one grid to the other grid to form a merged grid. Any two connecting surfaces shall have a "visually" common boundary curve, or can be described by an intersection relationship defined in a geometry specification file. The intersection of two surfaces can be at a conceptual level. However, the intersection is directional (along either i or j index direction), and each intersecting grid line (or its spine extrapolation) on the first surface should intersect the second surface. No two intersection relationships will result in a common intersection point of three surfaces. The output files of iPatch are IGES, d3m, and mapbc files that define the CFD geometry in VGRID format. The IGES file gives the NURBS definition of the outer mold line in the geometry. The d3m file defines how the outer mold line is broken into surface patches whose boundary curves are defined by points. The mapbc file specifies what the boundary condition is on each patch and the corresponding NURBS surface definition of each non-planar patch in the IGES file.
Linear tearing mode stability equations for a low collisionality toroidal plasma
NASA Astrophysics Data System (ADS)
Connor, J. W.; Hastie, R. J.; Helander, P.
2009-01-01
Tearing mode stability is normally analysed using MHD or two-fluid Braginskii plasma models. However for present, or future, large hot tokamaks like JET or ITER the collisionality is such as to place them in the banana regime. Here we develop a linear stability theory for the resonant layer physics appropriate to such a regime. The outcome is a set of 'fluid' equations whose coefficients encapsulate all neoclassical physics: the neoclassical Ohm's law, enhanced ion inertia, cross-field transport of particles, heat and momentum all play a role. While earlier treatments have also addressed this type of neoclassical physics we differ in incorporating the more physically relevant 'semi-collisional fluid' regime previously considered in cylindrical geometry; semi-collisional effects tend to screen the resonant surface from the perturbed magnetic field, preventing reconnection. Furthermore we also include thermal physics, which may modify the results. While this electron description is of wide relevance and validity, the fluid treatment of the ions requires the ion banana orbit width to be less than the semi-collisional electron layer. This limits the application of the present theory to low magnetic shear—however, this is highly relevant to the sawtooth instability—or to colder ions. The outcome of the calculation is a set of one-dimensional radial differential equations of rather high order. However, various simplifications that reduce the computational task of solving these are discussed. In the collisional regime, when the set reduces to a single second-order differential equation, the theory extends previous work by Hahm et al (1988 Phys. Fluids 31 3709) to include diamagnetic-type effects arising from plasma gradients, both in Ohm's law and the ion inertia term of the vorticity equation. The more relevant semi-collisional regime pertaining to JET or ITER, is described by a pair of second-order differential equations, extending the cylindrical equations of Drake et al (1983 Phys. Fluids 26 2509) to toroidal geometry.
NASA Astrophysics Data System (ADS)
Onishi, Keiji; Tsubokura, Makoto
2016-11-01
A methodology to eliminate the manual work required for correcting the surface imperfections of computer-aided-design (CAD) data, will be proposed. Such a technique is indispensable for CFD analysis of industrial applications involving complex geometries. The CAD geometry is degenerated into cell-oriented values based on Cartesian grid. This enables the parallel pre-processing as well as the ability to handle 'dirty' CAD data that has gaps, overlaps, or sharp edges without necessitating any fixes. An arbitrary boundary representation is used with a dummy-cell technique based on immersed boundary (IB) method. To model the IB, a forcing term is directly imposed at arbitrary ghost cells by linear interpolation of the momentum. The mass conservation is satisfied in the approximate domain that covers fluid region except the wall including cells. Attempts to Satisfy mass conservation in the wall containing cells leads to pressure oscillations near the IB. The consequence of this approximation will be discussed through fundamental study of an LES based channel flow simulation, and high Reynolds number flow around a sphere. And, an analysis comparing our results with wind tunnel experiments of flow around a full-vehicle geometry will also be presented.
Numerical Study of Impingement Location of Liquid Jet Poured from a Tilting Ladle with Lip Spout
NASA Astrophysics Data System (ADS)
Castilla, R.; Gamez-Montero, P. J.; Raush, G.; Khamashta, M.; Codina, E.
2017-04-01
A new approach for simulating liquid poured from a tilting lip spout is presented, using neither a dynamic mesh nor the moving solid solution method. In this case only the tilting ladle is moving, so we propose to rotate the gravitational acceleration at an angular velocity prescribed by a geometrical and dynamical calculation to keep the poured flow rate constant. This angular velocity is applied to modify the orientation of the gravity vector in computational fluid dynamics (CFD) simulations using the OpenFOAM® toolbox. Also, fictitious forces are considered. The modified solver is used to calculate the impingement location for six spout geometries and compare the jet dispersion there. This method could offer an inexpensive tool to calculate optimal spout geometries to reduce sprue size in the metal casting industry.
Data Reduction Procedures for Laser Velocimeter Measurements in Turbomachinery Rotors
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
1994-01-01
Blade-to-blade velocity distributions based on laser velocimeter data acquired in compressor or fan rotors are increasingly used as benchmark data for the verification and calibration of turbomachinery computational fluid dynamics (CFD) codes. Using laser Doppler velocimeter (LDV) data for this purpose, however, must be done cautiously. Aside from the still not fully resolved issue of the seed particle response in complex flowfields, there is an important inherent difference between CFD predictions and LDV blade-to-blade velocity distributions. CFD codes calculate velocity fields for an idealized rotor passage. LDV data, on the other hand, stem from the actual geometry of all blade channels in a rotor. The geometry often varies from channel to channel as a result of manufacturing tolerances, assembly tolerances, and incurred operational damage or changes in the rotor individual blades.
Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions
NASA Technical Reports Server (NTRS)
Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.
2015-01-01
Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.
Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation.
Bordones, Alifer D; Leroux, Matthew; Kheyfets, Vitaly O; Wu, Yu-An; Chen, Chia-Yuan; Finol, Ender A
2018-05-21
Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.
Application of Computational Fluid Dynamics (CFD) in transonic wind-tunnel/flight-test correlation
NASA Technical Reports Server (NTRS)
Murman, E. M.
1982-01-01
The capability for calculating transonic flows for realistic configurations and conditions is discussed. Various phenomena which were modeled are shown to have the same order of magnitude on the influence of predicted results. It is concluded that CFD can make the following contributions to the task of correlating wind tunnel and flight test data: some effects of geometry differences and aeroelastic distortion can be predicted; tunnel wall effects can be assessed and corrected for; and the effects of model support systems and free stream nonuniformities can be modeled.
Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+
NASA Technical Reports Server (NTRS)
Bui, Trong
2016-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.
Stresslets Induced by Active Swimmers.
Lauga, Eric; Michelin, Sébastien
2016-09-30
Active particles disturb the fluid around them as force dipoles, or stresslets, which govern their collective dynamics. Unlike swimming speeds, the stresslets of active particles are rarely determined due to the lack of a suitable theoretical framework for arbitrary geometry. We propose a general method, based on the reciprocal theorem of Stokes flows, to compute stresslets as integrals of the velocities on the particle's surface, which we illustrate for spheroidal chemically active particles. Our method will allow tuning the stresslet of artificial swimmers and tailoring their collective motion in complex environments.
Planar Inlet Design and Analysis Process (PINDAP)
NASA Technical Reports Server (NTRS)
Slater, John W.; Gruber, Christopher R.
2005-01-01
The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.
A mathematical model for the movement of food bolus of varying viscosities through the esophagus
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra
2011-09-01
This mathematical model is designed to study the influence of viscosity on swallowing of food bolus through the esophagus. Food bolus is considered as viscous fluid with variable viscosity. Geometry of esophagus is assumed as finite length channel and flow is induced by peristaltic wave along the length of channel walls. The expressions for axial velocity, transverse velocity, pressure gradient, volume flow rate and stream function are obtained under the assumptions of long wavelength and low Reynolds number. The impacts of viscosity parameter on pressure distribution, local wall shear stress, mechanical efficiency and trapping are numerically discussed with the help of computational results. On the basis of presented study, it is revealed that swallowing of low viscous fluids through esophagus requires less effort in comparison to fluids of higher viscosity. This result is similar to the experimental result obtained by Raut et al. [1], Dodds [2] and Ren et al. [3]. It is further concluded that the pumping efficiency increases while size of trapped bolus reduces when viscosity of fluid is high.
Fluid-Structure Model of Lymphatic Valve and Vessel
NASA Astrophysics Data System (ADS)
Wolf, Ki; Ballard, Matthew; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander
The lymphatic system is a part of the circulatory system that performs a range of important functions such as transportation of interstitial fluid, fatty acid, and immune cells. The lymphatic vessels are composed of contractile walls to pump lymph against adverse pressure gradient and lymphatic valves that prevent back flow. Despite the importance of lymphatic system, the contribution of mechanical and geometric changes of lymphatic valves and vessels in pathologies of lymphatic dysfunction, such as lymphedema, is not well understood. We developed a coupled fluid-solid computational model to simultaneously simulate a lymphatic vessel, valve, and flow. A lattice Boltzmann model is used to represent the fluid component, while lattice spring model is used for the solid component of the lymphatic vessel, whose mechanical properties are derived experimentally. Behaviors such as lymph flow pattern and lymphatic valve performance against backflow and adverse pressure gradient under varied parameters of lymphatic valve and vessel geometry and mechanical properties are investigated to provide a better insight into the dynamics of lymphatic vessels, valves, and system and give insight into how they might fail in disease. NSF CMMI-1635133.
Arresting relaxation in Pickering Emulsions
NASA Astrophysics Data System (ADS)
Atherton, Tim; Burke, Chris
2015-03-01
Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.; Shapiro, Wilbur
2005-01-01
The SPIRALI code predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures. A derivation of the equations governing the performance of turbulent, incompressible, spiral groove cylindrical and face seals along with a description of their solution is given. The computer codes are described, including an input description, sample cases, and comparisons with results of other codes.
NASA Technical Reports Server (NTRS)
Potter, R. C.; Vandam, C. P.
1995-01-01
High-lift system aerodynamics has been gaining attention in recent years. In an effort to improve aircraft performance, comprehensive studies of multi-element airfoil systems are being undertaken in wind-tunnel and flight experiments. Recent developments in Computational Fluid Dynamics (CFD) offer a relatively inexpensive alternative for studying complex viscous flows by numerically solving the Navier-Stokes (N-S) equations. Current limitations in computer resources restrict practical high-lift N-S computations to two dimensions, but CFD predictions can yield tremendous insight into flow structure, interactions between airfoil elements, and effects of changes in airfoil geometry or free-stream conditions. These codes are very accurate when compared to strictly 2D data provided by wind-tunnel testing, as will be shown here. Yet, additional challenges must be faced in the analysis of a production aircraft wing section, such as that of the NASA Langley Transport Systems Research Vehicle (TSRV). A primary issue is the sweep theory used to correlate 2D predictions with 3D flight results, accounting for sweep, taper, and finite wing effects. Other computational issues addressed here include the effects of surface roughness of the geometry, cove shape modeling, grid topology, and transition specification. The sensitivity of the flow to changing free-stream conditions is investigated. In addition, the effects of Gurney flaps on the aerodynamic characteristics of the airfoil system are predicted.
NASA Technical Reports Server (NTRS)
Oliger, Joseph
1997-01-01
Topics considered include: high-performance computing; cognitive and perceptual prostheses (computational aids designed to leverage human abilities); autonomous systems. Also included: development of a 3D unstructured grid code based on a finite volume formulation and applied to the Navier-stokes equations; Cartesian grid methods for complex geometry; multigrid methods for solving elliptic problems on unstructured grids; algebraic non-overlapping domain decomposition methods for compressible fluid flow problems on unstructured meshes; numerical methods for the compressible navier-stokes equations with application to aerodynamic flows; research in aerodynamic shape optimization; S-HARP: a parallel dynamic spectral partitioner; numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains; application of high-order shock capturing schemes to direct simulation of turbulence; multicast technology; network testbeds; supercomputer consolidation project.
NASA Astrophysics Data System (ADS)
Krawczyk, Piotr; Badyda, Krzysztof
2011-12-01
The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.
Propulsive efficiency of the underwater dolphin kick in humans.
von Loebbecke, Alfred; Mittal, Rajat; Fish, Frank; Mark, Russell
2009-05-01
Three-dimensional fully unsteady computational fluid dynamic simulations of five Olympic-level swimmers performing the underwater dolphin kick are used to estimate the swimmer's propulsive efficiencies. These estimates are compared with those of a cetacean performing the dolphin kick. The geometries of the swimmers and the cetacean are based on laser and CT scans, respectively, and the stroke kinematics is based on underwater video footage. The simulations indicate that the propulsive efficiency for human swimmers varies over a relatively wide range from about 11% to 29%. The efficiency of the cetacean is found to be about 56%, which is significantly higher than the human swimmers. The computed efficiency is found not to correlate with either the slender body theory or with the Strouhal number.
Heat pipe design handbook, part 2. [digital computer code specifications
NASA Technical Reports Server (NTRS)
Skrabek, E. A.
1972-01-01
The utilization of a digital computer code for heat pipe analysis and design (HPAD) is described which calculates the steady state hydrodynamic heat transport capability of a heat pipe with a particular wick configuration, the working fluid being a function of wick cross-sectional area. Heat load, orientation, operating temperature, and heat pipe geometry are specified. Both one 'g' and zero 'g' environments are considered, and, at the user's option, the code will also perform a weight analysis and will calculate heat pipe temperature drops. The central porous slab, circumferential porous wick, arterial wick, annular wick, and axial rectangular grooves are the wick configurations which HPAD has the capability of analyzing. For Vol. 1, see N74-22569.
Modeling and Simulation of Cardiogenic Embolic Particle Transport to the Brain
NASA Astrophysics Data System (ADS)
Mukherjee, Debanjan; Jani, Neel; Shadden, Shawn C.
2015-11-01
Emboli are aggregates of cells, proteins, or fatty material, which travel along arteries distal to the point of their origin, and can potentially block blood flow to the brain, causing stroke. This is a prominent mechanism of stroke, accounting for about a third of all cases, with the heart being a prominent source of these emboli. This work presents our investigations towards developing numerical simulation frameworks for modeling the transport of embolic particles originating from the heart along the major arteries supplying the brain. The simulations are based on combining discrete particle method with image based computational fluid dynamics. Simulations of unsteady, pulsatile hemodynamics, and embolic particle transport within patient-specific geometries, with physiological boundary conditions, are presented. The analysis is focused on elucidating the distribution of particles, transport of particles in the head across the major cerebral arteries connected at the Circle of Willis, the role of hemodynamic variables on the particle trajectories, and the effect of considering one-way vs. two-way coupling methods for the particle-fluid momentum exchange. These investigations are aimed at advancing our understanding of embolic stroke using computational fluid dynamics techniques. This research was supported by the American Heart Association grant titled ``Embolic Stroke: Anatomic and Physiologic Insights from Image-Based CFD.''
Fluid-Structure Interaction Modeling of the Reefed Stages of the Orion Spacecraft Main Parachutes
NASA Astrophysics Data System (ADS)
Boswell, Cody W.
Spacecraft parachutes are typically used in multiple stages, starting with a "reefed" stage where a cable along the parachute skirt constrains the diameter to be less than the diameter in the subsequent stage. After a certain period of time during the descent, the cable is cut and the parachute "disreefs" (i.e. expands) to the next stage. Computing the parachute shape at the reefed stage and fluid-structure interaction (FSI) modeling during the disreefing involve computational challenges beyond those we have in FSI modeling of fully-open spacecraft parachutes. These additional challenges are created by the increased geometric complexities and by the rapid changes in the parachute geometry. The computational challenges are further increased because of the added geometric porosity of the latest design, where the "windows" created by the removal of panels and the wider gaps created by the removal of sails compound the geometric and flow complexity. Orion spacecraft main parachutes will have three stages, with computation of the Stage 1 shape and FSI modeling of disreefing from Stage 1 to Stage 2 being the most challenging. We present the special modeling techniques we devised to address the computational challenges and the results from the computations carried out. We also present the methods we devised to calculate for a parachute gore the radius of curvature in the circumferential direction. The curvature values are intended for quick and simple engineering analysis in estimating the structural stresses.
Computer-aided light sheet flow visualization using photogrammetry
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1994-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.
Computer-Aided Light Sheet Flow Visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Computer-aided light sheet flow visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Two-phase reduced gravity experiments for a space reactor design
NASA Technical Reports Server (NTRS)
Antoniak, Zenen I.
1987-01-01
Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.
NASA Astrophysics Data System (ADS)
Marx, Alain; Lütjens, Hinrich
2017-03-01
A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.
Complex path flows in geological media imaged by X-Ray computed tomography
NASA Astrophysics Data System (ADS)
Neuville, Amélie; Ebner, Marcus; Toussaint, Renaud; Renard, François; Koehn, Daniel; Flekkøy, Eirik; Cochard, Alain
2013-04-01
Stylolites as well as fractures are reported as major conduits in geological media (1, 2). The flow circulation has a strong influence on hydro-mecanico-chemical processes, in particular on crystallization and dissolution (3, 4). For instance hydrothermal ore deposits are frequently located in stylolites and fractures at depth. The fluid pressure also intervenes as a thermodynamic parameter in chemical reactions, and is in addition responsible for elastic deformations of the medium. Using tridimensional numerical simulations, we aim at better characterizing the flow circulation in complex structures, and at investigating on how the flow modifies the geological medium. First, X-Ray computed tomography scans of a complete stylolite structure (i.e. calcareous matrix, clay layering in the aperture, and the very thin aperture itself), and that of a fractured sandstone sample were performed. Then, image processing is required in order to extract the geometry of the porous medium of each sample. The geometries are actually more complicated than that of classical fractures, because of the existence of non connected -- or barely connected -- void spaces. We report on the influence of this image processing on the aperture geometry and on the computed permeability. This is addressed by first performing a numerical simulation of the tridimensional velocity field, using a coupled lattice Boltzmann method that solves the complete Navier-Stokes equation. After calculating the velocity field we then question the link between the geometry of complex stylolites and fractures, and the spatial auto-correlation of the velocity field. This correlation might indeed be important for dispersion processes. A first approach is to compute this correlation from the simulated velocity field. Another approach is to compute analytically the correlation function, from the knowledge of the aperture correlation. This is however developed in the perturbative limit of small aperture variations, that may not hold for the apertures found in stylolites. We then present the pressure field obtained within these complex structures, and give preliminary tracks on how variations of the pressure might be responsible for transformations of the medium, that affect its mechanical and transport properties. 1 A Neuville, R Toussaint, and J Schmittbuhl (2010) Hydro-thermal flows in a self-affine rough fracture. Physical Review E, 82, 036317 2 André G., C. Hibsch, S. Fourcade, M. Cathelineau and S. Buschaert (2010) Chronology of fracture sealing under a meteoric fluid environment: Microtectonic and isotopic evidence of major Cainozoic events in the eastern Paris Basin (France). Tectonophysics, 490, 214-228 3 Laronne Ben-Itzhak, L., E. Aharonov, R. Toussaint and A. Sagy (2012) Upper bound on stylolite roughness as indicator for the duration and amount of dissolution. Earth and Planetary Science Letters, 337-338, 186-196 4 Angheluta, L., J. Mathiesen, E. Aharonov (2012) Compaction of porous rock by dissolution on discrete stylolites: A one-dimensional model. Journal of Geophysical Research -- Solid Earth, 117, B08203
NASA Astrophysics Data System (ADS)
Gleghorn, Jason P.; Smith, James P.; Kirby, Brian J.
2013-09-01
Microfluidic obstacle arrays have been used in numerous applications, and their ability to sort particles or capture rare cells from complex samples has broad and impactful applications in biology and medicine. We have investigated the transport and collision dynamics of particles in periodic obstacle arrays to guide the design of convective, rather than diffusive, transport-based immunocapture microdevices. Ballistic and full computational fluid dynamics simulations are used to understand the collision modes that evolve in cylindrical obstacle arrays with various geometries. We identify previously unrecognized collision mode structures and differential size-based collision frequencies that emerge from these arrays. Previous descriptions of transverse displacements that assume unidirectional flow in these obstacle arrays cannot capture mode transitions properly as these descriptions fail to capture the dependence of the mode transitions on column spacing and the attendant change in the flow field. Using these analytical and computational simulations, we elucidate design parameters that induce high collision rates for all particles larger than a threshold size or selectively increase collision frequencies for a narrow range of particle sizes within a polydisperse population. Furthermore, we investigate how the particle Péclet number affects collision dynamics and mode transitions and demonstrate that experimental observations from various obstacle array geometries are well described by our computational model.
Chen, Mounter C Y; Lu, Po-Chien; Chen, James S Y; Hwang, Ned H C
2005-01-01
Coronary stents are supportive wire meshes that keep narrow coronary arteries patent, reducing the risk of restenosis. Despite the common use of coronary stents, approximately 20-35% of them fail due to restenosis. Flow phenomena adjacent to the stent may contribute to restenosis. Three-dimensional computational fluid dynamics (CFD) and reconstruction based on biplane cine angiography were used to assess coronary geometry and volumetric blood flows. A patient-specific left anterior descending (LAD) artery was reconstructed from single-plane x-ray imaging. With corresponding electrocardiographic signals, images from the same time phase were selected from the angiograms for dynamic three-dimensional reconstruction. The resultant three-dimensional LAD artery at end-diastole was adopted for detailed analysis. Both the geometries and flow fields, based on a computational model from CAE software (ANSYS and CATIA) and full three-dimensional Navier-Stroke equations in the CFD-ACE+ software, respectively, changed dramatically after stent placement. Flow fields showed a complex three-dimensional spiral motion due to arterial tortuosity. The corresponding wall shear stresses, pressure gradient, and flow field all varied significantly after stent placement. Combined angiography and CFD techniques allow more detailed investigation of flow patterns in various segments. The implanted stent(s) may be quantitatively studied from the proposed hemodynamic modeling approach.
Computation of incompressible viscous flows through artificial heart devices with moving boundaries
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Rogers, Stuart; Kwak, Dochan; Chang, I.-DEE
1991-01-01
The extension of computational fluid dynamics techniques to artificial heart flow simulations is illustrated. Unsteady incompressible Navier-Stokes equations written in 3-D generalized curvilinear coordinates are solved iteratively at each physical time step until the incompressibility condition is satisfied. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. The efficiency and robustness of the time accurate formulation of the algorithm are tested by computing the flow through model geometries. A channel flow with a moving indentation is computed and validated with experimental measurements and other numerical solutions. In order to handle the geometric complexity and the moving boundary problems, a zonal method and an overlapping grid embedding scheme are used, respectively. Steady state solutions for the flow through a tilting disk heart valve was compared against experimental measurements. Good agreement was obtained. The flow computation during the valve opening and closing is carried out to illustrate the moving boundary capability.
NASA Astrophysics Data System (ADS)
Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan
2012-12-01
Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.
Guyot, Y; Luyten, F P; Schrooten, J; Papantoniou, I; Geris, L
2015-12-01
Bone tissue engineering strategies use flow through perfusion bioreactors to apply mechanical stimuli to cells seeded on porous scaffolds. Cells grow on the scaffold surface but also by bridging the scaffold pores leading a fully filled scaffold following the scaffold's geometric characteristics. Current computational fluid dynamic approaches for tissue engineering bioreactor systems have been mostly carried out for empty scaffolds. The effect of 3D cell growth and extracellular matrix formation (termed in this study as neotissue growth), on its surrounding fluid flow field is a challenge yet to be tackled. In this work a combined approach was followed linking curvature driven cell growth to fluid dynamics modeling. The level-set method (LSM) was employed to capture neotissue growth driven by curvature, while the Stokes and Darcy equations, combined in the Brinkman equation, provided information regarding the distribution of the shear stress profile at the neotissue/medium interface and within the neotissue itself during growth. The neotissue was assumed to be micro-porous allowing flow through its structure while at the same time allowing the simulation of complete scaffold filling without numerical convergence issues. The results show a significant difference in the amplitude of shear stress for cells located within the micro-porous neo-tissue or at the neotissue/medium interface, demonstrating the importance of taking along the neotissue in the calculation of the mechanical stimulation of cells during culture.The presented computational framework is used on different scaffold pore geometries demonstrating its potential to be used a design as tool for scaffold architecture taking into account the growing neotissue. Biotechnol. Bioeng. 2015;112: 2591-2600. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard
2018-06-01
A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.
Sampling efficiency of modified 37-mm sampling cassettes using computational fluid dynamics.
Anthony, T Renée; Sleeth, Darrah; Volckens, John
2016-01-01
In the U.S., most industrial hygiene practitioners continue to rely on the closed-face cassette (CFC) to assess worker exposures to hazardous dusts, primarily because ease of use, cost, and familiarity. However, mass concentrations measured with this classic sampler underestimate exposures to larger particles throughout the inhalable particulate mass (IPM) size range (up to aerodynamic diameters of 100 μm). To investigate whether the current 37-mm inlet cap can be redesigned to better meet the IPM sampling criterion, computational fluid dynamics (CFD) models were developed, and particle sampling efficiencies associated with various modifications to the CFC inlet cap were determined. Simulations of fluid flow (standard k-epsilon turbulent model) and particle transport (laminar trajectories, 1-116 μm) were conducted using sampling flow rates of 10 L min(-1) in slow moving air (0.2 m s(-1)) in the facing-the-wind orientation. Combinations of seven inlet shapes and three inlet diameters were evaluated as candidates to replace the current 37-mm inlet cap. For a given inlet geometry, differences in sampler efficiency between inlet diameters averaged less than 1% for particles through 100 μm, but the largest opening was found to increase the efficiency for the 116 μm particles by 14% for the flat inlet cap. A substantial reduction in sampler efficiency was identified for sampler inlets with side walls extending beyond the dimension of the external lip of the current 37-mm CFC. The inlet cap based on the 37-mm CFC dimensions with an expanded 15-mm entry provided the best agreement with facing-the-wind human aspiration efficiency. The sampler efficiency was increased with a flat entry or with a thin central lip adjacent to the new enlarged entry. This work provides a substantial body of sampling efficiency estimates as a function of particle size and inlet geometry for personal aerosol samplers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, Brian; Jackson, R. Brian
2017-03-08
The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services.more » The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.« less
Investigations of lymphatic drainage from the interstitial space
NASA Astrophysics Data System (ADS)
Jayathungage Don, Tharanga; Richard Clarke Collaboration; John Cater Collaboration; Vinod Suresh Collaboration
2017-11-01
The lymphatic system is a highly complex biological system that facilitates the drainage of excess fluid in body tissues. In addition, it is an integral part of the immunological control system. Understanding the mechanisms of fluid absorption from the interstitial space and flow through the initial lymphatics is important to treat several pathological conditions. The main focus of this study is to computationally model the lymphatic drainage from the interstitial space. The model has been developed to consider a 3D lymphatic network and uses biological data to inform the creation of realistic geometries for the lymphatic capillary networks. We approximate the interstitial space as a porous region and the lymphatic vessel walls as permeable surfaces. The dynamics of the flow is approximated by Darcy's law in the interstitium and the Navier-Stokes equations in the lymphatic capillary lumen. The proposed model examines lymph drainage as a function of pressure gradient. In addition, we have examined the effects of interstitial and lymphatic wall permeabilities on the lymph drainage and the solute transportation in the model. The computational results are in accordance with the available experimental measurements.
Nash, Rupert W; Carver, Hywel B; Bernabeu, Miguel O; Hetherington, James; Groen, Derek; Krüger, Timm; Coveney, Peter V
2014-02-01
Modeling blood flow in larger vessels using lattice-Boltzmann methods comes with a challenging set of constraints: a complex geometry with walls and inlets and outlets at arbitrary orientations with respect to the lattice, intermediate Reynolds (Re) number, and unsteady flow. Simple bounce-back is one of the most commonly used, simplest, and most computationally efficient boundary conditions, but many others have been proposed. We implement three other methods applicable to complex geometries [Guo, Zheng, and Shi, Phys. Fluids 14, 2007 (2002); Bouzidi, Firdaouss, and Lallemand, Phys. Fluids 13, 3452 (2001); Junk and Yang, Phys. Rev. E 72, 066701 (2005)] in our open-source application hemelb. We use these to simulate Poiseuille and Womersley flows in a cylindrical pipe with an arbitrary orientation at physiologically relevant Re number (1-300) and Womersley (4-12) numbers and steady flow in a curved pipe at relevant Dean number (100-200) and compare the accuracy to analytical solutions. We find that both the Bouzidi-Firdaouss-Lallemand (BFL) and Guo-Zheng-Shi (GZS) methods give second-order convergence in space while simple bounce-back degrades to first order. The BFL method appears to perform better than GZS in unsteady flows and is significantly less computationally expensive. The Junk-Yang method shows poor stability at larger Re number and so cannot be recommended here. The choice of collision operator (lattice Bhatnagar-Gross-Krook vs multiple relaxation time) and velocity set (D3Q15 vs D3Q19 vs D3Q27) does not significantly affect the accuracy in the problems studied.
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less
Flow dynamics in bioreactors containing tissue engineering scaffolds.
Lawrence, Benjamin J; Devarapalli, Mamatha; Madihally, Sundararajan V
2009-02-15
Bioreactors are widely used in tissue engineering as a way to distribute nutrients within porous materials and provide physical stimulus required by many tissues. However, the fluid dynamics within the large porous structure are not well understood. In this study, we explored the effect of reactor geometry by using rectangular and circular reactors with three different inlet and outlet patterns. Geometries were simulated with and without the porous structure using the computational fluid dynamics software Comsol Multiphysics 3.4 and/or ANSYS CFX 11 respectively. Residence time distribution analysis using a step change of a tracer within the reactor revealed non-ideal fluid distribution characteristics within the reactors. The Brinkman equation was used to model the permeability characteristics with in the chitosan porous structure. Pore size was varied from 10 to 200 microm and the number of pores per unit area was varied from 15 to 1,500 pores/mm(2). Effect of cellular growth and tissue remodeling on flow distribution was also assessed by changing the pore size (85-10 microm) while keeping the number of pores per unit area constant. These results showed significant increase in pressure with reduction in pore size, which could limit the fluid flow and nutrient transport. However, measured pressure drop was marginally higher than the simulation results. Maximum shear stress was similar in both reactors and ranged approximately 0.2-0.3 dynes/cm(2). The simulations were validated experimentally using both a rectangular and circular bioreactor, constructed in-house. Porous structures for the experiments were formed using 0.5% chitosan solution freeze-dried at -80 degrees C, and the pressure drop across the reactor was monitored.
Cvetkovic, Aleksandar M; Milasinovic, Danko Z; Peulic, Aleksandar S; Mijailovic, Nikola V; Filipovic, Nenad D; Zdravkovic, Nebojsa D
2014-11-01
The main goal of this study was to numerically quantify risk of duodenal stump blowout after Billroth II (BII) gastric resection. Our hypothesis was that the geometry of the reconstructed tract after BII resection is one of the key factors that can lead to duodenal dehiscence. We used computational fluid dynamics (CFD) with finite element (FE) simulations of various models of BII reconstructed gastrointestinal (GI) tract, as well as non-perfused, ex vivo, porcine experimental models. As main geometrical parameters for FE postoperative models we have used duodenal stump length and inclination between gastric remnant and duodenal stump. Virtual gastric resection was performed on each of 3D FE models based on multislice Computer Tomography (CT) DICOM. According to our computer simulation the difference between maximal duodenal stump pressures for models with most and least preferable geometry of reconstructed GI tract is about 30%. We compared the resulting postoperative duodenal pressure from computer simulations with duodenal stump dehiscence pressure from the experiment. Pressure at duodenal stump after BII resection obtained by computer simulation is 4-5 times lower than the dehiscence pressure according to our experiment on isolated bowel segment. Our conclusion is that if the surgery is performed technically correct, geometry variations of the reconstructed GI tract by themselves are not sufficient to cause duodenal stump blowout. Pressure that develops in the duodenal stump after BII resection using omega loop, only in the conjunction with other risk factors can cause duodenal dehiscence. Increased duodenal pressure after BII resection is risk factor. Hence we recommend the routine use of Roux en Y anastomosis as a safer solution in terms of resulting intraluminal pressure. However, if the surgeon decides to perform BII reconstruction, results obtained with this methodology can be valuable. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Shape of the human nasal cavity promotes retronasal smell
NASA Astrophysics Data System (ADS)
Trastour, Sophie; Melchionna, Simone; Mishra, Shruti; Zwicker, David; Lieberman, Daniel E.; Kaxiras, Efthimios; Brenner, Michael P.
2015-11-01
Humans are exceptionally good at perceiving the flavor of food. Flavor includes sensory input from taste receptors but is dominated by olfactory (smell) receptors. To smell food while eating, odors must be transported to the nasal cavity during exhalation. Olfactory performance of this retronasal route depends, among other factors, on the position of the olfactory receptors and the shape of the nasal cavity. One biological hypothesis is that the derived configuration of the human nasal cavity has resulted in a greater capacity for retronasal smell, hence enhanced flavor perception. We here study the air flow and resulting odor deposition as a function of the nasal geometry and the parameters of exhalation. We perform computational fluid dynamics simulations in realistic geometries obtained from CT scans of humans. Using the resulting flow fields, we then study the deposition of tracer particles in the nasal cavity. Additionally, we derive scaling laws for the odor deposition rate as a function of flow parameters and geometry using boundary layer theory. These results allow us to assess which changes in the evolution of the human nose led to significant improvements of retronasal smell.
Investigating the influence of haemodynamic stimuli on intracranial aneurysm inception.
Chen, Haoyu; Selimovic, Alisa; Thompson, Harry; Chiarini, Alessandro; Penrose, Justin; Ventikos, Yiannis; Watton, Paul N
2013-07-01
We propose a novel method to reconstruct the hypothetical geometry of the healthy vasculature prior to intracranial aneurysm (IA) formation: a Frenet frame is calculated along the skeletonization of the arterial geometry; upstream and downstream boundaries of the aneurysmal segment are expressed in terms of the local Frenet frame basis vectors; the hypothetical healthy geometry is then reconstructed by propagating a closed curve along the skeleton using the local Frenet frames so that the upstream boundary is smoothly morphed into the downstream boundary. This methodology takes into account the tortuosity of the arterial vasculature and requires minimal user subjectivity. The method is applied to 22 clinical cases depicting IAs. Computational fluid dynamic simulations of the vasculature without IA are performed and the haemodynamic stimuli in the location of IA formation are examined. We observe that locally elevated wall shear stress (WSS) and gradient oscillatory number (GON) are highly correlated (20/22 for WSS and 19/22 for GON) with regions susceptible to sidewall IA formation whilst haemodynamic indices associated with the oscillation of the WSS vectors have much lower correlations.
Focused Experimental and Analytical Studies of the RBCC Rocket-Ejector
NASA Technical Reports Server (NTRS)
Lehman, M.; Pal, S.; Schwes, D.; Chen, J. D.; Santoro, R. J.
1999-01-01
The rocket-ejector mode of a Rocket Based Combined Cycle Engine (RBCC) was studied through a joint experimental/analytical approach. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was designed and fabricated for experimentation. The rocket-ejector system utilizes a single two-dimensional gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a systematic understanding of the rocket ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions Overall system performance was obtained through Global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen. nitrogen and water vapor). These experimental efforts were complemented by Computational Fluid Dynamic (CFD) flowfield analyses.
Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A
2018-03-01
Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.
A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities
NASA Astrophysics Data System (ADS)
Dedè, Luca; Garcke, Harald; Lam, Kei Fong
2017-07-01
Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.
Microfluidic System Simulation Including the Electro-Viscous Effect
NASA Technical Reports Server (NTRS)
Rojas, Eileen; Chen, C. P.; Majumdar, Alok
2007-01-01
This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, J. R.; Hnat, B.; Thyagaraja, A.
2013-05-15
Following recent observations suggesting the presence of the geodesic acoustic mode (GAM) in ohmically heated discharges in the Mega Amp Spherical Tokamak (MAST) [J. R. Robinson et al., Plasma Phys. Controlled Fusion 54, 105007 (2012)], the behaviour of the GAM is studied numerically using the two fluid, global code CENTORI [P. J. Knight et al. Comput. Phys. Commun. 183, 2346 (2012)]. We examine mode localisation and effects of magnetic geometry, given by aspect ratio, elongation, and safety factor, on the observed frequency of the mode. An excellent agreement between simulations and experimental data is found for simulation plasma parameters matchedmore » to those of MAST. Increasing aspect ratio yields good agreement between the GAM frequency found in the simulations and an analytical result obtained for elongated large aspect ratio plasmas.« less
An Ejector Air Intake Design Method for a Novel Rocket-Based Combined-Cycle Rocket Nozzle
NASA Astrophysics Data System (ADS)
Waung, Timothy S.
Rocket-based combined-cycle (RBCC) vehicles have the potential to reduce launch costs through the use of several different air breathing engine cycles, which reduce fuel consumption. The rocket-ejector cycle, in which air is entrained into an ejector section by the rocket exhaust, is used at flight speeds below Mach 2. This thesis develops a design method for an air intake geometry around a novel RBCC rocket nozzle design for the rocket-ejector engine cycle. This design method consists of a geometry creation step in which a three-dimensional intake geometry is generated, and a simple flow analysis step which predicts the air intake mass flow rate. The air intake geometry is created using the rocket nozzle geometry and eight primary input parameters. The input parameters are selected to give the user significant control over the air intake shape. The flow analysis step uses an inviscid panel method and an integral boundary layer method to estimate the air mass flow rate through the intake geometry. Intake mass flow rate is used as a performance metric since it directly affects the amount of thrust a rocket-ejector can produce. The design method results for the air intake operating at several different points along the subsonic portion of the Ariane 4 flight profile are found to under predict mass flow rate by up to 8.6% when compared to three-dimensional computational fluid dynamics simulations for the same air intake.
Large eddy simulation applications in gas turbines.
Menzies, Kevin
2009-07-28
The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.
Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv
2009-01-01
This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.
Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm
NASA Astrophysics Data System (ADS)
Catlin, Glenn; Advani, Suresh G.; Prasad, Ajay K.
The design of the flow channels in PEM fuel cells directly impacts the transport of reactant gases to the electrodes and affects cell performance. This paper presents results from a study to optimize the geometry of the flow channels in a PEM fuel cell. The optimization process implements a genetic algorithm to rapidly converge on the channel geometry that provides the highest net power output from the cell. In addition, this work implements a method for the automatic generation of parameterized channel domains that are evaluated for performance using a commercial computational fluid dynamics package from ANSYS. The software package includes GAMBIT as the solid modeling and meshing software, the solver FLUENT, and a PEMFC Add-on Module capable of modeling the relevant physical and electrochemical mechanisms that describe PEM fuel cell operation. The result of the optimization process is a set of optimal channel geometry values for the single-serpentine channel configuration. The performance of the optimal geometry is contrasted with a sub-optimal one by comparing contour plots of current density, oxygen and hydrogen concentration. In addition, the role of convective bypass in bringing fresh reactant to the catalyst layer is examined in detail. The convergence to the optimal geometry is confirmed by a bracketing study which compares the performance of the best individual to those of its neighbors with adjacent parameter values.
Yiallourou, Theresia I.; Kröger, Jan Robert; Stergiopulos, Nikolaos; Maintz, David
2012-01-01
Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques. PMID:23284970
Rodrigues, Miguel A; Balzan, Gustavo; Rosa, Mónica; Gomes, Diana; de Azevedo, Edmundo G; Singh, Satish K; Matos, Henrique A; Geraldes, Vítor
2013-01-01
Freezing is an important operation in biotherapeutics industry. However, water crystallization in solution, containing electrolytes, sugars and proteins, is difficult to control and usually leads to substantial spatial solute heterogeneity. Herein, we address the influence of the geometry of freezing direction (axial or radial) on the heterogeneity of the frozen matrix, in terms of local concentration of solutes and thermal history. Solutions of hemoglobin were frozen radially and axially using small-scale and pilot-scale freezing systems. Concentration of hemoglobin, sucrose and pH values were measured by ice-core sampling and temperature profiles were measured at several locations. The results showed that natural convection is the major source for the cryoconcentration heterogeneity of solutes over the geometry of the container. A significant improvement in this spatial heterogeneity was observed when the freezing geometry was nonconvective, i.e., the freezing front progression was unidirectional from bottom to top. Using this geometry, less than 10% variation in solutes concentration was obtained throughout the frozen solutions. This result was reproducible, even when the volume was increased by two orders of magnitude (from 30 mL to 3 L). The temperature profiles obtained for the nonconvective freezing geometry were predicted using a relatively simple computational fluid dynamics model. The reproducible solutes distribution, predictable temperature profiles, and scalability demonstrate that the bottom to top freezing geometry enables an extended control over the freezing process. This geometry has therefore shown the potential to contribute to a better understanding and control of the risks inherent to frozen storage. © 2013 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.
2009-04-01
We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well, but a good understanding of the local reservoir geology will be required to identify signals caused by the front. The streaming potential measured at a well will be maximized in low-permeability reservoirs produced at a high rate, and in thick reservoirs with low shale content.
Schmidt, Irma; Minceva, Mirjana; Arlt, Wolfgang
2012-02-17
The X-ray computed tomography (CT) is used to determine local parameters related to the column packing homogeneity and hydrodynamics in columns packed with spherically and irregularly shaped particles of same size. The results showed that the variation of porosity and axial dispersion coefficient along the column axis is insignificant, compared to their radial distribution. The methodology of using the data attained by CT measurements to perform a CFD simulation of a batch separation of model binary mixtures, with different concentration and separation factors is demonstrated. The results of the CFD simulation study show that columns packed with spherically shaped particles provide higher yield in comparison to columns packed with irregularly shaped particles only below a certain value of the separation factor. The presented methodology can be used for selecting a suited packing material for a particular separation task. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slattery, Stuart R
ExaMPM is a mini-application for the Material Point Method (MPM) for studying the application of MPM to future exascale computing systems. MPM is a general method for computational mechanics and fluids and is used in a wide variety of science and engineering disciplines to study problems with large deformations, phase change, fracture, and other phenomena. ExaMPM provides a reference implementation of MPM as described in the 1994 work of Sulsky et.al. (Sulsky, Deborah, Zhen Chen, and Howard L. Schreyer. "A particle method for history-dependent materials." Computer methods in applied mechanics and engineering 118.1-2 (1994): 179-196.). The software can solve basicmore » MPM problems in solid mechanics using the original algorithm of Sulsky with explicit time integration, basic geometries, and free-slip and no-slip boundary conditions as described in the reference. ExaMPM is intended to be used as a starting point to design new parallel algorithms for the next generation of DOE supercomputers.« less
Pore geometry effects on intrapore viscous to inertial flows and on effective hydraulic parameters
NASA Astrophysics Data System (ADS)
Chaudhary, Kuldeep; Cardenas, M. Bayani; Deng, Wen; Bennett, Philip C.
2013-02-01
In this article, the effects of different diverging-converging pore geometries were investigated, and the microscale fluid flow and effective hydraulic properties from these pores were compared with that of a pipe from viscous to inertial laminar flow regimes. The flow fields are obtained using computational fluid dynamics, and the comparative analysis is based on a new dimensionless hydraulic shape factor β, which is the "specific surface" scaled by the length of pores. Results from all diverging-converging pores show an inverse pattern in velocity and vorticity distributions relative to the pipe flow. The hydraulic conductivity K of all pores is dependent on and can be predicted from β with a power function with an exponent of 3/2. The differences in K are due to the differences in distribution of local friction drag on the pore walls. At Reynolds number (Re) ˜ 0 flows, viscous eddies are found to exist almost in all pores in different sizes, but not in the pipe. Eddies grow when Re → 1 and leads to the failure of Darcy's law. During non-Darcy or Forchheimer flows, the apparent hydraulic conductivity Ka decreases due to the growth of eddies, which constricts the bulk flow region. At Re > 1, the rate of decrease in Ka increases, and at Re >> 1, it decreases to where the change in Ka ≈ 0, and flows once again exhibits a Darcy-type relationship. The degree of nonlinearity during non-Darcy flow decreases for pores with increasing β. The nonlinear flow behavior becomes weaker as β increases to its maximum value in the pipe, which shows no nonlinearity in the flow; in essence, Darcy's law stays valid in the pipe at all laminar flow conditions. The diverging-converging geometry in pores plays a critical role in modifying the intrapore fluid flow, implying that this property should be incorporated in effective larger-scale models, e.g., pore-network models.
Patient specific CFD models of nasal airflow: overview of methods and challenges.
Kim, Sung Kyun; Na, Yang; Kim, Jee-In; Chung, Seung-Kyu
2013-01-18
Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized by complex airway channels and significant individual differences, is difficult to analyze. Thus, commonly adopted diagnostic tools have yielded limited success. Nevertheless, with the rapid advances in computer resources, there have been more elaborate attempts to correlate airflow characteristics in human nasal airways with the symptoms and functions of the nose by computational fluid dynamics study. Furthermore, the computed nasal geometry can be virtually modified to reflect predicted results of the proposed surgical technique. In this article, several computational fluid mechanics (CFD) issues on patient-specific three dimensional (3D) modeling of nasal cavity and clinical applications were reviewed in relation to the cases of deviated nasal septum (decision for surgery), turbinectomy, and maxillary sinus ventilation (simulated- and post-surgery). Clinical relevance of fluid mechanical parameters, such as nasal resistance, flow allocation, wall shear stress, heat/humidity/NO gas distributions, to the symptoms and surgical outcome were discussed. Absolute values of such parameters reported by many research groups were different each other due to individual difference of nasal anatomy, the methodology for 3D modeling and numerical grid, laminar/turbulent flow model in CFD code. But, the correlation of these parameters to symptoms and surgery outcome seems to be obvious in each research group with subject-specific models and its variations (virtual- and post-surgery models). For the more reliable, patient-specific, and objective tools for diagnosis and outcomes of nasal surgery by using CFD, the future challenges will be the standardizations on the methodology for creating 3D airway models and the CFD procedures. Copyright © 2012 Elsevier Ltd. All rights reserved.
Computational Fluid Dynamics of Developing Avian Outflow Tract Heart Valves
Bharadwaj, Koonal N.; Spitz, Cassie; Shekhar, Akshay; Yalcin, Huseyin C.; Butcher, Jonathan T.
2012-01-01
Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16 to 30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm2 at HH16 to 671.24 dynes/cm2 at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm2 at HH16 to 136.50 dynes/cm2 at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research. PMID:22535311
On the fundamental unsteady fluid dynamics of shock-induced flows through ducts
NASA Astrophysics Data System (ADS)
Mendoza, Nicole Renee
Unsteady shock wave propagation through ducts has many applications, ranging from blast wave shelter design to advanced high-speed propulsion systems. The research objective of this study was improved fundamental understanding of the transient flow structures during unsteady shock wave propagation through rectangular ducts with varying cross-sectional area. This research focused on the fluid dynamics of the unsteady shock-induced flow fields, with an emphasis placed on understanding and characterizing the mechanisms behind flow compression (wave structures), flow induction (via shock waves), and enhanced mixing (via shock-induced viscous shear layers). A theoretical and numerical (CFD) parametric study was performed, in which the effects of these parameters on the unsteady flow fields were examined: incident shock strength, area ratio, and viscous mode (inviscid, laminar, and turbulent). Two geometries were considered: the backward-facing step (BFS) geometry, which provided a benchmark and conceptual framework, and the splitter plate (SP) geometry, which was a canonical representation of the engine flow path. The theoretical analysis was inviscid, quasi-1 D and quasi-steady; and the computational analysis was fully 2D, time-accurate, and VISCOUS. The theory provided the wave patterns and primary wave strengths for the BFS geometry, and the simulations verified the wave pattems and quantified the effects of geometry and viscosity. It was shown that the theoretical wave patterns on the BFS geometry can be used to systematically analyze the transient, 20, viscous flows on the SP geometry. This work also highlighted the importance and the role of oscillating shock and expansion waves in the development of these unsteady flows. The potential for both upstream and downstream flow induction was addressed. Positive upstream flow induction was not found in this study due to the persistent formation of an upstream-moving shock wave. Enhanced mixing was addressed by examining the evolution of the unsteady shear layer, its instability, and their effects on the flow field. The instability always appeared after the reflected shock interaction, and was exacerbated in the laminar cases and damped out in the turbulent cases. This research provided new understanding of the long-term evolution of these confined flows. Lastly, the turbulent work is one of the few turbulent studies on these flows.
NASA Astrophysics Data System (ADS)
Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino
2017-11-01
In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.
RotCFD Analysis of the AH-56 Cheyenne Hub Drag
NASA Technical Reports Server (NTRS)
Solis, Eduardo; Bass, Tal A.; Keith, Matthew D.; Oppenheim, Rebecca T.; Runyon, Bryan T.; Veras-Alba, Belen
2016-01-01
In 2016, the U.S. Army Aviation Development Directorate (ADD) conducted tests in the U.S. Army 7- by 10- Foot Wind Tunnel at NASA Ames Research Center of a nonrotating 2/5th-scale AH-56 rotor hub. The objective of the tests was to determine how removing the mechanical control gyro affected the drag. Data for the lift, drag, and pitching moment were recorded for the 4-bladed rotor hub in various hardware configurations, azimuth angles, and angles of attack. Numerical simulations of a selection of the configurations and orientations were then performed, and the results were compared with the test data. To generate the simulation results, the hardware configurations were modeled using Creo and Rhinoceros 5, three-dimensional surface modeling computer-aided design (CAD) programs. The CAD model was imported into Rotorcraft Computational Fluid Dynamics (RotCFD), a computational fluid dynamics (CFD) tool used for analyzing rotor flow fields. RotCFD simulation results were compared with the experimental results of three hardware configurations at two azimuth angles, two angles of attack, and with and without wind tunnel walls. The results help validate RotCFD as a tool for analyzing low-drag rotor hub designs for advanced high-speed rotorcraft concepts. Future work will involve simulating additional hub geometries to reduce drag or tailor to other desired performance levels.
CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT.
Soudah, Eduardo; Ng, E Y K; Loong, T H; Bordone, Maurizio; Pua, Uei; Narayanan, Sriram
2013-01-01
The objective of this study is to find a correlation between the abdominal aortic aneurysm (AAA) geometric parameters, wall stress shear (WSS), abdominal flow patterns, intraluminal thrombus (ILT), and AAA arterial wall rupture using computational fluid dynamics (CFD). Real AAA 3D models were created by three-dimensional (3D) reconstruction of in vivo acquired computed tomography (CT) images from 5 patients. Based on 3D AAA models, high quality volume meshes were created using an optimal tetrahedral aspect ratio for the whole domain. In order to quantify the WSS and the recirculation inside the AAA, a 3D CFD using finite elements analysis was used. The CFD computation was performed assuming that the arterial wall is rigid and the blood is considered a homogeneous Newtonian fluid with a density of 1050 kg/m(3) and a kinematic viscosity of 4 × 10(-3) Pa·s. Parallelization procedures were used in order to increase the performance of the CFD calculations. A relation between AAA geometric parameters (asymmetry index ( β ), saccular index ( γ ), deformation diameter ratio ( χ ), and tortuosity index ( ε )) and hemodynamic loads was observed, and it could be used as a potential predictor of AAA arterial wall rupture and potential ILT formation.
NASA Technical Reports Server (NTRS)
Lamar, John E.; Obara, Clifford J.; Fisher, Bruce D.; Fisher, David F.
2001-01-01
Geometrical, flight, computational fluid dynamics (CFD), and wind-tunnel studies for the F-16XL-1 airplane are summarized over a wide range of test conditions. Details are as follows: (1) For geometry, the upper surface of the airplane and the numerical surface description compare reasonably well. (2) For flight, CFD, and wind-tunnel surface pressures, the comparisons are generally good at low angles of attack at both subsonic and transonic speeds, however, local differences are present. In addition, the shock location at transonic speeds from wind-tunnel pressure contours is near the aileron hinge line and generally is in correlative agreement with flight results. (3) For boundary layers, flight profiles were predicted reasonably well for attached flow and underneath the primary vortex but not for the secondary vortex. Flight data indicate the presence of an interaction of the secondary vortex system and the boundary layer and the boundary-layer measurements show the secondary vortex located more outboard than predicted. (4) Predicted and measured skin friction distributions showed qualitative agreement for a two vortex system. (5) Web-based data-extraction and computational-graphical tools have proven useful in expediting the preceding comparisons. (6) Data fusion has produced insightful results for a variety of visualization-based data sets.
Numerical simulation of particle transport and deposition in the pulmonary vasculature.
Sohrabi, Salman; Zheng, Junda; Finol, Ender A; Liu, Yaling
2014-12-01
To quantify the transport and adhesion of drug particles in a complex vascular environment, computational fluid particle dynamics (CFPD) simulations of blood flow and drug particulate were conducted in three different geometries representing the human lung vasculature for steady and pulsatile flow conditions. A fully developed flow profile was assumed as the inlet velocity, and a lumped mathematical model was used for the calculation of the outlet pressure boundary condition. A receptor-ligand model was used to simulate the particle binding probability. The results indicate that bigger particles have lower deposition fraction due to less chance of successful binding. Realistic unsteady flow significantly accelerates the binding activity over a wide range of particle sizes and also improves the particle deposition fraction in bifurcation regions when comparing with steady flow condition. Furthermore, surface imperfections and geometrical complexity coupled with the pulsatility effect can enhance fluid mixing and accordingly particle binding efficiency. The particle binding density at bifurcation regions increases with generation order and drug carriers are washed away faster in steady flow. Thus, when studying drug delivery mechanism in vitro and in vivo, it is important to take into account blood flow pulsatility in realistic geometry. Moreover, tissues close to bifurcations are more susceptible to deterioration due to higher uptake.
A computational geometry approach to pore network construction for granular packings
NASA Astrophysics Data System (ADS)
van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette
2018-03-01
Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.
Steady-streaming effects on the motion of the cerebrospinal fluid (CSF) in the spinal canal
NASA Astrophysics Data System (ADS)
Lawrence, Jenna; Coenen, Wilfried; Sanchez, Antonio; Lasheras, Juan
2017-11-01
With each heart beat the oscillatory blood supply to the rigid cranial vault produces a time-periodic variation of the intracranial pressure that drives the cerebrospinal fluid (CSF) periodically in and out of the compliant spinal canal. We have recently conducted an analysis of this flow-structure interaction problem taking advantage of the small compliance of the dura membrane bounding externally the CSF and of the disparity of length scales associated with the geometry of the subarachnoid space. We have shown in an idealized geometry that the steady-streaming motion associated with this periodic flow, resulting from the nonlinear cumulative effects of convective acceleration, causes a bulk recirculation of CSF inside the spinal canal, which has been observed in many radiological studies. We extend here our study to investigate the possible contribution arising from the flow around the nerve roots protruding from the spinal cord, an effect that was neglected in our previous work. For this purpose, we consider the oscillatory motion around a cylindrical post confined between two parallel plates. For large values of the relevant Strouhal number we find at leading order a harmonic Stokes flow, whereas steady-streaming effects enter in the first-order corrections, which are computed for realistic values of the Womersley number and of the cylinder height-to-radius ratio.
NASA Astrophysics Data System (ADS)
Llewellin, E. W.
2010-02-01
LBflow is a flexible, extensible implementation of the lattice Boltzmann method, developed with geophysical applications in mind. The theoretical basis for LBflow, and its implementation, are presented in the companion paper, 'Part I'. This article covers the practical usage of LBflow and presents guidelines for obtaining optimal results from available computing power. The relationships among simulation resolution, accuracy, runtime and memory requirements are investigated in detail. Particular attention is paid to the origin, quantification and minimization of errors. LBflow is validated against analytical, numerical and experimental results for a range of three-dimensional flow geometries. The fluid conductance of prismatic pipes with various cross sections is calculated with LBflow and found to be in excellent agreement with published results. Simulated flow along sinusoidally constricted pipes gives good agreement with experimental data for a wide range of Reynolds number. The permeability of packs of spheres is determined and shown to be in excellent agreement with analytical results. The accuracy of internal flow patterns within the investigated geometries is also in excellent quantitative agreement with published data. The development of vortices within a sinusoidally constricted pipe with increasing Reynolds number is shown, demonstrating the insight that LBflow can offer as a 'virtual laboratory' for fluid flow.
Fluid-structure coupling for wind turbine blade analysis using OpenFOAM
NASA Astrophysics Data System (ADS)
Dose, Bastian; Herraez, Ivan; Peinke, Joachim
2015-11-01
Modern wind turbine rotor blades are designed increasingly large and flexible. This structural flexibility represents a problem for the field of Computational Fluid Dynamics (CFD), which is used for accurate load calculations and detailed investigations of rotor aerodynamics. As the blade geometries within CFD simulations are considered stiff, the effect of blade deformation caused by aerodynamic loads cannot be captured by the common CFD approach. Coupling the flow solver with a structural solver can overcome this restriction and enables the investigation of flexible wind turbine blades. For this purpose, a new Finite Element (FE) solver was implemented into the open source CFD code OpenFOAM. Using a beam element formulation based on the Geometrically Exact Beam Theory (GEBT), the structural model can capture geometric non-linearities such as large deformations. Coupled with CFD solvers of the OpenFOAM package, the new framework represents a powerful tool for aerodynamic investigations. In this work, we investigated the aerodynamic performance of a state of the art wind turbine. For different wind speeds, aerodynamic key parameters are evaluated and compared for both, rigid and flexible blade geometries. The present work is funded within the framework of the joint project Smart Blades (0325601D) by the German Federal Ministry for Economic Affairs and Energy (BMWi) under decision of the German Federal Parliament.
Viscous Rayleigh-Taylor instability in spherical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikaelian, Karnig O.
We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.
Viscous Rayleigh-Taylor instability in spherical geometry
Mikaelian, Karnig O.
2016-02-08
We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.
NASA Technical Reports Server (NTRS)
Baskharone, Erian A.
1993-01-01
This study concerns the rotor dynamic characteristics of fluid-encompassed rotors, with special emphasis on shrouded pump impellers. The core of the study is a versatile and categorically new finite-element-based perturbation model, which is based on a rigorous flow analysis and what we have generically termed the 'virtually' deformable finite-element approach. The model is first applied to the case of a smooth annular seal for verification purposes. The rotor excitation components, in this sample problem, give rise to a purely cylindrical, purely conical, and a simultaneous cylindrical/conical rotor whirl around the housing centerline. In all cases, the computed results are compared to existing experimental and analytical data involving the same seal geometry and operating conditions. Next, two labyrinth-seal configurations, which share the same tooth-to-tooth chamber geometry but differ in the total number of chambers, were investigated. The results, in this case, are compared to experimental measurements for both seal configurations. The focus is finally shifted to the shrouded-impeller problem, where the stability effects of the leakage flow in the shroud-to-housing secondary passage are investigated. To this end, the computational model is applied to a typical shrouded-impeller pump stage, fabricated and rotor dynamically tested by Sulzer Bros., and the results compared to those of a simplified 'bulk-flow' analysis and Sulzer Bros.' test data. In addition to assessing the computed rotor dynamic coefficients, the shrouded-impeller study also covers a controversial topic, namely that of the leakage-passage inlet swirl, which was previously cited as the origin of highly unconventional (resonance-like) trends of the fluid-exerted forces. In order to validate this claim, a 'microscopic' study of the fluid/shroud interaction mechanism is conducted, with the focus being on the structure of the perturbed flow field associated with the impeller whirl. The conclusions of this study were solidified by the outcome of a numerical-certainty exercise, where the grid dependency of the numerical results is objectively examined. The final phase of the shrouded-impeller investigation involves the validation of a built-in assumption, in all other perturbation models, whereby single-harmonic tangential distributions of all the flow thermophysical properties are imposed. The last phase of the investigation course is aimed at verifying the fine details of the perturbed flow field in light of recent set of detailed LDA measurements in a smooth annular seal. Grid dependency of the fluid-induced forces is also investigated, and specific recommendations are made.
Validation of Slosh Modeling Approach Using STAR-CCM+
NASA Technical Reports Server (NTRS)
Benson, David J.; Ng, Wanyi
2018-01-01
Without an adequate understanding of propellant slosh, the spacecraft attitude control system may be inadequate to control the spacecraft or there may be an unexpected loss of science observation time due to higher slosh settling times. Computational fluid dynamics (CFD) is used to model propellant slosh. STAR-CCM+ is a commercially available CFD code. This paper seeks to validate the CFD modeling approach via a comparison between STAR-CCM+ liquid slosh modeling results and experimental, empirically, and analytically derived results. The geometries examined are a bare right cylinder tank and a right cylinder with a single ring baffle.
Update on Advection-Diffusion Purge Flow Model
NASA Technical Reports Server (NTRS)
Brieda, Lubos
2015-01-01
Gaseous purge is commonly used in sensitive spacecraft optical or electronic instruments to prevent infiltration of contaminants and/or water vapor. Typically, purge is sized using simplistic zero-dimensional models that do not take into account instrument geometry, surface effects, and the dependence of diffusive flux on the concentration gradient. For this reason, an axisymmetric computational fluid dynamics (CFD) simulation was recently developed to model contaminant infiltration and removal by purge. The solver uses a combined Navier-Stokes and Advection-Diffusion approach. In this talk, we report on updates in the model, namely inclusion of a particulate transport model.
Unstructured grid research and use at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.
1993-01-01
Computational fluid dynamics applications of grid research at LRC include inlets, nozzles, and ducts; turbomachinery; propellers - ducted and unducted; and aircraft icing. Some issues related to internal flow grid generation are resolution requirements on several boundaries, shock resolution vs. grid periodicity, grid spacing at blade/shroud gap, grid generation in turbine blade passages, and grid generation for inlet/nozzle geometries. Aircraft icing grid generation issues include (1) small structures relative to airfoil chord must be resolved; (2) excessive number of grid points in far-field using structured grid; and (3) grid must be recreated as ice shape grows.
Time-Dependent Simulations of Turbopump Flows
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan; Chan, William; Williams, Robert
2002-01-01
Unsteady flow simulations for RLV (Reusable Launch Vehicles) 2nd Generation baseline turbopump for one and half impeller rotations have been completed by using a 34.3 Million grid points model. MLP (Multi-Level Parallelism) shared memory parallelism has been implemented in INS3D, and benchmarked. Code optimization for cash based platforms will be completed by the end of September 2001. Moving boundary capability is obtained by using DCF module. Scripting capability from CAD (computer aided design) geometry to solution has been developed. Data compression is applied to reduce data size in post processing. Fluid/Structure coupling has been initiated.
Computer modeling of a hot filament diamond deposition reactor
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.; Washlock, Paul A.; Angus, John C.
1991-01-01
A commercial fluid mechanics program, FLUENT, has been applied to the modeling of a hot-filament diamond deposition reactor. Streamlines and contours of constant temperature and species concentrations are obtained for practical reactor geometries and conditions. The modeling is presently restricted to two-dimensional simulations and to a chemical mechanism of ten independent homogeneous and surface reactions. Comparisons are made between predicted power consumption, substrate temperature, and concentrations of atomic hydrogen and methyl-radical with values taken from the literature. The results to date indicate that the modeling can aid in the rational design and analysis of practical reactor configurations.
NASA Technical Reports Server (NTRS)
Wright, Jeffrey; Thakur, Siddharth
2006-01-01
Loci-STREAM is an evolving computational fluid dynamics (CFD) software tool for simulating possibly chemically reacting, possibly unsteady flows in diverse settings, including rocket engines, turbomachines, oil refineries, etc. Loci-STREAM implements a pressure- based flow-solving algorithm that utilizes unstructured grids. (The benefit of low memory usage by pressure-based algorithms is well recognized by experts in the field.) The algorithm is robust for flows at all speeds from zero to hypersonic. The flexibility of arbitrary polyhedral grids enables accurate, efficient simulation of flows in complex geometries, including those of plume-impingement problems. The present version - Loci-STREAM version 0.9 - includes an interface with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library for access to enhanced linear-equation-solving programs therein that accelerate convergence toward a solution. The name "Loci" reflects the creation of this software within the Loci computational framework, which was developed at Mississippi State University for the primary purpose of simplifying the writing of complex multidisciplinary application programs to run in distributed-memory computing environments including clusters of personal computers. Loci has been designed to relieve application programmers of the details of programming for distributed-memory computers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostron, B.; Toth, J.
Lenticular reservoirs are accompanied by diagnostic pore-pressure anomalies when situated in a field of formation-fluid flow. Computer simulations have shown that these anomalies depend on the size and shape of the lens, the direction and intensity of flow, and the hydraulic conductivity contrast between the lens and the surrounding rock. Furthermore, the anomalies reflect the position of the petroleum-saturated portion of a lens since hydraulic conductivity is related to hydrocarbon content. Studies to date have shown that for an oil-free lens a pair of oppositely directed, symmetrical pressure anomalies exists. Pore-pressure distributions from drill-stem tests in mature, well-explored regions canmore » be compared to computer-simulated pore-pressure anomaly patterns. Results can be interpreted in terms of the lens geometry and degree of hydrocarbon saturation.« less
Flowfield visualization for SSME hot gas manifold
NASA Technical Reports Server (NTRS)
Roger, Robert P.
1988-01-01
The objective of this research, as defined by NASA-Marshall Space Flight Center, was two-fold: (1) to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME), and (2) to provide analytical support for SSME related numerical computational experiments, being performed by the Computational Fluid Dynamics staff in the Aerophysics Division of the Structures and Dynamics Laboratory at NASA-MSFC. Numerical results of HGM were calculations to complement both water flow visualization experiments and air flow visualization experiments and air experiments in two-duct geometries performed at NASA-MSFC and Rocketdyne. In addition, code modification and improvement efforts were to strengthen the CFD capabilities of NASA-MSFC for producing reliable predictions of flow environments within the SSME.
Automated Boundary Conditions for Wind Tunnel Simulations
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee
2018-01-01
Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.
NASA Astrophysics Data System (ADS)
Xiang, Junting; Schlüter, Jörg Uwe; Duan, Fei
2014-04-01
In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its miniaturization. The NASA stage 35 compressor is selected as the configuration in this study and computational fluid dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.
A comparative study of computational solutions to flow over a backward-facing step
NASA Technical Reports Server (NTRS)
Mizukami, M.; Georgiadis, N. J.; Cannon, M. R.
1993-01-01
A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important.
Smagglce: Surface Modeling and Grid Generation for Iced Airfoils: Phase 1 Results
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Choo, Yung K.; Braun, Donald C.; Baez, Marivell; Gnepp, Steven
1999-01-01
SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils) is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils with grid-based Computational Fluid Dynamics (CFD). It includes tools for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. SmaggIce provides the underlying computations to perform these functions, a GUI (Graphical User Interface) to control and interact with those functions, and graphical displays of results, it is being developed at NASA Glenn Research Center. This paper discusses the overall design of SmaggIce as well as what has been implemented in Phase 1. Phase 1 results provide two types of software tools: interactive ice shape probing and interactive ice shape control. The ice shape probing tools will provide aircraft icing engineers and scientists with an interactive means to measure the physical characteristics of ice shapes. On the other hand, the ice shape control features of SmaggIce will allow engineers to examine input geometry data, correct or modify any deficiencies in the geometry, and perform controlled systematic smoothing to a level that will make the CFD process manageable.
High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations
NASA Technical Reports Server (NTRS)
Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.
2017-01-01
To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1
Nonlinear 3D visco-resistive MHD modeling of fusion plasmas: a comparison between numerical codes
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Chacon, L.; Cappello, S.
2008-11-01
Fluid plasma models (and, in particular, the MHD model) are extensively used in the theoretical description of laboratory and astrophysical plasmas. We present here a successful benchmark between two nonlinear, three-dimensional, compressible visco-resistive MHD codes. One is the fully implicit, finite volume code PIXIE3D [1,2], which is characterized by many attractive features, notably the generalized curvilinear formulation (which makes the code applicable to different geometries) and the possibility to include in the computation the energy transport equation and the extended MHD version of Ohm's law. In addition, the parallel version of the code features excellent scalability properties. Results from this code, obtained in cylindrical geometry, are compared with those produced by the semi-implicit cylindrical code SpeCyl, which uses finite differences radially, and spectral formulation in the other coordinates [3]. Both single and multi-mode simulations are benchmarked, regarding both reversed field pinch (RFP) and ohmic tokamak magnetic configurations. [1] L. Chacon, Computer Physics Communications 163, 143 (2004). [2] L. Chacon, Phys. Plasmas 15, 056103 (2008). [3] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein.
NASA Astrophysics Data System (ADS)
Lorenzi, M.; Mitroglou, N.; Santini, M.; Gavaises, M.
2017-03-01
An experimental technique for the estimation of the temporal-averaged vapour volume fraction within high-speed cavitating flow orifices is presented. The scientific instrument is designed to employ X-ray micro computed tomography (microCT) as a quantitative 3D measuring technique applied to custom designed, large-scale, orifice-type flow channels made from Polyether-ether-ketone (PEEK). The attenuation of the ionising electromagnetic radiation by the fluid under examination depends on its local density; the transmitted radiation through the cavitation volume is compared to the incident radiation, and combination of radiographies from sufficient number of angles leads to the reconstruction of attenuation coefficients versus the spatial position. This results to a 3D volume fraction distribution measurement of the developing multiphase flow. The experimental results obtained are compared against the high speed shadowgraph visualisation images obtained in an optically transparent nozzle with identical injection geometry; comparison between the temporal mean image and the microCT reconstruction shows excellent agreement. At the same time, the real 3D internal channel geometry (possibly eroded) has been measured and compared to the nominal manufacturing CAD drawing of the test nozzle.
Lorenzi, M; Mitroglou, N; Santini, M; Gavaises, M
2017-03-01
An experimental technique for the estimation of the temporal-averaged vapour volume fraction within high-speed cavitating flow orifices is presented. The scientific instrument is designed to employ X-ray micro computed tomography (microCT) as a quantitative 3D measuring technique applied to custom designed, large-scale, orifice-type flow channels made from Polyether-ether-ketone (PEEK). The attenuation of the ionising electromagnetic radiation by the fluid under examination depends on its local density; the transmitted radiation through the cavitation volume is compared to the incident radiation, and combination of radiographies from sufficient number of angles leads to the reconstruction of attenuation coefficients versus the spatial position. This results to a 3D volume fraction distribution measurement of the developing multiphase flow. The experimental results obtained are compared against the high speed shadowgraph visualisation images obtained in an optically transparent nozzle with identical injection geometry; comparison between the temporal mean image and the microCT reconstruction shows excellent agreement. At the same time, the real 3D internal channel geometry (possibly eroded) has been measured and compared to the nominal manufacturing CAD drawing of the test nozzle.
Meshfree and efficient modeling of swimming cells
NASA Astrophysics Data System (ADS)
Gallagher, Meurig T.; Smith, David J.
2018-05-01
Locomotion in Stokes flow is an intensively studied problem because it describes important biological phenomena such as the motility of many species' sperm, bacteria, algae, and protozoa. Numerical computations can be challenging, particularly in three dimensions, due to the presence of moving boundaries and complex geometries; methods which combine ease of implementation and computational efficiency are therefore needed. A recently proposed method to discretize the regularized Stokeslet boundary integral equation without the need for a connected mesh is applied to the inertialess locomotion problem in Stokes flow. The mathematical formulation and key aspects of the computational implementation in matlab® or GNU Octave are described, followed by numerical experiments with biflagellate algae and multiple uniflagellate sperm swimming between no-slip surfaces, for which both swimming trajectories and flow fields are calculated. These computational experiments required minutes of time on modest hardware; an extensible implementation is provided in a GitHub repository. The nearest-neighbor discretization dramatically improves convergence and robustness, a key challenge in extending the regularized Stokeslet method to complicated three-dimensional biological fluid problems.
Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob
2018-01-02
Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.
Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh
2017-02-28
We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.
1989-01-01
The progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The convective viscous integral formulation was derived and implemented in the general purpose computer program GP-BEST. The new convective kernel functions, in turn, necessitated the development of refined integration techniques. As a result, however, since the physics of the problem is embedded in these kernels, boundary element solutions can now be obtained at very high Reynolds number. Flow around obstacles can be solved approximately with an efficient linearized boundary-only analysis or, more exactly, by including all of the nonlinearities present in the neighborhood of the obstacle. The other major accomplishment was the development of a comprehensive fluid-structure interaction capability within GP-BEST. This new facility is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code (GP-BEST) can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach.
Thermal noise in confined fluids.
Sanghi, T; Aluru, N R
2014-11-07
In this work, we discuss a combined memory function equation (MFE) and generalized Langevin equation (GLE) approach (referred to as MFE/GLE formulation) to characterize thermal noise in confined fluids. Our study reveals that for fluids confined inside nanoscale geometries, the correlation time and the time decay of the autocorrelation function of the thermal noise are not significantly different across the confinement. We show that it is the strong cross-correlation of the mean force with the molecular velocity that gives rise to the spatial anisotropy in the velocity-autocorrelation function of the confined fluids. Further, we use the MFE/GLE formulation to extract the thermal force a fluid molecule experiences in a MD simulation. Noise extraction from MD simulation suggests that the frequency distribution of the thermal force is non-Gaussian. Also, the frequency distribution of the thermal force near the confining surface is found to be different in the direction parallel and perpendicular to the confinement. We also use the formulation to compute the noise correlation time of water confined inside a (6,6) carbon-nanotube (CNT). It is observed that inside the (6,6) CNT, in which water arranges itself in a highly concerted single-file arrangement, the correlation time of thermal noise is about an order of magnitude higher than that of bulk water.
Thermal noise in confined fluids
NASA Astrophysics Data System (ADS)
Sanghi, T.; Aluru, N. R.
2014-11-01
In this work, we discuss a combined memory function equation (MFE) and generalized Langevin equation (GLE) approach (referred to as MFE/GLE formulation) to characterize thermal noise in confined fluids. Our study reveals that for fluids confined inside nanoscale geometries, the correlation time and the time decay of the autocorrelation function of the thermal noise are not significantly different across the confinement. We show that it is the strong cross-correlation of the mean force with the molecular velocity that gives rise to the spatial anisotropy in the velocity-autocorrelation function of the confined fluids. Further, we use the MFE/GLE formulation to extract the thermal force a fluid molecule experiences in a MD simulation. Noise extraction from MD simulation suggests that the frequency distribution of the thermal force is non-Gaussian. Also, the frequency distribution of the thermal force near the confining surface is found to be different in the direction parallel and perpendicular to the confinement. We also use the formulation to compute the noise correlation time of water confined inside a (6,6) carbon-nanotube (CNT). It is observed that inside the (6,6) CNT, in which water arranges itself in a highly concerted single-file arrangement, the correlation time of thermal noise is about an order of magnitude higher than that of bulk water.
Numerical simulation of the flow about the F-18 HARV at high angle of attack
NASA Technical Reports Server (NTRS)
Murman, Scott M.
1995-01-01
This research has been aimed at validating numerical methods for computing the flow about the complete F-18 HARV at alpha = 30 deg and alpha = 45 deg. At 30 deg angle of attack, the flow about the F-18 is dominated by the formation, and subsequent breakdown, of strong vortices over the wing leading-edge extensions (LEX). As the angle of attack is increased to alpha = 45 deg, the fuselage forebody of the F-18 contains significant laminar and transitional regions which are not present at alpha = 30 deg. Further, the flow over the LEX at alpha = 45 deg is dominated by an unsteady shedding in time, rather than strong coherent vortices. This complex physics, combined with the complex geometry of a full-aircraft configuration, provides a challenge for current computational fluid dynamics (CFD) techniques. The following sections present the numerical method and grid generation scheme that was used, a review of prior research done to numerically model the F-18 HARV, and a discussion of the current research. The current research is broken into three main topics; the effect of engine-inlet mass-flow rate on the F-18 vortex breakdown position, the results using a refined F-18 computational model to compute the flow at alpha = 30 deg and alpha = 45 deg, and research done using the simplified geometry of an ogive-cylinder configuration to investigate the physics of unsteady shear-layer shedding. The last section briefly summarizes the discussion.
Tena, Ana F; Fernández, Joaquín; Álvarez, Eduardo; Casan, Pere; Walters, D Keith
2017-06-01
The need for a better understanding of pulmonary diseases has led to increased interest in the development of realistic computational models of the human lung. To minimize computational cost, a reduced geometry model is used for a model lung airway geometry up to generation 16. Truncated airway branches require physiologically realistic boundary conditions to accurately represent the effect of the removed airway sections. A user-defined function has been developed, which applies velocities mapped from similar locations in fully resolved airway sections. The methodology can be applied in any general purpose computational fluid dynamics code, with the only limitation that the lung model must be symmetrical in each truncated branch. Unsteady simulations have been performed to verify the operation of the model. The test case simulates a spirometry because the lung is obliged to rapidly perform both inspiration and expiration. Once the simulation was completed, the obtained pressure in the lower level of the lung was used as a boundary condition. The output velocity, which is a numerical spirometry, was compared with the experimental spirometry for validation purposes. This model can be applied for a wide range of patient-specific resolution levels. If the upper airway generations have been constructed from a computed tomography scan, it would be possible to quickly obtain a complete reconstruction of the lung specific to a specific person, which would allow individualized therapies. Copyright © 2016 John Wiley & Sons, Ltd.
Simulation Of The Synovial Fluid In A Deformable Cavity
NASA Astrophysics Data System (ADS)
Martinez-Gutierrez, Nancy; Ibarra-Bracamontes, Laura A.
2016-11-01
The main components of a synovial joint are a cartilage and a biofluid known as the synovial fluid. The results were obtained using the FLUENT software to simulate the behavior of the synovial fluid within a deformable cavity with a simple geometry. The cartilage is represented as a porous region. By reducing the available region for the fluid, a fluid displacement into the cartilage is induced. The total pressure reached in the interface of the deformable cavity and the porous region is presented. The geometry and properties of the system are scaled to values found in a knee joint. The effect of deformation rate, fluid viscosity and properties of the porous medium on the total pressure reached are analyzed. The higher pressures are reached either for high deformation rate or when the fluid viscosity increases. This study was supported by the Mexican Council of Science and Technology (CONACyT) and by the Scientific Research Coordination of the University of Michoacan in Mexico.
Towards the optimisation and adaptation of dry powder inhalers.
Cui, Y; Schmalfuß, S; Zellnitz, S; Sommerfeld, M; Urbanetz, N
2014-08-15
Pulmonary drug delivery by dry powder inhalers is becoming more and more popular. Such an inhalation device must insure that during the inhalation process the drug powder is detached from the carrier due to fluid flow stresses. The goal of the project is the development of a drug powder detachment model to be used in numerical computations (CFD, computational fluid dynamics) of fluid flow and carrier particle motion through the inhaler and the resulting efficiency of drug delivery. This programme will be the basis for the optimisation of inhaler geometry and dry powder inhaler formulation. For this purpose a multi-scale approach is adopted. First the flow field through the inhaler is numerically calculated with OpenFOAM(®) and the flow stresses experienced by the carrier particles are recorded. This information is used for micro-scale simulations using the Lattice-Boltzmann method where only one carrier particle covered with drug powder is placed in cubic flow domain and exposed to the relevant flow situations, e.g. plug and shear flow with different Reynolds numbers. Therefrom the fluid forces on the drug particles are obtained. In order to allow the determination of the drug particle detachment possibility by lift-off, sliding or rolling, also measurements by AFM (atomic force microscope) were conducted for different carrier particle surface structures. The contact properties, such as van der Waals force, friction coefficient and adhesion surface energy were used to determine, from a force or moment balance (fluid forces versus contact forces), the detachment probability by the three mechanisms as a function of carrier particle Reynolds number. These results will be used for deriving the drug powder detachment model. Copyright © 2014 Elsevier B.V. All rights reserved.
Agujetas, R; González-Fernández, M R; Nogales-Asensio, J M; Montanero, J M
2018-05-30
Fractional flow reverse (FFR) is the gold standard assessment of the hemodynamic significance of coronary stenoses. However, it requires the catheterization of the coronary artery to determine the pressure waveforms proximal and distal to the stenosis. On the contrary, computational fluid dynamics enables the calculation of the FFR value from relatively non-invasive computed tomography angiography (CTA). We analyze the flow across idealized highly-eccentric coronary stenoses by solving the Navier-Stokes equations. We examine the influence of several aspects (approximations) of the simulation method on the calculation of the FFR value. We study the effects on the FFR value of errors made in the segmentation of clinical images. For this purpose, we compare the FFR value for the nominal geometry with that calculated for other shapes that slightly deviate from that geometry. This analysis is conducted for a range of stenosis severities and different inlet velocity and pressure waveforms. The errors made in assuming a uniform velocity profile in front of the stenosis, as well as those due to the Newtonian and laminar approximations, are negligible for stenosis severities leading to FFR values around the threshold 0.8. The limited resolution of the stenosis geometry reconstruction is the major source of error when predicting the FFR value. Both systematic errors in the contour detection of just 1-pixel size in the CTA images and a low-quality representation of the stenosis surface (coarse faceted geometry) may yield wrong outcomes of the FFR assessment for an important set of eccentric stenoses. On the contrary, the spatial resolution of images acquired with optical coherence tomography may be sufficient to ensure accurate predictions for the FFR value.
Theoretical regime diagrams for thermally driven flows in a beta-plane channel. [in atmosphere
NASA Technical Reports Server (NTRS)
Geisler, J. E.; Fowlis, W. W.
1979-01-01
It is noted that thermally driven flows in rotating laboratory containers with cylindrical geometry can be axially symmetric or wavelike depending on the experimental parameters. In anticipation that rotating fluid experiments might soon be done in spherical shell geometry, Barcilon's model has been extended to a beta-plane channel in order to gain a rough understanding of the effects of rotating spherical geometry. An incompressible fluid version of the Charney (1947) model of baroclinic instability, modified to include Ekman pumping at rigid horizontal boundaries is used. With this model, stability boundaries are mapped out for individual zonal wavenumbers in the parameter space used by Barcilon.
Convection in Slab and Spheroidal Geometries
NASA Technical Reports Server (NTRS)
Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.
2000-01-01
Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Henry; Wang, Cong; Winterfeld, Philip
An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added tomore » the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.« less
Validity of Molecular Tagging Velocimetry in a Cavitating Flow for Turbopump Analysis
NASA Astrophysics Data System (ADS)
Kuzmich, Kayla; Bohl, Doug
2012-11-01
This research establishes multi-phase molecular tagging velocimetry (MTV) use and explores its limitations. The flow conditions and geometry in the inducer of an upper stage liquid Oxygen (LOX)/LH2 engine frequently cause cavitation which decreases turbopump performance. Complications arise in performing experiments in liquid hydrogen and oxygen due to high costs, high pressures, extremely low fluid temperatures, the presence of cavitation, and associated safety risks. Due to the complex geometry and hazardous nature of the fluids, a simplified throat geometry with water as a simulant fluid is used. Flow characteristics are measured using MTV, a noninvasive flow diagnostic technique. MTV is found to be an applicable tool in cases of low cavitation. Highly cavitating flows reflect and scatter most of the laser beam disallowing penetration into the cavitation cloud. However, data can be obtained in high cavitation cases near the cloud boundary layer. Distribution A: Public Release, Public Affairs Clearance Number: 12654
NASA Astrophysics Data System (ADS)
Andrzejczyk, Rafał; Muszyński, Tomasz
2017-09-01
In this study, the influences of different parameters at performance two-phase closed thermosiphon (TPCT) was presented. It has been confirmed that the working fluid, as well as operating parameters and fill ratio, are very important factors in the performance of TPCT. The article shows characteristics of gravitational tube geometries, as well as the technical characteristic of the most important system components, i.e., the evaporator/condenser. The experiment's plan and the results of it for the two-phase thermosiphon for both evaluated geometries with varying thermal and fluid flow parameters are presented. Experiments were performed for the most perspective working fluids, namely: water, R134a, SES36, ethanol and HFE7100. Obtained research proves the possibility to use TPCT for heat recovery from the industrial waste water.
The dependence of acoustic properties of a crack on the resonance mode and geometry
Kumagai, H.; Chouet, B.A.
2001-01-01
We examine the dependence of the acoustic properties of a crack containing magmatic or hydrothermal fluids on the resonance mode and geometry to quantify the source properties of long-period (LP) events observed in volcanic areas. Our results, based on spectral analyses of synthetic waveforms generated with a fluid-driven crack model, indicate that the basic features of the dimensionless frequency (??) and quality factor (Qr) for a crack containing various types of fluids are not strongly affected by the choice of mode, although the actual ranges of Q?? and ?? both depend on the mode. The dimensionless complex frequency systematically varies with changes in the crack geometry, showing increases in both Qr and ?? as the crack length to aperture ratio decreases. The present results may be useful for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events.
Combined effects of molecular geometry and nanoconfinement on liquid flows through carbon nanotubes
NASA Astrophysics Data System (ADS)
Suga, Kazuhiko; Mori, Yuki; Moritani, Rintaro; Kaneda, Masayuki
2018-05-01
Molecular dynamics simulations are carried out to investigate the geometry effects of diatomic molecules on liquid flows in carbon nanotubes (CNTs). Oxygen molecules are considered as the fluid inside armchair (n ,n ) (n =6 -20 ) CNTs. The simulated fluid temperature and bulk pressure for the liquid state are T =133 K and ρb=1346 kg/m 3 , respectively. In the agglomerated molecular cluster, nanoconfinement-induced structural changes are observed. As the CNT diameter decreases, it is confirmed that the flow rate significantly increases with irregular trends (discontinuity points in the profiles). From the discussion of the structure of the agglomerated fluid molecules, it is found that those trends are not simply caused by the structural changes. The main factor to induce the irregularity is confirmed to be the interlayer molecular movement affected by the combination of the molecular geometry and the arrangement of the multilayered structure.
2015-06-01
10-2014 to 00-11-2014 4. TITLE AND SUBTITLE Postprocessing of Voxel-Based Topologies for Additive Manufacturing Using the Computational Geometry...ABSTRACT Postprocessing of 3-dimensional (3-D) topologies that are defined as a set of voxels using the Computational Geometry Algorithms Library (CGAL... computational geometry algorithms, several of which are suited to the task. The work flow described in this report involves first defining a set of
Bearing tester data compilation, analysis, and reporting and bearing math modeling
NASA Technical Reports Server (NTRS)
1983-01-01
The Shaberth bearing analysis computer program was developed for the analysis of jet engine shaft/bearing systems operating above room temperature with normal hydrocarbon lubricants. It is also possible to use this tool to evaluate the shaft bearing systems operating in cryogenics. Effects such as fluid drag, radial temperature gradients, outer race misalignments and clearance changes were simulated and evaluated. In addition, the speed and preload effects on bearing radial stiffness was evaluated. The Shaberth program was also used to provide contact stresses from which contact geometry was calculated to support other analyses such as the determination of cryogenic fluid film thickness in the contacts and evaluation of surface and subsurface stresses necessary for bearing failure evaluation. This program was a vital tool for the thermal analysis of the bearing in that it provides the heat generation rates at the rolling element/race contacts for input into a thermal model of the bearing/shaft assembly.
Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2013-01-01
Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.
NASA Astrophysics Data System (ADS)
Uddin, H.; Kramer, R. M. J.; Pantano, C.
2014-04-01
An immersed boundary methodology to solve the compressible Navier-Stokes equations around complex geometries in Cartesian fluid dynamics solvers is described. The objective of the new approach is to enable smooth reconstruction of pressure and viscous stresses around the embedded objects without spurious numerical artifacts. A standard level set represents the boundary of the object and defines a fictitious domain into which the flow fields are smoothly extended. Boundary conditions on the surface are enforced by an approach inspired by analytic continuation. Each fluid field is extended independently, constrained only by the boundary condition associated with that field. Unlike most existing methods, no jump conditions or explicit derivation of them from the boundary conditions are required in this approach. Numerical stiffness that arises when the fluid-solid interface is close to grid points of the mesh is addressed by preconditioning. In addition, the embedded geometry technique is coupled with a stable high-order adaptive discretization that is enabled around the object boundary to enhance resolution. The stencils used to transition the order of accuracy of the discretization are derived using the summation-by-parts technique that ensures stability. Applications to shock reflections, shock-ramp interactions, and supersonic and low-Mach number flows over two- and three-dimensional geometries are presented.
Computational Aeroheating Predictions for Mars Lander Configurations
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Alter, Stephen J.
2003-01-01
The proposed Mars Science Laboratory (MSL) mission is intended to deliver a large rover to the Martian surface within 10 km of the target site. This paper presents computational fluid dynamics (CFD) predictions of forebody heating rates for two MSL entry configurations with fixed aerodynamic trim tabs. Results are compared to heating on a 70-deg sphere-cone reference geometry. All three heatshield geometries are designed to trim hypersonically at a 16 deg angle of attack in order to generate the lift-to-drag ratio (L/D) required for precision landing. Comparisons between CFD and tunnel data are generally in good agreement for each configuration, but the computations predict more flow separation and higher heating on a trim tab inclined 10 deg relative to the surface. CFD solutions at flight conditions were obtained using an 8-species Mars gas in chemical and thermal nonequilibrium. Laminar and Baldwin-Lomax solutions were used to estimate the effects of the trim tabs and turbulence on heating. A tab extending smoothly from the heatshield flank is not predicted to increase laminar or turbulent heating rates above the reference levels. Laminar heating on a tab deflected 10 deg from the conical heatshield is influenced by flow separation and is up to 35% above the baseline heating rate. The turbulent solution on the inclined tab configuration predicts attached flow and a 43% heating increase above the reference level.
Computational Aeroheating Predictions for Mars Lander Configurations
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Alter, Stephen J.
2003-01-01
The proposed Mars Science Laboratory (MSL) mission is intended to deliver a large rover to the Martian surface within 10 km of the target site. This paper presents computational fluid dynamics (CFD) predictions of forebody heating rates for two MSL entry configurations with fixed aerodynamic trim tabs. Results are compared to heating on a 70-deg sphere-cone reference geometry. All three heatshield geometries are designed to trim hypersonically at a 16 deg angle of attack in order to generate the lift-to-drag ratio (LID) required for precision landing. Comparisons between CFD and tunnel data are generally in good agreement for each configuration, but the computations predict more flow separation and higher heating on a trim tab inclined 10 deg relative to the surface. CFD solutions at flight conditions were obtained using an 8-species Mars gas in chemical and thermal non-equilibrium. Laminar and Baldwin-Lomax solutions were used to estimate the effects of the trim tabs and turbulence on heating. A tab extending smoothly from the heatshield flank is not predicted to increase laminar or turbulent heating rates above the reference levels. Laminar heating on a tab deflected 10 deg from the conical heatshield is influenced by flow separation and is up to 35% above the baseline heating rate. The turbulent solution on the inclined tab configuration predicts attached flow and a 43% heating increase above the reference level.
New technologies for advanced three-dimensional optimum shape design in aeronautics
NASA Astrophysics Data System (ADS)
Dervieux, Alain; Lanteri, Stéphane; Malé, Jean-Michel; Marco, Nathalie; Rostaing-Schmidt, Nicole; Stoufflet, Bruno
1999-05-01
The analysis of complex flows around realistic aircraft geometries is becoming more and more predictive. In order to obtain this result, the complexity of flow analysis codes has been constantly increasing, involving more refined fluid models and sophisticated numerical methods. These codes can only run on top computers, exhausting their memory and CPU capabilities. It is, therefore, difficult to introduce best analysis codes in a shape optimization loop: most previous works in the optimum shape design field used only simplified analysis codes. Moreover, as the most popular optimization methods are the gradient-based ones, the more complex the flow solver, the more difficult it is to compute the sensitivity code. However, emerging technologies are contributing to make such an ambitious project, of including a state-of-the-art flow analysis code into an optimisation loop, feasible. Among those technologies, there are three important issues that this paper wishes to address: shape parametrization, automated differentiation and parallel computing. Shape parametrization allows faster optimization by reducing the number of design variable; in this work, it relies on a hierarchical multilevel approach. The sensitivity code can be obtained using automated differentiation. The automated approach is based on software manipulation tools, which allow the differentiation to be quick and the resulting differentiated code to be rather fast and reliable. In addition, the parallel algorithms implemented in this work allow the resulting optimization software to run on increasingly larger geometries. Copyright
NASA Astrophysics Data System (ADS)
Botella, Olivier; Ait-Messaoud, Mazigh; Pertat, Adrien; Cheny, Yoann; Rigal, Claire
2015-04-01
This paper presents the extension of a well-established immersed boundary/cut-cell method, the LS-STAG method (Cheny and Botella in J Comput Phys 229:1043-1076, 2010), to non-Newtonian flow computations in 2D irregular geometries. One of the distinguished features of our IB method is to use level-set techniques in the cut-cells near the irregular boundary, where accurate discretization is of paramount importance for stability and accuracy of the computations. For this purpose, we present here an accurate discretization of the velocity gradients and shear rate in the cut-cells that fits elegantly in the framework of the velocity-pressure-stress staggered arrangement and the special quadratures developed previously for viscoelastic flows. After assessing the accuracy of the discretization on a benchmark solution for power-law fluids, the LS-STAG code is applied to the flow of various shear-thinning xanthan solutions in a wide-gap, non-coaxial, Taylor-Couette reactor for which rheological characterization, experimental flow measurements (PIV) and FLUENT simulations have recently been performed in our group. Our numerical investigation will give new insight on the flow patterns (onset, size and position of the recirculation zone) and will firmly correlate them to global flow properties such as shear-thinning index, generalized Reynolds number and torque ratio at the cylinders.
Progress of High Efficiency Centrifugal Compressor Simulations Using TURBO
NASA Technical Reports Server (NTRS)
Kulkarni, Sameer; Beach, Timothy A.
2017-01-01
Three-dimensional, time-accurate, and phase-lagged computational fluid dynamics (CFD) simulations of the High Efficiency Centrifugal Compressor (HECC) stage were generated using the TURBO solver. Changes to the TURBO Parallel Version 4 source code were made in order to properly model the no-slip boundary condition along the spinning hub region for centrifugal impellers. A startup procedure was developed to generate a converged flow field in TURBO. This procedure initialized computations on a coarsened mesh generated by the Turbomachinery Gridding System (TGS) and relied on a method of systematically increasing wheel speed and backpressure. Baseline design-speed TURBO results generally overpredicted total pressure ratio, adiabatic efficiency, and the choking flow rate of the HECC stage as compared with the design-intent CFD results of Code Leo. Including diffuser fillet geometry in the TURBO computation resulted in a 0.6 percent reduction in the choking flow rate and led to a better match with design-intent CFD. Diffuser fillets reduced annulus cross-sectional area but also reduced corner separation, and thus blockage, in the diffuser passage. It was found that the TURBO computations are somewhat insensitive to inlet total pressure changing from the TURBO default inlet pressure of 14.7 pounds per square inch (101.35 kilopascals) down to 11.0 pounds per square inch (75.83 kilopascals), the inlet pressure of the component test. Off-design tip clearance was modeled in TURBO in two computations: one in which the blade tip geometry was trimmed by 12 mils (0.3048 millimeters), and another in which the hub flow path was moved to reflect a 12-mil axial shift in the impeller hub, creating a step at the hub. The one-dimensional results of these two computations indicate non-negligible differences between the two modeling approaches.
Computer aided design of extrusion forming tools for complex geometry profiles
NASA Astrophysics Data System (ADS)
Goncalves, Nelson Daniel Ferreira
In the profile extrusion, the experience of the die designer is crucial for obtaining good results. In industry, it is quite usual the need of several experimental trials for a specific extrusion die before a balanced flow distribution is obtained. This experimental based trial-and-error procedure is time and money consuming, but, it works, and most of the profile extrusion companies rely on such method. However, the competition is forcing the industry to look for more effective procedures and the design of profile extrusion dies is not an exception. For this purpose, computer aided design seems to be a good route. Nowadays, the available computational rheology numerical codes allow the simulation of complex fluid flows. This permits the die designer to evaluate and to optimize the flow channel, without the need to have a physical die and to perform real extrusion trials. In this work, a finite volume based numerical code was developed, for the simulation of non-Newtonian (inelastic) fluid and non-isothermal flows using unstructured meshes. The developed code is able to model the forming and cooling stages of profile extrusion, and can be used to aid the design of forming tools used in the production of complex profiles. For the code verification three benchmark problems were tested: flow between parallel plates, flow around a cylinder, and the lid driven cavity flow. The code was employed to design two extrusion dies to produce complex cross section profiles: a medical catheter die and a wood plastic composite profile for decking applications. The last was experimentally validated. Simple extrusion dies used to produced L and T shaped profiles were studied in detail, allowing a better understanding of the effect of the main geometry parameters on the flow distribution. To model the cooling stage a new implicit formulation was devised, which allowed the achievement of better convergence rates and thus the reduction of the computation times. Having in mind the solution of large dimension problems, the code was parallelized using graphics processing units (GPUs). Speedups of ten times could be obtained, drastically decreasing the time required to obtain results.
Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet
NASA Technical Reports Server (NTRS)
1997-01-01
Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.
NASA Astrophysics Data System (ADS)
Bird, M. B.; Butler, S. L.; Hawkes, C. D.; Kotzer, T.
2014-12-01
The use of numerical simulations to model physical processes occurring within subvolumes of rock samples that have been characterized using advanced 3D imaging techniques is becoming increasingly common. Not only do these simulations allow for the determination of macroscopic properties like hydraulic permeability and electrical formation factor, but they also allow the user to visualize processes taking place at the pore scale and they allow for multiple different processes to be simulated on the same geometry. Most efforts to date have used specialized research software for the purpose of simulations. In this contribution, we outline the steps taken to use commercial software Avizo to transform a 3D synchrotron X-ray-derived tomographic image of a rock core sample to an STL (STereoLithography) file which can be imported into the commercial multiphysics modeling package COMSOL. We demonstrate that the use of COMSOL to perform fluid and electrical current flow simulations through the pore spaces. The permeability and electrical formation factor of the sample are calculated and compared with laboratory-derived values and benchmark calculations. Although the simulation domains that we were able to model on a desk top computer were significantly smaller than representative elementary volumes, and we were able to establish Kozeny-Carman and Archie's Law trends on which laboratory measurements and previous benchmark solutions fall. The rock core samples include a Fountainebleau sandstone used for benchmarking and a marly dolostone sampled from a well in the Weyburn oil field of southeastern Saskatchewan, Canada. Such carbonates are known to have complicated pore structures compared with sandstones, yet we are able to calculate reasonable macroscopic properties. We discuss the computing resources required.
NASA Astrophysics Data System (ADS)
Nash, Rupert W.; Carver, Hywel B.; Bernabeu, Miguel O.; Hetherington, James; Groen, Derek; Krüger, Timm; Coveney, Peter V.
2014-02-01
Modeling blood flow in larger vessels using lattice-Boltzmann methods comes with a challenging set of constraints: a complex geometry with walls and inlets and outlets at arbitrary orientations with respect to the lattice, intermediate Reynolds (Re) number, and unsteady flow. Simple bounce-back is one of the most commonly used, simplest, and most computationally efficient boundary conditions, but many others have been proposed. We implement three other methods applicable to complex geometries [Guo, Zheng, and Shi, Phys. Fluids 14, 2007 (2002), 10.1063/1.1471914; Bouzidi, Firdaouss, and Lallemand, Phys. Fluids 13, 3452 (2001), 10.1063/1.1399290; Junk and Yang, Phys. Rev. E 72, 066701 (2005), 10.1103/PhysRevE.72.066701] in our open-source application hemelb. We use these to simulate Poiseuille and Womersley flows in a cylindrical pipe with an arbitrary orientation at physiologically relevant Re number (1-300) and Womersley (4-12) numbers and steady flow in a curved pipe at relevant Dean number (100-200) and compare the accuracy to analytical solutions. We find that both the Bouzidi-Firdaouss-Lallemand (BFL) and Guo-Zheng-Shi (GZS) methods give second-order convergence in space while simple bounce-back degrades to first order. The BFL method appears to perform better than GZS in unsteady flows and is significantly less computationally expensive. The Junk-Yang method shows poor stability at larger Re number and so cannot be recommended here. The choice of collision operator (lattice Bhatnagar-Gross-Krook vs multiple relaxation time) and velocity set (D3Q15 vs D3Q19 vs D3Q27) does not significantly affect the accuracy in the problems studied.
Kenjereš, Saša; Tjin, Jimmy Leroy
2017-12-01
In the present study, we investigate the concept of the targeted delivery of pharmaceutical drug aerosols in an anatomically realistic geometry of the human upper and central respiratory system. The geometry considered extends from the mouth inlet to the eighth generation of the bronchial bifurcations and is identical to the phantom model used in the experimental studies of Banko et al. (2015 Exp. Fluids 56 , 1-12 (doi:10.1007/s00348-015-1966-y)). In our computer simulations, we combine the transitional Reynolds-averaged Navier-Stokes (RANS) and the wall-resolved large eddy simulation (LES) methods for the air phase with the Lagrangian approach for the particulate (aerosol) phase. We validated simulations against recently obtained magnetic resonance velocimetry measurements of Banko et al. (2015 Exp. Fluids 56 , 1-12. (doi:10.1007/s00348-015-1966-y)) that provide a full three-dimensional mean velocity field for steady inspiratory conditions. Both approaches produced good agreement with experiments, and the transitional RANS approach is selected for the multiphase simulations of aerosols transport, because of significantly lower computational costs. The local and total deposition efficiency are calculated for different classes of pharmaceutical particles (in the 0.1 μm≤ d p ≤10 μm range) without and with a paramagnetic core (the shell-core particles). For the latter, an external magnetic field is imposed. The source of the imposed magnetic field was placed in the proximity of the first bronchial bifurcation. We demonstrated that both total and local depositions of aerosols at targeted locations can be significantly increased by an applied magnetization force. This finding confirms the possible potential for further advancement of the magnetic drug targeting technique for more efficient treatments for respiratory diseases.
Phased Array Imaging of Complex-Geometry Composite Components.
Brath, Alex J; Simonetti, Francesco
2017-10-01
Progress in computational fluid dynamics and the availability of new composite materials are driving major advances in the design of aerospace engine components which now have highly complex geometries optimized to maximize system performance. However, shape complexity poses significant challenges to traditional nondestructive evaluation methods whose sensitivity and selectivity rapidly decrease as surface curvature increases. In addition, new aerospace materials typically exhibit an intricate microstructure that further complicates the inspection. In this context, an attractive solution is offered by combining ultrasonic phased array (PA) technology with immersion testing. Here, the water column formed between the complex surface of the component and the flat face of a linear or matrix array probe ensures ideal acoustic coupling between the array and the component as the probe is continuously scanned to form a volumetric rendering of the part. While the immersion configuration is desirable for practical testing, the interpretation of the measured ultrasonic signals for image formation is complicated by reflection and refraction effects that occur at the water-component interface. To account for refraction, the geometry of the interface must first be reconstructed from the reflected signals and subsequently used to compute suitable delay laws to focus inside the component. These calculations are based on ray theory and can be computationally intensive. Moreover, strong reflections from the interface can lead to a thick dead zone beneath the surface of the component which limits sensitivity to shallow subsurface defects. This paper presents a general approach that combines advanced computing for rapid ray tracing in anisotropic media with a 256-channel parallel array architecture. The full-volume inspection of complex-shape components is enabled through the combination of both reflected and transmitted signals through the part using a pair of arrays held in a yoke configuration. Experimental results are provided for specimens of increasing complexity relevant to aerospace applications such as fan blades. It is shown that PA technology can provide a robust solution to detect a variety of defects including porosity and waviness in composite parts.
Cuba-Gyllensten, Illapha; Gastelurrutia, Paloma; Bonomi, Alberto G; Riistama, Jarno; Bayes-Genis, Antoni; Aarts, Ronald M
2016-04-14
Multi-frequency trans-thoracic bioimpedance (TTI) could be used to track fluid changes and congestion of the lungs, however, patient specific characteristics may impact the measurements. We investigated the effects of thoracic geometry and composition on measurements of TTI and developed an equation to calculate a personalized fluid index. Simulations of TTI measurements for varying levels of chest circumference, fat and muscle proportion were used to derive parameters for a model predicting expected values of TTI. This model was then adapted to measurements from a control group of 36 healthy volunteers to predict TTI and lung fluids (fluid index). Twenty heart failure (HF) patients treated for acute HF were then used to compare the changes in the personalized fluid index to symptoms of HF and predicted TTI to measurements at hospital discharge. All the derived body characteristics affected the TTI measurements in healthy volunteers and together the model predicted the measured TTI with 8.9% mean absolute error. In HF patients the estimated TTI correlated well with the discharged TTI (r=0.73,p <0.001) and the personalized fluid index followed changes in symptom levels during treatment. However, 37% (n=7) of the patients were discharged well below the model expected value. Accounting for chest geometry and composition might help in interpreting TTI measurements. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.
2012-04-01
In the 1980s, Lenormand et al. carried out their pioneering work on displacement mechanisms of fluids in etched networks [1]. Here we further examine displacement mechanisms in relation to capillary filling rules for spontaneous imbibition. Understanding the role of spontaneous imbibition in fluid displacement is essential for refining pore network models. Generally, pore network models use simple capillary filling rules and here we examine the validity of these rules for spontaneous imbibition. Improvement of pore network models is vital for the process of 'up-scaling' to the field scale for both enhanced oil recovery (EOR) and carbon sequestration. In this work, we present our experimental microfluidic research into the displacement of both supercritical CO2/deionised water (DI) systems and analogous n-decane/air - where supercritical CO2 and n-decane are the respective wetting fluids - controlled by imbibition at the pore scale. We conducted our experiments in etched PMMA and silicon/glass micro-fluidic hydrophobic chips. We first investigate displacement in single etched pore junctions, followed by displacement in complex network designs representing actual rock thin sections, i.e. Berea sandstone and Sucrosic dolomite. The n-decane/air experiments were conducted under ambient conditions, whereas the supercritical CO2/DI water experiments were conducted under high temperature and pressure in order to replicate reservoir conditions. Fluid displacement in all experiments was captured via a high speed video microscope. The direction and type of displacement the imbibing fluid takes when it enters a junction is dependent on the number of possible channels in which the wetting fluid can imbibe, i.e. I1, I2 and I3 [1]. Depending on the experiment conducted, the micro-models were initially filled with either DI water or air before the wetting fluid was injected. We found that the imbibition of the wetting fluid through a single pore is primarily controlled by the geometry of the pore body rather than the downstream pore throat sizes, contrary to the established capillary filling rules as used in current pore network models. Our experimental observations are confirmed by detailed lattice-Boltzmann pore scale computer simulations of fluid displacement in the same geometries. This suggests that capillary filling rules for imbibition as used in pore network models may need to be revised. [1] G. Lenormand, C. Zarcone and A. Sarr, J. Fluid Mech. 135 , 337-353 (1983).