Student’s thinking process in solving word problems in geometry
NASA Astrophysics Data System (ADS)
Khasanah, V. N.; Usodo, B.; Subanti, S.
2018-05-01
This research aims to find out the thinking process of seventh grade of Junior High School in solve word problem solving of geometry. This research was descriptive qualitative research. The subject of the research was selected based on sex and differences in mathematical ability. Data collection was done based on student’s work test, interview, and observation. The result of the research showed that there was no difference of thinking process between male and female with high mathematical ability, and there were differences of thinking process between male and female with moderate and low mathematical ability. Also, it was found that male with moderate mathematical ability took a long time in the step of making problem solving plans. While female with moderate mathematical ability took a long time in the step of understanding the problems. The importance of knowing the thinking process of students in solving word problem solving were that the teacher knows the difficulties faced by students and to minimize the occurrence of the same error in problem solving. Teacher could prepare the right learning strategies which more appropriate with student’s thinking process.
ERIC Educational Resources Information Center
Eperson, D. B.
1985-01-01
Presents six mathematical problems (with answers) which focus on: (1) chess moves; (2) patterned numbers; (3) quadratics with rational roots; (4) number puzzles; (5) Euclidean geometry; and (6) Carrollian word puzzles. (JN)
Transition Mathematics. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"Transition Mathematics" aims to increase 7th- through 12th-grade students' skills in applied arithmetic, pre-algebra, and pre-geometry. This one-year curriculum also addresses general application to different wordings of problems, types of numbers, and contexts for problems and aims to promote mathematical reading skills. The curriculum…
P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems
NASA Technical Reports Server (NTRS)
Kang, Kab S.
2002-01-01
The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning
Testing for a Signal with Unknown Location and Scale in a Stationary Gaussian Random Field
1994-01-07
Secondary 60D05, 52A22. Key words and phrases. Euler characteristic, integral geometry, image analysis , Gaussian fields, volume of tubes. SUMMARY We...words and phrases. Euler characteristic, integral geometry. image analysis . Gaussian fields. volume of tubes. 20. AMST RACT (Coith..o an revmreo ef* It
Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas
2010-01-01
The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders’ word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students’ word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students’ emerging algebraic reasoning. PMID:20539822
Wang, Amber Y; Fuchs, Lynn S; Fuchs, Douglas
2016-12-01
The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research.
Fuchs, Lynn S.; Fuchs, Douglas
2016-01-01
The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research. PMID:28190942
Boonen, Anton J. H.; de Koning, Björn B.; Jolles, Jelle; van der Schoot, Menno
2016-01-01
Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME. PMID:26925012
Boonen, Anton J H; de Koning, Björn B; Jolles, Jelle; van der Schoot, Menno
2016-01-01
Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME.
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag
2017-10-01
Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.
Does Calculation or Word-Problem Instruction Provide A Stronger Route to Pre-Algebraic Knowledge?
Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.
2014-01-01
The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and pre-algebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other domain and whether intervention in either or both domains contributes to pre-algebraic knowledge. Participants were 1102 children in 127 2nd-grade classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation intervention, word-problem intervention, and business-as-usual control. Intervention, which lasted 17 weeks, was designed to provide research-based linkages between arithmetic calculations or arithmetic word problems (depending on condition) to pre-algebraic knowledge. Multilevel modeling suggested calculation intervention improved calculation but not word-problem outcomes; word-problem intervention enhanced word-problem but not calculation outcomes; and word-problem intervention provided a stronger route than calculation intervention to pre-algebraic knowledge. PMID:25541565
Proofs without Words in Geometry
ERIC Educational Resources Information Center
Nirode, Wayne
2017-01-01
Since the 1970s, the Mathematical Association of America's (MAA) journals "Mathematics Magazine" and "College Mathematics Journal" have published "Proofs without Words" (PWWs) (Nelsen 1993). "PWWs are pictures or diagrams that help the reader see why a particular mathematical statement may be true and how one…
DOE Fundamentals Handbook: Mathematics, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less
DOE Fundamentals Handbook: Mathematics, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less
Solving Word Problems using Schemas: A Review of the Literature
Powell, Sarah R.
2011-01-01
Solving word problems is a difficult task for students at-risk for or with learning disabilities (LD). One instructional approach that has emerged as a valid method for helping students at-risk for or with LD to become more proficient at word-problem solving is using schemas. A schema is a framework for solving a problem. With a schema, students are taught to recognize problems as falling within word-problem types and to apply a problem solution method that matches that problem type. This review highlights two schema approaches for 2nd- and 3rd-grade students at-risk for or with LD: schema-based instruction and schema-broadening instruction. A total of 12 schema studies were reviewed and synthesized. Both types of schema approaches enhanced the word-problem skill of students at-risk for or with LD. Based on the review, suggestions are provided for incorporating word-problem instruction using schemas. PMID:21643477
Powell, Sarah R; Fuchs, Lynn S; Cirino, Paul T; Fuchs, Douglas; Compton, Donald L; Changas, Paul C
2015-07-01
The focus of the present study was enhancing word-problem and calculation achievement in ways that support pre-algebraic thinking among 2 nd -grade students at risk for mathematics difficulty. Intervention relied on a multi-tier support system (i.e., responsiveness-to-intervention or RTI) in which at-risk students participate in general classroom instruction and receive supplementary small-group tutoring. Participants were 265 students in 110 classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation RTI, word-problem RTI, and business-as-usual control. Intervention lasted 17 weeks. Multilevel modeling indicated that calculation RTI improved calculation but not word-problem outcomes; word-problem RTI enhanced proximal word-problem outcomes as well as performance on some calculation outcomes; and word-problem RTI provided a stronger route than calculation RTI to pre-algebraic knowledge.
Powell, Sarah R.; Fuchs, Lynn S.; Cirino, Paul T.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.
2014-01-01
The focus of the present study was enhancing word-problem and calculation achievement in ways that support pre-algebraic thinking among 2nd-grade students at risk for mathematics difficulty. Intervention relied on a multi-tier support system (i.e., responsiveness-to-intervention or RTI) in which at-risk students participate in general classroom instruction and receive supplementary small-group tutoring. Participants were 265 students in 110 classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation RTI, word-problem RTI, and business-as-usual control. Intervention lasted 17 weeks. Multilevel modeling indicated that calculation RTI improved calculation but not word-problem outcomes; word-problem RTI enhanced proximal word-problem outcomes as well as performance on some calculation outcomes; and word-problem RTI provided a stronger route than calculation RTI to pre-algebraic knowledge. PMID:26097244
ERIC Educational Resources Information Center
Driver, Melissa K.; Powell, Sarah R.
2017-01-01
Word problems are prevalent on high-stakes assessments, and success on word problems has implications for grade promotion and graduation. Unfortunately, English Language Learners (ELLs) continue to perform significantly below their native English-speaking peers on mathematics assessments featuring word problems. Little is known about the…
Powell, Sarah R; Fuchs, Lynn S
2010-05-01
Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for higher-order mathematics skills including word problems. Research indicates equal-sign instruction can alter how typically-developing students use the equal sign, but no study has examined effects for students with mathematics difficulty (MD) or how equal-sign instruction contributes to word-problem skill for students with or without MD. The present study assessed the efficacy of equal-sign instruction within word-problem tutoring. Third-grade students with MD (n = 80) were assigned to word-problem tutoring, word-problem tutoring plus equal-sign instruction (combined) tutoring, or no-tutoring control. Combined tutoring produced better improvement on equal sign tasks and open equations compared to the other 2 conditions. On certain forms of word problems, combined tutoring but not word-problem tutoring alone produced better improvement than control. When compared at posttest to 3(rd)-grade students without MD on equal sign tasks and open equations, only combined tutoring students with MD performed comparably.
Embedding Number-Combinations Practice Within Word-Problem Tutoring
Powell, Sarah R.; Fuchs, Lynn S.; Fuchs, Douglas
2012-01-01
Two aspects of mathematics with which students with mathematics learning difficulty (MLD) often struggle are word problems and number-combination skills. This article describes a math program in which students receive instruction on using algebraic equations to represent the underlying problem structure for three word-problem types. Students also learn counting strategies for answering number combinations that they cannot retrieve from memory. Results from randomized-control trials indicated that embedding the counting strategies for number combinations produces superior word-problem and number-combination outcomes for students with MLD beyond tutoring programs that focus exclusively on number combinations or word problems. PMID:22661880
Embedding Number-Combinations Practice Within Word-Problem Tutoring.
Powell, Sarah R; Fuchs, Lynn S; Fuchs, Douglas
2010-09-01
Two aspects of mathematics with which students with mathematics learning difficulty (MLD) often struggle are word problems and number-combination skills. This article describes a math program in which students receive instruction on using algebraic equations to represent the underlying problem structure for three word-problem types. Students also learn counting strategies for answering number combinations that they cannot retrieve from memory. Results from randomized-control trials indicated that embedding the counting strategies for number combinations produces superior word-problem and number-combination outcomes for students with MLD beyond tutoring programs that focus exclusively on number combinations or word problems.
Powell, Sarah R.; Fuchs, Lynn S.
2014-01-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044
How Can One Learn Mathematical Word Problems in a Second Language? A Cognitive Load Perspective
ERIC Educational Resources Information Center
Moussa-Inaty, Jase; Causapin, Mark; Groombridge, Timothy
2015-01-01
Language may ordinarily account for difficulties in solving word problems and this is particularly true if mathematical word problems are taught in a language other than one's native language. Research into cognitive load may offer a clear theoretical framework when investigating word problems because memory, specifically working memory, plays a…
Powell, Sarah R; Fuchs, Lynn S; Fuchs, Douglas; Cirino, Paul T; Fletcher, Jack M
2009-01-01
This study examined whether and, if so, how word-problem features differentially affect problem difficulty as a function of mathematics difficulty (MD) status: no MD (n = 109), MD only (n = 109), or MD in combination with reading difficulties (MDRD; n = 109). The problem features were problem type (total, difference, or change) and position of missing information in the number sentence representing the word problem (first, second, or third position). Students were assessed on 14 word problems near the beginning of third grade. Consistent with the hypothesis that mathematical cognition differs as a function of MD subtype, problem type affected problem difficulty differentially for MDRD versus MD-only students; however, the position of missing information in word problems did not. Implications for MD subtyping and for instruction are discussed.
ERIC Educational Resources Information Center
Wang, Amber Y.; Fuchs, Lynn S.; Fuchs, Douglas
2016-01-01
The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working…
Powell, Sarah R.; Fuchs, Lynn S.
2010-01-01
Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for higher-order mathematics skills including word problems. Research indicates equal-sign instruction can alter how typically-developing students use the equal sign, but no study has examined effects for students with mathematics difficulty (MD) or how equal-sign instruction contributes to word-problem skill for students with or without MD. The present study assessed the efficacy of equal-sign instruction within word-problem tutoring. Third-grade students with MD (n = 80) were assigned to word-problem tutoring, word-problem tutoring plus equal-sign instruction (combined) tutoring, or no-tutoring control. Combined tutoring produced better improvement on equal sign tasks and open equations compared to the other 2 conditions. On certain forms of word problems, combined tutoring but not word-problem tutoring alone produced better improvement than control. When compared at posttest to 3rd-grade students without MD on equal sign tasks and open equations, only combined tutoring students with MD performed comparably. PMID:20640240
Using Self-Generated Drawings to Solve Arithmetic Word Problems.
ERIC Educational Resources Information Center
Van Essen, Gerard; Hamaker, Christiaan
1990-01-01
Results are presented from two intervention studies which investigate whether encouraging elementary students to generate drawings of arithmetic word problems facilitates problem-solving performance. Findings indicate that fifth graders (N=50) generated many drawings of word problems and improved problem solutions after the intervention, whereas…
Does understanding relational terminology mediate effects of intervention on compare word problems?
Schumacher, Robin F; Fuchs, Lynn S
2012-04-01
The purpose of this study was to assess whether understanding relational terminology (i.e., more, less, and fewer) mediates the effects of intervention on compare word problems. Second-grade classrooms (N=31) were randomly assigned to one of three conditions: researcher-designed word-problem intervention, researcher-designed calculation intervention, or business-as-usual (teacher-designed) control. Students in word-problem intervention classrooms received instruction on the compare problem type, which included a focus on understanding relational terminology within compare word problems. Analyses, which accounted for variance associated with classroom clustering, indicated that (a) compared with the calculation intervention and business-as-usual conditions, word-problem intervention significantly increased performance on all three subtypes of compare problems and on understanding relational terminology, and (b) the intervention effect was fully mediated by students' understanding of relational terminology for one subtype of compare problems and partially mediated by students' understanding of relational terminology for the other two subtypes. Copyright © 2011 Elsevier Inc. All rights reserved.
Increasing Communication in Geometry by Using a Personal Math Concept Chart
ERIC Educational Resources Information Center
Friedman, Rhonda; Kazerouni, Gety; Lax, Stacey; Weisdorf, Elli
2011-01-01
The action research team developed a "Personal Math Concept Chart". This chart required students to describe the mathematical concepts that they were studying in the Geometry strand of Mathematics using their own images and words. In this study, students were encouraged to express their own understanding of geometric concepts in order to…
Three-M in Word Problem Solving
ERIC Educational Resources Information Center
Hajra, Sayonita Ghosh; Kofman, Victoria
2018-01-01
We describe three activities that help undergraduates (pre-service teachers) to develop scientific vocabulary on measurable attributes and units of measurement. Measurable attributes are important features in understanding a word problem and solving the problem. These activities help students comprehend word problems better by identifying…
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.
2008-01-01
Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3rd graders’ development of mathematics problem solving. In the fall, 122 3rd-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities. PMID:19884957
Pupils' over-reliance on linearity: a scholastic effect?
Van Dooren, Wim; De Bock, Dirk; Janssens, Dirk; Verschaffel, Lieven
2007-06-01
From upper elementary education on, children develop a tendency to over-use linearity. Particularly, it is found that many pupils assume that if a figure enlarges k times, the area enlarges k times too. However, most research was conducted with traditional, school-like word problems. This study examines whether pupils also over-use linearity if non-linear problems are embedded in meaningful, authentic performance tasks instead of traditional, school-like word problems, and whether this experience influences later behaviour. Ninety-three sixth graders from two primary schools in Flanders, Belgium. Pupils received a pre-test with traditional word problems. Those who made a linear error on the non-linear area problem were subjected to individual interviews. They received one new non-linear problem, in the S-condition (again a traditional, scholastic word problem), D-condition (the same word problem with a drawing) or P-condition (a meaningful performance-based task). Shortly afterwards, pupils received a post-test, containing again a non-linear word problem. Most pupils from the S-condition displayed linear reasoning during the interview. Offering drawings (D-condition) had a positive effect, but presenting the problem as a performance task (P-condition) was more beneficial. Linear reasoning was nearly absent in the P-condition. Remarkably, at the post-test, most pupils from all three groups again applied linear strategies. Pupils' over-reliance on linearity seems partly elicited by the school-like word problem format of test items. Pupils perform much better if non-linear problems are offered as performance tasks. However, a single experience does not change performances on a comparable word problem test afterwards.
ERIC Educational Resources Information Center
Cheng, Lu Pien
2015-01-01
In this study, ways in which 9-year old students from one Singapore school solved 1-step and 2-step word problems based on the three semantic structures were examined. The students' work and diagrams provided insights into the range of errors in word problem solving for 1- step and 2-step word problems. In particular, the errors provided some…
Vessel classification in overhead satellite imagery using weighted "bag of visual words"
NASA Astrophysics Data System (ADS)
Parameswaran, Shibin; Rainey, Katie
2015-05-01
Vessel type classification in maritime imagery is a challenging problem and has applications to many military and surveillance applications. The ability to classify a vessel correctly varies significantly depending on its appearance which in turn is affected by external factors such as lighting or weather conditions, viewing geometry and sea state. The difficulty in classifying vessels also varies among different ship types as some types of vessels show more within-class variation than others. In our previous work, we showed that the bag of visual words" (V-BoW) was an effective feature representation for this classification task in the maritime domain. The V-BoW feature representation is analogous to the bag of words" (BoW) representation used in information retrieval (IR) application in text or natural language processing (NLP) domain. It has been shown in the textual IR applications that the performance of the BoW feature representation can be improved significantly by applying appropriate term-weighting such as log term frequency, inverse document frequency etc. Given the close correspondence between textual BoW (T-BoW) and V-BoW feature representations, we propose to apply several well-known term weighting schemes from the text IR domain on V-BoW feature representation to increase its ability to discriminate between ship types.
Word Problems: A "Meme" for Our Times.
ERIC Educational Resources Information Center
Leamnson, Robert N.
1996-01-01
Discusses a novel approach to word problems that involves linear relationships between variables. Argues that working stepwise through intermediates is the way our minds actually work and therefore this should be used in solving word problems. (JRH)
Child-Level Predictors of Responsiveness to Evidence-Based Mathematics Intervention.
Powell, Sarah R; Cirino, Paul T; Malone, Amelia S
2017-07-01
We identified child-level predictors of responsiveness to 2 types of mathematics (calculation and word-problem) intervention among 2nd-grade children with mathematics difficulty. Participants were 250 children in 107 classrooms in 23 schools pretested on mathematics and general cognitive measures and posttested on mathematics measures. We assigned classrooms randomly assigned to calculation intervention, word-problem intervention, or business-as-usual control. Intervention lasted 17 weeks. Path analyses indicated that scores on working memory and language comprehension assessments moderated responsiveness to calculation intervention. No moderators were identified for responsiveness to word-problem intervention. Across both intervention groups and the control group, attentive behavior predicted both outcomes. Initial calculation skill predicted the calculation outcome, and initial language comprehension predicted word-problem outcomes. These results indicate that screening for calculation intervention should include a focus on working memory, language comprehension, attentive behavior, and calculations. Screening for word-problem intervention should focus on attentive behavior and word problems.
The Performance of Chinese Primary School Students on Realistic Arithmetic Word Problems
ERIC Educational Resources Information Center
Xin, Ziqiang; Lin, Chongde; Zhang, Li; Yan, Rong
2007-01-01
Compared with standard arithmetic word problems demanding only the direct use of number operations and computations, realistic problems are harder to solve because children need to incorporate "real-world" knowledge into their solutions. Using the realistic word problem testing materials developed by Verschaffel, De Corte, and Lasure…
ERIC Educational Resources Information Center
Kelly, Ronald R.
2003-01-01
Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)
Drawing Dynamic Geometry Figures Online with Natural Language for Junior High School Geometry
ERIC Educational Resources Information Center
Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Chang-Zhe
2012-01-01
This paper presents a tool for drawing dynamic geometric figures by understanding the texts of geometry problems. With the tool, teachers and students can construct dynamic geometric figures on a web page by inputting a geometry problem in natural language. First we need to build the knowledge base for understanding geometry problems. With the…
The Impossibility of "Real-Life" Word Problems (According to Bakhtin, Lacan, Zizek and Baudrillard)
ERIC Educational Resources Information Center
Gerofsky, Susan
2010-01-01
In recent years a great deal of work on mathematical word problems has focused on efforts to bring more of "real life" into the problems themselves and students' uptake of these problems. Following on from earlier studies of the word problem as a pedagogical and literary genre, the author argues that we cannot unproblematically assume an ability…
Procedural versus Content-Related Hints for Word Problem Solving: An Exploratory Study
ERIC Educational Resources Information Center
Kock, W. D.; Harskamp, E. G.
2016-01-01
For primary school students, mathematical word problems are often more difficult to solve than straightforward number problems. Word problems require reading and analysis skills, and in order to explain their situational contexts, the proper mathematical knowledge and number operations have to be selected. To improve students' ability in solving…
ERIC Educational Resources Information Center
Kercood, Suneeta; Zentall, Sydney S.; Vinh, Megan; Tom-Wright, Kinsey
2012-01-01
The purpose of this theoretically-based study was to examine the effects of yellow-highlighting "relevant" words and units within math word problems. Initial differences were documented between 10 girls at-risk for ADHD and 10 comparisons on the performance of group and individual assessments of math computations and word problems, as had…
NASA Astrophysics Data System (ADS)
Banerjee, Banmali
Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to students' accomplishments when solving word problems. Some studies have examined the effects of diagramming on students' abilities to solve word problems that only involved basic arithmetic operations. Other studies have investigated how instructional models that used technology influenced students' problem solving achievements. Still other studies have used schema-based instruction involving students with learning disabilities. No study has evaluated regular high school students' achievements in solving standard math word problems using a diagramming technique without technological aid. This study evaluated students' achievement in solving math word problems using a diagramming technique. Using a quasi-experimental experimental pretest-posttest research design, quantitative data were collected from 172 grade 11 Hispanic English language learners (ELLS) and African American learners whose first language is English (EFLLs) in 18 classes at an inner city high school in Northern New Jersey. There were 88 control and 84 experimental students. The pretest and posttest of each participating student and samples of the experimental students' class assignments provided the qualitative data for the study. The data from this study exhibited that the diagramming method of solving math word problems significantly improved student achievement in the experimental group (p<.01) compared to the control group. The study demonstrated that urban, high school, ELLs benefited from instruction that placed emphasis on the mathematical vocabulary and symbols used in word problems and that both ELLs and EFLLs improved their problem solving success through careful attention to the creation and labeling of diagrams to represent the mathematics involved in standard word problems. Although Learnertype (ELL, EFLL), Classtype (Bilingual and Mixed), and Gender (Female, Male) were not significant indicators of student achievement, there was significant interaction between Treatment and Classtype at the level of the Bilingual students ( p<.01) and between Treatment and Learnertype at the level of the ELLs (p<.01).
Teaching Fifth Grade Mathematical Concepts: Effects of Word Problems Used with Traditional Methods.
ERIC Educational Resources Information Center
Coy, Jessica
The view of the researcher is that students in the upper elementary to middle school range need to increase their problem-solving skills by making logical deductions and organizing and structuring their thoughts through the use of word problems. Giving children a daily word problem challenged and introduced them to the lesson. This activity…
ERIC Educational Resources Information Center
Cetintas, Suleyman; Si, Luo; Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tzur, Ron
2010-01-01
Estimating the difficulty level of math word problems is an important task for many educational applications. Identification of relevant and irrelevant sentences in math word problems is an important step for calculating the difficulty levels of such problems. This paper addresses a novel application of text categorization to identify two types of…
Process Inquiry: Analysis of Oral Problem-Solving Skills in Mathematics of Engineering Students
ERIC Educational Resources Information Center
Trance, Naci John C.
2013-01-01
This paper presents another effort in determining the difficulty of engineering students in terms of solving word problems. Students were presented with word problems in algebra. Then, they were asked to solve the word problems orally; that is, before they presented their written solutions, they were required to explain how they understood the…
Oostermeijer, Meike; Boonen, Anton J. H.; Jolles, Jelle
2014-01-01
The scientific literature shows that constructive play activities are positively related to children’s spatial ability. Likewise, a close positive relation is found between spatial ability and mathematical word problem-solving performances. The relation between children’s constructive play and their performance on mathematical word problems is, however, not reported yet. The aim of the present study was to investigate whether spatial ability acted as a mediator in the relation between constructive play and mathematical word problem-solving performance in 128 sixth-grade elementary school children. This mediating role of spatial ability was tested by utilizing the current mediation approaches suggested by Preacher and Hayes (2008). Results showed that 38.16% of the variance in mathematical word problem-solving performance is explained by children’s constructive play activities and spatial ability. More specifically, spatial ability acted as a partial mediator, explaining 31.58% of the relation between constructive play and mathematical word problem-solving performance. PMID:25101038
ERIC Educational Resources Information Center
Lin, John Jr-Hung; Lin, Sunny S. J.
2014-01-01
The present study investigated (a) whether the perceived cognitive load was different when geometry problems with various levels of configuration comprehension were solved and (b) whether eye movements in comprehending geometry problems showed sources of cognitive loads. In the first investigation, three characteristics of geometry configurations…
The Association between Mathematical Word Problems and Reading Comprehension
ERIC Educational Resources Information Center
Vilenius-Tuohimaa, Piia Maria; Aunola, Kaisa; Nurmi, Jari-Erik
2008-01-01
This study aimed to investigate the interplay between mathematical word problem skills and reading comprehension. The participants were 225 children aged 9-10 (Grade 4). The children's text comprehension and mathematical word problem-solving performance was tested. Technical reading skills were investigated in order to categorise participants as…
Using the Relational Paradigm: Effects on Pupils' Reasoning in Solving Additive Word Problems
ERIC Educational Resources Information Center
Polotskaia, Elena; Savard, Annie
2018-01-01
Pupils' difficulties in solving word problems continue to attract attention: while researchers highlight the importance of relational reasoning and modelling, school curricula typically use short word problems to develop pupils' knowledge of arithmetic operations and calculation strategies. The Relational Paradigm attributes the leading role in…
Bilingual College Writers' Collaborative Writing of Word Problems
ERIC Educational Resources Information Center
Esquinca, Alberto
2011-01-01
Numerous researchers have studied bilingual students' performance on word problems given that reading and writing these requires that they draw on linguistic and mathematical knowledge (Barwell, 2009a, 2009b). Some researchers have studied how bilinguals write word problems in the second language, but few have considered how bilinguals use their…
Cognitive Strategy Instruction for Teaching Word Problems to Primary-Level Struggling Students
ERIC Educational Resources Information Center
Pfannenstiel, Kathleen Hughes; Bryant, Diane Pedrotty; Bryant, Brian R.; Porterfield, Jennifer A.
2015-01-01
Students with mathematics difficulties and learning disabilities (LD) typically struggle with solving word problems. These students often lack knowledge about efficient, cognitive strategies to utilize when solving word problems. Cognitive strategy instruction has been shown to be effective in teaching struggling students how to solve word…
Bae, Young Seh; Chiang, Hsu-Min; Hickson, Linda
2015-07-01
This study examined the difference between children with autism spectrum disorders (ASD) and children with typical development (TD) in mathematical word problem solving ability and the factors associated with these children's word problem-solving ability. A total of 20 children with ASD and 20 children with TD participated in this study. Independent sample t tests and Spearman's rho correlations were used for data analysis. This study found: (a) Children with TD had higher word problem solving ability than did children with ASD; (b) Sentence comprehension, math vocabulary, computation, and everyday mathematical knowledge were associated with word problem solving ability of children with ASD and children with TD; and (c) Children with TD had higher everyday mathematical knowledge than did children with ASD.
The effect of problem structure on problem-solving: an fMRI study of word versus number problems.
Newman, Sharlene D; Willoughby, Gregory; Pruce, Benjamin
2011-09-02
It has long been thought that word problems are more difficult to solve than number/equation problems. However, recent findings have begun to bring this broadly believed idea into question. The current study examined the processing differences between these two types of problems. The behavioral results presented here failed to show an overwhelming advantage for number problems. In fact, there were more errors for the number problems than the word problems. The neuroimaging results reported demonstrate that there is significant overlap in the processing of what, on the surface, appears to be completely different problems that elicit different problem-solving strategies. Word and number problems rely on a general network responsible for problem-solving that includes the superior posterior parietal cortex, the horizontal segment of the intraparietal sulcus which is hypothesized to be involved in problem representation and calculation as well as the regions that have been linked to executive aspects of working memory such as the pre-SMA and basal ganglia. While overlap was observed, significant differences were also found primarily in language processing regions such as Broca's and Wernicke's areas for the word problems and the horizontal segment of the intraparietal sulcus for the number problems. Copyright © 2011 Elsevier B.V. All rights reserved.
Lazy orbits: An optimization problem on the sphere
NASA Astrophysics Data System (ADS)
Vincze, Csaba
2018-01-01
Non-transitive subgroups of the orthogonal group play an important role in the non-Euclidean geometry. If G is a closed subgroup in the orthogonal group such that the orbit of a single Euclidean unit vector does not cover the (Euclidean) unit sphere centered at the origin then there always exists a non-Euclidean Minkowski functional such that the elements of G preserve the Minkowskian length of vectors. In other words the Minkowski geometry is an alternative of the Euclidean geometry for the subgroup G. It is rich of isometries if G is "close enough" to the orthogonal group or at least to one of its transitive subgroups. The measure of non-transitivity is related to the Hausdorff distances of the orbits under the elements of G to the Euclidean sphere. Its maximum/minimum belongs to the so-called lazy/busy orbits, i.e. they are the solutions of an optimization problem on the Euclidean sphere. The extremal distances allow us to characterize the reducible/irreducible subgroups. We also formulate an upper and a lower bound for the ratio of the extremal distances. As another application of the analytic tools we introduce the rank of a closed non-transitive group G. We shall see that if G is of maximal rank then it is finite or reducible. Since the reducible and the finite subgroups form two natural prototypes of non-transitive subgroups, the rank seems to be a fundamental notion in their characterization. Closed, non-transitive groups of rank n - 1 will be also characterized. Using the general results we classify all their possible types in lower dimensional cases n = 2 , 3 and 4. Finally we present some applications of the results to the holonomy group of a metric linear connection on a connected Riemannian manifold.
ERIC Educational Resources Information Center
Koyuncu, Ilhan; Akyuz, Didem; Cakiroglu, Erdinc
2015-01-01
This study aims to investigate plane geometry problem-solving strategies of prospective mathematics teachers using dynamic geometry software (DGS) and paper-and-pencil (PPB) environments after receiving an instruction with GeoGebra (GGB). Four plane geometry problems were used in a multiple case study design to understand the solution strategies…
Three-dimensional electrical impedance tomography: a topology optimization approach.
Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli
2008-02-01
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
Word Problem Strategy for Latino English Language Learners at Risk for Math Disabilities
ERIC Educational Resources Information Center
Orosco, Michael J.
2014-01-01
"English Language Learners" (ELLs) at risk for "math disabilities" (MD) are challenged in solving word problems for numerous reasons such as (a) learning English as a second language, (b) limited experience using math vocabulary, and (c) lack of strategies to improve word-problem-solving skills. As a result of these…
Working Memory and Literacy as Predictors of Performance on Algebraic Word Problems
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Swee-Fong; Ng, Ee-Lynn; Lim, Zee-Ying
2004-01-01
Previous studies on individual differences in mathematical abilities have shown that working memory contributes to early arithmetic performance. In this study, we extended the investigation to algebraic word problem solving. A total of 151 10-year-olds were administered algebraic word problems and measures of working memory, intelligence quotient…
Helping Students with Emotional and Behavioral Disorders Solve Mathematics Word Problems
ERIC Educational Resources Information Center
Alter, Peter
2012-01-01
The author presents a strategy for helping students with emotional and behavioral disorders become more proficient at solving math word problems. Math word problems require students to go beyond simple computation in mathematics (e.g., adding, subtracting, multiplying, and dividing) and use higher level reasoning that includes recognizing relevant…
Does Calculation or Word-Problem Instruction Provide a Stronger Route to Prealgebraic Knowledge?
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.
2014-01-01
The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and prealgebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other…
Language, Arithmetic Word Problems, and Deaf Students: Linguistic Strategies Used To Solve Tasks.
ERIC Educational Resources Information Center
Zevenbergen, Robyn; Hyde, Merv; Power, Des
2001-01-01
Examines the performance of deaf and hearing-impaired students in Queensland, Australia when solving arithmetic word problems. Subjects' solutions of word problems confirmed trends for learning students but their performance was delayed in comparison. Confirms other studies in which deaf and hearing-impaired students are delayed in their language…
ERIC Educational Resources Information Center
Bae, Young Seh
2013-01-01
Mathematical Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development Young Seh Bae This study investigated mathematical word problem solving and the factors associated with the solution paths adopted by two groups of participants (N=40), students with autism spectrum disorders (ASDs) and typically…
Examining How Students with Diverse Abilities Use Diagrams to Solve Mathematics Word Problems
ERIC Educational Resources Information Center
van Garderen, Delinda; Scheuermann, Amy; Jackson, Christa
2013-01-01
This study examined students' understanding of diagrams and their use of diagrams as tools to solve mathematical word problems. Students with learning disabilities (LD), typically achieving students, and gifted students in Grades 4 through 7 ("N" = 95) participated. Students were presented with novel mathematical word problem-solving…
Why Do Disadvantaged Filipino Children Find Word Problems in English Difficult?
ERIC Educational Resources Information Center
Bautista, Debbie; Mulligan, Joanne
2010-01-01
Young Filipino students are expected to solve mathematical word problems in English, a language that many encounter only in schools. Using individual interviews of 17 Filipino children, we investigated why word problems in English are difficult and the extent to which the language interferes with performance. Results indicate that children could…
Word Problem Solving: A Schema Approach in Year 3
ERIC Educational Resources Information Center
van Klinken, Eduarda
2012-01-01
This article outlines how a Brisbane independent school, Clayfield College, improved the ability of its Year 3 students to solve addition and subtraction word problems by utilising a schematic approach. It was observed that while students could read the words in the text of a written problem, many had difficulty identifying the core information…
Duality of Mathematical Thinking When Making Sense of Simple Word Problems: Theoretical Essay
ERIC Educational Resources Information Center
Polotskaia, Elena; Savard, Annie; Freiman, Viktor
2015-01-01
This essay proposes a reflection on the learning difficulties and teaching approaches associated with arithmetic word problem solving. We question the development of word problem solving skills in the early grades of elementary school. We are trying to revive the discussion because first, the knowledge in question--reversibility of arithmetic…
Sheriff, Kelli A; Boon, Richard T
2014-08-01
The purpose of this study was to examine the effects of computer-based graphic organizers, using Kidspiration 3© software, to solve one-step word problems. Participants included three students with mild intellectual disability enrolled in a functional academic skills curriculum in a self-contained classroom. A multiple probe single-subject research design (Horner & Baer, 1978) was used to evaluate the effectiveness of computer-based graphic organizers to solving mathematical one-step word problems. During the baseline phase, the students completed a teacher-generated worksheet that consisted of nine functional word problems in a traditional format using a pencil, paper, and a calculator. In the intervention and maintenance phases, the students were instructed to complete the word problems using a computer-based graphic organizer. Results indicated that all three of the students improved in their ability to solve the one-step word problems using computer-based graphic organizers compared to traditional instructional practices. Limitations of the study and recommendations for future research directions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Teachers Modify Geometry Problems: From Proof to Investigation
ERIC Educational Resources Information Center
Leikin, Roza; Grossman, Dorith
2013-01-01
We explored transformations that teachers made to modify geometry proof problems into investigation problems and analyzed how these transformations differ in teachers who use a dynamic geometry environment (DGE) in their classes and those who do not. We devised a framework for the analysis of problem transformations and types of teacher-generated…
An Exploratory Study Contrasting High- and Low-Achieving Students' Percent Word Problem Solving
ERIC Educational Resources Information Center
Jitendra, Asha K.; Star, Jon R.
2012-01-01
This study evaluated whether schema-based instruction (SBI), a promising method for teaching students to represent and solve mathematical word problems, impacted the learning of percent word problems. Of particular interest was the extent that SBI improved high- and low-achieving students' learning and to a lesser degree on the indirect effect of…
Tense and Aspect in Word Problems about Motion: Diagram, Gesture, and the Felt Experience of Time
ERIC Educational Resources Information Center
de Freitas, Elizabeth; Zolkower, Betina
2015-01-01
Word problems about motion contain various conjugated verb forms. As students and teachers grapple with such word problems, they jointly operationalize diagrams, gestures, and language. Drawing on findings from a 3-year research project examining the social semiotics of classroom interaction, we show how teachers and students use gesture and…
ERIC Educational Resources Information Center
Dixon, Juli K.; Andreasen, Janet B.; Avila, Cheryl L.; Bawatneh, Zyad; Deichert, Deana L.; Howse, Tashana D.; Turner, Mercedes Sotillo
2014-01-01
A goal of this study was to examine elementary preservice teachers' (PSTs) ability to contextualize and decontextualize fraction subtraction by asking them to write word problems to represent fraction subtraction expressions and to choose prewritten word problems to support given fraction subtraction expressions. Three themes emerged from the…
Assessing the Effect of Language Demand in Bundles of Math Word Problems
ERIC Educational Resources Information Center
Banks, Kathleen; Jeddeeni, Ahmad; Walker, Cindy M.
2016-01-01
Differential bundle functioning (DBF) analyses were conducted to determine whether seventh and eighth grade second language learners (SLLs) had lower probabilities of answering bundles of math word problems correctly that had heavy language demands, when compared to non-SLLs of equal math proficiency. Math word problems on each of four test forms…
ERIC Educational Resources Information Center
Beitzel, Brian D.; Staley, Richard K.; DuBois, Nelson F.
2011-01-01
Previous research has cast doubt on the efficacy of utilizing external representations as an aid to solving word problems. The present study replicates previous findings that concrete representations hinder college students' ability to solve probability word problems, and extends those findings to apply to a multimedia instructional context. Our…
Word Frequency, Function Words and the Second Gavagai Problem
ERIC Educational Resources Information Center
Hochmann, Jean-Remy
2013-01-01
The classic gavagai problem exemplifies the difficulty to identify the referent of a novel word uttered in a foreign language. Here, we consider the reverse problem: identifying the referential part of a label. Assuming "gavagai" indicates a rabbit in a foreign language, it may very well mean ""a" rabbit" or ""that" rabbit". How can a learner know…
The Impact of Metacognitive Strategies and Self-Regulating Processes of Solving Math Word Problems
ERIC Educational Resources Information Center
Vula, Eda; Avdyli, Rrezarta; Berisha, Valbona; Saqipi, Blerim; Elezi, Shpetim
2017-01-01
This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners' achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems.…
The Motivation of Secondary School Students in Mathematical Word Problem Solving
ERIC Educational Resources Information Center
Gasco, Javier; Villarroel, Jose-Domingo
2014-01-01
Introduction: Motivation is an important factor in the learning of mathematics. Within this area of education, word problem solving is central in most mathematics curricula of Secondary School. The objective of this research is to detect the differences in motivation in terms of the strategies used to solve word problems. Method: It analyzed the…
ERIC Educational Resources Information Center
Sharp, Emily; Shih Dennis, Minyi
2017-01-01
This study used a multiple probe across participants design to examine the effects of a model drawing strategy (MDS) intervention package on fraction comparing and ordering word problem-solving performance of three Grade 4 students. MDS is a form of cognitive strategy instruction for teaching word problem solving that includes explicit instruction…
Young Filipino Students Making Sense of Arithmetic Word Problems in English
ERIC Educational Resources Information Center
Bautista, Debbie; Mulligan, Joanne; Mitchelmore, Michael
2009-01-01
Young Filipino children are expected to solve mathematical word problems in English, a task which they typically encounter only in schools. In this exploratory study, task-based interviews were conducted with seven Filipino children from a public school. The children were asked to read and solve addition and subtraction word problems in English or…
ERIC Educational Resources Information Center
Roberts, Nicky
2016-01-01
Drawing on a literature review of classifications developed by each of Riley, Verschaffel and Carpenter and their respective research groups, a refined typology of additive relations word problems is proposed and then used as analytical tool to classify the additive relations word problems in South African Curriculum and Assessment Policy Standard…
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
A Comparative Analysis of Word Problems in Selected United States and Russian First Grade Textbooks
ERIC Educational Resources Information Center
Grishchenko, Svetlana
2009-01-01
The purpose of this study was to explore word problems as a subject matter in mathematics textbook curricula. The motivation for the study derived from the following evidence: (a) American students find some word problems are more difficult than others (Garcia, Jimenez, & Hess, 2006; Riley & Green, 1988; Stern, 2001), and (b) one of the…
ERIC Educational Resources Information Center
Bae, Young Seh; Chiang, Hsu-Min; Hickson, Linda
2015-01-01
This study examined the difference between children with autism spectrum disorders (ASD) and children with typical development (TD) in mathematical word problem solving ability and the factors associated with these children's word problem-solving ability. A total of 20 children with ASD and 20 children with TD participated in this study.…
ERIC Educational Resources Information Center
Banerjee, Banmali
2010-01-01
Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to…
A fast direct solver for boundary value problems on locally perturbed geometries
NASA Astrophysics Data System (ADS)
Zhang, Yabin; Gillman, Adrianna
2018-03-01
Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.
ERIC Educational Resources Information Center
Csikos, Csaba; Szitanyi, Judit; Kelemen, Rita
2012-01-01
The present study aims to investigate the effects of a design experiment developed for third-grade students in the field of mathematics word problems. The main focus of the program was developing students' knowledge about word problem solving strategies with an emphasis on the role of visual representations in mathematical modeling. The experiment…
ERIC Educational Resources Information Center
Nortvedt, Guri A.
2011-01-01
This article discusses how 13-year-old students with above-average numeracy skills and below-average reading skills cope with comprehending word problems. Compared to other students who are proficient in numeracy and are skilled readers, these students are more disadvantaged when solving single-step and multistep arithmetic word problems. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, S.R.
1989-04-01
In the summer of 1986, a number of problems being experienced by Sandia secretaries due to multiple word processing packages being used were brought to the attention of Sandia's upper management. This report discusses how these problems evolved, how management chose to correct the problem, and how standardization of word processing for Sandia secretaries was achieved. 11 refs.
ERIC Educational Resources Information Center
Sherrill, James M.
Described is a study concerned with the mode of presentation of printed mathematical word problems. Tenth grade students were given twenty word problems to solve, presented in one of three ways: (1) prose only, (2) prose with an accurate picture included, or (3) prose with a distorted picture. Experimental results showed that the group with an…
Research and Implementation of Tibetan Word Segmentation Based on Syllable Methods
NASA Astrophysics Data System (ADS)
Jiang, Jing; Li, Yachao; Jiang, Tao; Yu, Hongzhi
2018-03-01
Tibetan word segmentation (TWS) is an important problem in Tibetan information processing, while abbreviated word recognition is one of the key and most difficult problems in TWS. Most of the existing methods of Tibetan abbreviated word recognition are rule-based approaches, which need vocabulary support. In this paper, we propose a method based on sequence tagging model for abbreviated word recognition, and then implement in TWS systems with sequence labeling models. The experimental results show that our abbreviated word recognition method is fast and effective and can be combined easily with the segmentation model. This significantly increases the effect of the Tibetan word segmentation.
Analysis of space telescope data collection system
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Schoggen, W. O.
1982-01-01
An analysis of the expected performance for the Multiple Access (MA) system is provided. The analysis covers the expected bit error rate performance, the effects of synchronization loss, the problem of self-interference, and the problem of phase ambiguity. The problem of false acceptance of a command word due to data inversion is discussed. A mathematical determination of the probability of accepting an erroneous command word due to a data inversion is presented. The problem is examined for three cases: (1) a data inversion only, (2) a data inversion and a random error within the same command word, and a block (up to 256 48-bit words) containing both a data inversion and a random error.
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Powell, Sarah R.; Schumacher, Robin F.; Hamlett, Carol L.; Vernier, Emily; Namkung, Jessica M.; Vukovic, Rose K.
2012-01-01
The purpose of this study was to investigate the contributions of domain-general cognitive resources and different forms of arithmetic development to individual differences in pre-algebraic knowledge. Children (n=279; mean age=7.59 yrs) were assessed on 7 domain-general cognitive resources as well as arithmetic calculations and word problems at start of 2nd grade and on calculations, word problems, and pre-algebraic knowledge at end of 3rd grade. Multilevel path analysis, controlling for instructional effects associated with the sequence of classrooms in which students were nested across grades 2–3, indicated arithmetic calculations and word problems are foundational to pre-algebraic knowledge. Also, results revealed direct contributions of nonverbal reasoning and oral language to pre-algebraic knowledge, beyond indirect effects that are mediated via arithmetic calculations and word problems. By contrast, attentive behavior, phonological processing, and processing speed contributed to pre-algebraic knowledge only indirectly via arithmetic calculations and word problems. PMID:22409764
Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.
2016-01-01
The purpose of this study was to examine child-level pathways in development of pre-algebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of grade 2; calculation accuracy and calculation fluency at end of grade 2; and pre-algebraic knowledge and word-problem solving at end of grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than pre-algebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students’ foundational mathematics skills or cognitive processes. PMID:27786534
Fung, Wenson; Swanson, H Lee
2017-07-01
The purpose of this study was to assess whether the differential effects of working memory (WM) components (the central executive, phonological loop, and visual-spatial sketchpad) on math word problem-solving accuracy in children (N = 413, ages 6-10) are completely mediated by reading, calculation, and fluid intelligence. The results indicated that all three WM components predicted word problem solving in the nonmediated model, but only the storage component of WM yielded a significant direct path to word problem-solving accuracy in the fully mediated model. Fluid intelligence was found to moderate the relationship between WM and word problem solving, whereas reading, calculation, and related skills (naming speed, domain-specific knowledge) completely mediated the influence of the executive system on problem-solving accuracy. Our results are consistent with findings suggesting that storage eliminates the predictive contribution of executive WM to various measures Colom, Rebollo, Abad, & Shih (Memory & Cognition, 34: 158-171, 2006). The findings suggest that the storage component of WM, rather than the executive component, has a direct path to higher-order processing in children.
NASA Astrophysics Data System (ADS)
Jupri, Al
2017-04-01
In this article we address how Realistic Mathematics Education (RME) principles, including the intertwinement and the reality principles, are used to analyze geometry tasks. To do so, we carried out three phases of a small-scale study. First we analyzed four geometry problems - considered as tasks inviting the use of problem solving and reasoning skills - theoretically in the light of the RME principles. Second, we tested two problems to 31 undergraduate students of mathematics education program and other two problems to 16 master students of primary mathematics education program. Finally, we analyzed student written work and compared these empirical to the theoretical results. We found that there are discrepancies between what we expected theoretically and what occurred empirically in terms of mathematization and of intertwinement of mathematical concepts from geometry to algebra and vice versa. We conclude that the RME principles provide a fruitful framework for analyzing geometry tasks that, for instance, are intended for assessing student problem solving and reasoning skills.
ERIC Educational Resources Information Center
Jitendra, Asha K.; Corroy, Kelly Cozine; Dupuis, Danielle N.
2013-01-01
The purposes of this study were (a) to evaluate differences in arithmetic word problem solving between high and low at-risk students for mathematics difficulties (MD) and (b) to assess the influence of attention, behavior, reading, and socio-economic status (SES) in predicting the word problem solving performance of third-grade students with MD.…
Problem Solving in Calculus with Symbolic Geometry and CAS
ERIC Educational Resources Information Center
Todd, Philip; Wiechmann, James
2008-01-01
Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…
Automatic Item Generation of Probability Word Problems
ERIC Educational Resources Information Center
Holling, Heinz; Bertling, Jonas P.; Zeuch, Nina
2009-01-01
Mathematical word problems represent a common item format for assessing student competencies. Automatic item generation (AIG) is an effective way of constructing many items with predictable difficulties, based on a set of predefined task parameters. The current study presents a framework for the automatic generation of probability word problems…
PALP: A Package for Analysing Lattice Polytopes with applications to toric geometry
NASA Astrophysics Data System (ADS)
Kreuzer, Maximilian; Skarke, Harald
2004-02-01
We describe our package PALP of C programs for calculations with lattice polytopes and applications to toric geometry, which is freely available on the internet. It contains routines for vertex and facet enumeration, computation of incidences and symmetries, as well as completion of the set of lattice points in the convex hull of a given set of points. In addition, there are procedures specialized to reflexive polytopes such as the enumeration of reflexive subpolytopes, and applications to toric geometry and string theory, like the computation of Hodge data and fibration structures for toric Calabi-Yau varieties. The package is well tested and optimized in speed as it was used for time consuming tasks such as the classification of reflexive polyhedra in 4 dimensions and the creation and manipulation of very large lists of 5-dimensional polyhedra. While originally intended for low-dimensional applications, the algorithms work in any dimension and our key routine for vertex and facet enumeration compares well with existing packages. Program summaryProgram obtainable form: CPC Program Library, Queen's University of Belfast, N. Ireland Title of program: PALP Catalogue identifier: ADSQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSQ Computer for which the program is designed: Any computer featuring C Computers on which it has been tested: PCs, SGI Origin 2000, IBM RS/6000, COMPAQ GS140 Operating systems under which the program has been tested: Linux, IRIX, AIX, OSF1 Programming language used: C Memory required to execute with typical data: Negligible for most applications; highly variable for analysis of large polytopes; no minimum but strong effects on calculation time for some tasks Number of bits in a word: arbitrary Number of processors used: 1 Has the code been vectorised or parallelized?: No Number of bytes in distributed program, including test data, etc.: 138 098 Distribution format: tar gzip file Keywords: Lattice polytopes, facet enumeration, reflexive polytopes, toric geometry, Calabi-Yau manifolds, string theory, conformal field theory Nature of problem: Certain lattice polytopes called reflexive polytopes afford a combinatorial description of a very large class of Calabi-Yau manifolds in terms of toric geometry. These manifolds play an essential role for compactifications of string theory. While originally designed to handle and classify reflexive polytopes, with particular emphasis on problems relevant to string theory applications [M. Kreuzer and H. Skarke, Rev. Math. Phys. 14 (2002) 343], the package also handles standard questions (facet enumeration and similar problems) about arbitrary lattice polytopes very efficiently. Method of solution: Much of the code is straightforward programming, but certain key routines are optimized with respect to calculation time and the handling of large sets of data. A double description method (see, e.g., [D. Avis et al., Comput. Geometry 7 (1997) 265]) is used for the facet enumeration problem, lattice basis reduction for extended gcd and a binary database structure for tasks involving large numbers of polytopes, such as classification problems. Restrictions on the complexity of the program: The only hard limitation comes from the fact that fixed integer arithmetic (32 or 64 bit) is used, allowing for input data (polytope coordinates) of roughly up to 10 9. Other parameters (dimension, numbers of points and vertices, etc.) can be set before compilation. Typical running time: Most tasks (typically: analysis of a four dimensional reflexive polytope) can be perfomed interactively within milliseconds. The classification of all reflexive polytopes in four dimensions takes several processor years. The facet enumeration problem for higher (e.g., 12-20) dimensional polytopes varies strongly with the dimension and structure of the polytope; here PALP's performance is similar to that of existing packages [Avis et al., Comput. Geometry 7 (1997) 265]. Unusual features of the program: None
Investigating the Problem Solving Competency of Pre Service Teachers in Dynamic Geometry Environment
ERIC Educational Resources Information Center
Haja, Shajahan
2005-01-01
This study investigated the problem-solving competency of four secondary pre service teachers (PSTs) of University of London as they explored geometry problems in dynamic geometry environment (DGE) in 2004. A constructivist experiment was designed in which dynamic software Cabri-Geometre II (hereafter Cabri) was used as an interactive medium.…
ERIC Educational Resources Information Center
Cassidy, Jack
1991-01-01
Presents suggestions for teaching math word problems to elementary students. The strategies take into consideration differences between reading in math and reading in other areas. A problem-prediction game and four self-checking activities are included along with a magic password challenge. (SM)
ERIC Educational Resources Information Center
DeRosa, Bill
1986-01-01
Describes an activity designed to improve students' skills at solving mathematical word problems through an awareness of the pet overpopulation problem. Uses the concept of cumulative female offspring as a focal point in assisting students to analyze and work through word problems. (ML)
Arithmetic Word-Problem-Solving in Huntington's Disease
ERIC Educational Resources Information Center
Allain, P.; Verny, C.; Aubin, G.; Pinon, K.; Bonneau, D.; Dubas, F.; Gall, D.L.
2005-01-01
The purpose of this study was to examine executive functioning in patients with Huntington's disease using an arithmetic word-problem-solving task including eight solvable problems of increasing complexity and four aberrant problems. Ten patients with Huntington's disease and 12 normal control subjects matched by age and education were tested.…
ERIC Educational Resources Information Center
Pape, Stephen J.
2004-01-01
Many children read mathematics word problems and directly translate them to arithmetic operations. More sophisticated problem solvers transform word problems into object-based or mental models. Subsequent solutions are often qualitatively different because these models differentially support cognitive processing. Based on a conception of problem…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Gilbert, Jennifer K.; Fuchs, Douglas; Seethaler, Pamela M.; N. Martin, BrittanyLee
2018-01-01
This study was designed to deepen insights on whether word-problem (WP) solving is a form of text comprehension (TC) and on the role of language in WPs. A sample of 325 second graders, representing high, average, and low reading and math performance, was assessed on (a) start-of-year TC, WP skill, language, nonlinguistic reasoning, working memory,…
Language, arithmetic word problems, and deaf students: Linguistic strategies used to solve tasks
NASA Astrophysics Data System (ADS)
Zevenbergen, Robyn; Hyde, Merv; Power, Des
2001-12-01
There has been limited examination of the intersection between language and arithmetic in the performance of deaf students, although some previous research has shown that deaf and hearing-impaired1 students are delayed in both their language acquisition and arithmetic performance. This paper examines the performance of deaf and hearing-impaired students in South-East Queensland, Australia, in solving arithmetic word problems. It was found that the subjects' solutions of word problems confirmed trends for hearing students, but that their performance was delayed in comparison. The results confirm other studies where deaf and hearing-impaired students are delayed in their language acquisition and this impacts on their capacity to successfully undertake the resolution of word problems.
Tense and aspect in word problems about motion: diagram, gesture, and the felt experience of time
NASA Astrophysics Data System (ADS)
de Freitas, Elizabeth; Zolkower, Betina
2015-09-01
Word problems about motion contain various conjugated verb forms. As students and teachers grapple with such word problems, they jointly operationalize diagrams, gestures, and language. Drawing on findings from a 3-year research project examining the social semiotics of classroom interaction, we show how teachers and students use gesture and diagram to make sense of complex verb forms in such word problems. We focus on the grammatical category of "aspect" for how it broadens the concept of verb tense. Aspect conveys duration and completion or frequency of an event. The aspect of a verb defines its temporal flow (or lack thereof) and the location of a vantage point for making sense of this durational process.
Constructing a Coherent Problem Model to Facilitate Algebra Problem Solving in a Chemistry Context
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing; Phan, Huy P.
2015-01-01
An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant…
Individualized Math Problems in Geometry. Oregon Vo-Tech Mathematics Problem Sets.
ERIC Educational Resources Information Center
Cosler, Norma, Ed.
This is one of eighteen sets of individualized mathematics problems developed by the Oregon Vo-Tech Math Project. Each of these problem packages is organized around a mathematical topic and contains problems related to diverse vocations. Solutions are provided for all problems. The volume contains problems in applied geometry. Measurement of…
Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...
NASA Astrophysics Data System (ADS)
Hasanah, N.; Hayashi, Y.; Hirashima, T.
2017-02-01
Arithmetic word problems remain one of the most difficult area of teaching mathematics. Learning by problem posing has been suggested as an effective way to improve students’ understanding. However, the practice in usual classroom is difficult due to extra time needed for assessment and giving feedback to students’ posed problems. To address this issue, we have developed a tablet PC software named Monsakun for learning by posing arithmetic word problems based on Triplet Structure Model. It uses the mechanism of sentence-integration, an efficient implementation of problem-posing that enables agent-assessment of posed problems. The learning environment has been used in actual Japanese elementary school classrooms and the effectiveness has been confirmed in previous researches. In this study, ten Indonesian elementary school students living in Japan participated in a learning session of problem posing using Monsakun in Indonesian language. We analyzed their learning activities and show that students were able to interact with the structure of simple word problem using this learning environment. The results of data analysis and questionnaire suggested that the use of Monsakun provides a way of creating an interactive and fun environment for learning by problem posing for Indonesian elementary school students.
Effects of Numerical Surface Form in Arithmetic Word Problems
ERIC Educational Resources Information Center
Orrantia, Josetxu; Múñez, David; San Romualdo, Sara; Verschaffel, Lieven
2015-01-01
Adults' simple arithmetic performance is more efficient when operands are presented in Arabic digit (3 + 5) than in number word (three + five) formats. An explanation provided is that visual familiarity with digits is higher respect to number words. However, most studies have been limited to single-digit addition and multiplication problems. In…
Problem Posing with Realistic Mathematics Education Approach in Geometry Learning
NASA Astrophysics Data System (ADS)
Mahendra, R.; Slamet, I.; Budiyono
2017-09-01
One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.
The Efficacy of Using Diagrams When Solving Probability Word Problems in College
ERIC Educational Resources Information Center
Beitzel, Brian D.; Staley, Richard K.
2015-01-01
Previous experiments have shown a deleterious effect of visual representations on college students' ability to solve total- and joint-probability word problems. The present experiments used conditional-probability problems, known to be more difficult than total- and joint-probability problems. The diagram group was instructed in how to use tree…
Working Memory Components as Predictors of Children's Mathematical Word Problem Solving
ERIC Educational Resources Information Center
Zheng, Xinhua; Swanson, H. Lee; Marcoulides, George A.
2011-01-01
This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N = 310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM,…
Different Procedures for Solving Mathematical Word Problems in High School
ERIC Educational Resources Information Center
Gasco, Javier; Villarroel, Jose Domingo; Zuazagoitia, Dani
2014-01-01
The teaching and learning of mathematics cannot be understood without considering the resolution of word problems. These kinds of problems not only connect mathematical concepts with language (and therefore with reality) but also promote the learning related to other scientific areas. In primary school, problems are solved by using basic…
Fuchs, Lynn S; Gilbert, Jennifer K; Powell, Sarah R; Cirino, Paul T; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Tolar, Tammy D
2016-12-01
The purpose of this study was to examine child-level pathways in development of prealgebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of Grade 2; calculation accuracy and calculation fluency at end of Grade 2; and prealgebraic knowledge and word-problem solving at end of Grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than prealgebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students' foundational mathematics skills or cognitive processes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Fisher, William
1982-01-01
An approach to the instruction of maxima and minima problems that works with tools of geometry and algebra is presented. The focus is on a classic pie-cutting problem, which is viewed as an interesting and instructive task that is an excellent application of transformation geometry. (MP)
Is It a Noun or Is It a Verb? Resolving the Ambicategoricality Problem
ERIC Educational Resources Information Center
Conwell, Erin; Morgan, James L.
2012-01-01
In many languages, significant numbers of words are used in more than one grammatical category; English, in particular, has many words that can be used as both nouns and verbs. Such "ambicategoricality" potentially poses problems for children trying to learn the grammatical properties of words and has been used to argue against the logical…
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing
2013-01-01
Text editing directs students' attention to the problem structure as they classify whether the texts of word problems contain sufficient, missing or irrelevant information for working out a solution. Equation worked examples emphasize the formation of a coherent problem structure to generate a solution. Its focus is on the construction of three…
ERIC Educational Resources Information Center
Parmar, Rene S.; Cawley, John F.
1994-01-01
Matrix organization can be used to construct math word problems for children with mild disabilities. Matrix organization specifies the characteristics of problems, such as problem theme or setting, operations, level of computation complexity, reading vocabulary level, and need for classification. A sample scope and sequence and 16 sample word…
ERIC Educational Resources Information Center
Tang, Hui; Kirk, John; Pienta, Norbert J.
2014-01-01
This paper includes two experiments, one investigating complexity factors in stoichiometry word problems, and the other identifying students' problem-solving protocols by using eye-tracking technology. The word problems used in this study had five different complexity factors, which were randomly assigned by a Web-based tool that we developed. The…
The Effectiveness of Using the Model Method to Solve Word Problems
ERIC Educational Resources Information Center
Bao, Lei
2016-01-01
The aim of this study is to investigate whether the model method is effective to assist primary students to solve word problems. The model method not only provides students with an opportunity to interpret the problem by drawing the rectangular bar but also helps students to visually represent problem situations and relevant relationships on the…
Effect of Causal Stories in Solving Mathematical Story Problems
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Gerretson, Helen; Olkun, Sinan; Joutsenlahti, Jorma
2010-01-01
This study investigated whether infusing "causal" story elements into mathematical word problems improves student performance. In one experiment in the USA and a second in USA, Finland and Turkey, undergraduate elementary education majors worked word problems in three formats: 1) standard (minimal verbiage), 2) potential causation…
Using speakers' referential intentions to model early cross-situational word learning.
Frank, Michael C; Goodman, Noah D; Tenenbaum, Joshua B
2009-05-01
Word learning is a "chicken and egg" problem. If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers' intended meanings. To the beginning learner, however, both individual word meanings and speakers' intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison models. Moreover, as the result of making probabilistic inferences about speakers' intentions, our model explains a variety of behavioral phenomena described in the word-learning literature. These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference.
Problem Solving through an Optimization Problem in Geometry
ERIC Educational Resources Information Center
Poon, Kin Keung; Wong, Hang-Chi
2011-01-01
This article adapts the problem-solving model developed by Polya to investigate and give an innovative approach to discuss and solve an optimization problem in geometry: the Regiomontanus Problem and its application to football. Various mathematical tools, such as calculus, inequality and the properties of circles, are used to explore and reflect…
Euclidean, Spherical, and Hyperbolic Shadows
ERIC Educational Resources Information Center
Hoban, Ryan
2013-01-01
Many classical problems in elementary calculus use Euclidean geometry. This article takes such a problem and solves it in hyperbolic and in spherical geometry instead. The solution requires only the ability to compute distances and intersections of points in these geometries. The dramatically different results we obtain illustrate the effect…
A Coupling Strategy of FEM and BEM for the Solution of a 3D Industrial Crack Problem
NASA Astrophysics Data System (ADS)
Kouitat Njiwa, Richard; Taha Niane, Ngadia; Frey, Jeremy; Schwartz, Martin; Bristiel, Philippe
2015-03-01
Analyzing crack stability in an industrial context is challenging due to the geometry of the structure. The finite element method is effective for defect-free problems. The boundary element method is effective for problems in simple geometries with singularities. We present a strategy that takes advantage of both approaches. Within the iterative solution procedure, the FEM solves a defect-free problem over the structure while the BEM solves the crack problem over a fictitious domain with simple geometry. The effectiveness of the approach is demonstrated on some simple examples which allow comparison with literature results and on an industrial problem.
Word-based Morphology: Some Problems from a Polysynthetic Language.
ERIC Educational Resources Information Center
Axelrod, Melissa
Some of the problems inherent in a word-based hypothesis asserting that the word/stem is taken as the minimal sign not only for syntax but also for morphology are examined in an analysis of a polysynthetic language, Koyukon, an Athabaskan language of Alaska. Data from the Central dialect is considered in the analysis. A brief sketch of the verbal…
The Influence of English-Korean Bilingualism in Solving Mathematics Word Problems.
ERIC Educational Resources Information Center
Whang, Woo-Hyung
1996-01-01
Purposeful sampling was used to select six English-Korean bilingual students to investigate language difficulties and cognitive processes in solving mathematics word problems. These six case studies revealed distinct patterns of difficulties in solving problems written in English and Korean, especially for students in transition stage. (Author/KMC)
On Learning Geometry for Teaching
ERIC Educational Resources Information Center
Kuchemann, Dietmar; Rodd, Melissa
2012-01-01
The title is that of a course with the same name, designed for teachers of mathematics. The rational for a course specifically on geometry was that "many of those currently teaching mathematics in school had little geometrical education". Teachers on the course experience geometry through problem solving, and learning to pose geometrical problems.…
NASA Astrophysics Data System (ADS)
2015-09-01
Words matter. They are the "atoms" of written and oral communication. Students rely on words in textbooks and other instructional resources and in classroom lectures and discussions. As instructors, there are times when we need to think carefully about the words we use. Sometimes there are problems that may not be initially apparent and we may introduce confusion when we were aiming for clarity.
ERIC Educational Resources Information Center
Morin, Lisa L.; Watson, Silvana M. R.; Hester, Peggy; Raver, Sharon
2017-01-01
For students with mathematics difficulties (MD), math word problem solving is especially challenging. The purpose of this study was to examine the effects of a problem-solving strategy, bar model drawing, on the mathematical problem-solving skills of students with MD. The study extended previous research that suggested that schematic-based…
ERIC Educational Resources Information Center
Flores, Margaret M.; Hinton, Vanessa M.; Burton, Megan E.
2016-01-01
Mathematical word problems are the most common form of mathematics problem solving implemented in K-12 schools. Identifying key words is a frequent strategy taught in classrooms in which students struggle with problem solving and show low success rates in mathematics. Researchers show that using the concrete-representational-abstract (CRA)…
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong
2009-01-01
Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…
Chen, Jason C W; Li, Wen; Lui, Ming; Paller, Ken A
2009-08-18
Neural correlates of explicit and implicit memory tend to co-occur and are therefore difficult to measure independently, posing problems for understanding the unique nature of different types of memory processing. To circumvent this problem, we developed an experimental design wherein subjects acquired information from words presented in a subliminal manner, such that conscious remembering was minimized. Cross-modal word repetition was used so that perceptual implicit memory would also be limited. Healthy human subjects viewed subliminal words six times each and about 2 min later heard the same words interspersed with new words in a category-verification test. Electrophysiological correlates of word repetition included negative brain potentials over left-frontal locations beginning approximately 500 ms after word onset. Behavioral responses were slower for repeated words than for new words. Differential processing of word meaning in the absence of explicit memory was most likely responsible for differential electrical and behavioral responses to old versus new words. Moreover, these effects were distinct from neural correlates of explicit memory observed in prior experiments, and were observed here in two separate experiments, thus providing a foundation for further investigations of relationships and interactions between different types of memory engaged when words repeat.
Students’ Representation in Mathematical Word Problem-Solving: Exploring Students’ Self-efficacy
NASA Astrophysics Data System (ADS)
Sahendra, A.; Budiarto, M. T.; Fuad, Y.
2018-01-01
This descriptive qualitative research aims at investigating student represented in mathematical word problem solving based on self-efficacy. The research subjects are two eighth graders at a school in Surabaya with equal mathematical ability consisting of two female students with high and low self-efficacy. The subjects were chosen based on the results of test of mathematical ability, documentation of the result of middle test in even semester of 2016/2017 academic year, and results of questionnaire of mathematics word problem in terms of self-efficacy scale. The selected students were asked to do mathematical word problem solving and be interviewed. The result of this study shows that students with high self-efficacy tend to use multiple representations of sketches and mathematical models, whereas students with low self-efficacy tend to use single representation of sketches or mathematical models only in mathematical word problem-solving. This study emphasizes that teachers should pay attention of student’s representation as a consideration of designing innovative learning in order to increase the self-efficacy of each student to achieve maximum mathematical achievement although it still requires adjustment to the school situation and condition.
A Strategy for Improving US Middle School Student Mathematics Word Problem Solving Performance
NASA Technical Reports Server (NTRS)
Thomas, Valerie L.
2004-01-01
U.S. middle school students have difficulty understanding and solving mathematics word problems. Their mathematics performance on the Third International Mathematics and Science Study (TIMMS) is far below their international peers, and minority students are less likely than high socioeconomic status (SES) White/Asian students to be exposed to higher-level mathematics concepts. Research literature also indicates that when students use both In-School and Out-of-School knowledge and experiences to create authentic mathematics word problems, student achievement improves. This researcher developed a Strategy for improving mathematics problem solving performance and a Professional Development Model (PDM) to effectively implement the Strategy.
NASA Astrophysics Data System (ADS)
Supianto, A. A.; Hayashi, Y.; Hirashima, T.
2017-02-01
Problem-posing is well known as an effective activity to learn problem-solving methods. Monsakun is an interactive problem-posing learning environment to facilitate arithmetic word problems learning for one operation of addition and subtraction. The characteristic of Monsakun is problem-posing as sentence-integration that lets learners make a problem of three sentences. Monsakun provides learners with five or six sentences including dummies, which are designed through careful considerations by an expert teacher as a meaningful distraction to the learners in order to learn the structure of arithmetic word problems. The results of the practical use of Monsakun in elementary schools show that many learners have difficulties in arranging the proper answer at the high level of assignments. The analysis of the problem-posing process of such learners found that their misconception of arithmetic word problems causes impasses in their thinking and mislead them to use dummies. This study proposes a method of changing assignments as a support for overcoming bottlenecks of thinking. In Monsakun, the bottlenecks are often detected as a frequently repeated use of a specific dummy. If such dummy can be detected, it is the key factor to support learners to overcome their difficulty. This paper discusses how to detect the bottlenecks and to realize such support in learning by problem-posing.
ERIC Educational Resources Information Center
Swanson, H. Lee; Lussier, Catherine; Orosco, Michael
2011-01-01
Although current categories of learning disabilities include as specific disabilities calculation and mathematical problem solving [see IDEA reauthorization, 2004, Sec. 300.8(c)(10)], the majority of research focuses on calculation disabilities. Previous studies have shown, however, that deficits in word problem solving difficulties are persistent…
The Role of the Updating Function in Solving Arithmetic Word Problems
ERIC Educational Resources Information Center
Mori, Kanetaka; Okamoto, Masahiko
2017-01-01
We investigated how the updating function supports the integration process in solving arithmetic word problems. In Experiment 1, we measured reading time, that is, translation and integration times, when undergraduate and graduate students (n = 78) were asked to solve 2 types of problems: those containing only necessary information and those…
Problem Solving Frameworks for Mathematics and Software Development
ERIC Educational Resources Information Center
McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley
2012-01-01
In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…
Following the Template: Transferring Modeling Skills to Nonstandard Problems
ERIC Educational Resources Information Center
Tyumeneva, Yu. A.; Goncharova, M. V.
2017-01-01
This study seeks to analyze how students apply a mathematical modeling skill that was previously learned by solving standard word problems to the solution of word problems with nonstandard contexts. During the course of an experiment involving 106 freshmen, we assessed how well they were able to transfer the mathematical modeling skill that is…
Executive Functions Underlying Multiplicative Reasoning: Problem Type Matters
ERIC Educational Resources Information Center
Agostino, Alba; Johnson, Janice; Pascual-Leone, Juan
2010-01-01
We investigated the extent to which inhibition, updating, shifting, and mental-attentional capacity ("M"-capacity) contribute to children's ability to solve multiplication word problems. A total of 155 children in Grades 3-6 (8- to 13-year-olds) completed a set of multiplication word problems at two levels of difficulty: one-step and multiple-step…
Scaffold Seeking: A Reverse Design of Scaffolding in Computer-Supported Word Problem Solving
ERIC Educational Resources Information Center
Cheng, Hercy N. H.; Yang, Euphony F. Y.; Liao, Calvin C. Y.; Chang, Ben; Huang, Yana C. Y.; Chan, Tak-Wai
2015-01-01
Although well-designed scaffolding may assist students to accomplish learning tasks, its insufficient capability to dynamically assess students' abilities and to adaptively support them may result in the problem of overscaffolding. Our previous project has also shown that students using scaffolds to solve mathematical word problems for a long time…
ERIC Educational Resources Information Center
Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi
2014-01-01
This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…
Students’ Errors in Geometry Viewed from Spatial Intelligence
NASA Astrophysics Data System (ADS)
Riastuti, N.; Mardiyana, M.; Pramudya, I.
2017-09-01
Geometry is one of the difficult materials because students must have ability to visualize, describe images, draw shapes, and know the kind of shapes. This study aim is to describe student error based on Newmans’ Error Analysis in solving geometry problems viewed from spatial intelligence. This research uses descriptive qualitative method by using purposive sampling technique. The datas in this research are the result of geometri material test and interview by the 8th graders of Junior High School in Indonesia. The results of this study show that in each category of spatial intelligence has a different type of error in solving the problem on the material geometry. Errors are mostly made by students with low spatial intelligence because they have deficiencies in visual abilities. Analysis of student error viewed from spatial intelligence is expected to help students do reflection in solving the problem of geometry.
Teaching Geometry through Problem-Based Learning
ERIC Educational Resources Information Center
Schettino, Carmel
2011-01-01
About seven years ago, the mathematics teachers at the author's secondary school came to the conclusion that they were not satisfied with their rather traditional geometry textbook. The author had already begun using a problem-based approach to teaching geometry in her classes, a transition for her and her students that inspired her to write about…
ERIC Educational Resources Information Center
de Villiers, Michael
2017-01-01
This paper discusses an interesting, classic problem that provides a nice classroom investigation for dynamic geometry, and which can easily be explained (proved) with transformation geometry. The deductive explanation (proof) provides insight into why it is true, leading to an immediate generalization, thus illustrating the discovery function of…
ERIC Educational Resources Information Center
Boonen, Anton J. H.; Reed, Helen C.; Schoonenboom, Judith; Jolles, Jelle
2016-01-01
Non-routine word problem solving is an essential feature of the mathematical development of elementary school students worldwide. Many students experience difficulties in solving these problems due to erroneous problem comprehension. These difficulties could be alleviated by instructing students how to use visual representations that clarify the…
ERIC Educational Resources Information Center
Reusser, Kurt; And Others
The main concern of this paper is on the psychological processes of how students understand and solve mathematical word problems, and on how this knowledge can be applied to computer-based tutoring. It is argued that only a better understanding of the psychological requirements for understanding and solving those problems will lead to…
ERIC Educational Resources Information Center
Lin, John J. H.; Lin, Sunny S. J.
2018-01-01
To deepen our understanding of those aspects of problems that cause the most difficulty for solvers, this study integrated eye-tracking with handwriting devices to investigate problem solvers' online processes while solving geometry problems. We are interested in whether the difference between successful and unsuccessful solvers can be identified…
ERIC Educational Resources Information Center
Yang, Der-Ching; Tseng, Yi-Kuan; Wang, Tzu-Ling
2017-01-01
This study analyzed geometry problems in four middle-grade mathematics textbook series from Taiwan, Singapore, Finland, and the United States, while exploring the expectations for students' learning experiences with these problems. An analytical framework developed for mathematics textbook problem analysis had three dimensions: representation…
Parameterizing by the Number of Numbers
NASA Astrophysics Data System (ADS)
Fellows, Michael R.; Gaspers, Serge; Rosamond, Frances A.
The usefulness of parameterized algorithmics has often depended on what Niedermeier has called "the art of problem parameterization". In this paper we introduce and explore a novel but general form of parameterization: the number of numbers. Several classic numerical problems, such as Subset Sum, Partition, 3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with Target Sums, have multisets of integers as input. We initiate the study of parameterizing these problems by the number of distinct integers in the input. We rely on an FPT result for Integer Linear Programming Feasibility to show that all the above-mentioned problems are fixed-parameter tractable when parameterized in this way. In various applied settings, problem inputs often consist in part of multisets of integers or multisets of weighted objects (such as edges in a graph, or jobs to be scheduled). Such number-of-numbers parameterized problems often reduce to subproblems about transition systems of various kinds, parameterized by the size of the system description. We consider several core problems of this kind relevant to number-of-numbers parameterization. Our main hardness result considers the problem: given a non-deterministic Mealy machine M (a finite state automaton outputting a letter on each transition), an input word x, and a census requirement c for the output word specifying how many times each letter of the output alphabet should be written, decide whether there exists a computation of M reading x that outputs a word y that meets the requirement c. We show that this problem is hard for W[1]. If the question is whether there exists an input word x such that a computation of M on x outputs a word that meets c, the problem becomes fixed-parameter tractable.
Errors Analysis of Students in Mathematics Department to Learn Plane Geometry
NASA Astrophysics Data System (ADS)
Mirna, M.
2018-04-01
This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.
Constructing Meaning: Think-Aloud Protocols of ELLs on English and Spanish Word Problems.
ERIC Educational Resources Information Center
Celedon-Pattichis, Sylvia
This one-year qualitative study analyzed how nine middle school English language learners (ELLs) of Mexican descent constructed meaning on think-aloud protocols of Spanish and English word problems. Strategies used by these students to process information from English to their native language included translating to Spanish, reading the problem at…
The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems
ERIC Educational Resources Information Center
Ng, Swee Fong; Lee, Kerry
2009-01-01
Solving arithmetic and algebraic word problems is a key component of the Singapore elementary mathematics curriculum. One heuristic taught, the model method, involves drawing a diagram to represent key information in the problem. We describe the model method and a three-phase theoretical framework supporting its use. We conducted 2 studies to…
ERIC Educational Resources Information Center
Kempert, Sebastian; Saalbach, Henrik; Hardy, Ilonca
2011-01-01
Previous research has emphasized the importance of language for learning mathematics. This is especially true when mathematical problems have to be extracted from a meaningful context, as in arithmetic word problems. Bilingual learners with a low command of the instructional language thus may face challenges when dealing with mathematical…
Factors Influencing Filipino Children's Solutions to Addition and Subtraction Word Problems
ERIC Educational Resources Information Center
Bautista, Debbie; Mitchelmore, Michael; Mulligan, Joanne
2009-01-01
Young Filipino children are expected to solve mathematical word problems in English, which is not their mother tongue. Because of this, it is often assumed that Filipino children have difficulties in solving problems because they cannot read or comprehend what they have read. This study tested this assumption by determining whether presenting word…
Students' Mathematics Word Problem-Solving Achievement in a Computer-Based Story
ERIC Educational Resources Information Center
Gunbas, N.
2015-01-01
The purpose of this study was to investigate the effect of a computer-based story, which was designed in anchored instruction framework, on sixth-grade students' mathematics word problem-solving achievement. Problems were embedded in a story presented on a computer as computer story, and then compared with the paper-based version of the same story…
Word Spotting and Recognition with Embedded Attributes.
Almazán, Jon; Gordo, Albert; Fornés, Alicia; Valveny, Ernest
2014-12-01
This paper addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
ERIC Educational Resources Information Center
Endress, Ansgar D.; Mehler, Jacques
2009-01-01
Word-segmentation, that is, the extraction of words from fluent speech, is one of the first problems language learners have to master. It is generally believed that statistical processes, in particular those tracking "transitional probabilities" (TPs), are important to word-segmentation. However, there is evidence that word forms are stored in…
NASA Astrophysics Data System (ADS)
Mujiasih; Waluya, S. B.; Kartono; Mariani
2018-03-01
Skills in working on the geometry problems great needs of the competence of Geometric Reasoning. As a teacher candidate, State Islamic University (UIN) students need to have the competence of this Geometric Reasoning. When the geometric reasoning in solving of geometry problems has grown well, it is expected the students are able to write their ideas to be communicative for the reader. The ability of a student's mathematical communication is supposed to be used as a marker of the growth of their Geometric Reasoning. Thus, the search for the growth of geometric reasoning in solving of analytic geometry problems will be characterized by the growth of mathematical communication abilities whose work is complete, correct and sequential, especially in writing. Preceded with qualitative research, this article was the result of a study that explores the problem: Was the search for the growth of geometric reasoning in solving analytic geometry problems could be characterized by the growth of mathematical communication abilities? The main activities in this research were done through a series of activities: (1) Lecturer trains the students to work on analytic geometry problems that were not routine and algorithmic process but many problems that the process requires high reasoning and divergent/open ended. (2) Students were asked to do the problems independently, in detail, complete, order, and correct. (3) Student answers were then corrected each its stage. (4) Then taken 6 students as the subject of this research. (5) Research subjects were interviewed and researchers conducted triangulation. The results of this research, (1) Mathematics Education student of UIN Semarang, had adequate the mathematical communication ability, (2) the ability of this mathematical communication, could be a marker of the geometric reasoning in solving of problems, and (3) the geometric reasoning of UIN students had grown in a category that tends to be good.
A wave superposition method formulated in digital acoustic space
NASA Astrophysics Data System (ADS)
Hwang, Yong-Sin
In this thesis, a new formulation of the Wave Superposition method is proposed wherein the conventional mesh approach is replaced by a simple 3-D digital work space that easily accommodates shape optimization for minimizing or maximizing radiation efficiency. As sound quality is in demand in almost all product designs and also because of fierce competition between product manufacturers, faster and accurate computational method for shape optimization is always desired. Because the conventional Wave Superposition method relies solely on mesh geometry, it cannot accommodate fast shape changes in the design stage of a consumer product or machinery, where many iterations of shape changes are required. Since the use of a mesh hinders easy shape changes, a new approach for representing geometry is introduced by constructing a uniform lattice in a 3-D digital work space. A voxel (a portmanteau, a new word made from combining the sound and meaning, of the words, volumetric and pixel) is essentially a volume element defined by the uniform lattice, and does not require separate connectivity information as a mesh element does. In the presented method, geometry is represented with voxels that can easily adapt to shape changes, therefore it is more suitable for shape optimization. The new method was validated by computing radiated sound power of structures of simple and complex geometries and complex mode shapes. It was shown that matching volume velocity is a key component to an accurate analysis. A sensitivity study showed that it required at least 6 elements per acoustic wavelength, and a complexity study showed a minimal reduction in computational time.
Some Problems of Extremes in Geometry and Construction
ERIC Educational Resources Information Center
Yanovsky, Levi
2008-01-01
Two original problems in geometry are presented with solutions utilizing to differential calculus: (a) rectangle inscribed in a sector; (b) point on the ray of the angle. The possibility of applying mathematics in general and differential calculus in particular for solution of practical problems is discussed. (Contains 8 figures.)
ERIC Educational Resources Information Center
Walwyn, Amy L.; Navarro, Daniel J.
2010-01-01
An experiment is reported comparing human performance on two kinds of visually presented traveling salesperson problems (TSPs), those reliant on Euclidean geometry and those reliant on city block geometry. Across multiple array sizes, human performance was near-optimal in both geometries, but was slightly better in the Euclidean format. Even so,…
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing
2012-01-01
Holyoak and Koh (1987) and Holyoak (1984) propose four critical tasks for analogical transfer to occur in problem solving. A study was conducted to test this hypothesis by comparing a multiple components (MC) approach against worked examples (WE) in helping students to solve algebra word problems in chemistry classes. The MC approach incorporated…
ERIC Educational Resources Information Center
Kribbs, Elizabeth E.; Rogowsky, Beth A.
2016-01-01
Mathematics word-problems continue to be an insurmountable challenge for many middle school students. Educators have used pictorial and schematic illustrations within the classroom to help students visualize these problems. However, the data shows that pictorial representations can be more harmful than helpful in that they only display objects or…
ERIC Educational Resources Information Center
Dennis, Minyi Shih; Knight, Jacqueline; Jerman, Olga
2016-01-01
This article describes how to teach fraction and percentage word problems using a model-drawing strategy. This cognitive strategy places emphasis on explicitly teaching students how to draw a schematic diagram to represent the qualitative relations described in the problem, and how to formulate the solution based on the schematic diagram. The…
ERIC Educational Resources Information Center
Ulu, Mustafa
2017-01-01
This study aims to identify errors made by primary school students when modelling word problems and to eliminate those errors through scaffolding. A 10-question problem-solving achievement test was used in the research. The qualitative and quantitative designs were utilized together. The study group of the quantitative design comprises 248…
ERIC Educational Resources Information Center
Swanson, H. Lee; Lussier, Cathy; Orosco, Michael
2013-01-01
This study investigated the role of strategy instruction and cognitive abilities on word problem solving accuracy in children with math difficulties (MD). Elementary school children (N = 120) with and without MD were randomly assigned to 1 of 4 conditions: general-heuristic (e.g., underline question sentence), visual-schematic presentation…
A Comparison of Updating Processes in Children Good or Poor in Arithmetic Word Problem-Solving
ERIC Educational Resources Information Center
Passolunghi, Maria Chiara; Pazzaglia, Francesca
2005-01-01
This study examines the updating ability of poor or good problem solvers. Seventy-eight fourth-graders, 43 good and 35 poor arithmetic word problem-solvers, performed the Updating Test used in Palladino et al. [Palladino, P., Cornoldi, C., De Beni, R., and Pazzaglia F. (2002). Working memory and updating processes in reading comprehension. Memory…
Application of Graph Theory in an Intelligent Tutoring System for Solving Mathematical Word Problems
ERIC Educational Resources Information Center
Nabiyev, Vasif V.; Çakiroglu, Ünal; Karal, Hasan; Erümit, Ali K.; Çebi, Ayça
2016-01-01
This study is aimed to construct a model to transform word "motion problems" in to an algorithmic form in order to be processed by an intelligent tutoring system (ITS). First; categorizing the characteristics of motion problems, second; suggesting a model for the categories were carried out. In order to solve all categories of the…
ERIC Educational Resources Information Center
Taber, Mary R.
2013-01-01
Mathematics can be a difficult topic both to teach and to learn. Word problems specifically can be difficult for students with disabilities because they have to conceptualize what the problem is asking for, and they must perform the correct operation accurately. Current trends in mathematics instruction stem from the National Council of Teachers…
ERIC Educational Resources Information Center
Marchetto, Erika; Bonatti, Luca L.
2015-01-01
To achieve language proficiency, infants must find the building blocks of speech and master the rules governing their legal combinations. However, these problems are linked: words are also built according to rules. Here, we explored early morphosyntactic sensitivity by testing when and how infants could find either words or within-word structure…
Fuchs, Lynn S; Seethaler, Pamela M; Powell, Sarah R; Fuchs, Douglas; Hamlett, Carol L; Fletcher, Jack M
2008-01-01
This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits.
Fuchs, Lynn S.; Seethaler, Pamela M.; Powell, Sarah R.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.
2009-01-01
This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits. PMID:20209074
NASA Taxonomies for Searching Problem Reports and FMEAs
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Throop, David R.
2006-01-01
Many types of hazard and risk analyses are used during the life cycle of complex systems, including Failure Modes and Effects Analysis (FMEA), Hazard Analysis, Fault Tree and Event Tree Analysis, Probabilistic Risk Assessment, Reliability Analysis and analysis of Problem Reporting and Corrective Action (PRACA) databases. The success of these methods depends on the availability of input data and the analysts knowledge. Standard nomenclature can increase the reusability of hazard, risk and problem data. When nomenclature in the source texts is not standard, taxonomies with mapping words (sets of rough synonyms) can be combined with semantic search to identify items and tag them with metadata based on a rich standard nomenclature. Semantic search uses word meanings in the context of parsed phrases to find matches. The NASA taxonomies provide the word meanings. Spacecraft taxonomies and ontologies (generalization hierarchies with attributes and relationships, based on terms meanings) are being developed for types of subsystems, functions, entities, hazards and failures. The ontologies are broad and general, covering hardware, software and human systems. Semantic search of Space Station texts was used to validate and extend the taxonomies. The taxonomies have also been used to extract system connectivity (interaction) models and functions from requirements text. Now the Reconciler semantic search tool and the taxonomies are being applied to improve search in the Space Shuttle PRACA database, to discover recurring patterns of failure. Usual methods of string search and keyword search fall short because the entries are terse and have numerous shortcuts (irregular abbreviations, nonstandard acronyms, cryptic codes) and modifier words cannot be used in sentence context to refine the search. The limited and fixed FMEA categories associated with the entries do not make the fine distinctions needed in the search. The approach assigns PRACA report titles to problem classes in the taxonomy. Each ontology class includes mapping words - near-synonyms naming different manifestations of that problem class. The mapping words for Problems, Entities and Functions are converted to a canonical form plus any of a small set of modifier words (e.g. non-uniformity NOT + UNIFORM.) The report titles are parsed as sentences if possible, or treated as a flat sequence of word tokens if parsing fails. When canonical forms in the title match mapping words, the PRACA entry is associated with the corresponding Problem, Entity or Function in the ontology. The user can search for types of failures associated with types of equipment, clustering by type of problem (e.g., all bearings found with problems of being uneven: rough, irregular, gritty ). The results could also be used for tagging PRACA report entries with rich metadata. This approach could also be applied to searching and tagging failure modes, failure effects and mitigations in FMEAs. In the pilot work, parsing 52K+ truncated titles (the test cases that were available), has resulted in identification of both a type of equipment and type of problem in about 75% of the cases. The results are displayed in a manner analogous to Google search results. The effort has also led to the enrichment of the taxonomy, adding some new categories and many new mapping words. Further work would make enhancements that have been identified for improving the clustering and further reducing the false alarm rate. (In searching for recurring problems, good clustering is more important than reducing false alarms). Searching complete PRACA reports should lead to immediate improvement.
Computers and Classroom Culture.
ERIC Educational Resources Information Center
Schofield, Janet Ward
This book explores the meaning of computer technology in schools. The book is based on data gathered from a two-year observation of more than 30 different classrooms in an urban high school: geometry classes in which students used artificially intelligent tutors; business classes in which students learned word processing; and computer science…
Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model.
Bi, Size; Liang, Xiao; Huang, Ting-Lei
2016-01-01
Word embedding, a lexical vector representation generated via the neural linguistic model (NLM), is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization.
Solving Optimization Problems with Dynamic Geometry Software: The Airport Problem
ERIC Educational Resources Information Center
Contreras, José
2014-01-01
This paper describes how the author's students (in-service and pre-service secondary mathematics teachers) enrolled in college geometry courses use the Geometers' Sketchpad (GSP) to gain insight to formulate, confirm, test, and refine conjectures to solve the classical airport problem for triangles. The students are then provided with strategic…
Use of Common-Sense Knowledge, Language and Reality in Mathematical Word Problem Solving
ERIC Educational Resources Information Center
Sepeng, Percy
2014-01-01
The study reported in this article sought to explore and observe how grade 9 learners solve real-wor(l)d problems (a) without real context and (b) without real meaning. Learners' abilities to make sense of the decontextualised word problems set in the real world were investigated with regard to learners' use of common sense in relation to problem…
The Effect of Using the TI-92 on Basic College Algebra Students' Ability To Solve Word Problems.
ERIC Educational Resources Information Center
Runde, Dennis C.
As part of an effort to improve community college algebra students' ability to solve word problems, a study was undertaken at Florida's Manatee Community College to determine the effects of using heuristic instruction (i.e., providing general rules for solving different types of math problems) in combination with the TI-92 calculator. The TI-92…
The Case for an Open Data Model
1998-08-01
Microsoft Word, Pagemaker, and Framemaker , and the drawing programs MacDraw, Adobe Illustrator, and Microsoft PowerPoint, use their own proprietary...needs a custom word counting tool, since no utility could work in Word and other word processors. Framemaker for Windows does not have a word counting...supplied in 2 At least none that I could find in Framemaker 5.5 for Windows. Another problem with
Working on Extremum Problems with the Help of Dynamic Geometry Systems
ERIC Educational Resources Information Center
Gortcheva, Iordanka
2013-01-01
Two problems from high school mathematics on finding minimum or maximum are discussed. The focus is on students' approaches and difficulties in identifying a correct solution and how dynamic geometry systems can help.
An investigation of dynamic-analysis methods for variable-geometry structures
NASA Technical Reports Server (NTRS)
Austin, F.
1980-01-01
Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.
The unassigned distance geometry problem
Duxbury, P. M.; Granlund, L.; Gujarathi, S. R.; ...
2015-11-19
Studies of distance geometry problems (DGP) have focused on cases where the vertices at the ends of all or most of the given distances are known or assigned, which we call assigned distance geometry problems (aDGPs). In this contribution we consider the unassigned distance geometry problem (uDGP) where the vertices associated with a given distance are unknown, so the graph structure has to be discovered. uDGPs arises when attempting to find the atomic structure of molecules and nanoparticles using X-ray or neutron diffraction data from non-crystalline materials. Rigidity theory provides a useful foundation for both aDGPs and uDGPs, though itmore » is restricted to generic realizations of graphs, and key results are summarized. Conditions for unique realization are discussed for aDGP and uDGP cases, build-up algorithms for both cases are described and experimental results for uDGP are presented.« less
Semantic Similarity Graphs of Mathematics Word Problems: Can Terminology Detection Help?
ERIC Educational Resources Information Center
John, Rogers Jeffrey Leo; Passonneau, Rebecca J.; McTavish, Thomas S.
2015-01-01
Curricula often lack metadata to characterize the relatedness of concepts. To investigate automatic methods for generating relatedness metadata for a mathematics curriculum, we first address the task of identifying which terms in the vocabulary from mathematics word problems are associated with the curriculum. High chance-adjusted interannotator…
A Design To Improve Children's Competencies in Solving Mathematical Word Problems.
ERIC Educational Resources Information Center
Zimmerman, Helene
A discrepancy exists between children's ability to compute and their ability to solve mathematical word problems. The literature suggests a variety of methods that have been attempted to improve this skill with varying success. The utilization of manipulatives, visualization, illustration, and emphasis on improving listening skills all were…
Work in Society and in Montessori Classrooms
ERIC Educational Resources Information Center
Chattin-McNichols, John
2013-01-01
Montessori educators follow Montessori's lead and use the word "work" to describe the child's concentrated attention with a hands-on material. But this word may lead to communication problems with parents and those in the non-Montessori world: educators, administrators, accreditors, and so on. These communication problems are…
ERIC Educational Resources Information Center
Jaafar, Reem
2015-01-01
Students taking developmental mathematics courses resist attempting word problems when they are presented to them. Although word problems can help students contextualize learning, develop better understanding of the concepts and apply world knowledge, they constitute an impediment to students' progress in developmental mathematics courses. A…
Raise the Bar on Problem Solving
ERIC Educational Resources Information Center
Englard, Lisa
2010-01-01
In a 1981 diagnostic test, the Ministry of Education in Singapore found its country facing a challenge: Only 46 percent of students in grades 2-4 could solve word problems that were presented without such key words as "altogether" or "left." Yet today, according to results from the Trends in International Mathematics and…
Teaching Students with Moderate Intellectual Disability to Solve Word Problems
ERIC Educational Resources Information Center
Browder, Diane M.; Spooner, Fred; Lo, Ya-yu; Saunders, Alicia F.; Root, Jenny R.; Ley Davis, Luann; Brosh, Chelsi R.
2018-01-01
This study evaluated an intervention developed through an Institute of Education Sciences-funded Goal 2 research project to teach students with moderate intellectual disability (moderate ID) to solve addition and subtraction word problems. The intervention involved modified schema-based instruction that embedded effective practices (e.g.,…
Word Fluency: A Task Analysis.
ERIC Educational Resources Information Center
Laine, Matti
It is suggested that models of human problem solving are useful in the analysis of word fluency (WF) test performance. In problem-solving terms, WF tasks would require the subject to define and clarify the conditions of the task (task acquisition), select and employ appropriate strategies, and monitor one's performance. In modern neuropsychology,…
Semantic Structures of One-Step Word Problems Involving Multiplication or Division.
ERIC Educational Resources Information Center
Schmidt, Siegbert; Weiser, Werner
1995-01-01
Proposes a four-category classification of semantic structures of one-step word problems involving multiplication and division: forming the n-th multiple of measures, combinatorial multiplication, composition of operators, and multiplication by formula. This classification is compatible with semantic structures of addition and subtraction word…
Guiding Preservice Teachers to Adapt Mathematics Word Problems through Interactions with ELLs
ERIC Educational Resources Information Center
Kurz, Terri L.; Gómez, Conrado; Jimenez-Silva, Margarita
2017-01-01
In this article, the authors present a framework for guiding elementary preservice teachers in adapting mathematics word problems to better meet English language learners' (ELLs) needs. They analyze preservice teachers' ELL adaptations implemented in a one-on-one setting. Through qualitative methods, four themes regarding implemented adaptations…
People Considerations in Word Processing.
ERIC Educational Resources Information Center
Diamond, Marion L.
1984-01-01
Business educators preparing students for jobs in business and industry should become aware of the problems faced by workers in a typical large office environment. Word processor operators face many of the same problems as factory assembly line workers--lack of personalization, lack of incentive, and removal from the mainstream. (JOW)
Yakubova, Gulnoza; Hughes, Elizabeth M; Hornberger, Erin
2015-09-01
The purpose of this study was to determine the effectiveness of a point-of-view video modeling intervention to teach mathematics problem-solving when working on word problems involving subtracting mixed fractions with uncommon denominators. Using a multiple-probe across students design of single-case methodology, three high school students with ASD completed the study. All three students demonstrated greater accuracy in solving fraction word problems and maintained accuracy levels at a 1-week follow-up.
1986-08-01
most of the algorithms fail when applied to real images. (2) Usually the constraints from the geometry and the physics of the problem are not enough...large subset of real images), and so most of the algorithms fail when applied to real images. (2) Usually the constraints from the geometry and the...constraints from the geometry and the physics of the problem are not enough to guarantee uniqueness of the computed parameters. In this case, strong
Crack-Inclusion Interaction: A Review
2014-03-01
research on the problem. fracture mechanics, inclusion, crack, dislocation, Erdogan , Dundurs, integral equation, Green’s function 58 Christopher S. Meyer...14 Figure 9. Geometry for the crack-inclusion problem, adapted from Erdogan and Wei (21) . . . 23 Figure 10. The...crack-inclusion problem geometry, adapted from Erdogan and Wei (21): figure 9 is repeated here in the text for convenience
NASA Astrophysics Data System (ADS)
Hassanat, Ahmad B. A.; Jassim, Sabah
2010-04-01
In this paper, the automatic lip reading problem is investigated, and an innovative approach to providing solutions to this problem has been proposed. This new VSR approach is dependent on the signature of the word itself, which is obtained from a hybrid feature extraction method dependent on geometric, appearance, and image transform features. The proposed VSR approach is termed "visual words". The visual words approach consists of two main parts, 1) Feature extraction/selection, and 2) Visual speech feature recognition. After localizing face and lips, several visual features for the lips where extracted. Such as the height and width of the mouth, mutual information and the quality measurement between the DWT of the current ROI and the DWT of the previous ROI, the ratio of vertical to horizontal features taken from DWT of ROI, The ratio of vertical edges to horizontal edges of ROI, the appearance of the tongue and the appearance of teeth. Each spoken word is represented by 8 signals, one of each feature. Those signals maintain the dynamic of the spoken word, which contains a good portion of information. The system is then trained on these features using the KNN and DTW. This approach has been evaluated using a large database for different people, and large experiment sets. The evaluation has proved the visual words efficiency, and shown that the VSR is a speaker dependent problem.
Polysemy and the Taxonomic Constraint: Children's Representation of Words That Label Multiple Kinds
ERIC Educational Resources Information Center
Srinivasan, Mahesh; Snedeker, Jesse
2014-01-01
How do children resolve the problem of indeterminacy when learning a new word? By one account, children adopt a "taxonomic assumption" and expect the word to denote only members of a particular taxonomic category. According to one version of this constraint, young children should represent polysemous words that label multiple kinds--for…
Slow Mapping: Color Word Learning as a Gradual Inductive Process
ERIC Educational Resources Information Center
Wagner, Katie; Dobkins, Karen; Barner, David
2013-01-01
Most current accounts of color word acquisition propose that the delay between children's first production of color words and adult-like understanding is due to problems abstracting color as a domain of meaning. Here we present evidence against this hypothesis, and show that, from the time children produce color words in a labeling task they use…
Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry
NASA Astrophysics Data System (ADS)
Sariyasa
2017-04-01
Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.
ERIC Educational Resources Information Center
Björn, Piia Maria; Aunola, Kaisa; Nurmi, Jari-Erik
2016-01-01
This longitudinal study aimed to investigate the extent to which primary school text comprehension predicts mathematical word problem-solving skills in secondary school among Finnish students. The participants were 224 fourth graders (9-10 years old at the baseline). The children's text-reading fluency, text comprehension and basic calculation…
ERIC Educational Resources Information Center
Powell, Sarah R.; Fuchs, Lynn S.
2010-01-01
Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for the development of higher order mathematics skills, including solving word problems. Research indicates equal-sign instruction…
Effects of Graphic Organiser on Students' Achievement in Algebraic Word Problems
ERIC Educational Resources Information Center
Owolabi, Josiah; Adaramati, Tobiloba Faith
2015-01-01
This study investigated the effects of graphic organiser and gender on students' academic achievement in algebraic word problem. Three research questions and three null hypotheses were used in guiding this study. Quasi experimental research was employed and Non-equivalent pre and post test design was used. The study involved the Senior Secondary…
Automatic Item Generation via Frame Semantics: Natural Language Generation of Math Word Problems.
ERIC Educational Resources Information Center
Deane, Paul; Sheehan, Kathleen
This paper is an exploration of the conceptual issues that have arisen in the course of building a natural language generation (NLG) system for automatic test item generation. While natural language processing techniques are applicable to general verbal items, mathematics word problems are particularly tractable targets for natural language…
Diagramming Word Problems: A Strategic Approach for Instruction
ERIC Educational Resources Information Center
van Garderen, Delinda; Scheuermann, Amy M.
2015-01-01
While often recommended as a strategy to use in order to solve word problems, drawing a diagram is a complex process that requires a good depth of understanding. Many middle school students with learning disabilities (LD) often struggle to use diagrams in an effective and efficient manner. This article presents information for teaching middle…
Is Word-Problem Solving a Form of Text Comprehension?
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.
2015-01-01
This study's hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of…
ERIC Educational Resources Information Center
Awofala, A. O. A.; Balogun, T. A.; Olagunju, M. A.
2011-01-01
This study investigated the effects of modes of personalisation of instruction crossed with two levels each of verbal ability and cognitive style as moderator variables on the mathematical word problems achievement of 450 junior secondary Nigerian students. Personalisation was accomplished by incorporating selected information with students'…
Amphetamine primes motivation to gamble and gambling-related semantic networks in problem gamblers.
Zack, Martin; Poulos, Constantine X
2004-01-01
Previous research suggests that gambling can induce effects that closely resemble a psychostimulant drug effect. Modest doses of addictive drugs can prime motivation for drugs with similar properties. Together, these findings imply that a dose of a psychostimulant drug could prime motivation to gamble in problem gamblers. This study assessed priming effects of oral D-amphetamine (AMPH) (30 mg) in a within-subject, counter-balanced, placebo-controlled design in problem gamblers (n=10), comorbid gamblerdrinkers (n=6), problem drinkers (n=8), and healthy controls (n=12). Modified visual analog scales assessed addictive motivation and subjective effects. A modified rapid reading task assessed pharmacological activation of words from motivationally relevant and irrelevant semantic domains (Gambling, Alcohol, Positive Affect, Negative Affect, Neutral). AMPH increased self-reported motivation for gambling in problem gamblers. Severity of problem gambling predicted positive subjective effects of AMPH and motivation to gamble under the drug. There was little evidence that AMPH directly primed motivation for alcohol in problem drinkers. On the reading task, AMPH produced undifferentiated improvement in reading speed to all word classes in Nongamblers. By contrast, in the two problem gambler groups, AMPH improved reading speed to Gambling words while profoundly slowing reading speed to motivationally irrelevant Neutral words. The latter finding was interpreted as directly congruent with models, which contend that priming of addictive motivation involves a linked suppression of motivationally irrelevant stimuli. This study provides experimental evidence that psychostimulant-like neurochemical activation is an important component of gambling addiction.
Fractal Geometry in the Arts: AN Overview across the Different Cultures
NASA Astrophysics Data System (ADS)
Sala, Nicoletta
Fractal, in mathematics, is a geometric shape that is complex and detailed in structure at any level of magnification. The word "fractal" was coined less than thirty years ago by one of history's most creative and mathematicians, Benoit Mandelbrot, whose work, The Fractal Geometry of Nature, first introduced and explained concepts underlying this new vision of the geometry. Although other mathematical thinkers like Georg Cantor (1845-1918), Felix Hausdorff (1868-1942), Gaston Julia (1893-1978), Helge von Koch (1870-1924), Giuseppe Peano (1858-1932), Lewis Richardson (1891-1953), Waclaw Sierpinski (1882-1969) and others had attained isolated insights of fractal understanding, such ideas were largely ignored until Mandelbrot's genius forged them at a single blow into a gorgeously coherent and fascinating discipline. Fractal geometry is applied in different field now: engineering, physics, chemistry, biology, and architecture. The aim of this paper is to introduce an approach where the arts are analysed using a fractal point of view.
What is the evidence for retrieval problems in the elderly?
White, N; Cunningham, W R
1982-01-01
To determine whether older adults experience particular problems with retrieval, groups of young and elderly adults were given free recall and recognition tests of supraspan lists of unrelated words. Analysis of number of words correctly recalled and recognized yielded a significant age by retention test interaction: greater age differences were observed for recall than for recognition. In a second analysis of words recalled and recognized, corrected for guessing, the interaction disappeared. It was concluded that previous interpretations that age by retention test interactions are indicative of retrieval problems of the elderly may have been confounded by methodological problems. Furthermore, it was suggested that researchers in aging and memory need to be explicit in identifying their underlying models of error processes when analyzing recognition scores: different error models may lead to different results and interpretations.
ERIC Educational Resources Information Center
Pacheco, Mark B.; Goodwin, Amanda P.
2013-01-01
Adolescents often use root word and affix knowledge to figure out unknown words. Anglin (1993) found that younger readers favor the Part-to-Whole strategy, and Tyler and Nagy (1989) confirmed the importance of root-word knowledge for middle school students. This study seeks to understand the different strategies middle school readers use so that…
ERIC Educational Resources Information Center
Teubner-Rhodes, Louise A.
This study deals with word retrieval problems of aphasic patients. This word-finding difficulty is a common characteristic of aphasics and many methods have been used by aphasia clinicians to attempt to remediate word retrieval skills. Cueing, one of the methods used, presumably facilitates word-finding by supplying additional information to the…
ERIC Educational Resources Information Center
Velasco, Kelly; Zizak, Amanda
This report describes a program for improving word analysis skills in order to increase sight reading, reading accuracy, and fluency. The targeted population consisted of second and third graders in a suburban area close to a large metropolitan city in a Midwestern state. The problems of low word analysis skills were documented through Qualitative…
Morse Monte Carlo Radiation Transport Code System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmett, M.B.
1975-02-01
The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one maymore » determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)« less
A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry
NASA Astrophysics Data System (ADS)
Rusyda, N. A.; Kusnandi, K.; Suhendra, S.
2017-09-01
The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.
NASA Astrophysics Data System (ADS)
Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula
2018-07-01
Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.
Iso-geometric analysis for neutron diffusion problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, S. K.; Eaton, M. D.; Williams, M. M. R.
Iso-geometric analysis can be viewed as a generalisation of the finite element method. It permits the exact representation of a wider range of geometries including conic sections. This is possible due to the use of concepts employed in computer-aided design. The underlying mathematical representations from computer-aided design are used to capture both the geometry and approximate the solution. In this paper the neutron diffusion equation is solved using iso-geometric analysis. The practical advantages are highlighted by looking at the problem of a circular fuel pin in a square moderator. For this problem the finite element method requires the geometry tomore » be approximated. This leads to errors in the shape and size of the interface between the fuel and the moderator. In contrast to this iso-geometric analysis allows the interface to be represented exactly. It is found that, due to a cancellation of errors, the finite element method converges more quickly than iso-geometric analysis for this problem. A fuel pin in a vacuum was then considered as this problem is highly sensitive to the leakage across the interface. In this case iso-geometric analysis greatly outperforms the finite element method. Due to the improvement in the representation of the geometry iso-geometric analysis can outperform traditional finite element methods. It is proposed that the use of iso-geometric analysis on neutron transport problems will allow deterministic solutions to be obtained for exact geometries. Something that is only currently possible with Monte Carlo techniques. (authors)« less
An associative account of the development of word learning.
Sloutsky, Vladimir M; Yim, Hyungwook; Yao, Xin; Dennis, Simon
2017-09-01
Word learning is a notoriously difficult induction problem because meaning is underdetermined by positive examples. How do children solve this problem? Some have argued that word learning is achieved by means of inference: young word learners rely on a number of assumptions that reduce the overall hypothesis space by favoring some meanings over others. However, these approaches have difficulty explaining how words are learned from conversations or text, without pointing or explicit instruction. In this research, we propose an associative mechanism that can account for such learning. In a series of experiments, 4-year-olds and adults were presented with sets of words that included a single nonsense word (e.g. dax). Some lists were taxonomic (i.,e., all items were members of a given category), some were associative (i.e., all items were associates of a given category, but not members), and some were mixed. Participants were asked to indicate whether the nonsense word was an animal or an artifact. Adults exhibited evidence of learning when lists consisted of either associatively or taxonomically related items. In contrast, children exhibited evidence of word learning only when lists consisted of associatively related items. These results present challenges to several extant models of word learning, and a new model based on the distinction between syntagmatic and paradigmatic associations is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.
Impact of Authenticity on Sense Making in Word Problem Solving
ERIC Educational Resources Information Center
Palm, Torulf
2008-01-01
The study presented in this paper seeks to investigate the impact of authenticity on the students' disposition to make necessary real world considerations in their word problem solving. The aim is also to gather information about the extent to which different reasons for the students' behaviors are responsible for not providing solutions that are…
Word-Problem-Solving Strategy for Minority Students at Risk for Math Difficulties
ERIC Educational Resources Information Center
Kong, Jennifer E.; Orosco, Michael J.
2016-01-01
Minority students at risk for math difficulties (MD) struggle with word problems for various reasons beyond procedural or calculation challenges. As a result, these students require support in reading and language development in addition to math. The purpose of this study was to assess the effectiveness of a math comprehension strategy based on a…
ERIC Educational Resources Information Center
Awofala, Adeneye O. A.
2014-01-01
This study investigated the effect of a personalised print-based instruction versus a non-personalised print-based instruction on the attitudes toward mathematics word problems of 350 senior secondary school year one Nigerian students within the blueprint of a quantitative research of pre-treatment-intervention-post-treatment non-equivalent…
ERIC Educational Resources Information Center
Kim, Sun A.; Wang, Peishi; Michaels, Craig A.
2015-01-01
This article investigates the effects of fraction word problem-solving instruction involving explicit teaching of the concrete-representational-abstract sequence with culturally relevant teaching examples for 3 low-performing Asian immigrant English learners who spoke a language other than English at home. We used a multiple probe design across…
"Seeing It on the Screen Isn't Really Seeing It": Reading Problems of Writers Using Word Processing.
ERIC Educational Resources Information Center
Haas, Christina
An observational study examined computer writers' use of hard copy for reading. The study begins with a description, based on interviews, of four kinds of reading problems encountered by writers using word processing; formatting, proofreading, reorganizing, and critical reading ("getting a sense of the text"). Subjects, six freshmen…
Occupations and the Printed Word: A Workbook.
ERIC Educational Resources Information Center
Educational Testing Service, Princeton, NJ. Policy Information Center.
One of the problems common to efforts to set skill standards for various occupations is deciding on the facility needed for dealing with the printed word. A similar problem faces those trying to define "workplace literacy." This workbook brings together resources to make them available to those who are trying to deal with this education issue. The…
ERIC Educational Resources Information Center
Brawand, Anne Eichorn
2013-01-01
Schema-based instruction (SBI) was used to examine the solving of proportional reasoning word problems for middle school students with high-incidence disabilities (HID). Seventh- and eighth-grade students with HID participated in the study. Students were randomly assigned to one of three groups. A multiple-baseline-across-groups design was…
ERIC Educational Resources Information Center
Lawrence, Virginia
No longer just a user of commercial software, the 21st century teacher is a designer of interactive software based on theories of learning. This software, a comprehensive study of straightline equations, enhances conceptual understanding, sketching, graphic interpretive and word problem solving skills as well as making connections to real-life and…
ERIC Educational Resources Information Center
Chazan, Daniel; Sela, Hagit; Herbst, Patricio
2012-01-01
We illustrate a method, which is modeled on "breaching experiments," for studying tacit norms that govern classroom interaction around particular mathematical content. Specifically, this study explores norms that govern teachers' expectations for the doing of word problems in school algebra. Teacher study groups discussed representations of…
Exploring the Learning of Mathematics Word Problems by African Immigrant Early Learners
ERIC Educational Resources Information Center
Mahofa, Ernest; Adendorff, Stanley; Kwenda, Chiwimbiso
2018-01-01
The aim of this study was to explore the learning of mathematics word problems by African immigrant early learners in the Western Cape Province of South Africa (SA). Phenomenology was used as the philosophical underpinning for this study and also informed the research method. Purposive sampling methods were used to select 10 African immigrant…
ERIC Educational Resources Information Center
Jenks, Kathleen M.; van Lieshout, Ernest C. D. M.; de Moor, Jan M. H.
2012-01-01
Background: Remarkably few studies have investigated the nature and origin of learning difficulties in children with cerebral palsy (CP). Aims: To investigate math achievement in terms of word-problem solving ability in children with CP and controls. Because of the potential importance of reading for word-problem solving, we investigated reading…
ERIC Educational Resources Information Center
Bjork, Isabel Maria; Bowyer-Crane, Claudine
2013-01-01
This study investigates the relationship between skills that underpin mathematical word problems and those that underpin numerical operations, such as addition, subtraction, division and multiplication. Sixty children aged 6-7 years were tested on measures of mathematical ability, reading accuracy, reading comprehension, verbal intelligence and…
Preservice Teachers' Algebraic Reasoning and Symbol Use on a Multistep Fraction Word Problem
ERIC Educational Resources Information Center
Cullen, Amanda L.; Tobias, Jennifer M.; Safak, Elif; Kirwan, J. Vince; Wessman-Enzinger, Nicole M.; Wickstrom, Megan H.; Baek, Jae M.
2017-01-01
Previous research on preservice teachers' understanding of fractions and algebra has focused on one or the other. To extend this research, we examined 85 undergraduate elementary education majors and middle school mathematics education majors' solutions and solution paths (i.e., the ways or methods in which preservice teachers solve word problems)…
Learning to Solve Addition and Subtraction Word Problems in English as an Imported Language
ERIC Educational Resources Information Center
Verzosa, Debbie Bautista; Mulligan, Joanne
2013-01-01
This paper reports an intervention phase of a design study aimed to assist second-grade Filipino children in solving addition word problems in English, a language they primarily encounter only in school. With Filipino as the medium of instruction, an out-of-school pedagogical intervention providing linguistic and representational scaffolds was…
ERIC Educational Resources Information Center
Peake, Christian; Jiménez, Juan E.; Rodríguez, Cristina; Bisschop, Elaine; Villarroel, Rebeca
2015-01-01
Arithmetic word problem (AWP) solving is a highly demanding task for children with learning disabilities (LD) since verbal and mathematical information have to be integrated. This study examines specifically how syntactic awareness (SA), the ability to manage the grammatical structures of language, affects AWP solving. Three groups of children in…
ERIC Educational Resources Information Center
Seethaler, Pamela M.; Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.
2012-01-01
The purpose of this study was to assess the value of dynamic assessment (DA; degree of scaffolding required to learn unfamiliar mathematics content) for predicting 1st-grade calculations (CAs) and word problems (WPs) development, while controlling for the role of traditional assessments. Among 184 1st graders, predictors (DA, Quantity…
Secondary School Students' Construction and Use of Mathematical Models in Solving Word Problems
ERIC Educational Resources Information Center
Llinares, Salvador; Roig, Ana Isabel
2008-01-01
This study focussed on how secondary school students construct and use mathematical models as conceptual tools when solving word problems. The participants were 511 secondary-school students who were in the final year of compulsory education (15-16 years old). Four levels of the development of constructing and using mathematical models were…
ERIC Educational Resources Information Center
Fernandez, Ceneida; Llinares, Salvador; Van Dooren, Wim; De Bock, Dirk; Verschaffel, Lieven
2012-01-01
This study investigates the development of proportional and additive methods along primary and secondary school. In particular, it simultaneously investigates the use of additive methods in proportional word problems and the use of proportional methods in additive word problems. We have also studied the role played by integer and non-integer…
From Circle to Hyperbola in Taxicab Geometry
ERIC Educational Resources Information Center
Berger, Ruth I.
2015-01-01
This "Activity for Students" article presents a taxicab geometry problem that engages students in plotting points and observing surprising shapes and underlining reasons for the appearance of figures when working with street grids. With this activity, teachers can provide an extra challenge by writing additional problems introducing a…
ERIC Educational Resources Information Center
Scriven, Jolene D.; And Others
A study sought to determine current practices in word processing installations located in selected organizations throughout the United States. A related problem was to ascertain anticipated future developments in word processing to provide information for educational institutions preparing workers for the business office. Six interview instruments…
Fuchs, Lynn S; Geary, David C; Compton, Donald L; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Bryant, Joan D; Schatschneider, Christopher
2010-11-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word problems in fall and then reassessed on procedural calculations and word problems in spring. Development was indexed by latent change scores, and the interplay between numerical and domain-general abilities was analyzed by multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of procedural calculations and word problems development. Yet, for procedural calculations development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for word problems development, the set of domain-general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive.
Problem Solving Concretely with the Word "Like"
ERIC Educational Resources Information Center
Yee, Sean
2013-01-01
While the average teenager's conversation may seem inundated with the word "like", in the mathematics classroom, teenagers use it with purpose. Linguists study the word "like" to understand and categorize comparative statements. By overlapping linguistics and mathematics education within the frame of cognitive science, this study found that high…
A new application of algebraic geometry to systems theory
NASA Technical Reports Server (NTRS)
Martin, C. F.; Hermann, R.
1976-01-01
Following an introduction to algebraic geometry, the dominant morphism theorem is stated, and the application of this theorem to systems-theoretic problems, such as the feedback problem, is discussed. The Gaussian elimination method used for solving linear equations is shown to be an example of a dominant morphism.
NASA Technical Reports Server (NTRS)
Stamnes, K.; Lie-Svendsen, O.; Rees, M. H.
1991-01-01
The linear Boltzmann equation can be cast in a form mathematically identical to the radiation-transport equation. A multigroup procedure is used to reduce the energy (or velocity) dependence of the transport equation to a series of one-speed problems. Each of these one-speed problems is equivalent to the monochromatic radiative-transfer problem, and existing software is used to solve this problem in slab geometry. The numerical code conserves particles in elastic collisions. Generic examples are provided to illustrate the applicability of this approach. Although this formalism can, in principle, be applied to a variety of test particle or linearized gas dynamics problems, it is particularly well-suited to study the thermalization of suprathermal particles interacting with a background medium when the thermal motion of the background cannot be ignored. Extensions of the formalism to include external forces and spherical geometry are also feasible.
The Effects of Dynamic Strategic Math on English Language Learners' Word Problem Solving
ERIC Educational Resources Information Center
Orosco, Michael J.; Swanson, H. Lee; O'Connor, Rollanda; Lussier, Cathy
2013-01-01
English language learners (ELLs) struggle with solving word problems for a number of reasons beyond math procedures or calculation challenges. As a result, ELLs may not only need math support but also reading and linguistic support. The purpose of this study was to assess the effectiveness of a math comprehension strategy called Dynamic Strategic…
ERIC Educational Resources Information Center
Powell, Sarah R.; Fuchs, Lynn S.; Cirino, Paul T.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.
2015-01-01
The focus of the present study was enhancing word problem and calculation achievement in ways that support prealgebraic thinking among second-grade students at risk for mathematics difficulty. Intervention relied on a multitier support system (i.e., responsiveness to intervention, or RTI) in which at-risk students participate in general classroom…
ERIC Educational Resources Information Center
Benincasa, Luciana
2017-01-01
The paper applies Goffman's frame analysis and ethnomethodology to student performance on mathematical word problems. In educational research, frame analysis has usually been limited to primary frames. Instead, in this paper I focus on the kind of secondary frame that Goffman calls 'utilitarian make-believe'. The data consist of a fragment of…
ERIC Educational Resources Information Center
Leh, Jayne
2011-01-01
Substantial evidence indicates that teacher-delivered schema-based instruction (SBI) facilitates significant increases in mathematics word problem solving (WPS) skills for diverse students; however research is unclear whether technology affordances facilitate superior gains in computer-mediated (CM) instruction in mathematics WPS when compared to…
ERIC Educational Resources Information Center
Swanson, H. Lee
2014-01-01
Cognitive strategies are important tools for children with math difficulties (MD) in learning to solve word problems. The effectiveness of strategy training, however, depends on working memory capacity (WMC). Thus, children with MD but with relatively higher WMC are more likely to benefit from strategy training, whereas children with lower WMC may…
ERIC Educational Resources Information Center
Zheng, Xinhua; Flynn, Lindsay J.; Swanson, H. Lee
2013-01-01
This article provides a quantitative synthesis of the published literature on word problem solving intervention studies for children with math disabilities (MD). Seven group and eight single-subject design studies met inclusion criteria. Mean effect sizes ("ES"s) for solution accuracy for group design studies were 0.95 (SE = 0.19) for…
ERIC Educational Resources Information Center
Van Dooren, Wim; De Bock, Dirk; Verschaffel, Lieven
2010-01-01
This study builds on two lines of research that have so far developed largely separately: the use of additive methods to solve proportional word problems and the use of proportional methods to solve additive word problems. We investigated the development with age of both kinds of erroneous solution methods. We gave a test containing missing-value…
ERIC Educational Resources Information Center
Nasser, Ramzi; Carifio, James
The purpose of this study was to find out whether students perform differently on algebra word problems that have certain key context features and entail proportional reasoning, relative to their level of logical reasoning and their degree of field dependence/independence. Field-independent students tend to restructure and break stimuli into parts…
ERIC Educational Resources Information Center
Kozbelt, Aaron; Dexter, Scott; Dolese, Melissa; Meredith, Daniel; Ostrofsky, Justin
2015-01-01
We applied computer-based text analyses of regressive imagery to verbal protocols of individuals engaged in creative problem-solving in two domains: visual art (23 experts, 23 novices) and computer programming (14 experts, 14 novices). Percentages of words involving primary process and secondary process thought, plus emotion-related words, were…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.
2016-01-01
The purpose of this study was to examine child-level pathways in development of prealgebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early…
ERIC Educational Resources Information Center
Lein, Amy E.
2016-01-01
This meta-analysis synthesized the findings from 23 published and five unpublished experimental or quasi-experimental group design studies on word problem-solving instruction for K-12 students with learning disabilities (LD) and mathematics difficulties (MD). A secondary purpose of this meta-analysis was to analyze the relation between treatment…
Fuchs, Lynn S.; Powell, Sarah R.; Seethaler, Pamela M.; Cirino, Paul T.; Fletcher, Jack M.; Fuchs, Douglas; Hamlett, Carol L.; Zumeta, Rebecca O.
2009-01-01
The purposes of this study were to assess the efficacy of remedial tutoring for 3rd graders with mathematics difficulty, to investigate whether tutoring is differentially efficacious depending on students’ math difficulty status (mathematics difficulty alone vs. mathematics plus reading difficulty), to explore transfer from number combination (NC) remediation, and to examine the transportability of the tutoring protocols. At 2 sites, 133 students were stratified on mathematics difficulty status and site and then randomly assigned to 3 conditions: control (no tutoring), tutoring on automatic retrieval of NCs (i.e., Math Flash), or tutoring on word problems with attention to the foundational skills of NCs, procedural calculations, and algebra (i.e., Pirate Math). Tutoring occurred for 16 weeks, 3 sessions per week and 20–30 min per session. Math Flash enhanced fluency with NCs with transfer to procedural computation but without transfer to algebra or word problems. Pirate Math enhanced word problem skill as well as fluency with NCs, procedural computation, and algebra. Tutoring was not differentially efficacious as a function of students’ mathematics difficulty status. The tutoring protocols proved transportable across sites. PMID:19865600
Real-time multiplicity counter
Rowland, Mark S [Alamo, CA; Alvarez, Raymond A [Berkeley, CA
2010-07-13
A neutron multi-detector array feeds pulses in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel. The word is read at regular intervals, all bits simultaneously, to minimize latency. The electronics then pass the word to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup.
Arabic word recognizer for mobile applications
NASA Astrophysics Data System (ADS)
Khanna, Nitin; Abdollahian, Golnaz; Brame, Ben; Boutin, Mireille; Delp, Edward J.
2011-03-01
When traveling in a region where the local language is not written using a "Roman alphabet," translating written text (e.g., documents, road signs, or placards) is a particularly difficult problem since the text cannot be easily entered into a translation device or searched using a dictionary. To address this problem, we are developing the "Rosetta Phone," a handheld device (e.g., PDA or mobile telephone) capable of acquiring an image of the text, locating the region (word) of interest within the image, and producing both an audio and a visual English interpretation of the text. This paper presents a system targeted for interpreting words written in Arabic script. The goal of this work is to develop an autonomous, segmentation-free Arabic phrase recognizer, with computational complexity low enough to deploy on a mobile device. A prototype of the proposed system has been deployed on an iPhone with a suitable user interface. The system was tested on a number of noisy images, in addition to the images acquired from the iPhone's camera. It identifies Arabic words or phrases by extracting appropriate features and assigning "codewords" to each word or phrase. On a dictionary of 5,000 words, the system uniquely mapped (word-image to codeword) 99.9% of the words. The system has a 82% recognition accuracy on images of words captured using the iPhone's built-in camera.
Word-Finding Abilities in Language-Impaired Children: ASHA Monographs Number 25.
ERIC Educational Resources Information Center
Kail, Robert; Leonard, Laurence B.
Four samples of language-impaired and control children (N=233, ages from 4 to 14) participated in seven experiments to determine the specific conditions under which retrieval deficits play a role in language-impaired children's word finding problems. Experiments 1-5 dealt with recall, retrieval, and similarity judgments of words presented…
One Language, Two Number-Word Systems and Many Problems: Numerical Cognition in the Czech Language
ERIC Educational Resources Information Center
Pixner, S.; Zuber, J.; Hermanova, V.; Kaufmann, L.; Nuerk, H.-C.; Moeller, K.
2011-01-01
Comparing numerical performance between different languages does not only mean comparing different number-word systems, but also implies a comparison of differences regarding culture or educational systems. The Czech language provides the remarkable opportunity to disentangle this confound as there exist two different number-word systems within…
Technology and the Oops! Effect: Finding a Bias against Word Processing.
ERIC Educational Resources Information Center
Roblyer, M. D.
1997-01-01
Introduced to aid writing, word processing can cause unexpected problems for those who use it. Describes four studies in which raters gave word-processed essays consistently lower scores than handwritten essays. Reasons for the discrepancies were higher expectations for typed essays, ease of spotting text errors in typed text, and more difficulty…
Complex Word Reading in Dutch Deaf Children and Adults
ERIC Educational Resources Information Center
van Hoogmoed, Anne H.; Knoors, Harry; Schreuder, Robert; Verhoeven, Ludo
2013-01-01
Children who are deaf are often delayed in reading comprehension. This delay could be due to problems in morphological processing during word reading. In this study, we investigated whether 6th grade deaf children and adults are delayed in comparison to their hearing peers in reading complex derivational words and compounds compared to…
Investigation of a New Intervention for Children with Word-Finding Problems
ERIC Educational Resources Information Center
Best, Wendy
2005-01-01
Background: Around one-quarter of children attending language support services have difficulty in retrieving words. Therapy studies with such children have shown that both semantic and phonological techniques can improve word finding. A new approach to intervention is described using a computerized aid that converts letters into sound cues. Aims:…
ERIC Educational Resources Information Center
Nirode, Wayne
2014-01-01
Geometry students need challenges. They need to apply what they already know to new contexts. As a result, high school teacher Wayne Nirode is always looking for groups of related problems of theorems to challenge his geometry students. He came across one such group or problems when reading Jun's (2012) one-page abstract posted online for the 12th…
Tips on Creating Complex Geometry Using Solid Modeling Software
ERIC Educational Resources Information Center
Gow, George
2008-01-01
Three-dimensional computer-aided drafting (CAD) software, sometimes referred to as "solid modeling" software, is easy to learn, fun to use, and becoming the standard in industry. However, many users have difficulty creating complex geometry with the solid modeling software. And the problem is not entirely a student problem. Even some teachers and…
Normative data for Chinese compound remote associate problems.
Wu, Ching-Lin; Chen, Hsueh-Chih
2017-12-01
The Remote Associates Test (RAT) is a well-known measure of creativity, with each item on the RAT is composed of three unrelated stimulus words. The participant's task is to find an answer in the form of a word that could combine with each of the stimulus words, thus forming three new actual nouns. Researchers have modified the RAT to develop compound remote associate problems that emphasize combining vocabulary to form compound words. In the field of creativity research for Mandarin speakers, the Chinese RAT has been widely applied for over 10 years. The original RAT, compound remote associate problems, and Chinese RAT have various common advantages, such as being convenient to use and having objective scoring; additionally, the development of items for certain tests is easy and satisfies the requirements of psychological assessments in terms of the quantity of items. Currently, many language editions of the RAT and compound remote associate problems already exist. In particular, the English and Italian versions of these tests already have derived normative data. Because approximately 20% of the world's population are native Mandarin speakers, and because increasing numbers of people are choosing Mandarin as a second language, the need to increase Mandarin-language resources is growing; however, normative data for the Chinese RAT still do not exist. To address this issue, in the present study we developed Chinese compound remote associate problems and analyzed the passing rates by items, problem solving times, and various normative data, using the responses of 253 subjects in three experiments.
Requirements for a geometry programming language for CFD applications
NASA Technical Reports Server (NTRS)
Gentry, Arvel E.
1992-01-01
A number of typical problems faced by the aerodynamicist in using computational fluid dynamics are presented to illustrate the need for a geometry programming language. The overall requirements for such a language are illustrated by examples from the Boeing Aero Grid and Paneling System (AGPS). Some of the problems in building such a system are also reviewed along with suggestions as to what to look for when evaluating new software problems.
NASA Technical Reports Server (NTRS)
Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.
1984-01-01
A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.
Whoever Doesn't HOP Must Be Superior: The Russian Left-Periphery and the Emergence of Superiority
ERIC Educational Resources Information Center
Scott, Tatiana V.
2012-01-01
This dissertation maps the left-periphery of the Russian language, presenting a new geometry of Russian main and subordinate clauses in order to account for a number of phenomena: single and multiple wh-constructions, sluicing constructions, and coordinate multiple wh-constructions (CMW), as well as to predict various occurring word-orders.…
Factors Predicting Recall of Mathematics Terms by Deaf Students: Implications for Teaching
ERIC Educational Resources Information Center
Lang, Harry; Pagliaro, Claudia
2007-01-01
In this study of deaf high school students, imagery and familiarity were found to be the best predictors of geometry word recall, whereas neither concreteness nor signability of the terms was a significant predictor variable. Recall of high imagery terms was significantly better than for low imagery terms, and the same result was found for high-…
ERIC Educational Resources Information Center
Chan, Simon
2015-01-01
In learning mathematics through English, one of the major challenges facing English as a Foreign Language (EFL) learners is understanding the language used to present word problems in mathematics texts. Without comprehending such language, learners are not able to carry out the targeted calculations no matter how familiar they are with the…
ERIC Educational Resources Information Center
Moscardini, Lio
2010-01-01
This study by Lio Moscardini of the University of Strathclyde shows how a group of 24 children in three Scottish primary schools for pupils with moderate learning difficulties responded to word problems following their teachers' introduction to the principles of Cognitively Guided Instruction (CGI). CGI is a professional development programme in…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul
2016-01-01
The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention delivered as part of the larger program. At-risk 4th graders (n = 213) were randomly assigned at the individual…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul
2016-01-01
The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention. At-risk fourth graders (n = 213) were randomly assigned to the school's business-as-usual program, or one of two…
ERIC Educational Resources Information Center
Leh, Jayne M.; Jitendra, Asha K.; Caskie, Grace I. L.; Griffin, Cynthia C.
2007-01-01
The purpose of this study was to examine the tenability of a curriculum-based mathematical word problem-solving (WPS) measure as a progress-monitoring tool to index students' rate of growth or slope of achievement over time. Participants consisted of 58 third-grade students, who were assessed repeatedly over 16 school weeks. Students were measured…
ERIC Educational Resources Information Center
O'Brien, Aileen; Cabral, Sheryl Ann
This is a project in an emerging line of research investigating children's informed knowledge of mathematics questions. The purpose of this study was to analyze the ability of students who had not received multiplication or division instruction to solve multiplication and division word problems. The study consisted of videotaped interviews with 89…
Using 3D Geometric Models to Teach Spatial Geometry Concepts.
ERIC Educational Resources Information Center
Bertoline, Gary R.
1991-01-01
An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)
Nitsche Extended Finite Element Methods for Earthquake Simulation
NASA Astrophysics Data System (ADS)
Coon, Ethan T.
Modeling earthquakes and geologically short-time-scale events on fault networks is a difficult problem with important implications for human safety and design. These problems demonstrate a. rich physical behavior, in which distributed loading localizes both spatially and temporally into earthquakes on fault systems. This localization is governed by two aspects: friction and fault geometry. Computationally, these problems provide a stern challenge for modelers --- static and dynamic equations must be solved on domains with discontinuities on complex fault systems, and frictional boundary conditions must be applied on these discontinuities. The most difficult aspect of modeling physics on complicated domains is the mesh. Most numerical methods involve meshing the geometry; nodes are placed on the discontinuities, and edges are chosen to coincide with faults. The resulting mesh is highly unstructured, making the derivation of finite difference discretizations difficult. Therefore, most models use the finite element method. Standard finite element methods place requirements on the mesh for the sake of stability, accuracy, and efficiency. The formation of a mesh which both conforms to fault geometry and satisfies these requirements is an open problem, especially for three dimensional, physically realistic fault. geometries. In addition, if the fault system evolves over the course of a dynamic simulation (i.e. in the case of growing cracks or breaking new faults), the geometry must he re-meshed at each time step. This can be expensive computationally. The fault-conforming approach is undesirable when complicated meshes are required, and impossible to implement when the geometry is evolving. Therefore, meshless and hybrid finite element methods that handle discontinuities without placing them on element boundaries are a desirable and natural way to discretize these problems. Several such methods are being actively developed for use in engineering mechanics involving crack propagation and material failure. While some theory and application of these methods exist, implementations for the simulation of networks of many cracks have not yet been considered. For my thesis, I implement and extend one such method, the eXtended Finite Element Method (XFEM), for use in static and dynamic models of fault networks. Once this machinery is developed, it is applied to open questions regarding the behavior of networks of faults, including questions of distributed deformation in fault systems and ensembles of magnitude, location, and frequency in repeat ruptures. The theory of XFEM is augmented to allow for solution of problems with alternating regimes of static solves for elastic stress conditions and short, dynamic earthquakes on networks of faults. This is accomplished using Nitsche's approach for implementing boundary conditions. Finally, an optimization problem is developed to determine tractions along the fault, enabling the calculation of frictional constraints and the rupture front. This method is verified via a series of static, quasistatic, and dynamic problems. Armed with this technique, we look at several problems regarding geometry within the earthquake cycle in which geometry is crucial. We first look at quasistatic simulations on a community fault model of Southern California, and model slip distribution across that system. We find the distribution of deformation across faults compares reasonably well with slip rates across the region, as constrained by geologic data. We find geometry can provide constraints for friction, and consider the minimization of shear strain across the zone as a function of friction and plate loading direction, and infer bounds on fault strength in the region. Then we consider the repeated rupture problem, modeling the full earthquake cycle over the course of many events on several fault geometries. In this work, we look at distributions of events, studying the effect of geometry on statistical metrics of event ensembles. Finally, this thesis is a proof of concept for the XFEM on earthquake cycle models on fault systems. We identify strengths and weaknesses of the method, and identify places for future improvement. We discuss the feasibility of the method's use in three dimensions, and find the method to be a strong candidate for future crustal deformation simulations.
Application of genetic algorithms in nonlinear heat conduction problems.
Kadri, Muhammad Bilal; Khan, Waqar A
2014-01-01
Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.
Are middle school mathematics teachers able to solve word problems without using variable?
NASA Astrophysics Data System (ADS)
Gökkurt Özdemir, Burçin; Erdem, Emrullah; Örnek, Tuğba; Soylu, Yasin
2018-01-01
Many people consider problem solving as a complex process in which variables such as x, y are used. Problems may not be solved by only using 'variable.' Problem solving can be rationalized and made easier using practical strategies. When especially the development of children at younger ages is considered, it is obvious that mathematics teachers should solve problems through concrete processes. In this context, middle school mathematics teachers' skills to solve word problems without using variables were examined in the current study. Through the case study method, this study was conducted with 60 middle school mathematics teachers who have different professional experiences in five provinces in Turkey. A test consisting of five open-ended word problems was used as the data collection tool. The content analysis technique was used to analyze the data. As a result of the analysis, it was seen that the most of the teachers used trial-and-error strategy or area model as the solution strategy. On the other hand, the teachers who solved the problems using variables such as x, a, n or symbols such as Δ, □, ○, * and who also felt into error by considering these solutions as without variable were also seen in the study.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
Mesh generation has long been recognized as a bottleneck in the CFD process. While much research on automating the volume mesh generation process have been relatively successful,these methods rely on appropriate initial surface triangulation to work properly. Surface discretization has been one of the least automated steps in computational simulation due to its dependence on implicitly defined CAD surfaces and curves. Differences in CAD peometry engines manifest themselves in discrepancies in their interpretation of the same entities. This lack of "good" geometry causes significant problems for mesh generators, requiring users to "repair" the CAD geometry before mesh generation. The problem is exacerbated when CAD geometry is translated to other forms (e.g., IGES )which do not include important topological and construction information in addition to entity geometry. One technique to avoid these problems is to access the CAD geometry directly from the mesh generating software, rather than through files. By accessing the geometry model (not a discretized version) in its native environment, t h s a proach avoids translation to a format which can deplete the model of topological information. Our approach to enable models developed in the Denali software environment to directly access CAD geometry and functions is through an Application Programming Interface (API) known as CAPRI. CAPRI provides a layer of indirection through which CAD-specific data may be accessed by an application program using CAD-system neutral C and FORTRAN language function calls. CAPRI supports a general set of CAD operations such as truth testing, geometry construction and entity queries.
Entering Freshmen Hindered by Functional Illiteracy.
ERIC Educational Resources Information Center
Sainz, JoAnn; Biggins, Catherine M.
Research has specifically linked dropping out of school to reading disabilities and related problems. Research on reading as a cognitive task has focused on reading as an active process with three questions of concern: (1) How does the learner learn to identify the printed word?; (2) How does he or she discriminate one word from another word?; and…
Boggle Logic Puzzles: Minimal Solutions
ERIC Educational Resources Information Center
Needleman, Jonathan
2013-01-01
Boggle logic puzzles are based on the popular word game Boggle played backwards. Given a list of words, the problem is to recreate the board. We explore these puzzles on a 3 x 3 board and find the minimum number of three-letter words needed to create a puzzle with a unique solution. We conclude with a series of open questions.
Modeling the Contribution of Phonotactic Cues to the Problem of Word Segmentation
ERIC Educational Resources Information Center
Blanchard, Daniel; Heinz, Jeffrey; Golinkoff, Roberta
2010-01-01
How do infants find the words in the speech stream? Computational models help us understand this feat by revealing the advantages and disadvantages of different strategies that infants might use. Here, we outline a computational model of word segmentation that aims both to incorporate cues proposed by language acquisition researchers and to…
An Action Research on Deep Word Processing Strategy Instruction
ERIC Educational Resources Information Center
Zhang, Limei
2010-01-01
For too long a time, how to memorize more words and keep them longer in mind has been a primary and everlasting problem for vocabulary teaching and learning. This study focused on deep processing as a word memorizing strategy in contextualizing, de- and re- contextualizing learning stages. It also examined possible effects of such pedagogy on…
Never Trust Your Word Processor
ERIC Educational Resources Information Center
Linke, Dirk
2009-01-01
In this article, the author talks about the auto correction mode of word processors that leads to a number of problems and describes an example in biochemistry exams that shows how word processors can lead to mistakes in databases and in papers. The author contends that, where this system is applied, spell checking should not be left to a word…
LEARNING SEMANTICS-ENHANCED LANGUAGE MODELS APPLIED TO UNSUEPRVISED WSD
DOE Office of Scientific and Technical Information (OSTI.GOV)
VERSPOOR, KARIN; LIN, SHOU-DE
An N-gram language model aims at capturing statistical syntactic word order information from corpora. Although the concept of language models has been applied extensively to handle a variety of NLP problems with reasonable success, the standard model does not incorporate semantic information, and consequently limits its applicability to semantic problems such as word sense disambiguation. We propose a framework that integrates semantic information into the language model schema, allowing a system to exploit both syntactic and semantic information to address NLP problems. Furthermore, acknowledging the limited availability of semantically annotated data, we discuss how the proposed model can be learnedmore » without annotated training examples. Finally, we report on a case study showing how the semantics-enhanced language model can be applied to unsupervised word sense disambiguation with promising results.« less
Fuchs, Lynn S.; Gilbert, Jennifer K.; Fuchs, Douglas; Seethaler, Pamela M.; Martin, BrittanyLee N.
2018-01-01
This study was designed to deepen insights on whether word-problem (WP) solving is a form of text comprehension (TC) and on the role of language in WPs. A sample of 325 second graders, representing high, average, and low reading and math performance, was assessed on (a) start-of-year TC, WP skill, language, nonlinguistic reasoning, working memory, and foundational skill (word identification, arithmetic) and (b) year-end WP solving, WP-language processing (understanding WP statements, without calculation demands), and calculations. Multivariate, multilevel path analysis, accounting for classroom and school effects, indicated that TC was a significant and comparably strong predictor of all outcomes. Start-of-year language was a significantly stronger predictor of both year-end WP outcomes than of calculations, whereas start-of-year arithmetic was a significantly stronger predictor of calculations than of either WP measure. Implications are discussed in terms of WP solving as a form of TC and a theoretically coordinated approach, focused on language, for addressing TC and WP-solving instruction. PMID:29643723
ERIC Educational Resources Information Center
Mandaci Sahin, Seher; Kendir, Fatma
2013-01-01
The purpose of this study is to identify the effect of using metacognitive strategies for problem solving in "geometry" on fifth grade students' achievement, metacognitive skills and attitude. Experimental method was used with a pretest/posttest control group design. Firstly, both groups were subject to a pretest that was comprised of…
ERIC Educational Resources Information Center
Afacan Adanir, Gulgun
2017-01-01
The case study focuses on the interactional mechanisms through which online collaborative teams co-construct a shared understanding of an analytical geometry problem by using dynamic geometry representations. The collaborative study consisted of an assignment on which the learners worked together in groups to solve a ship navigation problem as…
Special Relativity as a Simple Geometry Problem
ERIC Educational Resources Information Center
de Abreu, Rodrigo; Guerra, Vasco
2009-01-01
The null result of the Michelson-Morley experiment and the constancy of the one-way speed of light in the "rest system" are used to formulate a simple problem, to be solved by elementary geometry techniques using a pair of compasses and non-graduated rulers. The solution consists of a drawing allowing a direct visualization of all the fundamental…
Barnette, Daniel W.
2002-01-01
The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.
François, Clément; Cunillera, Toni; Garcia, Enara; Laine, Matti; Rodriguez-Fornells, Antoni
2017-04-01
Learning a new language requires the identification of word units from continuous speech (the speech segmentation problem) and mapping them onto conceptual representation (the word to world mapping problem). Recent behavioral studies have revealed that the statistical properties found within and across modalities can serve as cues for both processes. However, segmentation and mapping have been largely studied separately, and thus it remains unclear whether both processes can be accomplished at the same time and if they share common neurophysiological features. To address this question, we recorded EEG of 20 adult participants during both an audio alone speech segmentation task and an audiovisual word-to-picture association task. The participants were tested for both the implicit detection of online mismatches (structural auditory and visual semantic violations) as well as for the explicit recognition of words and word-to-picture associations. The ERP results from the learning phase revealed a delayed learning-related fronto-central negativity (FN400) in the audiovisual condition compared to the audio alone condition. Interestingly, while online structural auditory violations elicited clear MMN/N200 components in the audio alone condition, visual-semantic violations induced meaning-related N400 modulations in the audiovisual condition. The present results support the idea that speech segmentation and meaning mapping can take place in parallel and act in synergy to enhance novel word learning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arithmetic learning with the use of graphic organiser
NASA Astrophysics Data System (ADS)
Sai, F. L.; Shahrill, M.; Tan, A.; Han, S. H.
2018-01-01
For this study, Zollman’s four corners-and-a-diamond mathematics graphic organiser embedded with Polya’s Problem Solving Model was used to investigate secondary school students’ performance in arithmetic word problems. This instructional learning tool was used to help students break down the given information into smaller units for better strategic planning. The participants were Year 7 students, comprised of 21 male and 20 female students, aged between 11-13 years old, from a co-ed secondary school in Brunei Darussalam. This study mainly adopted a quantitative approach to investigate the types of differences found in the arithmetic word problem pre- and post-tests results from the use of the learning tool. Although the findings revealed slight improvements in the overall comparisons of the students’ test results, the in-depth analysis of the students’ responses in their activity worksheets shows a different outcome. Some students were able to make good attempts in breaking down the key points into smaller information in order to solve the word problems.
ERIC Educational Resources Information Center
Gonzalez, Juan E. Jimenez; Espinel, Ana Isabel Garcia
2002-01-01
A study was designed to test whether there are differences between Spanish children (ages 7-9) with arithmetic learning disabilities (n=60), garden-variety (G-V) poor performance (n=44), and typical children (n=44) in strategy choice when solving arithmetic word problems. No significant differences were found between children with dyscalculia and…
ERIC Educational Resources Information Center
Arendasy, Martin; Sommer, Markus
2007-01-01
This article deals with the investigation of the psychometric quality and constructs validity of algebra word problems generated by means of a schema-based version of the automatic min-max approach. Based on review of the research literature in algebra word problem solving and automatic item generation this new approach is introduced as a…
Experiments in automatic word class and word sense identification for information retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauch, S.; Futrelle, R.P.
Automatic identification of related words and automatic detection of word senses are two long-standing goals of researchers in natural language processing. Word class information and word sense identification may enhance the performance of information retrieval system4ms. Large online corpora and increased computational capabilities make new techniques based on corpus linguisitics feasible. Corpus-based analysis is especially needed for corpora from specialized fields for which no electronic dictionaries or thesauri exist. The methods described here use a combination of mutual information and word context to establish word similarities. Then, unsupervised classification is done using clustering in the word space, identifying word classesmore » without pretagging. We also describe an extension of the method to handle the difficult problems of disambiguation and of determining part-of-speech and semantic information for low-frequency words. The method is powerful enough to produce high-quality results on a small corpus of 200,000 words from abstracts in a field of molecular biology.« less
Compound Words: A Problem in Post-Coordinate Retrieval Systems
ERIC Educational Resources Information Center
Jones, Kevin P.
1971-01-01
Compound words cause some difficulty in post-coordinate indexing systems: if too many are fractured, or the wrong categories are selected for fracturing noise will be produced at unacceptable levels on retrieval. (Author/MM)
What is Dyslexia? | NIH MedlinePlus the Magazine
... words Difficulty understanding text that is read (poor comprehension) Problems with spelling Delayed speech (learning to talk ... of technology. Children with dyslexia may benefit from listening to books on tape or using word-processing ...
Geometry with Coordinates, Student's Text, Part II, Unit 48. Revised Edition.
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
This is part two of a two-part SMSG geometry text for high school students. One of the goals of the text is the development of analytic geometry hand-in-hand with synthetic geometry. The authors emphasize that both are deductive systems and that it is useful to have more than one mode of attack in solving problems. The text begins the development…
NASA Astrophysics Data System (ADS)
Assadi, Amir H.
2001-11-01
Perceptual geometry is an emerging field of interdisciplinary research whose objectives focus on study of geometry from the perspective of visual perception, and in turn, apply such geometric findings to the ecological study of vision. Perceptual geometry attempts to answer fundamental questions in perception of form and representation of space through synthesis of cognitive and biological theories of visual perception with geometric theories of the physical world. Perception of form and space are among fundamental problems in vision science. In recent cognitive and computational models of human perception, natural scenes are used systematically as preferred visual stimuli. Among key problems in perception of form and space, we have examined perception of geometry of natural surfaces and curves, e.g. as in the observer's environment. Besides a systematic mathematical foundation for a remarkably general framework, the advantages of the Gestalt theory of natural surfaces include a concrete computational approach to simulate or recreate images whose geometric invariants and quantities might be perceived and estimated by an observer. The latter is at the very foundation of understanding the nature of perception of space and form, and the (computer graphics) problem of rendering scenes to visually invoke virtual presence.
Warren, David E.; Kurczek, Jake; Duff, Melissa C.
2016-01-01
Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N=5) and healthy normal comparison participants (N=5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. PMID:27010751
Quadrotor Intercept Trajectory Planning and Simulation
2017-06-01
Figure 41. Results are grouped by geometry type and colored based on trajectory planner. Figure 41. Summary of Experimental Data Intercept Time...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Quadrotor drones pose a safety hazard when operated in or near controlled airspace. A hazardous...quadrotor could be intercepted and removed by another quadrotor. In this thesis, we seek to determine if optimal control methods outperform missile
Survival of Adhering Cortical Neurons on Polyethylenimine Micropatterns
2001-10-25
1 SURVIVAL OF ADHERING CORTICAL NEURONS ON POLYETHYLENIMINE MICROPATTERNS T. G. Ruardij, M. H. Goedbloed, W. L. C. Rutten Faculty of Electrical...FC)-layer and coated with neuron-adhesive polyethylenimine (PEI). Results showed that the survival of neural tissue was geometry- independent after 1...4 and 8 days but was favored on 150 µm wells after 15 days. Key words - Cortical neurons, patterning, adhesion, polyethylenimine , fluorocarbon
Biodynamics of deformable human body motion
NASA Technical Reports Server (NTRS)
Strauss, A. M.; Huston, R. L.
1976-01-01
The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.
A Case Study of a Reluctant Word Processor: A Look at One Student in a Word Processing Classroom.
ERIC Educational Resources Information Center
Sloane, Sarah
A case study examined the writing problems of Jay, a freshman composition student at the University of Massachusetts, to determine how teachers should handle students whose composing styles are not suited to writing with word processors. Interviews, classroom observation, and careful analyses of Jay's essays in progress and logsheets were…
ERIC Educational Resources Information Center
Hismanoglu, Murat
2012-01-01
The purpose of this study is to elicit problem causing word stress patterns for Turkish EFL (English as a foreign language) learners and investigate whether Internet-based pronunciation lesson is superior to traditional pronunciation lesson in terms of enhancing Turkish EFL learners' accurate production of stressed syllables in English words. A…
ERIC Educational Resources Information Center
Yum, Yen Na; Holcomb, Phillip J.; Grainger, Jonathan
2011-01-01
Comparisons of word and picture processing using event-related potentials (ERPs) are contaminated by gross physical differences between the two types of stimuli. In the present study, we tackle this problem by comparing picture processing with word processing in an alphabetic and a logographic script, that are also characterized by gross physical…
Word Class Distinctions in Second Language Acquisition: An Experimental Study of L2 Spanish
ERIC Educational Resources Information Center
Zyzik, Eve; Azevedo, Clara
2009-01-01
Although the problem of word class has been explored in numerous first language studies, relatively little is known about this process in SLA. The present study measures second language (L2) learners' knowledge of word class distinctions (e.g., noun vs. adjective) in a variety of syntactic contexts. English-speaking learners of Spanish from…
Thinking can cause forgetting: memory dynamics in creative problem solving.
Storm, Benjamin C; Angello, Genna; Bjork, Elizabeth Ligon
2011-09-01
Research on retrieval-induced forgetting has shown that retrieval can cause the forgetting of related or competing items in memory (Anderson, Bjork, & Bjork, 1994). In the present research, we examined whether an analogous phenomenon occurs in the context of creative problem solving. Using the Remote Associates Test (RAT; Mednick, 1962), we found that attempting to generate a novel common associate to 3 cue words caused the forgetting of other strong associates related to those cue words. This problem-solving-induced forgetting effect occurred even when participants failed to generate a viable solution, increased in magnitude when participants spent additional time problem solving, and was positively correlated with problem-solving success on a separate set of RAT problems. These results implicate a role for forgetting in overcoming fixation in creative problem solving. (c) 2011 APA, all rights reserved.
Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers
ERIC Educational Resources Information Center
Tomiczková, Svetlana; Lávicka, Miroslav
2015-01-01
It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…
ERIC Educational Resources Information Center
Lavy, Ilana; Shriki, Atara
2010-01-01
In the present study we explore changes in perceptions of our class of prospective mathematics teachers (PTs) regarding their mathematical knowledge. The PTs engaged in problem posing activities in geometry, using the "What If Not?" (WIN) strategy, as part of their work on computerized inquiry-based activities. Data received from the PTs'…
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Su, Jia-Han; Huang, Yueh-Min; Dong, Jian-Jie
2009-01-01
In this paper, the development of an innovative Virtual Manipulatives and Whiteboard (VMW) system is described. The VMW system allowed users to manipulate virtual objects in 3D space and find clues to solve geometry problems. To assist with multi-representation transformation, translucent multimedia whiteboards were used to provide a virtual 3D…
Geometry of Quantum Computation with Qudits
Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710
ERIC Educational Resources Information Center
Kuzle, Ana
2017-01-01
Students regularly struggle with mathematical tasks, particularly those concerning non-routine problems in geometry. Although educators would like for their learners to transfer their knowledge to non-routine and real-life situations, students run into a number of difficulties. The goal of this exploratory study was to analyze three participants'…
ERIC Educational Resources Information Center
Arnau, David; Arevalillo-Herraez, Miguel; Puig, Luis; Gonzalez-Calero, Jose Antonio
2013-01-01
Designers of interactive learning environments with a focus on word problem solving usually have to compromise between the amount of resolution paths that a user is allowed to follow and the quality of the feedback provided. We have built an intelligent tutoring system (ITS) that is able to both track the user's actions and provide adequate…
Identifying Children in Middle Childhood Who Are at Risk for Reading Problems.
Speece, Deborah L; Ritchey, Kristen D; Silverman, Rebecca; Schatschneider, Christopher; Walker, Caroline Y; Andrusik, Katryna N
2010-06-01
The purpose of this study was to identify and evaluate a universal screening battery for reading that is appropriate for older elementary students in a response to intervention model. Multiple measures of reading and reading correlates were administered to 230 fourth-grade children. Teachers rated children's reading skills, academic competence, and attention. Children were classified as not-at-risk or at-risk readers based on a three-factor model reflecting reading comprehension, word recognition/decoding, and word fluency. Predictors of reading status included group-administered tests of reading comprehension, silent word reading fluency, and teacher ratings of reading problems. Inclusion of individually administered tests and growth estimates did not add substantial variance. The receiver-operator characteristic curve analysis yielded an area under the curve index of 0.90, suggesting this model may both accurately and efficiently screen older elementary students with reading problems.
Development of Cross Section Library and Application Programming Interface (API)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Marin-Lafleche, A.; Smith, M. A.
2014-04-09
The goal of NEAMS neutronics is to develop a high-fidelity deterministic neutron transport code termed PROTEUS for use on all reactor types of interest, but focused primarily on sodium-cooled fast reactors. While PROTEUS-SN has demonstrated good accuracy for homogeneous fast reactor problems and partially heterogeneous fast reactor problems, the simulation results were not satisfactory when applied on fully heterogeneous thermal problems like the Advanced Test Reactor (ATR). This is mainly attributed to the quality of cross section data for heterogeneous geometries since the conventional cross section generation approach does not work accurately for such irregular and complex geometries. Therefore, onemore » of the NEAMS neutronics tasks since FY12 has been the development of a procedure to generate appropriate cross sections for a heterogeneous geometry core.« less
ERIC Educational Resources Information Center
Oflaz, Gülcin; Bulut, Neslihan; Akcakin, Veysel
2016-01-01
Problem Statement: Recent research and evaluation reports show that students are not learning geometry efficiently. One identifier of student understanding related to geometry is teachers' knowledge structures. Understanding what a proof is and writing proofs are essential for success in mathematics. Thus, school mathematics should include proving…
ERIC Educational Resources Information Center
Widder, Mirela; Gorsky, Paul
2013-01-01
In schools, learning spatial geometry is usually dependent upon a student's ability to visualize three dimensional geometric configurations from two dimensional drawings. Such a process, however, often creates visual obstacles which are unique to spatial geometry. Useful software programs which realistically depict three dimensional geometric…
PCM synchronization by word stuffing
NASA Technical Reports Server (NTRS)
Butman, S.
1969-01-01
When a transmitted word, consisting of a number of pulses, is detected and removed from the data stream, the space left by the removal is eliminated by a memory buffer. This eliminates the need for a clock synchronizer thereby removing instability problems.
On the inverse problem of blade design for centrifugal pumps and fans
NASA Astrophysics Data System (ADS)
Kruyt, N. P.; Westra, R. W.
2014-06-01
The inverse problem of blade design for centrifugal pumps and fans has been studied. The solution to this problem provides the geometry of rotor blades that realize specified performance characteristics, together with the corresponding flow field. Here a three-dimensional solution method is described in which the so-called meridional geometry is fixed and the distribution of the azimuthal angle at the three-dimensional blade surface is determined for blades of infinitesimal thickness. The developed formulation is based on potential-flow theory. Besides the blade impermeability condition at the pressure and suction side of the blades, an additional boundary condition at the blade surface is required in order to fix the unknown blade geometry. For this purpose the mean-swirl distribution is employed. The iterative numerical method is based on a three-dimensional finite element method approach in which the flow equations are solved on the domain determined by the latest estimate of the blade geometry, with the mean-swirl distribution boundary condition at the blade surface being enforced. The blade impermeability boundary condition is then used to find an improved estimate of the blade geometry. The robustness of the method is increased by specific techniques, such as spanwise-coupled solution of the discretized impermeability condition and the use of under-relaxation in adjusting the estimates of the blade geometry. Various examples are shown that demonstrate the effectiveness and robustness of the method in finding a solution for the blade geometry of different types of centrifugal pumps and fans. The influence of the employed mean-swirl distribution on the performance characteristics is also investigated.
What Are the Symptoms of Learning Disabilities?
... Difficulty with reading and/or writing Problems with math skills Difficulty remembering Problems paying attention Trouble following ... numbers. Other symptoms may include 7 : Difficulty with math-related word problems Trouble making change in cash ...
Word problems: a review of linguistic and numerical factors contributing to their difficulty
Daroczy, Gabriella; Wolska, Magdalena; Meurers, Walt Detmar; Nuerk, Hans-Christoph
2015-01-01
Word problems (WPs) belong to the most difficult and complex problem types that pupils encounter during their elementary-level mathematical development. In the classroom setting, they are often viewed as merely arithmetic tasks; however, recent research shows that a number of linguistic verbal components not directly related to arithmetic contribute greatly to their difficulty. In this review, we will distinguish three components of WP difficulty: (i) the linguistic complexity of the problem text itself, (ii) the numerical complexity of the arithmetic problem, and (iii) the relation between the linguistic and numerical complexity of a problem. We will discuss the impact of each of these factors on WP difficulty and motivate the need for a high degree of control in stimuli design for experiments that manipulate WP difficulty for a given age group. PMID:25883575
Reduced attentional blink for gambling-related stimuli in problem gamblers.
Brevers, Damien; Cleeremans, Axel; Tibboel, Helen; Bechara, Antoine; Kornreich, Charles; Verbanck, Paul; Noël, Xavier
2011-09-01
Although there is considerable information concerning the attentional biases in psychoactive substance use and misuse, much less is known about the contribution of attentional processing in problem gambling. The aim of this study was to examine whether problem gamblers (PrG) exhibit attentional bias at the level of the encoding processing stage. Forty PrG and 35 controls participated in an attentional blink (AB) paradigm in which they were required to identify both gambling and neutral words that appeared in a rapid serial visual presentation. Explicit motivation (e.g., intrinsic/arousal, extrinsic, amotivation) toward the gambling cues was recorded. A diminished AB effect for gambling-related words compared to neutral targets was identified in PrG. In contrast, AB was similar when either gambling-related or neutral words were presented to controls. Furthermore, there was a significant positive correlation between the reduced AB for gambling-related words and the sub-score of intrinsic/arousal motivation to gamble in PrG. Such findings suggest that the PrG group exhibits an enhanced ability to process gambling-related information, which is associated with their desire to gamble for arousal reasons. Theoretical and clinical implications of these results are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Experiments with a Supersonic Multi-Channel Radial Diffuser.
1980-09-01
unlimited. 17 . DISTRIBUTION STATEMENT (o the *bsta~c entered nRItok 20, it dffttt Iton, Report) IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue o...Improvements 17 VI SIGNIFICANT TEST RESULTS 20 1. General Considerations 20 2. Typical Radial Diffuser Performance 20 3. Flow Stability Experiments 22 VIII...Adjustments Indicated 39 16 Comparison of the Single Channel Performances for Two Extreme Channel Geometries 40 17 Typical Radial Diffuser Performance
Learned Tactics for Asset Allocation
2013-06-01
based on off-policy and on-policy tempo - ral difference learning [6, 31, 47]. The basic prin- ciple that unifies MARL techniques is to identify and...patterns with regu- larities such as symmetry, repetition, and repetition with variation [49, 50, 54]. For example, simply by in- cluding a Gaussian...tactics and policies while still exhibiting variation across the policy geometry. In other words, policies are spread across the substrate in a
Warren, David E; Kurczek, Jake; Duff, Melissa C
2016-07-01
Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N = 5) and healthy normal comparison participants (N = 5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The research on medical image classification algorithm based on PLSA-BOW model.
Cao, C H; Cao, H L
2016-04-29
With the rapid development of modern medical imaging technology, medical image classification has become more important for medical diagnosis and treatment. To solve the existence of polysemous words and synonyms problem, this study combines the word bag model with PLSA (Probabilistic Latent Semantic Analysis) and proposes the PLSA-BOW (Probabilistic Latent Semantic Analysis-Bag of Words) model. In this paper we introduce the bag of words model in text field to image field, and build the model of visual bag of words model. The method enables the word bag model-based classification method to be further improved in accuracy. The experimental results show that the PLSA-BOW model for medical image classification can lead to a more accurate classification.
Numerical algebraic geometry: a new perspective on gauge and string theories
NASA Astrophysics Data System (ADS)
Mehta, Dhagash; He, Yang-Hui; Hauensteine, Jonathan D.
2012-07-01
There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called `embarrassing parallelizability' allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.
NASA Technical Reports Server (NTRS)
Brislawn, Kristi D.; Brown, David L.; Chesshire, Geoffrey S.; Saltzman, Jeffrey S.
1995-01-01
Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference methods have been used effectively on a variety of problems in two and three dimensions. In this paper we introduce an approach for resolving problems that involve complex geometries in which resolution of boundary geometry is important. The complex geometry is represented by using the method of overlapping grids, while local resolution is obtained by refining each component grid with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid structure for the underlying mesh.
Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo
Shriwise, Patrick C.; Davis, Andrew; Jacobson, Lucas J.; ...
2017-08-26
Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.
Fractal morphometry of cell complexity.
Losa, Gabriele A
2002-01-01
Irregularity and self-similarity under scale changes are the main attributes of the morphological complexity of both normal and abnormal cells and tissues. In other words, the shape of a self-similar object does not change when the scale of measurement changes, because each part of it looks similar to the original object. However, the size and geometrical parameters of an irregular object do differ when it is examined at increasing resolution, which reveals more details. Significant progress has been made over the past three decades in understanding how irregular shapes and structures in the physical and biological sciences can be analysed. Dominant influences have been the discovery of a new practical geometry of Nature, now known as fractal geometry, and the continuous improvements in computation capabilities. Unlike conventional Euclidean geometry, which was developed to describe regular and ideal geometrical shapes which are practically unknown in nature, fractal geometry can be used to measure the fractal dimension, contour length, surface area and other dimension parameters of almost all irregular and complex biological tissues. We have used selected examples to illustrate the application of the fractal principle to measuring irregular and complex membrane ultrastructures of cells at specific functional and pathological stage.
Electroencephalography in ellipsoidal geometry with fourth-order harmonics.
Alcocer-Sosa, M; Gutierrez, D
2016-08-01
We present a solution to the electroencephalographs (EEG) forward problem of computing the scalp electric potentials for the case when the head's geometry is modeled using a four-shell ellipsoidal geometry and the brain sources with an equivalent current dipole (ECD). The proposed solution includes terms up to the fourth-order ellipsoidal harmonics and we compare this new approximation against those that only considered up to second- and third-order harmonics. Our comparisons use as reference a solution in which a tessellated volume approximates the head and the forward problem is solved through the boundary element method (BEM). We also assess the solution to the inverse problem of estimating the magnitude of an ECD through different harmonic approximations. Our results show that the fourth-order solution provides a better estimate of the ECD in comparison to lesser order ones.
Holomorphic Hartree-Fock Theory: The Nature of Two-Electron Problems.
Burton, Hugh G A; Gross, Mark; Thom, Alex J W
2018-02-13
We explore the existence and behavior of holomorphic restricted Hartree-Fock (h-RHF) solutions for two-electron problems. Through algebraic geometry, the exact number of solutions with n basis functions is rigorously identified as 1 / 2 (3 n - 1), proving that states must exist for all molecular geometries. A detailed study on the h-RHF states of HZ (STO-3G) then demonstrates both the conservation of holomorphic solutions as geometry or atomic charges are varied and the emergence of complex h-RHF solutions at coalescence points. Using catastrophe theory, the nature of these coalescence points is described, highlighting the influence of molecular symmetry. The h-RHF states of HHeH 2+ and HHeH (STO-3G) are then compared, illustrating the isomorphism between systems with two electrons and two electron holes. Finally, we explore the h-RHF states of ethene (STO-3G) by considering the π electrons as a two-electron problem and employ NOCI to identify a crossing of the lowest energy singlet and triplet states at the perpendicular geometry.
The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations
NASA Astrophysics Data System (ADS)
Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.
2018-04-01
The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.
NASA Astrophysics Data System (ADS)
Streuber, Gregg Mitchell
Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.
Semantic trouble sources and their repair in conversations affected by Parkinson's disease
Saldert, Charlotta; Ferm, Ulrika; Bloch, Steven
2014-01-01
Background It is known that dysarthria arising from Parkinson's disease may affect intelligibility in conversational interaction. Research has also shown that Parkinson's disease may affect cognition and cause word-retrieval difficulties and pragmatic problems in the use of language. However, it is not known whether or how these problems become manifest in everyday conversations or how conversation partners handle such problems. Aims To describe the pragmatic problems related to the use of words that occur in everyday conversational interaction in dyads including an individual with Parkinson's disease, and to explore how interactants in conversation handle the problems to re-establish mutual understanding. Methods & Procedures Twelve video-recorded everyday conversations involving three couples where one of the individuals had Parkinson's disease were included in the study. All instances of other-initiated repair following a contribution from the people with Parkinson's disease were analysed. Those instances involving a trouble source relating to the use of words were analysed with a qualitative interaction analysis based on the principles of conversation analysis. Outcomes & Results In 70% of the instances of other-initiated repair the trouble source could be related to the semantic content produced by the individual with Parkinson's disease. The problematic contributions were typically characterized by more or less explicit symptoms of word search or use of atypical wording. The conversation partners completed the repair work collaboratively, but typically the non-impaired individual made a rephrasing or provided a suggestion for what the intended meaning had been. Conclusions & Implications In clinical work with people with Parkinson's disease and their conversation partners it is important to establish what type of trouble sources occur in conversations in a specific dyad. It may often be necessary to look beyond intelligibility and into aspects of pragmatics to understand more fully the impact of Parkinson's disease on everyday conversational interaction. PMID:24934292
ERIC Educational Resources Information Center
Voronina, Marianna V.; Tretyakova, Zlata O.
2017-01-01
The article considers the peculiarities of training foreign students subject "Descriptive geometry and Engineering Graphics" in a modern engineering university of Russia. The relevance of the problem conditioned by the fact that virtually there are no special studies of teaching Descriptive Geometry and Engineering Graphics in Russian…
Approaches to Drug Abuse Prevention
ERIC Educational Resources Information Center
Gordon, Paula D.
1971-01-01
This article concerns the drug abuse related definitions of the words education" and prevention" as they have come to be used today. The writer infers that the changing uses of these words reflects an increasingly more enlightened approach to ameliorating the problem of drug abuse. (Author)
Microcomputers and Preschoolers.
ERIC Educational Resources Information Center
Evans, Dina
Preschool children can benefit by working with microcomputers. Thinking skills are enhanced by software games that focus on logic, memory, problem solving, and pattern recognition. Counting, sequencing, and matching games develop mathematics skills, and word games focusing on basic letter symbol and word recognition develop language skills.…
Posture Affects How Robots and Infants Map Words to Objects
Morse, Anthony F.; Benitez, Viridian L.; Belpaeme, Tony; Cangelosi, Angelo; Smith, Linda B.
2015-01-01
For infants, the first problem in learning a word is to map the word to its referent; a second problem is to remember that mapping when the word and/or referent are again encountered. Recent infant studies suggest that spatial location plays a key role in how infants solve both problems. Here we provide a new theoretical model and new empirical evidence on how the body – and its momentary posture – may be central to these processes. The present study uses a name-object mapping task in which names are either encountered in the absence of their target (experiments 1–3, 6 & 7), or when their target is present but in a location previously associated with a foil (experiments 4, 5, 8 & 9). A humanoid robot model (experiments 1–5) is used to instantiate and test the hypothesis that body-centric spatial location, and thus the bodies’ momentary posture, is used to centrally bind the multimodal features of heard names and visual objects. The robot model is shown to replicate existing infant data and then to generate novel predictions, which are tested in new infant studies (experiments 6–9). Despite spatial location being task-irrelevant in this second set of experiments, infants use body-centric spatial contingency over temporal contingency to map the name to object. Both infants and the robot remember the name-object mapping even in new spatial locations. However, the robot model shows how this memory can emerge –not from separating bodily information from the word-object mapping as proposed in previous models of the role of space in word-object mapping – but through the body’s momentary disposition in space. PMID:25785834
A new magnetic reconnection paradigm: Stochastic plasmoid chains
NASA Astrophysics Data System (ADS)
Loureiro, Nuno
2015-11-01
Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.
Reilhac, Caroline; Jucla, Mélanie; Iannuzzi, Stéphanie; Valdois, Sylviane; Démonet, Jean-François
2012-01-01
The ability to identify letters and encode their position is a crucial step of the word recognition process. However and despite their word identification problem, the ability of dyslexic children to encode letter identity and letter-position within strings was not systematically investigated. This study aimed at filling this gap and further explored how letter identity and letter-position encoding is modulated by letter context in developmental dyslexia. For this purpose, a letter-string comparison task was administered to French dyslexic children and two chronological age (CA) and reading age (RA)-matched control groups. Children had to judge whether two successively and briefly presented four-letter strings were identical or different. Letter-position and letter identity were manipulated through the transposition (e.g., RTGM vs. RMGT) or substitution of two letters (e.g., TSHF vs. TGHD). Non-words, pseudo-words, and words were used as stimuli to investigate sub-lexical and lexical effects on letter encoding. Dyslexic children showed both substitution and transposition detection problems relative to CA-controls. A substitution advantage over transpositions was only found for words in dyslexic children whereas it extended to pseudo-words in RA-controls and to all type of items in CA-controls. Letters were better identified in the dyslexic group when belonging to orthographically familiar strings. Letter-position encoding was very impaired in dyslexic children who did not show any word context effect in contrast to CA-controls. Overall, the current findings point to a strong letter identity and letter-position encoding disorder in developmental dyslexia. PMID:22661961
Improving the strength of additively manufactured objects via modified interior structure
NASA Astrophysics Data System (ADS)
Al, Can Mert; Yaman, Ulas
2017-10-01
Additive manufacturing (AM), in other words 3D printing, is becoming more common because of its crucial advantages such as geometric complexity, functional interior structures, etc. over traditional manufacturing methods. Especially, Fused Filament Fabrication (FFF) 3D printing technology is frequently used because of the fact that desktop variants of these types of printers are highly appropriate for different fields and are improving rapidly. In spite of the fact that there are significant advantages of AM, the strength of the parts fabricated with AM is still a major problem especially when plastic materials, such as Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Nylon, etc., are utilized. In this study, an alternative method is proposed in which the strength of AM fabricated parts is improved employing direct slicing approach. Traditional Computer Aided Manufacturing (CAM) software of 3D printers takes only the geometry as an input in triangular mesh form (stereolithography, STL file) generated by Computer Aided Design software. This file format includes data only about the outer boundaries of the geometry. Interior of the artifacts are manufactured with homogeneous infill patterns, such as diagonal, honeycomb, linear, etc. according to the paths generated in CAM software. The developed method within this study provides a way to fabricate parts with heterogeneous infill patterns by utilizing the stress field data obtained from a Finite Element Analysis software, such as ABAQUS. According to the performed tensile tests, the strength of the test specimen is improved by about 45% compared to the conventional way of 3D printing.
Problem-Solving Support for English Language Learners
ERIC Educational Resources Information Center
Wiest, Lynda R.
2008-01-01
Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…
The Integrated Spelling Curriculum.
ERIC Educational Resources Information Center
Ediger, Marlow
The traditional spelling curriculum emphasized that pupils learn to spell a specific set of words through memorization. However, major problems existed pertaining to using that method of teaching. Pupils soon forgot the correct spelling of memorized words. Educational psychologists have long advocated that pupils perceive knowledge as being…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montoya, Joseph
Representing the Center on Nanostructuring for Efficient Energy Conversion (CNEEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of CNEEC is to understand how nanostructuring can enhance efficiency for energymore » conversion and solve fundamental cross-cutting problems in advanced energy conversion and storage systems.« less
ERIC Educational Resources Information Center
Zhang, Dake
2017-01-01
We examined the effectiveness of (a) a working memory (WM) training program and (b) a combination program involving both WM training and direct instruction for students with geometry difficulties (GD). Four students with GD participated. A multiple-baseline design across participants was employed. During the Phase 1, students received six sessions…
ERIC Educational Resources Information Center
Hollebrands, Karen F.; Conner, AnnaMarie; Smith, Ryan C.
2010-01-01
Prior research on students' uses of technology in the context of Euclidean geometry has suggested that it can be used to support students' development of formal justifications and proofs. This study examined the ways in which students used a dynamic geometry tool, NonEuclid, as they constructed arguments about geometric objects and relationships…
Background-independent condensed matter models for quantum gravity
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Markopoulou, Fotini
2011-09-01
A number of recent proposals on a quantum theory of gravity are based on the idea that spacetime geometry and gravity are derivative concepts and only apply at an approximate level. There are two fundamental challenges to any such approach. At the conceptual level, there is a clash between the 'timelessness' of general relativity and emergence. Secondly, the lack of a fundamental spacetime renders difficult the straightforward application of well-known methods of statistical physics to the problem. We recently initiated a study of such problems using spin systems based on the evolution of quantum networks with no a priori geometric notions as models for emergent geometry and gravity. In this paper, we review two such models. The first model is a model of emergent (flat) space and matter, and we show how to use methods from quantum information theory to derive features such as the speed of light from a non-geometric quantum system. The second model exhibits interacting matter and geometry, with the geometry defined by the behavior of matter. This model has primitive notions of gravitational attraction that we illustrate with a toy black hole, and exhibits entanglement between matter and geometry and thermalization of the quantum geometry.
Shifting senses in lexical semantic development
Rabagliati, Hugh; Marcus, Gary F.; Pylkkänen, Liina
2010-01-01
Most words are associated with multiple senses. A DVD can be round (when describing a disc), and a DVD can be an hour long (when describing a movie), and in each case DVD means something different. The possible senses of a word are often predictable, and also constrained, as words cannot take just any meaning: for example, although a movie can be an hour long, it cannot sensibly be described as round (unlike a DVD). Learning the scope and limits of word meaning is vital for the comprehension of natural language, but poses a potentially difficult learnability problem for children. By testing what senses children are willing to assign to a variety of words, we demonstrate that, in comprehension, the problem is solved using a productive learning strategy. Children are perfectly capable of assigning different senses to a word; indeed they are essentially adult-like at assigning licensed meanings. But difficulties arise in determining which senses are assignable: children systematically overestimate the possible senses of a word, allowing meanings that adults rule unlicensed (e.g., taking round movie to refer to a disc). By contrast, this strategy does not extend to production, in which children use licensed, but not unlicensed, senses. Children’s productive comprehension strategy suggests an early emerging facility for using context in sense resolution (a difficult task for natural language processing algorithms), but leaves an intriguing question as to the mechanisms children use to learn a restricted, adult-like set of senses. PMID:20638655
The instrumental genesis process in future primary teachers using Dynamic Geometry Software
NASA Astrophysics Data System (ADS)
Ruiz-López, Natalia
2018-05-01
This paper, which describes a study undertaken with pairs of future primary teachers using GeoGebra software to solve geometry problems, includes a brief literature review, the theoretical framework and methodology used. An analysis of the instrumental genesis process for a pair participating in the case study is also provided. This analysis addresses the techniques and types of dragging used, the obstacles to learning encountered, a description of the interaction between the pair and their interaction with the teacher, and the type of language used. Based on this analysis, possibilities and limitations of the instrumental genesis process are identified for the development of geometric competencies such as conjecture creation, property checking and problem researching. It is also suggested that the methodology used in the analysis of the problem solving process may be useful for those teachers and researchers who want to integrate Dynamic Geometry Software (DGS) in their classrooms.
Stationary metrics and optical Zermelo-Randers-Finsler geometry
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Herdeiro, C. A. R.; Warnick, C. M.; Werner, M. C.
2009-02-01
We consider a triality between the Zermelo navigation problem, the geodesic flow on a Finslerian geometry of Randers type, and spacetimes in one dimension higher admitting a timelike conformal Killing vector field. From the latter viewpoint, the data of the Zermelo problem are encoded in a (conformally) Painlevé-Gullstrand form of the spacetime metric, whereas the data of the Randers problem are encoded in a stationary generalization of the usual optical metric. We discuss how the spacetime viewpoint gives a simple and physical perspective on various issues, including how Finsler geometries with constant flag curvature always map to conformally flat spacetimes and that the Finsler condition maps to either a causality condition or it breaks down at an ergo surface in the spacetime picture. The gauge equivalence in this network of relations is considered as well as the connection to analogue models and the viewpoint of magnetic flows. We provide a variety of examples.
Clue Insensitivity in Remote Associates Test Problem Solving
ERIC Educational Resources Information Center
Smith, Steven M.; Sifonis, Cynthia M.; Angello, Genna
2012-01-01
Does spreading activation from incidentally encountered hints cause incubation effects? We used Remote Associates Test (RAT) problems to examine effects of incidental clues on impasse resolution. When solution words were seen incidentally 3-sec before initially unsolved problems were retested, more problems were resolved (Experiment 1). When…
Latest Highlights from our Direct Measurement Video Collection
NASA Astrophysics Data System (ADS)
Vonk, M.; Bohacek, P. H.
2014-12-01
Recent advances in technology have made videos much easier to produce, edit, store, transfer, and view. This has spawned an explosion in a production of a wide variety of different types of pedagogical videos. But with the exception of student-made videos (which are often of poor quality) almost all of the educational videos being produced are passive. No matter how compelling the content, students are expected to simply sit and watch them. Because we feel that being engaged and active are necessary components of student learning, we have been working to create a free online library of Direct Measurement Videos (DMV's). These videos are short high-quality videos of real events, shot in a way that allows students to make measurements directly from the video. Instead of handing students a word problem about a car skidding on ice, we actually show them the car skidding on ice. We then ask them to measure the important quantities, make calculations based on those measurements and solve for unknowns. DMV's are more interesting than their word problem equivalents and frequently inspire further questions about the physics of the situation or about the uncertainty of the measurement in ways that word problems almost never do. We feel that it is simply impossible to a video of a roller coaster or a rocket and then argue that word problems are better. In this talk I will highlight some new additions to our DMV collection. This work is supported by NSF TUES award #1245268
NASA Astrophysics Data System (ADS)
Prástaro, Agostino
2008-02-01
Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.
Stochastic Dynamics of Lexicon Learning in an Uncertain and Nonuniform World
NASA Astrophysics Data System (ADS)
Reisenauer, Rainer; Smith, Kenny; Blythe, Richard A.
2013-06-01
We study the time taken by a language learner to correctly identify the meaning of all words in a lexicon under conditions where many plausible meanings can be inferred whenever a word is uttered. We show that the most basic form of cross-situational learning—whereby information from multiple episodes is combined to eliminate incorrect meanings—can perform badly when words are learned independently and meanings are drawn from a nonuniform distribution. If learners further assume that no two words share a common meaning, we find a phase transition between a maximally efficient learning regime, where the learning time is reduced to the shortest it can possibly be, and a partially efficient regime where incorrect candidate meanings for words persist at late times. We obtain exact results for the word-learning process through an equivalence to a statistical mechanical problem of enumerating loops in the space of word-meaning mappings.
Visual attention based bag-of-words model for image classification
NASA Astrophysics Data System (ADS)
Wang, Qiwei; Wan, Shouhong; Yue, Lihua; Wang, Che
2014-04-01
Bag-of-words is a classical method for image classification. The core problem is how to count the frequency of the visual words and what visual words to select. In this paper, we propose a visual attention based bag-of-words model (VABOW model) for image classification task. The VABOW model utilizes visual attention method to generate a saliency map, and uses the saliency map as a weighted matrix to instruct the statistic process for the frequency of the visual words. On the other hand, the VABOW model combines shape, color and texture cues and uses L1 regularization logistic regression method to select the most relevant and most efficient features. We compare our approach with traditional bag-of-words based method on two datasets, and the result shows that our VABOW model outperforms the state-of-the-art method for image classification.
The representation of grammatical categories in the brain.
Shapiro, Kevin; Caramazza, Alfonso
2003-05-01
Language relies on the rule-based combination of words with different grammatical properties, such as nouns and verbs. Yet most research on the problem of word retrieval has focused on the production of concrete nouns, leaving open a crucial question: how is knowledge about different grammatical categories represented in the brain, and what components of the language production system make use of it? Drawing on evidence from neuropsychology, electrophysiology and neuroimaging, we argue that information about a word's grammatical category might be represented independently of its meaning at the levels of word form and morphological computation.
Geometric Reasoning about a Circle Problem
ERIC Educational Resources Information Center
Gonzalez, Gloriana; DeJarnette, Anna F.
2013-01-01
What does problem-based instruction do for students and teachers? The open-ended geometry problem presented in this article, along with examples of students' work on the problem, illustrates how problem-based instruction can help students develop their mathematical proficiency. Recent studies have shown that students who experience problem-based…
Detecting causality from online psychiatric texts using inter-sentential language patterns
2012-01-01
Background Online psychiatric texts are natural language texts expressing depressive problems, published by Internet users via community-based web services such as web forums, message boards and blogs. Understanding the cause-effect relations embedded in these psychiatric texts can provide insight into the authors’ problems, thus increasing the effectiveness of online psychiatric services. Methods Previous studies have proposed the use of word pairs extracted from a set of sentence pairs to identify cause-effect relations between sentences. A word pair is made up of two words, with one coming from the cause text span and the other from the effect text span. Analysis of the relationship between these words can be used to capture individual word associations between cause and effect sentences. For instance, (broke up, life) and (boyfriend, meaningless) are two word pairs extracted from the sentence pair: “I broke up with my boyfriend. Life is now meaningless to me”. The major limitation of word pairs is that individual words in sentences usually cannot reflect the exact meaning of the cause and effect events, and thus may produce semantically incomplete word pairs, as the previous examples show. Therefore, this study proposes the use of inter-sentential language patterns such as ≪broke up, boyfriend>,
Solving Tommy's Writing Problems.
ERIC Educational Resources Information Center
Burdman, Debra
1986-01-01
The article describes an approach by which word processing helps to solve some of the writing problems of learning disabled students. Aspects considered include prewriting, drafting, revising, and completing the story. (CL)
The Different Patterns of Gesture between Genders in Mathematical Problem Solving of Geometry
NASA Astrophysics Data System (ADS)
Harisman, Y.; Noto, M. S.; Bakar, M. T.; Amam, A.
2017-02-01
This article discusses about students’ gesture between genders in answering problems of geometry. Gesture aims to check students’ understanding which is undefined from their writings. This study is a qualitative research, there were seven questions given to two students of eight grade Junior High School who had the equal ability. The data of this study were collected from mathematical problem solving test, videoing students’ presentation, and interviewing students by asking questions to check their understandings in geometry problems, in this case the researchers would observe the students’ gesture. The result of this study revealed that there were patterns of gesture through students’ conversation and prosodic cues, such as tones, intonation, speech rate and pause. Female students tended to give indecisive gestures, for instance bowing, hesitating, embarrassing, nodding many times in shifting cognitive comprehension, forwarding their body and asking questions to the interviewer when they found tough questions. However, male students acted some gestures such as playing their fingers, focusing on questions, taking longer time to answer hard questions, staying calm in shifting cognitive comprehension. We suggest to observe more sample and focus on students’ gesture consistency in showing their understanding to solve the given problems.
IETI – Isogeometric Tearing and Interconnecting
Kleiss, Stefan K.; Pechstein, Clemens; Jüttler, Bert; Tomar, Satyendra
2012-01-01
Finite Element Tearing and Interconnecting (FETI) methods are a powerful approach to designing solvers for large-scale problems in computational mechanics. The numerical simulation problem is subdivided into a number of independent sub-problems, which are then coupled in appropriate ways. NURBS- (Non-Uniform Rational B-spline) based isogeometric analysis (IGA) applied to complex geometries requires to represent the computational domain as a collection of several NURBS geometries. Since there is a natural decomposition of the computational domain into several subdomains, NURBS-based IGA is particularly well suited for using FETI methods. This paper proposes the new IsogEometric Tearing and Interconnecting (IETI) method, which combines the advanced solver design of FETI with the exact geometry representation of IGA. We describe the IETI framework for two classes of simple model problems (Poisson and linearized elasticity) and discuss the coupling of the subdomains along interfaces (both for matching interfaces and for interfaces with T-joints, i.e. hanging nodes). Special attention is paid to the construction of a suitable preconditioner for the iterative linear solver used for the interface problem. We report several computational experiments to demonstrate the performance of the proposed IETI method. PMID:24511167
The M Word: Multicollinearity in Multiple Regression.
ERIC Educational Resources Information Center
Morrow-Howell, Nancy
1994-01-01
Notes that existence of substantial correlation between two or more independent variables creates problems of multicollinearity in multiple regression. Discusses multicollinearity problem in social work research in which independent variables are usually intercorrelated. Clarifies problems created by multicollinearity, explains detection of…
NASA Astrophysics Data System (ADS)
Kalatzis, Fanis G.; Papageorgiou, Dimitrios G.; Demetropoulos, Ioannis N.
2006-09-01
The Merlin/MCL optimization environment and the GAMESS-US package were combined so as to offer an extended and efficient quantum chemistry optimization system, capable of implementing complex optimization strategies for generic molecular modeling problems. A communication and data exchange interface was established between the two packages exploiting all Merlin features such as multiple optimizers, box constraints, user extensions and a high level programming language. An important feature of the interface is its ability to perform dimer computations by eliminating the basis set superposition error using the counterpoise (CP) method of Boys and Bernardi. Furthermore it offers CP-corrected geometry optimizations using analytic derivatives. The unified optimization environment was applied to construct portions of the intermolecular potential energy surface of the weakly bound H-bonded complex C 6H 6-H 2O by utilizing the high level Merlin Control Language. The H-bonded dimer HF-H 2O was also studied by CP-corrected geometry optimization. The ab initio electronic structure energies were calculated using the 6-31G ** basis set at the Restricted Hartree-Fock and second-order Moller-Plesset levels, while all geometry optimizations were carried out using a quasi-Newton algorithm provided by Merlin. Program summaryTitle of program: MERGAM Catalogue identifier:ADYB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYB_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: The program is designed for machines running the UNIX operating system. It has been tested on the following architectures: IA32 (Linux with gcc/g77 v.3.2.3), AMD64 (Linux with the Portland group compilers v.6.0), SUN64 (SunOS 5.8 with the Sun Workshop compilers v.5.2) and SGI64 (IRIX 6.5 with the MIPSpro compilers v.7.4) Installations: University of Ioannina, Greece Operating systems or monitors under which the program has been tested: UNIX Programming language used: ANSI C, ANSI Fortran-77 No. of lines in distributed program, including test data, etc.:11 282 No. of bytes in distributed program, including test data, etc.: 49 458 Distribution format: tar.gz Memory required to execute with typical data: Memory requirements mainly depend on the selection of a GAMESS-US basis set and the number of atoms No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: no Nature of physical problem: Multidimensional geometry optimization is of great importance in any ab initio calculation since it usually is one of the most CPU-intensive tasks, especially on large molecular systems. For example, the geometric and energetic description of van der Waals and weakly bound H-bonded complexes requires the construction of related important portions of the multidimensional intermolecular potential energy surface (IPES). So the various held views about the nature of these bonds can be quantitatively tested. Method of solution: The Merlin/MCL optimization environment was interconnected with the GAMESS-US package to facilitate geometry optimization in quantum chemistry problems. The important portions of the IPES require the capability to program optimization strategies. The Merlin/MCL environment was used for the implementation of such strategies. In this work, a CP-corrected geometry optimization was performed on the HF-H 2O complex and an MCL program was developed to study portions of the potential energy surface of the C 6H 6-H 2O complex. Restrictions on the complexity of the problem: The Merlin optimization environment and the GAMESS-US package must be installed. The MERGAM interface requires GAMESS-US input files that have been constructed in Cartesian coordinates. This restriction occurs from a design-time requirement to not allow reorientation of atomic coordinates; this rule holds always true when applying the COORD = UNIQUE keyword in a GAMESS-US input file. Typical running time: It depends on the size of the molecular system, the size of the basis set and the method of electron correlation. Execution of the test run took approximately 5 min on a 2.8 GHz Intel Pentium CPU.
Artifacts as Sources for Problem-Posing Activities
ERIC Educational Resources Information Center
Bonotto, Cinzia
2013-01-01
The problem-posing process represents one of the forms of authentic mathematical inquiry which, if suitably implemented in classroom activities, could move well beyond the limitations of word problems, at least as they are typically utilized. The two exploratory studies presented sought to investigate the impact of "problem-posing" activities when…
ERIC Educational Resources Information Center
Quinn, Diane M.; Spencer, Steven J.
2001-01-01
Investigated whether stereotype threat would depress college women's math performance. In one test, men outperformed women when solving word problems, though women performed equally when problems were converted into numerical equivalents. In another test, participants solved difficult problems in high or reduced stereotype threat conditions. Women…
Kindergarten Students Solving Mathematical Word Problems
ERIC Educational Resources Information Center
Johnson, Nickey Owen
2013-01-01
The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…
A Comparison of Two Mathematics Problem-Solving Strategies: Facilitate Algebra-Readiness
ERIC Educational Resources Information Center
Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tom, Kinsey; Whipple, Amanda; Si, Luo
2011-01-01
The authors compared a conceptual model-based problem-solving (COMPS) approach with a general heuristic instructional approach for teaching multiplication-division word-problem solving to elementary students with learning problems (LP). The results indicate that only the COMPS group significantly improved, from pretests to posttests, their…
ERIC Educational Resources Information Center
Santos-Trigo, Manuel
2004-01-01
A dynamic program for geometry called Cabri Geometry II is used to examine properties of figures like triangles and make connections with other mathematical ideas like ellipse. The technology tip includes directions for creating such a problem with technology and suggestions for exploring it.
Robot Geometry and the High School Curriculum.
ERIC Educational Resources Information Center
Meyer, Walter
1988-01-01
Description of the field of robotics and its possible use in high school computational geometry classes emphasizes motion planning exercises and computer graphics displays. Eleven geometrical problems based on robotics are presented along with the correct solutions and explanations. (LRW)
Multilinear Computing and Multilinear Algebraic Geometry
2016-08-10
landmark paper titled “Most tensor problems are NP-hard” (see [14] in Section 3) in the Journal of the ACM, the premier journal in Computer Science ...Higher-order cone programming,” Machine Learning Thematic Trimester, International Centre for Mathematics and Computer Science , Toulouse, France...geometry-and-data-analysis • 2014 SIMONS INSTITUTE WORKSHOP: Workshop on Tensors in Computer Science and Geometry, University of California, Berkeley, CA
Best Practices In Overset Grid Generation
NASA Technical Reports Server (NTRS)
Chan, William M.; Gomez, Reynaldo J., III; Rogers, Stuart E.; Buning, Pieter G.; Kwak, Dochan (Technical Monitor)
2002-01-01
Grid generation for overset grids on complex geometry can be divided into four main steps: geometry processing, surface grid generation, volume grid generation and domain connectivity. For each of these steps, the procedures currently practiced by experienced users are described. Typical problems encountered are also highlighted and discussed. Most of the guidelines are derived from experience on a variety of problems including space launch and return vehicles, subsonic transports with propulsion and high lift devices, supersonic vehicles, rotorcraft vehicles, and turbomachinery.
1986-12-01
poorly written problem statements. We decline to artificially create difficulties for experimentation. Others have encountered these issues and treated...you lose some of the weaning. The method also does not extend well to nonlinear or time-varying system (sometimes it can be don#. but it creates ...thereby introduced creates problems and solves nothing. For variable-geometry aircraft, some projects establish reference geometry values that change as
ERIC Educational Resources Information Center
National Pork Producers Council, Des Moines, IA.
Pork Puzzlers is a nutrition education activity booklet for elementary-level students. It includes word scrambles; quizzes with pictures that describe the Food Guide Pyramid; a nutrition word search; a mathematics problem that includes questions on pork; a maze that uses food clues; a letter decoding activity that focuses on a pork dinner; a meal…
Slot Machine Preferences of Pathological and Recreational Gamblers Are Verbally Constructed
ERIC Educational Resources Information Center
Dixon, Mark R.; Bihler, Holly L.; Nastally, Becky L.
2011-01-01
The current study attempted to alter preferences for concurrently available slot machines of equal payout through the development of equivalence classes and subsequent transfers of functions. Participants rated stimuli consisting of words thought to be associated with having a gambling problem (e.g., "desperation" and "debt"), words associated…
Don't Just Do the Math--Type It!
ERIC Educational Resources Information Center
Stephens, Greg
2016-01-01
Most word processors, including Google Docs™ and Microsoft® Word, include an equation editor. These are great tools for the occasional homework problem or project assignment. Getting the mathematics to display correctly means making decisions about exactly which elements of an expression go where. The feedback is immediate: Students can see…
Word Processing Curriculum Guide.
ERIC Educational Resources Information Center
Anderson, Marcia A.; Kusek, Robert W.
A combination of facts, examples, models, tools, and sources useful in developing and teaching word processing (WP) programs is provided in this guide. Eight sections are included. Sections 1 and 2 present introductory information on WP (e.g., history, five phases of WP, problems occurring in WP offices, factors of people, procedures, and…
Investigating Patterns of Errors for Specific Comprehension and Fluency Difficulties
ERIC Educational Resources Information Center
Koriakin, Taylor A.; Kaufman, Alan S.
2017-01-01
Although word reading has traditionally been viewed as a foundational skill for development of reading fluency and comprehension, some children demonstrate "specific" reading comprehension problems, in the context of intact word reading. The purpose of this study was to identify specific patterns of errors associated with reading…
ERIC Educational Resources Information Center
Thorne, Edward J., Ed.
1972-01-01
This special issue opens with an article by Franklyn S. Haiman, "The Fighting Word Doctrine: From Chaplinsky to Brown," in which he reviews the problem of the use of "fighting words" in public situations. He discusses this type of communication as one that borders individual and collective rights, and provides background information on significant…
Reading Coaching for Math Word Problems
ERIC Educational Resources Information Center
Edwards, Sharon A.; Maloy, Robert W.; Anderson, Gordon
2009-01-01
"Math is language, too," Phyllis and David Whitin (2000) remind everyone in their informative book about reading and writing in the mathematics classroom. This means that students in elementary school math classes are learning two distinct, yet related languages--one of numbers, the other of words. These languages of numbers and words…
Bilingual Medical Phrase Book (In English and Vietnamese).
ERIC Educational Resources Information Center
Thuy, Vuong G.
This guide offers Vietnamese refugees and immigrants with limited English proficiency a short-cut, word-for-word bilingual reference tool for dealing with medical problems and situations in English-language environments. Seven chapters deal with different issues of the medical encounter and five appendixes present specialized terms and…
Bilingual Medical Phrase Book (In English and Laotian).
ERIC Educational Resources Information Center
Thuy, Vuong G.
This phrase book offers Laotian refugees and immigrants with limited English proficiency a short-cut, word-for-word bilingual reference tool for dealing with medical problems and situations in English-language environments. Seven chapters deal with different issues of the medical encounter and five appendixes present specialized terms and…
Bilingual Medical Phrase Book (In English and Cambodian (Khmer)).
ERIC Educational Resources Information Center
Thuy, Vuong G.
This guide offers Cambodian refugees and immigrants with limited English proficiency a short-cut, word-for-word bilingual reference tool for dealing with medical problems and situations in English-language environments. Seven chapters deal with different issues of the medical encounter and five appendixes present specialized terms and…
Hilbert's sixth problem: between the foundations of geometry and the axiomatization of physics.
Corry, Leo
2018-04-28
The sixth of Hilbert's famous 1900 list of 23 problems was a programmatic call for the axiomatization of the physical sciences. It was naturally and organically rooted at the core of Hilbert's conception of what axiomatization is all about. In fact, the axiomatic method which he applied at the turn of the twentieth century in his famous work on the foundations of geometry originated in a preoccupation with foundational questions related with empirical science in general. Indeed, far from a purely formal conception, Hilbert counted geometry among the sciences with strong empirical content, closely related to other branches of physics and deserving a treatment similar to that reserved for the latter. In this treatment, the axiomatization project was meant to play, in his view, a crucial role. Curiously, and contrary to a once-prevalent view, from all the problems in the list, the sixth is the only one that continually engaged Hilbet's efforts over a very long period of time, at least between 1894 and 1932.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Hilbert's sixth problem: between the foundations of geometry and the axiomatization of physics
NASA Astrophysics Data System (ADS)
Corry, Leo
2018-04-01
The sixth of Hilbert's famous 1900 list of 23 problems was a programmatic call for the axiomatization of the physical sciences. It was naturally and organically rooted at the core of Hilbert's conception of what axiomatization is all about. In fact, the axiomatic method which he applied at the turn of the twentieth century in his famous work on the foundations of geometry originated in a preoccupation with foundational questions related with empirical science in general. Indeed, far from a purely formal conception, Hilbert counted geometry among the sciences with strong empirical content, closely related to other branches of physics and deserving a treatment similar to that reserved for the latter. In this treatment, the axiomatization project was meant to play, in his view, a crucial role. Curiously, and contrary to a once-prevalent view, from all the problems in the list, the sixth is the only one that continually engaged Hilbet's efforts over a very long period of time, at least between 1894 and 1932. This article is part of the theme issue `Hilbert's sixth problem'.
NASA Astrophysics Data System (ADS)
Wang, Yao; Yang, Zailin; Zhang, Jianwei; Yang, Yong
2017-10-01
Based on the governing equations and the equivalent models, we propose an equivalent transformation relationships between a plane wave in a one-dimensional medium and a spherical wave in globular geometry with radially inhomogeneous properties. These equivalent relationships can help us to obtain the analytical solutions of the elastodynamic issues in an inhomogeneous medium. The physical essence of the presented equivalent transformations is the equivalent relationships between the geometry and the material properties. It indicates that the spherical wave problem in globular geometry can be transformed into the plane wave problem in the bar with variable property fields, and its inverse transformation is valid as well. Four different examples of wave motion problems in the inhomogeneous media are solved based on the presented equivalent relationships. We obtain two basic analytical solution forms in Examples I and II, investigate the reflection behavior of inhomogeneous half-space in Example III, and exhibit a special inhomogeneity in Example IV, which can keep the traveling spherical wave in constant amplitude. This study implies that our idea makes solving the associated problem easier.
ERIC Educational Resources Information Center
Schukajlow, Stanislaw; Leiss, Dominik; Pekrun, Reinhard; Blum, Werner; Muller, Marcel; Messner, Rudolf
2012-01-01
In this study which was part of the DISUM-project, 224 ninth graders from 14 German classes from middle track schools (Realschule) were asked about their enjoyment, interest, value and self-efficacy expectations concerning three types of mathematical problems: intra-mathematical problems, word problems and modelling problems. Enjoyment, interest,…
ERIC Educational Resources Information Center
Feng, Chengde
1992-01-01
Fourteen mathematics problems from the 1987 Chinese Primary School Mathematics Examination for fifth and sixth grade students are presented. The word problems, accompanied by answers, involve algebra, division, ratios, areas, and other mathematical processes. (JDD)
Reassessing word frequency as a determinant of word recognition for skilled and unskilled readers
Kuperman, Victor; Van Dyke, Julie A.
2013-01-01
The importance of vocabulary in reading comprehension emphasizes the need to accurately assess an individual’s familiarity with words. The present article highlights problems with using occurrence counts in corpora as an index of word familiarity, especially when studying individuals varying in reading experience. We demonstrate via computational simulations and norming studies that corpus-based word frequencies systematically overestimate strengths of word representations, especially in the low-frequency range and in smaller-size vocabularies. Experience-driven differences in word familiarity prove to be faithfully captured by the subjective frequency ratings collected from responders at different experience levels. When matched on those levels, this lexical measure explains more variance than corpus-based frequencies in eye-movement and lexical decision latencies to English words, attested in populations with varied reading experience and skill. Furthermore, the use of subjective frequencies removes the widely reported (corpus) frequency-by-skill interaction, showing that more skilled readers are equally faster in processing any word than the less skilled readers, not disproportionally faster in processing lower-frequency words. This finding challenges the view that the more skilled an individual is in generic mechanisms of word processing the less reliant he/she will be on the actual lexical characteristics of that word. PMID:23339352
Geometry of Thin Nematic Elastomer Sheets
NASA Astrophysics Data System (ADS)
Aharoni, Hillel; Sharon, Eran; Kupferman, Raz
A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon heating. In this talk we describe the intrinsic geometry of such a sheet, and derive an expression for the metric induced by general smooth nematic director fields. Furthermore, we investigate the reverse problem of constructing a director field that induces a specified 2D geometry. We provide an explicit analytical recipe for constructing any surface of revolution using this method. We demonstrate how the design of an arbitrary 2D geometry is accessible using approximate numerical methods.
NASA Astrophysics Data System (ADS)
Ryan, Timothy James
The effects of multiple arrivals on the intelligibility of speech produced by live-sound reinforcement systems are examined. The intent is to determine if correlations exist between the manipulation of sound system optimization parameters and the subjective attribute speech intelligibility. Given the number, and wide range, of variables involved, this exploratory research project attempts to narrow the focus of further studies. Investigated variables are delay time between signals arriving from multiple elements of a loudspeaker array, array type and geometry and the two-way interactions of speech-to-noise ratio and array geometry with delay time. Intelligibility scores were obtained through subjective evaluation of binaural recordings, reproduced via headphone, using the Modified Rhyme Test. These word-score results are compared with objective measurements of Speech Transmission Index (STI). Results indicate that both variables, delay time and array geometry, have significant effects on intelligibility. Additionally, it is seen that all three of the possible two-way interactions have significant effects. Results further reveal that the STI measurement method overestimates the decrease in intelligibility due to short delay times between multiple arrivals.
Keyword Extraction from Multiple Words for Report Recommendations in Media Wiki
NASA Astrophysics Data System (ADS)
Elakiya, K.; Sahayadhas, Arun
2017-03-01
This paper addresses the problem of multiple words search, with the goal of using these multiple word search to retrieve, relevant wiki page which will be recommended to end user. However, the existing system provides a link to wiki page for only a single keyword only which is available in Wikipedia. Therefore it is difficult to get the correct result when search input has multiple keywords or a sentence. We have introduced a ‘FastStringSearch’ technique which will provide option for efficient search with multiple key words and which will increase the flexibility for the end user to get his expected content easily.
ERIC Educational Resources Information Center
Iiskala, Tuike; Vauras, Marja; Lehtinen, Erno; Salonen, Pekka
2011-01-01
This study investigated how metacognition appears as a socially shared phenomenon within collaborative mathematical word-problem solving processes of dyads of high-achieving pupils. Four dyads solved problems of different difficulty levels. The pupils were 10 years old. The problem-solving activities were videotaped and transcribed in terms of…
Eye-Tracking Study of Complexity in Gas Law Problems
ERIC Educational Resources Information Center
Tang, Hui; Pienta, Norbert
2012-01-01
This study, part of a series investigating students' use of online tools to assess problem solving, uses eye-tracking hardware and software to explore the effect of problem difficulty and cognitive processes when students solve gas law word problems. Eye movements are indices of cognition; eye-tracking data typically include the location,…
Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps
NASA Astrophysics Data System (ADS)
Melezhik, Vladimir S.
2018-02-01
We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.
Zhang, Dake; Wang, Qiu; Ding, Yi; Liu, Jeremy Jian
2014-01-01
According to the National Council of Teachers of Mathematics, geometry and spatial sense are fundamental components of mathematics learning. However, learning disabilities (LD) research has shown that many K-12 students encounter particular geometry difficulties (GD). This study examined the effect of an integrated object representation (IOR) accommodation on the test performance of students with GD compared to students without GD. Participants were 118 elementary students who took a researcher-developed geometry problem solving test under both a standard testing condition and an IOR accommodation condition. A total of 36 students who were classified with GD scored below 40% correct in the geometry problem solving test in the standard testing condition, and 82 students who were classified without GD scored equal to or above 40% correct in the same test and condition. All students were tested in both standard testing condition and IOR accommodation condition. The results from both ANOVA and regression discontinuity (RD) analyses suggested that students with GD benefited more than students without GD from the IOR accommodation. Implications of the study are discussed in terms of providing accommodations for students with mathematics learning difficulties and recommending RD design in LD research. © Hammill Institute on Disabilities 2013.
Multiple Fan-Beam Optical Tomography: Modelling Techniques
Rahim, Ruzairi Abdul; Chen, Leong Lai; San, Chan Kok; Rahiman, Mohd Hafiz Fazalul; Fea, Pang Jon
2009-01-01
This paper explains in detail the solution to the forward and inverse problem faced in this research. In the forward problem section, the projection geometry and the sensor modelling are discussed. The dimensions, distributions and arrangements of the optical fibre sensors are determined based on the real hardware constructed and these are explained in the projection geometry section. The general idea in sensor modelling is to simulate an artificial environment, but with similar system properties, to predict the actual sensor values for various flow models in the hardware system. The sensitivity maps produced from the solution of the forward problems are important in reconstructing the tomographic image. PMID:22291523
Individual differences in solving arithmetic word problems
2013-01-01
Background With the present functional magnetic resonance imaging (fMRI) study at 3 T, we investigated the neural correlates of visualization and verbalization during arithmetic word problem solving. In the domain of arithmetic, visualization might mean to visualize numbers and (intermediate) results while calculating, and verbalization might mean that numbers and (intermediate) results are verbally repeated during calculation. If the brain areas involved in number processing are domain-specific as assumed, that is, that the left angular gyrus (AG) shows an affinity to the verbal domain, and that the left and right intraparietal sulcus (IPS) shows an affinity to the visual domain, the activation of these areas should show a dependency on an individual’s cognitive style. Methods 36 healthy young adults participated in the fMRI study. The participants habitual use of visualization and verbalization during solving arithmetic word problems was assessed with a short self-report assessment. During the fMRI measurement, arithmetic word problems that had to be solved by the participants were presented in an event-related design. Results We found that visualizers showed greater brain activation in brain areas involved in visual processing, and that verbalizers showed greater brain activation within the left angular gyrus. Conclusions Our results indicate that cognitive styles or preferences play an important role in understanding brain activation. Our results confirm, that strong visualizers use mental imagery more strongly than weak visualizers during calculation. Moreover, our results suggest that the left AG shows a specific affinity to the verbal domain and subserves number processing in a modality-specific way. PMID:23883107
Designing an Earthquake-Resistant Building
ERIC Educational Resources Information Center
English, Lyn D.; King, Donna T.
2016-01-01
How do cross-bracing, geometry, and base isolation help buildings withstand earthquakes? These important structural design features involve fundamental geometry that elementary school students can readily model and understand. The problem activity, Designing an Earthquake-Resistant Building, was undertaken by several classes of sixth- grade…
ERIC Educational Resources Information Center
Daniels, David S.
1993-01-01
Discusses the problem of finding the amount of fence it would require for the outfield fence of a baseball field of given dimensions. Presents different solution methods for each of the levels from grades 9-12. The different methods incorporate geometry, trigonometry, analytic geometry, and calculus. (MDH)
ERIC Educational Resources Information Center
Eperson, D. B.
1987-01-01
Presents five puzzles or problems that may be used for mathematics enrichment. Ideas include magic squares, tests for divisibility, geometry, palindromic numbers, and a jigsaw puzzle. Solutions are included. (PK)
Factors predicting recall of mathematics terms by deaf students: implications for teaching.
Lang, Harry; Pagliaro, Claudia
2007-01-01
In this study of deaf high school students, imagery and familiarity were found to be the best predictors of geometry word recall, whereas neither concreteness nor signability of the terms was a significant predictor variable. Recall of high imagery terms was significantly better than for low imagery terms, and the same result was found for high- over low-familiarity and signability. Concrete terms were recalled significantly better than abstract terms. Geometry terms that could be represented with single signs were recalled significantly better than those that are usually fingerspelled or those represented by compound signs. Teachers with degrees and/or certification in mathematics had significantly higher self-ratings for the strongest predictor variables, imagery (visualization), and familiarity, as compared with those without such formal training. Based on these findings, implications for mathematics instruction, teacher education, and research are provided.
Auditory Processing Disorder (For Parents)
... or other speech-language difficulties? Are verbal (word) math problems difficult for your child? Is your child ... inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...
Klichowski, Michal; Króliczak, Gregory
2017-06-01
Potential links between language and numbers and the laterality of symbolic number representations in the brain are still debated. Furthermore, reports on bilingual individuals indicate that the language-number interrelationships might be quite complex. Therefore, we carried out a visual half-field (VHF) and dichotic listening (DL) study with action words and different forms of symbolic numbers used as stimuli to test the laterality of word and number processing in single-, dual-language and mixed -task and language- contexts. Experiment 1 (VHF) showed a significant right visual field/left hemispheric advantage in response accuracy for action word, as compared to any form of symbolic number processing. Experiment 2 (DL) revealed a substantially reversed effect - a significant right ear/left hemisphere advantage for arithmetic operations as compared to action word processing, and in response times in single- and dual-language contexts for number vs. action words. All these effects were language independent. Notably, for within-task response accuracy compared across modalities significant differences were found in all studied contexts. Thus, our results go counter to findings showing that action-relevant concepts and words, as well as number words are represented/processed primarily in the left hemisphere. Instead, we found that in the auditory context, following substantial engagement of working memory (here: by arithmetic operations), there is a subsequent functional reorganization of processing single stimuli, whether verbs or numbers. This reorganization - their weakened laterality - at least for response accuracy is not exclusive to processing of numbers, but the number of items to be processed. For response times, except for unpredictable tasks in mixed contexts, the "number problem" is more apparent. These outcomes are highly relevant to difficulties that simultaneous translators encounter when dealing with lengthy auditory material in which single items such as number words (and possibly other types of key words) need to be emphasized. Our results may also shed a new light on the "mathematical savant problem". Copyright © 2017 Elsevier Ltd. All rights reserved.
Concordancing for Schools: Problems and Potential.
ERIC Educational Resources Information Center
Pickard, Valerie; And Others
The value and role of concordancers (simple computer programs that can quickly analyze electronic texts to find occurrences of a given word, part of a word, or phrase and display it within its immediate context) in secondary school English-as-a-Second-Language (ESL) teaching are examined. First, their use in higher education is discussed,…
Perceptions of Ability to Program or to Use a Word Processor.
ERIC Educational Resources Information Center
Colley, Ann; And Others
1996-01-01
This study examined 117 undergraduates' perceptions of ability at computer programming and word processing. In particular, it rated the importance of prior experience factors, keyboarding skills, and personal attributes such as enjoyment of problem solving. Those were discovered, in general, to be more important than formal training or aptitude in…
A Method for Predicting Manning Factors in Post Year 2000 Ships
1975-12-01
the automated condition. ij ;: Related to the problem of model validity is the consideration of the accuracy of the predictions. Linus Pauling ...described his use of the word "stochastic" in the April 1955 American Scientist. According to Pauling , the word is derived from a Greek stem which
Teamwork in Secular and Faith-Based Organizations
ERIC Educational Resources Information Center
Grant, Arnold R.
2007-01-01
The word "teamwork" has become a favorite of corporate leaders; however, many employees view "teamwork" as a word devoid of meaning. Part of the problem is that "teamwork" has an entirely different meaning to people at various levels in an organization, and this prevents individuals and different departments within a company from moving forward…
Readability: Theory and Practice.
ERIC Educational Resources Information Center
Wells, Barron; Spinks, Nelda
1991-01-01
Investigates readability levels of correspondence sent out by Gulf Coast area business offices. Finds that a large majority of the correspondence sent out from the offices under study is written at too high a reading level. Finds also that the greatest problem lies in syllable intensity--the use of "big" words where everyday words would have…
ERIC Educational Resources Information Center
Perea, Manuel; Lupker, Stephen J.
2004-01-01
Nonwords created by transposing two "adjacent" letters (i.e., transposed-letter (TL) nonwords like "jugde") are very effective at activating the lexical representation of their base words. This fact poses problems for most computational models of word recognition (e.g., the interactive-activation model and its extensions), which assume that exact…
International Quidditch: Using Cultural Translation Exercises to Teach Word Choice and Audience
ERIC Educational Resources Information Center
Ruwe, Donelle
2013-01-01
The American edition of "Harry Potter and the Sorcerer's Stone" has significant changes from the original British version, and every word of a Harry Potter book in translation derives from a translator's decision-making process. Focusing students on British-to-American cultural translation problems in the Harry Potter series encourages…
Math in Plain English: Literacy Strategies for the Mathematics Classroom
ERIC Educational Resources Information Center
Benjamin, Amy
2011-01-01
Do word problems and math vocabulary confuse students in your mathematics classes? Do simple keywords like "value" and "portion" seem to mislead them? Many words that students already know can have a different meaning in mathematics. To grasp that difference, students need to connect English literacy skills to math. Successful students speak,…
Linguistic Skills Involved in Learning to Spell: An Australian Study
ERIC Educational Resources Information Center
Daffern, Tessa
2017-01-01
Being able to accurately spell in Standard English requires efficient coordination of multiple knowledge sources. Therefore, spelling is a word-formation problem-solving process that can be difficult to learn. The present study uses Triple Word Form Theory as a conceptual framework to analyse Standard English spelling performance levels of…
Improving Elementary Students' Spelling Achievement Using High-Frequency Words.
ERIC Educational Resources Information Center
Durnil, Christina; And Others
An action research study detailed a program for improving spelling achievement across the curriculum. The targeted population is composed of second and third grade students from a growing, middle class community located in a suburb of Chicago, Illinois. The problem of misspelled words in the students' writing was documented through students'…
ERIC Educational Resources Information Center
Lin, Alex R.; Lawrence, Joshua F.; Snow, Catherine E.; Taylor, Karen S.
2016-01-01
Communicative self-efficacy serves as an important link between discussing controversial issues and civic engagement because confidence in one's discourse skills is important to managing conflicting perspectives and developing solutions to community-based problems. Freely available to schools, "Word Generation" is a cross-content…
Differences Arising from Language in Perceiving Some Terms in Physics Education
ERIC Educational Resources Information Center
Unsal, Yasin
2010-01-01
In several resources, especially in textbooks, there are two or more alternatives for terms. These terms generally come from foreign words and alternative equivalences of these words. The aim of the study is to investigate whether this situation causes students problems in perceiving the terms; in which alternatives, the conceptual perception is…
Writing Dear Abby: An Interim Report to Teachers of Spelling.
ERIC Educational Resources Information Center
Allen, Virginia French
New spellers, adults just beginning to learn to read and write, face daunting problems with English vocabulary. Teachers use varying approaches to help these students, including published lists of Words Most Frequently Used. This paper provides an inventory of words used in letters to syndicated columnist "Dear Abby" as published in a…
Environmental Terms--The Basics.
ERIC Educational Resources Information Center
Lee County School District, Ft. Myers, FL. Dept. of Environmental Education and Instructional Development Services.
One of the problems of the English language is that individual words can often convey such a breadth of meaning that people often find themselves speaking past each other. The jargon of the environment is not immune. The words included in this publication are some of those more basic to the understanding of the environment. Definitions offered…
Prediction of Word Recognition in the First Half of Grade 1
ERIC Educational Resources Information Center
Snel, M. J.; Aarnoutse, C. A. J.; Terwel, J.; van Leeuwe, J. F. J.; van der Veld, W. M.
2016-01-01
Early detection of reading problems is important to prevent an enduring lag in reading skills. We studied the relationship between speed of word recognition (after six months of grade 1 education) and four kindergarten pre-literacy skills: letter knowledge, phonological awareness and naming speed for both digits and letters. Our sample consisted…
GeoSegmenter: A statistically learned Chinese word segmenter for the geoscience domain
NASA Astrophysics Data System (ADS)
Huang, Lan; Du, Youfu; Chen, Gongyang
2015-03-01
Unlike English, the Chinese language has no space between words. Segmenting texts into words, known as the Chinese word segmentation (CWS) problem, thus becomes a fundamental issue for processing Chinese documents and the first step in many text mining applications, including information retrieval, machine translation and knowledge acquisition. However, for the geoscience subject domain, the CWS problem remains unsolved. Although a generic segmenter can be applied to process geoscience documents, they lack the domain specific knowledge and consequently their segmentation accuracy drops dramatically. This motivated us to develop a segmenter specifically for the geoscience subject domain: the GeoSegmenter. We first proposed a generic two-step framework for domain specific CWS. Following this framework, we built GeoSegmenter using conditional random fields, a principled statistical framework for sequence learning. Specifically, GeoSegmenter first identifies general terms by using a generic baseline segmenter. Then it recognises geoscience terms by learning and applying a model that can transform the initial segmentation into the goal segmentation. Empirical experimental results on geoscience documents and benchmark datasets showed that GeoSegmenter could effectively recognise both geoscience terms and general terms.
Written Language Ability in Mandarin-Speaking Children with Cochlear Implants.
Wu, Che-Ming; Ko, Hui-Chen; Chen, Yen-An; Tsou, Yung-Ting; Chao, Wei-Chieh
2015-01-01
Objectives. To examine narrative writing in cochlear implant (CI) children and understand the factors associated with unfavorable outcomes. Materials and Methods. Forty-five CI children in grades 2-6 participated in this study. They received CIs at 4.1 ± 2.1 years of age and had used them for 6.5 ± 2.7 years. A story-writing test was conducted and scored on 4 subscales: Total Number of Words, Words per Sentence, Morphosyntax, and Semantics. Scores more than 1.5 SD lower than the mean of the normal-hearing normative sample were considered problematic. Language and speech skills were examined. Results. Significantly more implanted students were problematic on "Total Number of Words" (p < 0.001), "Words per Sentence" (p = 0.049), and "Semantics" (p < 0.001). Poorer receptive language and auditory performance were independently associated with problematic "Total Number of Words" (R (2) = 0.489) and "Semantics" (R (2) = 0.213), respectively. "Semantics" problem was more common in lower graders (grades 2-4) than in higher graders (grades 5-6; p = 0.016). Conclusion. Implanted children tend to write stories that are shorter, worse-organized, and without a plot, while formulating morphosyntactically correct sentences. Special attention is required on their auditory and language performances, which could lead to written language problems.
ERIC Educational Resources Information Center
Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven
2011-01-01
In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…
An enquiry into the process of categorization of pictures and words.
Viswanathan, Madhubalan; Childers, Terry L
2003-02-01
This paper reports a series of experiments conducted to study the categorization of pictures and words. Whereas some studies reported in the past have found a picture advantage in categorization, other studies have yielded no differences between pictures and words. This paper used an experimental paradigm designed to overcome some methodological problems to examine picture-word categorization. The results of one experiment were consistent with an advantage for pictures in categorization. To identify the source of the picture advantage in categorization, two more experiments were conducted. Findings suggest that semantic relatedness may play an important role in the categorization of both pictures and words. We explain these findings by suggesting that pictures simultaneously access both their concept and visually salient features whereas words may initially access their concept and may subsequently activate features. Therefore, pictures have an advantage in categorization by offering multiple routes to semantic processing.
Yeung, Pui-Sze; Ho, Connie Suk-Han; Chan, David Wai-Ock; Chung, Kevin Kien-Hoa
2014-05-01
To identify the indicators of persistent reading difficulties among Chinese readers in early elementary grades, the performance of three groups of Chinese children with different reading trajectories ('persistent poor word readers', 'improved poor word readers' and 'skilled word readers') in reading-related measures was analysed in a 3-year longitudinal study. The three groups were classified according to their performance in a standardized Chinese word reading test in Grade 1 and Grade 4. Results of analysis of variance and logistic regression on the reading-related measures revealed that rapid naming and syntactic skills were important indicators of early word reading difficulty. Syntactic skills and morphological awareness were possible markers of persistent reading problems. Chinese persistent poor readers did not differ significantly from skilled readers on the measures of phonological skills. Copyright © 2014 John Wiley & Sons, Ltd.
North American Veterinary Licensing Examination pacing study.
Subhiyah, Raja G; Boyce, John R
2010-01-01
The National Board of Veterinary Medical Examiners was interested in the possible effects of word count on the outcomes of the North American Veterinary Licensing Examination. In this study, the authors investigated the effects of increasing word count on the pacing of examinees during each section of the examination and on the performance of examinees on the items. Specifically, the authors analyzed the effect of item word count on the average time spent on each item within a section of the examination, the average number of items omitted at the end of a section, and the average difficulty of items as a function of presentation order. The average word count per item increased from 2001 to 2008. As expected, there was a relationship between word count and time spent on the item. No significant relationship was found between word count and item difficulty, and an analysis of omitted items and pacing patterns showed no indication of overall pacing problems.
Life on the Edge of Chaos: Orbital Mechanics and Symplectic Integration
NASA Astrophysics Data System (ADS)
Newman, William I.; Hyman, James M.
1998-09-01
Symplectic mapping techniques have become very popular among celestial mechanicians and molecular dynamicists. The word "symplectic" was coined by Hermann Weyl (1939), exploiting the Greek root for a word meaning "complex," to describe a Lie group with special geometric properties. A symplectic integration method is one whose time-derivative satisfies Hamilton's equations of motion (Goldstein, 1980). When due care is paid to the standard computational triad of consistency, accuracy, and stability, a numerical method that is also symplectic offers some potential advantages. Varadarajan (1974) at UCLA was the first to formally explore, for a very restrictive class of problems, the geometric implications of symplectic splittings through the use of Lie series and group representations. Over the years, however, a "mythology" has emerged regarding the nature of symplectic mappings and what features are preserved. Some of these myths have already been shattered by the computational mathematics community. These results, together with new ones we present here for the first time, show where important pitfalls and misconceptions reside. These misconceptions include that: (a) symplectic maps preserve conserved quantities like the energy; (b) symplectic maps are equivalent to the exact computation of the trajectory of a nearby, time-independent Hamiltonian; (c) complicated splitting methods (i.e., "maps in composition") are not symplectic; (d) symplectic maps preserve the geometry associated with separatrices and homoclinic points; and (e) symplectic maps possess artificial resonances at triple and quadruple frequencies. We verify, nevertheless, that using symplectic methods together with traditional safeguards, e.g. convergence and scaling checks using reduced step sizes for integration schemes of sufficient order, can provide an important exploratory and development tool for Solar System applications.
Ogawa, Shino; Shibasaki, Masahiro; Isomura, Tomoko; Masataka, Nobuo
2016-01-01
In orthographic reading, the transposed-letter effect (TLE) is the perception of a transposed-letter position word such as “cholocate” as the correct word “chocolate.” Although previous studies on dyslexic children using alphabetic languages have reported such orthographic reading deficits, the extent of orthographic reading impairment in dyslexic Japanese children has remained unknown. This study examined the TLE in dyslexic Japanese children using the color-word Stroop paradigm comprising congruent and incongruent Japanese hiragana words with correct and transposed-letter positions. We found that typically developed children exhibited Stroop effects in Japanese hiragana words with both correct and transposed-letter positions, thus indicating the presence of TLE. In contrast, dyslexic children indicated Stroop effects in correct letter positions in Japanese words but not in transposed, which indicated an absence of the TLE. These results suggest that dyslexic Japanese children, similar to dyslexic children using alphabetic languages, may also have a problem with orthographic reading. PMID:27303331
Ogawa, Shino; Shibasaki, Masahiro; Isomura, Tomoko; Masataka, Nobuo
2016-01-01
In orthographic reading, the transposed-letter effect (TLE) is the perception of a transposed-letter position word such as "cholocate" as the correct word "chocolate." Although previous studies on dyslexic children using alphabetic languages have reported such orthographic reading deficits, the extent of orthographic reading impairment in dyslexic Japanese children has remained unknown. This study examined the TLE in dyslexic Japanese children using the color-word Stroop paradigm comprising congruent and incongruent Japanese hiragana words with correct and transposed-letter positions. We found that typically developed children exhibited Stroop effects in Japanese hiragana words with both correct and transposed-letter positions, thus indicating the presence of TLE. In contrast, dyslexic children indicated Stroop effects in correct letter positions in Japanese words but not in transposed, which indicated an absence of the TLE. These results suggest that dyslexic Japanese children, similar to dyslexic children using alphabetic languages, may also have a problem with orthographic reading.
ERIC Educational Resources Information Center
Contreras, José N.
2013-01-01
This paper discusses a classroom experience in which a group of prospective secondary mathematics teachers were asked to create, cooperatively (in class) and individually, problems related to Viviani's problem using a problem-posing framework. When appropriate, students used Sketchpad to explore the problem to better understand its attributes…
Intellectual Abilities That Discriminate Good and Poor Problem Solvers.
ERIC Educational Resources Information Center
Meyer, Ruth Ann
1981-01-01
This study compared good and poor fourth-grade problem solvers on a battery of 19 "reference" tests for verbal, induction, numerical, word fluency, memory, perceptual speed, and simple visualization abilities. Results suggest verbal, numerical, and especially induction abilities are important to successful mathematical problem solving.…
Reading-Enhanced Word Problem Solving: A Theoretical Model
ERIC Educational Resources Information Center
Capraro, Robert M.; Capraro, Mary Margaret; Rupley, William H.
2012-01-01
There is a reciprocal relationship between mathematics and reading cognition. Metacognitive training within reading-enhanced problem solving should facilitate students developing an awareness of what good readers do when reading for meaning in solving mathematical problems enabling them to apply these strategies. The constructs for each cognitive…
Severity of Vision Loss Interacts With Word-Specific Features to Impact Out-Loud Reading in Glaucoma
Mathews, Priya M.; Rubin, Gary S.; McCloskey, Michael; Salek, Sherveen; Ramulu, Pradeep Y.
2015-01-01
Purpose. To assess the impact of glaucoma-related vision loss on measures of out-loud reading, including time to say individual words, interval time between consecutive words, lexical errors, skipped words, and repetitions. Methods. Glaucoma subjects (n = 63) with bilateral visual field loss and glaucoma suspect controls (n = 57) were recorded while reading a standardized passage out loud. A masked evaluator determined the start and end of each recorded word and identified reading errors. Results. Glaucoma subjects demonstrated longer durations to recite individual words (265 vs. 243 ms, P < 0.001), longer intervals between words (154 vs. 124 ms, P < 0.001), and longer word/post-word interval complexes (the time spanned by the word and the interval following the word; 419 vs. 367 ms, P < 0.001) than controls. In multivariable analyses, each 0.1 decrement in log contrast sensitivity (logCS) was associated with a 15.0 ms longer word/post-interval complex (95% confidence interval [CI] = 9.6–20.4; P < 0.001). Contrast sensitivity was found to significantly interact with word length, word frequency, and word location at the end of a line with regards to word/post-word interval complex duration (P < 0.05 for all). Glaucoma severity was also associated with more lexical errors (Odds ratio = 1.20 for every 0.1 logCS decrement; 95% CI = 1.02–1.39, P < 0.05), but not with more skipped or repeated words. Conclusions. Glaucoma patients with greater vision loss make more lexical errors, are slower in reciting longer and less frequently used words, and more slowly transition to new lines of text. These problem areas may require special attention when designing methods to rehabilitate reading in patients with glaucoma. PMID:25737150
Recognizing Spoken Words: The Neighborhood Activation Model
Luce, Paul A.; Pisoni, David B.
2012-01-01
Objective A fundamental problem in the study of human spoken word recognition concerns the structural relations among the sound patterns of words in memory and the effects these relations have on spoken word recognition. In the present investigation, computational and experimental methods were employed to address a number of fundamental issues related to the representation and structural organization of spoken words in the mental lexicon and to lay the groundwork for a model of spoken word recognition. Design Using a computerized lexicon consisting of transcriptions of 20,000 words, similarity neighborhoods for each of the transcriptions were computed. Among the variables of interest in the computation of the similarity neighborhoods were: 1) the number of words occurring in a neighborhood, 2) the degree of phonetic similarity among the words, and 3) the frequencies of occurrence of the words in the language. The effects of these variables on auditory word recognition were examined in a series of behavioral experiments employing three experimental paradigms: perceptual identification of words in noise, auditory lexical decision, and auditory word naming. Results The results of each of these experiments demonstrated that the number and nature of words in a similarity neighborhood affect the speed and accuracy of word recognition. A neighborhood probability rule was developed that adequately predicted identification performance. This rule, based on Luce's (1959) choice rule, combines stimulus word intelligibility, neighborhood confusability, and frequency into a single expression. Based on this rule, a model of auditory word recognition, the neighborhood activation model, was proposed. This model describes the effects of similarity neighborhood structure on the process of discriminating among the acoustic-phonetic representations of words in memory. The results of these experiments have important implications for current conceptions of auditory word recognition in normal and hearing impaired populations of children and adults. PMID:9504270
Numerical grid generation techniques. [conference
NASA Technical Reports Server (NTRS)
1980-01-01
The state of the art in topology and flow geometry is presented. Solution techniques for partial differential equations are reviewed and included developments in coordinate transformations, conformal mapping, and invariant imbeddings. Applications of these techniques in fluid mechanics, flow geometry, boundary value problems, and fluidics are presented.
Implementation of problem-based learning in geometry lessons
NASA Astrophysics Data System (ADS)
Ahamad, S. N. S. H.; Li, H.-C.; Shahrill, M.; Prahmana, R. C. I.
2017-12-01
The aim of this study is twofold. Firstly, it aims to examine the effects of the Problem-Based Learning (PBL) approach on students’ performance in the learning of geometry. Secondly, it seeks to gain insights from the students regarding the implementation of PBL in geometry lessons. The participants were 22 students from one Year 10 class in a co-educational secondary school in Brunei Darussalam. A mixed method design was employed with data collected from the pre-, post- and retention tests, and interviews. The findings from this study revealed positive influences on students’ performance in learning geometry as gain and retention of knowledge was observed. Meanwhile, mixed responses from the interviews implied that in terms of 1) learning attitudes, students favoured the idea of independent learning but some critiqued that the process of PBL might be time-consuming; 2) learning difficulties, some students struggled in assimilating information leading to poor decision- making; and 3) knowledge and skills, some students believed to have nurtured some skills such as communication and research skills.
Internal process: what is abstraction and distortion process?
NASA Astrophysics Data System (ADS)
Fiantika, F. R.; Budayasa, I. K.; Lukito, A.
2018-03-01
Geometry is one of the branch of mathematics that plays a major role in the development of science and technology. Thus, knowing the geometry concept is needed for students from their early basic level of thinking. A preliminary study showed that the elementary students have difficulty in perceiving parallelogram shape in a 2-dimention of a cube drawing as a square shape. This difficulty makes the students can not solve geometrical problems correctly. This problem is related to the internal thinking process in geometry. We conducted the exploration of students’ internal thinking processes in geometry particularly in distinguishing the square and parallelogram shape. How the students process their internal thinking through distortion and abstraction is the main aim of this study. Analysis of the geometrical test and deep interview are used in this study to obtain the data. The result of this study is there are two types of distortion and abstraction respectively in which the student used in their internal thinking processes.
Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza
2014-03-01
This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.
A Character Level Based and Word Level Based Approach for Chinese-Vietnamese Machine Translation.
Tran, Phuoc; Dinh, Dien; Nguyen, Hien T
2016-01-01
Chinese and Vietnamese have the same isolated language; that is, the words are not delimited by spaces. In machine translation, word segmentation is often done first when translating from Chinese or Vietnamese into different languages (typically English) and vice versa. However, it is a matter for consideration that words may or may not be segmented when translating between two languages in which spaces are not used between words, such as Chinese and Vietnamese. Since Chinese-Vietnamese is a low-resource language pair, the sparse data problem is evident in the translation system of this language pair. Therefore, while translating, whether it should be segmented or not becomes more important. In this paper, we propose a new method for translating Chinese to Vietnamese based on a combination of the advantages of character level and word level translation. In addition, a hybrid approach that combines statistics and rules is used to translate on the word level. And at the character level, a statistical translation is used. The experimental results showed that our method improved the performance of machine translation over that of character or word level translation.
Slusser, Emily; Ditta, Annie; Sarnecka, Barbara
2013-10-01
The present study asks when young children understand that number words quantify over sets of discrete individuals. For this study, 2- to 4-year-old children were asked to extend the number word five or six either to a cup containing discrete objects (e.g., blocks) or to a cup containing a continuous substance (e.g., water). In Experiment 1, only children who knew the exact meanings of the words one, two and three extended higher number words (five or six) to sets of discrete objects. In Experiment 2, children who only knew the exact meaning of one extended higher number words to discrete objects under the right conditions (i.e., when the problem was first presented with the number words one and two). These results show that children have some understanding that number words pertain to discrete quantification from very early on, but that this knowledge becomes more robust as children learn the exact, cardinal meanings of individual number words. Copyright © 2013 Elsevier B.V. All rights reserved.
Roberts, Nicola J; Ghiassi, Ramesh; Partridge, Martyn R
2008-01-01
If patients are to participate fully in their care and in the management of a long term condition such as chronic obstructive pulmonary disease, good communication is essential. However, not all patients are able to use the written word and we need to be aware of the size of this problem and its implications for the way in which we give information and conduct medical consultations. The impact of health literacy on outcomes can be considerable and improvements can be made by being aware of the problem, offering information in several different forms, and by reinforcing the spoken word with pictorial images. PMID:19281068
Glossary on the environmental impact of a nuclear war. Technical note
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verstraete, M.M.
1986-02-01
The glossary defines a number of words, expressions, and acronyms used in the description of the impact of nuclear war on the environment, and associated issues. Selected additional words related to the problems of armaments, disarmament, and nuclear war in general were also added for convenience, although terms and expressions specifically related to the medical aspects of the problem were not included. The glossary is an enlarged and updated version of the glossary that was published as part of the SCOPE-Enuwar study on the same subject, and published by Wiley (Pittock et al., 1986).
Apollo experience report: Voice communications techniques and performance
NASA Technical Reports Server (NTRS)
Dabbs, J. H.; Schmidt, O. L.
1972-01-01
The primary performance requirement of the spaceborne Apollo voice communications system is percent word intelligibility, which is related to other link/channel parameters. The effect of percent word intelligibility on voice channel design and a description of the verification procedures are included. Development and testing performance problems and the techniques used to solve the problems are also discussed. Voice communications performance requirements should be comprehensive and verified easily; the total system must be considered in component design, and the necessity of voice processing and the associated effect on noise, distortion, and cross talk should be examined carefully.
Are Middle School Mathematics Teachers Able to Solve Word Problems without Using Variable?
ERIC Educational Resources Information Center
Gökkurt Özdemir, Burçin; Erdem, Emrullah; Örnek, Tugba; Soylu, Yasin
2018-01-01
Many people consider problem solving as a complex process in which variables such as "x," "y" are used. Problems may not be solved by only using "variable." Problem solving can be rationalized and made easier using practical strategies. When especially the development of children at younger ages is considered, it is…
Gender Differences in Solution of Algebraic Word Problems Containing Irrelevant Information.
ERIC Educational Resources Information Center
Low, Renae; Over, Ray
1993-01-01
Female tenth graders (n=217) were less likely than male tenth graders (n=219) to identify missing or irrelevant information in algebra problems. Female eleventh graders (n=234) were less likely than male eleventh graders (n=287) to solve problems with irrelevant information. Results indicate sex differences in knowledge of problem structure. (SLD)
History and Evolution of Concepts in Physics
NASA Astrophysics Data System (ADS)
Varvoglis, Harry
The history of any discipline is always based on written texts. In this way, to restrict ourselves to texts of Antiquity, the history of the Jewish people is based on the books of the Old Testament, the history of the Persian Wars on the books by Herodotus and the history of the Peloponnesian War on the books by Thucydides. Even the history of the Trojan War is based on Homer's written work, although this was based, in turn, on earlier oral traditions of the Greeks of Homer's time. This rule, of course, cannot find an exemption in the history of physics. This is the main reason why the history of physics, and hence the evolution of concepts in this science, necessarily starts from the ancient Greeks. It is certain that other people of historical times were also involved in scientific activities, such as the Babylonians, who developed astronomy, and the Egyptians, who developed geometry. But their aim was to solve practical problems of their everyday life and not to understand nature and its laws. The geometry of the ancient Egyptians was developed for the purpose of redistributing land after the annual flooding of Nile, while Babylonian astronomy was limited to the simple recording of astronomical observations, with a few surviving examples of predictions of future events. Instead, the interpretation of nature and its laws, in both these nations, was the responsibility of priests and kings. In other words, the interpretation of nature for them was not a result of rational thinking; it was based on truth by revelation. The "truth" was revealed to rulers, nobles and priests, and accepted, without questioning, by the rest of the people. This truth was closely related to the religion of each nation.
Arabic handwritten: pre-processing and segmentation
NASA Astrophysics Data System (ADS)
Maliki, Makki; Jassim, Sabah; Al-Jawad, Naseer; Sellahewa, Harin
2012-06-01
This paper is concerned with pre-processing and segmentation tasks that influence the performance of Optical Character Recognition (OCR) systems and handwritten/printed text recognition. In Arabic, these tasks are adversely effected by the fact that many words are made up of sub-words, with many sub-words there associated one or more diacritics that are not connected to the sub-word's body; there could be multiple instances of sub-words overlap. To overcome these problems we investigate and develop segmentation techniques that first segment a document into sub-words, link the diacritics with their sub-words, and removes possible overlapping between words and sub-words. We shall also investigate two approaches for pre-processing tasks to estimate sub-words baseline, and to determine parameters that yield appropriate slope correction, slant removal. We shall investigate the use of linear regression on sub-words pixels to determine their central x and y coordinates, as well as their high density part. We also develop a new incremental rotation procedure to be performed on sub-words that determines the best rotation angle needed to realign baselines. We shall demonstrate the benefits of these proposals by conducting extensive experiments on publicly available databases and in-house created databases. These algorithms help improve character segmentation accuracy by transforming handwritten Arabic text into a form that could benefit from analysis of printed text.
Observational Word Learning: Beyond Propose-But-Verify and Associative Bean Counting.
Roembke, Tanja; McMurray, Bob
2016-04-01
Learning new words is difficult. In any naming situation, there are multiple possible interpretations of a novel word. Recent approaches suggest that learners may solve this problem by tracking co-occurrence statistics between words and referents across multiple naming situations (e.g. Yu & Smith, 2007), overcoming the ambiguity in any one situation. Yet, there remains debate around the underlying mechanisms. We conducted two experiments in which learners acquired eight word-object mappings using cross-situational statistics while eye-movements were tracked. These addressed four unresolved questions regarding the learning mechanism. First, eye-movements during learning showed evidence that listeners maintain multiple hypotheses for a given word and bring them all to bear in the moment of naming. Second, trial-by-trial analyses of accuracy suggested that listeners accumulate continuous statistics about word/object mappings, over and above prior hypotheses they have about a word. Third, consistent, probabilistic context can impede learning, as false associations between words and highly co-occurring referents are formed. Finally, a number of factors not previously considered in prior analysis impact observational word learning: knowledge of the foils, spatial consistency of the target object, and the number of trials between presentations of the same word. This evidence suggests that observational word learning may derive from a combination of gradual statistical or associative learning mechanisms and more rapid real-time processes such as competition, mutual exclusivity and even inference or hypothesis testing.
Managing search complexity in linguistic geometry.
Stilman, B
1997-01-01
This paper is a new step in the development of linguistic geometry. This formal theory is intended to discover and generalize the inner properties of human expert heuristics, which have been successful in a certain class of complex control systems, and apply them to different systems. In this paper, we investigate heuristics extracted in the form of hierarchical networks of planning paths of autonomous agents. Employing linguistic geometry tools the dynamic hierarchy of networks is represented as a hierarchy of formal attribute languages. The main ideas of this methodology are shown in the paper on two pilot examples of the solution of complex optimization problems. The first example is a problem of strategic planning for the air combat, in which concurrent actions of four vehicles are simulated as serial interleaving moves. The second example is a problem of strategic planning for the space comb of eight autonomous vehicles (with interleaving moves) that requires generation of the search tree of the depth 25 with the branching factor 30. This is beyond the capabilities of modern and conceivable future computers (employing conventional approaches). In both examples the linguistic geometry tools showed deep and highly selective searches in comparison with conventional search algorithms. For the first example a sketch of the proof of optimality of the solution is considered.
Middle School Students' Reasoning in Nonlinear Proportional Problems in Geometry
ERIC Educational Resources Information Center
Ayan, Rukiye; Isiksal Bostan, Mine
2018-01-01
In this study, we investigate sixth, seventh, and eighth grade students' achievement in nonlinear (quadratic or cubic) proportional problems regarding length, area, and volume of enlarged figures. In addition, we examine students' solution strategies for the problems and obstacles that prevent students from answering the problems correctly by…
Exemplar-Based Image Inpainting Using a Modified Priority Definition.
Deng, Liang-Jian; Huang, Ting-Zhu; Zhao, Xi-Le
2015-01-01
Exemplar-based algorithms are a popular technique for image inpainting. They mainly have two important phases: deciding the filling-in order and selecting good exemplars. Traditional exemplar-based algorithms are to search suitable patches from source regions to fill in the missing parts, but they have to face a problem: improper selection of exemplars. To improve the problem, we introduce an independent strategy through investigating the process of patches propagation in this paper. We first define a new separated priority definition to propagate geometry and then synthesize image textures, aiming to well recover image geometry and textures. In addition, an automatic algorithm is designed to estimate steps for the new separated priority definition. Comparing with some competitive approaches, the new priority definition can recover image geometry and textures well.
Exemplar-Based Image Inpainting Using a Modified Priority Definition
Deng, Liang-Jian; Huang, Ting-Zhu; Zhao, Xi-Le
2015-01-01
Exemplar-based algorithms are a popular technique for image inpainting. They mainly have two important phases: deciding the filling-in order and selecting good exemplars. Traditional exemplar-based algorithms are to search suitable patches from source regions to fill in the missing parts, but they have to face a problem: improper selection of exemplars. To improve the problem, we introduce an independent strategy through investigating the process of patches propagation in this paper. We first define a new separated priority definition to propagate geometry and then synthesize image textures, aiming to well recover image geometry and textures. In addition, an automatic algorithm is designed to estimate steps for the new separated priority definition. Comparing with some competitive approaches, the new priority definition can recover image geometry and textures well. PMID:26492491
Word-level recognition of multifont Arabic text using a feature vector matching approach
NASA Astrophysics Data System (ADS)
Erlandson, Erik J.; Trenkle, John M.; Vogt, Robert C., III
1996-03-01
Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. An alternative approach is to recognize text imagery at the word level, without analyzing individual characters. This approach avoids the problem of individual character segmentation, and can overcome local errors in character recognition. A word-level recognition system for machine-printed Arabic text has been implemented. Arabic is a script language, and is therefore difficult to segment at the character level. Character segmentation has been avoided by recognizing text imagery of complete words. The Arabic recognition system computes a vector of image-morphological features on a query word image. This vector is matched against a precomputed database of vectors from a lexicon of Arabic words. Vectors from the database with the highest match score are returned as hypotheses for the unknown image. Several feature vectors may be stored for each word in the database. Database feature vectors generated using multiple fonts and noise models allow the system to be tuned to its input stream. Used in conjunction with database pruning techniques, this Arabic recognition system has obtained promising word recognition rates on low-quality multifont text imagery.
Reading vocabulary in children with and without hearing loss: the roles of task and word type.
Coppens, Karien M; Tellings, Agnes; Verhoeven, Ludo; Schreuder, Robert
2013-04-01
To address the problem of low reading comprehension scores among children with hearing impairment, it is necessary to have a better understanding of their reading vocabulary. In this study, the authors investigated whether task and word type differentiate the reading vocabulary knowledge of children with and without severe hearing loss. Seventy-two children with hearing loss and 72 children with normal hearing performed a lexical and a use decision task. Both tasks contained the same 180 words divided over 7 clusters, each cluster containing words with a similar pattern of scores on 8 word properties (word class, frequency, morphological family size, length, age of acquisition, mode of acquisition, imageability, and familiarity). Whereas the children with normal hearing scored better on the 2 tasks than the children with hearing loss, the size of the difference varied depending on the type of task and word. Performance differences between the 2 groups increased as words and tasks became more complex. Despite delays, children with hearing loss showed a similar pattern of vocabulary acquisition as their peers with normal hearing. For the most precise assessment of reading vocabulary possible, a range of tasks and word types should be used.
The Transition from Animal to Linguistic Communication.
Smit, Harry
Darwin's theory predicts that linguistic behavior gradually evolved out of animal forms of communication (signaling). However, this prediction is confronted by the conceptual problem that there is an essential difference between signaling and linguistic behavior: using words is a normative practice. It is argued that we can resolve this problem if we (1) note that language evolution is the outcome of an evolutionary transition, and (2) observe that the use of words evolves during ontogenesis out of babbling. It is discussed that language evolved as the result of an expansion of the vocalizing powers of our ancestors. This involved an increase in the volitional control of our speech apparatus (leading to the ability to produce new combinations of vowels and consonants), but also the evolution of socially guided learning. It resulted in unique human abilities, namely doing things with words and later reasoning and giving reasons.
Is Word-Problem Solving a Form of Text Comprehension?
Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.
2015-01-01
This study’s hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of the 2nd grade, children (n = 206; on average, 7 years, 6 months) were assessed on general language comprehension, working memory, nonlinguistic reasoning, processing speed (a control variable), and foundational skill (arithmetic for WPs; word reading for text comprehension). In spring, they were assessed on WP-specific language comprehension, WPs, and text comprehension. Path analytic mediation analysis indicated that effects of general language comprehension on text comprehension were entirely direct, whereas effects of general language comprehension on WPs were partially mediated by WP-specific language. By contrast, effects of working memory and reasoning operated in parallel ways for both outcomes. PMID:25866461
Percha, Bethany; Altman, Russ B
2013-01-01
The biomedical literature presents a uniquely challenging text mining problem. Sentences are long and complex, the subject matter is highly specialized with a distinct vocabulary, and producing annotated training data for this domain is time consuming and expensive. In this environment, unsupervised text mining methods that do not rely on annotated training data are valuable. Here we investigate the use of random indexing, an automated method for producing vector-space semantic representations of words from large, unlabeled corpora, to address the problem of term normalization in sentences describing drugs and genes. We show that random indexing produces similarity scores that capture some of the structure of PHARE, a manually curated ontology of pharmacogenomics concepts. We further show that random indexing can be used to identify likely word candidates for inclusion in the ontology, and can help localize these new labels among classes and roles within the ontology.
Percha, Bethany; Altman, Russ B.
2013-01-01
The biomedical literature presents a uniquely challenging text mining problem. Sentences are long and complex, the subject matter is highly specialized with a distinct vocabulary, and producing annotated training data for this domain is time consuming and expensive. In this environment, unsupervised text mining methods that do not rely on annotated training data are valuable. Here we investigate the use of random indexing, an automated method for producing vector-space semantic representations of words from large, unlabeled corpora, to address the problem of term normalization in sentences describing drugs and genes. We show that random indexing produces similarity scores that capture some of the structure of PHARE, a manually curated ontology of pharmacogenomics concepts. We further show that random indexing can be used to identify likely word candidates for inclusion in the ontology, and can help localize these new labels among classes and roles within the ontology. PMID:24551397
Gustafson, Stefan; Ferreira, Janna; Rönnberg, Jerker
2007-08-01
In a longitudinal intervention study, Swedish reading disabled children in grades 2-3 received either a phonological (n = 41) or an orthographic (n = 39) training program. Both programs were computerized and interventions took place in ordinary school settings with trained special instruction teachers. Two comparison groups, ordinary special instruction and normal readers, were also included in the study. Results showed strong average training effects on text reading and general word decoding for both phonological and orthographic training, but not significantly higher improvements than for the comparison groups. The main research finding was a double dissociation: children with pronounced phonological problems improved their general word decoding skill more from phonological than from orthographic training, whereas the opposite was observed for children with pronounced orthographic problems. Thus, in this population of children, training should focus on children's relative weakness rather than their relative strength in word decoding. Copyright (c) 2007 John Wiley & Sons, Ltd.
The Process of Probability Problem Solving: Use of External Visual Representations
ERIC Educational Resources Information Center
Zahner, Doris; Corter, James E.
2010-01-01
We investigate the role of external inscriptions, particularly those of a spatial or visual nature, in the solution of probability word problems. We define a taxonomy of external visual representations used in probability problem solving that includes "pictures," "spatial reorganization of the given information," "outcome listings," "contingency…
Problem-Solving: Scaling the "Brick Wall"
ERIC Educational Resources Information Center
Benson, Dave
2011-01-01
Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…
Minimalism as a Guiding Principle: Linking Mathematical Learning to Everyday Knowledge
ERIC Educational Resources Information Center
Inoue, Noriyuki
2008-01-01
Studies report that students often fail to consider familiar aspects of reality in solving mathematical word problems. This study explored how different features of mathematical problems influence the way that undergraduate students employ realistic considerations in mathematical problem solving. Incorporating familiar contents in the word…
Working Memory Components and Problem-Solving Accuracy: Are There Multiple Pathways?
ERIC Educational Resources Information Center
Swanson, H. Lee; Fung, Wenson
2016-01-01
This study determined the working memory (WM) components (executive, phonological short-term memory [STM], and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy in elementary schoolchildren (N = 392). The battery of tests administered to assess mediators between WM and problem-solving included measures of…
Problems with Generalising: Pythagoras in N Dimensions
ERIC Educational Resources Information Center
Foster, Colin
2013-01-01
Pythagoras' theorem in two and three dimensions appears in General Mathematics, Units 1-2, section 6 (Geometry and trigonometry: Shape and measurement) in the Victorian Certificate of Education Mathematics Study Design (Victorian Curriculum Assessment Authority, 2010). It also comes in Further Mathematics, Units 3-4 (Applications: Geometry and…
Zack, Martin; Woodford, Tracy M; Tremblay, Anne M; Steinberg, Lindsay; Zawertailo, Laurie A; Busto, Usoa E
2011-01-01
Stress, cues, and pharmacological priming are linked with relapse to addictive behavior. Increased salience and decreased inhibitory control are thought to mediate the effects of relapse-related stimuli. However, the functional relationship between these two processes is unclear. To address this issue, a modified Stop Signal Task was employed, which used Alcohol, Neutral, and Non-Words as Go stimuli, and lexical decision as the Go response. Subjects were 38 male problem drinkers (mean Alcohol Dependence Scale (ADS) score: 18.0). Uncontrollable noise (∼ 10 min at 110 dB) was the stressor; nonalcoholic placebo beer (P-Beer) was the cue manipulation, and alcohol (0.7 g/kg), the pharmacological prime. Half the sample received alcohol, and half P-Beer. Stress and beverage (test drink vs soft drink) were manipulated within subjects on two sessions, with half the sample receiving active manipulations together and half receiving them separately. Go response time (RT) and Stop Signal RT (SSRT) were slower to Alcohol than Neutral words. Stress augmented this bias. Alcohol and P-Beer impaired overall SSRT. Stress impaired neither overall SSRT nor Go RT. SSRT to Neutral words and Non-Words correlated inversely with Go RT to Alcohol and Neutral words, and Non-Words. ADS correlated directly with SSRT to Alcohol words. A resource allocation account was proposed, whereby diversion of limited resources to salient cues effectively yoked otherwise independent Go and Stop processes. Disturbances of prefrontal norepinephrine and dopamine were cited as possibly accounting for these effects. Treatments that optimize prefrontal catecholamine transmission may deter relapse by reducing disinhibitory effects of salient eliciting stimuli.
Zack, Martin; Woodford, Tracy M; Tremblay, Anne M; Steinberg, Lindsay; Zawertailo, Laurie A; Busto, Usoa E
2011-01-01
Stress, cues, and pharmacological priming are linked with relapse to addictive behavior. Increased salience and decreased inhibitory control are thought to mediate the effects of relapse-related stimuli. However, the functional relationship between these two processes is unclear. To address this issue, a modified Stop Signal Task was employed, which used Alcohol, Neutral, and Non-Words as Go stimuli, and lexical decision as the Go response. Subjects were 38 male problem drinkers (mean Alcohol Dependence Scale (ADS) score: 18.0). Uncontrollable noise (∼10 min at 110 dB) was the stressor; nonalcoholic placebo beer (P-Beer) was the cue manipulation, and alcohol (0.7 g/kg), the pharmacological prime. Half the sample received alcohol, and half P-Beer. Stress and beverage (test drink vs soft drink) were manipulated within subjects on two sessions, with half the sample receiving active manipulations together and half receiving them separately. Go response time (RT) and Stop Signal RT (SSRT) were slower to Alcohol than Neutral words. Stress augmented this bias. Alcohol and P-Beer impaired overall SSRT. Stress impaired neither overall SSRT nor Go RT. SSRT to Neutral words and Non-Words correlated inversely with Go RT to Alcohol and Neutral words, and Non-Words. ADS correlated directly with SSRT to Alcohol words. A resource allocation account was proposed, whereby diversion of limited resources to salient cues effectively yoked otherwise independent Go and Stop processes. Disturbances of prefrontal norepinephrine and dopamine were cited as possibly accounting for these effects. Treatments that optimize prefrontal catecholamine transmission may deter relapse by reducing disinhibitory effects of salient eliciting stimuli. PMID:20927046
Loran-C digital word generator for use with a KIM-1 microprocessor system
NASA Technical Reports Server (NTRS)
Nickum, J. D.
1977-01-01
The problem of translating the time of occurrence of received Loran-C pulses into a time, referenced to a particular period of occurrence is addressed and applied to the design of a digital word generator for a Loran-C sensor processor package. The digital information from this word generator is processed in a KIM-1 microprocessor system which is based on the MOS 6502 CPU. This final system will consist of a complete time difference sensor processor for determining position information using Loran-C charts. The system consists of the KIM-1 microprocessor module, a 4K RAM memory board, a user interface, and the Loran-C word generator.
ERIC Educational Resources Information Center
Schrauf, Robert W.; Sanchez, Julia
2004-01-01
The "working emotion vocabulary" typically shows a preponderance of words for negative emotions (50%) over positive (30%) and neutral (20%) emotions. The theory of affect-as-information suggests that negative emotions signal problems or threat in the environment and are accompanied by detailed and systematic cognitive processing, while…
ERIC Educational Resources Information Center
Christie, Kathy; Rose, Stephanie
2012-01-01
Reading words and developing larger vocabularies are critical parts of reading proficiency, but these checkpoints do not have significance until young students grasp the meaning behind words. While teachers and the school culture can improve early reading proficiency, legislatures and state education agencies can support such efforts by…
Common Expositional Problems in Students' Papers and Theses
ERIC Educational Resources Information Center
Colburn, Forrest D.; Uphoff, Norman
2012-01-01
Words should be chosen and used carefully so that they convey the meaning or meanings that you intend--and do not convey any unintended or double meanings. Writing should leave little ambiguity or uncertainty about what you are referring to--unless some purposeful ambiguity is desired. Sometimes words that are abstract or superficial may be chosen…
ERIC Educational Resources Information Center
Rasanen, Okko
2011-01-01
Word segmentation from continuous speech is a difficult task that is faced by human infants when they start to learn their native language. Several studies indicate that infants might use several different cues to solve this problem, including intonation, linguistic stress, and transitional probabilities between subsequent speech sounds. In this…
ERIC Educational Resources Information Center
Booker, Queen Esther
2009-01-01
An approach used to tackle the problem of helping online students find the classes they want and need is a filtering technique called "social information filtering," a general approach to personalized information filtering. Social information filtering essentially automates the process of "word-of-mouth" recommendations: items are recommended to a…
Arabic Language Modeling with Stem-Derived Morphemes for Automatic Speech Recognition
ERIC Educational Resources Information Center
Heintz, Ilana
2010-01-01
The goal of this dissertation is to introduce a method for deriving morphemes from Arabic words using stem patterns, a feature of Arabic morphology. The motivations are three-fold: modeling with morphemes rather than words should help address the out-of-vocabulary problem; working with stem patterns should prove to be a cross-dialectally valid…
The Impact of Context and Word Type on Students' Maze Task Accuracy
ERIC Educational Resources Information Center
January, Stacy-Ann A.; Ardoin, Scott P.
2012-01-01
Despite evidence that the maze is a reliable measure of reading comprehension, existing research suggests potential problems with the manner in which maze probes are developed. Specifically, research suggests students may be able to respond accurately to a large portion of target words without having to comprehend what they are reading. The…
On the Awareness of English Polysemous Words by Arabic-Speaking EFL Learners
ERIC Educational Resources Information Center
Alnamer, Sulafah Abdul Salam
2017-01-01
This study measures the extent to which Arabic-speaking EFL learners are aware of polysemy in English. It also investigates whether the English proficiency level of Arabic-speaking EFL learners plays a role in their ability to distinguish between the various meanings of English polysemous words, and whether they face problems when they encounter…
Some Applications of Linguistic Concepts to the Teaching of Freshman Composition.
ERIC Educational Resources Information Center
Maimon, Elaine P.
The problems which freshmen exhibit in using the written language extend beyond difficulties with mechanics to handicaps in using words to formulate and develop concepts. A linguistic approach to teaching freshman composition involves recognizing every linguistic act as creative and a word as having a history as well as a variety of meanings. In…
ERIC Educational Resources Information Center
Davault, Julius M., III.
2009-01-01
One of the problems associated with automatic thesaurus construction is with determining the semantic relationship between word pairs. Quasi-synonyms provide a type of equivalence relationship: words are similar only for purposes of information retrieval. Determining such relationships in a thesaurus is hard to achieve automatically. The term…
ERIC Educational Resources Information Center
Canobi, Katherine H.; Bethune, Narelle E.
2008-01-01
Three studies addressed children's arithmetic. First, 50 3- to 5-year-olds judged physical demonstrations of addition, subtraction and inversion, with and without number words. Second, 20 3- to 4-year-olds made equivalence judgments of additions and subtractions. Third, 60 4- to 6-year-olds solved addition, subtraction and inversion problems that…
ERIC Educational Resources Information Center
Dereli-Iman, Esra
2013-01-01
Social Problem Solving for Child Scale is frequently used to determine behavioral problems of children with their own word and to identify ways of conflict encountered in daily life, and interpersonal relationships in abroad. The primary purpose of this study was to adapt the Wally Child Social Problem-Solving Detective Game Test. In order to…
ERIC Educational Resources Information Center
Hoogland, Kees; Pepin, Birgit; de Koning, Jaap; Bakker, Arthur; Gravemeijer, Koeno
2018-01-01
This article reports on a "post hoc" study using a randomised controlled trial with 31,842 students in the Netherlands and an instrument consisting of 21 paired problems. The trial showed a variability in the differences of students' results in solving contextual mathematical problems with either a descriptive or a depictive…
Fast immersed interface Poisson solver for 3D unbounded problems around arbitrary geometries
NASA Astrophysics Data System (ADS)
Gillis, T.; Winckelmans, G.; Chatelain, P.
2018-02-01
We present a fast and efficient Fourier-based solver for the Poisson problem around an arbitrary geometry in an unbounded 3D domain. This solver merges two rewarding approaches, the lattice Green's function method and the immersed interface method, using the Sherman-Morrison-Woodbury decomposition formula. The method is intended to be second order up to the boundary. This is verified on two potential flow benchmarks. We also further analyse the iterative process and the convergence behavior of the proposed algorithm. The method is applicable to a wide range of problems involving a Poisson equation around inner bodies, which goes well beyond the present validation on potential flows.
Conformal mapping and bound states in bent waveguides
NASA Astrophysics Data System (ADS)
Sadurní, E.; Schleich, W. P.
2010-12-01
Is it possible to trap a quantum particle in an open geometry? In this work we deal with the boundary value problem of the stationary Schroedinger (or Helmholtz) equation within a waveguide with straight segments and a rectangular bending. The problem can be reduced to a one-dimensional matrix Schroedinger equation using two descriptions: oblique modes and conformal coordinates. We use a corner-corrected WKB formalism to find the energies of the one-dimensional problem. It is shown that the presence of bound states is an effect due to the boundary alone, with no classical counterpart for this geometry. The conformal description proves to be simpler, as the coupling of transversal modes is not essential in this case.
Complex word reading in Dutch deaf children and adults.
van Hoogmoed, Anne H; Knoors, Harry; Schreuder, Robert; Verhoeven, Ludo
2013-03-01
Children who are deaf are often delayed in reading comprehension. This delay could be due to problems in morphological processing during word reading. In this study, we investigated whether 6th grade deaf children and adults are delayed in comparison to their hearing peers in reading complex derivational words and compounds compared to monomorphemic words. The results show that deaf children are delayed in reading both derivational words and compounds as compared to hearing children, while both deaf and hearing adults performed equally well on a lexical decision task. However, deaf adults generally showed slower reaction times than hearing adults. For both deaf and hearing children, derivational words were more difficult than compounds, as reflected in hearing children's slower reaction times and in deaf children's lower accuracy scores. This finding likely reflects deaf children's lack of familiarity with the meaning of the bound morphemes attached to the stems in derivational words. Therefore, it might be beneficial to teach deaf children the meaning of bound morphemes and to train them to use morphology in word reading. Moreover, these findings imply that it is important to focus on both monomorphemic and polymorphemic words when assessing word reading ability in deaf children. Copyright © 2012 Elsevier Ltd. All rights reserved.
The role of reference in cross-situational word learning.
Wang, Felix Hao; Mintz, Toben H
2018-01-01
Word learning involves massive ambiguity, since in a particular encounter with a novel word, there are an unlimited number of potential referents. One proposal for how learners surmount the problem of ambiguity is that learners use cross-situational statistics to constrain the ambiguity: When a word and its referent co-occur across multiple situations, learners will associate the word with the correct referent. Yu and Smith (2007) propose that these co-occurrence statistics are sufficient for word-to-referent mapping. Alternative accounts hold that co-occurrence statistics alone are insufficient to support learning, and that learners are further guided by knowledge that words are referential (e.g., Waxman & Gelman, 2009). However, no behavioral word learning studies we are aware of explicitly manipulate subjects' prior assumptions about the role of the words in the experiments in order to test the influence of these assumptions. In this study, we directly test whether, when faced with referential ambiguity, co-occurrence statistics are sufficient for word-to-referent mappings in adult word-learners. Across a series of cross-situational learning experiments, we varied the degree to which there was support for the notion that the words were referential. At the same time, the statistical information about the words' meanings was held constant. When we overrode support for the notion that words were referential, subjects failed to learn the word-to-referent mappings, but otherwise they succeeded. Thus, cross-situational statistics were useful only when learners had the goal of discovering mappings between words and referents. We discuss the implications of these results for theories of word learning in children's language acquisition. Copyright © 2017 Elsevier B.V. All rights reserved.
Opportunities to Pose Problems Using Digital Technology in Problem Solving Environments
ERIC Educational Resources Information Center
Aguilar-Magallón, Daniel Aurelio; Fernández, Willliam Enrique Poveda
2017-01-01
This article reports and analyzes different types of problems that nine students in a Master's Program in Mathematics Education posed during a course on problem solving. What opportunities (affordances) can a dynamic geometry system (GeoGebra) offer to allow in-service and in-training teachers to formulate and solve problems, and what type of…
The geometry ability of junior high school students in Karanganyar based on the Hoffer’s theory
NASA Astrophysics Data System (ADS)
Nurwijayanti, A.; Budiyono; Fitriana, L.
2018-03-01
Geometry ability is the aspect which underlay students to solve the geometry problems. However, some studies suggests the difficulty students when learning geometry. This leads to the ability of the geometri students difficult to develop. There are five the geometry ability based the Hoffer’s theory, namely visual, verbal, drawing, logical, and applied. These five aspects are basic geometry ability to be mastered by Junior High School students level. This study aimed to describe the students’ geometry ability according to the Hoffer’s theory. The participants of this study are six students from 9th grade in State Junior High School 1 Jaten at Karanganyar that consisted of three categories, namely higher ability, moderate ability, and lower ability students. The data collection methods used are geometry test and in-depth interview and than analyzed using triangulation. The result of the study showed that the ability of those three categories is different. Each of the students' geometry ability can be described as follows. (1) On visual skill, higher ability and moderate ability students could mention the elements of the geometrical shapes correctly based on its shapes obtained. However, lower ability students were unable to mention it specifically; (2) On verbal skill, moderate ability students were able to link the relationship among shapes based on the characteristics correctly, despite that the higher ability and lower ability seemed to have difficulty; (3) On drawing skill, higher ability students could construct the shapes based on the relationship among shapes well, but moderate ability and lower ability students continually faced difficulty; (4) On logical skill, both higher ability, and moderate ability students were able to determine the formula of a particular geometrical shape based on the relationship among the elements of the shape well, while the lower ability students were unable to; (5) On applied skill, higher ability, and moderate ability students could apply the concept of geometry into the problem-solving question, but seemed to have difficulty with the calculation. Besides that, lower ability students could not ultimately implement the concept of geometry.
Sigurdardottir, Heida Maria; Fridriksdottir, Liv Elisabet; Gudjonsdottir, Sigridur; Kristjánsson, Árni
2018-06-01
Evidence of interdependencies of face and word processing mechanisms suggest possible links between reading problems and abnormal face processing. In two experiments we assessed such high-level visual deficits in people with a history of reading problems. Experiment 1 showed that people who were worse at face matching had greater reading problems. In experiment 2, matched dyslexic and typical readers were tested, and difficulties with face matching were consistently found to predict dyslexia over and above both novel-object matching as well as matching noise patterns that shared low-level visual properties with faces. Furthermore, ADHD measures could not account for face matching problems. We speculate that reading difficulties in dyslexia are partially caused by specific deficits in high-level visual processing, in particular for visual object categories such as faces and words with which people have extensive experience. Copyright © 2018 Elsevier B.V. All rights reserved.
Image Understanding Proceedings of a Workshop Held at Washington, DC, April 23, 1981
1981-04-01
quantities on the projection plane. constituent velocities, the problem can and should No 3D geometry is involved. Also 3utlined is a be studied on its own...illuniiration, aspects of object geometry , and the data) have occurred. This means that our reasoning can no6production of illumination diasoptinuities by...interpretation distinct classes: those ct~used by disco,.tinuities in the of image curves (also known as intensity discontinuities or geometry of an
Analyzing Group Coordination when Solving Geometry Problems with Dynamic Geometry Software
ERIC Educational Resources Information Center
Oner, Diler
2013-01-01
In CSCL research, collaborative activity is conceptualized along various yet intertwined dimensions. When functioning within these multiple dimensions, participants make use of several resources, which can be social or content-related (and sometimes temporal) in nature. It is the effective coordination of these resources that appears to…
Classical versus Computer Algebra Methods in Elementary Geometry
ERIC Educational Resources Information Center
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
A patient with aphasia using the nonsemantic lexical route for Kanji reading.
Hashimoto, Kosei; Uno, Akira; Sambai, Ami; Mizumoto, Go
We report a patient with aphasia, caused by cerebral hemorrhage, who probably used the nonsemantic lexical route when reading words aloud. To investigate the mechanisms underlying her reading dysfunction, we analyzed her reading abilities using the Dual-Route Cascaded Model. Language tests resulted in low correct percentages for both reading comprehension and reading nonwords aloud, suggesting problems in the semantic system and the nonlexical route. Conversely, the patient showed high scores on the reading words aloud task. Although she failed to understand many inconsistent-atypical words in the reading comprehension test, she correctly read most words aloud, suggesting that she used the nonsemantic lexical route. In addition, the lexical reading route was analyzed in detail by using inconsistent-atypical Kanji words as stimuli. Finally, we analyzed her reading dysfunction compared with previous cases.
Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment.
Tik, Martin; Sladky, Ronald; Luft, Caroline Di Bernardi; Willinger, David; Hoffmann, André; Banissy, Michael J; Bhattacharya, Joydeep; Windischberger, Christian
2018-04-17
Finding creative solutions to difficult problems is a fundamental aspect of human culture and a skill highly needed. However, the exact neural processes underlying creative problem solving remain unclear. Insightful problem solving tasks were shown to be a valid method for investigating one subcomponent of creativity: the Aha!-moment. Finding insightful solutions during a remote associates task (RAT) was found to elicit specific cortical activity changes. Considering the strong affective components of Aha!-moments, as manifested in the subjectively experienced feeling of relief following the sudden emergence of the solution of the problem without any conscious forewarning, we hypothesized the subcortical dopaminergic reward network to be critically engaged during Aha. To investigate those subcortical contributions to insight, we employed ultra-high-field 7 T fMRI during a German Version of the RAT. During this task, subjects were exposed to word triplets and instructed to find a solution word being associated with all the three given words. They were supposed to press a button as soon as they felt confident about their solution without further revision, allowing us to capture the exact event of Aha!-moment. Besides the finding on cortical involvement of the left anterior middle temporal gyrus (aMTG), here we showed for the first time robust subcortical activity changes related to insightful problem solving in the bilateral thalamus, hippocampus, and the dopaminergic midbrain comprising ventral tegmental area (VTA), nucleus accumbens (NAcc), and caudate nucleus. These results shed new light on the affective neural mechanisms underlying insightful problem solving. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Träff, Ulf
2013-10-01
This study examined the relative contributions of general cognitive abilities and number abilities to word problem solving, calculation, and arithmetic fact retrieval in a sample of 134 children aged 10 to 13 years. The following tasks were administered: listening span, visual matrix span, verbal fluency, color naming, Raven's Progressive Matrices, enumeration, number line estimation, and digit comparison. Hierarchical multiple regressions demonstrated that number abilities provided an independent contribution to fact retrieval and word problem solving. General cognitive abilities contributed to problem solving and calculation. All three number tasks accounted for a similar amount of variance in fact retrieval, whereas only the number line estimation task contributed unique variance in word problem solving. Verbal fluency and Raven's matrices accounted for an equal amount of variance in problem solving and calculation. The current findings demonstrate, in accordance with Fuchs and colleagues' developmental model of mathematical learning (Developmental Psychology, 2010, Vol. 46, pp. 1731-1746), that both number abilities and general cognitive abilities underlie 10- to 13-year-olds' proficiency in problem solving, whereas only number abilities underlie arithmetic fact retrieval. Thus, the amount and type of cognitive contribution to arithmetic proficiency varies between the different aspects of arithmetic. Furthermore, how closely linked a specific aspect of arithmetic is to the whole number representation systems is not the only factor determining the amount and type of cognitive contribution in 10- to 13-year-olds. In addition, the mathematical complexity of the task appears to influence the amount and type of cognitive support. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Scheiter, Katharina; Gerjets, Peter; Schuh, Julia
2010-01-01
In this paper the augmentation of worked examples with animations for teaching problem-solving skills in mathematics is advocated as an effective instructional method. First, in a cognitive task analysis different knowledge prerequisites are identified for solving mathematical word problems. Second, it is argued that so called hybrid animations…
2015-03-18
Problem (TSP) to solve, a canonical computer science problem that involves identifying the shortest itinerary for a hypothetical salesman traveling among a...also created working versions of the travelling salesperson problem , prisoners’ dilemma, public goods game, ultimatum game, word ladders, and...the task within networks of others performing the task. Thus, we built five problems which could be embedded in networks: the traveling salesperson