NASA Astrophysics Data System (ADS)
Tarolli, Paolo; Fuller, Ian C.; Basso, Federica; Cavalli, Marco; Sofia, Giulia
2017-04-01
Hydro-geomorphic connectivity has significantly emerged as a new concept to understand the transfer of surface water and sediment through landscapes. A further scientific challenge is determining how the concept can be used to enable sustainable land and water management. This research proposes an interesting approach to integrating remote sensing techniques, connectivity theory, and geomorphometry based on high-resolution digital terrain model (HR-DTMs) to automatically extract landslides crowns and gully erosion, to determine the different rate of connectivity among the main extracted features and the river network, and thus determine a possible categorization of hazardous areas. The study takes place in two mountainous regions in the Wellington Region (New Zealand). The methodology is a three step approach. Firstly, we performed an automatic detection of the likely landslides crowns through the use of thresholds obtained by the statistical analysis of the variability of landform curvature. After that, the research considered the Connectivity Index to analyse how a complex and rugged topography induces large variations in erosion and sediment delivery in the two catchments. Lastly, the two methods have been integrated to create a unique procedure able to classify the different rate of connectivity among the main features and the river network and thus identifying potential threats and hazardous areas. The methodology is fast, and it can produce a detailed and updated inventory map that could be a key tool for erosional and sediment delivery hazard mitigation. This fast and simple method can be a useful tool to manage emergencies giving priorities to more failure-prone zones. Furthermore, it could be considered to do a preliminary interpretations of geomorphological phenomena and more in general, it could be the base to develop inventory maps. References Cavalli M, Trevisani S, Comiti F, Marchi L. 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31-41 DOI: 10.1016/j.geomorph.2012.05.007 Sofia G, Dalla Fontana G, Tarolli P. 2014. High-resolution topography and anthropogenic feature extraction: testing geomorphometric parameters in floodplains. Hydrological Processes 28 (4): 2046-2061 DOI: 10.1002/hyp.9727 Tarolli P, Sofia G, Dalla Fontana G. 2012. Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Natural Hazards 61 (1): 65-83 DOI: 10.1007/s11069-010-9695-2
NASA Astrophysics Data System (ADS)
Sofia, G.; Tarolli, P.; Dalla Fontana, G.
2012-04-01
In floodplains, massive investments in land reclamation have always played an important role in the past for flood protection. In these contexts, human alteration is reflected by artificial features ('Anthropogenic features'), such as banks, levees or road scarps, that constantly increase and change, in response to the rapid growth of human populations. For these areas, various existing and emerging applications require up-to-date, accurate and sufficiently attributed digital data, but such information is usually lacking, especially when dealing with large-scale applications. More recently, National or Local Mapping Agencies, in Europe, are moving towards the generation of digital topographic information that conforms to reality and are highly reliable and up to date. LiDAR Digital Terrain Models (DTMs) covering large areas are readily available for public authorities, and there is a greater and more widespread interest in the application of such information by agencies responsible for land management for the development of automated methods aimed at solving geomorphological and hydrological problems. Automatic feature recognition based upon DTMs can offer, for large-scale applications, a quick and accurate method that can help in improving topographic databases, and that can overcome some of the problems associated with traditional, field-based, geomorphological mapping, such as restrictions on access, and constraints of time or costs. Although anthropogenic features as levees and road scarps are artificial structures that actually do not belong to what is usually defined as the bare ground surface, they are implicitly embedded in digital terrain models (DTMs). Automatic feature recognition based upon DTMs, therefore, can offer a quick and accurate method that does not require additional data, and that can help in improving flood defense asset information, flood modeling or other applications. In natural contexts, morphological indicators derived from high resolution topography have been proven to be reliable for feasible applications. The use of statistical operators as thresholds for these geomorphic parameters, furthermore, showed a high reliability for feature extraction in mountainous environments. The goal of this research is to test if these morphological indicators and objective thresholds can be feasible also in floodplains, where features assume different characteristics and other artificial disturbances might be present. In the work, three different geomorphic parameters are tested and applied at different scales on a LiDAR DTM of typical alluvial plain's area in the North East of Italy. The box-plot is applied to identify the threshold for feature extraction, and a filtering procedure is proposed, to improve the quality of the final results. The effectiveness of the different geomorphic parameters is analyzed, comparing automatically derived features with the surveyed ones. The results highlight the capability of high resolution topography, geomorphic indicators and statistical thresholds for anthropogenic features extraction and characterization in a floodplains context.
NASA Astrophysics Data System (ADS)
Sturdivant, E. J.; Lentz, E. E.; Thieler, E. R.; Remsen, D.; Miner, S.
2016-12-01
Characterizing the vulnerability of coastal systems to storm events, chronic change and sea-level rise can be improved with high-resolution data that capture timely snapshots of biogeomorphology. Imagery acquired with unmanned aerial systems (UAS) coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. Here we compare SfM-derived data to lidar and visual imagery for their utility in a) geomorphic feature extraction and b) land cover classification for coastal habitat assessment. At a beach and wetland site on Cape Cod, Massachusetts, we used UAS to capture photographs over a 15-hectare coastal area with a resulting pixel resolution of 2.5 cm. We used standard SfM processing in Agisoft PhotoScan to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM). The SfM-derived products have a horizontal uncertainty of +/- 2.8 cm. Using the point cloud in an extraction routine developed for lidar data, we determined the position of shorelines, dune crests, and dune toes. We used the output imagery and DEM to map land cover with a pixel-based supervised classification. The dense and highly precise SfM point cloud enabled extraction of geomorphic features with greater detail than with lidar. The feature positions are reported with near-continuous coverage and sub-meter accuracy. The orthomosaic image produced with SfM provides visual reflectance with higher resolution than those available from aerial flight surveys, which enables visual identification of small features and thus aids the training and validation of the automated classification. We find that the high-resolution and correspondingly high density of UAS data requires some simple modifications to existing measurement techniques and processing workflows, and that the types of data and the quality provided is equivalent to, and in some cases surpasses, that of data collected using other methods.
Global seafloor geomorphic features map: applications for ocean conservation and management
NASA Astrophysics Data System (ADS)
Harris, P. T.; Macmillan-Lawler, M.; Rupp, J.; Baker, E.
2013-12-01
Seafloor geomorphology, mapped and measured by marine scientists, has proven to be a very useful physical attribute for ocean management because different geomorphic features (eg. submarine canyons, seamounts, spreading ridges, escarpments, plateaus, trenches etc.) are commonly associated with particular suites of habitats and biological communities. Although we now have better bathymetric datasets than ever before, there has been little effort to integrate these data to create an updated map of seabed geomorphic features or habitats. Currently the best available global seafloor geomorphic features map is over 30 years old. A new global seafloor geomorphic features map (GSGM) has been created based on the analysis and interpretation of the SRTM (Shuttle Radar Topography Mission) 30 arc-second (~1 km) global bathymetry grid. The new map includes global spatial data layers for 29 categories of geomorphic features, defined by the International Hydrographic Organisation. The new geomorphic features map will allow: 1) Characterization of bioregions in terms of their geomorphic content (eg. GOODS bioregions, Large Marine Ecosystems (LMEs), ecologically or biologically significant areas (EBSA)); 2) Prediction of the potential spatial distribution of vulnerable marine ecosystems (VME) and marine genetic resources (MGR; eg. associated with hydrothermal vent communities, shelf-incising submarine canyons and seamounts rising to a specified depth); and 3) Characterization of national marine jurisdictions in terms of their inventory of geomorphic features and their global representativeness of features. To demonstrate the utility of the GSGM, we have conducted an analysis of the geomorphic feature content of the current global inventory of marine protected areas (MPAs) to assess the extent to which features are currently represented. The analysis shows that many features have very low representation, for example fans and rises have less than 1 per cent of their total area inside existing protected areas. The ';best' represented features, trenches and troughs, have only 8.7 and 5.9 per cent respectively of their total area inside existing protected areas. Seamounts have only 2.8% of their area within existing MPAs. Diagram showing the hierarchy of geomorphic features mapped in the present study. Base layer features are the shelf, slope, abyss and hadal zones. The occurrence of some features is confined to one of the base layers, whereas the occurrence of other features is confined to two or more base layers, as illustrated by shading. Basins and sills are the only features that occur over all four base layers.
Sturdivant, Emily; Lentz, Erika; Thieler, E. Robert; Farris, Amy; Weber, Kathryn; Remsen, David P.; Miner, Simon; Henderson, Rachel
2017-01-01
The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM) photogrammetry applied to imagery acquired by unmanned aerial systems (UAS) offers a rapid and inexpensive means to produce high-resolution topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM) from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing methods to (a) determine the position of shorelines and foredunes using a feature extraction routine developed for lidar point clouds and (b) map land cover from the rasterized surfaces using a supervised classification routine. In both analyses, we experimentally vary the input datasets to understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find that (a) geomorphic features are extracted from the SfM point cloud with near-continuous coverage and sub-meter precision, better than was possible from a recent lidar dataset covering the same area; and (b) land cover classification is greatly improved by including topographic data with visual reflectance, but changes to resolution (when <50 cm) have little influence on the classification accuracy.
Recognition of large scale deep-seated landslides in vegetated areas of Taiwan
NASA Astrophysics Data System (ADS)
Lin, C. W.; Tarolli, P.; Tseng, C. M.; Tseng, Y. H.
2012-04-01
In August 2009, Typhoon Morakot triggered thousands of landslides and debris flows, and according to government reports, 619 people were dead and 76 missing and the economic loss was estimated at hundreds million of USD. In particular, the large deep-seated landslides are critical and deserve attention, since they can be affected by a reactivation during intense events, that usually can evolve in destructive failures. These are also difficult to recognize in the field, especially under dense forest areas. A detailed and constantly updated inventory map of such phenomena, and the recognition of their topographic signatures really represents a key tool for landslide risk mitigation, and mapping. The aim of this work is to test the performance of a new developed method for the automatic extraction of geomorphic features related to landslide crowns developed by Tarolli et al. (2010), in support to field surveys in order to develop a detailed and accurate inventory map of such phenomena. The methodology is based on the detection of thresholds derived by the statistical analysis of variability of landform curvature from high resolution LiDAR derived topography. The analysis suggested that the method allowed a good performance in localization and extraction, respect to field analysis, of features related to deep-seated landslides. Thanks to LiDAR capabilty to detect the bare ground elevation data also in forested areas, it was possible to recognize in detail landslide features also in remote regions difficult to access. Reference Tarolli, P., Sofia, G., Dalla Fontana, G. (2010). Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion, Natural Hazards, doi:10.1007/s11069-010-9695-2
Hydrologic Modeling and Flood Frequency Analysis for Ordinary High Water Mark Delineation
2016-02-01
that may have adjacent floodplains and terraces. Each of these geomorphic features may have different characteristic sediment grain sizes, different...relationship between streamflow recurrence intervals and ERDC/CRREL TR-16-2 7 geomorphic features observed in the field. The bankfull channel is the cu... geomorphic features is one of many reasons described in this document why a specific recurrence interval cannot be used to determine the OHWM. At the same
Curtis, Jennifer A.; Guerrero, Timothy M.
2015-01-01
Historic land use, dam construction, water storage, and flow diversions in the Trinity River watershed have resulted in downstream geomorphic change, loss of salmonid habitat, and declines in salmonid populations. The USGS in cooperation with the Trinity River Restoration Program, a multi-agency partnership tasked with implementing federally mandated restoration, completed a geomorphic change assessment to inform the planning process for future restoration work. This report documents an ARCMAP geodatabase (v.10.0) containing geomorphic features digitized from a series of rectified orthophotographs (http://dx.doi.org/10.5066/F7TT4P04). Upland, riparian, and channel features were digitized from six available base images (1980, 1997, 2001, 2006, 2009, and 2011). This report describes the structure of the geodatabase and the methods used to delineate individual geomorphic features.
NASA Astrophysics Data System (ADS)
Cairns, D.; Byrne, J. M.; Jiskoot, H.; McKenzie, J. M.; Johnson, D. L.
2013-12-01
Groundwater controls many aspects of water quantity and quality in mountain watersheds. Groundwater recharge and flow originating in mountain watersheds are often difficult to quantify due to challenges in the characterization of the local geology, as subsurface data are sparse and difficult to collect. Remote sensing data are more readily available and are beneficial for the characterization of watershed hydrodynamics. We present an automated geomorphometric model to identify the approximate spatial distribution of geomorphic features, and to segment each of these features based on relative hydrostratigraphic differences. A digital elevation model (DEM) dataset and predefined indices are used as inputs in a mountain watershed. The model uses periglacial, glacial, fluvial, slope evolution and lacustrine processes to identify regions that are subsequently delineated using morphometric principles. A 10 m cell size DEM from the headwaters of the St. Mary River watershed in Glacier National Park, Montana, was considered sufficient for this research. Morphometric parameters extracted from the DEM that were found to be useful for the calibration of the model were elevation, slope, flow direction, flow accumulation, and surface roughness. Algorithms were developed to utilize these parameters and delineate the distributions of bedrock outcrops, periglacial landscapes, alluvial channels, fans and outwash plains, glacial depositional features, talus slopes, and other mass wasted material. Theoretical differences in sedimentation and hydrofacies associated with each of the geomorphic features were used to segment the watershed into units reflecting similar hydrogeologic properties such as hydraulic conductivity and thickness. The results of the model were verified by comparing the distribution of geomorphic features with published geomorphic maps. Although agreement in semantics between datasets caused difficulties, a consensus yielded a comparison Dice Coefficient of 0.65. The results can be used to assist in groundwater model calibration, or to estimate spatial differences in near-surface groundwater behaviour. Verification of the geomorphometric model would be augmented by evaluating its success after use in the calibration of the groundwater simulation. These results may also be used directly in momentum-based equations to create a stochastic routing routine beneath the soil interface for a hydrometeorological model.
A Photographic Atlas of Rock Breakdown Features in Geomorphic Environments
NASA Technical Reports Server (NTRS)
Bourke, Mary C. (Editor); Brearley, J. Alexander; Haas, Randall; Viles, Heather A.
2007-01-01
A primary goal of geomorphological enquiry is to make genetic associations between process and form. In rock breakdown studies, the links between process, inheritance and lithology are not well constrained. In particular, there is a need to establish an understanding of feature persistence. That is, to determine the extent to which in situ rock breakdown (e.g., aeolian abrasion or salt weathering) masks signatures of earlier geomorphic transport processes (e.g., fluvial transport or crater ejecta). Equally important is the extent to which breakdown during geomorphic transport masks the imprint of past weathering. The use of rock features in this way raises the important question: Can features on the surface of a rock reliably indicate its geomorphic history? This has not been determined for rock surfaces on Earth or other planets. A first step towards constraining the links between process, inheritance, and morphology is to identify pristine features produced by different process regimes. The purpose of this atlas is to provide a comprehensive image collection of breakdown features commonly observed on boulders in different geomorphic environments. The atlas is intended as a tool for planetary geoscientists and their students to assist in identifying features found on rocks on planetary surfaces. In compiling this atlas, we have attempted to include features that have formed 'recently' and where the potential for modification by another geomorphic process is low. However, we acknowledge that this is, in fact, difficult to achieve when selecting rocks in their natural environment. We group breakdown features according to their formative environment and process. In selecting images for inclusion in the atlas we were mindful to cover a wide range of climatic zones. For example, in the weathering chapter, clast features are shown from locations such as the hyper-arid polar desert of Antarctica and the semi-arid canyons of central Australia. This is important as some features (e.g., alveoli) occur across climate regimes. We have drawn on the published geomorphological literature and our own field experience. We use, where possible, images of extrusive igneous rocks as the data returned from Mars, Venus and the Moon indicates that this is the predominant rock type. One of the purposes of this atlas is to expand the range of surface features that are known to indicate a particular geomorphic environment or process history. The surface features on boulders in some environments such as aeolian and weathering are well understood. In contrast, those in fluvial or ejecta environments are not. Therefore we have presented a comprehensive assemblage of features that are likely to be produced in each of the geomorphic environments. We hope that this atlas will trigger more research on diagnostic features, particularly their morphometry and detailed morphology, their persistence and rates of formation. In this first edition of the atlas we detail the features found on clasts in three geomorphic environments: aeolian, fluvial and weathering. Future editions of the atlas will include chapters on ejecta, micro-impacts, coastal, colluvial, glacial and structural features.
NASA Astrophysics Data System (ADS)
Wang, Daojun; Gong, Jianhua; Ma, Ainai; Li, Wenhang; Wang, Xijun
2005-10-01
There are generally two kinds of approaches to studying geomorphic features in terms of the quantification level and difference of major considerations. One is the earlier qualitative characterization, and the other is the 2-dimension measurement that includes section pattern and projection pattern. With the development of geo-information technology, especially the 3-D geo-visualization and virtual geographic environments (VGE), 3-dimension measurement and dynamic interactive between users and geo-data/geo-graphics can be developed to understand geomorphic features deeply, and to benefit to the effective applications of such features for geographic projects like dam construction. Storage-elevation curve is very useful for site selection of projects and flood dispatching in water conservancy region, but it is just a tool querying one value from the other one. In fact, storage-elevation curve can represent comprehensively the geomorphic features including vertical section, cross section of the stream and the landform nearby. In this paper, we use quadratic regression equation shaped like y = ax2 + bx + c and the DEM data of Hong-Shi-Mao watershed, Zi Chang County, ShaanXi Province, China to find out the relationship between the coefficients of the equation and the geomorphic features based on VGE platform. It's exciting that the coefficient "a" appear to be correlative strongly with the stream scale, and the coefficient "b" may give an index to the valley shape. In the end, we use a sub-basin named Hao-Jia-Gou of the watershed as an application. The result of correlative research about quadratic regression equation and geomorphic features can save computing and improve the efficiency in silt dam systems planning.
Hydrodynamic and sedimentological controls governing formation of fluvial levees
NASA Astrophysics Data System (ADS)
Johnston, G. H.; Edmonds, D. A.; David, S. R.; Czuba, J. A.
2017-12-01
Fluvial levees are familiar features found on the margins of river channels, yet we know little about what controls their presence, height, and shape. These attributes of levees are important because they control sediment transfer from channel to floodplain and flooding patterns along a river system. Despite the familiarity and importance of levees, there is a surprising lack of basic geomorphic data on fluvial levees. Because of this we seek to understand: 1) where along rivers do levees tend to occur?; 2) what geomorphic and hydrodynamic variables control cross-sectional shape of levees? We address these questions by extracting levee shape from LiDAR data and by collecting hydrodynamic and sedimentological data from reaches of the Tippecanoe River, the White River, and the Muscatatuck River, Indiana, USA. Fluvial levees are extracted from a 1.5-m resolution LiDAR bare surface model and compared to hydrological, sedimentological, and geomorphological data from USGS stream gages. We digitized banklines and extracted levee cross-sections to calculate levee slope, taper, height, e-folding length, and e-folding width. To answer the research questions, we performed a multivariable regression between the independent variables—channel geometry, sediment grain size and concentration, flooding conditions, and slope—and the dependent levee variables. We find considerable variation in levee presence and shape in our field data. On the Muscatatuck River levees occur on 30% of the banks compared to 10% on the White River. Moreover, levees on the Muscatatuck are on average 3 times wider than the White River. This is consistent with the observation that the Muscatatuck is finer-grained compared to the White River and points to sedimentology being an important control on levee geomorphology. Future work includes building a morphodynamic model to understand how different hydrodynamic and geomorphic conditions control levee geometry.
Comparison between flood prone areas' geomorphic features in the Abruzzo region
NASA Astrophysics Data System (ADS)
Orlando, D.; Giglioni, M.; Magnaldi, S.
2017-07-01
Flood risk maps are one of the main non-structural measures for risk mitigation, but, as the risk knowledge degree is directly proportional to the community interest and financial capability, many sites are devoid of flood inundation areas studies. Recently many authors have investigated the capability of flood prone areas individuation with geomorphological DIGITAL ELEVATION MODEL(DEM) based approaches. These approaches highlight the role of geomorphic features derived from DEM, in this case slope, curvature, elevation, and topographic wetness index, to preliminary inundated areas' identification, without using hydraulic simulations. The present studies aim to analyze the geomorphic features of different hazard levels that lie under the identified inundated areas that have been carried out by the Abruzzo Region Basin Authority. The Aterno-Pescara and Foro river basins have been investigated. The results show that the characteristics of the flooded areas can be clearly distinguished from those of the entire basin,however, the difficultly of geomorphic features in individuatingthe areas of different hazard classifications is obvious.
Phase Transitions in Geomorphology
NASA Astrophysics Data System (ADS)
Ortiz, C. P.; Jerolmack, D. J.
2015-12-01
Landscapes are patterns in a dynamic steady-state, due to competing processes that smooth or sharpen features over large distances and times. Geomorphic transport laws have been developed to model the mass-flux due to different processes, but are unreasonably effective at recovering the scaling relations of landscape features. Using a continuum approximation to compare experimental landscapes and the observed landscapes of the earth, one finds they share similar morphodynamics despite a breakdown of classical dynamical similarity between the two. We propose the origin of this effectiveness is a different kind of dynamic similarity in the statistics of initiation and cessation of motion of groups of grains, which is common to disordered systems of grains under external driving. We will show how the existing data of sediment transport points to common signatures with dynamical phase transitions between "mobile" and "immobile" phases in other disordered systems, particularly granular materials, colloids, and foams. Viewing landscape evolution from the lens of non-equilibrium statistical physics of disordered systems leads to predictions that the transition of bulk measurements such as particle flux is continuous from one phase to another, that the collective nature of the particle dynamics leads to very slow aging of bulk properties, and that the dynamics are history-dependent. Recent results from sediment transport experiments support these predictions, suggesting that existing geomorphic transport laws may need to be replaced by a new generation of stochastic models with ingredients based on the physics of disordered phase transitions. We discuss possible strategies for extracting the necessary information to develop these models from measurements of geomorphic transport noise by connecting particle-scale collective dynamics and space-time fluctuations over landscape features.
Geomorphic evidence for ancient seas on Mars
NASA Technical Reports Server (NTRS)
Parker, Timothy J.; Schneeberger, Dale M.; Pieri, David C.; Saunders, R. Stephen
1987-01-01
Geomorphic evidence is presented for ancient seas on Mars. Several features, similar to terrestrial lacustrine and coastal features, were identified along the northern plains periphery from Viking images. The nature of these features argues for formation in a predominantly liquid, shallow body of standing water. Such a shallow sea would require either relatively rapid development of shoreline morphologies or a warmer than present climate at the time of outflow channel formation.
Southeast Florida Sediment Assessment and Needs Determination (SAND) Study
2014-09-01
of previous studies, geophysical, geotechnical, and geomorphic data sets in their analysis, primarily deviating from one another in controlling... geomorphic features of the continental shelf north of latitude N26º 40’ (geographically around the upland location of Lake Worth Inlet, Florida) by cross...2012 NOAA bathymetry, recent borings, and historical seismic data to delineate shoal, flat, rock exposure, and other geomorphic boundaries. The
Automated Detection of Geomorphic Features in LiDAR Point Clouds of Various Spatial Density
NASA Astrophysics Data System (ADS)
Dorninger, Peter; Székely, Balázs; Zámolyi, András.; Nothegger, Clemens
2010-05-01
LiDAR, also referred to as laser scanning, has proved to be an important tool for topographic data acquisition. Terrestrial laser scanning allows for accurate (several millimeter) and high resolution (several centimeter) data acquisition at distances of up to some hundred meters. By contrast, airborne laser scanning allows for acquiring homogeneous data for large areas, albeit with lower accuracy (decimeter) and resolution (some ten points per square meter) compared to terrestrial laser scanning. Hence, terrestrial laser scanning is preferably used for precise data acquisition of limited areas such as landslides or steep structures, while airborne laser scanning is well suited for the acquisition of topographic data of huge areas or even country wide. Laser scanners acquire more or less homogeneously distributed point clouds. These points represent natural objects like terrain and vegetation and artificial objects like buildings, streets or power lines. Typical products derived from such data are geometric models such as digital surface models representing all natural and artificial objects and digital terrain models representing the geomorphic topography only. As the LiDAR technology evolves, the amount of data produced increases almost exponentially even in smaller projects. This means a considerable challenge for the end user of the data: the experimenter has to have enough knowledge, experience and computer capacity in order to manage the acquired dataset and to derive geomorphologically relevant information from the raw or intermediate data products. Additionally, all this information might need to be integrated with other data like orthophotos. In all theses cases, in general, interactive interpretation is necessary to determine geomorphic structures from such models to achieve effective data reduction. There is little support for the automatic determination of characteristic features and their statistical evaluation. From the lessons learnt from automated extraction and modeling of buildings (Dorninger & Pfeifer, 2008) we expected that similar generalizations for geomorphic features can be achieved. Our aim is to recognize as many features as possible from the point cloud in the same processing loop, if they can be geometrically described with appropriate accuracy (e.g., as a plane). For this, we propose to apply a segmentation process allowing determining connected, planar structures within a surface represented by a point cloud. It is based on a robust determination of local tangential planes for all points acquired (Nothegger & Dorninger, 2009). It assumes that for points, belonging to a distinct planar structure, similar tangential planes can be determined. In passing, points acquired at continuous such as vegetation can be identified and eliminated. The plane parameters are used to define a four-dimensional feature space which is used to determine seed-clusters globally for the whole are of interest. Starting from these seeds, all points defining a connected, planar region are assigned to a segment. Due to the design of the algorithm, millions of input points can be processed with acceptable processing time on standard computer systems. This allows for processing geomorphically representative areas at once. For each segment, numerous parameter are derived which can be used for further exploitation. These are, for example, location, area, aspect, slope, and roughness. To prove the applicability of our method for automated geomorphic terrain analysis, we used terrestrial and airborne laser scanning data, acquired at two locations. The data of the Doren landslide located in Vorarlberg, Austria, was acquired by a terrestrial Riegl LS-321 laser scanner in 2008, by a terrestrial Riegl LMS-Z420i laser scanner in 2009, and additionally by three airborne LiDAR measurement campaigns, organized by the Landesvermessungsamt Vorarlberg, Feldkirch, in 2003, 2006, and 2007. The measurement distance of the terrestrial measurements was considerably varying considerably because of the various base points that were needed to cover the whole landslide. The resulting point spacing is approximately 20 cm. The achievable accuracy was about 10 cm. The airborne data was acquired with mean point densities of 2 points per square-meter. The accuracy of this dataset was about 15 cm. The second testing site is an area of the Leithagebirge in Burgenland, Austria. The data was acquired by an airborne Riegl LMS-Q560 laser scanner mounted on a helicopter. The mean point density was 6-8 points per square with an accuracy better than 10 cm. We applied our processing chain on the datasets individually. First, they were transformed to local reference frames and fine adjustments of the individual scans respectively flight strips were applied. Subsequently, the local regression planes were determined for each point of the point clouds and planar features were extracted by means of the proposed approach. It turned out that even small displacements can be detected if the number of points used for the fit is enough to define a parallel but somewhat displaced plane. Smaller cracks and erosional incisions do not disturb the plane fitting, because mostly they are filtered out as outliers. A comparison of the different campaigns of the Doren site showed exciting matches of the detected geomorphic structures. Although the geomorphic structure of the Leithagebirge differs from the Doren landslide, and the scales of the two studies were also different, reliable results were achieved in both cases. Additionally, the approach turned out to be highly robust against points which were not located on the terrain. Hence, no false positives were determined within the dense vegetation above the terrain, while it was possible to cover the investigated areas completely with reliable planes. In some cases, however, some structures in the tree crowns were also recognized, but these small patches could be very well sorted out from the geomorphically relevant results. Consequently, it could be verified that a topographic surface can be properly represented by a set of distinct planar structures. Therefore, the subsequent interpretation of those planes with respect to geomorphic characteristics is acceptable. The additional in situ geological measurements verified some of our findings in the sense that similar primary directions could be found that were derived from the LiDAR data set and (Zámolyi et al., 2010, this volume). References: P. Dorninger, N. Pfeifer: "A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds"; Sensors, 8 (2008), 11; 7323 - 7343. C. Nothegger, P. Dorninger: "3D Filtering of High-Resolution Terrestrial Laser Scanner Point Clouds for Cultural Heritage Documentation"; Photogrammetrie, Fernerkundung, Geoinformation, 1 (2009), 53 - 63. A. Zámolyi, B. Székely, G. Molnár, A. Roncat, P. Dorninger, A. Pocsai, M. Wyszyski, P. Drexel: "Comparison of LiDAR derived directional topographic features with geologic field evidence: a case study of Doren landslide (Vorarlberg, Austria)"; EGU General Assembly 2010, Vienna, Austria
An evaluation of the suitability of ERTS data for the purposes of petroleum exploration
NASA Technical Reports Server (NTRS)
Collins, R. J., Jr. (Principal Investigator); Mccown, F. P.; Stonis, L. P.; Petzel, G.
1973-01-01
The author has identified the following significant results. ERTS-1 imagery seems to be good to excellent for reconnaissance level investigations of large sedimentary basins such as the Anadarko Basin. Many lithologic boundaries, and geomorphic features, and linear features inferred to be indicative of geologic structure are visible in the imagery. This imagery in conjunction with high altitude photography seems to be useful as a tool for intermediate level geologic exploration. Several types of crudely circular anomalous features, such as geomorphic/structural anomalies, hazy areas and tonal anomalies, are identifiable in the imagery. There seems to be a strong correlation between the geomorphic/structural and hazy anomalies and known structurally controlled oil and gas fields. The features recognizable on ERTS-1 imagery and their ease of recognition vary from area to area even in imagery acquired at the same time under essentially uniform atmospheric conditions. Repeated coverage is exceedingly valuable in geologic applications. One time complete coverage even for the various seasons does not reveal all the features that ERTS-1 can reveal.
Geomorphic spatial heterogeneity affects sediment denitrification, an anaerobic microbial process that results in the loss of nitrogen (N), and other anaerobic microbial processes such as methanogenesis in urban streams. We measured sediment denitrification potential (DEA), metha...
Geomorphic factors related to the persistence of subsurface oil from the Exxon Valdez oil spill
Nixon, Zachary; Michel, Jacqueline; Hayes, Miles O.; Irvine, Gail V.; Short, Jeffrey
2013-01-01
Oil from the 1989 Exxon Valdez oil spill has persisted along shorelines of Prince William Sound, Alaska, for more than two decades as both surface and subsurface oil residues. To better understand the distribution of persistent subsurface oil and assess the potential need for further restoration, a thorough and quantitative understanding of the geomorphic factors controlling the presence or absence of subsurface oil is required. Data on oiling and geomorphic features were collected at 198 sites in Prince William Sound to identify and quantify the relationships among these geomorphic factors and the presence and absence of persistent subsurface oil. Geomorphic factors associated with the presence of subsurface oil were initial oil exposure, substrate permeability, topographic slope, low exposure to waves, armoring on gravel beaches, tombolos, natural breakwaters, and rubble accumulations. Geomorphic factors associated with the absence of subsurface oil were impermeable bedrock; platforms with thin sediment veneer; fine-grained, well-sorted gravel beaches with no armor; and low-permeability, raised bay-bottom beaches. Relationships were found between the geomorphic and physical site characteristics and the likelihood of encountering persistent subsurface oiling at those sites. There is quantitative evidence of more complex interactions between the overall wave energy incident at a site and the presence of fine-scale geomorphic features that may have provided smaller, local wave energy sheltering of oil. Similarly, these data provide evidence for interactions between the shoreline slope and the presence of angular rubble, with decreased likelihood for encountering subsurface oil at steeply sloped sites except at high-angle sheltered rubble shoreline locations. These results reinforce the idea that the interactions of beach permeability, stability, and site-specific wave exposure are key drivers for subsurface oil persistence in exposed and intermittently exposed mixed gravel beach and rocky shoreline environments.
What is a Dune: Developing AN Automated Approach to Extracting Dunes from Digital Elevation Models
NASA Astrophysics Data System (ADS)
Taylor, H.; DeCuir, C.; Wernette, P. A.; Taube, C.; Eyler, R.; Thopson, S.
2016-12-01
Coastal dunes can absorb storm surge and mitigate inland erosion caused by elevated water levels during a storm. In order to understand how a dune responds to and recovers from a storm, it is important that we can first identify and differentiate the beach and dune from the rest of the landscape. Current literature does not provide a consistent definition of what the dune features (e.g. dune toe, dune crest) are or how they can be extracted. The purpose of this research is to develop enhanced approaches to extracting dunes from a digital elevation model (DEM). Manual delineation, convergence index, least-cost path, relative relief, and vegetation abundance were compared and contrasted on a small area of Padre Island National Seashore (PAIS), Preliminary results indicate that the method used to extract the dune greatly affects our interpretation of how the dune changes. The manual delineation method was time intensive and subjective, while the convergence index approach was useful to easily identify the dune crest through maximum and minimum values. The least-cost path method proved to be time intensive due to data clipping; however, this approach resulted in continuous geomorphic landscape features (e.g. dune toe, dune crest). While the relative relief approach shows the most features in multi resolution, it is difficult to assess the accuracy of the extracted features because extracted features appear as points that can vary widely in their location from one meter to the next. The vegetation approach was greatly impacted by the seasonal and annual fluctuations of growth but is advantageous in historical change studies because it can be used to extract consistent dune formation from historical aerial imagery. Improving our ability to more accurately assess dune response and recovery to a storm will enable coastal managers to more accurately predict how dunes may respond to future climate change scenarios.
NASA Astrophysics Data System (ADS)
Maurer, Joshua; Rupper, Summer
2015-10-01
Declassified historical imagery from the Hexagon spy satellite database has near-global coverage, yet remains a largely untapped resource for geomorphic change studies. Unavailable satellite ephemeris data make DEM (digital elevation model) extraction difficult in terms of time and accuracy. A new fully-automated pipeline for DEM extraction and image orthorectification is presented which yields accurate results and greatly increases efficiency over traditional photogrammetric methods, making the Hexagon image database much more appealing and accessible. A 1980 Hexagon DEM is extracted and geomorphic change computed for the Thistle Creek Landslide region in the Wasatch Range of North America to demonstrate an application of the new method. Surface elevation changes resulting from the landslide show an average elevation decrease of 14.4 ± 4.3 m in the source area, an increase of 17.6 ± 4.7 m in the deposition area, and a decrease of 30.2 ± 5.1 m resulting from a new roadcut. Two additional applications of the method include volume estimates of material excavated during the Mount St. Helens volcanic eruption and the volume of net ice loss over a 34-year period for glaciers in the Bhutanese Himalayas. These results show the value of Hexagon imagery in detecting and quantifying historical geomorphic change, especially in regions where other data sources are limited.
NASA Astrophysics Data System (ADS)
Barrios Galindez, I. M.; Xue, L.; Laó-Dávila, D. A.
2017-12-01
The Puerto Rico and the Virgin Island microplate is located in at the northeastern corner of the Caribbean plate boundary with North America is placed within an oblique subduction zone in which strain patterns remain unresolved. Seismic hazard is a major concern in the region as seen from the seismic history of the Caribbean-North America plate boundary zone. Most of the tectonic models of the microplate show the accommodation of strain occurring offshore, despite evidence from seismic activity, trench studies, and geodetic studies suggesting the existence of strain accomodation in southwest Puerto Rico. These studies also suggest active faulting specially in the western part of the island, but limited work has been done regarding their mechanism. Therefore, this work aims to define and map these active faults in western Puerto Rico by integrating data from analysis of fluvial terrains, and detailed mapping using digital elevation model (DEM) extracted from Shuttle Radar Topography Mission (SRTM) and LIDAR data. The goal is to (1) identify structural features such as surface lineaments and fault scarps for the Cerro Goden fault, South Lajas fault, and other active faults in the western of Puerto Rico, (2) correlate these information with the distribution pattern and values of the geomorphic proxies, including Chi integral (χ), normalized steepness (ksn) and Asymmetric factor (AF). Our preliminary results from geomorphic proxies and Lidar data provide some insight of the displacement and stage of activities of these faults (e.g. Boqueron-Punta Malva Fault and Cerro Goden fault). Also, the anomaly of the geomorphic proxies generally correlate with the locations of the landslides in the southwestern Puerto Rico. The geomorphic model of this work include new information of active faulting fundamental to produce better seismic hazards maps. Additionally, active tectonics studies are vital to issue and adjust construction buildings codes and zonification codes.
2014-08-01
1 Common hydrogeomorphic units that form in stream systems in response to spatially and temporally varying hydrologic and geomorphic processes... geomorphic , and vegetative indica- tors for use in OHWM delineations in arid streams and categorized their typical landscape positions with respect...the presence of a bed and banks. Hydrogeomorphic units are distinct macro- scale geomorphic features formed within stream systems in response to
NASA Astrophysics Data System (ADS)
Schmitt, R. J.; Bizzi, S.; Castelletti, A.
2012-12-01
The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since fluvial geomorphic processes shape physical habitat, affect river infrastructures and influence freshwater ecological processes. Characterization of river hydromorphological features is commonly location specific and highly demanding in terms of field-works, resource and expertise required. Therefore, its routine application at regional or national scales, although an urgent need of catchment management, is infeasible at present. Recently available high-resolution data, such as DEM or LIDAR, opens up novel potential for basin-wide analysis of fluvial processes at limited effort and cost. Specifically, in this study we assess the feasibility of characterizing river hydromorphology from specific map derived geomorphic controls namely: channel gradient, bankfull flow, specific stream power, and degree of channel confinement. The river network, extracted from a digital elevation model and validated with available network shape-files and optical satellite imagery, available flow gauging stations and GIS processing allow producing continuous values of geomorphic drivers defined over given length segments at catchment or regional scales. This generic framework was applied to the Red River (Sông Hông) basin, the second largest basin (87,800 km2) in Vietnam. Besides its economic importance, the river since few years is experiencing severe river bed incisions due to the building of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high developing rate, current efforts to increase water productivity by infrastructure and management measures require a thorough understanding of fluvial system and, in particular, of the basin-wide river hydromorphology. The framework proposed has allowed producing high-dimensional samples of spatially distributed geomorphic drivers at catchment scale for the Red River basin. This novel dataset has been then analysed using self-organizing maps (SOM) an artificial neural network model that is capable of learning from complex, multidimensional data without specification of what the outputs should be, and of generating a nonlinear classification of visually decipherable clusters. The use of the above framework allowed to analyze the spatial distribution of geomorphic features at catchment scale, reviling patterns of similarities and dissimilarities within the catchment and allowing classification of river reaches characterized by similar geomorphic drivers and then likely (but still to be validated) fluvial processes. The paper proposes an innovative and promising technique to produce hydromorphological classifications at catchment scale opening the way towards regional or national scale hydromorphological assessments through automatic GIS and statistical procedures with moderate effort, an urgent requirement of modern catchment management.
Sapping Features of the Colorado Plateau: a Comparative Planetary Geology Field Guide
NASA Technical Reports Server (NTRS)
Howard, Alan D. (Editor); Kochel, R. Craig (Editor); Holt, Henry E. (Editor)
1987-01-01
This book is an attempt to determine geomorphic criteria to be used to distinguish between channels formed predominantly by sapping and seepage erosion and those formed principally by surface runoff processes. The geologic nature of the Colorado Plateau has resulted in geomorphic features that show similarities to some areas on Mars, especially certain valley networks within thick sandstone formations. Where spring sapping is an effective process, the valleys that develop are unique in terms of their morphology and network pattern.
Przeslawski, Rachel; Alvarez, Belinda; Kool, Johnathan; Bridge, Tom; Caley, M. Julian; Nichol, Scott
2015-01-01
Marine reserves are becoming progressively more important as anthropogenic impacts continue to increase, but we have little baseline information for most marine environments. In this study, we focus on the Oceanic Shoals Commonwealth Marine Reserve (CMR) in northern Australia, particularly the carbonate banks and terraces of the Sahul Shelf and Van Diemen Rise which have been designated a Key Ecological Feature (KEF). We use a species-level inventory compiled from three marine surveys to the CMR to address several questions relevant to marine management: 1) Are carbonate banks and other raised geomorphic features associated with biodiversity hotspots? 2) Can environmental (depth, substrate hardness, slope) or biogeographic (east vs west) variables help explain local and regional differences in community structure? 3) Do sponge communities differ among individual raised geomorphic features? Approximately 750 sponge specimens were collected in the Oceanic Shoals CMR and assigned to 348 species, of which only 18% included taxonomically described species. Between eastern and western areas of the CMR, there was no difference between sponge species richness or assemblages on raised geomorphic features. Among individual raised geomorphic features, sponge assemblages were significantly different, but species richness was not. Species richness showed no linear relationships with measured environmental factors, but sponge assemblages were weakly associated with several environmental variables including mean depth and mean backscatter (east and west) and mean slope (east only). These patterns of sponge diversity are applied to support the future management and monitoring of this region, particularly noting the importance of spatial scale in biodiversity assessments and associated management strategies. PMID:26606745
Wilson, Terry; Csathó, Beata
2007-01-01
High-resolution digital elevation data acquired by airborne laser scanning (ALS) for the Denton Hills, along the coastal foothills of the Royal Society Range, Transantarctic Mountains, are examined for applications to bedrock and glacial geomorphic mapping. Digital elevation models (DEMs), displayed as shaded-relief images and slope maps, portray geomorphic landscape features in unprecedented detail across the region. Structures of both ductile and brittle origin, ranging in age from the Paleozoic to the Quaternary, can be mapped from the DEMs. Glacial features, providing a record of the limits of grounded ice, of lake paleoshorelines, and of proglacial lake-ice conveyor deposits, are also prominent on the DEMs. The ALS-derived topographic data have great potential for a range of mapping applications in regions of ice-free terrain in Antarctica
Wet meadow ecosystems and the longevity of biologically-mediated geomorphic features
NASA Astrophysics Data System (ADS)
Nash, C.; Grant, G.; O'Connor, J. E.
2016-12-01
Upland meadows represent a ubiquitous feature of montane landscapes in the U.S. West and beyond. Characterized by flat valley floors flanked by higher-gradient hillslopes, these meadows are important features, both for the diverse ecosystems they support but also because they represent depositional features in what is primarily an erosional environment. As such, they serve as long-term chronometers of both geological and ecological processes in a portion of the landscape where such records are rare, and provide a useful microcosm for exploring many of the questions motivating critical zone science. Specifically, meadows can offer insights into questions regarding the longevity of theses biologically-mediated landscapes, and the geomorphic thresholds associated with transitions between metastable landscape states. Though categorically depositional, wet meadows have been shown to rapidly shift into erosional landscapes characterized by deep arroyos, declining water tables, and sparse, semi-arid ecosystems. Numerous hypotheses have been proposed explaining this shift: intensive ungulate usage, removal of beaver, climatic shifts, and intrinsic geomorphic evolution. Even less is known about the mechanisms controlling the construction of these meadow features. Evidence seems to suggest these channels oscillate between two metastable conditions: deeply incised, single-threaded channels and sheet-flow dominated valley-spanning wetlands. We present new evidence exploring the subsurface architecture of wet meadows and the bidirectional process cascades potentially responsible for their temporal evolution. Using a combination of near surface geophysical techniques and detailed stratigraphic descriptions of incised and un-incised meadows throughout the Silvies River Basin, OR, we examine mechanisms responsible both for the construction of these features and their apparently rapid transition from depositional to erosional. Our investigation focuses specifically on potential interactions between biogenic and geomorphic features and processes: beaver meadow complexes, downed wood, and the accumulation of senescent vegetation to form thick peat mounds. These observations have broad potential utility to help guide meadow restoration efforts across the Western U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debusshere, K.; Westphal, K.; Penland, S.
1989-09-01
Catastrophic geomorphic changes occurred in the Isles Dernieres barrier island arc as a result of the direct impact of three hurricanes in 1985. The severity of the impact of hurricanes Danny, Elena, and Juan had not been equaled since the landfall of hurricanes Betsy and Camille in the late 1960s. The Isles Dernieres had not been subjected to a direct hurricane landfall since hurricane Bob in 1979. The recent hurricane impacts provided the USGS/LGS Louisiana Cooperative Barrier Island and Land Loss Study the opportunity to examine the process-response characteristics of this low-profile transgressive barrier island arc to multiple hurricane impactsmore » in a single hurricane season. The geomorphic changes along the Isles Dernieres were determined using four sequential airborne videotape surveys acquired in July 1984, July 1985 (pre-storm), August 1985 (post-Danny) and November 1985 (post-Juan) and mapped on 1:24,000 base maps produced from concurrent vertical aerial photography. A coastal geomorphic classification was developed to describe, quantify, and map the alongshore geomorphic, sedimentologic , and vegetative character of this barrier shoreline. The classification consists of three levels of descriptors: (1) primary morphology to define the predominant longshore morphology, (2) modifiers to depict the small-scale longshore features, and (3) variants to locate and quantify important coastal features, not mappable at the scale used.« less
New geomorphic data on the active Taiwan orogen: A multisource approach
NASA Technical Reports Server (NTRS)
Deffontaines, B.; Lee, J.-C.; Angelier, J.; Carvalho, J.; Rudant, J.-P.
1994-01-01
A multisource and multiscale approach of Taiwan morphotectonics combines different complementary geomorphic analyses based on a new elevation model (DEM), side-looking airborne radar (SLAR), and satellite (SPOT) imagery, aerial photographs, and control from independent field data. This analysis enables us not only to present an integrated geomorphic description of the Taiwan orogen but also to highlight some new geodynamic aspects. Well-known, major geological structures such as the Longitudinal Valley, Lishan, Pingtung, and the Foothills fault zones are of course clearly recognized, but numerous, previously unrecognized structures appear distributed within different regions of Taiwan. For instance, transfer fault zones within the Western Foothills and the Central Range are identified based on analyses of lineaments and general morphology. In many cases, the existence of geomorphic features identified in general images is supported by the results of geological field analyses carried out independently. In turn, the field analyses of structures and mechanisms at some sites provide a key for interpreting similar geomorphic featues in other areas. Examples are the conjugate pattern of strike-slip faults within the Central Range and the oblique fold-and-thrust pattern of the Coastal Range. Furthermore, neotectonic and morphological analyses (drainage and erosional surfaces) has been combined in order to obtain a more comprehensive description and interpretation of neotectonic features in Taiwan, such as for the Longitudinal Valley Fault. Next, at a more general scale, numerical processing of digital elevation models, resulting in average topography, summit level or base level maps, allows identification of major features related to the dynamics of uplift and erosion and estimates of erosion balance. Finally, a preliminary morphotectonic sketch map of Taiwan, combining information from all the sources listed above, is presented.
NASA Technical Reports Server (NTRS)
Krebs, P. V.; Hoffer, R. M. (Principal Investigator)
1976-01-01
The author has identified the following significant results. LANDSAT MSS imagery provided an excellent overview which put a geomorphic study into a regional perspective, using scale 1:250,000 or smaller. It was used for deriving a data base for land use planning for southern San Juan Mountains. Stereo pairing of adjacent images was the best method for all geomorphic mapping. Combining this with snow enhancement, seasonal enhancement, and reversal aided in interpretation of geomorphic features. Drainage patterns were mapped in much greater detail from LANDSAT than from a two deg quadrangle base.
Geomorphic domains and linear features on Landsat images, Circle Quadrangle, Alaska
Simpson, S.L.
1984-01-01
A remote sensing study using Landsat images was undertaken as part of the Alaska Mineral Resource Assessment Program (AMRAP). Geomorphic domains A and B, identified on enhanced Landsat images, divide Circle quadrangle south of Tintina fault zone into two regional areas having major differences in surface characteristics. Domain A is a roughly rectangular, northeast-trending area of relatively low relief and simple, widely spaced drainages, except where igneous rocks are exposed. In contrast, domain B, which bounds two sides of domain A, is more intricately dissected showing abrupt changes in slope and relatively high relief. The northwestern part of geomorphic domain A includes a previously mapped tectonostratigraphic terrane. The southeastern boundary of domain A occurs entirely within the adjoining tectonostratigraphic terrane. The sharp geomorphic contrast along the southeastern boundary of domain A and the existence of known faults along this boundary suggest that the southeastern part of domain A may be a subdivision of the adjoining terrane. Detailed field studies would be necessary to determine the characteristics of the subdivision. Domain B appears to be divisible into large areas of different geomorphic terrains by east-northeast-trending curvilinear lines drawn on Landsat images. Segments of two of these lines correlate with parts of boundaries of mapped tectonostratigraphic terranes. On Landsat images prominent north-trending lineaments together with the curvilinear lines form a large-scale regional pattern that is transected by mapped north-northeast-trending high-angle faults. The lineaments indicate possible lithlogic variations and/or structural boundaries. A statistical strike-frequency analysis of the linear features data for Circle quadrangle shows that northeast-trending linear features predominate throughout, and that most northwest-trending linear features are found south of Tintina fault zone. A major trend interval of N.64-72E. in the linear feature data, corresponds to the strike of foliations in metamorphic rocks and magnetic anomalies reflecting compositional variations suggesting that most linear features in the southern part of the quadrangle probably are related to lithologic variations brought about by folding and foliation of metamorphic rocks. A second important trend interval, N.14-35E., may be related to thrusting south of the Tintina fault zone, as high concentrations of linear features within this interval are found in areas of mapped thrusts. Low concentrations of linear features are found in areas of most igneous intrusives. High concentrations of linear features do not correspond to areas of mineralization in any consistent or significant way that would allow concentration patterns to be easily used as an aid in locating areas of mineralization. The results of this remote sensing study indicate that there are several possibly important areas where further detailed studies are warranted.
Yardang geometries in the Qaidam Basin and their controlling factors
NASA Astrophysics Data System (ADS)
Hu, Chengqing; Chen, Ninghua; Kapp, Paul; Chen, Jianyu; Xiao, Ancheng; Zhao, Yanhui
2017-12-01
The hyperarid Qaidam Basin features extensive fields of yardangs (covering an area of 40,000km2) sculpted in tectonically folded sedimentary rocks. We extracted the geometries of 16,749 yardangs, such as length-to-width ratio (L/W), spatial density, and spacing, from multi-source remote sensing data provided by Google Earth™. We classified the yardangs into four types based on their L/W: short-axis (1-2), whale-back (2-6), hogsback (6-10) and long-ridge (10 - 210). We interpreted the yardang geometries in the context of their geologic setting (bedding orientation, location along anticline crests or syncline troughs, and lithologic heterogeneity). Our results show that the yardang geometries in the Qaidam Basin are mainly controlled by the structural geology and rheology of the sedimentary rocks (e.g., strike and dip of bedding, the presence or absence of interbedded soft and hard beds, and structural position with folds), the angle between geomorphically-effective wind directions and the strike of bedding, and the relative cumulative wind shear force where two geomorphically-effective wind directions are present. Our analysis revealed the following: 1) nearly 69% of the yardangs with long-ridge and hogsback geometries are distributed in syncline areas whereas 73% of the yardangs with short-axis geometries are distributed in anticline areas; 2) the L/W ratio of yardangs exposed along the windward limbs of anticlines is lower than that of yardangs exposed along the leeward limbs; and 3) in the westernmost parts of the basin, yardangs are locally sculpted into mounds by two geomorphically-effective wind directions.
Crater Lakes on Mars: Development of Quantitative Thermal and Geomorphic Models
NASA Technical Reports Server (NTRS)
Barnhart, C. J.; Tulaczyk, S.; Asphaug, E.; Kraal, E. R.; Moore, J.
2005-01-01
Impact craters on Mars have served as catchments for channel-eroding surface fluids, and hundreds of examples of candidate paleolakes are documented [1,2] (see Figure 1). Because these features show similarity to terrestrial shorelines, wave action has been hypothesized as the geomorphic agent responsible for the generation of these features [3]. Recent efforts have examined the potential for shoreline formation by wind-driven waves, in order to turn an important but controversial idea into a quantitative, falsifiable hypothesis. These studies have concluded that significant wave-action shorelines are unlikely to have formed commonly within craters on Mars, barring Earth-like weather for approx.1000 years [4,5,6].
NASA Astrophysics Data System (ADS)
Grabowski, Robert; Gurnell, Angela
2016-04-01
Physical habitat restoration is increasingly being used to improve the ecological status of rivers. This is particularly true for lowland streams which are perceived to lack sufficient energy to create new features or to flush out fine sediment derived from agricultural and urban sources. However, this study has found that even in low-energy, base-flow dominated chalk streams, physical habitat improvement can happen naturally without direct human intervention. Furthermore this positive change is achieved by components of the river that are often regarded as management problems: in-stream macrophytes (i.e. weed), riparian trees, woody debris, and most importantly fine sediment. This project investigated the long-term changes in channel planform for the River Frome (Dorset, UK) over the last 120 years and the role of aquatic and riparian vegetation in driving this change. Agricultural census data, historical maps, recent aerial images and field observations were analysed within a process-based, hierarchical framework for hydromorphological assessment, developed in the EU FP7 REFORM project, to investigate the source and timing of fine sediment production in the catchment, to quantify the reach-scale geomorphic response, and to identify vegetation-related bedforms that could be responsible for the adjustment. The analysis reveals that the channel has narrowed and become more sinuous in the last 50-60 years. The timing of this planform adjustment correlates with substantial changes in land use and agricultural practices (post-World War II) that are known to increase soil erosion and sediment connectivity. The field observations and recent aerial images suggest that the increased delivery of fine sediment to the channel has been translated into geomorphic adjustment and diversification though the interactions between vegetation, water flow and sediment. Emergent aquatic macrophytes are retaining fine sediment, leading to the development of submerged shelves that aggrade over time to form bars, berms and benches. This process drives the extension of the river bank into the channel, narrowing it and increasing sinuosity. In reaches with well-developed woody riparian vegetation, the geomorphic changes are more complex, with fine sediment being absorbed into a diverse mosaic of geomorphic features initiated by living trees and large wood. This study underlines the importance of vegetation for the geomorphic adjustment and diversification of lowland rivers and as a component of sustainable river management.
NASA Astrophysics Data System (ADS)
Bianco, S.; Jones, J. A.; Gosnell, H.
2017-12-01
Process-based restoration, a new approach to river and floodplain management, is being implemented on federal lands across Oregon. These management efforts are aimed at promoting key physical processes in order to improve river ecological function, create diverse habitat, and increase biological productivity for ESA-listed bull trout and spring Chinook salmon. Although the practice is being disseminated across the Pacific Northwest, it remains unclear what is driving aquatic and riparian ecosystem restoration towards this process-based approach and away from form-based methods such as Rosgen's Natural Channel Design. The technical aspects of process-based restoration have been described in the literature (ex. Beechie et al. 2010), but little is known about the practice from a social science perspective, and few case studies exist to assess the impact of these efforts. We combine semi-structured qualitative interviews with management experts and photogrammetric analysis to better understand how complex social processes and changing ideas about aquatic ecosystems are manifesting on the ground in federal land management. This study characterizes process-based river and floodplain restoration projects on federal lands in Oregon, and identifies catalysts and barriers to its implementation. The Deer Creek Floodplain Enhancement project serves as a case study for photogrammetric analysis. To characterize long-term changes at Deer Creek, geomorphic features were mapped and classified using orthoimage mosaics developed from a time series of historic aerial photographs dating back to 1954. 3D Digital Elevation Models (3D-DEMs) were created of portions of the modified sections of Deer Creek and its floodplain immediately before and after restoration using drone-captured aerial photography and a photogrammetric technique called Structure from Motion. These 3D-DEMs have enabled extraction of first-order geomorphic variables to compare pre- and post-project conditions. This study improves understanding of the historic range of conditions at Deer Creek, and assesses how process-based restoration activities drive short-term changes in geomorphic features, which can in turn influence complex riverine processes such as energy dissipation and sediment deposition.
NASA Astrophysics Data System (ADS)
Glaubius, J.; Maerker, M.
2016-12-01
Anthropogenic landforms, such as mines and agricultural terraces, are impacted by both geomorphic and social processes at varying intensities through time. In the case of agricultural terraces, decisions regarding terrace maintenance are intertwined with land use, such as when terraced fields are abandoned. Furthermore, terrace maintenance and land use decisions, either jointly or separately, may be in response to geomorphic processes, as well as geomorphic feedbacks. Previous studies of these complex geomorphic systems considered agricultural terraces as static features or analyzed only the geomorphic response to landowner decisions. Such research is appropriate for short-term or binary landscape scenarios (e.g. the impact of maintained vs. abandoned terraces), but the complexities inherent in these socio-natural systems requires an approach that includes both social and geomorphic processes. This project analyzes feedbacks and emergent properties in terraced systems by implementing a coupled landscape evolution model (LEM) and agent-based model (ABM) using the Landlab and Mesa modeling libraries. In the ABM portion of the model, agricultural terraces are conceptualized using a life-cycle stages schema and implemented using Markov Decision Processes to simulate the changing geomorphic impact of terracing based on human decisions. This paper examines the applicability of this approach by comparing results from a LEM-only model against the coupled LEM-ABM model for a terraced region. Model results are compared by quantify and spatial patterning of sediment transport. This approach fully captures long-term landscape evolution of terraced terrain that is otherwise lost when the life-cycle of terraces is not considered. The coupled LEM-ABM approach balances both environmental and social processes so that the socio-natural feedbacks in such anthropogenic systems can be disentangled.
The topographic signature of anthropogenic geomorphic processes
NASA Astrophysics Data System (ADS)
Tarolli, P.; Sofia, G.
2014-12-01
Within an abiotic-dominated context, geomorphologic patterns and dynamics are single expressions of trade-offs between the physical resistance forces, and the mechanical and chemical forces related to climate and erosion. Recently, however, it has become essential for the geomorphological community to take into account also biota as a fundamental geomorphologic agent acting from local to regional scales. However, while there is a recent flourishing literature about the impacts of vegetation on geomorphic processes, the study of anthropogenic pressure on geomorphology is still at its early stages. Humans are indeed among the most prominent geomorphic agents, redistributing land surface, and causing drastic changes to the geomorphic organization of the landscape (e.g. intensive agriculture, urbanization), with direct consequences on land degradation and watershed response. The reconstruction or identification of artificial or anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the context of the Anthropocene epoch. High-resolution topographic data derived from the recent remote sensing technologies (e.g. lidar, SAR, SfM), offer now new opportunities to recognize better understand geomorphic processes from topographic signatures, especially in engineered landscapes where the direct anthropic alteration of processes is significant. It is possible indeed to better recognize human-induced geomorphic and anthropogenic features (e.g. road networks, agricultural terraces), and the connected erosion. The study presented here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during urban development and help guide future research directions for development-based watershed studies. Human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth's rapidly changing ecosystems. Tarolli, P. (2014). High-resolution topography for understanding Earth surface processes: opportunities and challenges, Geomorphology, 216, 295-312, doi:10.1016/j.geomorph.2014.03.008.
NASA Technical Reports Server (NTRS)
Miller, D. A.; Petersen, G. W.; Kahle, A. B.
1986-01-01
Arid and semiarid regions yield excellent opportunities for the study of pedologic and geomorphic processes. The dominance of rock and soil exposure over vegetation not only provides the ground observer with observational possibilities but also affords good opportunities for measurement by aircraft and satellite remote sensor devices. Previous studies conducted in the area of pedologic and geomorphic mapping in arid regions with remotely sensed data have utilized information obtained in the visible to near-infrared portion of the spectrum. Thermal Infrared Multispectral Scanner (TIMS) and Thematic Mapping (TM) data collected in 1984 are being used in comjunction with maps compiled during a Bureau of Land Management (BLM) soil survey to aid in a detailed mapping of alluvial fan and playa surfaces within the valley. The results from this study may yield valuable information concerning the application of thermal data and thermal/visible data combinations to the problem of dating pedologic and geomorphic features in arid regions.
Time and the rivers flowing: Fluvial geomorphology since 1960
NASA Astrophysics Data System (ADS)
Wohl, Ellen
2014-07-01
Fluvial geomorphology has been the largest single subdiscipline within geomorphology for many decades. Fluvial geomorphic expertise is integral to understanding and managing rivers and to developing strategies for sustainable development. This paper provides an overview of some of the significant advances in fluvial geomorphology between 1960 and 2010 with respect to: conceptual models; fluvial features and environments being studied; tools used by fluvial geomorphologists; geomorphic specialty groups within professional societies; journals in which fluvial geomorphic research is published; and textbooks of fluvial geomorphology. During this half century, fluvial geomorphology broadened considerably in scope, from a focus primarily on physical principles underlying process and form in lower gradient channels with limited grain size range, to a more integrative view of rivers as ecosystems with nonlinear behavior and great diversity of gradient, substrate composition, and grain size. The array of tools for making basic observations, analyzing data, and disseminating research results also expanded considerably during this period, as did the diversity of the fluvial geomorphic community.
The role of catastrophic geomorphic events in central Appalachian landscape evolution
Jacobson, R.B.; Miller, A.J.; Smith, J.A.
1989-01-01
Catastrophic geomorphic events are taken as those that are large, sudden, and rare on human timescales. In the nonglaciated, low-seismicity central Appalachians, these are dominantly floods and landslides. Evaluation of the role of catastrophic events in landscape evolution includes assessment of their contributions to denudation and formation of prominent landscape features, and how they vary through space and time. Tropical storm paths and topographic barriers at the Blue Ridge and Allegheny Front create significant climatic variability across the Appalachians. For moderate floods, the influence of basin geology is apparent in modifying severity of flooding, but for the most extreme events, flood discharges relate mainly to rainfall characteristics such as intensity, duration, storm size, and location. Landslide susceptibility relates more directly to geologic controls that determine what intensity and duration of rainfall will trigger slope instability. Large floods and landslides are not necessarily effective in producing prominent geomorphic features. Large historic floods in the Piedmont have been minimally effective in producing prominent and persistent geomorphic features. In contrast, smaller floods in the Valley and Ridge produced erosional and depositional features that probably will require thousands of years to efface. Scars and deposits of debris slide-avalanches triggered on sandstone ridges recover slowly and persist much longer than scars and deposits of smaller landslides triggered on finer-grained regolith, even though the smaller landslides may have eroded greater aggregate volume. The surficial stratigraphic record can be used to extend the spatial and temporal limits of our knowledge of catastrophic events. Many prominent alluvial and colluvial landforms in the central Appalachians are composed of sediments that were deposited by processes similar to those observed in historic catastrophic events. Available stratigraphic evidence shows two scales of temporal variation: one related to Quaternary climate changes and a more-recent, higher-frequency variation due to rare events during the Holocene. In much of the central Appalachians, landforms related to Quaternary climate changes persist as the most prominent features, despite the modifying effects of late-Holocene catastrophic events. ?? 1989.
NASA Astrophysics Data System (ADS)
McKean, J.; Isaak, D.; Tonina, D.; Wright, W.; Kinzel, P.
2007-12-01
Basic description of channel and floodplain topography remains a fundamental challenge for modeling flow and sediment transport or even simply mapping habitat. Standard field wading and boat surveys of stream topography are limited by costs and logistics to relatively small sample reaches and floodplain maps are seldom well- integrated with channel bathymetry. We used the NASA Experimental Advanced Airborne Research Lidar (EAARL) to map channel and floodplain topography and investigate geomorphic controls on physical habitat in two diverse channels in the watershed of the Middle Fork Salmon River, Idaho. Bear Valley Creek is a small low-gradient gravel-bed stream flowing across an unconfined valley filled with glacial outwash materials. A hierarchy of nested geomorphic features is evident in this channel with the broadest fluvial domains a legacy of ~15,000 years of post-glacial valley evolution. Contemporary hydraulics operate on this broad template and control two smaller scales of pool-riffle morphology. Salmon spawning patterns closely reflect these nested physical domains, demonstrating how geomorphic history can influence modern distributions of aquatic habitat and organisms. In contrast, Big Creek is a higher-gradient stream predominately confined by steep side slopes in a deep valley. Here, the distribution of geomorphic domains and physical habitat is controlled by modern erosion processes and rock quality. Tributaries and valley walls contribute coarse debris, up to large boulders, to the channel, resulting in very rough and poorly organized bed topography. Tributary fans also function as local grade control with sediment deposition in lower-gradient reaches upstream of fans. A GIS toolkit is under development to extract at-a-station channel metrics from EAARL data, including for example, cross section and longitudinal profile characteristics. A new investigation has also begun to further investigate the quality of EAARL data. This study will explore the question of how well we must describe channel topography to adequately: i) map the spatial distribution of physical habitat for management purposes and in support of organism population growth models, and ii) define boundary conditions for flow and sediment transport predictions using the USGS model MD SWMS.
Influences of Altered River Geomorphology on Channel-Floodplain Mass and Momentum Transfer
NASA Astrophysics Data System (ADS)
Byrne, C. F.; Stone, M. C.
2017-12-01
River management strategies, including both river engineering and restoration, have altered river geomorphology and associated lateral channel-floodplain connectivity throughout the world. This altered connectivity is known to drive changes in ecologic and geomorphic processes during floods, however, quantification of altered connectivity is difficult due to the highly dynamic spatial and temporal nature of flood wave conditions. The objective of this research was to quantify the physical processes of lateral mass and momentum transfer at the channel-floodplain interface. The objective was achieved with the implementation of novel scripting and high-resolution, two-dimensional hydrodynamic modeling techniques under unsteady flow conditions. The process-based analysis focused on three geomorphic feature types within the Middle Rio Grande, New Mexico, USA: (1) historical floodplain surfaces, (2) inset floodplain surfaces formed as a result of channel training and hydrologic alteration, and (3) mechanically restored floodplain surfaces. Results suggest that inset floodplain feature types are not only subject to greater mass and momentum transfer magnitudes, but those connections are also more heterogeneous in nature compared with historical feature types. While restored floodplain feature types exhibit transfer magnitudes and heterogeneity comparable to inset feature types, the surfaces are not of great enough spatial extent to substantially influence total channel-floodplain mass and momentum transfer. Mass and momentum transfer also displayed differing characteristic changes as a result of increased flood magnitude, indicating that linked hydrodynamic processes can be altered differently as a result of geomorphic and hydrologic change. The results display the potential of high-resolution modeling strategies in capturing the spatial and temporal complexities of river processes. In addition, the results have implications for other fields of river science including biogeochemical exchange at the channel-floodplain interface and quantification of process associated with environmental flow and river restoration strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, P.L.
1995-03-01
This report presents an examination of the geometry of the Hayward fault adjacent to the Lawrence Berkeley Laboratory and University of California campuses in central Berkeley. The fault crosses inside the eastern border of the UC campus. Most subtle geomorphic (landform) expressions of the fault have been removed by development and by the natural processes of landsliding and erosion. Some clear expressions of the fault remain however, and these are key to mapping the main trace through the campus area. In addition, original geomorphic evidence of the fault`s location was recovered from large scale mapping of the site dating frommore » 1873 to 1897. Before construction obscured and removed natural landforms, the fault was expressed by a linear, northwest-tending zone of fault-related geomorphic features. There existed well-defined and subtle stream offsets and beheaded channels, fault scarps, and a prominent ``shutter ridge``. To improve our confidence in fault locations interpreted from landforms, we referred to clear fault exposures revealed in trenching, revealed during the construction of the Foothill Housing Complex, and revealed along the length of the Lawson Adit mining tunnel. Also utilized were the locations of offset cultural features. At several locations across the study area, distress features in buildings and streets have been used to precisely locate the fault. Recent published mapping of the fault (Lienkaemper, 1992) was principally used for reference to evidence of the fault`s location to the northwest and southeast of Lawrence Berkeley Laboratory.« less
TerraceM: A Matlab® tool to analyze marine terraces from high-resolution topography
NASA Astrophysics Data System (ADS)
Jara-Muñoz, Julius; Melnick, Daniel; Strecker, Manfred
2015-04-01
To date, Light detection and ranging (LiDAR), high- resolution topographic data sets enable remote identification of submeter-scale geomorphic features bringing valuable information of the landscape and geomorphic markers of tectonic deformation such as fault-scarp offsets, fluvial and marine terraces. Recent studies of marine terraces using LiDAR data have demonstrated that these landforms can be readily isolated from other landforms in the landscape, using slope and roughness parameters that allow for unambiguously mapping regional extents of terrace sequences. Marine terrace elevation has been used since decades as geodetic benchmarks of Quaternary deformation. Uplift rates may be estimated by locating the shoreline angle, a geomorphic feature correlated with the high-stand position of past sea levels. Indeed, precise identification of the shoreline-angle position is an important requirement to obtain reliable tectonic rates and coherent spatial correlation. To improve our ability to rapidly assess and map different shoreline angles at a regional scale we have developed the TerraceM application. TerraceM is a Matlab® tool that allows estimating the shoreline angle and its associated error using high-resolution topography. For convenience, TerraceM includes a graphical user interface (GUI) linked with Google Maps® API. The analysis starts by defining swath profiles from a shapefile created on a GIS platform orientated orthogonally to the terrace riser. TerraceM functions are included to extract and analyze the swath profiles. Two types of coastal landscapes may be analyzed using different methodologies: staircase sequences of multiple terraces and rough, rocky coasts. The former are measured by outlining the paleo-cliffs and paleo-platforms, whereas the latter are assessed by picking the elevation of sea-stack tops. By calculating the intersection between first-order interpolations of the maximum topography of swath profiles we define the shoreline angle in staircase terraces. For rocky coasts, the maximum stack peaks for a defined search ratio as well as a defined inflection point on the adjacent main cliff are interpolated to calculate the shoreline angle at the intersection with the cliff. Error estimates are based on the standard deviation of the linear regressions. The geomorphic age of terraces (Kt) can be also calculated by the linear diffusion equation (Hanks et al., 1989), with a best-fitting model found by minimizing the RMS. TerraceM has the ability to efficiently process several profiles in batch-mode run. Results may be exported in various formats, including Google Earth and ArcGis, basic statistics are automatically computed. Test runs have been made at Santa Cruz, California, using various topographic data sets and comparing results with published field measurements (Anderson and Menking, 1994). Repeatability was evaluated using multiple test runs made by students in a classroom setting.
Periglacial and glacial analogs for Martian landforms
NASA Technical Reports Server (NTRS)
Rossbacher, Lisa A.
1992-01-01
The list of useful terrestrial analogs for Martian landforms has been expanded to include: features developed by desiccation processes; catastrophic flood features associated with boulder-sized materials; and sorted ground developed at a density boundary. Quantitative analytical techniques developed for physical geography have been adapted and applied to planetary studies, including: quantification of the patterns of polygonally fractured ground to describe pattern randomness independent of pattern size, with possible correlation to the mechanism of origin and quantification of the relative area of a geomorphic feature or region in comparison to planetary scale. Information about Martian geomorphology studied in this project was presented at professional meetings world-wide, at seven colleges and universities, in two interactive televised courses, and as part of two books. Overall, this project has expanded the understanding of the range of terrestrial analogs for Martian landforms, including identifying several new analogs. The processes that created these terrestrial features are characterized by both cold temperatures and low humidity, and therefore both freeze-thaw and desiccation processes are important. All these results support the conclusion that water has played a significant role in the geomorphic history of Mars.
NASA Astrophysics Data System (ADS)
Schmitt, Rafael; Bizzi, Simone; Castelletti, Andrea
2013-04-01
The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since interactions of natural and anthropogenic forces within the catchment drives fluvial geomorphic processes, which shape physical habitat, affect river infrastructures and influence freshwater ecological processes. The characterization of river hydromorphological features is commonly location and time specific and highly resource demanding. Therefore, its routine application at regional or national scales and the assessment of spatio-temporal changes as reaction to internal and external disturbances is rarely feasible at present. Information ranging from recently available high-resolution remote-sensing data (such as DEM), historic data such as land use maps or aerial photographs and monitoring networks of flow and rainfall, open up novel and promising capacity for basin-wide understanding of dominant hydromorphological drivers. Analysing the resulting multiparametric data sets in their temporal and spatial dimensions requires sophisticated data mining tools to exploit the potential of this information. We propose a novel framework that allows for the quantitative assessment of multiparametric data sets to identify classes of channel reaches characterized by similar geomorphic drivers using remote-sensing data and monitoring networks available in the catchment. This generic framework was applied to the Red River (Song Hong) basin, the second largest basin (87,800 sq.km) in Vietnam. Besides its economic importance, the river is experiencing severe river bed incisions due to recent construction of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high development rate, current efforts to increase water productivity and minimize impacts on the fluvial systems by means of focused infrastructure and management measures require a thorough understanding of the fluvial system and, in particular, basin-wide assessment of resilience to human-induced change. . The framework proposed has allowed producing high-dimensional samples of spatially distributed geomorphic drivers at catchment scale while integrating recent and historic point records for the Red River basin. This novel dataset has been then analysed using self-organizing maps (SOM) an artificial neural network model in combination with fuzzy clustering. The above framework is able to identify non-trivial correlations in driving forces and to derive a fuzzy classification at reach scale which represents continuities and discontinuities in the river systems. The use of the above framework allowed analyzing the spatial distribution of geomorphic features at catchment scale, revealing patterns of similarities and dissimilarities within the catchment and allowing a classification of river reaches characterized by similar geomorphic drivers, fluvial processes and response to external forcing. The paper proposes an innovative and promising technique to produce hydromorphological classifications at catchment scale integrating historical and recent available high resolution data. The framework aims at opening the way to a more structured organization and analyses of recently available information on river geomorphic features, so far often missing or rarely exploited. This approach poses the basis to produce efficient databases of river geomorphic features and processes related to natural and anthropogenic drivers. That is a necessity in order to enhance our understanding of the internal and external forces which drive fluvial systems, to assess the resilience and dynamic of river landscapes and to develop the more efficient river management strategies of the future.
Active Structures as Deduced from Geomorphic Features: A case in Hsinchu Area, northwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Y.; Shyu, J.; Ota, Y.; Chen, W.; Hu, J.; Tsai, B.; Wang, Y.
2002-12-01
Hsinchu area is located in the northwestern Taiwan, the fold-and thrust belt created by arc-continent collision between Eurasian and Philippine. Since the collision event is still ongoing, the island is tectonically active and full of active faults. According to the historical records, some of the faults are seismically acting. In Hsinchuarea two active faults, the Hsinchu and Hsincheng, have been previously mapped. To evaluate the recent activities, we studied the related geomorphic features by using newly developed Digital Elevation Model (DEM), the aerial photos and field investigation. Geologically, both of the faults are coupled with a hanging wall anticline. The anticlines are recently active due to the deformation of the geomorphic surfaces. The Hsinchu fault system shows complicate corresponding scarps, distributed sub-parallel to the fault trace previously suggested by projection of subsurface geology. This is probably caused by its strike-slip component tearing the surrounding area along the main trace. The scarps associated with the Hsincheng fault system are rather simple and unique. It offsets a flight of terraces all the way down to recent flood plain, indicating its long lasting activity. One to two kilometers to east of main trace a back-thrust is found, showing coupled vertical surface offsets with the main fault. The striking discovery in this study is that the surface deformation is only distributed in the southern bank of Touchien river, also suddenly decreasing when crossing another tear fault system, which is originated from Hsincheng fault in the west and extending southeastward parallel to the Touchien river. The strike-slip fault system mentioned above not only bisects the Hsinchu fault, but also divides the Hsincheng fault into segments. The supporting evidence found in this study includes pressure ridges and depressions. As a whole, the study area is tectonically dominated by three active fault systems and two actively growing anticlines. The interactions between active structural systems formed the complicate geomorphic features presented in this paper.
Geist; Dauble
1998-09-01
/ Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management
Curtis, Jennifer A.; Wright, Scott A.; Minear, Justin T.; Flint, Lorraine E.
2015-01-01
The highest rates of change in the areal extents of channel and riparian features were observed during the pre‑2001 period, which was longer and relatively wetter than the post-2001 period. A series of tributary floods in 1997, 1998, and 2006 increased channel complexity and floodplain connectivity. During the post-2006 period, managed-flow releases, in the absence of tributary flooding, combined with gravel augmentation and mechanical restoration, caused localized increases in sediment supply and transport capacity that led to smaller, but measurable, increases in channel complexity and floodplain connectivity in the upper river near Lewiston Dam. Extensive pre-2001 channel widening and the muted geomorphic response of channel rehabilitation sites to post-2001 managed flows highlight the need for continued monitoring and assessment of the magnitude, duration, and timing of prescriptive flows and associated geomorphic responses.
NASA Astrophysics Data System (ADS)
Sinha, Rishitosh K.; Vijayan, S.
2017-09-01
Evidence for mid-high latitude glacial episodes existing within the Late Amazonian history of Mars has been reported from analysis of variety of glacial/periglacial landforms and their stratigraphic relationships. In this study, using the Context Camera (CTX) images, we have surveyed the interior of craters within the Alba Mons region of Mars (30°-60°N; 80°-140°W) to decipher the presence of ice-related flow features. The primary goals of this study are to (1) suggest from observations that the flow features identified in the interior of Alba Mons craters have flow characteristic possibly different from concentric crater fill (CCF) landforms and (2) interpret the extent of glacial activity that led to formation of flow features with respect to previously described mid-latitude ice-related landforms. Our geomorphic investigation revealed evidence for the presence of tongue-like or lobate shaped ice-related flow feature from the interior of ∼346 craters in the study region. The presence of ring-mold crater morphologies and brain-terrain texture preserved on the surface of flow features suggests that they are possibly formed of near-surface ice-rich bodies. We found that these flow features tend to form inside both the smaller (<5 km) and larger (>5 km) diameter craters emplaced at a wide range of elevation (from ∼ -3.3 km to 6.1 km). The measurement of overall length and flow direction of flow features is suggestive that they are similar to pole-facing small-scale lobate debris apron (LDA) formed inside craters. Crater size-frequency distribution of these small-scale LDAs reveals a model age of ∼10-100 Ma. Together with topographic and geomorphic observations, orientation measurements, and distribution within the study region, we suggest that the flow features (identified as pole-facing small-scale LDAs in the interior of craters) have flow characteristic possibly different from CCF landforms. Our observations and findings support the results of previous analyses that suggests Mars to have preserved records of multiple debris-covered glacial episodes occurred in the Late Amazonian.
Geomorphic floodplain with organic matter (biomass) estimates for Fanno Creek, Oregon
Sobieszczyk, Steven
2011-01-01
Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the geomorphic floodplain as derived from light detection and ranging (LiDAR) data and aerial photographic imagery. The floodplain represents current conditions including both anthropogenic alterations and natural historic floodplain features. The floodplain dataset is divided into 13 reach segments and attributed with corresponding organic material load estimates for each reach.
NASA Astrophysics Data System (ADS)
Imaizumi, Fumitoshi; Nishiguchi, Takaki; Matsuoka, Norikazu; Trappmann, Daniel; Stoffel, Markus
2018-06-01
Alpine landscapes are typically characterized by inherited features of past glaciations and, for the more recent past, by the interplay of a multitude of types of geomorphic processes, including permafrost creep, rockfalls, debris flows, and landslides. These different processes usually exhibit large spatial and temporal variations in activity and velocity. The understanding of these processes in a wide alpine area is often hindered by difficulties in their surveying. In this study, we attempt to disentangle recent changes in an alpine landscape system using geomorphic mapping and L-band DInSAR analyses (ALOS-PALSAR) in the Zermatt Valley, Swiss Alps. Geomorphic mapping points to a preferential distribution of rock glaciers on north-facing slopes, whereas talus slopes are concentrated on south-facing slopes. Field-based interpretation of ground deformation in rock glaciers and movements in talus slopes correlates well with the ratio of InSAR images showing potential ground deformation. Moraines formed during the Little Ice Age, rock glaciers, and talus slopes on north-facing slopes are more active than landforms on south-facing slopes, implying that the presence of permafrost facilitates the deformation of these geomorphic units. Such deformations of geomorphic units prevail also at the elevation of glacier termini. For rock cliffs, the ratio of images indicating retreat is affected by slope orientation and elevation. Linkages between sediment supply from rock cliffs and sediment transport in torrents are different among tributaries, affected by relative locations between sediment supply areas and the channel network. We conclude that the combined use of field surveys and L-band DInSAR analyses can substantially improve process understanding in steep, high-mountain terrain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigmosta, Mark S.; Burges, S J.
2001-10-01
What is the effect of urbanization and forest use on hydrologic and geomorphic processes? How can we develop land use policies that minimize adverse impacts on ecosystems while sustaining biodiversity? Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas addresses these issues and more. By featuring watersheds principally in the American Pacific Northwest, and the effects of timber harvesting and road construction on stream flow, sediment yield and landslide occurrence, scientists can advance their understanding of what constitutes appropriate management of environments with similar hydro-climatic-geomorphic settings worldwide.
NASA Astrophysics Data System (ADS)
Székely, Balázs; Koma, Zsófia; Csorba, Kristóf; Ferenc Morovics, József
2014-05-01
The Transdanubian Region is a typically hilly, geologically manifold area of the Pannonian Basin. It is composed primarily of Permo-Mesozoic carbonates and siliciclastic sediments, however Pannonian sedimentary units and young volcanic forms are also characteristic, such as those in the Bakony-Balaton Highland Volcanic Field. The geological diversity is reflected in the geomorphological setting: beside of the classic eroding volcanic edifices, carbonate plateaus, medium-relief, gently hilly, slowly eroding landforms are also frequent in the geomorphic mosaic of the area. Geomorphometric techniques are suitable to analyse and separate the various geomorphic units mosaicked and, in some cases, affected by (sub-)recent tectonic geomorphic processes. In our project we applied automated classification of local slope angle histograms derived of a 10-meter nominal resolution digital terrain model (DTM). Slope angle histrograms within a rectangular moving window of various sizes have been calculated in numerous experiments. The histograms then served as a multichannel input of for a k-means classification to achieve a geologically-geomorphologically sound categorization of the area. The experiments show good results in separating the very basic landforms, defined landscape boundaries can be reconstructed with high accuracy in case of larger window sizes (e.g. 5 km) and low number of categories. If the window size is smaller and the number of classes is higher, the tectonic geomorphic features are more prominently recognized, however often at the price of the clear separation boundaries: in these cases the horizontal change in the composition of various clusters matches the boundaries of the geological units. Volcanic forms are typically also put into some definite classes, however the flat plateaus of some volcanic edifices fall into another category also recognized in the experiments. In summary we can conclude that the area is suitable for such analyses, many characteristic landform elements can be recognized and, more importantly, tectonic geomorphic features are often consistently outlined. Acknowledgements: ZsK has been partly supported by Campus Hungary Internship TÁMOP-424B1, BS contributed as Alexander von Humboldt Research Fellow.
Geomorphology, tectonics, and exploration
NASA Technical Reports Server (NTRS)
Sabins, F. F., Jr.
1985-01-01
Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?
Valley plugs, land use, and phytogeomorphic response: Chapter 14
Pierce, Aaron R.; King, Sammy L.; Shroder, John F.
2013-01-01
Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.
Cartwright, Jennifer M.; Diehl, Timothy H.
2017-01-17
High-resolution digital elevation models (DEMs) derived from light detection and ranging (lidar) enable investigations of stream-channel geomorphology with much greater precision than previously possible. The U.S. Geological Survey has developed the DEM Geomorphology Toolbox, containing seven tools to automate the identification of sites of geomorphic instability that may represent sediment sources and sinks in stream-channel networks. These tools can be used to modify input DEMs on the basis of known locations of stormwater infrastructure, derive flow networks at user-specified resolutions, and identify possible sites of geomorphic instability including steep banks, abrupt changes in channel slope, or areas of rough terrain. Field verification of tool outputs identified several tool limitations but also demonstrated their overall usefulness in highlighting likely sediment sources and sinks within channel networks. In particular, spatial clusters of outputs from multiple tools can be used to prioritize field efforts to assess and restore eroding stream reaches.
Geomorphic Consequences of Volcanic Eruptions in Alaska: A Review
Waythomas, Christopher F.
2015-01-01
Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite large, with flow volumes in the range of 107–109 m3. A review of the lahars generated during the 2009 eruption of Redoubt volcano will illustrate the geomorphic impacts of lahars on stream channels and riparian habitat. Although much work is needed to develop a comprehensive understanding of the geomorphic consequences of volcanic activity in Alaska, this review provides a synthesis of some of the best-studied eruptions and perhaps will serve as a starting point for future work on this topic.
Geomorphic consequences of volcanic eruptions in Alaska: A review
Waythomas, Christopher F.
2015-01-01
Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite large, with flow volumes in the range of 107–109 m3. A review of the lahars generated during the 2009 eruption of Redoubt volcano will illustrate the geomorphic impacts of lahars on stream channels and riparian habitat. Although much work is needed to develop a comprehensive understanding of the geomorphic consequences of volcanic activity in Alaska, this review provides a synthesis of some of the best-studied eruptions and perhaps will serve as a starting point for future work on this topic.
Young, Mary; Carr, Mark
2015-01-01
Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network.
Young, Mary; Carr, Mark
2015-01-01
Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network. PMID:25760858
Valley Network Morphology and Topographic Gradients on Mars
NASA Technical Reports Server (NTRS)
Aharonson, Oded; Zuber, Maria T.; Rothman, Daniel H.; Schorghofer, Norbert; Phillips, Roger J.; Williams, Rebecca M. E.
2001-01-01
Data returned from the Mars Orbiter Laser Altimeter allows construction of a high precision digital elevation model. Quantitative investigations into the geomorphic properties of drainage features, similar to ones carried out on Earth, are now possible Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Pasternack, G. B.; Hopkins, C.
2017-12-01
A river channel and its associated riparian corridor exhibit a pattern of nested, geomorphically imprinted, lateral inundation zones (IZs). Each zone plays a key role in fluvial geomorphic processes and ecological functions. Within each zone, distinct landforms (aka geomorphic or morphological units, MUs) reside at the 0.1-10 channel width scale. These features are basic units linking river corridor morphology with local ecosystem services. Objective, automated delineation of nested inundation zones and morphological units remains a significant scientific challenge. This study describes and demonstrates new, objective methods for solving this problem, using the 35-km alluvial lower Yuba River as a testbed. A detrended, high-resolution digital elevation model constructed from near-census topographic and bathymetric data was produced and used in a hypsograph analysis, a commonly used method in oceanographic studies capable of identifying slope breaks at IZ transitions. Geomorphic interpretation mindful of the river's setting was required to properly describe each IZ identified by the hypsograph analysis. Then, a 2D hydrodynamic model was used to determine what flow yields the wetted area that most closely matches each IZ domain. The model also provided meter-scale rasters of depth and velocity useful for MU mapping. Even though MUs are discharge-independent landforms, they can be revealed by analyzing their overlying hydraulics at low flows. Baseflow depth and velocity rasters are used along with a hydraulic landform classification system to quantitatively delineate in-channel bed MU types. In-channel bar and off-channel flood and valley MUs are delineated using a combination of hydraulic and geomorphic indicators, such as depth and velocity rasters for different discharges, topographic contours, NAIP imagery, and a raster of vegetation. The ability to objectively delineate inundation zones and morphological units in tandem allows for better informed river management and restoration strategies as well as scientific studies about abiotic-biotic linkages.
Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R
2017-02-01
In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream networks will hamper efforts to understand and mitigate the vulnerability of anadromous fish habitat to climate-induced hydrologic change. © 2016 John Wiley & Sons Ltd.
Pleistocene Lake Bonneville as an analog for extraterrestrial lakes and oceans: Chapter 21
Chan, M.A.; Jewell, P.; Parker, T.J.; Ormo, J.; Okubo, Chris; Komatsu, G.
2016-01-01
Geomorphic confirmation for a putative ancient Mars ocean relies on analog comparisons of coastal-like features such as shoreline feature attributes and temporal scales of process formation. Pleistocene Lake Bonneville is one of the few large, geologically young, terrestrial lake systems that exemplify well-preserved shoreline characteristics that formed quickly, on the order of a thousand years or less. Studies of Lake Bonneville provide two essential analog considerations for interpreting shorelines on Mars: (1) morphological variations in expression depend on constructional vs erosional processes, and (2) shorelines are not always correlative at an equipotential elevation across a basin due to isostasy, heat flow, wave setup, fetch, and other factors. Although other large terrestrial lake systems display supporting evidence for geomorphic comparisons, Lake Bonneville encompasses the most integrated examples of preserved coastal features related to basin history, sediment supply, climate, and fetch, all within the context of a detailed hydrograph. These collective terrestrial lessons provide a framework to evaluate possible boundary conditions for ancient Mars hydrology and large water body environmental feedbacks. This knowledge of shoreline characteristics, processes, and environments can support explorations of habitable environments and guide future mission explorations.
Radar geomorphology of coastal and wetland environments
NASA Technical Reports Server (NTRS)
Lewis, A. J.; Macdonald, H. C.
1973-01-01
Details regarding the collection of radar imagery over the past ten years are considered together with the geomorphic, geologic, and hydrologic data which have been extracted from radar imagery. Recent investigations were conducted of the Louisiana swamp marsh and the Oregon coast. It was found that radar imagery is a useful tool to the scientist involved in wetland research.
NASA Astrophysics Data System (ADS)
Othman, Arsalan; Gloaguen, Richard
2015-04-01
Topographic effects and complex vegetation cover hinder lithology classification in mountain regions based not only in field, but also in reflectance remote sensing data. The area of interest "Bardi-Zard" is located in the NE of Iraq. It is part of the Zagros orogenic belt, where seven lithological units outcrop and is known for its chromite deposit. The aim of this study is to compare three machine learning algorithms (MLAs): Maximum Likelihood (ML), Support Vector Machines (SVM), and Random Forest (RF) in the context of a supervised lithology classification task using Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite, its derived, spatial information (spatial coordinates) and geomorphic data. We emphasize the enhancement in remote sensing lithological mapping accuracy that arises from the integration of geomorphic features and spatial information (spatial coordinates) in classifications. This study identifies that RF is better than ML and SVM algorithms in almost the sixteen combination datasets, which were tested. The overall accuracy of the best dataset combination with the RF map for the all seven classes reach ~80% and the producer and user's accuracies are ~73.91% and 76.09% respectively while the kappa coefficient is ~0.76. TPI is more effective with SVM algorithm than an RF algorithm. This paper demonstrates that adding geomorphic indices such as TPI and spatial information in the dataset increases the lithological classification accuracy.
NASA Astrophysics Data System (ADS)
French, J.; Burningham, H.; Whitehouse, R.
2010-12-01
The concept of the coastal sediment cell has proved invaluable as a basis for estimating sediment budgets and as a framework for coastal management. However, whilst coastal sediment cells are readily identified on compartmentalised coastlines dominated by beach-grade material, the cell concept is less suited to handling broader linkages between estuarine, coastal and offshore systems, and for incorporating longer-range suspended sediment transport. We present a new approach to the conceptualisation of large-scale coastal geomorphic systems based on a hierarchical classification of component landforms and management interventions and mapping of the interactions between them. Coastal system mapping is founded on a classification that identifies high-level landform features, low-level landform elements and engineering interventions. Geomorphic features define the large-scale organisation of a system and include landforms that define gross coastal configuration (e.g. headland, bay) as well as fluvial, estuarine and offshore sub-systems that exchange sediment with and influence the open coast. Detailed system structure is mapped out with reference to a larger set of geomorphic elements (e.g. cliff, dune, beach ridge). Element-element interactions define cross-shore linkages (conceptualised as hinterland, backshore and foreshore zones) and alongshore system structure. Both structural and non-structural engineering interventions are also represented at this level. Element-level mapping is rationalised to represent alongshore variation using as few elements as possible. System linkages include both sediment transfer pathways and influences not associated with direct mass transfer (e.g. effect of a jetty at an inlet). A formal procedure for capturing and graphically representing coastal system structure has been developed around free concept mapping software, CmapTools (http://cmap.ihmc.us). Appended meta-data allow geographic coordinates, data, images and literature pertaining to specific locations to be embedded in system maps. Exported maps can be analysed separately to quantify abundance of system components and their scales of interaction. Our approach is demonstrated for different scales and geomorphic contexts in the UK, including Alnmouth Bay (NE England; 15km), Lowestoft to Felixstowe (E England; 73km) and Cardigan Bay (Wales; 267km). Aerial imagery provides the primary basis for identifying features and elements and likely modes of interaction. This interpretation is then checked against relevant research literature and site data. Coastal system mapping is a kind of knowledge formalisation that generalises disparate sources of information (‘plain data’) into usable knowledge. Consensus-derived system maps are highly effective as a catalyst for structured discussion of geomorphic system behaviour and its implications for coastal management. They also function as a repository for results from quantitative analyses and modelling.
Examples of geomorphic reclamation on mined lands in Spain by using the GeoFluv method
NASA Astrophysics Data System (ADS)
Martín Duque, José F.; Bugosh, Nicholas; de Francisco, Cristina; Hernando, Néstor; Martín, Cristina; Nicolau, José M.; Nyssen, Sara; Tejedor, María; Zapico, Ignacio
2015-04-01
This paper describes seven examples of geomorphic reclamation on mined lands of Spain, as solutions for complex environmental problems, by using the GeoFluv method through the Natural Regrade software (Carlson). Of these seven examples, four of them have been partially or totally constructed. Each of them has its own particularities and contributions, becoming innovative geomorphic solutions to existing environmental (ecological, social and economic) problems. The Quebraderos de la Serrana example (Toledo province) allowed a local company to get permission for slate quarrying in a highly ecologically vulnerable area; before that, the permission for extracting rocks had been rejected with a conventional reclamation approach. The Somolinos case is, to this date, the most complete geomorphic reclamation in Spain, and the first one in Europe to have been built by using the GeoFluv method. This restoration has healed a degraded area of about six hectares at the outskirts of the Somolinos hamlet, in a valuable rural landscape of the Guadalajara province. The Arlanza example (Leon province) shows a design which proposes to restore the hydrological connectivity of a coal mine dump which blocked a valley. The Machorro and María Jose examples (Guadalajara province) are allowing kaolin mining to be compatible with the preservation of protected areas at the edge of the Upper Tagus Natural Park (UTNP), in highly vulnerable conditions for water erosion. The Campredó case (Tarragona province) shows an agreement between a mining company, the academia, and the Catalonian Agency of Water, to combine a high standard of geomorphic reclamation with solving problems caused by flooding downstream of a clay mining area. Finally, the Nuria example is also located at the UTNP area; the goals here are to stabilize a large landslide in a waste dump and to minimize the risk of occurrence of flash floods from mining ponds. Additional information on these examples and about the state of art of the Geomorphic Reclamation practice in Spain can be found at http://www.restauraciongeomorfologica.es.
NASA Astrophysics Data System (ADS)
Kendrick, K. J.; Matti, J. C.
2017-12-01
The San Gorgonio Pass (SGP) region of southern California represents an extraordinarily complex section of the San Andreas Fault (SAF) zone, often referred to as a structural knot. Complexity is expressed both structurally and geomorphically, and arises because multiple strands of the SAF have evolved here in Quaternary time. Our integration of geologic and geomorphic analyses led to recognition of multiple fault-bounded blocks characterized by crystalline rocks that have similar physical properties. Hence, any morphometric differences in hypsometric analysis, slope, slope distribution, texture, and stream-power measurements and discontinuities reflect landscape response to tectonic processes rather than differences in lithology. We propose that the differing morphometry of the two blocks on either side of the San Bernardino strand (SBS) of the SAF, the high-standing Kitching Peak block to the east and the lower, more subdued Pisgah Peak block to the west, strongly suggests that the blocks experienced different uplift histories. This difference in uplift histories, in turn suggests that dextral slip occurred over a long time interval on the SBS—despite long-lived controversy raised by the fact that, at the surface, a throughgoing trace of the SBS is not present at this location. A different tectonic history between the two blocks is consistent with the gravity data which indicate that low-density rocks underthrusting the Kitching Peak block are absent below the Pisgah Peak block (Langenheim et al., 2015). Throughgoing slip on the SBS implied by geomorphic differences between the two blocks is also consistent with displaced geologic and geomorphic features. We find compelling evidence for discrete offsets of between 0.6 and 6 km of dextral slip on the SBS, including offset of fluvial and landslide deposits, and beheaded drainages. Although we lack numerical age control for the offset features, the degree of soil development associated with displaced landforms suggests that the SBS has had a longer geologic history than previously proposed, and that this fault strand may have experienced episodic activity. Landscape evolution and geologic evidence together require that dextral slip on the SAF must have continued through the SGP structural knot during an extended interval in the past.
Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling
NASA Astrophysics Data System (ADS)
Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.
2008-12-01
Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.
Spatial Distribution and Morphology of Sediments in Texas Southern High Plains Playa Wetlands
USDA-ARS?s Scientific Manuscript database
Playas are depressional geomorphic features on the U.S. High Plains and about 20,000 Southern High Plains playa wetlands serve as runoff catchment basins, which are thought to be focal points of Ogallala aquifer recharge. Sediments in playas can alter biodiversity services, impede aquifer recharge,...
Laura A. Murray; Bob Eppinette; John H. Thorp
2000-01-01
The Coosawhatchie River, through erosion and downcutting, carved a fluvial valley through the Wicomico and Pamlico marine terraces during the late Pleistocene-Holocene period. The floodplain is relatively small and immature compared to the major river systems of the South Carolina Lower Coastal Plain. Consequently, the classic geomorphic features of a larger fluvial...
Integrating legacy data to understand agroecosystem regional dynamics to catastrophic events
USDA-ARS?s Scientific Manuscript database
Multi-year extreme drought events are part of the history of the Earth system. Legacy data on the climate drivers, geomorphic features, and agroecosystem responses across a dynamically changing landscape throughout a region can provide important insights to a future where large-scale catastrophic ev...
USDA-ARS?s Scientific Manuscript database
Run-off from livestock production can pose a risk to environmental quality particularly in karst terrains where geomorphic features like sinkholes provide rapid passage for contaminants to ground water resources. In these environments, it is especially important to understand how variations in terr...
Geomorphic Evidence for Martian Ground Ice and Climate Change
NASA Technical Reports Server (NTRS)
Kanner, L. C.; Allen, C. C.; Bell, M. S.
2004-01-01
Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (>60 ) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35+/- 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a < km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 deg.N- 65 deg.N).
NASA Technical Reports Server (NTRS)
Grant, John A., III; Nedell, Susan S.
1987-01-01
The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.
Natural and human forcing in recent geomorphic change; case studies in the Rio de la Plata basin.
Bonachea, Jaime; Bruschi, Viola M; Hurtado, Martín A; Forte, Luis M; da Silva, Mario; Etcheverry, Ricardo; Cavallotto, José L; Dantas, Marcilene F; Pejon, Osni J; Zuquette, Lázaro V; Bezerra, Maria Angélica de O; Remondo, Juan; Rivas, Victoria; Gómez-Arozamena, José; Fernández, Gema; Cendrero, Antonio
2010-06-01
An analysis of geomorphic system's response to change in human and natural drivers in some areas within the Río de la Plata basin is presented. The aim is to determine whether an acceleration of geomorphic processes has taken place in recent years and, if so, to what extent it is due to natural (climate) or human (land-use) drivers. Study areas of different size, socio-economic and geomorphic conditions have been selected: the Río de la Plata estuary and three sub-basins within its watershed. Sediment cores were extracted and dated ((210)Pb) to determine sedimentation rates since the end of the 19th century. Rates were compared with time series on rainfall as well as human drivers such as population, GDP, livestock load, crop area, energy consumption or cement consumption, all of them related to human capacity to disturb land surface. Data on river discharge were also gathered. Results obtained indicate that sedimentation rates during the last century have remained essentially constant in a remote Andean basin, whereas they show important increases in the other two, particularly one located by the São Paulo metropolitan area. Rates in the estuary are somewhere in between. It appears that there is an intensification of denudation/sedimentation processes within the basin. Rainfall remained stable or varied very slightly during the period analysed and does not seem to explain increases of sedimentation rates observed. Human drivers, particularly those more directly related to capacity to disturb land surface (GDP, energy or cement consumption) show variations that suggest human forcing is a more likely explanation for the observed change in geomorphic processes. It appears that a marked increase in denudation, of a "technological" nature, is taking place in this basin and leading to an acceleration of sediment supply. This is coherent with similar increases observed in other regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.
River Sensitivity and Catchment Connectivity: Key Controls on Geomorphic Response and Effectiveness
NASA Astrophysics Data System (ADS)
Lisenby, P.; Fryirs, K.; Croke, J.
2016-12-01
The sensitivity of river channels to adjustment and the dynamics of sediment connectivity along a channel network are key controls on the capacity (ability) for a river system to adjust, i.e. the severity, distribution, and type of geomorphic response to disturbance events. In turn, the cumulative impact of geomorphic responses compared with event magnitude will determine the geomorphic effectiveness of a single disturbance event. River sensitivity and sediment connectivity can change significantly over space and time, and vary with changes in internal factors such as channel type and geomorphic landform and external factors such as event sequencing and lithological controls. Correspondingly, the capacity for a geomorphic system to respond to disturbance events will also vary, so that geomorphic effectiveness is not definitively characterized by a static relationship between event magnitude and geomorphic response, but rather is a dynamic comparison between geomorphic response and an actively changing capacity for geomorphic adjustment. Herein, we use the Lockyer Valley, Queensland as a case study to illustrate the variability of river sensitivity and sediment connectivity. We relate this variability to the potential and capacity for geomorphic channel response. We find that the sensitivity to and capacity for geomorphic adjustment varies significantly with channel morphometry and valley position. Additionally, the nature of bedload sediment connectivity changes with the distribution of geomorphic landforms and channel weirs that can impede sediment transference through the system. This variability of river sensitivity and sediment connectivity will control the nature of geomorphic response to disturbance events within the Lockyer Valley. Ultimately, determinations of geomorphic effectiveness for disturbance events will depend on comparisons of their geomorphic impacts with the capacity of the Lockyer geomorphic system to respond.
Geomorphic evidence of deformation in the northern part of the New Madrid seismic zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, K.J.; Schumm, S.A.
1993-03-01
A geomorphic evaluation of the northern portion of the New Madrid seismic zone between Hickman, KY and Osceola, AR has identified several locations where anomalous geomorphic conditions indicate possible surface deformation. For example, the slope, course, sinuosity and dimensions of the Mississippi River have been affected by the Lake County uplift and Tertiary-age sediments are exposed in its channel. Also, anomalous channel behavior near Caruthersville, MO and Barfield, AR suggests that these two reaches of the Mississippi River are structurally controlled. The Black River northeast of Pocahontas follows a peculiar angular course that suggests fracture control, and course changes ofmore » the Black, St. Francis, and Little Rivers may be related to subsurface faulting, uplift, or downwarping, as well as to differential compaction or the effects of groundwater withdrawal. The topography of Crowley's Ridge suggests that, between Jonesboro and Castor River, it is composed of at least three structural blocks, that are bounded by northeast-southwest trending faults. Near Jonesboro, river patterns appear to be affected by the Jonesboro, AR pluton. The geomorphic evaluation has identified anomalous surface features in the New Madrid seismic zone. Some can be directly linked to mapped structures in the region, whereas others may result from previously unidentified areas of surface deformation. The identification of these anomalies should provide direction for scientists who are employing subsurface techniques in order to locate tectonic deformation in the area.« less
From coastal barriers to mountain belts - commonalities in fundamental geomorphic scaling laws
NASA Astrophysics Data System (ADS)
Lazarus, E.
2016-12-01
Overwash is a sediment-transport process essential to the form and resilience of coastal barrier landscapes. Driven by storm events, overwash leaves behind distinctive sedimentary features that, although intensively studied, have lacked unifying quantitative descriptions with which to compare their morphological attributes across documented examples or relate them to other morphodynamic phenomena. Geomorphic scaling laws quantify how measures of shape and size change with respect to another - information that helps to constrain predictions of future change and reconstructions of past environmental conditions. Here, a physical model of erosional and depositional overwash morphology yields intrinsic, allometric scaling laws involving length, width, area, volume, and alongshore spacing. Corroborative comparisons with natural washover morphology indicate scale invariance spanning several orders of magnitude. Several observers of the physical model remarked that the overwashed barrier resembled a dissected linear mountain front with an alluvial apron - an intriguing reimagining of the intended analog. Indeed, that resemblance is reflected quantitatively in these new scaling relationships, which align with canonical scaling laws for terrestrial and marine drainage basins and alluvial fans on Earth and Mars. This finding suggests disparate geomorphic systems that share common allometric properties may be related dynamically, perhaps by an influence more fundamental than characteristic erosion and deposition processes. Such an influence could come from emergent behavior at the intersection of advection and diffusion. Geomorphic behaviors at advection-diffusion transitions (and vice versa), specifically, could be the key to disentangling mechanistic causality from acausality in physical landscape patterns.
Geomorphic process fingerprints in submarine canyons
Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.
2013-01-01
Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.
White Sands Missile Range Main Cantonment and NASA Area Faults, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Greg
This is a zipped ArcGIS shapefile containing faults mapped for the Tularosa Basin geothermal play fairway analysis project. The faults were interpolated from gravity and seismic (NASA area) data, and from geomorphic features on aerial photography. Field work was also done for validation of faults which had surface expressions.
Anthropogenic features and hillslope processes interaction
NASA Astrophysics Data System (ADS)
Tarolli, Paolo; Sofia, Giulia
2016-04-01
Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes (Tarolli and Sofia, 2016). To this point, the present research investigates few case studies highlighting the influences of anthropogenic topographic signatures on hillslope processes, and it shows the effectiveness of High-Resolution Topography (HRT) derived from the recent remote sensing technologies (e.g. lidar, satellite, structure from motion photogrammetry), to better understand this interaction. The first example is related to agricultural terraces. In recent times, terraced areas acquired a new relevance to modern concerns about erosion and land instability, being the agricultural land mostly threatened by abandonment or intensification and specialization of agriculture, resulting in more landslide-prone bench terraces, or heavy land levelling with increased erosion. The second case study discusses about the role of agricultural and forest roads on surface erosion and landslides. The third case study investigates geomorphic processes in an open pit mine. In all case studies, HRT served as the basis for the development of new methodologies able to recognize and analyze changes on Earth surface processes along hillslopes. The results show how anthropogenic elements have crucial effects on sediment production and sediment delivery, also influencing the landscape connectivity. The availability of HRT can improve our ability to actually model anthropogenic morphologies, quantify them, and analyse the links between anthropogenic elements and geomorphic processes. The results presented here, and the creation and dissemination of HR datasets might allow the transfer the knowledge of geomorphic processes from the scientific to the practical world. Thus, it may allow an improved understanding and targeted mitigation of geomorphic changes during anthropogenic development and help guide future research directions for development-based watershed studies. References Tarolli, P., Sofia, G. (2016). Human topographic signatures and derived geomorphic processes across landscapes, Geomorphology, 255, 140-161, 10.1016/j.geomorph.2015.12.007.
NASA Astrophysics Data System (ADS)
Thompson, Chris; Croke, Jacky
2013-09-01
Flooding is a persistent natural hazard, and even modest changes in future climate are believed to lead to large increases in flood magnitude. Previous studies of extreme floods have reported a range of geomorphic responses from negligible change to catastrophic channel change. This paper provides an assessment of the geomorphic effects of a rare, high magnitude event that occurred in the Lockyer valley, southeast Queensland in January 2011. The average return interval of the resulting flood was ~ 2000 years in the upper catchment and decreased to ~ 30 years downstream. A multitemporal LiDAR-derived DEM of Difference (DoD) is used to quantify morphological change in two study reaches with contrasting valley settings (confined and unconfined). Differences in geomorphic response between reaches are examined in the context of changes in flood power, channel competence and degree of valley confinement using a combination of one-dimensional (1-D) and two-dimensional (2-D) hydraulic modelling. Flood power peaked at 9800 W m- 2 along the confined reach and was 2-3 times lower along the unconfined reach. Results from the DoD confirm that the confined reach was net erosional, exporting ~ 287,000 m3 of sediment whilst the unconfined reach was net depositional gaining ~ 209,000 m3 of sediment, 70% of the amount exported from the upstream, confined reach. The major sources of eroded sediment in the confined reach were within channel benches and macrochannel banks resulting in a significant increase of channel width. In the unconfined reach, the benches and floodplains were the major loci for deposition, whilst the inner channel exhibited minor width increases. The presence of high stream power values, and resultant high erosion rates, within the confined reach is a function of the higher energy gradient of the steeper channel that is associated with knickpoint development. Dramatic differences in geomorphic responses were observed between the two adjacent reaches of contrasting valley configuration. The confined reach experienced large-scale erosion and reorganisation of the channel morphology that resulted in significantly different areal representations of the five geomorphic features classified in this study.
Geomorphic Evidence for Martian Ground Ice and Climate Change
NASA Technical Reports Server (NTRS)
Kanner, L. C.; Allen, C. C.; Bell, M. S.
2004-01-01
Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (greater than 60) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35 plus or minus 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a less than km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 degrees N- 65 degrees N).
Wood anatomical analysis of Alnus incana and Betula pendula injured by a debris-flow event.
Arbellay, Estelle; Stoffel, Markus; Bollschweiler, Michelle
2010-10-01
Vessel chronologies in ring-porous species have been successfully employed in the past to extract the climate signal from tree rings. Environmental signals recorded in vessels of ring-porous species have also been used in previous studies to reconstruct discrete events of drought, flooding and insect defoliation. However, very little is known about the ability of diffuse-porous species to record environmental signals in their xylem cells. Moreover, time series of wood anatomical features have only rarely been used to reconstruct former geomorphic events. This study was therefore undertaken to characterize the wood anatomical response of diffuse-porous Alnus incana (L.) Moench and Betula pendula Roth to debris-flow-induced wounding. Tree microscopic response to wounding was assessed through the analysis of wood anatomical differences between injured rings formed in the debris-flow event year and uninjured rings formed in the previous year. The two ring types were examined close and opposite to the injury in order to determine whether wound effects on xylem cells decrease with increasing tangential distance from the injury. Image analysis was used to measure vessel parameters as well as fiber and parenchyma cell (FPC) parameters. The results of this study indicate that injured rings are characterized by smaller vessels as compared with uninjured rings. By contrast, FPC parameters were not found to significantly differ between injured and uninjured rings. Vessel and FPC parameters mainly remained constant with increasing tangential distance from the injury, except for a higher proportion of vessel lumen area opposite to the injury within A. incana. This study highlights the existence of anatomical tree-ring signatures-in the form of smaller vessels-related to past debris-flow activity and addresses a new methodological approach to date injuries inflicted on trees by geomorphic processes.
NASA Astrophysics Data System (ADS)
Picard, K.; Nanson, R.; Huang, Z.; Nichol, S.; McCulloch, M.
2017-12-01
The acquisition of high resolution marine geophysical data has intensified in recent years (e.g. multibeam echo-sounding, sub-bottom profiling). This progress provides the opportunity to classify and map the seafloor in greater detail, using new methods that preserve the links between processes and morphology. Geoscience Australia has developed a new genetic classification approach, nested within the Harris et al (2014) global seafloor mapping framework. The approach divides parent units into sub-features based on established classification schemes and feature descriptors defined by Bradwell et al. (2016: http://nora.nerc.ac.uk/), the International Hydrographic Organization (https://www.iho.int) and the Coastal Marine and Ecological Classification Standard (https://www.cmecscatalog.org). Owing to the ecological significance of submarine canyon systems in particular, much recent attention has focused on defining their variation in form and process, whereby they can be classified using a range of topographic metrics, fluvial dis/connection and shelf-incising status. The Perth Canyon is incised into the continental slope and shelf of southwest Australia, covering an area of >1500 km2 and extending from 4700 m water depth to the shelf break in 170 m. The canyon sits within a Marine Protected Area, incorporating a Marine National Park and Habitat Protection Zone in recognition of its benthic and pelagic biodiversity values. However, detailed information of the spatial patterns of the seabed habitats that influence this biodiversity is lacking. Here we use 20 m resolution bathymetry and acoustic backscatter data acquired in 2015 by the Schmidt Ocean Institute plus sub-bottom datasets and sediment samples collected Geoscience Australia in 2005 to apply the new geomorphic classification system to the Perth Canyon. This presentation will show the results of the geomorphic feature mapping of the canyon and its application to better defining potential benthic habitats.
Scharer, Katherine M.; Weldon, Ray; Bemis, Sean
2016-01-01
Evidence for the 340-km-long Fort Tejon earthquake of 1857 is found at each of the high-resolution paleoseismic sites on the southern San Andreas Fault. Using trenching data from these sites, we find that the assemblage of dated paleoearthquakes recurs quasi-periodically (coefficient of variation, COV, of 0.6, Biasi, 2013) and requires ~80% of ruptures were shorter than the 1857 rupture with an average of Mw7.5. In contrast, paleorupture lengths reconstructed from preserved geomorphic offsets extracted from lidar are longer and have repeating displacements that are quite regular (COV=0.2; Zielke et al., 2015). Direct comparison shows that paleoruptures determined from geomorphic offset populations cannot be reconciled with dated paleoearthquakes. Our study concludes that the 1857 rupture was larger than average, average displacements must be < 5 m, and suggests that fault geometry may play a role in fault behavior.
NASA Technical Reports Server (NTRS)
Gooding, J. L.
1987-01-01
Many geomorphic features on Mars were attributed to Earth-analogous, cold-climate processes involving movement of water or ice lubricated debris. Clearly, knowledge of the behavior of water in regolith materials under Martian conditions is essential to understanding the postulated geomorphic processes. Experiments were performed with sand-sized samples of natural basaltic regoliths in order to further elucidate how water/regolith interactions depend upon grain size and mineralogy. The data reveal important contrasts with data for clay-mineral substrates and suggest that the microphysics of water/mineral interactions might affect Martian geomorphic processes in ways that are not fully appreciated. Sand and silt sized fractions of two soils from the summit of Mauna Kea were used as Mars-analogous regolith materials. Temperatures were measured for water/ice phase transitions as wet slurries of individual soil fractions which were cooled or heated at controlled rates under a carbon dioxide atmosphere. Freezing and melting of ice was studied as a function of water/soil mass ratio, soil particle size, and thermal-cycle rate. Comparison tests were done under the same conditions with U.S. Geological Survey standard rock powders.
Euripus Mons - Landform Evolution and Climate Constraints in Promethei Terra
NASA Astrophysics Data System (ADS)
van Gasselt, Stephan; Kim, Jungrack; Baik, Hyun-Seob
2016-04-01
The Promethei Terra region of Mars exhibits a variety of geomorphic landforms indicative of ice-assisted creep of debris and ice, similar to features and processes found at the Martian dichotomy boundary in Deuteronilus, Protonilus and Nilosyrtis Mensae. Despite only little doubt about the fact that ice played an integral role in the formation of these features, it is still disputed if these features were formed by glacial processes, requiring precipitation of ice and snow and exhibiting glacial deformation and basal sliding, or if these landforms are a product of periglacial denudation and subject to different deformation regimes. As information about past climate conditions on Mars is sparse, the proper assessment of landform types today allows to put constraints on their environmental conditions in the past. Due to limited knowledge about the internal physical and thermal structure of these landforms, it remains impossible to unambiguously determine their origin [1]. A variety of geomorphic and model-based indicators need to be taken into account when putting constraints on their history and when trying to reconstruct their evolution. For selected features on Mars it has been shown by SHARAD radar observations that the ice content might be relatively high [2], and that some of them might be composed of pure ice, protected from sublimation by a thin debris cover. One of such examples, Euripus Mons, is a 80 km remnant feature with an associated circumferential talus deposit that shows indicators for deformation by downslope movement, i.e. debris apron morphology. Recent modelling assuming glacial deformation helped to reconstruct some internal structural properties [3]. Despite these attempts, Euripus Mons shows clear geomorphic signatures of classical periglacial denudation which do not fit into the concept of glacial-only evolution. Denudation rates as well as ages are similar to those reported from other locations on Mars for which hyperarid climate conditions were proposed [4] and where no positive radar measurements could be acquired. We here report on our observations supporting a periglacial mass wasting evolution and discuss results from numerical modelling applied to the settings of Euripus Mons. References: [1] Souness & Hubbard (2012) Progr. Phys. Gegr., 36(2), 238-261; [2] Holt et al. (2008) Science, 322, 1235-1238; [3] Parsons & Holt (2015) 44th Lun. Planet. Sci. Conf., #1840 [4] van Gasselt et al. (2011) Martian Geomorphology, Geol. Soc. London, 356, 43-67.
NASA Astrophysics Data System (ADS)
Wittke, S.
2016-12-01
The Wyoming State Geological Survey has focused on surficial mapping and examination of the location and offset of faults north and south of Blacktail Butte in eastern Jackson Hole, Wyoming. The fault strands south of Blacktail Butte are classified as Late Quaternary, the faults north of the butte are considered Class B structures by the USGS. Little to no detailed studies, including paleoseismic investigations or fault scarp morphology, have been conducted on these fault strands. The acquisition of LiDAR for the Grand Teton National Park and recent aerial photographs provided data necessary for revised mapping and geomorphic interpretation of fault-related features north and south of Blacktail Butte. New fault traces and geomorphic features were identified in the LiDAR data which had not been previously mapped. Mapped fault traces are intermittent, forming a 1.5 km-long graben that extends south from Blacktail Butte and crosses a loess-mantle late-Pleistocene terrace generated from the Pinedale glaciation. Other lineaments were identified that continued for another 0.5 km to the south. With very little vertical offset across the system and comparatively short fault strands, the faults may represent secondary features related to movement on another unidentified fault within the basin. The secondary faults north of Blacktail Butte were mapped based on geomorphic features and through LiDAR-based spatial analysis. The fault scarps are relatively short and are present on alluvial fan and/or terrace deposits related to the Pinedale glaciation or on undated Holocene deposits. The scarps have little net vertical offset, suggesting they could also be secondary features related to movement from another unidentified fault within the basin. Improved understanding of these fault strands is significant because of the vicinity to populated areas within Jackson Hole and the possible relevance to the Teton Fault system. To our knowledge, these fault strands have not been proposed as antithetic to the Teton fault. The faults are located on the eastern edge of the valley, approximately 8-16 km from the Teton fault, and based on their orientation and sense of slip, the Teton fault may be the unidentified fault within the basin. Detailed paleoseismic surveys, including fault trenching, may shed light on the question in the future.
NASA Astrophysics Data System (ADS)
Cheng, Weiming; Wang, Nan; Zhao, Min; Zhao, Shangmin
2016-03-01
The geomorphic setting of the tectonically active area around Beijing is a result of complex interactions involving Yanshan neotectonic movements and processes of erosion and deposition. The Beijing Mountain study area contains the junction of two mountain ranges (the Yanshan Mountains and the Taihang Mountains). Tectonic activity has significantly influenced the drainage system and the geomorphic situation in the area, leading to a high probability of the development of debris flows, which is one of the major abrupt geological disasters in the region. Based on 30-m-resolution ASTER GDEM data, a total of 752 drainage basins were extracted using ArcGIS software. A total of 705 debris flow valleys were visually interpreted from ALOS satellite images and published documents. Seven geomorphic indices were calculated for each basin including the relief amplitude, the hypsometric integral, the stream length gradient, the basin shape indices, the fractal dimension, the asymmetry factor, and the ratio of the valley floor width to the height. These geomorphic indices were divided into five classes and the ratio of the number of the debris flow valleys to the number of the drainage basins for each geomorphic index was computed and analyzed for every class. Average class values of the seven indices were used to derive an index of relative active tectonics (IRAT). The ratio of the number of the debris flow valleys to the number of the drainage basins was computed for every class of IRAT. The degree of probable risk level was then defined from the IRAT classes. Finally, the debris flow hazard was evaluated for each drainage basin based on the combined effect of probable risk level and occurrence frequency of the debris flows. The result showed a good correspondence between IRAT classes and the ratio of the number of the debris flow valleys to the number of the drainage basins. Approximately 65% of the drainage basins with occurred debris flow valleys are at a high risk level, while 43% of the drainage basins without occurred debris flow valleys are at a high risk level. A comparison with results from past studies demonstrated that the accuracy of these findings is greater than 85%, indicating that the basin topography created by rapid tectonic deformations is more favorable for debris flows.
NASA Astrophysics Data System (ADS)
Sangireddy, H.; Passalacqua, P.; Stark, C. P.
2013-12-01
Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic processes. Also, we explore the variability in hillslope length scales as a function of hillslope diffusivity coefficients and critical shear stress in natural landscapes and show that we can infer signatures of dominant geomorphic processes by analyzing characteristic topographic length scales present in topography. References: Beven, K. and Kirkby, M. J.: A physically based variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43-69, 1979 Howard, A. D. (1994). A detachment-limited model of drainage basin evolution.Water resources research, 30(7), 2261-2285. Passalacqua, P., Do Trung, T., Foufoula Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical. Research: Earth Surface (2003-2012), 115(F1). Sangireddy, H., Passalacqua, P., Stark, C.P.(2012). Multi-resolution estimation of lidar-DTM surface flow metrics to identify characteristic topographic length scales, EP13C-0859: AGU Fall meeting 2012. Stark, C. P., & Stark, G. J. (2001). A channelization model of landscape evolution. American Journal of Science, 301(4-5), 486-512. Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3), 187-202.
Geomorphic controls on hyporheic exchange flow in mountain streams.
T. Kasahara; S.M. Wondzell
2003-01-01
Hyporheic exchange flows were simulated using MODFLOW and MODPATH to estimate relative effects of channel morphologic features on the extent of the hyporheic zone, on hyporheic exchange flow, and on the residence time of stream water in the hyporheic zone. Four stream reaches were compared in order to examine the influence of stream size and channel constraint. Within...
Geologic analysis and evaluation of ERTS-A imagery for the State of New Mexico
NASA Technical Reports Server (NTRS)
Kottlowski, F. E. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Many circular to elliptical features have been identified on the ERTS-1 images, only some of which can be accounted for by existing data. A small number of circular features are adjacent to existing ore deposits, but such relationships should not be emphasized unless other supporting data exists. Circular features may be tectonically or geomorphically controlled, or a combination of the two. A limited number are man-made. A preliminary listing of features which may have circular expression are listed. Photographic examples of identified and unidentified circular features will be included in the final report along with a thorough discussion and analysis. Comparisons will be made with existing gravity and magnetic data.
The Tempe volcanic province of Mars and comparisons with the Snake River Plains of Idaho
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1981-01-01
The Tempe volcanic region of Mars, a relatively low plain of probable basaltic flood lava affinity, is shown to be comparable in many respects to features of the Snake River Plains of Idaho, including both scale and type of features observed. Superimposed upon the Tempe plain are a variety of features that appear structurally controlled, along an orientation of N60 deg E; comprising low shields, irregular hills that may be silicic domes, and possible composite cones. The Tempe/Snake River match is held to be the first in which direct comparison can be made between Martian and terrestrial geologic-geomorphic features without encountering problems of scale.
The influence of geomorphology on the role of women at artisanal and small-scale mine sites
Malpeli, Katherine C.; Chirico, Peter G.
2013-01-01
The geologic and geomorphic expressions of a mineral deposit determine its location, size, and accessibility, characteristics which in turn greatly influence the success of artisans mining the deposit. Despite this critical information, which can be garnered through studying the surficial physical expression of a deposit, the geologic and geomorphic sciences have been largely overlooked in artisanal mining-related research. This study demonstrates that a correlation exists between the roles of female miners at artisanal diamond and gold mining sites in western and central Africa and the physical expression of the deposits. Typically, women perform ore processing and ancillary roles at mine sites. On occasion, however, women participate in the extraction process itself. Women were found to participate in the extraction of ore only when a deposit had a thin overburden layer, thus rendering the mineralized ore more accessible. When deposits required a significant degree of manual labour to access the ore due to thick overburden layers, women were typically relegated to other roles. The identification of this link encourages the establishment of an alternative research avenue in which the physical and social sciences merge to better inform policymakers, so that the most appropriate artisanal mining assistance programs can be developed and implemented.
Oswalt, S.N.; King, S.L.
2005-01-01
We evaluated the severe degradation of floodplain habitats resulting from channelization and concomitant excessive coarse sedimentation on the Middle Fork Forked Deer River in west Tennessee from 2000 to 2003. Land use practices have resulted in excessive sediment in the tributaries and river system eventually resulting in sand deposition on the floodplain, increased overbank flooding, a rise in the groundwater table, and ponding of upstream timber. Our objectives were to: (1) determine the composition of floodplain vegetation communities along the degraded river reach, (2) to isolate relationships among these communities, geomorphic features, and environmental variables and (3) evaluate successional changes based on current stand conditions. Vegetation communities were not specifically associated with predefined geomorphic features; nevertheless, hydrologic and geomorphic processes as a result of channelization have clearly affected vegetation communities. The presence of valley plugs and continued degradation of upstream reaches and tributaries on the impacted study reach has arrested recovery of floodplain plant communities. Historically common species like Liquidambar styraciflua L. and Quercus spp. L. were not important, with importance values (IV) less than 1, and occurred in less than 20% of forested plots, while Acer rubrum L., a disturbance-tolerant species, was the most important species on the site (IV = 78.1) and occurred in 87% of forested plots. The results of this study also indicate that channelization impacts on the Middle Fork Forked Deer River are more temporally and spatially complex than previously described for other river systems. Rehabilitation of this system necessitates a long-term, landscape-scale solution that addresses watershed rehabilitation in a spatially and temporally hierarchical manner. ?? 2005 Elsevier B.V. All rights reserved.
Substantial soil organic carbon retention along floodplains of mountain streams
NASA Astrophysics Data System (ADS)
Sutfin, Nicholas A.; Wohl, Ellen
2017-07-01
Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p < 0.001) indicates that percentage of silt and clay, sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.
NASA Astrophysics Data System (ADS)
de Silva, Shanaka L.; Bailey, John E.
2017-08-01
Observations of terrestrial analogs are critical to aiding planetary mappers in interpreting surface lithologies on other planets. For instance, the presence of ignimbrites on Mars has been debated for over three decades and is supported by analogy with deposits on Earth. Critical evidence includes the geomorphic and surface expression of the deposits, and those in the Central Andes of South America are amongst the most-cited analogs. Herein we describe some prominent surface textures and patterns seen in ignimbrites on the scale of high-resolution remotely sensed data (10-1 m per pixel). These include pervasive joints and fractures that contribute to yardang form and development as well as prominent mounds, fissures, and fracture networks ("spiders", "bugs", "boxworks") on ignimbrite surfaces. While all these features are related to intrinsic cooling and degassing processes, the involvement of external water buried by hot pyroclastic flows enhances fumarolic activity, advective cooling, and joint development. Observations of these geomorphic expressions using remote sensing are only possible with the highest resolution data and limited surface erosion. For Mars, where similarly high resolution datasets are available (for example, the High Resolution Imaging Sensor Experiment or HiRISE) extensive dust cover may limit the recognition of similar features there. However significant relief on some of these features on Earth indicate they might still be detectable on Mars.
Alabama-Mississippi Coastal Classification Maps - Perdido Pass to Cat Island
Morton, Robert A.; Peterson, Russell L.
2005-01-01
The primary purpose of the USGS National Assessment of Coastal Change Project is to provide accurate representations of pre-storm ground conditions for areas that are designated high-priority because they have dense populations or valuable resources that are at risk from storm waves. Another purpose of the project is to develop a geomorphic (land feature) coastal classification that, with only minor modification, can be applied to most coastal regions in the United States. A Coastal Classification Map describing local geomorphic features is the first step toward determining the hazard vulnerability of an area. The Coastal Classification Maps of the National Assessment of Coastal Change Project present ground conditions such as beach width, dune elevations, overwash potential, and density of development. In order to complete a hazard vulnerability assessment, that information must be integrated with other information, such as prior storm impacts and beach stability. The Coastal Classification Maps provide much of the basic information for such an assessment and represent a critical component of a storm-impact forecasting capability. The map above shows the areas covered by this web site. Click on any of the location names or outlines to view the Coastal Classification Map for that area.
NASA Astrophysics Data System (ADS)
Sun, T.; Covault, J. A.; Pyrcz, M.; Sullivan, M.
2012-12-01
Meandering rivers are probably one of the most recognizable geomorphic features on earth. As they meander across alluvial and delta plains, channels migrate laterally and develop point bars, splays, levees and other geomorphic and sedimentary features that compose substantial portions of the fill within many sedimentary basins. These basins can include hydrocarbon producing fields. Therefore, a good understanding of the processes of meandering channels and their associated deposits is critical for exploiting these reservoirs in the subsurface. In the past couple of decades, significant progress has been made in our understanding of the morphodynamics of channel meandering. Basic fluid dynamics and sediment transport (Ikeda and Parker, 1981; Howard, 1992) has shown that many characteristic features of meandering rivers, such as the meandering wavelength, growth rate and downstream migration rate, can be predicted quantitatively. As a result, a number of variations and improvement of the theory have emerged (e.g., Blondeaux and Seminara, 1985; Parker and Andrews, 1985, 1986; and Sun et al., 2001a, b).The main improvements include the recognition of so called "bar-bend" interactions, where the development of bars on the channel bed and their interactions with the channel bend is recognized as a primary cause for meandering channels to develop greater complexity than the classic goose-neck meander bend shapes, such as compound bend. Recently, Sun and others have shown that the spatial patterns of width variations in meandering channels can be explained by an extrinsic periodic flow variations coupled with the intrinsic bend instability dynamics. In contrast to the significant improvement of our understanding of channel meandering, little work has been done to link the geomorphic features of meandering channels to the geometry and heterogeneity of the deposits they form and ultimately preserves. A computer simulation model based on the work of Sun and others (1996, 2001a,b) is used to investigate the formation and preservation of point bars with meandering rivers. Rather than consisting of a single set of concentric scroll bar like feature as one would expect from the pattern of meandering channels, observations of point bar deposits in map view reveal the previously mentioned complexity in their internal organization. A preserved point bar deposit is often found to be composed of multiple sets of remnant scroll bar like features, each with different orientations. Each set is bounded by the unconformity resulting from one set of the scroll bar like feature truncated by the other set. This study links the channel dynamics to the preserved point bar architectures, and delineates the key controls that affect the point bar internal organization.
SOC in Different Land Use Types: does Geomorphic Position Matter?
NASA Astrophysics Data System (ADS)
Hu, Y.; Sun, Q.; Wang, R.; Wang, Z.; Guo, S.
2016-12-01
Substantial research has been devoted to land use conversion induced changes of soil organic carbon (SOC) and total nitrogen (TN). However, most of the studies were based on local field plots, featuring single predominant landform (ex. rolling topography in Denmark, or Great Plain in the US). For regions integrated from complex landforms such as the Chinese Loess Plateau where tableland, sloping land and gullies are closely networked and each collectively covers a third of the area, the effects of land use changes to SOC and TN could spatially differ among geomorphic positions. So far, local farming management and policies on the Loess Plateau have often been guided by reports from single landform. To fully understand the potential effects of land use conversions to regional C and N cycling, a systematic investigation is highly in need to identify the relative contributions from different geomorphic positions. In this study on the Chinese Loess Plateau, soil profiles deep to 200 cm on three geomorphic positions (tableland, sloping land and gullies) were investigated, each having four types of land use (cropland, orchard, grassland, and woodland). The SOC and total N were measured and compared every layer of 20 cm. Our results show that: 1) the SOC stocks and TN in the surface soil (0-20 cm) was most enriched in downslope gullies and least stored in the summit tableland, demonstrating the erosional redistribution of SOC and TN along hillslopes. 2) After converting from cropland to grassland or woodland, the SOC stocks and TN in soil layer < 60 cm were significantly increased by 17-57% and 40-49%, demonstrating the benefits of land use conversion on SOC sequestration and N cycling. 3) More specifically, such positive increase of SOC stocks was more pronounced in the gullies than on the sloping land. 4) While the SOC stocks and TN in deep layers > 60 cm were more enriched on the tableland, the effects of land use conversions did not differ among the three geomorphic positions. Given the complexity of geomorphology on the Loess Plateau and its relevance of land use changes to regional ecosystem in China, the differentiated changes of SOC stocks and TN observed on tableland, sloping land and gullies highlight the necessity to properly account for the potential influence of geomorphic positions for each combination of land use and conversion.
Geomorphic Controls on Aquifer Geometry in Northwestern India
NASA Astrophysics Data System (ADS)
van Dijk, W. M.; Densmore, A. L.; Sinha, R.; Gupta, S.; Mason, P. J.; Singh, A.; Joshi, S. K.; Nayak, N.; Kumar, M.; Shekhar, S.
2014-12-01
The Indo-Gangetic foreland basin suffers from one of the highest rates of groundwater extraction in the world, especially in the Indian states of Punjab, Haryana and Rajasthan. To understand the effects of this extraction on ground water levels, we must first understand the geometry and sedimentary architecture of the aquifer system, which in turn depend upon its geomorphic setting. We use satellite images and digital elevation models to map the geomorphology of the Sutlej and Yamuna river systems, while aquifer geometry is assessed using ~250 wells that extend to ~300 m depth in Punjab and Haryana. The Sutlej and Yamuna rivers have deposited large sedimentary fans at their outlets. Elongate downslope ridges on the fan surfaces form distributary networks that radiate from the Sutlej and Yamuna fan apices, and we interpret these ridges as paleochannel deposits associated with discrete fan lobes. Paleochannels picked out by soil moisture variations illustrate a complex late Quaternary history of channel avulsion and incision, probably associated with variations in monsoon intensity. Aquifer bodies on the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow a heavy-tailed distribution, probably because of stacked sand bodies. The percentage of aquifer material in individual lithologs decreases downstream, although the exponent on the thickness distribution remains the same, indicating that aquifer bodies decrease in number down fan but do not thin appreciably. Critically, the interfan area between the Sutlej and Yamuna fans has thinner aquifers and a lower proportion of aquifer material, despite its proximal location. Our data show that the Sutlej and Yamuna fan systems form the major aquifer systems in this area, and that their geomorphic setting therefore provides a first-order control on aquifer distribution and geometry. The large spatial heterogeneity of the system must be considered in any future aquifer management scheme.
Old River Control Complex Sedimentation Investigation
2015-06-01
efforts to describe the shoaling processes and sediment transport in the two-river system. Geomorphic analysis The geomorphic assessment utilized...District, New Orleans. The investigation was conducted via a combination of field data collection and laboratory analysis, geomorphic assessments, and...6 Geomorphic analysis
NASA Astrophysics Data System (ADS)
Kayanne, Hajime; Aoki, Kenji; Suzuki, Takuya; Hongo, Chuki; Yamano, Hiroya; Ide, Yoichi; Iwatsuka, Yuudai; Takahashi, Kenya; Katayama, Hiroyuki; Sekimoto, Tsunehiro; Isobe, Masahiko
2016-10-01
Landform changes in Ballast Island, a small coral reef island in the Ryukyu Islands, were investigated by remote sensing analysis and a field survey. The area of the island almost doubled after a mass coral bleaching event in 1998. Coral branches generated by the mass mortality and broken by waves were delivered and stocked on a reef flat and accumulated to expand the area of the island. In 2012 high waves generated by typhoons also changed the island's topography. Overall, the island moved in the downdrift direction of the higher waves. Waves impacting both sides of the island piled up a large volume of coral gravels above the high-tide level. Eco-geomorphic processes, including a supply of calcareous materials from the corals on the same reef especially during stormy wave conditions, were key factors in maintaining the dynamic topographic features of this small coral reef island.
Establishing a Geologic Baseline Of Cape Canaveral's Natural Landscape: Black Point Drive
NASA Technical Reports Server (NTRS)
Parkinson, Randall W.
2001-01-01
The goal of this project is to identify the process responsible for the formation of geomorphic features in the Black Point Drive area of Merritt Island National Wildlife Refuge/Kennedy Space Center (MINWR/KSC), northwest Cape Canaveral. This study confirms the principal landscape components (geomorphology) of Black Point Drive reflect interaction between surficial sediments deposited in association with late-Quaternary sea-level highstands and the chemical evolution of late-Cenozoic subsurface limestone formations. The Black Point Drive landscape consists of an undulatory mesic terrain which dips westward into myriad circular and channel-like depression marshes and lakes. This geomorphic gradient may reflect: (1) spatial distinctions in the elevation, character or age of buried (pre-Miocene) limestone formations, (2) dissolution history of late-Quaternary coquina and/or (3) thickness of unconsolidated surface sediment. More detailed evaluation of subsurface data will be necessary before this uncertainty can be resolved.
Establishing A Geologic Baseline of Cape Canaveral''s Natural Landscape: Black Point Drive
NASA Technical Reports Server (NTRS)
Parkinson, Randall W.
2002-01-01
The goal of this project is to identify the process responsible for the formation of geomorphic features in the Black Point Drive area of Merritt Island National Wildlife Refuge/Kennedy Space Center (MINWR/KSC), northwest Cape Canaveral. This study confirms the principal landscape components (geomorphology) of Black Point Drive reflect interaction between surficial sediments deposited in association with late-Quaternary sea-level highstands and the chemical evolution of late-Cenozoic sub-surface limestone formations. The Black Point Drive landscape consists of an undulatory mesic terrain which dips westward into myriad circular and channel-like depression marshes and lakes. This geomorphic gradient may reflect: (1) spatial distinctions in the elevation, character or age of buried (pre-Miocene) limestone formations, (2) dissolution history of late-Quaternary coquina and/or (3) thickness of unconsolidated surface sediment. More detailed evaluation of subsurface data will be necessary before this uncertain0 can be resolved.
NASA Astrophysics Data System (ADS)
Scott, R.; Entwistle, N. S.
2017-12-01
Gravel bed rivers and their associated wider systems present an ideal subject for development and improvement of rapid monitoring tools, with features dynamic enough to evolve within relatively short-term timescales. For detecting and quantifying topographical evolution, UAV based remote sensing has manifested as a reliable, low cost, and accurate means of topographic data collection. Here we present some validated methodologies for detection of geomorphic change at resolutions down to 0.05 m, building on the work of Wheaton et al. (2009) and Milan et al. (2007), to generate mesh based and pointcloud comparison data to produce a reliable picture of topographic evolution. Results are presented for the River Glen, Northumberland, UK. Recent channel avulsion and floodplain interaction, resulting in damage to flood defence structures make this site a particularly suitable case for application of geomorphic change detection methods, with the UAV platform at its centre. We compare multi-temporal, high-resolution point clouds derived from SfM processing, cross referenced with aerial LiDAR data, over a 1.5 km reach of the watercourse. Changes detected included bank erosion, bar and splay deposition, vegetation stripping and incipient channel avulsion. Utilisation of the topographic data for numerical modelling, carried out using CAESAR-Lisflood predicted the avulsion of the main channel, resulting in erosion of and potentially complete circumvention of original channel and flood levees. A subsequent UAV survey highlighted topographic change and reconfiguration of the local sedimentary conveyor as we predicted with preliminary modelling. The combined monitoring and modelling approach has allowed probable future geomorphic configurations to be predicted permitting more informed implementation of channel and floodplain management strategies.
Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping
NASA Astrophysics Data System (ADS)
Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.
2017-12-01
Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.
Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.
2011-01-01
The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in response to short-term variations in flow. Channel geomorphic units described in this report are channel banks, benches and ledges, bank failures, point bars, cross-bar channels, channel bars, exposed bedrock, pools, runs, and crossovers.
Bernard R. Parresol; John I. Blake; Andrew J. Thompson
2012-01-01
In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by...
NASA Astrophysics Data System (ADS)
Vergari, Francesca; Troiani, Francesco; Della Seta, Marta; Faulkner, Hazel; Schwanghart, Wolfgang; Ciccacci, Sirio; Del Monte, Maurizio; Fredi, Paola
2016-04-01
Spatial patterns and magnitudes of short-term erosional processes are often the result of longer-term landscape-wide morphodynamics. Their combined analysis, however, is challenged by different spatial scales, data availability and resolution. Integrating both analyses has thus rarely been done though urgently needed to better understand and manage present day erosional dynamics and land degradation. In this study we aim at overcoming these shortcomings by exploring a multi-scale approach, based on a nested experimental design that integrates the traditional monitoring of erosion processes at local and short time scale, with the longer-term (over the last 103-105 yr) and basin-to-morphostructure scale analysis of landscape morphodynamics. We investigated the geomorphological behaviour of a Mediterranean active badland site located in the Upper Orcia Valley (Southern Tuscany, Italy). This choice is justified by the availability of decadal erosion monitoring datasets at a range of scales, and the rapidity of development of erosion processes. Based on the analysis of drainage network and its longitudinal and planform pattern, we tested the hypothesis that this rejuvenating, actively erosional landscape presents hotspots of denudation processes on hillslope and in channel network that are largely associated with (a) knickpoints on stream longitudinal profiles, (b) sites of strong connectivity, and (c) sites of strong divide competition with adjacent, aggressive and non-aggressive systems. To illustrate and explore this nested approach, we extracted the channel network and analysed stream longitudinal profiles using the MATLAB-based TopoToolbox program, starting from the 27x27 m Aster GDEM. The stream network morphometric analyses involved computing and mapping χ-values, a transformation that normalizes the longitudinal distance by upslope area and which serves as a proxy of the dynamic state of river basins based on the current geometry of the river network. Finally, we projected on the longitudinal profiles of the Orcia River and some of its main tributaries a full range of geomorphic features which are relevant for the interpretation of the landscape morphoevolution, connectivity and erosion/deposition dynamics: i) competitive divides; ii) sites with different degree of connectivity within the drainage system; iii) sites experiencing different erosion rates; iv) sites with in-channel depositional features and landslide deposits; v) remnants of relict geomorphic surfaces. The plano-altimetric distribution of such features, compared with the drainage network evolutionary stage, allowed to better understand the morphodynamics of badland areas and to define future scenarios in the perspective of a better management of hazardous processes.
NASA Astrophysics Data System (ADS)
Croke, Jacky; Todd, Peter; Thompson, Chris; Watson, Fiona; Denham, Robert; Khanal, Giri
2013-02-01
Advances in remote sensing and digital terrain processing now allow for a sophisticated analysis of spatial and temporal changes in erosion and deposition. Digital elevation models (DEMs) can now be constructed and differenced to produce DEMs of Difference (DoD), which are used to assess net landscape change for morphological budgeting. To date this has been most effectively achieved in gravel-bed rivers over relatively small spatial scales. If the full potential of the technology is to be realised, additional studies are required at larger scales and across a wider range of geomorphic features. This study presents an assessment of the basin-scale spatial patterns of erosion, deposition, and net morphological change that resulted from a catastrophic flood event in the Lockyer Creek catchment of SE Queensland (SEQ) in January 2011. Multitemporal Light Detection and Ranging (LiDAR) DEMs were used to construct a DoD that was then combined with a one-dimensional flow hydraulic model HEC-RAS to delineate five major geomorphic landforms, including inner-channel area, within-channel benches, macrochannel banks, and floodplain. The LiDAR uncertainties were quantified and applied together with a probabilistic representation of uncertainty thresholded at a conservative 95% confidence interval. The elevation change distribution (ECD) for the 100-km2 study area indicates a magnitude of elevation change spanning almost 10 m but the mean elevation change of 0.04 m confirms that a large part of the landscape was characterised by relatively low magnitude changes over a large spatial area. Mean elevation changes varied by geomorphic feature and only two, the within-channel benches and macrochannel banks, were net erosional with an estimated combined loss of 1,815,149 m3 of sediment. The floodplain was the zone of major net deposition but mean elevation changes approached the defined critical limit of uncertainty. Areal and volumetric ECDs for this extreme event provide a representative expression of the balance between erosion and deposition, and importantly sediment redistribution, which is extremely difficult to quantify using more traditional channel planform or cross-sectional surveys. The ability of LiDAR to make a rapid and accurate assessment of key geomorphic processes over large spatial scales contributes to our understanding of key processes and, as demonstrated here, to the assessment of major geomorphological hazards such as extreme flood events.
Intelligent estimation of spatially distributed soil physical properties
Iwashita, F.; Friedel, M.J.; Ribeiro, G.F.; Fraser, Stephen J.
2012-01-01
Spatial analysis of soil samples is often times not possible when measurements are limited in number or clustered. To obviate potential problems, we propose a new approach based on the self-organizing map (SOM) technique. This approach exploits underlying nonlinear relation of the steady-state geomorphic concave-convex nature of hillslopes (from hilltop to bottom of the valley) to spatially limited soil textural data. The topographic features are extracted from Shuttle Radar Topographic Mission elevation data; whereas soil textural (clay, silt, and sand) and hydraulic data were collected in 29 spatially random locations (50 to 75. cm depth). In contrast to traditional principal component analysis, the SOM identifies relations among relief features, such as, slope, horizontal curvature and vertical curvature. Stochastic cross-validation indicates that the SOM is unbiased and provides a way to measure the magnitude of prediction uncertainty for all variables. The SOM cross-component plots of the soil texture reveals higher clay proportions at concave areas with convergent hydrological flux and lower proportions for convex areas with divergent flux. The sand ratio has an opposite pattern with higher values near the ridge and lower values near the valley. Silt has a trend similar to sand, although less pronounced. The relation between soil texture and concave-convex hillslope features reveals that subsurface weathering and transport is an important process that changed from loss-to-gain at the rectilinear hillslope point. These results illustrate that the SOM can be used to capture and predict nonlinear hillslope relations among relief, soil texture, and hydraulic conductivity data. ?? 2011 Elsevier B.V.
Resource Exploration Approaches on Mars Using Multidisciplinary Earth-based Techniques
NASA Astrophysics Data System (ADS)
Wyrick, D. Y.; Ferrill, D. A.; Morris, A. P.; Smart, K. J.
2005-12-01
Water is the most important Martian exploration target - key to finding evidence of past life and providing a crucial resource for future exploration. Water is thought to be present in vapor, liquid, and ice phases on Mars. Except for ice in polar regions, little direct evidence of current surface accumulation of water has been found. Existing research has addressed potential source areas, including meteoric water, glacial ice, and volcanic centers and areas of discharge such as large paleo-outflow channels. Missing from these analyses is characterization of migration pathways of water in the subsurface from sources to discharge areas, and the present distribution of water. It has been estimated that ~90% of the global inventory of water on Mars resides in the subsurface. Targeting potential subsurface accumulations has relied primarily on theoretical modeling and geomorphic analysis. While global scale thermal modeling and analysis of the stability of ground ice provide important constraints on potential locations of large deposits of ice or liquid water, these studies have not accounted for variations in stratigraphy and structure that may strongly influence local distribution. Depth to water or ice on Mars is thought to be controlled primarily by latitude and elevation. However, the distribution of outflow channels clearly indicates that structural, stratigraphic, and geomorphic features all play important roles in determining past and present distribution of water and ice on Mars as they do on Earth. Resource exploration and extraction is a multi-billion dollar industry on Earth that has developed into a highly sophisticated enterprise with constantly improving exploration technologies. Common to all successful exploration programs, whether for hydrocarbons or water, is detailed analysis and integration of all available geologic, geophysical and remotely sensed data. The primary issues for identification and characterization of water or hydrocarbon resource accumulations can be summarized by three factors: trap, reservoir and charge. This presentation focuses on a detailed characterization of the fundamental elements believed to control trap, reservoir, and charge with respect to the identification of locations for extractable resources on Mars, primarily water and ice, but also gas hydrates. This new approach to resource exploration will also provide guidance for future research and exploration activities, including movement of methane from the subsurface to the surface and potential habitat sites for past or current life on Mars.
NASA Astrophysics Data System (ADS)
Le Mauff, Baptiste; Juigner, Martin; Ba, Antoine; Robin, Marc; Launeau, Patrick; Fattal, Paul
2018-03-01
Three beach and dune systems located in the northeastern part of the Bay of Biscay in France were monitored over 5 years with a time series of three airborne LiDAR datasets. The three study sites illustrate a variety of morphological beach types found in this region. Reproducible monitoring solutions adapted to basic and complex beach and dune morphologies using LiDAR time series were investigated over two periods bounded by the three surveys. The first period (between May 2008 and August 2010) is characterized by a higher prevalence of storm events, and thus has a greater potential for eroding the coast, than the second period (between August 2010 and September 2013). During the first period, the central and northeastern part of the Bay of Biscay was notably impacted by Storm Xynthia, with water levels and wave heights exceeding the 10-year return period and 1-year return period, respectively. Despite differences in dune morphology between the sites, the dune crest (Dhigh) and the dune base (Dlow) are efficiently extracted from each DEM. Based on the extracted dune base, an original shoreline mobility indicator is built displaying a combination of the horizontal and vertical migrations of this geomorphic indicator between two LiDAR datasets. A 'Geomorphic Change Detection' is also completed by computing DEMs of Difference (DoD) resulting in segregated maps of erosion and deposition and sediment budgets. Accounting for the accuracy of LiDAR datasets, a probabilistic approach at a 95% confidence interval is used as a threshold for the Geomorphic Change Detection showing more reliable results. However, caution should be taken when interpreting thresholded maps of changes and sediment budgets because some beach processes may be masked, especially on wide tidal beaches, by only keeping the most significant changes. The results of the shoreline mobility and Geomorphic Change Detection show a high variability in the beach responses between and within the three study sites, explained mainly by beach orientation and local factors. Despite variable site-specific mechanisms, the recovery processes redistribute the available sand more on the upper parts of the beach, producing significant deposition generally in the form of embryo dunes. The monitoring of the beach and dune systems with airborne LiDAR datasets reveals that the three study sites show diverse behaviours during the first period likely associated with storms, while the analysis show more homogenous beach responses during the second period likely associated with a recovery phase.
NASA Astrophysics Data System (ADS)
Dekavalla, Maria; Argialas, Demetre
2017-07-01
The analysis of undersea topography and geomorphological features provides necessary information to related disciplines and many applications. The development of an automated knowledge-based classification approach of undersea topography and geomorphological features is challenging due to their multi-scale nature. The aim of the study is to develop and evaluate an automated knowledge-based OBIA approach to: i) decompose the global undersea topography to multi-scale regions of distinct morphometric properties, and ii) assign the derived regions to characteristic geomorphological features. First, the global undersea topography was decomposed through the SRTM30_PLUS bathymetry data to the so-called morphometric objects of discrete morphometric properties and spatial scales defined by data-driven methods (local variance graphs and nested means) and multi-scale analysis. The derived morphometric objects were combined with additional relative topographic position information computed with a self-adaptive pattern recognition method (geomorphons), and auxiliary data and were assigned to characteristic undersea geomorphological feature classes through a knowledge base, developed from standard definitions. The decomposition of the SRTM30_PLUS data to morphometric objects was considered successful for the requirements of maximizing intra-object and inter-object heterogeneity, based on the near zero values of the Moran's I and the low values of the weighted variance index. The knowledge-based classification approach was tested for its transferability in six case studies of various tectonic settings and achieved the efficient extraction of 11 undersea geomorphological feature classes. The classification results for the six case studies were compared with the digital global seafloor geomorphic features map (GSFM). The 11 undersea feature classes and their producer's accuracies in respect to the GSFM relevant areas were Basin (95%), Continental Shelf (94.9%), Trough (88.4%), Plateau (78.9%), Continental Slope (76.4%), Trench (71.2%), Abyssal Hill (62.9%), Abyssal Plain (62.4%), Ridge (49.8%), Seamount (48.8%) and Continental Rise (25.4%). The knowledge-based OBIA classification approach was considered transferable since the percentages of spatial and thematic agreement between the most of the classified undersea feature classes and the GSFM exhibited low deviations across the six case studies.
NASA Astrophysics Data System (ADS)
Eibisch, Katharina; Eichel, Jana; Dikau, Richard
2015-04-01
Geomorphic processes and properties are influenced by vegetation. It has been shown that vegetation cover intercepts precipitation, enhances surface detention and storage, traps sediment and provides additional surface roughness. Plant roots impact the soil in a mechanical and hydrological manner and affect shear strength, infiltration capacity and moisture content. Simultaneously, geomorphic processes disturb the vegetation development. This strong coupling of the geomorphic and ecologic system is investigated in Biogeomorphology. Lateral moraine slopes are characterized by a variety of geomorphic processes, e. g. sheet wash, solifluction and linear erosion. However, some plant species, termed engineer species, possess specific functional traits which allow them to grow under these conditions and also enable them to influence the frequency, magnitude and even nature of geomorphic processes. For lateral moraine slopes, Dryas octopetala L., an alpine dwarf shrub, was identified as a potential engineer species. The engineering mechanism of D. octopetala, based on its morphological (e.g., growth form) and biomechanical (e.g., root strength) traits, yet remains unclear and only little research has been conducted on alpine plant species. The objectives of this study are to fill this gap by (A) quantifying D. octopetala root tensile strength as an important trait considering anchorage in and stabilization of the slope and (B) linking plant traits to the geomorphic process they influence on lateral moraine slopes. D. octopetala traits were studied on a lateral moraine slope in Turtmann glacier forefield, Switzerland. (A) Root strength of single root threads of Dryas octopetala L. were tested using the spring scale method (Schmidt et al., 2001; Hales et al., 2013). Measurement equipment was modified to enable field measurements of roots shortly after excavation. Tensile strength of individual root threads was calculated and statistically analyzed. First results show that Dryas roots appear to be quite strong compared to other alpine species with a mean tensile strength of 22,63 N mm -². (B) On a micro scale, morphological and biomechanical features of above and below-ground biomass were qualitatively studied through field observations on D. octopetala individuals. Findings indicate that D. octopetala's dense cushions, covering many square meters of the moraines surface, traps fine sediment, stores moisture and significantly reduces erosion through wind and water. Furthermore, Dryas is well adapted to rock fall or burial by forming stabilized patches of ground despite steep slope inclinations and strong, episodic surface runoff and creep processes. Anchorage is provided by its strong root, which in all studied cases grew upslope parallel to the moraines surface. Insights from this study allow to relate root tensile strength and other specific plant traits of Dryas octopetala to an engineering mechanism and effect on geomorphic processes on lateral moraine slopes. Knowledge about Dryas as an engineering species may help to understand its biotic influence on the geomorphic system of a lateral moraine and aid in the selection of species for erosion control or rehabilitation of ecosystems, where Dryas is native.
Methods of Determining Playa Surface Conditions Using Remote Sensing
1987-10-08
NO. 11. TITLE (include Security Classification) METHODS OF DETERMINING PLAYA SURFACE CONDITIONS USING REMOTE SENSING 12. PERSONAL AUTHOR(S) J. PONDER...PLAYA SURFACE CONDITIONS USING REMOTE SENSING J. Ponder Henley U. S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060-5546 "ABSTRACT...geochemistry, hydrology and remote sensing but all of these are important to the understanding of these unique geomorphic features. There is a large body
NASA Astrophysics Data System (ADS)
Othman, Arsalan A.; Gloaguen, Richard
2017-09-01
Lithological mapping in mountainous regions is often impeded by limited accessibility due to relief. This study aims to evaluate (1) the performance of different supervised classification approaches using remote sensing data and (2) the use of additional information such as geomorphology. We exemplify the methodology in the Bardi-Zard area in NE Iraq, a part of the Zagros Fold - Thrust Belt, known for its chromite deposits. We highlighted the improvement of remote sensing geological classification by integrating geomorphic features and spatial information in the classification scheme. We performed a Maximum Likelihood (ML) classification method besides two Machine Learning Algorithms (MLA): Support Vector Machine (SVM) and Random Forest (RF) to allow the joint use of geomorphic features, Band Ratio (BR), Principal Component Analysis (PCA), spatial information (spatial coordinates) and multispectral data of the Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite. The RF algorithm showed reliable results and discriminated serpentinite, talus and terrace deposits, red argillites with conglomerates and limestone, limy conglomerates and limestone conglomerates, tuffites interbedded with basic lavas, limestone and Metamorphosed limestone and reddish green shales. The best overall accuracy (∼80%) was achieved by Random Forest (RF) algorithms in the majority of the sixteen tested combination datasets.
Hydrologic controls on equilibrium soil depths
NASA Astrophysics Data System (ADS)
Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.
2011-04-01
This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.
NASA Astrophysics Data System (ADS)
Lininger, K. B.; Wohl, E.; Rose, J. R.
2018-03-01
Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.
Quantitative analysis of geomorphic processes using satellite image data at different scales
NASA Technical Reports Server (NTRS)
Williams, R. S., Jr.
1985-01-01
When aerial and satellite photographs and images are used in the quantitative analysis of geomorphic processes, either through direct observation of active processes or by analysis of landforms resulting from inferred active or dormant processes, a number of limitations in the use of such data must be considered. Active geomorphic processes work at different scales and rates. Therefore, the capability of imaging an active or dormant process depends primarily on the scale of the process and the spatial-resolution characteristic of the imaging system. Scale is an important factor in recording continuous and discontinuous active geomorphic processes, because what is not recorded will not be considered or even suspected in the analysis of orbital images. If the geomorphic process of landform change caused by the process is less than 200 m in x to y dimension, then it will not be recorded. Although the scale factor is critical, in the recording of discontinuous active geomorphic processes, the repeat interval of orbital-image acquisition of a planetary surface also is a consideration in order to capture a recurring short-lived geomorphic process or to record changes caused by either a continuous or a discontinuous geomorphic process.
Vegetation-terrain feature relationships in southeast Arizona
NASA Technical Reports Server (NTRS)
Schrumpf, B. J. (Principal Investigator); Mouat, D. A.
1972-01-01
There are no author-identified significant results in this report. Studies of relationships of vegetation distribution to geomorphic characteristics of the landscape and of plant phenological patterns to vegetation identification of satellite imagery indicate that there exists positive relationships between certain plant species and certain terrain features. Not all species were found to exhibit positive relationships with all terrain feature variables, but enough positive relationships seem to exist to indicate that terrain feature variable-vegetation relationship studies have a definite place in plant ecological investigations. Even more importantly, the vegetation groups examined appeared to be successfully discriminated by the terrain feature variables. This would seem to indicate that spatial interpretations of vegetation groups may be possible. While vegetational distributions aren't determined by terrain feature differences, terrain features do mirror factors which directly influence vegetational response and hence distribution. As a result, those environmental features which can be readily and rapidly ascertained on relatively small-scale imagery may prove to be valuable indicators of vegetation distribution.
NASA Astrophysics Data System (ADS)
Bonachea, Jaime; Bruschi, Viola Maria; Remondo, Juan; González-Díez, Alberto; Salas, Luis; Bertens, Jurjen; Cendrero, Antonio; Otero, César; Giusti, Cecilia; Fabbri, Andrea; González-Lastra, José Ramón; Aramburu, José María
2005-03-01
A methodological proposal for the assessment of impacts due to linear infrastructures such as motorways, railways, etc. is presented. The approach proposed includes a series of specific issues to be addressed for each geomorphological feature analysed—both 'static' and 'dynamic'—as well as a series of steps to be followed in the process. Geomorphic characteristics potentially affected were initially identified on the basis of a conceptual activities/impacts model that helps to single out geomorphic impacts related to environmental concerns for the area. The following issues were addressed for each individual impact: nature of potential effects; indicators that can be used to measure impacts; criteria of 'geomorphologic performance'; procedure for measurement/prediction of changes; translation of geomorphologic impacts into significant terms from the viewpoint of human concerns; possible mitigation and/or compensation measures. The procedure has been applied to a case study corresponding to a new motorway in the Basque Country, northern Spain. Geomorphological impacts considered in this analysis included: (1) consumable resources; (2) sites of geomorphological interest; (3) land units with high potential for use, high productivity or value for conservation; (4) visual landscape; (5) slope instability processes. The procedure has been designed for implementation in a Geographic Information System (GIS) environment. Details are given on the application of the method to each individual impact analysed and results are presented in both numerical and map form. Impacts assessed were initially expressed by means of heterogeneous magnitudes, depending on the geomorphological feature considered. Those geomorphological impacts were then translated into significant terms and homogeneous magnitudes. Integration was carried out on the basis of impact values thus obtained. Final integrated results were also expressed in numerical and map form. The method proposed enables comparison of alternatives as well as 'prediction' and assessment of impacts in terms directly related to geomorphic characteristics. It also facilitates the expression of those impacts in terms that allow integration with other types of environmental impacts.
Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra
2013-01-01
Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only subtle modification by Holocene processes active during the present sea-level high-stand.
Recently active contractile deformation in the forearc of southern Peru
NASA Astrophysics Data System (ADS)
Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.
2010-12-01
In the Precordillera and Western Cordillera of southern Peru (14°-18°S), vast pediment surfaces have been abandoned through drainage diversion and river incision, with the major drainages carving deep canyons. Within this region, we have identified range-sub-parallel contractile structures that accommodate significant distributed crustal deformation. Young geomorphic features document both the presence and youthfulness of these contractile structures. Here, we determine exposure ages on geomorphic features such as pediment surfaces and fluvial terraces using in situ produced cosmogenic radionuclides, in conjunction with field and remote mapping. This chronologic data reveals that ancient surfaces have been preserved as a result of very low erosion rates. We measure this rate to be <0.5m/Ma on genetically similar surfaces spanning over 4 degrees of latitude throughout this region. While many ancient surfaces are preserved in forearc localities, we also observe young (30ka-1Ma) low-relief pediment surfaces modified by recent processes. Specifically, active structures accommodating compressional stresses locally displace active drainages and offset river terraces leading to their abandonment. Based on our chronology and geomorphic mapping, we calculate a Pleistocene river incision rate of ~0.3mm/yr determined from data collected along exoreic rivers. This rate is consistent with longer-term incision rates measured in other localities along this margin. We suggest that, in this region of southern Peru, the steep western wedge of the Andean margin supports the high topography of the Altiplano through a combination of uplift along steeply dipping contractile west-vergent structures and isostatic responses to the focused removal of large amounts of crustal material through canyon incision. Further, that these range sub-parallel structures are related at depth to a thrust system that plays a role in not only the maintenance of the Andean margin, but potentially in its formation as well.
NASA Astrophysics Data System (ADS)
Thompson, Chris; Croke, Jacky
2016-04-01
The year 2010-2011 was the wettest on record for the state of Queensland, Australia producing catastrophic floods. A tropical low pressure system in 2013 delivered further extreme flood events across South East Queensland (SEQ) which prompted state and local governments to conduct studies into flood magnitude and frequency in the region and catchment factors contributing to flood hazards. The floods in the region are strongly influenced by El Nino-Southern Oscillation (ENSO) phenomenon, but also modulated by the Interdecadal Pacific Oscillation (IPO) which leads to flood and drought dominated regimes and high hydrological variability. One geomorphic feature in particular exerted a significant control on the transmission speed, the magnitude of flood inundation and resultant landscape resilience. This feature was referred to as a 'macrochannel', a term used to describe a 'large-channel' which has bankfull recurrence intervals generally greater than 10 years. The macrochannels display non-linear downstream hydraulic geometry which leads to zones of flood expansion (when hydraulic geometry decreases) and zones of flood contraction (when hydraulic geometry increases). The pattern of contraction and expansion zones determines flood hazard zones. The floods caused significant wet flow bank mass failures that mobilised over 1,000,000 m3 of sediment in one subcatchment. Results suggest that the wetflow bank mass failures are a stage in a cyclical evolution process which maintains the macrochannel morphology, hence channel resilience to floods. Chronological investigations further show the macrochannels are laterally stable and identify periods of heightened flood activity over the past millennium and upper limits on flood magnitude. This paper elaborates on the results of the geomorphic investigations on Lockyer Creek in SEQ and how the results have alerted managers and policy makers to the different flood responses of these systems and how flood risk management plans can be developed based on the identified hazard zones and geomorphic processes of macrochannel systems.
Stream power framework for predicting geomorphic change: The 2013 Colorado Front Range flood
NASA Astrophysics Data System (ADS)
Yochum, Steven E.; Sholtes, Joel S.; Scott, Julian A.; Bledsoe, Brian P.
2017-09-01
The Colorado Front Range flood of September 2013 induced a diverse range of geomorphic changes along numerous stream corridors, providing an opportunity to assess responses to a large flood in a semiarid landscape. We defined six classes of geomorphic change related to peak unit stream power and valley confinement for 531 stream reaches over 226 km, spanning a gradient of channel scales and slope. Geomorphic change was generally driven by erosion of channel margins in confined reaches and by a combination of deposition and erosion in unconfined reaches. The magnitude of geomorphic change typically increased with unit stream power (ω), with greater responses observed in unconfined channels. Cumulative logit modeling indicated that total stream power or unit stream power, unit stream power gradient, and valley confinement are significant predictors of geomorphic response for this flood event. Based on this dataset, thresholds for geomorphic adjustment were defined. For channel slopes < 3%, we noted a credible potential for substantial channel widening with ω > 230 W/m2 (16 lb/ft-s; at least 10% of the investigated sites experienced substantial channel widening) and a credible potential for avulsions, braiding, and loss of adjacent road embankments associated with ω > 480 W/m2 (33 lb/ft-s; at least 10% of the investigated sites experienced such geomorphic change). Infrequent to numerous eroded banks were very likely with ω > 700 W/m2 (48 lb/ft-s), with substantial channel widening or major geomorphic change shifting from credible to likely. Importantly, in reaches where there were large reductions in ω as the valley form shifted from confined to relatively unconfined, large amounts of deposition-induced, reach-scale geomorphic change occurred in some locations at relatively low ω. Additionally, alluvial channels with slopes > 3% had greater resistance to geomorphic change, likely caused by armoring by larger bed material and increased flow resistance from enhanced bedforms. Finally, we describe how these results can potentially be used by practitioners for assessing the risk of geomorphic change when evaluating current or planned conditions.
The geological history of Northeast Syrtis Major, Mars
NASA Astrophysics Data System (ADS)
Bramble, Michael S.; Mustard, John F.; Salvatore, Mark R.
2017-09-01
As inferred from orbital spectroscopic data, Northeast Syrtis Major bears considerable mineral diversity that spans the Noachian-Hesperian boundary despite its small geographic area. In this study we use observations from the High Resolution Imaging Science Experiment, supplemented with Context Camera imagery, to characterize and map the lateral extent of geomorphic units in Northeast Syrtis Major, and constrain the geomorphic context of the orbital-identified mineral signatures. Using recent observations, we confirm previous mineralogy identified with the Compact Reconnaissance Imaging Spectrometer for Mars, and greatly extend the lateral extent of visible to near-infrared investigation utilizing the greater coverage. Analysis of Thermal Emission Imaging System observations reveals further physical properties and distribution of the geomorphic units. The stratigraphy, which spans the Noachian-Hesperian boundary, displays significant morphological heterogeneity at the decameter scale, but it is unifiable under five distinct geomorphic units. Our paired morphological and mineralogical analysis allows us to construct a detailed geological history of Northeast Syrtis Major. Several geological events that occurred in Northeast Syrtis Major-including the formation of the post-Isidis crust, the emplacement of an olivine-rich unit, the formation of sulfate minerals, and the emplacement of the Syrtis Major Volcanics-can be related to regional and global processes constraining the local chronology. Other mineralogical indicators, particularly the formation of Al-phyllosilicates, are difficult to place in the temporal sequence. They are observed in isolated patches on the post-Isidis crust, not as a distinct stratigraphic unit as observed elsewhere in Nili Fossae, suggesting their formation via isolated leaching or through alteration of initial compositional heterogeneities within the crust. Exposures of an olivine-rich unit are intermittently observed to form quasi-circular landforms, suggestive of emplacement in circular depressions, which may indicate a period of cratering between the formation of the Isidis basin and the deposition of the olivine-rich unit. We identify and discuss intriguing large linear features of the olivine-rich unit, reminiscent of dyke-fed volcanism, that have raised bounding ridges suggestive of contact metamorphism with the crust. We compile, review, and discuss many of the outstanding questions and running hypotheses relevant to our mapping area. A synthesis of our geomorphic mapping with recent literature reveals a well-defined geological history with extensive aqueous activity at Northeast Syrtis Major that is amassed in a stratigraphic sequence spanning a time likely greater than 250 million years of geological history. Our geomorphic and spectral analyses confirm that Northeast Syrtis Major exhibits considerable geomorphic and mineralogic diversity within a relatively small geographic area that is representative of the geologic processes occurring throughout the broader Nili Fossae region during the Noachian and Hesperian. Northeast Syrtis Major adds to this sequence by exposing the diverse environmental history of this region as observed through the presence of alteration minerals not present in this fidelity or proximity elsewhere in Nili Fossae.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Novo, E. M. L. D.; Dossantos, A. P.
1981-01-01
The application of temporal LANDSAT data to study floods was verified, and the natural features responsible for this phenomenon were surveyed using the Doce river valley as a test site, because of the catastrophic (1978-1979) flood. Data from LANDSAT images and CCT's were used. Geomorphical mapping evaluated morphostructural features. Seven and nine classes of water surfaces for dry and rainy seasons were analyzed. The magnitude of the changes from preflood to postflood stage are estimated. The single Pixel program was applied to correlate the drainage basin characteristics to the grey level of LANDSAT data.
Rockwell, Thomas K.; Lindvall, Scott; Dawson, Tim; Langridge, Rob; Lettis, William; Klinger, Yann
2002-01-01
Surveys of multiple tree lines within groves of poplar trees, planted in straight lines across the fault prior to the earthquake, show surprisingly large lateral variations. In one grove, slip increases by nearly 1.8 m, or 35% of the maximum measured value, over a lateral distance of nearly 100 m. This and other observations along the 1999 ruptures suggest that the lateral variability of slip observed from displaced geomorphic features in many earthquakes of the past may represent a combination of (1) actual differences in slip at the surface and (2) the difficulty in recognizing distributed nonbrittle deformation.
NASA Astrophysics Data System (ADS)
Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.
2004-12-01
We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace location of up to several hundred meters. To date we have field checked approximately 24 km of the 70-km-long section of the fault for which LiDAR data is available. The remaining 46 km will be field checked in 2005. The result will be a much more accurate map of the active traces of the northern San Andreas Fault, which will be of great use for future fault studies.
Geomorphic and biophysical factors affecting water tracks in northern Alaska
NASA Astrophysics Data System (ADS)
Trochim, E. D.; Jorgenson, M. T.; Prakash, A.; Kane, D. L.
2016-03-01
A better understanding of water movement on hillslopes in Arctic environments is necessary for evaluating the effects of climate variability. Drainage networks include a range of features that vary in transport capacity from rills to water tracks to rivers. This research focuses on describing and classifying water tracks, which are saturated linear-curvilinear stripes that act as first-order pathways for transporting water off of hillslopes into valley bottoms and streams. Multiple factor analysis was used to develop five water tracks classes based on their geomorphic, soil, and vegetation characteristics. The water track classes were then validated using conditional inference trees, to verify that the classes were repeatable. Analysis of the classes and their characteristics indicate that water tracks cover a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrates an improved approach to quantifying water track characteristics for specific areas, which is a major step toward understanding hydrological processes and feedbacks within a region.
Tracking Geomorphic Signatures of Watershed Suburbanization with Multi-Temporal LiDAR
Urban development practices redistribute surface materials through filling, grading and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-t...
Fluvial processes and vegetation - Glimpses of the past, the present, and perhaps the future
Osterkamp, W.R.; Hupp, C.R.
2010-01-01
Most research before 1960 into interactions among fluvial processes, resulting landforms, and vegetation was descriptive. Since then, however, research has become more detailed and quantitative permitting numerical modeling and applications including agricultural-erosion abatement and rehabilitation of altered bottomlands. Although progress was largely observational, the empiricism increasingly yielded to objective recognition of how vegetation interacts with and influences geomorphic process. A review of advances relating fluvial processes and vegetation during the last 50 years centers on hydrologic reconstructions from tree rings, plant indicators of flow- and flood-frequency parameters, hydrologic controls on plant species, regulation of sediment movement by vegetation, vegetative controls on mass movement, and relations between plant cover and sediment movement. Extension of present studies of vegetation as a regulator of bottomland hydrologic and geomorphic processes may become markedly more sophisticated and widespread than at present. Research emphases that are likely to continue include vegetative considerations for erosion modeling, response of riparian-zone forests to disturbance such as dams and water diversion, the effect of vegetation on channel and bottomland dynamics, and rehabilitation of stream corridors. Research topics that presently are receiving attention are the effect of woody vegetation on the roughness of stream corridors and, hence, processes of flood conveyance and flood-plain sedimentation, the development of a theoretical basis for rehabilitation projects as opposed to fully empirical approaches, the effect of invasive plant species on the dynamics of bottomland vegetation, the quantification of below-surface biomass and related soil-stability factors for use in erosion-prediction models, and the effect of impoundments on downstream narrowing of channels and accompanying encroachment of vegetation. Bottomland vegetation partially controls and is controlled by fluvial-geomorphic processes. The purposes of this paper are to identify and review investigations that have related vegetation to bottomland features and processes, to distinguish the present status of these investigations, and to anticipate future research into how hydrologic and fluvial-geomorphic processes of bottomlands interact with vegetation.
GeoGML - a Mark-up Language for 4-dimensional geomorphic objects and processes
NASA Astrophysics Data System (ADS)
Löwner, M.-O.
2009-04-01
We developed an use-oriented GML3 based data model that enables researchers to share 4-dimensional information about landforms and their process related interaction. Using the Unified Modelling Language it is implemented as a GML3-based application schema available on the Internet. As the science of the land's surface Geomorphology investigates landforms, their change, and the processes causing this change. The main problem of comparing research results in geomorphology is that the objects under investigation are composed of 3-dimensional geometries that change in time due to processes of material fluxes, e. g. soil erosion or mass movements. They have internal properties, e. g. soil texture or bulk density, that determine the effectiveness of these processes but are under change as well. Worldwide geographical data can be shared over the Internet using Web Feature Services. The precondition is the development of a semantic model or ontology based on international standards like GML3 as an implementation of the ISO 109107 and others. Here we present a GML3-based Mark-up Language or application schema for geomorphic purposes that fulfils the following requirements: First, an object-oriented view of landforms with a true 3-dimensional geometric data format was established. Second, the internal structure and attributes of landforms can be stored. Third, the interaction of processes and landforms is represented. Fourth, the change of all these mentioned attributes over time was considered. The presented application schema is available on the Internet and therefore a first step to enable researchers to share information using an OGC's Web feature service. In this vein comparing modelling results of landscape evolution with results of other scientist's observations is possible. Compared to prevalent data concepts the model presented makes it possible to store information about landforms, their geometry and the characteristics in more detail. It allows to represent the 3D-geometry, the set of material properties and the genesis of a landform by associating processes to a geoobject. Thus, time slices of a geomorphic system can be represented as well as scenarios of landscape modelling. Commercial GI-software is not adapted to the needs of the science of geomorphology. Therefore the development of an application model i. e. a formal description of semantics is imperative to partake in technologies like Web Feature Services supporting interoperable data transfer.
Scaling Laws in Arctic Permafrost River Basins: Statistical Signature in Transition
NASA Astrophysics Data System (ADS)
Rowland, J. C.; Gangodagamage, C.; Wilson, C. J.; Prancevic, J. P.; Brumby, S. P.; Marsh, P.; Crosby, B. T.
2011-12-01
The Arctic landscape has been shown to be fundamentally different from the temperate landscape in many ways. Long winters and cold temperatures have led to the development of permafrost, perennially frozen ground, that controls geomorphic processes and the structure of the Arctic landscape. Climate warming is causing changes in permafrost and the active layer (the seasonally thawed surface layer) that is driving an increase in thermal erosion including thermokarst (collapsed soil), retrogressive thaw slumps, and gullies. These geomorphic anomalies in the arctic landscapes have not been well quantified, even though some of the landscape geomorphic and hydrologic characteristics and changes are detectable by our existing sensor networks. We currently lack understanding of the fundamental fluvio-thermal-erosional processes that underpin Arctic landscape structure and form, which limits our ability to develop models to predict the landscape response to current and future climate change. In this work, we seek a unified framework that can explain why permafrost landscapes are different from temperate landscapes. We use high resolution LIDAR data to analyze arctic geomorphic processes at a scale of less than a 1 m and demonstrate our ability to quantify the fundamental difference in the arctic landscape. We first simulate the arctic hillslopes from a stochastic space-filling network and demonstrate that the flow-path convergent properties of arctic landscape can be effectively captured from this simple model, where the simple model represents a landscape flowpath arrangement on a relatively impervious frozen soil layer. Further, we use a novel data processing algorithm to analyze landscape attributes such as slope, curvature, flow-accumulation, elevation-drops and other geomorphic properties, and show that the pattern of diffusion and advection dominated soil transport processes (diffusion/advection regime transition) in the arctic landscape is substantially different from the pattern in temperate landscapes. Our results suggest that Arctic landscapes are characterized by relatively undissected, long planar hillslopes, which convey sediment to quasi-fluvial valleys through long (~ 1 km) flow-paths. Further, we also document that broad planar hillslopes abruptly converge, forcing rapid subsurface flow accumulation at channel heads. This topographic characteristic can successfully be used to explain the position of erosion features. Finally we estimate the landscape model parameters for the arctic landscape that can be successfully used to model development and validation purposes.
NASA Astrophysics Data System (ADS)
Gomez-Velez, J. D.; Harvey, J. W.
2014-12-01
Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data as well as models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically-based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). At the core of NEXSS is a characterization of the channel geometry, geomorphic features, and related hydraulic drivers based on scaling equations from the literature and readily accessible information such as river discharge, bankfull width, median grain size, sinuosity, channel slope, and regional groundwater gradients. Multi-scale hyporheic flow is computed based on combining simple but powerful analytical and numerical expressions that have been previously published. We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bedforms dominates hyporheic fluxes and turnover rates along the river corridor. Moreover, the hyporheic zone's potential for biogeochemical transformations is comparable across stream orders, but the abundance of lower-order channels results in a considerably higher cumulative effect for low-order streams. Thus, vertical exchange beneath submerged bedforms has more potential for biogeochemical transformations than lateral exchange beneath banks, although lateral exchange through meanders may be important in large rivers. These results have implications for predicting outcomes of river and basin management practices.
NASA Astrophysics Data System (ADS)
Hanrahan, T. P.; Hill, Z.; Levell, A.; Maguire, T.; Risso, D.
2014-12-01
A large wetland and floodplain complex adjacent to the Snake River in southeastern Idaho, USA, encompasses numerous spring-fed creeks that originate on the floodplain and discharge at their confluence with the Snake River and American Falls Reservoir. Resource managers are implementing a program to restore these spring creeks for the recovery of Yellowstone cutthroat trout and ecosystem health. Our objectives were to evaluate the physical characteristics of these spring creeks, develop a conceptual model of their geomorphic function, compare the restoration potential of individual reaches, and communicate our findings to a broad audience of resource managers and regional stakeholders in order to foster restoration planning. A geomorphic assessment along 38 km of three spring creeks was completed by collecting data at several transects within distinct geomorphic reaches, and by collecting data continuously throughout all reaches. These data were summarized in a GIS database and used to quantify the overall geomorphic functioning of each reach. The geomorphic functional scores were scaled from 0% (non-functional) to 100% (fully functional). Among all three spring creeks, geomorphic function ranged from 29% to 63%, with bank conditions and riparian vegetation being the primary causes of overall channel degradation. Results from the geomorphic assessment fostered the development of a conceptual model for spring creek function, whereby degraded bank conditions represent the primary controlling factor of decreased geomorphic function and fish habitat quality. The reach-based geomorphic functional scoring provides an indicator of relative restoration potential for each reach, and is one of the factors used in determining site-specific priorities for protecting, enhancing, and restoring spring creeks on the Fort Hall Bottoms. The study results, conceptual model and restoration strategy were communicated to resource managers and regional stakeholders through a graphically-rich, large format atlas document. Presentation of hard copy and electronic versions of maps and infographics fostered a high level of engagement among those interested in restoring these spring creek systems.
NASA Astrophysics Data System (ADS)
Poeppl, Ronald E.; Keesstra, Saskia D.; Maroulis, Jerry
2017-01-01
Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to the coupling relationships between them. To better understand system complexity and system response to changing inputs, "connectivity thinking" has become an important recent paradigm within various disciplines including ecology, hydrology and geomorphology. With the presented conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Geomorphic response of fluvial systems to human disturbance is shown to be determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.
Fluvio geomorphic set-up of Noctis Fossae in Noctis Labyrinthus of Syria-Planum Provenance, Mars
NASA Astrophysics Data System (ADS)
Chavan, A. A.; Bhandari, S.
2017-12-01
The modern era of planetary exploration has revealed fluvial or fluvial like landforms on the extraterrestrial surfaces of planets and moons of our solar system. This has posed as interesting challenges for advancing our fundamental understanding of fluvial processes and their associated landforms on the planetary surfaces especially on Mars. It has been recognized through earlier studies that the channels and valleys are extensively dissected on Mars. The Valleys are low lying, elongate troughs surrounded by elevated topography. Moreover, valley networks on Mars are the most noticeable features attesting that different geological processes and possibly climatic conditions prevailed in the past and played a vital role in formulating the Martian topography. Channel incisions which are a domino effect both tectonic and surface runoff and groundwater sapping. The components of surface runoff have been deciphered with the help of morphometric exercises. Further, the geomorphological studies of these landforms are critical in understanding the regional tectonics. The present work is an assessment of Fluvio geomorphic set-up of Noctis Fossae in Noctis Labyrinthus of Syria-Planum Provenance, Mars. This study focuses on the fluvio geomorphology of the southern highlands (00 to 400S to 850-1200W) to determine how these features were formed, which process formed these valleys and includes the probable causes resulting into the development of the topography. Keywords: Noctis Fossae; Noctis Labyrinthus; Syria Planum; Mars
NASA Technical Reports Server (NTRS)
Morrison, R. B. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The utility of Skylab 2 and 3 S-190A multispectral photos for environmental-geologic/geomorphic applications is being tested by using them to prepare 1:250,000-scale maps of geomorphic features, surficial geology, geologic linear features, and soil associations of large, representative parts of the Great Plains and Midwest. Parts of Nebraska, Iowa, Missouri, and South Dakota were mapped. The maps were prepared primarily by interpretation of the S-190A photos, supplemented by information from topographic, geologic, and soil maps and reports. The color band provides the greatest information on geology, soils, and geomorphology; its resolution also is the best of all the multispectral bands and permits maximum detail of mapping. The color-IR band shows well the differences in soil drainage and moisture, and vegetative types, but has only moderate resolution. The B/W-red band is superior for topographic detail and stream alinements. The B/W-infrared bands best show differences in soil moisture and drainage but have poor resolution, especially those from SL 2. The B/W-green band generally is so low contrast and degraded by haze as to be nearly useless. Where stereoscopic coverage is provided, interpretation and mapping are done most efficiently using a Kern PG-2 stereoplotter.
King, Sammy L.; Keim, Richard F.; Hupp, Cliff R.; Edwards, Brandon L.; Kroschel, Whitney A.; Johnson, Erin L.; Cochran, J. Wesley
2016-09-12
Determine stand establishment patterns of bottomland hardwoods within selected plant communities along three sections of the floodplain. This study provides baseline information on the current geomorphic and hydrologic conditions of the river and can assist in the interpretation of forest responses to past hydrologic and geomorphic processes. Understanding the implications for floodplain forests of geomorphic adjustment in the Lower Mississippi Alluvial Valley is key to managing the region’s valuable resources for a sustainable future.
FEX: A Knowledge-Based System For Planimetric Feature Extraction
NASA Astrophysics Data System (ADS)
Zelek, John S.
1988-10-01
Topographical planimetric features include natural surfaces (rivers, lakes) and man-made surfaces (roads, railways, bridges). In conventional planimetric feature extraction, a photointerpreter manually interprets and extracts features from imagery on a stereoplotter. Visual planimetric feature extraction is a very labour intensive operation. The advantages of automating feature extraction include: time and labour savings; accuracy improvements; and planimetric data consistency. FEX (Feature EXtraction) combines techniques from image processing, remote sensing and artificial intelligence for automatic feature extraction. The feature extraction process co-ordinates the information and knowledge in a hierarchical data structure. The system simulates the reasoning of a photointerpreter in determining the planimetric features. Present efforts have concentrated on the extraction of road-like features in SPOT imagery. Keywords: Remote Sensing, Artificial Intelligence (AI), SPOT, image understanding, knowledge base, apars.
NASA Astrophysics Data System (ADS)
Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine
2016-08-01
The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences active folding of the Rajang Group fold-thrust belt to present and these events reactivated old major faults and minor related dislocations. From geomorphic analysis associated with sedimentary record, we posit that the terrain could have undergone high uplift rates since 5 Ma or multi-phased uplift with periodic intermittent pulses of high and low uplift rates.
Data collected from 2002 through 2008 were used to assess geomorphic characteristics and geomorphic changes over time in a selected reach of Minebank Run, a small urban watershed near Towson, Maryland, prior to and after its physical restoration in 2004 and 2005. Data collected ...
The Promise for Geomorphic Discovery in the South.
ERIC Educational Resources Information Center
Mossa, Joann
1998-01-01
Presents an overview of current geomorphic research in the southern United States. Conveys that the limited historical effort offers both challenges and opportunities for conducting geomorphic work in the region; much is unknown about these unique landscapes. States applied and theoretical geomorphology will benefit the society and future of the…
Elliott, Caroline M.; Jacobson, Robert B.
2006-01-01
A multiscale geomorphic classification was established for the 39-mile, 59-mile, and adjacent segments of the Missouri National Recreational River administered by the National Park Service in South Dakota and Nebraska. The objective of the classification was to define naturally occurring clusters of geomorphic characteristics that would be indicative of discrete sets of geomorphic processes, with the intent that such a classification would be useful in river-management and rehabilitation decisions. The statistical classification was based on geomorphic characteristics of the river collected from 1999 orthophotography and the persistence of classified units was evaluated by comparison with similar datasets for 2003 and 2004 and by evaluating variation of bank erosion rates by geomorphic class. Changes in channel location and form were also explored using imagery and maps from 1993-2004, 1941 and 1894. The multivariate classification identified a hierarchy of naturally occurring clusters of reach-scale geomorphic characteristics. The simplest level of the hierarchy divides the river from segments into discrete reaches characterized by single and multithread channels and additional hierarchical levels established 4-part and 10-part classifications. The classification system presents a physical framework that can be applied to prioritization and design of bank stabilization projects, design of habitat rehabilitation projects, and stratification of monitoring and assessment sampling programs.
NASA Astrophysics Data System (ADS)
Pöppl, Ronald; Keesstra, Saskia; Maroulis, Jerry
2017-04-01
Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to emerging coupling relationships between them. To better understand system complexity and system response to change, connectivity has become an important research paradigm within various disciplines including geomorphology, hydrology and ecology. With the proposed conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Underpinned by case study examples, the presented conceptual framework is able to explain how geomorphic response of fluvial systems to human disturbance is determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.
A novel feature extraction approach for microarray data based on multi-algorithm fusion
Jiang, Zhu; Xu, Rong
2015-01-01
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277
A novel feature extraction approach for microarray data based on multi-algorithm fusion.
Jiang, Zhu; Xu, Rong
2015-01-01
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.
Curtis, Jennifer A.
2015-01-01
Dam construction, flow diversion, and legacy landuse effects reduced the transport capacity, sediment supply, channel complexity and floodplain-connectivity along the Trinity River, CA below Lewiston Dam. This study documents the geomorphic evolution of the Trinity River Restoration Program’s intensively managed 65-km long restoration reach from 1980 to 2011. The nature and extent of riparian and channel changes were assessed using a series of geomorphic feature maps constructed from ortho-rectified photography acquired at low flow conditions in 1980, 1997, 2001, 2006, 2009, and 2011. Since 1980 there has been a general conversion of riparian to channel features and expansion of the active channel area. The primary mechanism for expansion of the active channel was bank erosion from 1980 to 1997 and channel widening was well distributed longitudinally throughout the study reach. Subsequent net bar accretion from 1997 to 2001, followed by slightly higher net bar scour from 2001 to 2006, occurred primarily in the central and lower reaches of the study area. In comparison, post-2006 bank and bar changes were spatially-limited to reaches with sufficient local transport capacity or sediment supply supported by gravel augmentation, mechanical channel rehabilitation, and tributary contributions to flow and sediment supply. A series of tributary floods in 1997, 1998 and 2006 were the primary factors leading to documented increases in channel complexity and floodplain connectivity. During the post-2006 period managed flow releases, in the absence of large magnitude tributary flooding, combined with gravel augmentation and mechanical restoration caused localized increases in sediment supply and transport capacity leading to smaller but measurable increases in channel complexity and floodplain connectivity primarily in the upper river below Lewiston Dam.
Pedogenic silica accumulation in chronosequence soils, southern California
Kendrick, K.J.; Graham, R.C.
2004-01-01
Chronosequential analysis of soil properties has proven to be a valuable approach for estimating ages of geomorphic surfaces where no independent age control exists. In this study we examined pedogenic silica as an indicator of relative ages of soils and geomorphic surfaces, and assessed potential sources of the silica. Pedogenic opaline silica was quantified by tiron (4,5-dihydroxy-1,3-benzene-disulfonic acid [disodium salt], C6H 4Na2O8S2) extraction for pedons in two different chromosequences in southern California, one in the San Timoteo Badlands and one in Cajon Pass. The soils of hoth of these chronosequences are developed in arkosic sediments and span 11.5 to 500 ka. The amount of pedogenic silica increases with increasing duration of pedogenesis, and the depth of the maximum silica accumulation generally coincides with the maximum expression of the argillic horizon. Pedogenic silica has accumulated in all of the soils, ranging from 1.2% tiron-extractable Si (Sitn) in the youngest soil to 4.6% in the oldest. Primary Si decreases with increasing duration of weathering, particularly in the upper horizons, where weathering conditions are most intense. The loss of Si coincides with the loss of Na and K, implicating the weathering of feld-spars as the likely source of Si loss. The quantity of Si lost in the upper horizons is adequate to account for the pedogenic silica accumulation in the subsoil. Pedogenic silica was equally effective as pedogenic Fe oxides as an indicator of relative soil age in these soils.
Evidence for recent groundwater seepage and surface runoff on Mars.
Malin, M C; Edgett, K S
2000-06-30
Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.
Geomorphic analysis of large alluvial rivers
NASA Astrophysics Data System (ADS)
Thorne, Colin R.
2002-05-01
Geomorphic analysis of a large river presents particular challenges and requires a systematic and organised approach because of the spatial scale and system complexity involved. This paper presents a framework and blueprint for geomorphic studies of large rivers developed in the course of basic, strategic and project-related investigations of a number of large rivers. The framework demonstrates the need to begin geomorphic studies early in the pre-feasibility stage of a river project and carry them through to implementation and post-project appraisal. The blueprint breaks down the multi-layered and multi-scaled complexity of a comprehensive geomorphic study into a number of well-defined and semi-independent topics, each of which can be performed separately to produce a clearly defined, deliverable product. Geomorphology increasingly plays a central role in multi-disciplinary river research and the importance of effective quality assurance makes it essential that audit trails and quality checks are hard-wired into study design. The structured approach presented here provides output products and production trails that can be rigorously audited, ensuring that the results of a geomorphic study can stand up to the closest scrutiny.
Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada
Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.
1991-01-01
The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting events) that cuts Q1B surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-09
This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less
Modeling meander morphodynamics over self-formed heterogeneous floodplains
NASA Astrophysics Data System (ADS)
Bogoni, Manuel; Putti, Mario; Lanzoni, Stefano
2017-06-01
This work addresses the signatures embedded in the planform geometry of meandering rivers consequent to the formation of floodplain heterogeneities as the river bends migrate. Two geomorphic features are specifically considered: scroll bars produced by lateral accretion of point bars at convex banks and oxbow lake fills consequent to neck cutoffs. The sedimentary architecture of these geomorphic units depends on the type and amount of sediment, and controls bank erodibility as the river impinges on them, favoring or contrasting the river migration. The geometry of numerically generated planforms obtained for different scenarios of floodplain heterogeneity is compared to that of natural meandering paths. Half meander metrics and spatial distribution of channel curvatures are used to disclose the complexity embedded in meandering geometry. Fourier Analysis, Principal Component Analysis, Singular Spectrum Analysis and Multivariate Singular Spectrum Analysis are used to emphasize the subtle but crucial differences which may emerge between apparently similar configurations. A closer similarity between observed and simulated planforms is attained when fully coupling flow and sediment dynamics (fully-coupled models) and when considering self-formed heterogeneities that are less erodible than the surrounding floodplain.
NASA Astrophysics Data System (ADS)
Auler, Augusto S.; Wang, Xianfeng; Edwards, R. Lawrence; Cheng, Hai; Cristalli, Patrícia S.; Smart, Peter L.; Richards, David A.
2004-10-01
Several geomorphic features and palaeobiotic remains in now semi-arid northeastern Brazil indicate major palaeoenvironmental changes during past periods of increased rainfall. 230Th mass spectrometric ages of speleothems and travertines have allowed the determination of the timing and duration of wetter than present conditions. The data demonstrate that wet events have occurred throughout much of the Pleistocene, present dry conditions having been established at the end of the Younger Dryas. A markedly different fauna comprising megafaunal elements not adapted to the present low arboreal scrubland caatinga vegetation existed in the area. Palaeobotanical remains embedded in travertine indicate forested vegetation at these wetter intervals, suggesting that the caatinga was then replaced or mixed with a semi-deciduous forest. Due to the abundance of travertine sites containing fossil botanical remains in northeastern Brazil, it is believed that forest expansion occurred over large areas of the now semi-arid zone, showing that the long hypothesised forested links between biodiversity-rich Amazon and Atlantic rainforests may indeed have existed during these moister phases. Copyright
A geomorphic process law for detachment-limited hillslopes
NASA Astrophysics Data System (ADS)
Turowski, Jens
2015-04-01
Geomorphic process laws are used to assess the shape evolution of structures at the Earth's surface over geological time scales, and are routinely used in landscape evolution models. There are two currently available concepts on which process laws for hillslope evolution rely. In the transport-limited concept, the evolution of a hillslope is described by a linear or a non-linear diffusion equation. In contrast, in the threshold slope concept, the hillslope is assumed to collapse to a slope equal to the internal friction angle of the material when the load due to the relief exists the material strength. Many mountains feature bedrock slopes, especially in the high mountains, and material transport along the slope is limited by the erosion of the material from the bedrock. Here, I suggest a process law for detachment-limited or threshold-dominated hillslopes, in which the erosion rate is a function of the applied stress minus the surface stress due to structural loading. The process law leads to the prediction of an equilibrium form that compares well to the shape of many mountain domes.
Profile convexities in bedrock and alluvial streams
NASA Astrophysics Data System (ADS)
Phillips, Jonathan D.; Lutz, J. David
2008-12-01
Longitudinal profiles of bedrock streams in central Kentucky, and of coastal plain streams in southeast Texas, were analyzed to determine the extent to which they exhibit smoothly concave profiles and to relate profile convexities to environmental controls. None of the Kentucky streams have smoothly concave profiles. Because all observed knickpoints are associated with vertical joints, if they are migrating it either occurs rapidly between vertical joints, or migrating knickpoints become stalled at structural features. These streams have been adjusting to downcutting of the Kentucky River for at least 1.3 Ma, suggesting that the time required to produce a concave profile is long compared to the typical timescale of environmental change. A graded concave longitudinal profile is not a reasonable prediction or benchmark condition for these streams. The characteristic profile forms of the Kentucky River gorge area are contingent on a particular combination of lithology, structure, hydrologic regime, and geomorphic history, and therefore do not represent any general type of equilibrium state. Few stream profiles in SE Texas conform to the ideal of the smoothly, strongly concave profile. Major convexities are caused by inherited topography, geologic controls, recent and contemporary geomorphic processes, and anthropic effects. Both the legacy of Quaternary environmental change and ongoing changes make it unlikely that consistent boundary conditions will exist for long. Further, the few exceptions within the study area-i.e., strongly and smoothly concave longitudinal profiles-suggest that ample time has occurred for strongly concave profiles to develop and that such profiles do not necessarily represent any mutual adjustments between slope, transport capacity, and sediment supply. The simplest explanation of any tendency toward concavity is related to basic constraints on channel steepness associated with geomechanical stability and minimum slopes necessary to convey flow. This constrained gradient concept (CGC) can explain the general tendency toward concavity in channels of sufficient size, with minimal lithological constraints and with sufficient time for adjustment. Unlike grade- or equilibrium-based theories, the CGC results in interpretations of convex or low-concavity profiles or reaches in terms of local environmental constraints and geomorphic histories rather than as "disequilibrium" features.
NASA Astrophysics Data System (ADS)
Migoń, Piotr; Kasprzak, Marek
2016-05-01
The tableland of the Stołowe Mountains (SW Poland), with its prominent mesas and sandstone-capped escarpments, belongs to the most spectacular geomorphic landscapes of Central Europe. While the gross morphological features of the area have long been recognized, the evolutionary pathways of densely forested and poorly accessible escarpment slopes remained poorly understood. In this paper we use LiDAR data to shed a new light on landform inventories within the escarpments, their spatial patterns and, using process-from-form reasoning, on the longer-term evolution of the escarpments. Four sites, two on each major escarpment, have been subject to detailed analysis which involved examination of shaded relief, slope, plan and profile curvature and topographic wetness index. In each case, the 1 × 1 m model was used, while for the most complex site at Mt. Szczeliniec Wielki the results were compared with the 5 × 5 m model to check the impact of model resolution on geomorphic interpretation. Despite some loss of information involved in model re-interpolation to the coarser scale, the main features of escarpment morphology could still be recognized. On the other hand, automatic landform classification based on the calculation of Topographic Position Index from the 10 × 10 m model and performed for the entire tableland failed to reveal differences between various sections of the escarpments, detectable on finer models. The analysis of spatial patterns of minor landforms within the escarpments, identified on LiDAR-derived models shows that no single pathway of escarpment evolution exists. Both the upper slopes (in sandstone caprock) and the mid-slopes (in weaker rocks) show signs of instability and these are not necessarily coupled. Large-scale caprock failures do occur but seem rare and localized. Sandstone free faces are rather subject to continuous slow retreat by detachment of individual joint-bound blocks. Another zone of instability occurs well below the caprock and the dominant processes are shallow landslips initiated within weak, deformable rocks.
NASA Astrophysics Data System (ADS)
André, Marie-Françoise; Hall, Kevin
2005-02-01
Analysis of three generations of glacial deposits and of a range of geomorphic features including widespread honeycombs and tafonis at Two Step Cliffs/Mars Oasis (71°52‧S, 68°15‧W) provides new insights into the geomorphological evolution of West Antarctica, with special respect to alveolar weathering. At Two Step Terrace, indicators of the inherited character of cavernous weathering were found, such as 97% non-flaking and varnished backwalls, and 80% tafoni floors that are till-covered and/or sealed by lithobiontic coatings. Based on the NE predominant aspect of the alveolized boulder faces, tafoni initiation is attributed to coastal salt spray weathering by halite coming from the George VI Sound during the 6.5 ka BP open water period. The present-day activity of these inherited cavities is restricted to roof flaking attributed to a combination of processes involving thermal stresses. This 6.5 ka BP phase of coastal alveolization is the first step of a six-stage Holocene geomorphological scenario that includes alternatively phases of glacial advance or stationing, and phases of vegetal colonization and/or rock weathering and aeolian abrasion on the deglaciated outcrops. This geomorphic scenario is tentatively correlated with the available palaeoenvironmental record in the Antarctic Peninsula region, with two potential geomorphic indicators of the Holocene Optimum being identified: (1) clusters of centimetric honeycombs facing the sound (marine optimum at 6.5 ka BP); (2) salmon-pink lithobiontic coatings preserved inside cavities and at the boulder surface (terrestrial optimum at 4 3 ka BP).
NASA Astrophysics Data System (ADS)
Delcaillau, Bernard; Amrhar, Mostafa; Namous, Mustapha; Laville, Edgard; Pedoja, Kevin; Dugué, Olivier
2011-11-01
The Ouzzelarh Massif extends across the Marrakech High Atlas (MHA) and forms the highest elevated mountain belt. To better understand the evolution of collision-related topography, we present the results of a geomorphological study in which elevation changes generated by reactivated pre-Alpine (Variscan and Triassic-Jurassic) faults drive a landscape evolution model. We aim to evaluate the relationship between the geometry of the drainage network and the main fault systems in this region. New insight into geomorphological changes in drainage patterns and related landforms is based on geological fieldwork combined with DEM analysis. To quantitatively measure landscape features we used several classical geomorphic indices (spacing ratio, hypsometric curves and integral, stream frequency drainage, stream length-gradient). The Ouzzelarh Massif is bounded to the north by the Tizi N'Test Fault Zone (TTFZ) and to the south by the Sour Fault Zone (SFZ). These faults delimit a pop-up structure. By using the above geomorphic parameters, we ascertained that the Ouzzelarh Massif is affected by a high spatial variability of uplift. The actual landscape of the Ouzzelarh Massif reveals remnants of an uplifted ancient erosional surface and the heterogeneity of exposed rocks in the range explaining the possibility that the topographic asymmetry between north and south flanks is due to differences in lithology-controlled resistance to erosion. Drainage, topography and fault pattern all concur to show uplifted rhomboidal-shaped blocks. It exhibits high stream frequency drainage and uplift in separate tectonically-uplifted blocks such as Jebel Toubkal which is characterized by asymmetric drainage basins.
Development of Envelope Curves for Predicting Void Dimensions from Overturned Trees
2014-07-01
transport due to tree root throw: integrating tree population dynamics, wildfire, and geomorphic response (Gallaway et al. 2009...Johnson. 2009. Sediment transport due to tree root throw: Integrating tree population dynamics, wildfire and geomorphic response. Earth Surface Processes...environment, but not vegetation (Peterson and Leach 2008) ............................................................ 17 4.7 Pedologic and geomorphic impacts
NASA Technical Reports Server (NTRS)
Merola, John A.
1989-01-01
The LANDSAT Thematic Mapper (TM) scanner records reflected solar energy from the earth's surface in six wavelength regions, or bands, and one band that records emitted energy in the thermal region, giving a total of seven bands. Useful research was extracted about terrain morphometry from remote sensing measurements and this information is used in an image-based terrain model for selected coastal geomorphic features in the Great Salt Lake Desert (GSLD). Technical developments include the incorporation of Aerial Profiling of Terrain System (APTS) data in satellite image analysis, and the production and use of 3-D surface plots of TM reflectance data. Also included in the technical developments is the analysis of the ground control point spatial distribution and its affects on geometric correction, and the terrain mapping procedure; using satellite data in a way that eliminates the need to degrade the data by resampling. The most common approach for terrain mapping with multispectral scanner data includes the techniques of pattern recognition and image classification, as opposed to direct measurement of radiance for identification of terrain features. The research approach in this investigation was based on an understanding of the characteristics of reflected light resulting from the variations in moisture and geometry related to terrain as described by the physical laws of radiative transfer. The image-based terrain model provides quantitative information about the terrain morphometry based on the physical relationship between TM data, the physical character of the GSLD, and the APTS measurements.
Episodic Aggradation and Asynchronous Incision of River Terraces in the Kyrgyz Tien Shan
NASA Astrophysics Data System (ADS)
Burgette, R. J.; Weldon, R. J.; Abdkrakhmatov, K. Y.; Ormukov, C.
2006-12-01
Sequences of terraces and alluvial fans with characteristic geomorphic expression lie above or at the mouth of rivers in all of the major basins in the Tien Shan mountains of Kyrgyzstan. The similarity of terraces and fans in different drainage basins, despite being bounded by faults of varying activity and style, has been used to argue for synchronous regional climatic variations controlling the timing of aggradation and incision. Our emerging set of radiocarbon dates (currently 24) from terrace deposits and overlying sediments suggest that despite the general regional synchroneity of a late Pleistocene terrace-forming event, deep incision below broad aggradational surfaces may be locally controlled and occurred over time spans up to 30 k.y. The most prominent intra-canyon terrace is known as QIII(2) in the characteristic sequence of Tien Shan terraces. QIII(2) is a fill terrace everywhere except for the hanging walls of the most active thrust faults in the Tien Shan, where it has a strath terrace morphology. In many places the base of the QIII(2) fill is not visible even at the level of the modern river. Five dates in the fill from the Ak-Terek and Tong Rivers in the Issyk-Kul basin and Kajerty River in the Naryn basin are all >40 Ka, and may be beyond the limit of radiocarbon. The Issyk-Kul basin is occupied by a large lake, which provides additional dating possibilities, while potentially complicating the geomorphic system. In Issyk-Kul dates from sediment overlying the QIII(2) gravel in thick colluvial wedges far from the edge of the riser to lower terraces along the Ak-Terek and Tamga rivers show that at least the highest level of the fill was abandoned by 33-30 Ka. However, the downstream reaches of Issyk- Kul rivers' QIII(2) surfaces clearly remained active through a high stand of the lake that persisted from 38 to 20 Ka. Remnants of terraces with steeper gradients that merge upstream with surfaces inset only a few m into the main QIII(2) post-date the high stand and are locally preserved at the mouths of some rivers. To the west of Issyk-Kul, abandonment of the QIII(2) surface appears to have occurred at approximately 13 Ka in three basins of central Kyrgyzstan (Thompson et al., 2002). Taken together, these data show that QIII(2) aggradation was complete before 33 Ka and possibly as early as 40 Ka. Most rivers stayed at the level of the top of the fill with minor aggradation or incision for the next 13 to 25 k.y. Such long-lived stability results in a landscape where late Pleistocene surfaces that are at almost indistinguishable levels may vary in age by a factor >2. Similarly, ages of deposits in such fill terraces may be much older than the surfaces cut into them. While it is not yet clear over what region our results may apply, our observations suggest that the "same" geomorphic surface may be abandoned over a wide range of time and the upper few meters of gravel may be quite different in age than the bulk of the fill that forms the geomorphic feature. How this will affect slip rate estimates in central Asia is yet to be determined, but our observations motivate caution in assuming synchroneity of fills and their incision or synchroneity of similar- looking geomorphic features. Calculating accurate slip rates requires that one understands well the relationship between the feature where it is offset and where it is dated, particularly for relatively young terraces that do not average across many aggradation/incision cycles.
NASA Astrophysics Data System (ADS)
Arantes Camargo, Livia; Marques Júnior, José; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angélica
2017-04-01
Environmental impact assessments may be assisted by spatial characterization of potentially toxic elements (PTEs). Diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF) are rapid, non-destructive, low-cost, prediction tools for a simultaneous characterization of different soil attributes. Although low concentrations of PTEs might preclude the observation of spectral features, their contents can be predicted using spectroscopy by exploring the existing relationship between the PTEs and soil attributes with spectral features. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Co, and Ni) and their spatial variability by means of diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF). For that, soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, and mineralogical properties, and then analyzed in DRS (visible + near infrared - VIS+NIR and medium infrared - MIR) and XRF equipment. PTE prediction models were calibrated using partial least squares regression (PLSR). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy using geostatistics. PTE prediction models were satisfactorily calibrated using MIR DRS for Ba, and Co (residual prediction deviation - RPD > 3.0), Vis DRS for Ni (RPD > 2.0) and FRX for all the studied PTEs (RPD > 1.8). DRS- and XRF-predicted values allowed the characterization and the understanding of spatial variability of the studied PTEs.
Jones, Krista L.; Mangano, Joseph F.; Wallick, J. Rose; Bervid, Heather D.; Olson, Melissa; Keith, Mackenzie K.; Bach, Leslie
2016-11-07
This report presents the results of an ongoing environmental flow monitoring study by The Nature Conservancy (TNC), U.S. Army Corps of Engineers (USACE), and U.S. Geological Survey in support of the Sustainable Rivers Project (SRP) of TNC and USACE. The overarching goal of this study is to evaluate and characterize relations between streamflow, geomorphic processes, and black cottonwood (Populus trichocarpa) recruitment on the Middle Fork Willamette and McKenzie Rivers, western Oregon, that were hypothesized in earlier investigations. The SRP can use this information to plan future monitoring and scientific investigations, and to help mitigate the effects of dam operations on streamflow regimes, geomorphic processes, and biological communities, such as black cottonwood forests, in consultation with regional experts. The four tasks of this study were to:Compare the hydrograph from Water Year (WY) 2015 with hydrographs from WYs 2000–14 and the SRP flow recommendations,Assess short-term and system-wide changes in channel features and vegetation throughout the alluvial valley section of the Middle Fork Willamette River (2005–12),Examine changes in channel features and vegetation over two decades (1994–2014) for two short mapping zones on the Middle Fork Willamette and McKenzie Rivers, andComplete a field investigation of summer stage and the growth of black cottonwood and other vegetation on the Middle Fork Willamette and McKenzie Rivers in summer 2015.
Fitzpatrick, Faith A.; Peppler, Marie C.
2010-01-01
The relation of urbanization to stream habitat and geomorphic characteristics was examined collectively and individually for nine metropolitan areas of the United States?Portland, Oregon; Salt Lake City, Utah; Denver, Colorado; Dallas?Forth Worth, Texas; Milwaukee?Green Bay, Wisconsin; Birmingham, Alabama; Atlanta, Georgia; Raleigh, North Carolina; and Boston, Massachusetts. The study was part of a larger study conducted by the U.S. Geological Survey from 1999 to 2004 to examine the effects of urbanization on the physical, chemical, and biological components of stream ecosystems. The objectives of the current study were to determine how stream habitat and geomorphic characteristics relate to different aspects of urbanization across a variety of diverse environmental settings and spatial scales. A space-for-time rural-to-urban land-cover gradient approach was used. Reach-scale habitat data and geomorphic characteristic data were collected once during low flow and included indicators of potential habitat degradation such as measures of channel geometry and hydraulics, streambed substrate, low-flow reach volume (an estimate of base-flow conditions), habitat complexity, and riparian/bank conditions. Hydrologic metrics included in the analyses were those expected to be altered by increases in impervious surfaces, such as high-flow frequency and duration, flashiness, and low-flow duration. Other natural and human features, such as reach-scale channel engineering, geologic setting, and slope, were quantified to identify their possible confounding influences on habitat relations with watershed-scale urbanization indicators. Habitat and geomorphic characteristics were compared to several watershed-scale indicators of urbanization, natural landscape characteristics, and hydrologic metrics by use of correlation analyses and stepwise linear regression. Habitat and geomorphic characteristics were related to percentages of impervious surfaces only in some metropolitan areas and environmental settings. The relations between watershed-scale indicators of urbanization and stream habitat depended on physiography and climate, hydrology, pre-urban channel alterations, reach-scale slope and presence of bedrock, and amount of bank stabilization and grade control. Channels increased in size with increasing percentages of impervious surfaces in southeastern and midwestern metropolitan areas regardless of whether the pre-existing land use was forest or agriculture. The amount of enlargement depended on annual precipitation and frequency of high-flow events. The lack of a relation between channel enlargement and increasing impervious surfaces in other metropolitan areas was thought to be confounded by pre-urbanization hydrologic and channel alterations. Direct relations of channel shape and streambed substrate to urbanization were variable or lacking, probably because the type, amount, and source of sediment are dependent on the phase of urbanization. Reach-scale slope also was important for determining variations in streambed substrate and habitat complexity (percentage of riffles and runs). Urbanization-associated changes in reach-scale riparian vegetation varied geographically, partially depending on pre-existing riparian vegetation characteristics. Bank erosion increased in Milwaukee?Green Bay and Boston urban streams, and bank erosion also increased with an increase in a streamflow flashiness index. However, potential relations likely were confounded by the frequent use of channel stabilization and bank protection in urban settings. Low-flow reach volume did not decrease with increasing urbanization, but instead was related to natural landscape characteristics and possibly other unmeasured factors. The presence of intermittent bedrock in some sampled reaches likely limited some geomorphic responses to urbanization, such as channel bed erosion. Results from this study emphasize the importance of including a wide range of landscape variables at m
Debris flow hazard mapping, Hobart, Tasmania, Australia
NASA Astrophysics Data System (ADS)
Mazengarb, Colin; Rigby, Ted; Stevenson, Michael
2015-04-01
Our mapping on the many dolerite capped mountains in Tasmania indicates that debris flows are a significant geomorphic process operating there. Hobart, the largest city in the State, lies at the foot of one of these mountains and our work is focussed on identifying areas that are susceptible to these events and estimating hazard in the valley systems where residential developments have been established. Geomorphic mapping with the benefit of recent LiDAR and GIS enabled stereo-imagery has allowed us to add to and refine a landslide inventory in our study area. In addition, a dominant geomorphic model has been recognised involving headward gully retreat in colluvial materials associated with rainstorms explains why many past events have occurred and where they may occur in future. In this paper we will review the landslide inventory including a large event (~200 000m3) in 1872 that affected a lightly populated area but since heavily urbanised. From this inventory we have attempted volume-mobility relationships, magnitude-frequency curves and likelihood estimates. The estimation of volume has been challenging to determine given that the area of depletion for each debris flow feature is typically difficult to distinguish from the total affected area. However, where LiDAR data exists, this uncertainty is substantially reduced and we develop width-length relationships (area of depletion) and area-volume relationships to estimate volume for the whole dataset exceeding 300 features. The volume-mobility relationship determined is comparable to international studies and in the absence of reliable eye-witness accounts, suggests that most of the features can be explained as single event debris flows, without requiring more complex mechanisms (such as those that form temporary debris dams that subsequently fail) as proposed by others previously. Likelihood estimates have also been challenging to derive given that almost all of the events have not been witnessed, some are constrained by aerial photographs to decade precision and many predate regional photography (pre 1940's). We have performed runout modelling, using 2D hydraulic modelling software (RiverFlow2D with Mud and Debris module), in order to calibrate our model against real events and gain confidence in the choice of parameters. Runout modelling was undertaken in valley systems with volumes calibrated to existing flood model likelihoods for each catchment. The hazard outputs from our models require developing a translation to hazard models used in Australia. By linking to flood mapping we aim to demonstrate to emergency managers where existing mitigation measures may be inadequate and how they can be adapted to address multiple hazards.
Stochastic Downscaling of Digital Elevation Models
NASA Astrophysics Data System (ADS)
Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.
2016-04-01
High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.
NASA Astrophysics Data System (ADS)
Comes, E.; Jaeger, K. L.
2016-12-01
Lowhead dams have had a profound cumulative impact on rivers and streams. Their removal is an increasingly popular restoration method, however, geomorphic response remains poorly resolved. This study quantified geomorphic change following two lowhead dam removal in the Olentangy River and the downstream Scioto River, which flows through Columbus, Ohio. A paired control-treatment design compared change above and below a removed dam (treatment) to an existing dam (control) in each river system over a two and three-year period. Upstream treatment reaches included passive and active restoration via in-channel engineering. Channel change was quantified through repeat bathymetric surveys using an acoustic Doppler current profiles and near-surface riverbed substrate sampling at several time periods ( 2 surveys/year). Differencing of digital elevation models from each bathymetric survey quantified changes in erosion and deposition patterns and bathymetric heterogeneity. Results indicate upstream treatment reaches were net erosional with overall substrate coarsening that included D84 sand to gravel clast size shifts. The Olentangy River's downstream treatment reach experienced concurrent erosion and deposition within a given survey although net erosion dominated the first year of the three-year study period. The downstream treatment reach also experienced substantial grain size fluctuation between surveys with little overall change. Unanticipated engineering activities in the downstream treatment reach of the Scioto River confounded geomorphic change in this reach. Non-metric multidimensional scaling analysis indicates a moderate, but abrupt change towards overall increased heterogeneity in the first year following dam removal in the downstream reach with little overall change in the following two years. Active restoration activities in the upstream treatment reach resulted in abrupt, but slight shifts towards decreased bathymetric heterogeneity despite substantial riverbed regrading to create pool-riffle features. Repeat intra-annual surveys revealed that the river system experiences clear seasonal patterns of erosion and deposition with associated substrate coarsening and fining that would not be evident in typical dam removal studies that generally are limited to annual surveys.
Rates of surface lowering and landscape development in southern South Africa: a cosmogenic view
NASA Astrophysics Data System (ADS)
Richardson, Janet; Vanacker, Veerle; Lang, Andreas; Hodgson, David
2016-04-01
The landscape of southern South Africa is characterised by large-scale erosion surfaces, including extensive pediments and multiple strath terraces, which document discordant river evolution through resistant quarzitic lithologies of the Cape Fold Belt (CFB). The timing and rate of erosion is poorly constrained. New cosmogenic ages from surfaces in South Africa are presented using in situ produced 10Be. Strath terraces in deeply incised rivers at two sites within the CFB indicate slow rates of erosion (1.54 - 11.79 m/Ma), which are some of the lowest rates recorded globally. Four pediment surfaces and a depth profile of the thickest pediment were also dated, and the results indicate that there are low rates of surface lowering on the pediments (0.44 - 1.24 m/Ma). The pediments are long-lived features (minimum exposure ages of 0.47 - 1.09 Ma), and are now deeply dissected. Given the minimum exposure ages, calculated river incision rates (42- 203 m/Ma) suggest that after a long period of geomorphic stability during pediment formation there was a discrete phase of increased geomorphic activity. The calculated minimum exposure ages are considered dubious because: 1) known rates of surrounding river incision (published and ours); 2) the climate conditions and time necessary for ferricrete formation on the pediment surfaces and; 3) the deeply incised catchments in the CFB on which the pediments sit, which all point to the pediments being much older. The pediments are fossilised remnants of a much larger geomorphic surface that formed after the main phase of exhumation in southern Africa. They form a store of sediment that currently sit above the surrounding rivers that have some of the lowest erosion rates in the world. These results indicate that steep topography can prevail even in areas of low erosion and tectonic quiescence, and that whilst cosmogenic dating of landscapes is an exciting development in earth sciences, care is needed especially in ancient settings. We strongly suggest benchmarking chronometric information with geomorphic and stratigraphic information.
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan
2014-09-01
In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.
Geomorphic clues to the Martian volatile inventory: Landslides
NASA Technical Reports Server (NTRS)
Pieri, D.; Kirkpatrick, A.
1984-01-01
Eight landslide locales were selected in Valles Marineris for preliminary geomorphological mapping. Four main suites of morphological features were identified. In four order outward from the head scarp they are: (1) large ridges in head area, transverse to movement direction, probably slump blocks or pieces of wall that fell or toppled, possibly backward rotated; (2) smaller ridges, convex toward distal edge of slides, many with lobate pattern, some possibly step like scarps rather than ridges; (3) thin, sheet like debris cover, forms discrete fan shaped lobe with edge scarps unconfined; and (4) low transverse, continuous ridges (possibly folds) found at distal edge of slides, where debris appears to have encountered obstructions (e.g., opposing canyon walls), but not all confined slides exhibit this feature. Any one landslide can possess all or some of these features. Slides in the western Valles Marineris are more complex and show more variety than those in the eastern part.
Ganju, N.K.; Schoellhamer, D.H.
2009-01-01
Modeling geomorphic evolution in estuaries is necessary to model the fate of legacy contaminants in the bed sediment and the effect of climate change, watershed alterations, sea level rise, construction projects, and restoration efforts. Coupled hydrodynamic and sediment transport models used for this purpose typically are calibrated to water level, currents, and/or suspended-sediment concentrations. However, small errors in these tidal-timescale models can accumulate to cause major errors in geomorphic evolution, which may not be obvious. Here we present an intermediate step towards simulating decadal-timescale geomorphic change: calibration to estimated sediment fluxes (mass/time) at two cross-sections within an estuary. Accurate representation of sediment fluxes gives confidence in representation of sediment supply to and from the estuary during those periods. Several years of sediment flux data are available for the landward and seaward boundaries of Suisun Bay, California, the landward-most embayment of San Francisco Bay. Sediment flux observations suggest that episodic freshwater flows export sediment from Suisun Bay, while gravitational circulation during the dry season imports sediment from seaward sources. The Regional Oceanic Modeling System (ROMS), a three-dimensional coupled hydrodynamic/sediment transport model, was adapted for Suisun Bay, for the purposes of hindcasting 19th and 20th century bathymetric change, and simulating geomorphic response to sea level rise and climatic variability in the 21st century. The sediment transport parameters were calibrated using the sediment flux data from 1997 (a relatively wet year) and 2004 (a relatively dry year). The remaining years of data (1998, 2002, 2003) were used for validation. The model represents the inter-annual and annual sediment flux variability, while net sediment import/export is accurately modeled for three of the five years. The use of sediment flux data for calibrating an estuarine geomorphic model guarantees that modeled geomorphic evolution will not exceed the actual supply of sediment from the watershed and seaward sources during the calibration period. Decadal trends in sediment supply (and therefore fluxes) can accumulate to alter decadal geomorphic change. Therefore, simulations of future geomorphic evolution are bolstered by this intermediate calibration step.
NASA Technical Reports Server (NTRS)
Gooding, J. L.
1984-01-01
Parallel studies of Martian geomorphic features and their analogs on Earth continue to be fruitful in deciphering the geologic history of Mars. In the context of rock weathering, the Earth-analog approach is admirably served by the study of meteorites recovered from ice sheets in Antarctica. The weathering environment of Victoria Land possesses several Mars-like attributes. Four of the five Antarctic meteorites being studied contain rust and EETA79005 further possesses a conspicuous, dark, weathering rind on one side. Secondary minerals (rust and salts) occur both on the surfaces and interiors of some of the samples and textural evidence indicates that such secondary mineralization contributed to physical weathering (by salt riving) of the rocks. Several different rust morphologies occur and emphasis is being placed on identifying the phase compositions of the various rust occurrances. A thorough understanding of terrestrial weathering features of the meteorites is a prerequisite for identifying possible Martian weathering features (if such features exist) that might be postulated to occur in some meteorites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, S; Jeraj, R; Galavis, P
Purpose: Sensitivity of PET-derived texture features to reconstruction methods has been reported for features extracted from axial planes; however, studies often utilize three dimensional techniques. This work aims to quantify the impact of multi-plane (3D) vs. single-plane (2D) feature extraction on radiomics-based analysis, including sensitivity to reconstruction parameters and potential loss of spatial information. Methods: Twenty-three patients with solid tumors underwent [{sup 18}F]FDG PET/CT scans under identical protocols. PET data were reconstructed using five sets of reconstruction parameters. Tumors were segmented using an automatic, in-house algorithm robust to reconstruction variations. 50 texture features were extracted using two Methods: 2D patchesmore » along axial planes and 3D patches. For each method, sensitivity of features to reconstruction parameters was calculated as percent difference relative to the average value across reconstructions. Correlations between feature values were compared when using 2D and 3D extraction. Results: 21/50 features showed significantly different sensitivity to reconstruction parameters when extracted in 2D vs 3D (wilcoxon α<0.05), assessed by overall range of variation, Rangevar(%). Eleven showed greater sensitivity to reconstruction in 2D extraction, primarily first-order and co-occurrence features (average Rangevar increase 83%). The remaining ten showed higher variation in 3D extraction (average Range{sub var}increase 27%), mainly co-occurence and greylevel run-length features. Correlation of feature value extracted in 2D and feature value extracted in 3D was poor (R<0.5) in 12/50 features, including eight co-occurrence features. Feature-to-feature correlations in 2D were marginally higher than 3D, ∣R∣>0.8 in 16% and 13% of all feature combinations, respectively. Larger sensitivity to reconstruction parameters were seen for inter-feature correlation in 2D(σ=6%) than 3D (σ<1%) extraction. Conclusion: Sensitivity and correlation of various texture features were shown to significantly differ between 2D and 3D extraction. Additionally, inter-feature correlations were more sensitive to reconstruction variation using single-plane extraction. This work highlights a need for standardized feature extraction/selection techniques in radiomics.« less
Target recognition based on convolutional neural network
NASA Astrophysics Data System (ADS)
Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian
2017-11-01
One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.
(abstract) Geological Tour of Southwestern Mexico
NASA Technical Reports Server (NTRS)
Adams, Steven L.; Lang, Harold R.
1993-01-01
Nineteen Landsat Themic Mapper quarter scenes, coregistered at 28.5 m spatial resolution with three arc second digital topographic data, were used to create a movie, simulating a flight over the Guerrero and Mixteco terrains of southwestern Mexico. The flight path was chosen to elucidate important structural, stratigraphic, and geomorphic features. The video, available in VHS format, is a 360 second animation consisting of 10 800 total frames. The simulated velocity during three 120 second flight segments of the video is approximately 37 000 km per hour, traversing approximately 1 000 km on the ground.
Vertical Feature Mask Feature Classification Flag Extraction
Atmospheric Science Data Center
2013-03-28
Vertical Feature Mask Feature Classification Flag Extraction This routine demonstrates extraction of the ... in a CALIPSO Lidar Level 2 Vertical Feature Mask feature classification flag value. It is written in Interactive Data Language (IDL) ...
Foreman, Brady Z; Straub, Kyle M
2017-09-01
Terrestrial paleoclimate records rely on proxies hosted in alluvial strata whose beds are deposited by unsteady and nonlinear geomorphic processes. It is broadly assumed that this renders the resultant time series of terrestrial paleoclimatic variability noisy and incomplete. We evaluate this assumption using a model of oscillating climate and the precise topographic evolution of an experimental alluvial system. We find that geomorphic stochasticity can create aliasing in the time series and spurious climate signals, but these issues are eliminated when the period of climate oscillation is longer than a key time scale of internal dynamics in the geomorphic system. This emergent autogenic geomorphic behavior imparts regularity to deposition and represents a natural discretization interval of the continuous climate signal. We propose that this time scale in nature could be in excess of 10 4 years but would still allow assessments of the rates of climate change at resolutions finer than the existing age model techniques in isolation.
Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah; ...
2016-02-13
Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF, and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs, and flow direction and shape of streammore » channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flowpaths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.« less
Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington
Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.
2012-01-01
Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.
Foreman, Brady Z.; Straub, Kyle M.
2017-01-01
Terrestrial paleoclimate records rely on proxies hosted in alluvial strata whose beds are deposited by unsteady and nonlinear geomorphic processes. It is broadly assumed that this renders the resultant time series of terrestrial paleoclimatic variability noisy and incomplete. We evaluate this assumption using a model of oscillating climate and the precise topographic evolution of an experimental alluvial system. We find that geomorphic stochasticity can create aliasing in the time series and spurious climate signals, but these issues are eliminated when the period of climate oscillation is longer than a key time scale of internal dynamics in the geomorphic system. This emergent autogenic geomorphic behavior imparts regularity to deposition and represents a natural discretization interval of the continuous climate signal. We propose that this time scale in nature could be in excess of 104 years but would still allow assessments of the rates of climate change at resolutions finer than the existing age model techniques in isolation. PMID:28924607
NASA Astrophysics Data System (ADS)
Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah S.; Tsinnajinnie, Lani M.; Wilson, John L.; Granger, Darryl E.; Newman, Brent D.
2016-02-01
Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs and flow direction and shape of stream channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flow paths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.
Ibrahim, Wisam; Abadeh, Mohammad Saniee
2017-05-21
Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Geomorphic Complexity of Sequential Fire and Floods in Mountain Watersheds
NASA Astrophysics Data System (ADS)
Brogan, D. J.; Nelson, P. A.; MacDonald, L. H.; Morgan, J. A.
2017-12-01
Fires and floods are important drivers of fluvial geomorphic changes. While each has been studied independently, there have been almost no situations where the hydrologic and geomorphic effects of fires and extreme floods could be compared at the watershed scale. Following the 2012 High Park fire in montane northcentral Colorado we began intensively monitoring channel changes in two 15 km2 watersheds (Skin Gulch and Hill Gulch) burned primarily at moderate to high severity. Summer thunderstorms resulted in extensive hillslope erosion and deposition in the valley bottoms, and subsequent incision through these deposits occurred due to spring snowmelt and elevated baseflows. The complex response associated with this state change from unburned to burned can be completely disrupted and overwhelmed by the larger changes resulting from extreme floods. Fifteen months after burning, both watersheds experienced an extreme flood resulting from a long-duration rainstorm; however, the geomorphic changes resulting from this flood differed markedly between the two watersheds. In Skin Gulch, sustained high flows from the September 2013 flood excavated nearly all of the accumulated sediment, expanded the active channel, and either scoured to bedrock or armored the bed with coarser substrate. Geomorphic changes in Hill Gulch due to the September 2013 flood, however, were small. The disparity between watersheds is likely the legacy of the catastrophic 1976 Big Thompson flood, which scoured out much of the previously accumulated sediment in Hill Gulch but did not appreciably impact Skin Gulch. These different sequences of disturbances indicate that fires in the Rocky Mountains often generate significant and dynamic geomorphic changes over sub-decadal timescales, while extreme floods can result in much longer lasting geomorphic changes. Our results allow us to compare the geomorphic sensitivity for different sequences of fire and floods, and propose a new conceptual model to explain the complicated interactions between the effects of fires and floods on the landscape.
Iris recognition based on key image feature extraction.
Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y
2008-01-01
In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.
NASA Astrophysics Data System (ADS)
Sankey, Joel; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen
2017-04-01
Aeolian dunefields that are primarily built and maintained with river-derived sediment are found in many river valleys throughout the world and are impacted by changes in climate, land use, and river regulation. Quantifying the dynamic response of these aeolian dunefields to alterations in river flow is especially difficult given the highly correlated nature of the interacting geomorphic and sediment transport processes that drive their formation and maintenance. We characterize the effects of controlled river floods on changes in sediment connectivity at source-bordering aeolian dunefields in the Grand Canyon, USA. Controlled floods from the Glen Canyon Dam are used to build sandbars along the Colorado River in Grand Canyon which provide the main sediment source for aeolian dunefields. Aeolian dunefields are a primary resource of concern for land managers in the Grand Canyon because they often contain buried archaeological features. To characterize dunefield response to controlled floods, we use a novel, automated approach for the mechanistic segregation of geomorphic change to discern the geomorphic processes responsible for driving topographic change in very high resolution digital elevation models-of-difference (DODs) that span multiple, consecutive controlled river floods at source-bordering dunefields. We subsequently compare the results of mechanistic segregation with modelled estimates of aeolian dunefield evolution in order to understand how dunefields respond to contemporary, anthropogenically-driven variability in sediment supply and connectivity. These methods provide a rapid technique for sediment budgeting and enable the inference of spatial and temporal patterns in sediment flux between the fluvial and aeolian domains. We anticipate that this approach will be adaptable to other river valleys where the interactions of aeolian, fluvial, and hillslope processes drive sediment connectivity for the maintenance of source-bordering aeolian dunefields.
Characterizing the Iron Wash fault: A fault line scarp in Utah
NASA Astrophysics Data System (ADS)
Kozaci, O.; Ostenaa, D.; Goodman, J.; Zellman, M.; Hoeft, J.; Sowers, J. M.; Retson, T.
2015-12-01
The Iron Wash fault (IWF) is an approximately 30 mile-long, NW-SE trending structure, oriented perpendicular to the San Rafael Monocline near Green River in Utah. IWF exhibits well-expressed geomorphic features such as a linear escarpment with consistently north side down displacement. The fault coincides with an abrupt change in San Rafael Monocline dip angle along its eastern margin. The IWF is exposed in incised drainages where Jurassic Navajo sandstone (oldest) and Lower Carmel Formation (old), are juxtaposed against Jurassic Entrada sandstone (younger) and Quaternary alluvium (youngest). To assess the recency of activity of the IWF we performed detailed geomorphic mapping and a paleoseismic trenching investigation. A benched trench was excavated across a Quaternary fluvial terrace remnant across the mapped trace of the IWF. The uppermost gravel units and overlying colluvium are exposed in the trench across the projection of the fault. In addition, we mapped the basal contact of the Quaternary gravel deposit in relation to the adjacent fault exposures in detail to show the geometry of the basal contact near and across the fault. We find no evidence of vertical displacement of these Quaternary gravels. A preliminary U-series date of calcite cementing unfaulted fluvial gravels and OSL dating of a sand lens within the unfaulted fluvial gravels yielded approximately 304,000 years and 78,000 years, respectively. These preliminary results of independent dating methods constrains the timing of last activity of the IWF to greater than 78,000 years before present suggesting that IWF not an active structure. Its distinct geomorphic expression is most likely the result of differential erosion, forming a fault-line scarp.
NASA Astrophysics Data System (ADS)
Trinci, G.; Harvey, G.; Henshaw, A.; Bertoldi, W.
2016-12-01
Turbulence plays a crucial role in the life cycle of river plants and animals. Turbulent flow facilitates access to food, maintenance of adequate oxygen levels, removal of wastes, locomotion and predator evasion, but can also act as a stressor, leading to dislodgement from habitats, increased energy costs, physiological damage and even mortality. Despite this, hydraulic habitat assessments for river appraisal and restoration design have largely focused on temporally and spatially averaged flow properties rather than more complex descriptors of turbulence (turbulence intensity, and the periodicity, orientation and scale of coherent flow structures) that are known to directly influence aquatic organisms. Contrasting relationships between turbulence and mean flow velocity have been reported and there is a pressing need to improve understanding of the hydraulic environment provided by mesoscale river features, such as geomorphic units (e.g. riffles, pools, steps), upon which river management and restoration often focuses. We undertook high frequency velocity surveys within three river reaches (low, medium and high gradient) using a 3-dimensional Acoustic Doppler Velocimeter, combined with detailed surveys of bed topography and visual assessments of the spatial organisation of geomorphic units. Using a combination of multivariate statistical analysis (Principal Components Analysis, Cluster Analysis and GLMs) and geostatistics (semi-variance), the paper explores the spatial organisation of key turbulence parameters across the reaches and linkages with mean flow velocity and characteristic roughness elements. The ability of `higher order' turbulence properties to distinguish between visually identified geomorphic units is also assessed. The findings provide insights into scales of variability in turbulence properties that have direct ecological relevance, helping to inform river assessment and restoration efforts.
NASA Astrophysics Data System (ADS)
Rimando, J. M.; Schoenbohm, L. M.
2016-12-01
The Barrancas anticline in Mendoza Province, west-central Argentina is a N-NW-oriented, east-vergent fault-bend fold located in the transition from the mainly east-vergent, thin-skinned Argentine Precordillera to the mainly west-vergent, thick-skinned Sierras Pampeanas — one of the most active thrust zones on Earth. Previous studies of the Barrancas anticline interpreted its structure from 2-D and 3-D seismic data. The anticline is a fault-bend fold with multiple segments with different uplift histories and which linked only after 2.3Ma. This study aims to establish the temporal persistence of segmentation and to describe the role, extent and rates of deformation processes involved in the development of the Barrancas anticline from morphometric analyses, geologic and geomorphic mapping, and accurate dating of relevant geomorphic features. Longitudinal profile analysis of streams on the anticline reveals marked differences in normalized steepness index (ksn) between the western and eastern limbs as well as variation along strike. This distribution of ksn values reveals patterns consistent with asymmetry and segmentation of the Barrancas anticline. Swath profiles parallel to the fold axis resemble fault slip distribution profiles which was a basis for segmentation from previous studies. Drainage basin morphometric indices such as hypsometry, drainage density, and basin elongation were also measured. Hypsometric integral values were particularly higher on the west than on the east, possibly indicating younger folding on the western limb. This study will contribute to a better understanding of the nature, extent, timing, and rate of folding at the transition from thin- to thick-skinned thrust deformation in west-central Argentina. Additionally, this study will contribute to assessment of seismic hazards associated with fault-related folds in Argentina and in similar tectonic settings worldwide.
Experience improves feature extraction in Drosophila.
Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike
2007-05-09
Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.
NASA Astrophysics Data System (ADS)
Gomes, M.; Humphries, M. S.; Kirsten, K. L.; Green, A. N.; Finch, J. M.; de Lecea, A. M.
2017-06-01
The diverse lagoons and coastal lakes along the east coast of South Africa occupy incised valleys that were flooded during the rise and subsequent stabilisation of relative sea-level during the Holocene. Sedimentary deposits contained within these waterbodies provide an opportunity to investigate complex hydrological and sedimentological processes, and examine sea-level controls governing system geomorphic evolution. In this paper, we combine diatom and sulfur isotope analyses from two sediment cores extracted from the northern sub-basins of Lake St Lucia, a large shallow estuarine lake that is today largely isolated from direct ocean influence behind a Holocene-Pleistocene barrier complex. Analyses allow the reconstruction of hydrological changes associated with the geomorphic development of the system over the mid-to late Holocene. The sedimentary sequences indicate that St Lucia was a shallow, partially enclosed estuary/embayment dominated by strong tidal flows prior to ∼6200 cal. BP. Infilling was initiated when sea-level rise slowed and stabilised around present day levels, resulting in the accumulation of fine-grained sediment behind an emergent proto-barrier. Diatom assemblages, dominated by marine benthic and epiphytic species, reveal a system structured by marine water influx and characterised by marsh and tidal flat habitats until ∼4550 cal. BP. A shift in the biological community at ∼4550 cal. BP is linked to the development of a back-barrier water body that supported a brackish community. Marine planktonics and enrichments in δ34S suggest recurrent, large-scale barrier inundation events during this time, coincident with a mid-Holocene sea-level highstand. Periodic marine incursions associated with episodes of enhanced storminess and overwash remained prevalent until ∼1200 cal. BP, when further barrier construction ultimately isolated the northern basins from the ocean. This study provides the first reconstruction of the palaeohydrological environment at Lake St Lucia and highlights the long-term geomorphic controls that have shaped the recent evolution and natural dynamics of the system. Unlike most coastal lake systems, this system is particularly effective as an archive of geomorphological change. Systems driven by back-barrier modifications, such as Lake St Lucia, highlight how geomorphological changes driven by sediment-supply, climate and sea level can be distributed unevenly over several isolated back-barrier basins.
Use of LiDAR to Assist in Delineating Waters of the United States, Including Wetlands
2014-03-01
investigator’s objective. For example, if the sole objective is to identify geomorphic breaks in slope associated with the OHWM, points representing vegetation... geomorphic position. During the data-gathering stage of wetland delinea- tions, measurements made using LiDAR data should be considered esti- mates...field. Field validation of LiDAR topographic data is essential before using them as evidence of a secondary hydrology indicator, such as geomorphic
The value of teaching about geomorphology in non-traditional settings
NASA Astrophysics Data System (ADS)
Davis, R. Laurence
2002-10-01
Academics usually teach about geomorphology in the classroom, where the audience is enthusiastic, but generally small. Less traditional settings offer opportunities to reach a wider audience, one that is equally enthusiastic, given its love of geomorphic features in the National Parks, but one which has little knowledge of the science behind what they are seeing. I have "taught" geomorphology in four non-traditional settings: at a summer camp, a state wildlife refuge, on community field trips, and at meetings for clubs and government boards. This paper discusses my experiences and offers suggestions to others who may wish to follow this less-traveled educational path. As Head of Nature Programs at Camp Pemigewassett in New Hampshire, I have worked, over the last 33 years, with thousands of campers ranging from 8 to 15 years old. Our setting, in a glaciated valley on a small lake, exhibits a wide range of geomorphic features and offers many opportunities for direct learning through field investigations. I have found that even 8-year olds can do real science, if we avoid the jargon. Once "taught" they carry their knowledge about landforms and processes with them and eagerly share it with their friends and family on outings and trips, thus reaching an even wider public. Parks, wildlife refuges, nature preserves, and other similar areas generally have nature trails, often with educational information about the environment. Generally, interpretive signs are prepared by biologists and the content ignores the site's physical features, as well as the connections between ecological communities and the underlying geology and geomorphology. My students and I have addressed this situation at two places in Connecticut, one a state wildlife management area, also used for training teachers to teach Environmental Education, and the other, a town recreation area. We catalogued the geomorphic features, looked at relationships of the community level ecology to those features, and prepared interpretive signs that added this perspective to the trails. The public response has been extremely favorable. Geomorphology can also be taught by leading field trips for community organizations. I have done this twice, once for the Manchester (NH) Historical Society and once for a small watershed association. The attendance and interest surprised me. We finally had to limit the Manchester trip to one full busload (˜45) and the watershed trip, which was part of a "trails day," drew over 90 people. Finally, I have found that organizations such as Sierra Club chapters and town conservation boards are frequently looking for speakers for their periodic meetings. Why not a geomorphologist? After all, much of what conservationists do is related to what geomorphologists do. I have given several of these presentations and the receptions have always been enthusiastic. While the work involved in preparing to teach in one of these non-traditional settings is frequently substantial, the rewards are equally large. It is a way to reach masses of people who know little about the science of geomorphology and to demonstrate its importance to them. Taking our message directly to the public in these settings is an effective way to put geomorphology in the public eye.
Text feature extraction based on deep learning: a review.
Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan
2017-01-01
Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.
Aircraft and satellite remote sensing of desert soils and landscapes
NASA Technical Reports Server (NTRS)
Petersen, G. W.; Connors, K. F.; Miller, D. A.; Day, R. L.; Gardner, T. W.
1987-01-01
Remote sensing data on desert soils and landscapes, obtained by the Landsat TM, Heat Capacity Mapping Mission (HCMM), Simulated SPOT, and Thermal IR Multispectral Scanner (TIMS) aboard an aircraft, are discussed together with the analytical techniques used in the studies. The TM data for southwestern Nevada were used to discriminate among the alluvial fan deposits with different degrees of desert pavement and varnish, and different vegetation cover. Thermal-IR data acquired from the HCMM satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures in central Utah. Simulated SPOT data for northwestern New Mexico identified geomorphic features, such as differences in eolian sand cover and fluvial incision, while the TIMS data depicted surface geologic features of the Saline Valley in California.
Morphometric and landsliding analyses in chain domain: the Roccella basin, NE Sicily, Italy
NASA Astrophysics Data System (ADS)
Rapisarda, Francesco
2009-10-01
The dynamic interaction of endogenic and exogenic processes in active geodynamic context leads to the deterioration of the physico-mechanical characteristics of the rocks, inducing slopes instability. In such context, the morphometric parameters and the analysis of landslide distribution contribute to appraise the evolutive state of hydrographic basins. The aim of the study is the morphometric characterization of the Roccella Torrent basin (Rtb) located in South Italy. Landsliding and tectonic structure dynamically interact with the drainage pattern that records these effects and permits the definition of the evolutive geomorphic stage of the basin. The Air Photograph Investigation and field surveys permitted to draw the main geomorphic features, the drainage pattern of the Rtb, to calculate the morphometric parameters and to delimit the landslides’ bodies. Detailed analysis about the landslide distribution within a test site 17 km2 wide were carried out to elaborate indicative indexes of the landslides type and to single out the lithotypes that are more involved in slope instability phenomena. The morphometric parameters indicate the rejuvenation state within the Rtb where the stream reaches show the effects of increased energy relief in agreement with the geological settings of this sector of the Apennine-Maghrebian Chain.
The importance of stochasticity and internal variability in geomorphic erosion system
NASA Astrophysics Data System (ADS)
Kim, J.; Ivanov, V. Y.; Fatichi, S.
2016-12-01
Understanding soil erosion is essential for a range of studies but the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. Indeed, data from multiple environments indicate that fluvial soil loss is highly non-unique and its frequency distributions exhibit heavy tails. We reveal that these features are attributed to the high sensitivity of erosion response to micro-scale variations of soil erodibility - `geomorphic internal variability'. The latter acts as an intermediary between forcing and erosion dynamics, augmenting the conventionally emphasized effects of `external variability' (climate, topography, land use, management form). Furthermore, we observe a reduction of erosion non-uniqueness at larger temporal scales that correlates with environment stochasticity. Our analysis shows that this effect can be attributed to the larger likelihood of alternating characteristic regimes of sediment dynamics. The corollary of this study is that the glaring gap - the inherently large uncertainties and the fallacy of representativeness of central tendencies - must be conceded in soil loss assessments. Acknowledgement: This research was supported by a grant (16AWMP-B083066-03) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government, and by the faculty research fund of Sejong University in 2016.
NASA Astrophysics Data System (ADS)
Worman, Stacey; Furbish, David; Fathel, Siobhan
2014-05-01
In arid landscapes, desert shrubs individually and collectively modify how sediment is transported (e.g by wind, overland-flow, and rain-splash). Addressing how desert shrubs modify landscapes on geomorphic timescales therefore necessitates spanning multiple shrub lifetimes and accounting for how processes affecting shrub dynamics on these longer timescales (e.g. fire, grazing, drought, and climate change) may in turn impact sediment transport. To fulfill this need, we present a mechanistic model of the spatiotemporal dynamics of a desert-shrub population that uses a simple accounting framework and tracks individual shrubs as they enter, age, and exit the population (via recruitment, growth, and mortality). Our model is novel insomuch as it (1) features a strong biophysical foundation, (2) mimics well-documented aspects of how shrub populations respond to changes in precipitation, and (3) possesses the process granularity appropriate for use in geomorphic simulations. In a complimentary abstract (Fathel et al. 2014), we demonstrate the potential of this biological model by coupling it to a physical model of rain-splash sediment transport: We mechanistically reproduce the empirical observation that the erosion rate of a hillslope decreases as its vegetation coverage increases and we predict erosion rates under different climate-change scenarios.
NASA Astrophysics Data System (ADS)
Micheletti, Natan; Tonini, Marj; Lane, Stuart N.
2017-02-01
Acquisition of high density point clouds using terrestrial laser scanners (TLSs) has become commonplace in geomorphic science. The derived point clouds are often interpolated onto regular grids and the grids compared to detect change (i.e. erosion and deposition/advancement movements). This procedure is necessary for some applications (e.g. digital terrain analysis), but it inevitably leads to a certain loss of potentially valuable information contained within the point clouds. In the present study, an alternative methodology for geomorphological analysis and feature detection from point clouds is proposed. It rests on the use of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN), applied to TLS data for a rock glacier front slope in the Swiss Alps. The proposed methods allowed the detection and isolation of movements directly from point clouds which yield to accuracies in the following computation of volumes that depend only on the actual registered distance between points. We demonstrated that these values are more conservative than volumes computed with the traditional DEM comparison. The results are illustrated for the summer of 2015, a season of enhanced geomorphic activity associated with exceptionally high temperatures.
The application of LiDAR to investigate foredune morphology and vegetation
NASA Astrophysics Data System (ADS)
Doyle, Thomas B.; Woodroffe, Colin D.
2018-02-01
LiDAR (Light Detection and Ranging) has been used to investigate coastal landform morphology, evolution, and change for almost a decade. Repeated airborne LiDAR surveys can provide the scientific community with significant observations of how shorelines have evolved, which may then enable forecasts of future patterns of change. However, there have been few studies that have considered the application of this new technology to the specific study of foredune morphology and vegetation. The accuracy and appropriateness of airborne LiDAR needs to be assessed, particularly where the density of vegetation may obscure the underlying topography, prior to interpreting derived geomorphic features. This study: i) tests the vertical accuracy of airborne LiDAR in 37 foredune systems along the coast of south-eastern Australia, and ii) demonstrates that it can be used to describe foredune morphology and vegetation in considerable detail. There was a strong correlation between the remotely-sensed LiDAR-derived elevation and field topographic and vegetation surveys (R2 = 0.96). A protocol for obtaining foredune geomorphic and botanical parameters is described. It enables widespread biogeomorphic characterisation along coasts for which LiDAR data is available, which can benefit both coastal managers and researchers alike.
Landslide Susceptibility Index Determination Using Aritificial Neural Network
NASA Astrophysics Data System (ADS)
Kawabata, D.; Bandibas, J.; Urai, M.
2004-12-01
The occurrence of landslide is the result of the interaction of complex and diverse environmental factors. The geomorphic features, rock types and geologic structure are especially important base factors of the landslide occurrence. Generating landslide susceptibility index by defining the relationship between landslide occurrence and that base factors using conventional mathematical and statistical methods is very difficult and inaccurate. This study focuses on generating landslide susceptibility index using artificial neural networks in Southern Japanese Alps. The training data are geomorphic (e.g. altitude, slope and aspect) and geologic parameters (e.g. rock type, distance from geologic boundary and geologic dip-strike angle) and landslides. Artificial neural network structure and training scheme are formulated to generate the index. Data from areas with and without landslide occurrences are used to train the network. The network is trained to output 1 when the input data are from areas with landslides and 0 when no landslide occurred. The trained network generates an output ranging from 0 to 1 reflecting the possibility of landslide occurrence based on the inputted data. Output values nearer to 1 means higher possibility of landslide occurrence. The artificial neural network model is incorporated into the GIS software to generate a landslide susceptibility map.
Feature extraction for document text using Latent Dirichlet Allocation
NASA Astrophysics Data System (ADS)
Prihatini, P. M.; Suryawan, I. K.; Mandia, IN
2018-01-01
Feature extraction is one of stages in the information retrieval system that used to extract the unique feature values of a text document. The process of feature extraction can be done by several methods, one of which is Latent Dirichlet Allocation. However, researches related to text feature extraction using Latent Dirichlet Allocation method are rarely found for Indonesian text. Therefore, through this research, a text feature extraction will be implemented for Indonesian text. The research method consists of data acquisition, text pre-processing, initialization, topic sampling and evaluation. The evaluation is done by comparing Precision, Recall and F-Measure value between Latent Dirichlet Allocation and Term Frequency Inverse Document Frequency KMeans which commonly used for feature extraction. The evaluation results show that Precision, Recall and F-Measure value of Latent Dirichlet Allocation method is higher than Term Frequency Inverse Document Frequency KMeans method. This shows that Latent Dirichlet Allocation method is able to extract features and cluster Indonesian text better than Term Frequency Inverse Document Frequency KMeans method.
A geomorphological seabed classification for the Weddell Sea, Antarctica
NASA Astrophysics Data System (ADS)
Jerosch, Kerstin; Kuhn, Gerhard; Krajnik, Ingo; Scharf, Frauke Katharina; Dorschel, Boris
2016-06-01
Sea floor morphology plays an important role in many scientific disciplines such as ecology, hydrology and sedimentology since geomorphic features can act as physical controls for e.g. species distribution, oceanographically flow-path estimations or sedimentation processes. In this study, we provide a terrain analysis of the Weddell Sea based on the 500 m × 500 m resolution bathymetry data provided by the mapping project IBCSO. Seventeen seabed classes are recognized at the sea floor based on a fine and broad scale Benthic Positioning Index calculation highlighting the diversity of the glacially carved shelf. Beside the morphology, slope, aspect, terrain rugosity and hillshade were calculated and supplied to the data archive PANGAEA. Applying zonal statistics to the geomorphic features identified unambiguously the shelf edge of the Weddell Sea with a width of 45-70 km and a mean depth of about 1200 m ranging from 270 m to 4300 m. A complex morphology of troughs, flat ridges, pinnacles, steep slopes, seamounts, outcrops, and narrow ridges, structures with approx. 5-7 km width, build an approx. 40-70 km long swath along the shelf edge. The study shows where scarps and depressions control the connection between shelf and abyssal and where high and low declination within the scarps e.g. occur. For evaluation purpose, 428 grain size samples were added to the seabed class map. The mean values of mud, sand and gravel of those samples falling into a single seabed class was calculated, respectively, and assigned to a sediment texture class according to a common sediment classification scheme.
Geomorphic response to tectonically-induced ground deformation in the Wabash Valley
Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.
1997-01-01
Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.
Douglass, Lucinda L.; Turner, Joel; Grantham, Hedley S.; Kaiser, Stefanie; Constable, Andrew; Nicoll, Rob; Raymond, Ben; Post, Alexandra; Brandt, Angelika; Beaver, Daniel
2014-01-01
An international effort is underway to establish a representative system of marine protected areas (MPAs) in the Southern Ocean to help provide for the long-term conservation of marine biodiversity in the region. Important to this undertaking is knowledge of the distribution of benthic assemblages. Here, our aim is to identify the areas where benthic marine assemblages are likely to differ from each other in the Southern Ocean including near-shore Antarctica. We achieve this by using a hierarchical spatial classification of ecoregions, bathomes and environmental types. Ecoregions are defined according to available data on biogeographic patterns and environmental drivers on dispersal. Bathomes are identified according to depth strata defined by species distributions. Environmental types are uniquely classified according to the geomorphic features found within the bathomes in each ecoregion. We identified 23 ecoregions and nine bathomes. From a set of 28 types of geomorphic features of the seabed, 562 unique environmental types were classified for the Southern Ocean. We applied the environmental types as surrogates of different assemblages of biodiversity to assess the representativeness of existing MPAs. We found that 12 ecoregions are not represented in MPAs and that no ecoregion has their full range of environmental types represented in MPAs. Current MPA planning processes, if implemented, will substantially increase the representation of environmental types particularly within 8 ecoregions. To meet internationally agreed conservation goals, additional MPAs will be needed. To assist with this process, we identified 107 spatially restricted environmental types, which should be considered for inclusion in future MPAs. Detailed supplementary data including a spatial dataset are provided. PMID:25032993
Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.
Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu
2016-01-01
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.
O'Donnell, Jessica; Fryirs, Kirstie A; Leishman, Michelle R
2016-01-15
Anthropogenic disturbance has contributed to widespread geomorphic adjustment and the degradation of many rivers. This research compares for river reaches of varying condition, the potential for seed banks to support geomorphic river recovery through vegetation regeneration. Seven river reaches in the lower Hunter catchment of south-eastern Australia were assessed as being in poor, moderate, or good condition, based on geomorphic and ecological indicators. Seed bank composition within the channel and floodplain (determined in a seedling emergence study) was compared to standing vegetation. Seed bank potential for supporting geomorphic recovery was assessed by measuring native species richness, and the abundance of different plant growth forms, with consideration of the roles played by different growth forms in geomorphic adjustment. The exotic seed bank was considered a limiting factor for achieving ecological restoration goals, and similarly analysed. Seed bank native species richness was comparable between the reaches, and regardless of condition, early successional and pioneer herbs, sedges, grasses and rushes dominated the seed bank. The capacity for these growth forms to colonise and stabilise non-cohesive sediments and initiate biogeomorphic succession, indicates high potential for the seed banks of even highly degraded reaches to contribute to geomorphic river recovery. However, exotic propagules increasingly dominated the seed banks of moderate and poor condition reaches and reflected increasing encroachment by terrestrial exotic vegetation associated with riparian degradation. As the degree of riparian degradation increases, the resources required to control the regeneration of exotic species will similarly increase, if seed bank-based regeneration is to contribute to both geomorphic and ecological restoration goals. Copyright © 2015 Elsevier B.V. All rights reserved.
Tracking geomorphic signatures of watershed suburbanization with multi-temporal LiDAR
Jones, Daniel K.; Baker, Matthew E.; Miller, Andrew J.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-01-01
Urban development practices redistribute surface materials through filling, grading, and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-time comparisons of disparate urban and rural landscapes. However, no previous studies have documented geomorphic changes from development using multiple dates of high-resolution topographic data at the watershed scale. This study utilized a time series of five sequential light detection and ranging (LiDAR) derived digital elevation models (DEMs) to track watershed geomorphic changes within two watersheds throughout development (2002–2008) and across multiple spatial scales (0.01–1 km2). Development-induced changes were compared against an undeveloped forested watershed during the same time period. Changes in elevations, slopes, hypsometry, and surface flow pathways were tracked throughout the development process to assess watershed geomorphic alterations. Results suggest that development produced an increase in sharp topographic breaks between relatively flat surfaces and steep slopes, replacing smoothly varying hillslopes and leading to greater variation in slopes. Examinations of flowpath distributions highlight systematic modifications that favor rapid convergence in unchanneled upland areas. Evidence of channel additions in the form of engineered surface conduits is apparent in comparisons of pre- and post-development stream maps. These results suggest that topographic modification, in addition to impervious surfaces, contributes to altered hydrologic dynamics observed in urban systems. This work highlights important considerations for the use of repeat LiDAR flights in analyzing watershed change through time. Novel methods introduced here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during development and help guide future research directions for development-based watershed studies.
NASA Astrophysics Data System (ADS)
Guns, Marie; Balthazar, Vincent; Vanacker, Veerle
2013-04-01
Mountain regions present unique challenges and opportunities to land use change research. Very few, if any, mountain ecosystems remain unaffected by human impact. Based on the exemplary evidence from local case studies, it is not yet possible to have an overall assessment of the extent and impact of human activities on mountain erosion as mountain regions are typically characterized by rapid changes in geomorphic, cryospheric, climatic, hydrologic, ecological and socio-economic conditions over relatively short distances. Here, we present a conceptual model that allows evaluating human-induced shifts in geomorphic process rates. The basic idea behind this model is that the magnitude-frequency distribution of geomorphic processes is dependent on the intensity of human disturbance. The conceptual model is here applied for characterising landslide activity following forest cover change. We selected a tropical Andean catchment with a deforestation rate of 1.4% over the last 45 years. Landslide inventories were established based on historical aerial photographs (1963, 1977, and 1989) and very high-resolution satellite images (2010). Statistical analyses show that the total number of landslides is rising, and that they are increasingly associated with human disturbances (deforestation, road construction). This is particularly the case for shallow landslides that become more frequent after clearcutting. As the human-induced shifts in landslide activity are significant for the low-magnitude events only, the total impact on geomorphic process rates is rather limited in this particular area. This work shows that including information on the magnitude-frequency of geomorphic events before, during and after human disturbances offers new possibilities to quantify the complex response of geomorphic processes to human disturbances.
Using HEC-RAS to Enhance Interpretive Capabilities of Geomorphic Assessments
NASA Astrophysics Data System (ADS)
Keefer, L. L.
2005-12-01
The purpose of a geomorphic assessment is to characterize and evaluate a fluvial system for determining the past watershed and channel conditions, current geomorphic character and potential future channel adjustments. The geomorphic assessment approach utilized by the Illinois State Water Survey assesses channel response to disturbance at multiple temporal and spatial scales to help identify the underlying factors and events which led to the existing channel morphology. This is accomplished through two phases of investigation that involve a historical and physical analysis of the watershed, disturbance history, and field work at increasing levels of detail. To infer future channel adjustments, the geomorphic assessment protocol combines two methods of analyses that are dependent on the quantity and detail of the available data. The first method is the compilation of multiple lines of evidence using qualitative information related to the dominant fluvial environment, channel gradient, stream power thresholds, and channel evolution models. The second method is the use of hydraulic models which provide additional interpretative skills to evaluate potential channel adjustments. The structured data collection framework of the geomorphic assessment approach is used for the development of a HEC-RAS model. The model results are then used as another tool to determine the influence of bridges and control structures on channel stability, stream power profiles to identify potential channel bed degradation zones, and provide data for physically-based bank stability models. This poster will demonstrate the advantages of using a hydraulic model, such as HEC-RAS, to expand the interpretive capabilities of geomorphic assessments. The results from applying this approach will be demonstrated for the Big Creek watershed of the Cache River Basin in southern Illinois.
Integrated feature extraction and selection for neuroimage classification
NASA Astrophysics Data System (ADS)
Fan, Yong; Shen, Dinggang
2009-02-01
Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.
NASA Astrophysics Data System (ADS)
Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia
2018-05-01
Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.
Efficient feature extraction from wide-area motion imagery by MapReduce in Hadoop
NASA Astrophysics Data System (ADS)
Cheng, Erkang; Ma, Liya; Blaisse, Adam; Blasch, Erik; Sheaff, Carolyn; Chen, Genshe; Wu, Jie; Ling, Haibin
2014-06-01
Wide-Area Motion Imagery (WAMI) feature extraction is important for applications such as target tracking, traffic management and accident discovery. With the increasing amount of WAMI collections and feature extraction from the data, a scalable framework is needed to handle the large amount of information. Cloud computing is one of the approaches recently applied in large scale or big data. In this paper, MapReduce in Hadoop is investigated for large scale feature extraction tasks for WAMI. Specifically, a large dataset of WAMI images is divided into several splits. Each split has a small subset of WAMI images. The feature extractions of WAMI images in each split are distributed to slave nodes in the Hadoop system. Feature extraction of each image is performed individually in the assigned slave node. Finally, the feature extraction results are sent to the Hadoop File System (HDFS) to aggregate the feature information over the collected imagery. Experiments of feature extraction with and without MapReduce are conducted to illustrate the effectiveness of our proposed Cloud-Enabled WAMI Exploitation (CAWE) approach.
Analysis of open-pit mines using high-resolution topography from UAV
NASA Astrophysics Data System (ADS)
Chen, Jianping; Li, Ke; Sofia, Giulia; Tarolli, Paolo
2015-04-01
Among the anthropogenic topographic signatures on the Earth, open-pit mines deserve a great importance, since they significantly affect the Earth's surface and its related processes (e.g. erosion, pollution). Their geomorphological analysis, therefore, represents a real challenge for the Earth science community. The purpose of this research is to characterize the open-pit mining features using a recently published landscape metric, the Slope Local Length of Auto-Correlation (SLLAC) (Sofia et al., 2014), and high-resolution DEMs (Digital Elevation Models) derived from drone surveyed topography. The research focuses on two main case studies of iron mines located in the Beijing district (P.R. China). The main topographic information (Digital Surface Models, DSMs) was derived using Unmanned Aerial Vehicle (UAV) and the Structure from Motion (SfM) photogrammetric technique. The results underline the effectiveness of the adopted methodologies and survey techniques in the characterization of the main geomorphic features of the mines. Thanks to the SLLAC, the terraced area given by multi-benched sideways-moving method for the iron extraction is automatically depicted, and using some SLLAC derived parameters, the related terraces extent is automatically estimated. The analysis of the correlation length orientation, furthermore, allows to identify the terraces orientation respect to the North, and to understand as well the shape of the open-pit area. This provides a basis for a large scale and low cost topographic survey for a sustainable environmental planning and, for example, for the mitigation of environmental anthropogenic impact due to mining. References Sofia G., Marinello F, Tarolli P. 2014. A new landscape metric for the identification of terraced sites: the Slope Local Length of Auto-Correlation (SLLAC). ISPRS Journal of Photogrammetry and Remote Sensing, doi:10.1016/j.isprsjprs.2014.06.018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flakes, L.G.; Fillon, R.H.
1996-12-31
A strongly negative seismic amplitude discovered in our 3-D data set at 450 ms has been tied to the interface marking the top of a thick sand section ca. -1300 ft sub-sea. Sequence stratigraphic and stacking pattern analysis of SP and GR logs point to a Late Pleistocene low-stand delta bar origin for the thick, blocky sands in the lower part of the section. Resistivity data shows the delta bar sands are wet with salt water while an uppermost, thin sand member, capped by shale constituting a notable flooding surface, and potential vertical seal, exhibited a high resistivity signature. Withmore » other evidence, this is considered to reflect the presence of free gas in the sand`s pore spaces. An amplitude extraction made to evaluate the reservoir potential of the gas-charged sand member revealed a pattern consistent with three, deltaic lobes aligned along a former drainage axis. The mapped features are considered the result of retrograde delta migration and geomorphic evolution in response to rising sea levels late in the low stand. The upper, gas-charged sand member was interpreted, based on modern analogs, as a transgressive sand sheet containing a combination of facies related to the sub-environments of delta lobe destruction and flooding during rapid marine transgression, e.g.: re-worked barrier island; marine sand shoal; and, inner neuritic shelf sands. The Chandeleur Islands and Ship Shoal are modern examples of these features. Because of the relatively thin but widespread character and good sand quality expected for a transgressive sand sheet, this prospect was selected as a low-risk, low-cost candidate for horizontal drilling and completion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flakes, L.G.; Fillon, R.H.
1996-01-01
A strongly negative seismic amplitude discovered in our 3-D data set at 450 ms has been tied to the interface marking the top of a thick sand section ca. -1300 ft sub-sea. Sequence stratigraphic and stacking pattern analysis of SP and GR logs point to a Late Pleistocene low-stand delta bar origin for the thick, blocky sands in the lower part of the section. Resistivity data shows the delta bar sands are wet with salt water while an uppermost, thin sand member, capped by shale constituting a notable flooding surface, and potential vertical seal, exhibited a high resistivity signature. Withmore » other evidence, this is considered to reflect the presence of free gas in the sand's pore spaces. An amplitude extraction made to evaluate the reservoir potential of the gas-charged sand member revealed a pattern consistent with three, deltaic lobes aligned along a former drainage axis. The mapped features are considered the result of retrograde delta migration and geomorphic evolution in response to rising sea levels late in the low stand. The upper, gas-charged sand member was interpreted, based on modern analogs, as a transgressive sand sheet containing a combination of facies related to the sub-environments of delta lobe destruction and flooding during rapid marine transgression, e.g.: re-worked barrier island; marine sand shoal; and, inner neuritic shelf sands. The Chandeleur Islands and Ship Shoal are modern examples of these features. Because of the relatively thin but widespread character and good sand quality expected for a transgressive sand sheet, this prospect was selected as a low-risk, low-cost candidate for horizontal drilling and completion.« less
A framework for feature extraction from hospital medical data with applications in risk prediction.
Tran, Truyen; Luo, Wei; Phung, Dinh; Gupta, Sunil; Rana, Santu; Kennedy, Richard Lee; Larkins, Ann; Venkatesh, Svetha
2014-12-30
Feature engineering is a time consuming component of predictive modeling. We propose a versatile platform to automatically extract features for risk prediction, based on a pre-defined and extensible entity schema. The extraction is independent of disease type or risk prediction task. We contrast auto-extracted features to baselines generated from the Elixhauser comorbidities. Hospital medical records was transformed to event sequences, to which filters were applied to extract feature sets capturing diversity in temporal scales and data types. The features were evaluated on a readmission prediction task, comparing with baseline feature sets generated from the Elixhauser comorbidities. The prediction model was through logistic regression with elastic net regularization. Predictions horizons of 1, 2, 3, 6, 12 months were considered for four diverse diseases: diabetes, COPD, mental disorders and pneumonia, with derivation and validation cohorts defined on non-overlapping data-collection periods. For unplanned readmissions, auto-extracted feature set using socio-demographic information and medical records, outperformed baselines derived from the socio-demographic information and Elixhauser comorbidities, over 20 settings (5 prediction horizons over 4 diseases). In particular over 30-day prediction, the AUCs are: COPD-baseline: 0.60 (95% CI: 0.57, 0.63), auto-extracted: 0.67 (0.64, 0.70); diabetes-baseline: 0.60 (0.58, 0.63), auto-extracted: 0.67 (0.64, 0.69); mental disorders-baseline: 0.57 (0.54, 0.60), auto-extracted: 0.69 (0.64,0.70); pneumonia-baseline: 0.61 (0.59, 0.63), auto-extracted: 0.70 (0.67, 0.72). The advantages of auto-extracted standard features from complex medical records, in a disease and task agnostic manner were demonstrated. Auto-extracted features have good predictive power over multiple time horizons. Such feature sets have potential to form the foundation of complex automated analytic tasks.
Comparative analysis of feature extraction methods in satellite imagery
NASA Astrophysics Data System (ADS)
Karim, Shahid; Zhang, Ye; Asif, Muhammad Rizwan; Ali, Saad
2017-10-01
Feature extraction techniques are extensively being used in satellite imagery and getting impressive attention for remote sensing applications. The state-of-the-art feature extraction methods are appropriate according to the categories and structures of the objects to be detected. Based on distinctive computations of each feature extraction method, different types of images are selected to evaluate the performance of the methods, such as binary robust invariant scalable keypoints (BRISK), scale-invariant feature transform, speeded-up robust features (SURF), features from accelerated segment test (FAST), histogram of oriented gradients, and local binary patterns. Total computational time is calculated to evaluate the speed of each feature extraction method. The extracted features are counted under shadow regions and preprocessed shadow regions to compare the functioning of each method. We have studied the combination of SURF with FAST and BRISK individually and found very promising results with an increased number of features and less computational time. Finally, feature matching is conferred for all methods.
Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends
NASA Astrophysics Data System (ADS)
Riley, J. D.; Rhoads, B. L.
2007-12-01
The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed and channel morphology were also surveyed with a digital fathometer to document geomorphic change. Preliminary analysis of the velocity data reveals the presence of a well-defined shear layer between the converging flows and secondary circulation in the main channel. The tributary channel appears to oppose high velocity flow directed toward the outer bank by centrifugal acceleration through the meander bend of the main channel, thereby diminishing erosion along the cut bank and possibly stabilizing the meander bend channel. The flow structure and channel morphology of the study sites are compared to consider the effect of spatial scale and geometric characteristics on confluent-meander bend dynamics.
Automatic extraction of planetary image features
NASA Technical Reports Server (NTRS)
LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)
2013-01-01
A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.
1982-01-01
et al. 1954) are much less oriented toward geomorphic history and are less useful . Interpretations of the geomorphic evolution of the Lower...Saucier (1963) reported on a subsurface investigation of the Lake Pontchartrain basin and interpreted thL- geomorphic evolu- tion. Frazier (1967) using ...Dasmann(1978:22) acknowledges, very important to those who wish to use what an ecosystem produces. Productivity Is defined in terms of biomass, or the
Ridge Orientations of the Ridge-Forming Unit, Sinus Meridiani, Mars-A Fluvial Explanation
NASA Technical Reports Server (NTRS)
Wilkinson, M. Justin; Herridge, A.
2013-01-01
Imagery and MOLA data were used in an analysis of the ridge-forming rock unit (RFU) exposed in Sinus Meridiani (SM). This unit shows parallels at different scales with fluvial sedimentary bodies. We propose the terrestrial megafan as the prime analog for the RFU, and likely for other members of the layered units. Megafans are partial cones of fluvial sediment, with radii up to hundreds of km. Although recent reviews of hypotheses for the RFU units exclude fluvial hypotheses [1], inverted ridges in the deserts of Oman have been suggested as putative analogs for some ridges [2], apparently without appreciating The wider context in which these ridges have formed is a series of megafans [3], a relatively unappreciated geomorphic feature. It has been argued that these units conform to the megafan model at the regional, subregional and local scales [4]. At the regional scale suites of terrestrial megafans are known to cover large areas at the foot of uplands on all continents - a close parallel with the setting of the Meridiani sediments at the foot of the southern uplands of Mars, with its incised fluvial systems leading down the regional NW slope [2, 3] towards the sedimentary units. At the subregional scale the layering and internal discontinuities of the Meridiani rocks are consistent, inter alia, with stacked fluvial units [4]. Although poorly recognized as such, the prime geomorphic environment in which stream channel networks cover large areas, without intervening hillslopes, is the megafan [see e.g. 4]. Single megafans can reach 200,000 km2 [5]. Megafans thus supply an analog for areas where channel-like ridges (as a palimpsest of a prior landscape) cover the intercrater plains of Meridiani [6]. At the local, or river-reach scale, the numerous sinuous features of the RFU are suggestive of fluvial channels. Cross-cutting relationships, a common feature of channels on terrestrial megafans, are ubiquitous. Desert megafans show cemented paleo-channels as inverted topography [4] with all these characteristics.
Assessing geomorphic sensitivity in relation to river capacity for adjustment
NASA Astrophysics Data System (ADS)
Reid, H. E.; Brierley, G. J.
2015-12-01
River sensitivity describes the nature and rate of channel adjustments. An approach to analysis of geomorphic river sensitivity outlined in this paper relates potential sensitivity based on the expected capacity of adjustment for a river type to the recent history of channel adjustment. This approach was trialled to assess low, moderate and high geomorphic sensitivity for four different types of river (10 reaches in total) along the Lower Tongariro River, North Island, New Zealand. Building upon the River Styles framework, river types were differentiated based upon valley setting (width and confinement), channel planform, geomorphic unit assemblages and bed material size. From this, the behavioural regime and potential for adjustment (type and extent) were determined. Historical maps and aerial photographs were geo-rectified and the channel planform digitised to assess channel adjustments for each reach from 1928 to 2007. Floodplain width controlled by terraces, exerted a strong influence upon reach scale sensitivity for the partly-confined, wandering, cobble-bed river. Although forced boundaries occur infrequently, the width of the active channel zone is constrained. An unconfined braided river reach directly downstream of the terrace-confined section was the most geomorphically sensitive reach. The channel in this reach adjusted recurrently to sediment inputs that were flushed through more confined, better connected upstream reaches. A meandering, sand-bed river in downstream reaches has exhibited negligible rates of channel migration. However, channel narrowing in this reach and the associated delta indicate that the system is approaching a threshold condition, beyond which channel avulsion is likely to occur. As this would trigger more rapid migration, this reach is considered to be more geomorphically sensitive than analysis of its low migration rate alone would indicate. This demonstrates how sensitivity is fashioned both by the behavioural regime of a reach and flow/sediment input from upstream. The approach to assess geomorphic river sensitivity outlined here could support 'room to move' or 'freedom space' approaches to river management by relating likely channel adjustments for the type of river under consideration to the area of land that is required to contain 'natural' patterns and rates of geomorphic functionality.
Undercooled water in basaltic regoliths and implications for fluidized debris flows on Mars
NASA Technical Reports Server (NTRS)
Gooding, James L.
1987-01-01
Pursuant to the past attribution of many geomorphic features on Mars to the movements of water- or ice-lubricated debris, experiments have been conducted for water freezing in wet, sand-like basaltic substrates. It is found that substantial undercooling can be achieved under Martian conditions, independently of freezing-point depressions due to soluble salts. Attention is given to results for a clay-poor soil with negligible salinity from Mauna Kea, Hawaii, which demonstrate that the degree of undercooling is essentially independent of both soil particle size and water/soil mass ratio, albeit with cooling rate variations.
HCMM: Soil moisture in relation to geologic structure and lithology, northern California
NASA Technical Reports Server (NTRS)
Rich, E. I. (Principal Investigator)
1981-01-01
Some HCMM images of about 80,000 sq km in northern California were qualitatively evaluated for usefulness in regional geologic investigations of structure and lithology. The thermal characteristics recorded vary among the several geomorphic provinces and depends chiefly on the topographic expression and vegetation cover. Identification of rock types, or groups of rock types, was most successfully carried out within the semi-arid parts of the region; however, extensive features, such as faults, folds and volcanic fields could be delineated. Comparisons of seasonally obtained HCMM images were limited value, except in semi-arid regions.
NASA Astrophysics Data System (ADS)
Carbonneau, Patrice; Fonstad, Mark A.; Marcus, W. Andrew; Dugdale, Stephen J.
2012-01-01
The structure and function of rivers have long been characterized either by: (1) qualitative models such as the River Continuum Concept or Serial Discontinuity Concept which paint broad descriptive portraits of how river habitats and communities vary, or (2) quantitative models, such as downstream hydraulic geometry, which rely on a limited number of measurements spread widely throughout a river basin. In contrast, authors such as Fausch et al. (2002) and Wiens (2002) proposed applying existing quantitative, spatially comprehensive ecology and landscape ecology methods to rivers. This new framework for river sciences which preserves variability and spatial relationships is called a riverine landscape or a 'riverscape'. Application of this riverscape concept requires information on the spatial distribution of organism-scale habitats throughout entire river systems. This article examines the ways in which recent technical and methodological developments can allow us to quantitatively implement and realize the riverscape concept. Using 3-cm true color aerial photos and 5-m resolution elevation data from the River Tromie, Scotland, we apply the newly developed Fluvial Information System which integrates a suite of cutting edge, high resolution, remote sensing methods in a spatially explicit framework. This new integrated approach allows for the extraction of primary fluvial variables such as width, depth, particle size, and elevation. From these first-order variables, we derive second-order geomorphic and hydraulic variables including velocity, stream power, Froude number and shear stress. Channel slope can be approximated from available topographic data. Based on these first and second-order variables, we produce riverscape metrics that begin to explore how geomorphic structures may influence river habitats, including connectivity, patchiness of habitat, and habitat distributions. The results show a complex interplay of geomorphic variable and habitat patchiness that is not predicted by existing fluvial theory. Riverscapes, thus, challenge the existing understanding of how rivers structure themselves and will force development of new paradigms.
Soil erosion assessment - Mind the gap
NASA Astrophysics Data System (ADS)
Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone
2016-12-01
Accurate assessment of erosion rates remains an elusive problem because soil loss is strongly nonunique with respect to the main drivers. In addressing the mechanistic causes of erosion responses, we discriminate between macroscale effects of external factors - long studied and referred to as "geomorphic external variability", and microscale effects, introduced as "geomorphic internal variability." The latter source of erosion variations represents the knowledge gap, an overlooked but vital element of geomorphic response, significantly impacting the low predictability skill of deterministic models at field-catchment scales. This is corroborated with experiments using a comprehensive physical model that dynamically updates the soil mass and particle composition. As complete knowledge of microscale conditions for arbitrary location and time is infeasible, we propose that new predictive frameworks of soil erosion should embed stochastic components in deterministic assessments of external and internal types of geomorphic variability.
ECG Identification System Using Neural Network with Global and Local Features
ERIC Educational Resources Information Center
Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles
2016-01-01
This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…
NASA Astrophysics Data System (ADS)
Picard, K.; Brooke, B. B.; Harris, P. T.; Siwabessy, J. P. W.; Coffin, M. F.; Tran, M.; Spinoccia, M.; Weales, J.; Macmillan-Lawler, M.; Sullivan, J.
2017-12-01
A large multibeam echo sounder (MBES) dataset (710, 000 km2, inclusive of transit data) was acquired in the SE Indian Ocean to assist the search for Malaysia Airlines Flight 370 (MH370). Here, we present the results of a geomorphic analysis of this new data and compare with the Global Seafloor Geomorphic Features Map (GSFM) that is based on coarser resolution satellite-derived bathymetry data. The analyses show that abyssal plains and basins are significantly more rugged than their representation in the GSFM, with a 20% increase in the extent of hills and mountains. The new model also reveals four times more seamounts than presented in the GSFM, suggesting a greater number of these features than previously estimated for the broader region and indeed globally. This is important considering the potential ecological significance of these high-relief structures. Analyses of the new data also enabled knolls, fans, valleys, canyons, troughs and holes to be identified, doubling the number of discrete features mapped and revealing the true geodiversity of the deep ocean in this area. This high-resolution mapping of the seafloor also provides new insights into the geological evolution of the region, both in terms of structural, tectonic, and sedimentary processes. For example, sub-parallel ridges extend over approximately 20% of the area mapped and their form and alignment provide valuable insight into Southeast Indian Ridge seafloor spreading processes. Rifting is recorded along the Broken Ridge - Diamantina Escarpment, with rift blocks and well-bedded sedimentary bedrock exposures discernible down to 2,400 m water depth. Ocean floor sedimentary processes are represented in sediment mass transport features, especially along and north of Broken Ridge, and pockmarks (the finest-scale features mapped) south of Diamantina Trench. The new MBES data highlight the complexity of the search area and serve to demonstrate how little we know about the 85-90% of the ocean floor that has not been mapped with this technology. The availability of high-resolution and accurate maps of the ocean floor can clearly provide new insights into the Earth's geological evolution, modern ocean floor processes, and the location of sites that are likely to have relatively high biodiversity.
Land use changing SOC pool: A field investigation from four catchments on the Loess Plateau in China
NASA Astrophysics Data System (ADS)
Guo, Shengli; Wang, Rui; Hu, Yaxian
2017-04-01
The Loess Plateau in China has long been known for severe erosion, a degraded ecosystem and heavy sediment delivery to the Yellow River. Apart from, the highly erodible loess soil and the hilly geomorphology, intensive cultivation has been caused such most destructive human activities. This made the Loess Plateau once the least fertile region in China with extreme poverty. To restore soil fertility and ecosystem sustainability, a national-level project was launched in 1990s to encourage land use changes via afforestation or conversion of cropland back to grassland or woodland. After nearly three decades of land use conversion, the SOC pool in the soil can be expected to have substantially changed. However, climate conditions, geomorphic types and soil properties were spatially distinctive across the Loess Plateau. Their individual as well interactive impacts on changes of soil carbon pool during land use conversions must thus be properly accounted for. In this study, four watersheds distributed over the Loess Plateau were investigated. The four watersheds mainly consisted of three geomorphic types: wide gully, loess ridge, and round knoll. On each geomorphic feature, three land use types prevailed: cropland, grassland and woodland. In total, 695 soil samples were taken from the top 20 cm of the four watersheds during 2010 and 2011. Our results show: 1) Degrees of erosion hugely differed among the four watersheds, with Catchment A (hilly) having three times more erosion modulus than the least eroded Catchment D (gully) (12000 vs. 1800 Mg per km2 per year). 2) The increasing SOC content from 4 mg g-1 at Catchment A to 8.1 mg g-1 at Catchment D agreed well with their decreasing erosion, suggesting that geomorphology induced erosion history was the predominant factor to set the general level of watershed-scale SOC reservoir. 3) Within each watershed, grassland and woodland consistently had at least 34% more SOC than cropland, demonstrating the influence of land use changes on local SOC pool. Overall, our field investigation suggests that on watershed scale, geomorphic types and the associated erosion are the decisive factor regulating the local SOC reservoir. Within each watershed, land use conversions from cropland to grassland and woodland had significantly improved SOC pool.
Earthquake geology of Kashmir Basin and its implications for future large earthquakes
NASA Astrophysics Data System (ADS)
Shah, A. A.
2013-09-01
Two major traces of active thrust faults were identified in the Kashmir Basin (KB) using satellite images and by mapping active geomorphic features. The ~N130°E strike of the mapped thrust faults is consistent with the regional ~NE-SW convergence along the Indian-Eurasian collision zone. The ~NE dipping thrust faults have uplifted the young alluvial fan surfaces at the SW side of the KB. This created a major tectono-geomorphic boundary along the entire strike length of the KB that is characterised by (1) a low relief with sediment-filled sluggish streams to the SE and (2) an uplifted region, with actively flowing streams to the SW. The overall tectono-geomorphic expression suggests that recent activity along these faults has tilted the entire Kashmir valley towards NE. Further, the Mw 7.6 earthquake, which struck Northern Pakistan and Kashmir on 8 October 2005, also suggests a similar strike and NE dipping fault plane, which could indicate that the KB fault is continuous over a distance of ~210 km and connects on the west with the Balakot Bagh fault. However, the geomorphic and the structural evidences of such a structure are not very apparent on the north-west, which thus suggest that it is not a contiguous structure with the Balakot Bagh fault. Therefore, it is more likely that the KB fault is an independent thrust, a possible ramp on the Main Himalayan Thrust, which has uplifting the SW portion of the KB and drowning everything to the NE (e.g. Madden et al. 2011). Furthermore, it seems very likely that the KB fault could be a right stepping segment of the Balakot Bagh fault, similar to Riasi Thrust, as proposed by Thakur et al. (2010). The earthquake magnitude is measured by estimating the fault rupture parameters (e.g. Wells and Coppersmith in Bull Seismol Soc Am 84:974-1002, 1994). Therefore, the total strike length of the mapped KB fault is ~120 km and by assuming a dip of 29° (Avouac et al. in Earth Planet Sci Lett 249:514-528, 2006) and a down-dip limit of 20 km, a Mw of 7.6 is possible on this fault.
Applications of GIS and database technologies to manage a Karst Feature Database
Gao, Y.; Tipping, R.G.; Alexander, E.C.
2006-01-01
This paper describes the management of a Karst Feature Database (KFD) in Minnesota. Two sets of applications in both GIS and Database Management System (DBMS) have been developed for the KFD of Minnesota. These applications were used to manage and to enhance the usability of the KFD. Structured Query Language (SQL) was used to manipulate transactions of the database and to facilitate the functionality of the user interfaces. The Database Administrator (DBA) authorized users with different access permissions to enhance the security of the database. Database consistency and recovery are accomplished by creating data logs and maintaining backups on a regular basis. The working database provides guidelines and management tools for future studies of karst features in Minnesota. The methodology of designing this DBMS is applicable to develop GIS-based databases to analyze and manage geomorphic and hydrologic datasets at both regional and local scales. The short-term goal of this research is to develop a regional KFD for the Upper Mississippi Valley Karst and the long-term goal is to expand this database to manage and study karst features at national and global scales.
The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding
NASA Astrophysics Data System (ADS)
Magilligan, F. J.; Buraas, E. M.; Renshaw, C. E.
2015-01-01
Geomorphologists have long studied the impacts of extreme floods, yet the association between the magnitude of flow parameters (discharge, velocity, shear stress, or stream power) and resulting geomorphic effectiveness remains vague and non-deterministic. Attempts have been made to include flow duration and total expenditure of stream power, in combination with peak unit stream power, as important variables, but there has been minimal exploration of this hydraulic combination. Taking advantage of Tropical Storm Irene's rapid track through eastern Vermont (USA) in late summer 2011, this paper presents the array of geomorphic responses to a short duration (time to peak of < 8 h) but high magnitude flood that was the twentieth century flood of record for numerous watersheds. We present herein the geomorphic imprint of Tropical Storm Irene flooding within a larger context of fluvial theory concerning the role of, and trade-off between, the magnitude of energy expenditure during a flood and its duration. Focusing on a detailed field effort within the 187-km2 Saxtons River basin in southeastern VT, augmented by select sites along the adjacent lower gradient Williams River (291-km2), we elucidate (1) the geomorphic effects of a short duration flood in a humid, well-vegetated landscape; (2) the relationship between geomorphic response and (a) peak stream power, (b) total stream power, and (c) flow duration of stream power above a critical threshold; and (3) the spatial variation of geomorphic effects relative to reach-scale geologic and geomorphic controls. Flooding associated with Tropical Storm Irene ranged from the 1000 year recurrence interval (RI) flood (based on Weibull flood frequency analysis) to the 300 year RI flood (log Pearson Type III). Discharges spawned a peak unit stream power of 712 W/m2 (Saxtons River) and 361 W/m2 (Williams River), with total energy expenditure throughout the event of ~ 16,000 × 103 and 15,000 × 103 J, respectively. For the Saxtons River, channel widening was spatially infrequent and limited in magnitude; however, other geomorphic effects were profound (1) the entrainment, transport, and deposition of extremely coarse material; (2) stripping of floodplain surfaces; (3) channel avulsions and incision into Pleistocene-aged material; and (4) deposition of coarse material across floodplains. Based on our extensive field data and hydrologic/hydraulic analyses, we contend that short duration, high energy flows can have profound sedimentological effects but have limited erosive, channel widening impacts. Gravel entrainment and deposition of a catastrophic nature can certainly occur under these flow regimes, but the impacts of these extreme flows on channel geometry may have limited expression.
The geomorphic evolution of the lunar surface.
NASA Technical Reports Server (NTRS)
Ronca, L. B.
1972-01-01
The solution of the function relating craters of the continuous degradation sequence with degree of erosion was defined as the geomorphic index of the area. Studies of the geomorphic index of stratigraphic surfaces show that areas covered by considerable ballistic sediments have a geomorphic index which is not a monotonic function of time. On the other hand, areas covered almost exclusively by mare flooding show an index which is a monotonic function of the age of the flooding. As each mare surface shows a considerable range in indices, it is concluded that maria are covered by surfaces formed through a considerable length of time. By using Apollo 11 and 12 radiometric ages it is suggested that the time of mare flooding lasted on the order of one billion years. The geomorphic index of highland surfaces shows a remarkable degree of order - i.e., the farther an area is inland from the mare shores, the higher will be the index. No explanation is given for this phenomenon, but it is suggested that lunar erosion is not just a localized phenomenon centered on the locus of an impact, but has lateral trends of regional dimensions.
Interdependence of geomorphic and ecologic resilience properties in a geographic context
NASA Astrophysics Data System (ADS)
Anthony Stallins, J.; Corenblit, Dov
2018-03-01
Ecology and geomorphology recognize the dynamic aspects of resistance and resilience. However, formal resilience theory in ecology has tended to deemphasize the geomorphic habitat template. Conversely, landscape sensitivity and state-and-transition models in geomorphology downweight mechanisms of biotic adaptation operative in fluctuating, spatially explicit environments. Adding to the interdisciplinary challenge of understanding complex biogeomorphic systems is that environmental heterogeneity and overlapping gradients of disturbance complicate inference of the geographic patterns of resistance and resilience. We develop a conceptual model for comparing the resilience properties among barrier dunes. The model illustrates how adaptive cycles and panarchies, the formal building blocks of resilience recognized in ecology, can be expressed as a set of hierarchically nested geomorphic and ecological metrics. The variance structure of these data is proposed as a means to delineate different kinds and levels of resilience. Specifically, it is the dimensionality of these data and how geomorphic and ecological variables load on the first and succeeding axes that facilitates the delineation of resistance and resilience. The construction of dune topographic state space from observations among different barrier islands is proposed as a way to measure the interdependence of geomorphic and ecological resilience properties.
Geomorphic reclmation of a coal refuse pile
NASA Astrophysics Data System (ADS)
Hopkinson, L. C.; Quaranta, J.
2017-12-01
Geomorphic reclamation is a technique that may offer opportunities to improve mine reclamation in Central Appalachia. The design approach is based on constructing a steady-state, mature landform condition and takes into account the long-term climatic conditions, soil types, terrain grade, and vegetation. Geomorphic reclamation has been applied successfully in semi-arid regions but has not yet been applied in Central Appalachia. This work describes a demonstration study where geomorphic landforming techniques are being applied to a coarse coal refuse pile in southern West Virginia, USA. The reclamation design includes four geomorphic watersheds that radially drain runoff from the pile. Each watershed has one central draining channel and incorporates compound slope profiles similarly to naturally eroded slopes. Planar slopes were also included to maintain the impacted area. The intent is to alter the hydrology to decrease water quality treatment costs. The excavation cut and fill volumes are comparable to those of more conventional refuse pile reclamation designs. If proven successful then this technique can be part of a cost-effective solution to improve water quality at active and future refuse facilities, abandoned mine lands, bond forfeiture sites, landfills, and major earthmoving activities within the region.
NASA Technical Reports Server (NTRS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2016-01-01
Global lunar topographic data derived from ranging measurements by the Lunar Orbiter Laser Altimeter (LOLA) onboard LRO mission to the Moon have extremely high vertical precision. We use detrended topography as a means for utilization of this precision in geomorphological analysis. The detrended topography was calculated as a difference between actual topography and a trend surface defined as a median topography in a circular sliding window. We found that despite complicated distortions caused by the non-linear nature of the detrending procedure, visual inspection of these data facilitates identification of low-amplitude gently-sloping geomorphic features. We present specific examples of patterns of lava flows forming the lunar maria and revealing compound flow fields, a new class of lava flow complex on the Moon. We also highlight the identification of linear tectonic features that otherwise are obscured in the images and topographic data processed in a more traditional manner.
NASA Technical Reports Server (NTRS)
Collins, R. J. (Principal Investigator); Mccown, F. P.; Stonis, L. P.; Petzel, G. J.; Everett, J. R.
1974-01-01
The author has identified the following significant results. ERTS-1 data give exploration geologists a new perspective for looking at the earth. The data are excellent for interpreting regional lithologic and structural relationships and quickly directing attention to areas of greatest exploration interest. Information derived from ERTS data useful for petroleum exploration include: linear features, general lithologic distribution, identification of various anomalous features, some details of structures controlling hydrocarbon accumulation, overall structural relationships, and the regional context of the exploration province. Many anomalies (particularly geomorphic anomalies) correlate with known features of petroleum exploration interest. Linears interpreted from the imagery that were checked in the field correlate with fractures. Bands 5 and 7 and color composite imagery acquired during the periods of maximum and minimum vegetation vigor are best for geologic interpretation. Preliminary analysis indicates that use of ERTS imagery can substantially reduce the cost of petroleum exploration in relatively unexplored areas.
NASA Astrophysics Data System (ADS)
Su, Zuqiang; Xiao, Hong; Zhang, Yi; Tang, Baoping; Jiang, Yonghua
2017-04-01
Extraction of sensitive features is a challenging but key task in data-driven machinery running state identification. Aimed at solving this problem, a method for machinery running state identification that applies discriminant semi-supervised local tangent space alignment (DSS-LTSA) for feature fusion and extraction is proposed. Firstly, in order to extract more distinct features, the vibration signals are decomposed by wavelet packet decomposition WPD, and a mixed-domain feature set consisted of statistical features, autoregressive (AR) model coefficients, instantaneous amplitude Shannon entropy and WPD energy spectrum is extracted to comprehensively characterize the properties of machinery running state(s). Then, the mixed-dimension feature set is inputted into DSS-LTSA for feature fusion and extraction to eliminate redundant information and interference noise. The proposed DSS-LTSA can extract intrinsic structure information of both labeled and unlabeled state samples, and as a result the over-fitting problem of supervised manifold learning and blindness problem of unsupervised manifold learning are overcome. Simultaneously, class discrimination information is integrated within the dimension reduction process in a semi-supervised manner to improve sensitivity of the extracted fusion features. Lastly, the extracted fusion features are inputted into a pattern recognition algorithm to achieve the running state identification. The effectiveness of the proposed method is verified by a running state identification case in a gearbox, and the results confirm the improved accuracy of the running state identification.
Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xiaojia; Mao Qirong; Zhan Yongzhao
There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions.more » The experiments show that this method can improve the recognition rate and the time of feature extraction.« less
Interactions between hyporheic flow produced by stream meanders, bars, and dunes
Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.
2013-01-01
Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.
Comprehensive Seismological Monitoring of Geomorphic Processes in Taiwan
NASA Astrophysics Data System (ADS)
Chao, W. A.; Chen, C. H.
2016-12-01
Geomorphic processes such as hillslope mass wasting and river sediment transport are important for studying landscape dynamics. Mass movements induced from geomorphic events can generate seismic waves and be recorded by seismometers. Recent studies demonstrate that seismic monitoring techniques not only fully map the spatiotemporal patterns of geomorphic activity but also allow for exploration of the dynamic links between hillslope failures and channel processes, which may not be resolved by conventional techniques (e.g., optical remote sensing). We have recently developed a real-time landquake monitoring system (RLMS, here we use the term `landquake' to represent all hillslope failures such as rockfall, rock avalanche and landslide), which has been continuously monitoring landquake activities in Taiwan since June 2015 based on broadband seismic records, yielding source information (e.g., location, occurrence time, magnitude and mechanism) for large-sized events (http://140.112.57.117/main.html). Several seismic arrays have also been deployed over the past few years around the catchments and along the river channels in Taiwan for monitoring erosion processes at catchment scale, improving the spatiotemporal resolution in exploring the interaction between geomorphic events and specific meteorological conditions. Based on a forward model accounting for the impulsive impacts of saltating particles, we can further invert for the sediment load flux, a critical parameter in landscape evolution studies, by fitting the seismic observations only. To test the validity of the seismologically determined sediment load flux, we conduct a series of controlled dam breaking experiments that are advantageous in well constraining the spatiotemporal variations of the sediment transport. Incorporating the seismological constrains on geomorphic processes with the effects of tectonic and/or climate perturbations can provide valuable and quantitative information for more fully understanding and modeling of the dynamics of erosional mountain landscapes. Comprehensive seismic monitoring also yields important information for the evaluation, assessment and emergency response of hazardous geomorphic events.
Relating geomorphic change and grazing to avian communities in riparian forests
Scott, M.L.; Skagen, S.K.; Merligliano, M.F.
2003-01-01
Avian conservation in riparian or bottomland forests requires an understanding of the physical and biotic factors that sustain the structural complexity of riparian vegetation. Riparian forests of western North America are dependent upon flow-related geomorphic processes necessary for establishment of new cottonwood and willow patches. In June 1995, we examined how fluvial geomorphic processes and long-term grazing influence the structural complexity of riparian vegetation and the abundance and diversity of breeding birds along the upper Missouri River in central Montana, a large, flow-regulated, and geomorphically constrained reach. Use by breeding birds was linked to fluvial geomorphic processes that influence the structure of these patches. Species richness and bird diversity increased with increasing structural complexity of vegetation (F1,32 = 75.49, p < 0.0001; F1,32 = 79.76, p < 0.0001, respectively). Bird species composition was significantly correlated with vegetation strata diversity (rs,33 = 0.98, p < 0.0001). Bird abundance in canopy and tall-shrub foraging guilds increased significantly with increasing tree cover and tall-shrub cover (F1,22 = 34.68, p < 0.0001; F1,20 = 22.22, p < 0.0001, respectively). Seventeen bird species, including five species of concern (e.g., Red-eyed Vireo [Vireo olivaceus]), were significantly associated (p < 0.10) with structurally complex forest patches, whereas only six bird species were significantly associated with structurally simple forest patches. We related the structural complexity of 34 riparian vegetation patches to geomorphic change, woody vegetation establishment, and grazing history over a 35-year post-dam period (1953–1988). The structural complexity of habitat patches was positively related to recent sediment accretion (t33 = 3.31, p = 0.002) and vegetation establishment (t20.7 = −3.63, p = 0.002) and negatively related to grazing activity (t19.6 = 3.75, p = 0.001). Avian conservation along rivers like the upper Missouri requires maintenance of the geomorphic processes responsible for tree establishment and management of land-use activities in riparian forests.
Image segmentation-based robust feature extraction for color image watermarking
NASA Astrophysics Data System (ADS)
Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen
2018-04-01
This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.
A novel murmur-based heart sound feature extraction technique using envelope-morphological analysis
NASA Astrophysics Data System (ADS)
Yao, Hao-Dong; Ma, Jia-Li; Fu, Bin-Bin; Wang, Hai-Yang; Dong, Ming-Chui
2015-07-01
Auscultation of heart sound (HS) signals serves as an important primary approach to diagnose cardiovascular diseases (CVDs) for centuries. Confronting the intrinsic drawbacks of traditional HS auscultation, computer-aided automatic HS auscultation based on feature extraction technique has witnessed explosive development. Yet, most existing HS feature extraction methods adopt acoustic or time-frequency features which exhibit poor relationship with diagnostic information, thus restricting the performance of further interpretation and analysis. Tackling such a bottleneck problem, this paper innovatively proposes a novel murmur-based HS feature extraction method since murmurs contain massive pathological information and are regarded as the first indications of pathological occurrences of heart valves. Adapting discrete wavelet transform (DWT) and Shannon envelope, the envelope-morphological characteristics of murmurs are obtained and three features are extracted accordingly. Validated by discriminating normal HS and 5 various abnormal HS signals with extracted features, the proposed method provides an attractive candidate in automatic HS auscultation.
Scaling Considerations Related to Interactions of Hydrologics, Pedologic and Geomorphic Processes
Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K...
Brierley, Gary; Fryirs, Kirstie
2009-06-01
Three geomorphic considerations that underpin the design and implementation of realistic and strategic river conservation and rehabilitation programs that work with the nature are outlined. First, the importance of appreciating the inherent diversity of river forms and processes is discussed. Second, river dynamics are appraised, framing the contemporary behavioral regime of a reach in relation to system evolution to explain changes to river character and behavior over time. Third, the trajectory of a reach is framed in relation to downstream patterns of river types, analyzing landscape connectivity at the catchment scale to interpret geomorphic river recovery potential. The application of these principles is demonstrated using extensive catchment-scale analyses of geomorphic river responses to human disturbance in the Bega and Upper Hunter catchments in southeastern Australia. Differing implications for reach- and catchment-scale rehabilitation planning prompt the imperative that management practices work with nature rather than strive to 'fight the site.'
NASA Astrophysics Data System (ADS)
Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab
2017-11-01
Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, M.; Harty, K.M.
1993-04-01
The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocenemore » Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.« less
Wang, Alian; Bell, J.F.; Li, Ron; Johnson, J. R.; Farrand, W. H.; Cloutis, E.A.; Arvidson, R. E.; Crumpler, L.; Squyres, S. W.; McLennan, S.M.; Herkenhoff, K. E.; Ruff, S.W.; Knudson, A.T.; Chen, Wei; Greenberger, R.
2008-01-01
Light-toned soils were exposed, through serendipitous excavations by Spirit Rover wheels, at eight locations in the Columbia Hills. Their occurrences were grouped into four types on the basis of geomorphic settings. At three major exposures, the light-toned soils are hydrous and sulfate-rich. The spatial distributions of distinct types of salty soils vary substantially: with centimeter-scaled heterogeneities at Paso Robles, Dead Sea, Shredded, and Champagne-Penny, a well-mixed nature for light-toned soils occurring near and at the summit of Husband Hill, and relatively homogeneous distributions in the two layers at the Tyrone site. Aeolian, fumarolic, and hydrothermal fluid processes are suggested to be responsible for the deposition, transportation, and accumulation of these light-toned soils. In addition, a change in Pancam spectra of Tyrone yellowish soils was observed after being exposed to current Martian surface conditions for 175 sols. This change is interpreted to be caused by the dehydration of ferric sulfates on the basis of laboratory simulations and suggests a relative humidity gradient beneath the surface. Si-rich nodules and soils were observed near the major exposures of S-rich soils. They possess a characteristic feature in Pancam visible near-infrared (Vis-NIR) spectra that may be diagnostic of hydrated species, and this spectral feature can be used to search for additional Si-rich species. The exposures of hydrated salty soils within various geomorphic settings imply the potential existence of hydrous minerals in similar settings over a much wider area. Hydrous sulfates represent one of the candidates that may contribute the high level of water equivalent hydrogen in equatorial regions detected by the Neutron Spectrometer on Mars Odyssey.
Landscape evolution on Mars - A model of aeolian denudation in Gale Crater
NASA Astrophysics Data System (ADS)
Day, M. D.; Kocurek, G.; Grotzinger, J. P.
2015-12-01
Aeolian erosion has been the dominant geomorphic agent to shape the surface of Mars for the past ~3.5 billion years. Although individual geomorphic features evidencing aeolian activity are well understood (e.g., yardangs, dune fields, and wind streaks), landscapes formed by aeolian erosion remain poorly characterized. Intra-crater sedimentary mounds are hypothesized to have formed by wind deflation of craters once filled with flat-lying strata, and, therefore, should be surrounded by landscapes formed by aeolian erosion. Here we present a landscape evolution model that provides both an initial characterization of aeolian landscapes, and a mechanism for large-scale excavation. Wind excavation of Gale Crater to form the 5 km high Mount Sharp would require removal of 6.4 x 104 km3 of sediment. Imagery in Gale Crater from satellites and the Mars Science Laboratory rover Curiosity shows a surface characterized by first-cycle aeolian erosion of bedrock. The overall landscape is interpreted to represent stages in a cycle of aeolian deflation and excavation, enhanced by physical weathering (e.g., thermal fracturing, cratering). Initial wind erosion of bedrock is enhanced along fractures, producing retreating scarps. Underlying less resistant layers then erode faster than the armoring cap rock, increasing relief in scarps to form retreating mesas. As scarp retreat continues, boulders from the armoring cap unit break away and cover the hillslopes of less resistant material below the scarps. Eventually all material from the capping unit is eroded away and a boulder-capped hill remains. Winnowing of fine material flattens hillslope topography, leaving behind a desert pavement. Over long enough time, this pavement is breached and the cycle begins anew. This cycle of landscape denudation by the wind is similar to that of water, but lacks characteristic subaqueous features such as dendritic drainage networks.
Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica
NASA Astrophysics Data System (ADS)
Halberstadt, Anna Ruth W.; Simkins, Lauren M.; Greenwood, Sarah L.; Anderson, John B.
2016-05-01
Studying the history of ice-sheet behaviour in the Ross Sea, Antarctica's largest drainage basin can improve our understanding of patterns and controls on marine-based ice-sheet dynamics and provide constraints for numerical ice-sheet models. Newly collected high-resolution multibeam bathymetry data, combined with two decades of legacy multibeam and seismic data, are used to map glacial landforms and reconstruct palaeo ice-sheet drainage. During the Last Glacial Maximum, grounded ice reached the continental shelf edge in the eastern but not western Ross Sea. Recessional geomorphic features in the western Ross Sea indicate virtually continuous back-stepping of the ice-sheet grounding line. In the eastern Ross Sea, well-preserved linear features and a lack of small-scale recessional landforms signify rapid lift-off of grounded ice from the bed. Physiography exerted a first-order control on regional ice behaviour, while sea floor geology played an important subsidiary role. Previously published deglacial scenarios for Ross Sea are based on low-spatial-resolution marine data or terrestrial observations; however, this study uses high-resolution basin-wide geomorphology to constrain grounding-line retreat on the continental shelf. Our analysis of retreat patterns suggests that (1) retreat from the western Ross Sea was complex due to strong physiographic controls on ice-sheet drainage; (2) retreat was asynchronous across the Ross Sea and between troughs; (3) the eastern Ross Sea largely deglaciated prior to the western Ross Sea following the formation of a large grounding-line embayment over Whales Deep; and (4) our glacial geomorphic reconstruction converges with recent numerical models that call for significant and complex East Antarctic ice sheet and West Antarctic ice sheet contributions to the ice flow in the Ross Sea.
Uniform competency-based local feature extraction for remote sensing images
NASA Astrophysics Data System (ADS)
Sedaghat, Amin; Mohammadi, Nazila
2018-01-01
Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.
Kasprak, Alan; Caster, Joshua J.; Bangen, Sara G.; Sankey, Joel B.
2017-01-01
The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High-resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process-based river management and restoration.
Li, Jing; Hong, Wenxue
2014-12-01
The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.
NASA Astrophysics Data System (ADS)
Werdiningsih, Indah; Zaman, Badrus; Nuqoba, Barry
2017-08-01
This paper presents classification of brain cancer using wavelet transformation and Adaptive Neighborhood Based Modified Backpropagation (ANMBP). Three stages of the processes, namely features extraction, features reduction, and classification process. Wavelet transformation is used for feature extraction and ANMBP is used for classification process. The result of features extraction is feature vectors. Features reduction used 100 energy values per feature and 10 energy values per feature. Classifications of brain cancer are normal, alzheimer, glioma, and carcinoma. Based on simulation results, 10 energy values per feature can be used to classify brain cancer correctly. The correct classification rate of proposed system is 95 %. This research demonstrated that wavelet transformation can be used for features extraction and ANMBP can be used for classification of brain cancer.
Geomorphology in context: Dispatches from the field
NASA Astrophysics Data System (ADS)
Harden, Carol P.
2013-10-01
Field research enables a researcher to view geomorphic systems in broader contexts than those envisioned while at a desk and can yield unanticipated insights that change the course of an investigation or affect the interpretation of results. Geomorphological field research often produces 'aha!' moments, epiphanies that enhance understanding and lead toward more complete explanation of the processes and landforms under study. This paper uses examples from 'aha!' moments in the field to demonstrate the importance of field observation as a way of gaining information about the broader contexts of research sites, especially in process geomorphology. Spatial contexts include the scales of processes and features, linkages between a study site and its surroundings, and information observed in the field about other processes, anthropogenic activities, or unexpected factors that might affect a study. Temporal contexts, not as evident in the field, place a research site in a longer term history of changes and adjustments. Finally, exploring an abstract set of mental contexts reveals reasons that expectations differ from the realities encountered in the field—constraints and biases that a researcher may not have noted—and the possibility that the unexpected can potentially advance geomorphic research. Time spent in the field complements scientific reductionism and provides opportunities to appreciate the richness and complexity of Earth surface systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iranpanah, A.
1989-03-01
Lineaments on a series of edge-enhanced images (TM data) from a region around the Caspian Sea form a geomorphically significant linear trend along the major Caucasus-Kopeh Dagh fault line. This fault represents the line of collision between the Cimmerian continents and the Turan plate on the south and north, respectively. The lineament zone manifests a ramp structure that forms a relatively narrow topographic high in the Caspian Sea. Paleogeographic studies of the Caspian Sea suggest that the basin is part of the eastern Paratethys, which began to develop in the early Paleogene during the Alpine-Himalayan uplift. On the basis ofmore » the lineaments and associated geomorphic features, the Caspian Sea can be divided into southern, central, and the northern Caspian subbasins. The Caucasus-Kopeh Dagh fault line trends N80/degrees/W and separates the southern Caspian from the central subbasin, approximately along 40/degrees/N latitude. The boundary between the central and the northern subbasins is also a linear topographic high which trends N70/degrees/E and lies approximately at 44/degrees/N latitude. The southern and central subbasins have subequal areal extension covering 35.64% and the 36.63% of the whole sea, whereas the northern subbasin occupies only 27.73% of the basin.« less
Sample-space-based feature extraction and class preserving projection for gene expression data.
Wang, Wenjun
2013-01-01
In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.
Collins, Brian D.; Brown, Kristin M.; Fairley, Helen C.
2008-01-01
This report presents the results of an evaluation of terrestrial light detection and ranging (LIDAR) for monitoring geomorphic change at archeological sites located within Grand Canyon National Park, Ariz. Traditionally, topographic change-detection studies have used total station methods for the collection of data related to key measurable features of site erosion such as the location of thalwegs and knickpoints of gullies that traverse archeological sites (for example, Pederson and others, 2003). Total station methods require survey teams to walk within and on the features of interest within the archeological sites to take accurate measurements. As a result, site impacts may develop such as trailing, damage to cryptogamic crusts, and surface compaction that can exacerbate future erosion of the sites. National Park Service (NPS) resource managers have become increasingly concerned that repeated surveys for research and monitoring purposes may have a detrimental impact on the resources that researchers are trying to study and protect. Beginning in 2006, the Sociocultural Program of the U.S. Geological Survey's (USGS) Grand Canyon Monitoring and Research Center (GCMRC) initiated an evaluation of terrestrial LIDAR as a new monitoring tool that might enhance data quality and reduce site impacts. This evaluation was conducted as one part of an ongoing study to develop objective, replicable, quantifiable monitoring protocols for tracking the status and trend of variables affecting archeological site condition along the Colorado River corridor. The overall study consists of two elements: (1) an evaluation of the methodology through direct comparison to geomorphologic metrics already being collected by total station methods (this report) and (2) an evaluation of terrestrial LIDAR's ability to detect topographic change through the collection of temporally different datasets (a report on this portion of the study is anticipated early in 2009). The main goals of the first element of study were to 1. test the methodology and survey protocols of terrestrial LIDAR surveying under actual archeological site field conditions, 2. examine the ability to collect topographic data of entire archeological sites given such constraints as vegetation and rough topography, and 3. evaluate the ability of terrestrial LIDAR to accurately map the locations of key geomorphic features already being collected by total station methods such as gully thalweg and knickpoint locations. This report focuses on the ability of terrestrial LIDAR to duplicate total station methods, including typical erosion-related change features such as the plan view gully thalweg location and the gully thalweg long profile. The report also presents information concerning the use of terrestrial LIDAR for archeological site monitoring in a general sense. In addition, a detailed comparison of the site impacts caused by both total station and terrestrial LIDAR survey methods is presented using a suite of indicators, including total field survey time, field footstep count, and data-processing time. A thorough discussion of the relative benefits and limitations of using terrestrial LIDAR for monitoring erosion-induced changes at archeological sites in Grand Canyon National Park concludes this report.
Preparing for uncertainty: toward managing fluvial geomorphic assessment of Massachusetts rivers
NASA Astrophysics Data System (ADS)
Hatch, C. E.; Mabee, S. B.; Slovin, N. B.; Vogel, E.
2014-12-01
Climate scientists predict (and have already observed) that in the Northeastern U.S., individual storms may be more intense, and that there will be more precipitation on an annual basis. In steep post-glacial terrain, erosion caused by floodwaters is the largest destructive force during high-intensity storm events, and the force most likely to drive major morphological changes to riverbanks and channels. What remains uncertain is which watersheds or river reaches may be subjected to increased damage from more intense storms. This presents a challenge for scientific outreach and management. Many New England states have developed systems for delineating the potentially geomorphically active zones adjacent to rivers, and Vermont has an excellent assessment and land use management system informed by process-based fluvial geomorphologic science. To date, however, Massachusetts has neither. In this project we survey existing protocols for accurately predicting locations of fluvial erosion hazard, including using LiDAR and DEM models to extract basic morphologic metrics. Particularly in states or landscapes with high river density, and during a time of tight fiscal constraints, managers need automated methods that require a minimum of expert input. We test these methods in the Deerfield river watershed in Massachusetts and Vermont, and integrate our knowledge with that of the basin's agricultural and floodplain stakeholders. The results will inform development of a comprehensive river assessment and land use management system for the state of Massachusetts.
Low complexity feature extraction for classification of harmonic signals
NASA Astrophysics Data System (ADS)
William, Peter E.
In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain. The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a standalone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics' amplitudes of the harmonic structure employing a simplified least squares method without the need to estimate the true harmonic parameters of the source signal. The third algorithm, resulting from a collaborative effort with Daniel White at the DSP Lab, University of Nebraska-Lincoln, presents an analog front end approach that utilizes a multichannel analog projection and integration to extract the sparse spectral features from the analog time domain signal. Classification is performed using a multilayer feedforward neural network. Evaluation of the proposed feature extraction algorithms for classification through the processing of several acoustic and vibration data sets (including military vehicles and rotating electric machines) with comparison to spectral features shows that, for harmonic signals, time domain features are simpler to extract and provide equivalent or improved reliability over the spectral features in both the detection probabilities and false alarm rate.
Typical Applications of Airborne LIDAR Technolagy in Geological Investigation
NASA Astrophysics Data System (ADS)
Zheng, X.; Xiao, C.
2018-05-01
The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trease, Lynn L.; Trease, Harold E.; Fowler, John
2007-03-15
One of the critical steps toward performing computational biology simulations, using mesh based integration methods, is in using topologically faithful geometry derived from experimental digital image data as the basis for generating the computational meshes. Digital image data representations contain both the topology of the geometric features and experimental field data distributions. The geometric features that need to be captured from the digital image data are three-dimensional, therefore the process and tools we have developed work with volumetric image data represented as data-cubes. This allows us to take advantage of 2D curvature information during the segmentation and feature extraction process.more » The process is basically: 1) segmenting to isolate and enhance the contrast of the features that we wish to extract and reconstruct, 2) extracting the geometry of the features in an isosurfacing technique, and 3) building the computational mesh using the extracted feature geometry. “Quantitative” image reconstruction and feature extraction is done for the purpose of generating computational meshes, not just for producing graphics "screen" quality images. For example, the surface geometry that we extract must represent a closed water-tight surface.« less
Research on oral test modeling based on multi-feature fusion
NASA Astrophysics Data System (ADS)
Shi, Yuliang; Tao, Yiyue; Lei, Jun
2018-04-01
In this paper, the spectrum of speech signal is taken as an input of feature extraction. The advantage of PCNN in image segmentation and other processing is used to process the speech spectrum and extract features. And a new method combining speech signal processing and image processing is explored. At the same time of using the features of the speech map, adding the MFCC to establish the spectral features and integrating them with the features of the spectrogram to further improve the accuracy of the spoken language recognition. Considering that the input features are more complicated and distinguishable, we use Support Vector Machine (SVM) to construct the classifier, and then compare the extracted test voice features with the standard voice features to achieve the spoken standard detection. Experiments show that the method of extracting features from spectrograms using PCNN is feasible, and the fusion of image features and spectral features can improve the detection accuracy.
NASA Astrophysics Data System (ADS)
Pöppl, Ronald; Coulthard, Tom; Keesstra, Saskia; Keiler, Margreth
2015-04-01
Dams are often considered to have the most significant impact on rivers as dam construction generally reduces downstream sediment fluxes which further involves geomorphic changes in the affected river reaches. Since many dams no longer fulfill their intended purpose (e.g. due to siltation), are dangerous (e.g. catastrophic dam failures) and/or are ecologically damaging (e.g. habitat destruction), within the last two decades several dams have been removed and many more are already proposed for removal. Unfortunately, there is still only little empirical knowledge about the geomorphic consequences of dam removals and the related sediment release which represents a big challenge for river management. Modelling is one way to approach this problem. In the presented study we modelled the impacts of dam removal on geomorphic channel processes, channel morphology and sediment delivery further considering the role of channel engineering measures and reservoir excavation within a river reach impacted by a series of dams using the landscape evolution model CAESAR-Lisflood. The model was run with data from a small catchment located in Lower Austria. Modelled geomorphic channel changes and sediment fluxes were spatio-temporally analyzed, related to real-world data and are discussed in the context of river management issues.
Audio feature extraction using probability distribution function
NASA Astrophysics Data System (ADS)
Suhaib, A.; Wan, Khairunizam; Aziz, Azri A.; Hazry, D.; Razlan, Zuradzman M.; Shahriman A., B.
2015-05-01
Voice recognition has been one of the popular applications in robotic field. It is also known to be recently used for biometric and multimedia information retrieval system. This technology is attained from successive research on audio feature extraction analysis. Probability Distribution Function (PDF) is a statistical method which is usually used as one of the processes in complex feature extraction methods such as GMM and PCA. In this paper, a new method for audio feature extraction is proposed which is by using only PDF as a feature extraction method itself for speech analysis purpose. Certain pre-processing techniques are performed in prior to the proposed feature extraction method. Subsequently, the PDF result values for each frame of sampled voice signals obtained from certain numbers of individuals are plotted. From the experimental results obtained, it can be seen visually from the plotted data that each individuals' voice has comparable PDF values and shapes.
Morphological Feature Extraction for Automatic Registration of Multispectral Images
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2007-01-01
The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.
GEOMORPHIC THRESHOLDS AND CHANNEL MORPHOLOGY IN LARGE RIVERS
Systematic changes in channel morphology occur as channel gradient, streamflow, and sediment character change and interact. Geomorphic thresholds of various kinds are useful metrics to define these changes along the river network, as they are based on in-channel processes that d...
Prediction of Ba, Mn and Zn for tropical soils using iron oxides and magnetic susceptibility
NASA Astrophysics Data System (ADS)
Marques Júnior, José; Arantes Camargo, Livia; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angelica
2017-04-01
Agricultural activity is an important source of potentially toxic elements (PTEs) in soil worldwide but particularly in heavily farmed areas. Spatial distribution characterization of PTE contents in farming areas is crucial to assess further environmental impacts caused by soil contamination. Designing prediction models become quite useful to characterize the spatial variability of continuous variables, as it allows prediction of soil attributes that might be difficult to attain in a large number of samples through conventional methods. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Mn, Zn) and their spatial variability using iron oxides and magnetic susceptibility (MS). Soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, mineralogical properties, as well as magnetic susceptibility (MS). PTE prediction models were calibrated by multiple linear regression (MLR). MLR calibration accuracy was evaluated using the coefficient of determination (R2). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy by means of geostatistics. The high correlations between the attributes clay, MS, hematite (Hm), iron oxides extracted by sodium dithionite-citrate-bicarbonate (Fed), and iron oxides extracted using acid ammonium oxalate (Feo) with the elements Ba, Mn, and Zn enabled them to be selected as predictors for PTEs. Stepwise multiple linear regression showed that MS and Fed were the best PTE predictors individually, as they promoted no significant increase in R2 when two or more attributes were considered together. The MS-calibrated models for Ba, Mn, and Zn prediction exhibited R2 values of 0.88, 0.66, and 0.55, respectively. These are promising results since MS is a fast, cheap, and non-destructive tool, allowing the prediction of a large number of samples, which in turn enables detailed mapping of large areas. MS predicted values enabled the characterization and the understanding of spatial variability of the studied PTEs.
Geomorphic versus land use controls on suspended sediment rating curves
NASA Astrophysics Data System (ADS)
Belmont, P.; Vaughan, A. A.; Fisher, A. C. N.
2017-12-01
The relation between river discharge (Q) and suspended sediment (SS) concentration reflects the degree to which sediment sources are accessed or depleted across the range of flow conditions. Increased availability of high resolution topography and land use data greatly enhance our ability to evaluate linkages between characteristics of these sediment rating curves (SRCs) and the geomorphic features that influence them. We evaluated Q-SS relations at 45 gages throughout Minnesota, USA representing a wide variety of landscape settings in terms of topography, land use, and geologic history. We characterized the SRCs according to the overall shape, steepness (exponent), vertical offset (coefficient) and SS concentration under low flow (90% exceedance) conditions. Rivers exhibited three distinct SRC shapes, simple power functions, threshold power functions and peaked power functions. We used random forest models to analyze relations between SRC parameters and attributes of the watershed as well as the near-channel environment. The model correctly classified 78% of SRC shapes and explained 60% of variance in the SRC exponent, 43% of the SRC coefficient for rising limb samples, and 45% of variance under low flow conditions. Notably, the random forest models predict that near-channel morphology predominately controls both the shape and steepness of the sediment rating curves. Land use predominately controls the vertical offset (coefficient) and SS concentration under low flow conditions. These findings suggest that land use and watershed restoration practices may have little capacity to alter the shape and steepness of these curves as these characteristics may be dictated by the geologic and geomorphic setting. Rather, human influences in the watershed may exhibit the greatest influence on suspended sediment concentrations at moderate to low flows. Criteria to evaluate improvements in water quality as a result of changes in land management might be most meaningful if they target these moderate to low flow conditions.
NASA Astrophysics Data System (ADS)
Adams, P. N.; Jaeger, J. M.; MacKenzie, R. A.; Kline, S. W.; Maibauer, B. J.; Plant, N. G.; Gravens, M. B.; Pierro, T. P.; Shaffer, J.
2011-12-01
The salient of Cape Canaveral interrupts a relatively straight, sandy, passive margin coastline that extends nearly 400 km from the St. Johns River mouth to the St. Lucie Inlet along the Florida Atlantic coast. OSL dating indicates that the modern cape has been prograding rapidly since the LGM and subtle topographic features, inland from the modern cape, suggest that this salient has persisted over several sea level cycles since the early Pleistocene. Dynamic shoreline change over the past decade at the Kennedy Space Center (KSC) is threatening critical NASA infrastructure and has prompted officials to develop a mitigation strategy through a partnership among researchers from the U.S. Geological Survey, the U.S. Army Corps of Engineers, private coastal engineering firms, and the University of Florida. Since May 2009, the research team has assembled data on decadal to event-scale shoreline change (dGPS), beach and nearshore morphodynamics (dGPS and Argus), beach sedimentary character (grain size analysis), wave climate and transformation (ADCP), and inner shelf bathymetry (Echo Sounding) in an effort to assess dune vulnerability and flooding risk. In addition, SWAN numerical modeling simulations offer insight into the influence of irregular bathymetry (cape-associated shoals) on the alteration of spatial patterns of wave energy flux during a decadal shift in deep-water wave climate. Beach-fx, modeling of cross-shore profile evolution is being applied to evaluate the performance of alternative protective measures, estimate project costs, and examine ecological influences of the proposed alternative protective measures. By combining contemporaneous data of coastal geomorphic and sedimentary response to wave forcing with numerical model results that explore a range of climate scenarios, we aim to develop a useful understanding of the coastal geomorphic behavior at KSC that can be used to make a mitigation recommendation.
NASA Technical Reports Server (NTRS)
Rich, E. I. (Principal Investigator)
1981-01-01
Heat capacity mapping mission images of about 80,000 sq km in northern California were qualitatively evaluated for usefulness in regional geologic investigations of structure and lithology. The thermal characteristics recorded vary among the several geomorphic provinces and depend chiefly on the topographic expression and vegetation cover. Identification of rock types, or groups of rock types, was most successfully carried out within the semiarid parts of the region; however, extensive features, such as faults, folds and volcanic fields could be delineated. Comparisons of seasonally obtained HCMM images are of limited value except in semiarid regions.
Hyperpycnal plume-derived fans in the Santa Barbara Channel, California
Warrick, Jonathan A.; Simms, Alexander R.; Ritchie, Andy; Steel, Elisabeth; Dartnell, Pete; Conrad, James E.; Finlayson, David P.
2013-01-01
Hyperpycnal gravity currents rapidly transport sediment across shore from rivers to the continental shelf and deep sea. Although these geophysical processes are important sediment dispersal mechanisms, few distinct geomorphic features on the continental shelf can be attributed to hyperpycnal flows. Here we provide evidence of large depositional features derived from hyperpycnal plumes on the continental shelf of the northern Santa Barbara Channel, California, from the combination of new sonar, lidar, and seismic reflection data. These data reveal lobate fans directly offshore of the mouths of several watersheds known to produce hyperpycnal concentrations of suspended sediment. The fans occur on an upwardly concave section of the shelf where slopes decrease from 0.04 to 0.01, and the location of these fans is consistent with wave- and auto-suspending sediment gravity current theories. Thus, we provide the first documentation that the morphology of sediment deposits on the continental shelf can be dictated by river-generated hyperpycnal flows.
On the Topologic Properties of River Networks
NASA Astrophysics Data System (ADS)
Sarker, S.; Singh, A.
2017-12-01
River network is an important landscape feature and has been studied extensively from a range of geomorphological and hydrological perspective. However, quantifying topologic dynamics and reorganization of river networks is becoming more and more challenging under changing natural and anthropogenic forcings. Here, we use a graph-theoretical approach to study topologic properties of natural and simulated river networks for a range of climatic and tectonic conditions. Among other metrics, we use betweeness and eigenvector centrality distributions computed using adjacency matrix of river networks and show their dependence on energy exponent γ that characterizes mechanism of erosional processes on a landscape. We further compare these topologic characteristics of landscape to geomorphic features such as slope-area curve and drainage density. Furthermore, we identify locations of critical nodes and links on a network as a function of energy exponent γ to understand network robustness and vulnerability under external attacks.
Extraction and representation of common feature from uncertain facial expressions with cloud model.
Wang, Shuliang; Chi, Hehua; Yuan, Hanning; Geng, Jing
2017-12-01
Human facial expressions are key ingredient to convert an individual's innate emotion in communication. However, the variation of facial expressions affects the reliable identification of human emotions. In this paper, we present a cloud model to extract facial features for representing human emotion. First, the uncertainties in facial expression are analyzed in the context of cloud model. The feature extraction and representation algorithm is established under cloud generators. With forward cloud generator, facial expression images can be re-generated as many as we like for visually representing the extracted three features, and each feature shows different roles. The effectiveness of the computing model is tested on Japanese Female Facial Expression database. Three common features are extracted from seven facial expression images. Finally, the paper is concluded and remarked.
PyEEG: an open source Python module for EEG/MEG feature extraction.
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.
PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction. PMID:21512582
Deep feature extraction and combination for synthetic aperture radar target classification
NASA Astrophysics Data System (ADS)
Amrani, Moussa; Jiang, Feng
2017-10-01
Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Bapst, Aleksander; Coon, Joshua; Pung, Aaron; Kudenov, Michael
2017-05-01
Hyperspectral imaging provides a highly discriminative and powerful signature for target detection and discrimination. Recent literature has shown that considering additional target characteristics, such as spatial or temporal profiles, simultaneously with spectral content can greatly increase classifier performance. Considering these additional characteristics in a traditional discriminative algorithm requires a feature extraction step be performed first. An example of such a pipeline is computing a filter bank response to extract spatial features followed by a support vector machine (SVM) to discriminate between targets. This decoupling between feature extraction and target discrimination yields features that are suboptimal for discrimination, reducing performance. This performance reduction is especially pronounced when the number of features or available data is limited. In this paper, we propose the use of Supervised Nonnegative Tensor Factorization (SNTF) to jointly perform feature extraction and target discrimination over hyperspectral data products. SNTF learns a tensor factorization and a classification boundary from labeled training data simultaneously. This ensures that the features learned via tensor factorization are optimal for both summarizing the input data and separating the targets of interest. Practical considerations for applying SNTF to hyperspectral data are presented, and results from this framework are compared to decoupled feature extraction/target discrimination pipelines.
Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington
Shafroth, Patrick B.; Perry, Laura G; Rose, Chanoane A; Braatne, Jeffrey H
2016-01-01
Understanding how dams affect the shifting habitat mosaic of river bottomlands is key for protecting the many ecological functions and related goods and services that riparian forests provide and for informing approaches to riparian ecosystem restoration. We examined the downstream effects of two large dams on patterns of forest composition, structure, and dynamics within different geomorphic contexts and compared them to upstream reference conditions along the Elwha River, Washington, USA. Patterns of riparian vegetation in river segments downstream of the dams were driven largely by channel and bottomland geomorphic responses to a dramatically reduced sediment supply. The river segment upstream of both dams was the most geomorphically dynamic, whereas the segment between the dams was the least dynamic due to substantial channel armoring, and the segment downstream of both dams was intermediate due to some local sediment supply. These geomorphic differences were linked to altered characteristics of the shifting habitat mosaic, including older forest age structure and fewer young Populus balsamifera subsp. trichocarpa stands in the relatively static segment between the dams compared to more extensive early-successional forests (dominated by Alnus rubra and Salix spp.) and pioneer seedling recruitment upstream of the dams. Species composition of later-successional forest communities varied among river segments as well, with greater Pseudotsuga menziesii and Tsuga heterophylla abundance upstream of both dams, Acer spp. abundance between the dams, and P. balsamifera subsp. trichocarpa and Thuja plicata abundance below both dams. Riparian forest responses to the recent removal of the two dams on the Elwha River will depend largely on channel and geomorphic adjustments to the release, transport, and deposition of the large volume of sediment formerly stored in the reservoirs, together with changes in large wood dynamics.
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-01-01
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510
New feature extraction method for classification of agricultural products from x-ray images
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.; Lee, Ha-Woon; Keagy, Pamela M.; Schatzki, Thomas F.
1999-01-01
Classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non- invasive detection of defective product items on a conveyor belt. We discuss the extraction of new features that allow better discrimination between damaged and clean items. This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discrimination between damaged and clean items. This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discriminating feature (MRDF) extraction method computes nonlinear features that are used as inputs to a new modified k nearest neighbor classifier. In this work the MRDF is applied to standard features. The MRDF is robust to various probability distributions of the input class and is shown to provide good classification and new ROC data.
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-03-20
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.
EFFECTS OF GEOMORPHIC PROCESSES AND HYDROLOGIC REGIMES ON RIPARIAN VEGETATION
In this chapter, the relationships among riparian vegetation and geomorphic and hydrologic processes in central Great Basin watersheds are evaluated over a range of scales. These relationships are examined through a series of case studies that have been conducted by the Great Ba...
Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes
Macias-Fauria, Marc; Johnson, Edward A.
2013-01-01
Forests are expected to expand into alpine areas because of climate warming, causing land-cover change and fragmentation of alpine habitats. However, this expansion will only occur if the present upper treeline is limited by low-growing season temperatures that reduce plant growth. This temperature limitation has not been quantified at a landscape scale. Here, we show that temperature alone cannot realistically explain high-elevation tree cover over a >100-km2 area in the Canadian Rockies and that geologic/geomorphic processes are fundamental to understanding the heterogeneous landscape distribution of trees. Furthermore, upslope tree advance in a warmer scenario will be severely limited by availability of sites with adequate geomorphic/topographic characteristics. Our results imply that landscape-to-regional scale projections of warming-induced, high-elevation forest advance into alpine areas should not be based solely on temperature-sensitive, site-specific upper-treeline studies but also on geomorphic processes that control tree occurrence at long (centuries/millennia) timescales. PMID:23569221
Extreme Changes in Stream Geomorphic Conditions induced by Fluvial Scour in Bridges
NASA Astrophysics Data System (ADS)
Özcan, O.; Ozcan, O.
2016-12-01
The numerous complexities associated with bridge scour have caused scour to be one of the most active topics of stream geomorphic research. The assessment of local scouring mechanism around bridge piers provides information for decision-making regarding the pile footing design, predicting the safety of bridges under critical scoured conditions, and as a result, may help prevent unnecessary loses. In the study, bridge design plans and HEC-RAS modeling were used for the assessment of changes in stream geomorphic conditions. The derived fluvial scour depths were compared with the field measurements and the empirical formula which is based on stream flow discharge rate, streambed condition and shape of river. Preliminary results revealed that bridge damage resulting from the flood event in 2003 induced substantial scour around bridge piles. Afterwards, significant stream bed change was observed under the influence of fluvial scour in another flood occurred in 2009. Consequently, geomorphic conditions of the stream bed should be considered in the structural design of the bridges.
NASA Astrophysics Data System (ADS)
Brown, Rocko A.; Pasternack, Gregory B.
2008-05-01
In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.
Intelligence, Surveillance, and Reconnaissance Fusion for Coalition Operations
2008-07-01
classification of the targets of interest. The MMI features extracted in this manner have two properties that provide a sound justification for...are generalizations of well- known feature extraction methods such as Principal Components Analysis (PCA) and Independent Component Analysis (ICA...augment (without degrading performance) a large class of generic fusion processes. Ontologies Classifications Feature extraction Feature analysis
NASA Astrophysics Data System (ADS)
Shi, Wenzhong; Deng, Susu; Xu, Wenbing
2018-02-01
For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (< 5 years) landslides and approximately 35% of historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should be filtered using a filtering strategy based on supplementary information provided by expert knowledge or other data sources.
Geomorphic characteristics and classification of Duluth-area streams, Minnesota
Fitzpatrick, Faith A.; Peppler, Marie C.; DePhilip, Michele M.; Lee, Kathy E.
2006-01-01
In 2003 and 2004, a geomorphic assessment of streams in 20 watersheds in the Duluth, Minn., area was conducted to identify and summarize geomorphic characteristics, processes, disturbance mechanisms, and potential responses to disturbance. Methods used to assess the streams included watershed characterization, descriptions of segment slopes and valley types, historical aerial photograph interpretation, and rapid field assessments and intensive field surveys of stream reaches. Geomorphic conditions were summarized into a segment-scale classification with 15 categories mainly based on drainage-network position and slope, and, secondarily, based on geologic setting, valley type, and dominant geomorphic processes. Main causes of geomorphic disturbance included historical logging and agriculture, and ongoing urban development, human-caused channel alterations, road and storm sewer drainage, ditching, hiking trails, and gravel pits or quarries. Geomorphic responses to these disturbances are dependent on a combination of drainage-network position, slope, and geologic setting. Geologic setting is related to drainage-network position because the geologic deposits parallel the Lake Superior shoreline. Headwater streams in large watersheds flow over glacial deposits above altitudes of about 1,200 feet (ft). Headwater tributaries and upper main stems have ditch-like channels with gentle slopes and no valleys. Urban development and road drainage cause increased runoff and flood peaks in these segments resulting in channel widening. Below about 1,200 ft, main-stem segments generally are affected by bedrock type and structure and have steep slopes and confined or entrenched valleys. Increases in flood peaks do not cause incision or widening in the bedrock-controlled valleys; instead, the flow and scour areas are expanded. Feeder tributaries to these main stems have steep, confined valleys and may be sources for sediment from urban areas, road runoff, or storm sewer outfalls. Main-stem segments near the glacial deposits/surficial bedrock contact (1,000–1,200 ft) have the most potential for response to disturbance because they tend to have narrow valleys with sandy glacial lakeshore deposits and moderate slopes. Increases in flood peaks (from upstream increases in runoff) increase the potential for landslides and mass wasting from valley sides as well as channel widening.
Modelling geomorphic responses to human perturbations: Application to the Kander river, Switzerland
NASA Astrophysics Data System (ADS)
Ramirez, Jorge; Zischg, Andreas; Schürmann, Stefan; Zimmermann, Markus; Weingartner, Rolf; Coulthard, Tom; Keiler, Margreth
2017-04-01
Before 1714 the Kander river (Switzerland) flowed into the Aare river causing massive flooding and for this reason the Kander river was deviated (Kander correction) to lake Thun. The Kander correction was a pioneering hydrological project and induced a major human change to the landscape, but had unintended hydrological and geomorphic impacts that cascaded upstream and downstream. For example doubling the catchment area of Lake Thun, which gave rise to major flood problems, cessation of direct sediment delivery to the Aare, and sediment flux to lake Thun forming the Kander delta. More importantly the Kander correction shortened the Kander river and substantially increased the slope and bed shear of the Kander upstream from the correction. Consequently impacts of the correction cascaded upstream as a migrating knickpoint and eroded the river channel at unprecedented rates. Today we may have at our disposal the theoretical and empirical foundations to foresee the consequences of human intervention into natural systems. One method to investigate such geomorphic changes are numerical models that estimate the evolution of rivers by simulating the movement of water and sediment. Although much progress has been made in the development of these geomorphic models, few models have been tested in circumstances with rare perturbations and extreme forcings. As such, it remains uncertain if geomorphic models are useful and stable in extreme situations that include large movements of sediment and water. Here, in this study, we use historic maps and documents to develop a detailed geomorphic model of the Kander river starting in the year 1714. We use this model to simulate the extreme geomorphic events that preceded the deviation of the Kander river into Lake Thun and simulate changes to the river until conditions become relatively stable. We test our model by replicating long term impacts to the river that include 1) rates of incision within the correction, 2) knickpoint migration, and 3) delta formation in Lake Thun. In doing this we build confidence in the model and gain understanding of how the river system responded to anthropogenic perturbations.
NASA Astrophysics Data System (ADS)
St Pierre, L.; Burchsted, D.; Warren, D.
2015-12-01
Large wood provides critical ecosystem services such as fish habitat, temperature regulation and bank stabilization. In the northeastern U.S., the distribution of large wood is documented; however, there is little understanding of the movement, longevity and geomorphic function. This research examines the hypothesis that tree species control the persistence and geomorphic function of instream wood in the Appalachian region of the northeastern U.S. To do this, we assessed size, location, and species of logs in New Hampshire rivers, including locations in the White Mountain National Forest (WMNF) where these data were collected ten years ago. We expanded the previous dataset to include assessment of geomorphic function, including creation of diversion channels, pool formation, and sediment storage, among others. We also added new sites in the WMNF and sites on a large rural river in southwestern NH to increase the range of geomorphic variables to now include: confined and unconfined channels; 1st to 4th order streams; low to high gradient; meandering, multithreaded, and straight channels; and land use such as historic logging, modern agriculture, and post-agricultural abandonment. At each study site, we located all large logs (>10cm diameter, > 1m length) and log jams (>3 accumulated logs that provide a geomorphic function) along 100m-700m reaches. We marked each identified log with a numbered tag and recorded species, diameter, length, orientation, GPS location, tag number, and photographs. We assessed function and accumulation, decay, stability, and source classes for each log. Along each reach we measured riparian forest composition and structure and channel width. Preliminary analysis suggests that tree species significantly affects the function of logs: yellow birch and American sycamore are highly represented. Additionally, geomorphic setting also plays a primary role, where unconfined reaches have large logs that provide important functions; those functions are rarely contributed by logs in confined channels. Land use limit the ability of logs to provide habitat for vegetation recruitment, notable in rivers adjacent to agricultural areas that maintain a straight channel; invasive vegetation dominate the banks and there is little to no recruitment of native vegetation.
We determined geomorphic and hydrologic parameters for 144 forested, lake watersheds in the Northeast (NE) of the United States based primarily on measurements from topographic maps. hese parameters were used to test for relationships with selected surface water chemistry relevan...
Geomorphic predictors of riparian vegetation in small mountain watersheds
Blake M. Engelhardt; Jeanne C. Chambers; Peter J. Weisberg
2015-01-01
Hydrogeomorphic processes operating at watershed, process zone and site scales influence the distribution of riparian vegetation. However, most studies examining the relationships between hydrogeomorphic processes and riparian vegetation are conducted at site scales. We quantified the relative importance of watershed, process zone and site geomorphic characteristics...
Predicting geomorphic stability in low-order streams of the western Lake Superior basin
Width:depth ratios, entrenchment ratios, gradients, and median substrate particle sizes (D50s) were measured in 32 second and third order stream reaches in the western Lake Superior basin, and stream reaches were assigned a Rosgen geomorphic classification. Over 700 measurements ...
How Does Decommissioning Forest Roads Effect Hydrologic and Geomorphic Risk?
NASA Astrophysics Data System (ADS)
Black, T.; Luce, C.; Cissel, R. M.; Nelson, N.; Staab, B.
2010-12-01
The US Forest Service is investigating road decommissioning projects to understand how treatments change hydrologic and geomorphic risks. Road treatment effect was measured using a before after control impact design (BACI), using the Geomorphic Road Analysis and Inventory Package (http://www.fs.fed.us/GRAIP). This suite of inventory and analysis tools evaluates: road-stream hydrologic connectivity, fine sediment production and delivery, shallow landslide risk, gully initiation risk, and risks associated with stream crossing failures. The Skokomish River study site is steep and wet and received a high intensity treatment including the removal of stream crossing pipes and fills, all ditch relief pipes and a full hillslope recontouring. Road to stream hydrologic connectivity was reduced by 70%. The treatments reduced fine sediment delivery by 21.8 tons or 81%. The removal of the stream crossing culverts and large associated road fills eliminated the risk of pipe plugging related failures and the eventual erosion of over 4,000 m3 of fill. The slope stability risk was assessed using a modified version of SINMAP (Pack et al, 2005). Risk below drain point locations on the original road was reduced as water was redistributed across the hillslope to waterbars and diffuse drainage. It is unclear; however, if landslide risk was reduced across the entire treated road length because treatments slightly increased risk in some areas where new concentrated drainage features were added above steep slopes. Similarly, values of a gully index ESI (Istanbulluoglu et al, 2003), were reduced at many of the original drainage points, however some new drainage was added. ESI values still exceed a predicted conservative initiation thresholds at some sites, therefore it is uncertain if gully risk will be changed. Mann Creek occupies a moderately steep mid-elevation site in Southern Idaho. The high intensity treatments removed all constructed road drainage features including stream crossing pipes and fills, and recontoured the hillslope. The length of road that was hydrologically connected to streams was reduced by 2,923 m, or 97%. The model predicts that fine sediment delivery was reduced by 98%, to 1.0 ton annually. The risk presented by stream crossings becoming plugged was eliminated. The potential for streamflow diversion onto roads and hillslopes was precluded. The slope stability risk below drain point locations on the original road was reduced as water was no longer concentrated and discharged through a single drainage feature. Treatments are predicted to return slope stability to near undisturbed levels. Gully initiation risks, already low prior to treatment, may be reduced to negligible values. Results from these two case studies suggest that high intensity road decommissioning can be effective at reducing the risk of road sediment delivery, hydrologic connectivity and failures associated with stream crossings. Post storm monitoring will help validate these predictions and reduce uncertainty around the hydrology of decommissioned roads. If decommissioned roads continue to concentrate water and discharge it onto steep slopes, landslides and gully risk may remain elevated.
An Extended Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Astrophysics Data System (ADS)
Akbari, D.
2017-11-01
In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.
Huynh, Benjamin Q; Li, Hui; Giger, Maryellen L
2016-07-01
Convolutional neural networks (CNNs) show potential for computer-aided diagnosis (CADx) by learning features directly from the image data instead of using analytically extracted features. However, CNNs are difficult to train from scratch for medical images due to small sample sizes and variations in tumor presentations. Instead, transfer learning can be used to extract tumor information from medical images via CNNs originally pretrained for nonmedical tasks, alleviating the need for large datasets. Our database includes 219 breast lesions (607 full-field digital mammographic images). We compared support vector machine classifiers based on the CNN-extracted image features and our prior computer-extracted tumor features in the task of distinguishing between benign and malignant breast lesions. Five-fold cross validation (by lesion) was conducted with the area under the receiver operating characteristic (ROC) curve as the performance metric. Results show that classifiers based on CNN-extracted features (with transfer learning) perform comparably to those using analytically extracted features [area under the ROC curve [Formula: see text
Single-trial laser-evoked potentials feature extraction for prediction of pain perception.
Huang, Gan; Xiao, Ping; Hu, Li; Hung, Yeung Sam; Zhang, Zhiguo
2013-01-01
Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.
Alexnet Feature Extraction and Multi-Kernel Learning for Objectoriented Classification
NASA Astrophysics Data System (ADS)
Ding, L.; Li, H.; Hu, C.; Zhang, W.; Wang, S.
2018-04-01
In view of the fact that the deep convolutional neural network has stronger ability of feature learning and feature expression, an exploratory research is done on feature extraction and classification for high resolution remote sensing images. Taking the Google image with 0.3 meter spatial resolution in Ludian area of Yunnan Province as an example, the image segmentation object was taken as the basic unit, and the pre-trained AlexNet deep convolution neural network model was used for feature extraction. And the spectral features, AlexNet features and GLCM texture features are combined with multi-kernel learning and SVM classifier, finally the classification results were compared and analyzed. The results show that the deep convolution neural network can extract more accurate remote sensing image features, and significantly improve the overall accuracy of classification, and provide a reference value for earthquake disaster investigation and remote sensing disaster evaluation.
Geomorphic Flood Area (GFA): a QGIS tool for a cost-effective delineation of the floodplains
NASA Astrophysics Data System (ADS)
Samela, Caterina; Albano, Raffaele; Sole, Aurelia; Manfreda, Salvatore
2017-04-01
The importance of delineating flood hazard and risk areas at a global scale has been highlighted for many years. However, its complete achievement regularly encounters practical difficulties, above all the lack of data and implementation costs. In conditions of scarce data availability (e.g. ungauged basins, large-scale analyses), a fast and cost-effective floodplain delineation can be carried out using geomorphic methods (e.g., Manfreda et al., 2011; 2014). In particular, an automatic DEM-based procedure has been implemented in an open-source QGIS plugin named Geomorphic Flood Area - tool (GFA - tool). This tool performs a linear binary classification based on the recently proposed Geomorphic Flood Index (GFI), which exhibited high classification accuracy and reliability in several test sites located in Europe, United States and Africa (Manfreda et al., 2015; Samela et al., 2016, 2017; Samela, 2016). The GFA - tool is designed to make available to all users the proposed procedure, that includes a number of operations requiring good geomorphic and GIS competences. It allows computing the GFI through terrain analysis, turning it into a binary classifier, and training it on the base of a standard inundation map derived for a portion of the river basin (a minimum of 2% of the river basin's area is suggested) using detailed methods of analysis (e.g. flood hazard maps produced by emergency management agencies or river basin authorities). Finally, GFA - tool allows to extend the classification outside the calibration area to delineate the flood-prone areas across the entire river basin. The full analysis has been implemented in this plugin with a user-friendly interface that should make it easy to all user to apply the approach and produce the desired results. Keywords: flood susceptibility; data scarce environments; geomorphic flood index; linear binary classification; Digital elevation models (DEMs). References Manfreda, S., Di Leo, M., Sole, A., (2011). Detection of Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, 16(10), 781-790. Manfreda, S., Nardi, F., Samela, C., Grimaldi, S., Taramasso, A. C., Roth, G., & Sole, A. (2014). Investigation on the Use of Geomorphic Approaches for the Delineation of Flood Prone Areas, Journal of Hydrology, 517, 863-876. Manfreda, S., Samela, C., Gioia, A., Consoli, G., Iacobellis, V., Giuzio, L., & Sole, A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Natural Hazards, Vol. 79 (2), pp 735-754. Samela, C. (2016), 100-year flood susceptibility maps for the continental U.S. derived with a geomorphic method. University of Basilicata. Dataset. Samela, C., Manfreda, S., Paola, F. D., Giugni, M., Sole, A., & Fiorentino, M. (2016). DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa. Journal of Hydrologic Engineering, 21(2), 1-10. Samela, C., Troy, T.J., Manfreda, S. (2017). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments, Advances in Water Resources (under review).
ERIC Educational Resources Information Center
Haddad, David Elias
2014-01-01
Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…
Classification and pose estimation of objects using nonlinear features
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-03-01
A new nonlinear feature extraction method called the maximum representation and discrimination feature (MRDF) method is presented for extraction of features from input image data. It implements transformations similar to the Sigma-Pi neural network. However, the weights of the MRDF are obtained in closed form, and offer advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We show its use in estimating the class and pose of images of real objects and rendered solid CAD models of machine parts from single views using a feature-space trajectory (FST) neural network classifier. We show more accurate classification and pose estimation results than are achieved by standard principal component analysis (PCA) and Fukunaga-Koontz (FK) feature extraction methods.
Finger vein recognition based on the hyperinformation feature
NASA Astrophysics Data System (ADS)
Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Yang, Lu
2014-01-01
The finger vein is a promising biometric pattern for personal identification due to its advantages over other existing biometrics. In finger vein recognition, feature extraction is a critical step, and many feature extraction methods have been proposed to extract the gray, texture, or shape of the finger vein. We treat them as low-level features and present a high-level feature extraction framework. Under this framework, base attribute is first defined to represent the characteristics of a certain subcategory of a subject. Then, for an image, the correlation coefficient is used for constructing the high-level feature, which reflects the correlation between this image and all base attributes. Since the high-level feature can reveal characteristics of more subcategories and contain more discriminative information, we call it hyperinformation feature (HIF). Compared with low-level features, which only represent the characteristics of one subcategory, HIF is more powerful and robust. In order to demonstrate the potential of the proposed framework, we provide a case study to extract HIF. We conduct comprehensive experiments to show the generality of the proposed framework and the efficiency of HIF on our databases, respectively. Experimental results show that HIF significantly outperforms the low-level features.
Decomposition and extraction: a new framework for visual classification.
Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng
2014-08-01
In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Cormier, M. H.; King, J. W.; Seeber, L.; Heil, C. W., Jr.; Caccioppoli, B.
2016-12-01
During its relatively short historic period, the Atlantic Seaboard of North America has experienced a few M6+ earthquakes. These events raise the specter of a similar earthquake occurring anywhere along the eastern seaboard, including in the greater New York City (NYC) metropolitan area. Indeed, the NYC Seismic Zone is one of several concentrations of earthquake activity that stand out in the field of epicenters over eastern North America. Various lines of evidence point to a maximum magnitude in the M7 range for metropolitan NYC - a dramatic scenario that is counterbalanced by the low probability of such an event. Several faults mapped near NYC strike NW, sub-normal to the NE-striking structural trends of the Appalachians, and all earthquake sequences with well-established fault sources in the NYC seismic zone originate from NW-striking faults. With funding from the USGS Earthquake Hazard Program, we recently (July 2016) collected 85 km of high-resolution sub-bottom (CHIRP) profiles along the north shore of western Long Island Sound, immediately adjacent to metropolitan NYC. This survey area is characterized by a smooth, 15.5 kyr-old erosional surface and overlying strata with small original relief. CHIRP sonar profiles of these reflectors are expected to resolve fault or fold-related vertical relief (if present) greater than 50 cm. They would also resolve horizontal fault displacements with similar resolution, as may be expressed by offsets of either sedimentary or geomorphic features. No sedimentary cover on the land portion of the metro area offers such ideal reference surfaces, which are continuous in both time and space. Seismic profiles have a spacing of 200 m and have been acquired mostly perpendicular to the NW-striking faults mapped on land. These new data will be analyzed systematically for all resolvable features and then interpreted, distinguishing sedimentary, geomorphic, and tectonic features. The absence of evidence of post-glacial tectonic deformation would be a reliable negative result with implications regarding the lateral dimensions and southeastward continuity of the brittle faults mapped on land, and their potential for generation of large earthquakes with surface ruptures.
Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction.
Guo, Jian; Qian, Kun; Zhang, Gongxuan; Xu, Huijie; Schuller, Björn
2017-12-01
The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.
Multispectral and geomorphic studies of processed Voyager 2 images of Europa
NASA Technical Reports Server (NTRS)
Meier, T. A.
1984-01-01
High resolution images of Europa taken by the Voyager 2 spacecraft were used to study a portion of Europa's dark lineations and the major white line feature Agenor Linea. Initial image processing of images 1195J2-001 (violet filter), 1198J2-001 (blue filter), 1201J2-001 (orange filter), and 1204J2-001 (ultraviolet filter) was performed at the U.S.G.S. Branch of Astrogeology in Flagstaff, Arizona. Processing was completed through the stages of image registration and color ratio image construction. Pixel printouts were used in a new technique of linear feature profiling to compensate for image misregistration through the mapping of features on the printouts. In all, 193 dark lineation segments were mapped and profiled. The more accurate multispectral data derived by this method was plotted using a new application of the ternary diagram, with orange, blue, and violet relative spectral reflectances serving as end members. Statistical techniques were then applied to the ternary diagram plots. The image products generated at LPI were used mainly to cross-check and verify the results of the ternary diagram analysis.
Recent crustal movements and seismicity in the western coastal region of peninsular India
NASA Astrophysics Data System (ADS)
Kailasam, L. N.
1983-09-01
Recent crustal movements, tectonics and seismicity of the western coastal region of peninsular India have been studied in detail in the very recent past. Prominent geomorphic features and large-scale manifestation of Holocene deformation and crustal movements have been noticed and studied over this coastal region from the Gulf of Cambay to the southernmost parts of Kerala, evidence for which is afforded in the form of Recent and sub-Recent raised beaches, sandbars, raised old terraces, pebble beds, etc. The sedimentary formations in this narrow coastal belt include Neogene and Quaternary sediments. The Bouguer gravity map of the western coastal tract shows some prominent gravity features extending into the offshore regions, suggestive of some significant tectonic and structural features. The seismic data in the offshore regions bring out some prominent roughly northwest-southeast as well as east-west faults and shears, in addition to prominent structural "highs" off the Bombay and Ratnagiri coast which have proved oil. The seismicity in this coastal tract as well as the faulted western margin of the western continental shelf in the Arabian Sea is generally of magnitude 3-6.
Physical characteristics and evolutionary trends of continental rifts
NASA Technical Reports Server (NTRS)
Ramberg, I. B.; Morgan, P.
1984-01-01
Rifts may be defined as zones beneath which the entire lithosphere has ruptured in extension. They are widespread and occur in a variety of tectonic settings, and range up to 2,600 m.y. in age. The object of this review is to highlight characteristic features of modern and ancient rifts, to emphasize differences and similarities in order to help characterize evolutionary trends, to identify physical conditions favorable for initiation as well as termination of rifting, and to provide constraints for future modeling studies of rifting. Rifts are characterized on the basis of their structural, geomorphic, magmatic and geophysical features and the diverse character of these features and their evolutionary trends through time are discussed. Mechanisms of rifting are critically examined in terms of the physical characteristics and evolutionary trends of rifts, and it is concluded that while simple models can give valuable insight into specific processes of rifting, individual rifts can rarely, if ever, be characterized by well defined trends predicted by these models. More data are required to clearly define evolutionary trends, and the models require development to incorporate the effects of lithospheric heterogeneities and complex geologic histories.
Low-power coprocessor for Haar-like feature extraction with pixel-based pipelined architecture
NASA Astrophysics Data System (ADS)
Luo, Aiwen; An, Fengwei; Fujita, Yuki; Zhang, Xiangyu; Chen, Lei; Jürgen Mattausch, Hans
2017-04-01
Intelligent analysis of image and video data requires image-feature extraction as an important processing capability for machine-vision realization. A coprocessor with pixel-based pipeline (CFEPP) architecture is developed for real-time Haar-like cell-based feature extraction. Synchronization with the image sensor’s pixel frequency and immediate usage of each input pixel for the feature-construction process avoids the dependence on memory-intensive conventional strategies like integral-image construction or frame buffers. One 180 nm CMOS prototype can extract the 1680-dimensional Haar-like feature vectors, applied in the speeded up robust features (SURF) scheme, using an on-chip memory of only 96 kb (kilobit). Additionally, a low power dissipation of only 43.45 mW at 1.8 V supply voltage is achieved during VGA video procession at 120 MHz frequency with more than 325 fps. The Haar-like feature-extraction coprocessor is further evaluated by the practical application of vehicle recognition, achieving the expected high accuracy which is comparable to previous work.
Acousto-Optic Technology for Topographic Feature Extraction and Image Analysis.
1981-03-01
This report contains all findings of the acousto - optic technology study for feature extraction conducted by Deft Laboratories Inc. for the U.S. Army...topographic feature extraction and image analysis using acousto - optic (A-O) technology. A conclusion of this study was that A-O devices are potentially
NASA Astrophysics Data System (ADS)
Shi, Bibo; Grimm, Lars J.; Mazurowski, Maciej A.; Marks, Jeffrey R.; King, Lorraine M.; Maley, Carlo C.; Hwang, E. Shelley; Lo, Joseph Y.
2017-03-01
Predicting the risk of occult invasive disease in ductal carcinoma in situ (DCIS) is an important task to help address the overdiagnosis and overtreatment problems associated with breast cancer. In this work, we investigated the feasibility of using computer-extracted mammographic features to predict occult invasive disease in patients with biopsy proven DCIS. We proposed a computer-vision algorithm based approach to extract mammographic features from magnification views of full field digital mammography (FFDM) for patients with DCIS. After an expert breast radiologist provided a region of interest (ROI) mask for the DCIS lesion, the proposed approach is able to segment individual microcalcifications (MCs), detect the boundary of the MC cluster (MCC), and extract 113 mammographic features from MCs and MCC within the ROI. In this study, we extracted mammographic features from 99 patients with DCIS (74 pure DCIS; 25 DCIS plus invasive disease). The predictive power of the mammographic features was demonstrated through binary classifications between pure DCIS and DCIS with invasive disease using linear discriminant analysis (LDA). Before classification, the minimum redundancy Maximum Relevance (mRMR) feature selection method was first applied to choose subsets of useful features. The generalization performance was assessed using Leave-One-Out Cross-Validation and Receiver Operating Characteristic (ROC) curve analysis. Using the computer-extracted mammographic features, the proposed model was able to distinguish DCIS with invasive disease from pure DCIS, with an average classification performance of AUC = 0.61 +/- 0.05. Overall, the proposed computer-extracted mammographic features are promising for predicting occult invasive disease in DCIS.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
The Changing Geomorphic Template of Native Fish Habitat of the Lower San Rafael River, Utah
NASA Astrophysics Data System (ADS)
Fortney, S. T.; Dean, D. J.; Schmidt, J. C.
2010-12-01
The physical template of the aquatic ecosystem of the lower San Rafael River (UT) changed dramatically during the 20th century. 1938 aerial photographs depict a channel comprised of multiple threads with numerous bars. The river has since been transformed into a single-thread channel with a low width-to-depth ratio. The drastic changes in the channel geometry have resulted in severely degraded habitat conditions. Despite these changes in habitat quality and quantity, roundtail chub, flannelmouth sucker, and bluehead sucker are still found in isolated patches of complex habitat. Three factors are primarily responsible for changes in the channel geomorphology: (1) reduced magnitude and duration of the spring snowmelt flood, (2) dense establishment of tamarisk (Tamarix spp) throughout the alluvial valley, and (3) continued supply of fine sediment from ephemeral tributaries. We determined the degree and rate of geomorphic change by analyzing spatially-rich data extracted from aerial photographs and temporally-rich data recorded at USGS gage 09328500. We evaluated channel morphologic processes by interpreting stratigraphy in floodplain trenches and dated these alluvial deposits using dendro-geomorphic techniques. We correlated the flood record to floodplain deposits, thus determining the role of floods in shaping the present channel. Aerial photography analysis shows that a 10-km reach cumulatively narrowed 62% during a span of 44 years. Between 1949 and 1970, the channel cross-section at USGS gage 09328500 narrowed by 60% and incised its bed approximately 1.2 m. Rating relations since the 1980’s provide corroborative evidence that channel narrowing and reduction in channel capacity continues; today, parts of the channel bed are on bedrock, thereby preventing further incision. Stratigraphy observed in a 40-m long trench demonstrates that the channel has narrowed by oblique and vertical accretion processes. Dendrogeomorphic results elucidate the relative role of channel forming mechanisms; and the combination of spatially extensive and temporally rich analyses reveals that feedback mechanisms facilitate in channel adjustment. These results will guide efforts to restore fish habitat and rehabilitate the San Rafael River by tamarisk eradication, in-stream flow augmentation, and reconnection of channel and floodplain habitats.
NASA Astrophysics Data System (ADS)
Prakasam, D. C., Jr.; Zaman, B.
2014-12-01
Water is one of the most vital natural resource and its availability and quality determine ecosystem productivity, both for agricultural and natural systems. Una district is one of the major potential agricultural districts in Himachal Pradesh, India. More than 70% of the population of this district is engaged in agriculture and allied sectors and major crops grown are maize, wheat, rice, sugarcane, pulses and vegetables. The region faces drought every year and about 90 per cent of the area is water stressed. This has resulted in crop loss and shortage of food and fodder. The sources of drinking water, small ponds and bowlies dry-up during summer season resulting in scarcity of drinking water. Una district receives rainfall during monsoons from June to September and also during non-monsoon period (winter). The annual average rainfall in the area is about 1040 mm with 55 average rainy days. But due to heavy surface run-off the farmers not able to cultivate the crops more than once in a year. Past research indicate that the geomorphology of the Una district might be responsible for such droughts as it controls the surface as well as ground water resources. The research proposes to develop a water stress model for Una district using the geomorphic parameters, water resource and land use land cover data of the study area. Using Survey of India topographical maps (1:50000), the geomorphic parameters are extracted. The spatial layers of these parameters i.e. drainage density, slope, relative relief, ruggedness index, surface water body's frequency are created in GIS. A time series of normalized remotely sensed data of the study area is used for land use land cover classification and analyses. Based on the results from the water stress model, the drought/water stress areas and water harvesting zones are identified and documented. The results of this research will help the general population in resolving the drinking water problem to a certain extent and also the cultivators to water the crops more than twice per year which might increase the crop yield in Una district.
Fitzpatrick, F.A.; ,
2001-01-01
A geomorphic study for North Fish Creek, a northern Wisconsin tributary to Lake Superior was analyzed to determine the hydrologic and geomorphic changes caused by clear-cut logging and agricultural activity. Discharge magnitude estimated with HEC-2 for full-channel capacities indicate that modern full-channel discharges are about twice as large as pre-1946 full-channel discharges. Flood-plain deposition rates were high along the transitional main stem after European settlement. Restoration and protection activities would be most effective if focused on watershed practices to reduce runoff and on channel restoration that reduce buff and bank erosion in the upper and transitional main stems.
Geomorphic control of radionuclide diffusion in desert soils
Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.
2005-01-01
Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.
Engagement Assessment Using EEG Signals
NASA Technical Reports Server (NTRS)
Li, Feng; Li, Jiang; McKenzie, Frederic; Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean
2012-01-01
In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally, experiment results showed that there exist significant differences in the extracted features among different subjects, and we have implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment performance.
The optional selection of micro-motion feature based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Bo; Ren, Hongmei; Xiao, Zhi-he; Sheng, Jing
2017-11-01
Micro-motion form of target is multiple, different micro-motion forms are apt to be modulated, which makes it difficult for feature extraction and recognition. Aiming at feature extraction of cone-shaped objects with different micro-motion forms, this paper proposes the best selection method of micro-motion feature based on support vector machine. After the time-frequency distribution of radar echoes, comparing the time-frequency spectrum of objects with different micro-motion forms, features are extracted based on the differences between the instantaneous frequency variations of different micro-motions. According to the methods based on SVM (Support Vector Machine) features are extracted, then the best features are acquired. Finally, the result shows the method proposed in this paper is feasible under the test condition of certain signal-to-noise ratio(SNR).
A Review of Feature Extraction Software for Microarray Gene Expression Data
Tan, Ching Siang; Ting, Wai Soon; Mohamad, Mohd Saberi; Chan, Weng Howe; Deris, Safaai; Ali Shah, Zuraini
2014-01-01
When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method. PMID:25250315
Spectral Regression Based Fault Feature Extraction for Bearing Accelerometer Sensor Signals
Xia, Zhanguo; Xia, Shixiong; Wan, Ling; Cai, Shiyu
2012-01-01
Bearings are not only the most important element but also a common source of failures in rotary machinery. Bearing fault prognosis technology has been receiving more and more attention recently, in particular because it plays an increasingly important role in avoiding the occurrence of accidents. Therein, fault feature extraction (FFE) of bearing accelerometer sensor signals is essential to highlight representative features of bearing conditions for machinery fault diagnosis and prognosis. This paper proposes a spectral regression (SR)-based approach for fault feature extraction from original features including time, frequency and time-frequency domain features of bearing accelerometer sensor signals. SR is a novel regression framework for efficient regularized subspace learning and feature extraction technology, and it uses the least squares method to obtain the best projection direction, rather than computing the density matrix of features, so it also has the advantage in dimensionality reduction. The effectiveness of the SR-based method is validated experimentally by applying the acquired vibration signals data to bearings. The experimental results indicate that SR can reduce the computation cost and preserve more structure information about different bearing faults and severities, and it is demonstrated that the proposed feature extraction scheme has an advantage over other similar approaches. PMID:23202017
Liu, Jian; Cheng, Yuhu; Wang, Xuesong; Zhang, Lin; Liu, Hui
2017-08-17
It is urgent to diagnose colorectal cancer in the early stage. Some feature genes which are important to colorectal cancer development have been identified. However, for the early stage of colorectal cancer, less is known about the identity of specific cancer genes that are associated with advanced clinical stage. In this paper, we conducted a feature extraction method named Optimal Mean based Block Robust Feature Extraction method (OMBRFE) to identify feature genes associated with advanced colorectal cancer in clinical stage by using the integrated colorectal cancer data. Firstly, based on the optimal mean and L 2,1 -norm, a novel feature extraction method called Optimal Mean based Robust Feature Extraction method (OMRFE) is proposed to identify feature genes. Then the OMBRFE method which introduces the block ideology into OMRFE method is put forward to process the colorectal cancer integrated data which includes multiple genomic data: copy number alterations, somatic mutations, methylation expression alteration, as well as gene expression changes. Experimental results demonstrate that the OMBRFE is more effective than previous methods in identifying the feature genes. Moreover, genes identified by OMBRFE are verified to be closely associated with advanced colorectal cancer in clinical stage.
Geomorphic controls on riparian meadows in the Central Great Basin of Nevada are an important aspect in determining the formation of and planning the management of these systems. The current hypothesis is that both alluvial fan sediment and faulted bedrock steps interact to cont...
Richard. D. Wood-Smith; John M. Buffington
1996-01-01
Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...
Geomorphic processes affecting meadow ecosystems [chapter 3
Jerry R. Miller; Dru Germanoski; Mark L. Lord
2011-01-01
Three geomorphic processes are of primary concern with respect to the current and future state of wet meadow ecosystems: channel incision, avulsion (the abrupt movement of the channel to a new location on the valley floor), and gully formation. Gully formation often is accompanied by upvalley headcut migration and a phenomenon referred to as "groundwater sapping...
Application of Terrestrial Geomorphic Threshold Theory to the Analysis of Small Channels on Mars
NASA Technical Reports Server (NTRS)
Rosenshein, E. B.; Greeley, R.; Arrowsmith, J. R.
2001-01-01
New terrestrial work on the geomorphic thresholds for channel initiation use the drainage area above a channel head vs. the slope at the channel head to delineate surface process types. This method has been used to characterize martian landscapes. Additional information is contained in the original extended abstract.
Bulletin of the Association of North Dakota Geographers. Volume XXXVII, 1987.
ERIC Educational Resources Information Center
Munski, Douglas C., Ed.
1987-01-01
The first paper in this volume, "Geomorphic Effects of Flood-Control Channel Works" (H. Rasid), examines the basic mechanisms of morphologic instabilities in man-made or modified channels in terms of their altered hydraulic characteristics and geomorphic responses to such induced changes. Two tables, two figures, and a 33-item…
Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.
2011-01-01
We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.
Zoogeomorphology in the Anthropocene
NASA Astrophysics Data System (ADS)
Butler, David R.
2018-02-01
The Anthropocene embodies the concept of human impacts on the natural environment, but disagreements exist as to when to identify its inception/starting date. In this paper I illustrate that regardless of the proposed starting date of the Anthropocene, important zoogeomorphic impacts were initiated at each of these proposed starting dates. Humans have profoundly altered geomorphic pathways through extinctions and the near-extirpation of native populations of animal species that strongly influenced hydrology and removal of surface sediment and through the introduction of populations of animals that bring to bear a suite of different geomorphic effects on environmental systems. Domestication of animals brought its own suite of zoogeomorphic implications. Introductions of exotic species, and the spread of feral species, often led to dramatic new geomorphic landscapes because of the absence of natural controls on population expansion. In the mountains of the western USA and elsewhere, the geomorphic actions of animals are being impacted by human-induced climate change. Climate change in some cases affects the spatial pattern and range of species, whereas in other cases it may lead to the extirpation of species with zoogeomorphic impacts.
Geomorphic degradations on the surface of venus: an analysis of venera 9 and venera 10 data.
Florensky, C P; Ronca, L B; Basilevsky, A T
1977-05-20
On the basis of the physical and chemical measurements made on the surface of Venus and transmitted back to Earth by the Soviet automatic landers Venera 9 and Venera 10, a geomorphically inactive environment should be expected. An analysis of the television photographs reveals, however, that at least two processes of degradation occur. One operates on a scale of decimeters to meters and is responsible for the fracturing of a layered source rock and the subsequent downslope movement of the fragments. Mass-wasting, perhaps activated by venusian quakes or by unknown geological processes, is likely to be the agent. Another geomorphic degradation process occurs on the scale of a centimeter or less and is responsible for the rounding of edges and the pitting of rock surfaces. The agents of this process are not known, but atmospheric action, perhaps in connection with volcanic episodes, may be the cause. From a geomorphic point of view, the landscape of the Venera 9 landing site can be considered young and that of the Venera 10 landing site, mature.
A judicious multiple hypothesis tracker with interacting feature extraction
NASA Astrophysics Data System (ADS)
McAnanama, James G.; Kirubarajan, T.
2009-05-01
The multiple hypotheses tracker (mht) is recognized as an optimal tracking method due to the enumeration of all possible measurement-to-track associations, which does not involve any approximation in its original formulation. However, its practical implementation is limited by the NP-hard nature of this enumeration. As a result, a number of maintenance techniques such as pruning and merging have been proposed to bound the computational complexity. It is possible to improve the performance of a tracker, mht or not, using feature information (e.g., signal strength, size, type) in addition to kinematic data. However, in most tracking systems, the extraction of features from the raw sensor data is typically independent of the subsequent association and filtering stages. In this paper, a new approach, called the Judicious Multi Hypotheses Tracker (jmht), whereby there is an interaction between feature extraction and the mht, is presented. The measure of the quality of feature extraction is input into measurement-to-track association while the prediction step feeds back the parameters to be used in the next round of feature extraction. The motivation for this forward and backward interaction between feature extraction and tracking is to improve the performance in both steps. This approach allows for a more rational partitioning of the feature space and removes unlikely features from the assignment problem. Simulation results demonstrate the benefits of the proposed approach.
A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
Zarei, Roozbeh; He, Jing; Siuly, Siuly; Zhang, Yanchun
2017-07-01
Feature extraction of EEG signals plays a significant role in Brain-computer interface (BCI) as it can significantly affect the performance and the computational time of the system. The main aim of the current work is to introduce an innovative algorithm for acquiring reliable discriminating features from EEG signals to improve classification performances and to reduce the time complexity. This study develops a robust feature extraction method combining the principal component analysis (PCA) and the cross-covariance technique (CCOV) for the extraction of discriminatory information from the mental states based on EEG signals in BCI applications. We apply the correlation based variable selection method with the best first search on the extracted features to identify the best feature set for characterizing the distribution of mental state signals. To verify the robustness of the proposed feature extraction method, three machine learning techniques: multilayer perceptron neural networks (MLP), least square support vector machine (LS-SVM), and logistic regression (LR) are employed on the obtained features. The proposed methods are evaluated on two publicly available datasets. Furthermore, we evaluate the performance of the proposed methods by comparing it with some recently reported algorithms. The experimental results show that all three classifiers achieve high performance (above 99% overall classification accuracy) for the proposed feature set. Among these classifiers, the MLP and LS-SVM methods yield the best performance for the obtained feature. The average sensitivity, specificity and classification accuracy for these two classifiers are same, which are 99.32%, 100%, and 99.66%, respectively for the BCI competition dataset IVa and 100%, 100%, and 100%, for the BCI competition dataset IVb. The results also indicate the proposed methods outperform the most recently reported methods by at least 0.25% average accuracy improvement in dataset IVa. The execution time results show that the proposed method has less time complexity after feature selection. The proposed feature extraction method is very effective for getting representatives information from mental states EEG signals in BCI applications and reducing the computational complexity of classifiers by reducing the number of extracted features. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van der Most, Merel; Hudson, Paul F.
2018-02-01
The floodplain geomorphology of large lowland rivers is intricately related to aquatic ecosystems dependent upon flood pulse dynamics. The alligator gar (Atractosteus spatula) is native to the Lower Mississippi River and dependent upon floodplain backwater areas for spawning. In this study we utilize a geospatial approach to develop a habitat suitability index for alligator gar that explicitly considers hydrologic connectivity and the floodplain geomorphology along a frequently inundated segment of the Lower Mississippi River. The data sets include Landsat imagery, a high-resolution LiDAR digital elevation model (DEM), National Hydrography Dataset (NHD), and hydrologic and geomorphic data. A habitat suitability index is created based on the extent and frequency of inundation, water depth, temperature, and vegetation. A comparison between the remote sensing approach and the NHD revealed substantial differences in the area and location of water bodies available for alligator gar spawning. The final habitat suitability index indicates that a modest proportion (19%) of the overall embanked floodplain is available for alligator gar spawning. Opportunities exist for management efforts to utilize engineered and natural geomorphic features to facilitate hydrologic connectivity at flow levels below flood stage that would expand the habitat of alligator gar across the floodplain. The study results have direct implications regarding environmental restoration of the Lower Mississippi, an iconic example of an embanked meandering river floodplain.
NASA Astrophysics Data System (ADS)
Sitzia, T.; Picco, L.; Ravazzolo, D.; Comiti, F.; Mao, L.; Lenzi, M. A.
2016-07-01
We compared three gravel-bed rivers in north-eastern Italy (Brenta, Piave, Tagliamento) having similar bioclimate, geology and fluvial morphology, but affected by different intensities of anthropogenic disturbance related particularly to hydropower dams, training works and instream gravel mining. Our aim was to test whether a corresponding difference in the interactions between vegetation and geomorphological patterns existed among the three rivers. In equally spaced and sized plots (n = 710) we collected descriptors of geomorphic conditions, and presence-absence of woody species. In the less disturbed river (Tagliamento), spatial succession of woody communities from the floodplain to the channel followed a profile where higher elevation floodplains featured more developed tree communities, and lower elevation islands and bars were covered by pioneer communities. In the intermediate-disturbed river (Piave), islands and floodplains lay at similar elevation and both showed species indicators of mature developed communities. In the most disturbed river (Brenta), all these patterns were simplified, all geomorphic units lay at similar elevations, were not well characterized by species composition, and presented similar persistence age. This indicates that in human-disturbed rivers, channel and vegetation adjustments are closely linked in the long term, and suggests that intermediate levels of anthropogenic disturbance, such as those encountered in the Piave River, could counteract the natural, more dynamic conditions that may periodically fragment vegetated landscapes in natural rivers.
Landscape analysis: Theoretical considerations and practical needs
Godfrey, A.E.; Cleaves, E.T.
1991-01-01
Numerous systems of land classification have been proposed. Most have led directly to or have been driven by an author's philosophy of earth-forming processes. However, the practical need of classifying land for planning and management purposes requires that a system lead to predictions of the results of management activities. We propose a landscape classification system composed of 11 units, from realm (a continental mass) to feature (a splash impression). The classification concerns physical aspects rather than economic or social factors; and aims to merge land inventory with dynamic processes. Landscape units are organized using a hierarchical system so that information may be assembled and communicated at different levels of scale and abstraction. Our classification uses a geomorphic systems approach that emphasizes the geologic-geomorphic attributes of the units. Realm, major division, province, and section are formulated by subdividing large units into smaller ones. For the larger units we have followed Fenneman's delineations, which are well established in the North American literature. Areas and districts are aggregated into regions and regions into sections. Units smaller than areas have, in practice, been subdivided into zones and smaller units if required. We developed the theoretical framework embodied in this classification from practical applications aimed at land use planning and land management in Maryland (eastern Piedmont Province near Baltimore) and Utah (eastern Uinta Mountains). ?? 1991 Springer-Verlag New York Inc.
Mapping the Riverscape of the Middle Fork John Day River with Structure-from-Motion
NASA Astrophysics Data System (ADS)
Dietrich, J. T.
2014-12-01
Aerial photography has proven an efficient method to collect a wide range of continuous variables for large sections of rivers. These data include variables such as the planimetric shape, low-flow and bank-full widths, bathymetry, and sediment sizes. Mapping these variables in a continuous manner allows us to explore the heterogeneity of the river and build a more complete picture of the holistic riverscape. To explore a low-cost option for aerial photography and riverscape mapping, I used the combination of a piloted helicopter and an off-the-shelf digital SLR camera to collect aerial imagery for a 32 km segment of the Middle Fork John Day River in eastern Oregon. This imagery was processed with Structure-from-Motion (SfM) photogrammetry to produce high-resolution 10 cm orthophotos and digital surface models that were used to extract riverscape variables. The Middle Fork John Day River is an important spawning river for anadromous Chinnook and Steelhead and has been the focus of widespread restoration and conservation activities in response to the legacies of extensive grazing and mining activity. By mapping the riverscape of the Middle Fork John Day, I explored downstream relationships between several geomorphic variables with hyperscale analysis. These riverscape data also provided an opportunity to make a continuous map of habitat suitability for migrating adult Chinook. Both the geomorphic and habitat suitability analysis provide an important assessment of the natural variation in the river and the impact of human modification, both positive and negative.
NASA Astrophysics Data System (ADS)
Roy, N. G.; Sinha, R.
2018-02-01
Geomorphic diversity at a variety of spatial and temporal scales has been studied in the western Ganga plains (WGP), India, to isolate the dominating factors at each scale that have the potential to cause major geomorphic change. The Ganga River and its major tributaries draining the WGP have been investigated in terms of longitudinal, cross-sectional, and planform morphology to assess the influence of potential controls such as climate, geology, topography, land use, hydrology, and sediment transport. These data were then compared with those from the rivers draining the eastern Ganga plains (EGP) to understand the geomorphic diversity across the Ganga plains and the causal factors. Our investigations suggest that in-channel geomorphic diversity over decadal scale in rivers with low width-to-depth (W/D) ratio is caused by periodic incision/aggradation, but it is driven by channel avulsion in rivers characterized by high W/D ratio. Similarly, planform (reach-scale) parameters such as sinuosity and braid-channel-ratio are influenced by intrinsic factors such as changes in hydrological conditions and morphodynamics (cutoffs, small-scale avulsion) that are in turn impacted by natural and human-induced factors. Finally, we have isolated the climatic and hydrologic effects on the longitudinal profile concavity of alluvial trunk channels in tectonically stable and unstable landscapes. We demonstrate that the rivers flowing through a tectonically stable landscape are graded in nature where higher discharge tends to create more concave longitudinal profiles compared to those in tectonically unstable landscape at 103-year scale.
Recovery of perennial vegetation in military target sites in the eastern Mohave Desert, Arizona
Steiger, John W.; Webb, Robert H.
2000-01-01
The effect of the age of geomorphic surfaces on the recovery of desert vegetation in military target sites was studied in the Mohave and Cerbat Mountains of northwestern Arizona. The target sites were cleared of all vegetation during military exercises in 1942-1943 and have not been subsequently disturbed. The degree of recovery was measured by calculating percentage-similarity (PS) and correlation-coefficient indices on the basis of differences in cover, density, and volume of species growing in and out of each target site. PS values, ranging from 22.7 to 95.1 percent (100 percent = identical composition), indicate a wide range of recovery that is partially controlled by the edaphic properties of the geomorphic surfaces. Statistical analyses show a strong pattern that indicates a greater variability in the degree of recovery for sites on older surfaces than on younger surfaces and a weak pattern that indicates an inverse relation between the degree of recovery and geomorphic age. Comparisons of the different effects of target site construction on the edaphic characteristics of each target site provides an explanation for these patterns and suggests the soil properties critical to the recovery process. Statistically significant negative or positive response to disturbance for most species are independent of the age of the geomorphic surfaces; however, there is strong evidence for a shift in response for the common perennial species Acamptopappus sphaerocephalus, and to a lesser extent, Salazaria mexicana, Encelia farinosa, and Coldenia canescens, among different geomorphic surfaces.
NASA Astrophysics Data System (ADS)
Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.
2016-09-01
This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.
Coupled hydrogeomorphic and woody-seedling responses to controlled flood releases in a dryland river
Wilcox, Andrew C.; Shafroth, Patrick B.
2013-01-01
Interactions among flow, geomorphic processes, and riparian vegetation can strongly influence both channel form and vegetation communities. To investigate such interactions, we took advantage of a series of dam-managed flood releases that were designed in part to maintain a native riparian woodland system on a sand-bed, dryland river, the Bill Williams River, Arizona, USA. Our resulting multiyear flow experiment examined differential mortality among native and nonnative riparian seedlings, associated flood hydraulics and geomorphic changes, and the temporal evolution of feedbacks among vegetation, channel form, and hydraulics. We found that floods produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach. We also observed significantly greater mortality among nonnative tamarisk (Tamarix) seedlings than among native willow (Salix gooddingii) seedlings, reflecting the greater first-year growth of willow relative to tamarisk. When vegetation was small early in our study period, the effects of vegetation on flood hydraulics and on mediating flood-induced channel change were minimal. Vegetation growth in subsequent years resulted in stronger feedbacks, such that vegetation's stabilizing effect on bars and its drag effect on flow progressively increased, muting the geomorphic effects of a larger flood release. These observations suggest that the effectiveness of floods in producing geomorphic and ecological changes varies not only as a function of flood magnitude and duration, but also of antecedent vegetation density and size.
User-oriented summary extraction for soccer video based on multimodal analysis
NASA Astrophysics Data System (ADS)
Liu, Huayong; Jiang, Shanshan; He, Tingting
2011-11-01
An advanced user-oriented summary extraction method for soccer video is proposed in this work. Firstly, an algorithm of user-oriented summary extraction for soccer video is introduced. A novel approach that integrates multimodal analysis, such as extraction and analysis of the stadium features, moving object features, audio features and text features is introduced. By these features the semantic of the soccer video and the highlight mode are obtained. Then we can find the highlight position and put them together by highlight degrees to obtain the video summary. The experimental results for sports video of world cup soccer games indicate that multimodal analysis is effective for soccer video browsing and retrieval.
NASA Astrophysics Data System (ADS)
Setiyoko, A.; Dharma, I. G. W. S.; Haryanto, T.
2017-01-01
Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.
Germaine, Stephen S.; O'Donnell, Michael S.; Aldridge, Cameron L.; Baer, Lori; Fancher, Tammy; McBeth, Jamie; McDougal, Robert R.; Waltermire, Robert; Bowen, Zachary H.; Diffendorfer, James; Garman, Steven; Hanson, Leanne
2012-01-01
We evaluated how well three leading information-extraction software programs (eCognition, Feature Analyst, Feature Extraction) and manual hand digitization interpreted information from remotely sensed imagery of a visually complex gas field in Wyoming. Specifically, we compared how each mapped the area of and classified the disturbance features present on each of three remotely sensed images, including 30-meter-resolution Landsat, 10-meter-resolution SPOT (Satellite Pour l'Observation de la Terre), and 0.6-meter resolution pan-sharpened QuickBird scenes. Feature Extraction mapped the spatial area of disturbance features most accurately on the Landsat and QuickBird imagery, while hand digitization was most accurate on the SPOT imagery. Footprint non-overlap error was smallest on the Feature Analyst map of the Landsat imagery, the hand digitization map of the SPOT imagery, and the Feature Extraction map of the QuickBird imagery. When evaluating feature classification success against a set of ground-truthed control points, Feature Analyst, Feature Extraction, and hand digitization classified features with similar success on the QuickBird and SPOT imagery, while eCognition classified features poorly relative to the other methods. All maps derived from Landsat imagery classified disturbance features poorly. Using the hand digitized QuickBird data as a reference and making pixel-by-pixel comparisons, Feature Extraction classified features best overall on the QuickBird imagery, and Feature Analyst classified features best overall on the SPOT and Landsat imagery. Based on the entire suite of tasks we evaluated, Feature Extraction performed best overall on the Landsat and QuickBird imagery, while hand digitization performed best overall on the SPOT imagery, and eCognition performed worst overall on all three images. Error rates for both area measurements and feature classification were prohibitively high on Landsat imagery, while QuickBird was time and cost prohibitive for mapping large spatial extents. The SPOT imagery produced map products that were far more accurate than Landsat and did so at a far lower cost than QuickBird imagery. Consideration of degree of map accuracy required, costs associated with image acquisition, software, operator and computation time, and tradeoffs in the form of spatial extent versus resolution should all be considered when evaluating which combination of imagery and information-extraction method might best serve any given land use mapping project. When resources permit, attaining imagery that supports the highest classification and measurement accuracy possible is recommended.
Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection
NASA Astrophysics Data System (ADS)
Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav
2014-03-01
Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
Chen, Zhen; Zhao, Pei; Li, Fuyi; Leier, André; Marquez-Lago, Tatiana T; Wang, Yanan; Webb, Geoffrey I; Smith, A Ian; Daly, Roger J; Chou, Kuo-Chen; Song, Jiangning
2018-03-08
Structural and physiochemical descriptors extracted from sequence data have been widely used to represent sequences and predict structural, functional, expression and interaction profiles of proteins and peptides as well as DNAs/RNAs. Here, we present iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors. It also allows users to extract specific amino acid properties from the AAindex database. Furthermore, iFeature integrates 12 different types of commonly used feature clustering, selection, and dimensionality reduction algorithms, greatly facilitating training, analysis, and benchmarking of machine-learning models. The functionality of iFeature is made freely available via an online web server and a stand-alone toolkit. http://iFeature.erc.monash.edu/; https://github.com/Superzchen/iFeature/. jiangning.song@monash.edu; kcchou@gordonlifescience.org; roger.daly@monash.edu. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Genet, H.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Zhang, Y.; Yuan, F.
2014-12-01
Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where geomorphic land cover types such as high-, flat-, and low-center polygons influence local surface hydrology, plant community composition, nutrient and biogeochemical cycling, over small spatial scales. Due to the lack of representation of these fine-scale geomorphic types and ecosystem processes, in large-scale terrestrial ecosystem models, future uncertainties are large for this tundra region. In this study, we use a new version of the terrestrial ecosystem model (TEM), that couples a dynamic vegetation model (in which plant functional types compete for water, nitrogen, and light) with a dynamic soil organic model (in which temperature, moisture, and associated organic/inorganic carbon and nitrogen pools/fluxes vary together in vertically resolved layers) to simulate ecosystem carbon balance. We parameterized and calibrated this model using data specific to the local climate, vegetation, and soil associated with tundra geomorphic types. We extrapolate model results at a 1km2 resolution across the ~1800 km2 Barrow Peninsula using a tundra geomorphology map, describing ten dominant geomorphic tundra types (Lara et al. submitted), to estimate the likely change in landscape-level carbon balance between 1970 and 2100 in response to projected climate change. Preliminary model runs for this region indicated temporal variability in carbon and active layer dynamics, specific to tundra geomorphic type over time. Overall, results suggest that it is important to consider small-scale discrete polygonal tundra geomorphic types that control local structure and function in regional estimates of carbon balance in northern Alaska.
Scale-dependent geomorphic responses to active restoration and implications for cutthroat trout
NASA Astrophysics Data System (ADS)
Salant, N.; Miller, S. W.
2009-12-01
The predominant goal of instream habitat restoration is to increase the diversity, density and/or biomass of aquatic organisms through enhanced physical heterogeneity and increased food availability. In physically homogenized systems, habitat restoration is most commonly achieved at the reach-scale through the addition of structures or channel reconfiguration. Despite the completion of over 6,000 restoration projects in the United States, studies of fish responses to habitat restoration have largely produced equivocal results. Paradoxically, restoration monitoring overwhelmingly focuses on fish response without understanding how these responses link to the physical variables being altered and the scale at which geomorphic changes occur. Our study investigates whether instream habitat restoration affects geomorphic conditions at spatial scales relevant to the organism of interest (i.e. the spatial scale of the variables limiting to that organism). We measure the effects of active restoration on geomorphic metrics at three spatial scales (local, unit, and reach) using a before-after-control-impact design in a historically disturbed and heavily managed cutthroat trout stream. Observed trout habitat preferences (for spawning and juvenile/adult residence) are used to identify the limiting physical variables and are compared to the scale of spatially explicit geomorphic responses. Four reaches representing three different stages of restoration (before, one month and one year after) are surveyed for local-scale physical conditions, unit- and reach-scale morphology, resident fish use, and redd locations. Local-scale physical metrics include depth, nearbed and average velocity, overhead cover, particle size, and water quality metrics. Point measurements stratified by morphological unit are used to determine physical variability among unit types. Habitat complexity and availability are assessed at the reach-scale from topographic surveys and unit maps. Our multi-scale, process-based approach evaluates whether a commonly used restoration strategy creates geomorphic heterogeneity at scales relevant to fish diversity and microhabitat utilization, an understanding that will improve the efficiency and success of future restoration projects.
NASA Astrophysics Data System (ADS)
Schaffrath, K. R.; Finch, C.; Belmont, P.; Budy, P.
2015-12-01
Wildfires have profound and variable impacts on erosion, channel morphology, and aquatic habitat. Previous research has quantified post-fire geomorphic response on event and millennial timescales. While these studies have informed our understanding of post-fire geomorphic response during the Holocene, we have yet to fully understand the variability of post-wildfire geomorphic response and how it might change in response to changing climate. Response of aquatic biota is just as variable as post-wildfire response yet we know very little about effects on metapopulations and how management decisions affect aquatic populations. Barriers to movement are installed to isolate native fish populations and prescribed fire and thinning are used to try to reduce future wildfire severity and extent. In order to improve understanding of the implications of management decisions, we evaluated geomorphic response and synchronicity of wildfires over the Holocene relative to the impact to the metapopulation of Bonneville cutthroat trout from a recent wildfire. The Twitchell Canyon fire burned 45,000 acres near Beaver, UT in July 2010. Over 30% of the area burned at high severity, which included two major headwater streams that sustained a trout population. In summer 2011, monsoonal thunderstorms caused massive debris flows and sheetflow erosion that altered channel morphology and aquatic habitat in the burned area. A previously robust, non-native trout fishery was nearly extirpated as a result of the geomorphic response to the wildfire. We used radiocarbon dating of burned material to determine how often headwater streams burned synchronously over the Holocene. Radiocarbon dates are associated with field observations of stratigraphy in order to infer geomorphic response to historic wildfires. Thirty samples were collected from sediment layers in 10 alluvial fans distributed among three watersheds (two burned and one unburned in the 2010 fire). Preliminary results suggest that we sampled 10-15 individual wildfires and radiocarbon ages range from 150-8,100 years.
NASA Astrophysics Data System (ADS)
Lininger, K.; Wohl, E.; Rose, J. R.
2016-12-01
High latitude permafrost regions contain large amounts of organic carbon (OC) in the subsurface, but little work has quantified OC storage in floodplain sediment in the high latitudes. Floodplains influence the export of OC to the ocean by temporarily storing OC at timescales of 101 to 103 years. To fully understand terrestrial carbon cycling, the storage and residence time of OC in floodplains, and the geomorphic controls on OC storage, must be taken into account. Small-scale spatial variations in OC storage within floodplains likely reflect geomorphic processes of deposition and floodplain development. We present results of floodplain OC storage and residence time in sediment along 5 rivers in the Yukon Flats National Wildlife Refuge in interior Alaska, a region with discontinuous permafrost. We collected sediment samples within the active layer along tributaries to the Yukon River and the mainstem Yukon River and analyzed the sediment samples for OC content. We classified sample locations by geomorphic type (filled secondary channels, levees, point bars) and vegetation type (herbaceous, deciduous/shrub, white spruce, and black spruce wetlands), and found that both geomorphology and vegetation influence OC concentration and OC mass per area. Preliminary results suggest that filled secondary channels contain more OC per area compared to other geomorphic types. We present results of radiocarbon dates from river cutbanks associated with our sampling sites, which give a maximum age for residence times of OC in sediment before erosion and transport. The radiocarbon dates also provide estimates of long-term OC accretion within the Yukon Flats floodplains. Small-scale variations within floodplains as a result of floodplain depositional processes and vegetation communities shed light on the geomorphic controls on OC storage. This work will help constrain the spatial variation in OC storage and OC residence time across the landscape in a region experiencing rapid climate change and permafrost thaw.
A graph-Laplacian-based feature extraction algorithm for neural spike sorting.
Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos
2009-01-01
Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.
Modeling Wetland Vegetation using Polarimetric SAR
NASA Technical Reports Server (NTRS)
Slatton, K. Clint; Crawford, Melba M.; Gibeaut, James C.; Gutierrez, Roberto O.
1996-01-01
A three-year project to study small-scale topographic changes and relict geomorphic features on barrier islands using synthetic aperture radar (SAR) is described. A study area on the Texas coast consisting of Galveston Island and Bolivar Peninsula was overflown by the NASA/JPL DC 8 AIRSAR in April 1995. Data was acquired in the fully polarimetric mode using C-, L-, and P-bands and in the TOPSAR configuration with C- and L-bands in interferometric mode. The study area will be overflown again in late spring 1996. The data will be registered to global positioning system (GPS) surveyed points to form high resolution digital elevation models (DEM) and then analyzed to investigate possible topographic changes.
Applications of Morphochronology to the Active Tectonics of Tibet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryerson, F J; Tapponnier, P; Finkel, R C
2005-01-28
The Himalayas and the Tibetan Plateau were formed as a result of the collision of India and Asia, and provide an excellent opportunity to study the mechanical response of the continental lithosphere to tectonic stress. Geophysicists are divided in their views on the nature of this response advocating either (1) homogeneously distributed deformation with the lithosphere deforming as a fluid continuum or (2) deformation is highly localized with the lithosphere that deforms as a system of blocks. The resolution of this issue has broad implications for understanding the tectonic response of continental lithosphere in general. Homogeneous deformation is supported bymore » relatively low decadal, geodetic slip-rate estimates for the Altyn Tagh and Karakorum Faults. Localized deformation is supported by high millennial, geomorphic slip-rates constrained by both cosmogenic and radiocarbon dating on these faults. Based upon the agreement of rates determined by radiocarbon and cosmogenic dating, the overall linearity of offset versus age correlations, and on the plateau-wide correlation of landscape evolution and climate history, the disparity between geomorphic and geodetic slip-rate determinations is unlikely to be due to the effects of surface erosion on the cosmogenic age determinations. Similarly, based upon the consistency of slip-rates over various observation intervals, secular variations in slip-rate appear to persist no longer than 2000 years and are unlikely to provide reconciliation. Conversely, geodetic and geomorphic slip-rate estimates on the Kunlun fault, which does not have significant splays or associated thrust faults, are in good agreement, indicating that there is no fundamental reason why these complementary geodetic and geomorphic methods should disagree. Similarly, the geodetic and geomorphic estimates of shortening rates across the northeastern edge of the plateau are in reasonable agreement, and the geomorphic rates on individual thrust faults demonstrate a significant eastward decrease in the shortening rate. This rate decrease is consistent with the transfer of slip from the Altyn Tagh Fault (ATF) to genetically-related thrust mountain building at its terminus. Rates on the ATF suggest a similar decrease in rate, but the current data set is too small to be definitive. Overall, the high, late Pleistocene-Holocene, geomorphic slip velocities on the major strike-slip faults of Tibet, suggests that they absorb as much of India's convergence relative to Siberia as the Himalayan Main Frontal Thrust on the southern edge of the plateau.« less
Robust digital image watermarking using distortion-compensated dither modulation
NASA Astrophysics Data System (ADS)
Li, Mianjie; Yuan, Xiaochen
2018-04-01
In this paper, we propose a robust feature extraction based digital image watermarking method using Distortion- Compensated Dither Modulation (DC-DM). Our proposed local watermarking method provides stronger robustness and better flexibility than traditional global watermarking methods. We improve robustness by introducing feature extraction and DC-DM method. To extract the robust feature points, we propose a DAISY-based Robust Feature Extraction (DRFE) method by employing the DAISY descriptor and applying the entropy calculation based filtering. The experimental results show that the proposed method achieves satisfactory robustness under the premise of ensuring watermark imperceptibility quality compared to other existing methods.
Geomorphic responses of Duluth-area streams to the June 2012 flood, Minnesota
Fitzpatrick, Faith A.; Ellison, Christopher A.; Czuba, Christiana R.; Young, Benjamin M.; McCool, Molly M.; Groten, Joel T.
2016-09-01
In 2013, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, completed a geomorphic assessment of 51 Duluth-area stream sites in 20 basins to describe and document the stream geomorphic changes associated with the June 2012 flood. Heavy rainfall caused flood peaks with annual exceedance probabilities of less than 0.002 (flood recurrence interval of greater than 500 years) on large and small streams in and surrounding the Duluth area. A geomorphic segment-scale classification previously developed in 2003–4 by the U.S. Geological Survey for Duluth-area streams was used as a framework to characterize the observed flood-related responses along a longitudinal continuum from headwaters to rivermouths at Lake Superior related to drainage network position, slope, geologic setting, and valley type. Field assessments in 2013 followed and expanded on techniques used in 2003–4 at intensive and rapid sites. A third level of assessment was added in 2013 to increase the amount of quantitative data at a subset of 2003–4 rapid sites. Characteristics of channel morphology, channel bed substrate, exposed bars and soft sediment deposition, large wood, pools, and bank erosion were measured; and repeat photographs were taken. Additional measurements in 2013 included identification of Rosgen Level II stream types. The comparative analyses of field data collected in 2003–4 and again in 2013 indicated notable geomorphic changes, some of them expected and others not. As expected, in headwaters with gently sloping wetland segments, geomorphic changes were negligible (little measured or observed change). Downstream, middle main stems generally had bank and bluff erosion and bar formation as expected. Steep bedrock sites along middle and lower main stems had localized bank and bluff erosion in short sections with intermittent bedrock. Lower main stem and alluvial sites had bank erosion, widening, gravel bar deposition, and aggradation. Bar formation and accumulation of gravel was more widespread than expected among all main stems, especially for sites upstream and downstream from channel constrictions from road crossings, or even steep sites with localized, more gently sloping sections. Decreases in large wood and pools also were observed throughout the longitudinal continuum of main-stem sites, with immediate implications for fish and benthic invertebrate aquatic habitat. Whether or not the geomorphic conditions will return to their preflood condition depends on the location along the longitudinal continuum. The amount of large wood and pools may return after more moderate floods, whereas bars with coarse material may remain in place, locally altering flow direction and causing continued bank erosion. Results from this study can be used by local managers in postflood reconstruction efforts and provide baseline information for continued monitoring of geomorphic responses to the June 2012 flood.
Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images
NASA Astrophysics Data System (ADS)
Eken, S.; Aydın, E.; Sayar, A.
2017-11-01
In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.
Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures
NASA Astrophysics Data System (ADS)
Li, Quanbao; Wei, Fajie; Zhou, Shenghan
2017-05-01
The linear discriminant analysis (LDA) is one of popular means for linear feature extraction. It usually performs well when the global data structure is consistent with the local data structure. Other frequently-used approaches of feature extraction usually require linear, independence, or large sample condition. However, in real world applications, these assumptions are not always satisfied or cannot be tested. In this paper, we introduce an adaptive method, local kernel nonparametric discriminant analysis (LKNDA), which integrates conventional discriminant analysis with nonparametric statistics. LKNDA is adept in identifying both complex nonlinear structures and the ad hoc rule. Six simulation cases demonstrate that LKNDA have both parametric and nonparametric algorithm advantages and higher classification accuracy. Quartic unilateral kernel function may provide better robustness of prediction than other functions. LKNDA gives an alternative solution for discriminant cases of complex nonlinear feature extraction or unknown feature extraction. At last, the application of LKNDA in the complex feature extraction of financial market activities is proposed.
Wen, Tingxi; Zhang, Zhongnan
2017-01-01
Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789
Wen, Tingxi; Zhang, Zhongnan
2017-05-01
In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.
Diabetic Rethinopathy Screening by Bright Lesions Extraction from Fundus Images
NASA Astrophysics Data System (ADS)
Hanđsková, Veronika; Pavlovičova, Jarmila; Oravec, Miloš; Blaško, Radoslav
2013-09-01
Retinal images are nowadays widely used to diagnose many diseases, for example diabetic retinopathy. In our work, we propose the algorithm for the screening application, which identifies the patients with such severe diabetic complication as diabetic retinopathy is, in early phase. In the application we use the patient's fundus photography without any additional examination by an ophtalmologist. After this screening identification, other examination methods should be considered and the patient's follow-up by a doctor is necessary. Our application is composed of three principal modules including fundus image preprocessing, feature extraction and feature classification. Image preprocessing module has the role of luminance normalization, contrast enhancement and optical disk masking. Feature extraction module includes two stages: bright lesions candidates localization and candidates feature extraction. We selected 16 statistical and structural features. For feature classification, we use multilayer perceptron (MLP) with one hidden layer. We classify images into two classes. Feature classification efficiency is about 93 percent.
Zhang, Heng; Pan, Zhongming; Zhang, Wenna
2018-06-07
An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.
Extraction of ECG signal with adaptive filter for hearth abnormalities detection
NASA Astrophysics Data System (ADS)
Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti
2018-04-01
This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.
Recursive Feature Extraction in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-08-14
ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.
Murray C. Richardson; Carl P. J. Mitchell; Brian A. Branfireun; Randall K. Kolka
2010-01-01
A new technique for quantifying the geomorphic form of northern forested wetlands from airborne LiDAR surveys is introduced, demonstrating the unprecedented ability to characterize the geomorphic form of northern forested wetlands using high-resolution digital topography. Two quantitative indices are presented, including the lagg width index (LWI) which objectively...
The geomorphic response of gravel-bed rivers to dams: perspectives and prospects
Gordon E. Grant
2012-01-01
The paper summarizes over 40 years of research on the downstream geomorphic responses of rivers to dams, with a particular emphasis on gravel-bed rivers, and evaluates the state if the science with respect to predicting channel adjustments: channel incision, lateral adjustments, and bed textural changes. Effects of vegetation and implications for management are also...
Beavers as Agents of Biogeomorphic Change: A Review and Suggestions for Teaching Exercises.
ERIC Educational Resources Information Center
Butler, David R.
1991-01-01
Discusses beavers and their geomorphic impacts on their environment. Considers dam building, bank burrowing, and canal building. Suggests using the beaver as a classroom and field trip example to illustrate animals' effects on the physical landscape. Provides a review of published works on beavers in their roles as geomorphic agents. (DK)
Methodology for calculating shear stress in a meandering channel
Kyung-Seop Sin; Christopher I. Thornton; Amanda L. Cox; Steven R. Abt
2012-01-01
Natural channels never stop changing their geomorphic characteristics. Natural alluvial streams are similar to living creatures because they generate water flow, develop point bars, alter bed profile, scour the bed, erode the bank, and cause other phenomena in the stream system. The geomorphic changes in a natural system lead to a wide array of research worldwide,...
David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode
2014-01-01
Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...
Robust image features: concentric contrasting circles and their image extraction
NASA Astrophysics Data System (ADS)
Gatrell, Lance B.; Hoff, William A.; Sklair, Cheryl W.
1992-03-01
Many computer vision tasks can be simplified if special image features are placed on the objects to be recognized. A review of special image features that have been used in the past is given and then a new image feature, the concentric contrasting circle, is presented. The concentric contrasting circle image feature has the advantages of being easily manufactured, easily extracted from the image, robust extraction (true targets are found, while few false targets are found), it is a passive feature, and its centroid is completely invariant to the three translational and one rotational degrees of freedom and nearly invariant to the remaining two rotational degrees of freedom. There are several examples of existing parallel implementations which perform most of the extraction work. Extraction robustness was measured by recording the probability of correct detection and the false alarm rate in a set of images of scenes containing mockups of satellites, fluid couplings, and electrical components. A typical application of concentric contrasting circle features is to place them on modeled objects for monocular pose estimation or object identification. This feature is demonstrated on a visually challenging background of a specular but wrinkled surface similar to a multilayered insulation spacecraft thermal blanket.
Deep Learning Methods for Underwater Target Feature Extraction and Recognition
Peng, Yuan; Qiu, Mengran; Shi, Jianfei; Liu, Liangliang
2018-01-01
The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved. PMID:29780407
A method for real-time implementation of HOG feature extraction
NASA Astrophysics Data System (ADS)
Luo, Hai-bo; Yu, Xin-rong; Liu, Hong-mei; Ding, Qing-hai
2011-08-01
Histogram of oriented gradient (HOG) is an efficient feature extraction scheme, and HOG descriptors are feature descriptors which is widely used in computer vision and image processing for the purpose of biometrics, target tracking, automatic target detection(ATD) and automatic target recognition(ATR) etc. However, computation of HOG feature extraction is unsuitable for hardware implementation since it includes complicated operations. In this paper, the optimal design method and theory frame for real-time HOG feature extraction based on FPGA were proposed. The main principle is as follows: firstly, the parallel gradient computing unit circuit based on parallel pipeline structure was designed. Secondly, the calculation of arctangent and square root operation was simplified. Finally, a histogram generator based on parallel pipeline structure was designed to calculate the histogram of each sub-region. Experimental results showed that the HOG extraction can be implemented in a pixel period by these computing units.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-09-13
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features.
Using input feature information to improve ultraviolet retrieval in neural networks
NASA Astrophysics Data System (ADS)
Sun, Zhibin; Chang, Ni-Bin; Gao, Wei; Chen, Maosi; Zempila, Melina
2017-09-01
In neural networks, the training/predicting accuracy and algorithm efficiency can be improved significantly via accurate input feature extraction. In this study, some spatial features of several important factors in retrieving surface ultraviolet (UV) are extracted. An extreme learning machine (ELM) is used to retrieve the surface UV of 2014 in the continental United States, using the extracted features. The results conclude that more input weights can improve the learning capacities of neural networks.
Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator
NASA Astrophysics Data System (ADS)
Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong
2011-04-01
In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.
A Hybrid Neural Network and Feature Extraction Technique for Target Recognition.
target features are extracted, the extracted data being evaluated in an artificial neural network to identify a target at a location within the image scene from which the different viewing angles extend.
NASA Astrophysics Data System (ADS)
Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien
2017-09-01
Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.
Classification of product inspection items using nonlinear features
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.; Lee, H.-W.
1998-03-01
Automated processing and classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. This approach involves two main steps: preprocessing and classification. Preprocessing locates individual items and segments ones that touch using a modified watershed algorithm. The second stage involves extraction of features that allow discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper. We use a new nonlinear feature extraction scheme called the maximum representation and discriminating feature (MRDF) extraction method to compute nonlinear features that are used as inputs to a classifier. The MRDF is shown to provide better classification and a better ROC (receiver operating characteristic) curve than other methods.
A harmonic linear dynamical system for prominent ECG feature extraction.
Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc
2014-01-01
Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.
Hunting for seamounts using neural networks: learning algorithms for geomorphic studies
NASA Astrophysics Data System (ADS)
Valentine, A. P.; Kalnins, L. M.; Trampert, J.
2012-04-01
Many geophysical studies rely on finding and analysing particular topographic features: the various landforms associated with glaciation, for example, or those that characterise regional tectonics. Typically, these can readily be identified from visual inspection of datasets, but this is a tedious and time-consuming process. However, the development of techniques to perform this assessment automatically is often difficult, since a mathematical description of the feature of interest is required. To identify characteristics of a feature, such as its spatial extent, each characteristic must also have a mathematical description. Where features exhibit significant natural variations, or where their signature in data is marred by noise, performance of conventional algorithms may be poor. One potential avenue lies in the use of neural networks, or other learning algorithms, ideal for complex pattern recognition tasks. Rather than formulating a description of the feature, the user simply provides the algorithm with a training set of hand-classified examples: the problem then becomes one of assessing whether some new example shares the characteristics of this training data. In seismology, this approach is being developed for the identification of high-quality seismic waveforms amidst noisy datasets (e.g. Valentine & Woodhouse, 2010; Valentine & Trampert, in review): can it also be applied to topographic data? To explore this, we attempt to identify the locations of seamounts from gridded bathymetric data (e.g. Smith & Sandwell, 1997). Our approach involves assessing small 'patches' of ocean floor to determine whether they might plausibly contain a seamount, and if so, its location. Since seamounts have been extensively studied, this problem provides an ideal testing ground: in particular, various catalogues exist, compiled using 'traditional' approaches (e.g. Kim & Wessel, 2011). This allows us to straightforwardly generate training datasets, and compare algorithmic performance. In future, we hope to extend the approach to identifying the seamount's 'footprint' and, by isolating it from the underlying seafloor, extracting parameters of interest such as height, radius and volume. Kim, S.-S. & Wessel, P., 2011. New global seamount census from altimetry-derived gravity data, Geophysical Journal International, 186, pp.615-631. Smith, W., and Sandwell, D., 1997. Global seafloor topography from satellite altimetry and ship depth soundings, Science, 277, pp.1957-1962. Valentine, A. & Trampert, J., in review. Data-space reduction, quality assessment and searching of seismograms: Autoencoder networks for waveform data. Valentine, A. & Woodhouse, J., 2010. Approaches to automated data selection for global seismic tomography, Geophysical Journal International, 102, pp.1001-1012.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images.
Gumaei, Abdu; Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-05-15
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang's method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used.
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
Non-negative matrix factorization in texture feature for classification of dementia with MRI data
NASA Astrophysics Data System (ADS)
Sarwinda, D.; Bustamam, A.; Ardaneswari, G.
2017-07-01
This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).
Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW central Anatolia, Turkey
NASA Astrophysics Data System (ADS)
Doğan, Uğur; Koçyiğit, Ali
2018-04-01
This study focuses on the morphotectonic evolutionary history of two significant geomorphic features, Suğla structural-border polje and Maviboğaz canyon, located within the Suğla-Seydişehir, Akören-Kavakköy, and Bozkır grabens in the central Taurides. Data were obtained by detailed field mapping of faults, rocks, and geomorphic features. Three phases of tectonic deformation were determined. The three erosional surfaces developed, especially in the form of tectonically controlled steps, during Oligocene-early Miocene, middle Miocene, and late Miocene-early Pliocene, sequentially. Southwest- to northeast-trending karstified hanging paleovalleys are present on the high erosional surfaces, which have been attributed to the end of early Miocene and late Miocene. Faulting-induced tectonic movements enabled the formation of Suğla-Seydişehir paleograben in early Miocene. We suggest that the Maviboğaz canyon was formed by captures at the beginning of late Miocene and late Pliocene and by incision in Late Pliocene-Quaternary, depending on the headward erosion of Çarşamba River. Starting from the beginning of Quaternary, a tensional neotectonic regime became prominent and then a series of modern graben-horst structures formed along the reactivated older grabens. One of these is the Suğla-Seydişehir reactivated graben. Suğla structural-border polje developed within the graben. Total visible tectonic subsidence of the polje is 134 m. Underground capture of surface water occurred on the southern slopes of the graben. Waters of Suğla polje are transported intermittently into Konya basin on the surface and into the Mediterranean basin via natural swallow holes. Beach deposits, water marks, cliffs, and notches marking the late Pleistocene lake level (10 m) and two perched corrosion surfaces ( 50 and 22 m) were detected around the polje.
Geology and evolution of lakes in north-central Florida
Kindinger, J.L.; Davis, J.B.; Flocks, J.G.
1999-01-01
Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phased: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.
Davies, Jaime S; Stewart, Heather A; Narayanaswamy, Bhavani E; Jacobs, Colin; Spicer, John; Golding, Neil; Howell, Kerry L
2015-01-01
In 2009 the NW and SE flanks of Anton Dohrn Seamount were surveyed using multibeam echosounder and video ground-truthing to characterise megabenthic biological assemblages (biotopes) and assess those which clearly adhere to the definition of Vulnerable Marine Ecosystems, for use in habitat mapping. A combination of multivariate analysis of still imagery and video ground-truthing defined 13 comprehensive descriptions of biotopes that function as mapping units in an applied context. The data reveals that the NW and SE sides of Anton Dohrn Seamount (ADS) are topographically complex and harbour diverse biological assemblages, some of which agree with current definitions of 'listed' habitats of conservation concern. Ten of these biotopes could easily be considered Vulnerable Marine Ecosystems; three coral gardens, four cold-water coral reefs, two xenophyophore communities and one sponge dominated community, with remaining biotopes requiring more detailed assessment. Coral gardens were only found on positive geomorphic features, namely parasitic cones and radial ridges, found both sides of the seamount over a depth of 1311-1740 m. Two cold-water coral reefs (equivalent to summit reef) were mapped on the NW side of the seamount; Lophelia pertusa reef associated with the cliff top mounds at a depth of 747-791 m and Solenosmilia variabilis reef on a radial ridge at a depth of 1318-1351 m. Xenophyophore communities were mapped from both sides of the seamount at a depth of 1099-1770 m and were either associated with geomorphic features or were in close proximity (< 100 m) to them. The sponge dominated community was found on the steep escarpment either side of the seamount over at a depth of 854-1345 m. Multivariate diversity revealed the xenophyophore biotopes to be the least diverse, and a hard substratum biotope characterised by serpulids and the sessile holothurian, Psolus squamatus, as the most diverse.
Davies, Jaime S.; Stewart, Heather A.; Narayanaswamy, Bhavani E.; Jacobs, Colin; Spicer, John; Golding, Neil; Howell, Kerry L.
2015-01-01
In 2009 the NW and SE flanks of Anton Dohrn Seamount were surveyed using multibeam echosounder and video ground-truthing to characterise megabenthic biological assemblages (biotopes) and assess those which clearly adhere to the definition of Vulnerable Marine Ecosystems, for use in habitat mapping. A combination of multivariate analysis of still imagery and video ground-truthing defined 13 comprehensive descriptions of biotopes that function as mapping units in an applied context. The data reveals that the NW and SE sides of Anton Dohrn Seamount (ADS) are topographically complex and harbour diverse biological assemblages, some of which agree with current definitions of ‘listed’ habitats of conservation concern. Ten of these biotopes could easily be considered Vulnerable Marine Ecosystems; three coral gardens, four cold-water coral reefs, two xenophyophore communities and one sponge dominated community, with remaining biotopes requiring more detailed assessment. Coral gardens were only found on positive geomorphic features, namely parasitic cones and radial ridges, found both sides of the seamount over a depth of 1311–1740 m. Two cold-water coral reefs (equivalent to summit reef) were mapped on the NW side of the seamount; Lophelia pertusa reef associated with the cliff top mounds at a depth of 747–791 m and Solenosmilia variabilis reef on a radial ridge at a depth of 1318-1351 m. Xenophyophore communities were mapped from both sides of the seamount at a depth of 1099–1770 m and were either associated with geomorphic features or were in close proximity (< 100 m) to them. The sponge dominated community was found on the steep escarpment either side of the seamount over at a depth of 854-1345 m. Multivariate diversity revealed the xenophyophore biotopes to be the least diverse, and a hard substratum biotope characterised by serpulids and the sessile holothurian, Psolus squamatus, as the most diverse. PMID:25992572
NASA Astrophysics Data System (ADS)
Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.
2017-12-01
It has been widely demonstrated that glacial erosion limits the height of mid-latitude mountain ranges—a phenomenon commonly referred to as the "glacial buzzsaw." The strength of the buzzsaw is thought to diminish, or die out completely, at lower latitudes, where glacial landscapes occupy only a small part of mountain belts affected by Pleistocene glaciation. Here we argue that glacial erosion has actually truncated the rise of many tropical orogens. To elicit signs of height-limiting glacial erosion in the tropics, we employ a new take on an old tool: we identify transient geomorphic features by tracking the evolution of (sub)catchment hypsometry with increasing elevation above base level, a method we term "progressive hypsometry." In several tropical mountain belts, including the Central Range of Taiwan, the Talamanca of Costa Rica, the Finisterres of Papua New Guinea, and the Rwenzoris of East Africa, progressive hypsometry reveals transient landscapes perched at various elevations, but the highest of these transient features are consistently glacial landscapes near the lower limit of late-Pleistocene glacial equilibrium line altitude (ELA) fluctuation. We attribute this pattern to an efficient glacial buzzsaw. In many cases, these glacial landscapes are undergoing contemporary destruction by headward propagating, fluvially-driven escarpments. We deduce that a duel between glacial buzzcutting and fluvially-driven scarp propagation has been ongoing throughout the Pleistocene in these places, and that the preservation potential of tropical glacial landscapes is low. To this end, we have identified possible remnants of glacial landscapes in the final stages of scarp consumption, and use 3He surface exposure age dating of boulders and bedrock surfaces in two of these landscapes to constrain major geomorphic activity to before the onset of the Last Glacial Maximum. Our work points to a profound climatic influence on the evolution of these warm, tectonically active, tropical mountain ranges and identifies glaciation as a trigger of autogenic behavior in flanking fluvial landscapes.
Johnston, J.W.; Thompson, T.A.; Wilcox, D.A.; Baedke, S.J.
2007-01-01
A common break was recognized in four Lake Superior strandplain sequences using geomorphic and sedimentologic characteristics. Strandplains were divided into lakeward and landward sets of beach ridges using aerial photographs and topographic surveys to identify similar surficial features and core data to identify similar subsurface features. Cross-strandplain, elevation-trend changes from a lowering towards the lake in the landward set of beach ridges to a rise or reduction of slope towards the lake in the lakeward set of beach ridges indicates that the break is associated with an outlet change for Lake Superior. Correlation of this break between study sites and age model results for the strandplain sequences suggest that the outlet change occurred sometime after about 2,400 calendar years ago (after the Algoma phase). Age model results from one site (Grand Traverse Bay) suggest an alternate age closer to about 1,200 calendar years ago but age models need to be investigated further. The landward part of the strandplain was deposited when water levels were common in all three upper Great Lakes basins (Superior, Huron, and Michigan) and drained through the Port Huron/Sarnia outlet. The lakeward part was deposited after the Sault outlet started to help regulate water levels in the Lake Superior basin. The landward beach ridges are commonly better defined and continuous across the embayments, more numerous, larger in relief, wider, have greater vegetation density, and intervening swales contain more standing water and peat than the lakeward set. Changes in drainage patterns, foreshore sediment thickness and grain size help in identifying the break between sets in the strandplain sequences. Investigation of these breaks may help identify possible gaps in the record or missing ridges in strandplain sequences that may not be apparent when viewing age distributions and may justify the need for multiple age and glacial isostatic adjustment models. ?? 2006 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Huckleberry, Gary; Onken, Jill; Graves, William M.; Wegener, Robert
2013-03-01
Recent archaeological excavations along the lower Salt River, Arizona resulted in the unexpected discovery of buried late Pleistocene soils and cultural features dating 5800-7100 cal YBP (Early Archaic), the latter representing the earliest evidence of human activity in the lower Salt River floodplain thus far identified. Because the lower Salt River floodplain has been heavily impacted by recent agriculture and urbanization and contains few stratigraphic exposures, our understanding of the river's geological history is limited. Here we present a late Quaternary alluvial chronology for a segment of the lower Salt River based on 19 accelerator mass spectrometry 14C and four optically stimulated luminescence ages obtained during two previous geoarchaeological investigations. Deposits are organized into allostratigraphic units and reveal a buried late Pleistocene terrace inset into middle-to-late Pleistocene terrace deposits. Holocene terrace fill deposits unconformably cap the late Pleistocene terrace tread in the site area, and the lower portion of this fill contains the Early Archaic archaeological features. Channel entrenchment and widening ~ 900 cal YBP eroded much of the older terrace deposits, leaving only a remnant of fill containing the buried latest Pleistocene and middle-to-late Holocene deposits preserved in the site area. Subsequent overbank deposition and channel filling associated with a braided channel system resulted in the burial of the site by a thin layer of flood sediments. Our study confirms that the lower Salt River is a complex mosaic of late Quaternary alluvium formed through vertical and lateral accretion, with isolated patches of buried soils preserved through channel avulsion. Although channel avulsion is linked to changes in sediment load and discharge and may have climatic linkages, intrinsic geomorphic and local base level controls limit direct correlations of lower Salt River stratigraphy to other large rivers in the North American Southwest.
Hydrologic controls on the development of equilibrium soil depths
NASA Astrophysics Data System (ADS)
Nicotina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.
2010-12-01
The object of the present work was the study of the coevolution of runoff production and geomorphological processes and its effects on the formation of equilibrium soil depth by focusing on their mutual feedbacks. The primary goal of this work is to describe spatial patterns of soil depth resulting, under the hypothesis of dynamic equilibrium, from long-term interactions between hydrologic forcings and soil production, erosion and sediment transport processes. These processes dominate the formation of actual soil depth patterns that represent the boundary condition for water redistribution, thus this paper also proposes and attempt to set the premises for decoding their individual role and mutual interactions in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Moreover the setup of a coupled hydrologic-geomorphologic approach represents a first step into the study of such interactions and in particular of the effects of soil moisture in determining soil production functions. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography from high resolution digital terrain models (DTM). Geomorphological processes are described by means of well-studied geomorphic transport laws. Soil depth is assumed, in the exponential soil production function, as a proxy for all the mechanisms that induce mechanical disruption of bedrock and it’s conversion into soil. This formulation, although empirical, has been widely used in the literature and is currently accepted. The modeling approach is applied to the semi-arid Dry Creek Experimental Watershed, located near Boise, Idaho, USA. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origin is discussed.
Al-Nasrawi, Ali K M; Hamylton, Sarah M; Jones, Brian G
2018-06-03
Monitoring estuarine ecological-geomorphological dynamics has become a crucial aspect of studying the impacts of climate change and worldwide infrastructure development in coastal zones. Together, these factors have changed the natural eco-geomorphic processes that affect estuarine regimes and comprehensive modelling of coastal resources can assist managers to make appropriate decisions about their sustainable use. This study has utilised Towamba estuary (southeastern NSW, Australia), to demonstrate the value and priority of modelling estuarine dynamism as a measure of the rates and consequences of eco-geomorphic changes. This research employs several geoinformatic modelling approaches over time to investigate and assess how climate change and human activities have altered this estuarine eco-geomorphic setting. Multitemporal trend/change analysis of sediment delivery, shoreline positions and land cover, determined from fieldwork and GIS analysis of remote sensing datasets, shows significant spatio-temporal changes to the elevation and areal extent of sedimentary facies in the Towamba estuary over the past 65 years. Geomorphic growth (~ 2600 m 2 annually) has stabilised the estuarine habitats, particularly within native vegetation, salt marsh and mangrove areas. Geomorphic changes have occurred because of a combination of sediment runoff from the mostly unmodified terrestrial catchment, nearshore processes (ocean dynamics) and human activities. The construction of GIS models, verified with water and sediment samples, can characterise physical processes and quantify changes within the estuarine ecosystem. Such robust models will allow resource managers to evaluate the potential effects of changes to the current coastal ecosystems.
NASA Astrophysics Data System (ADS)
Vanacker, V.
2012-04-01
The surface of the Earth is changing rapidly, largely in response to anthropogenic perturbation. Direct anthropogenic disturbance of natural environments may be much larger in many places than the (projected) indirect effects of climate change. There is now large evidence that humans have significantly altered geomorphic process rates, mainly through changes in vegetation composition, density and cover. While much attention has been given to the impact of vegetation degradation on geomorphic process rates, I suggest that the pathway of restoration is equally important to investigate. First, vegetation recovery after crop abandonment has a rapid and drastic impact on geomorphic process rates. Our data from degraded catchments in the tropical Andes show that erosion rates can be reduced by up to 100 times when increasing the protective vegetation cover. During vegetation restoration, the combined effects of the reduction in surface runoff, sediment production and hydrological connectivity are stronger than the individual effects together. Therefore, changes in erosion and sedimentation during restoration are not simply the reverse of those observed during degradation. Second, anthropogenic perturbation causes a profound but often temporary change in geomorphic process rates. Reconstruction of soil erosion rates in Spain shows us that modern erosion rates in well-vegetated areas are similar to long-term rates, despite evidence of strong pulses in historical erosion rates after vegetation clearance and agriculture. The soil vegetation system might be resilient to short pulses of accelerated erosion (and deposition), as there might exist a dynamic coupling between soil erosion and production also in degraded environments.
Human impact on the geomorphic evolution of the HOAL catchment, Lower Austria
NASA Astrophysics Data System (ADS)
Pöppl, Ronald; Kraushaar, Sabine; Strauss, Peter; Fuchs, Markus
2016-04-01
Since the beginning of human settlement extensive land cover and land use changes have induced significant geomorphic landscape changes as water and sediment dynamics have been transformed. The presented project focuses on the reconstruction of Holocene geomorphic landscape evolution and the assessment of recent geomorphic processes in the Northern foothills of the Eastern Alps in Austria - an area intensively agriculturally used since the middle ages and often overlooked in its geomorphic evolution. The study area is a small catchment (ca. 66 ha) which is located in the western part of Lower Austria comprising a land use history as well as environmental settings typical for wide regions across the Northern foothills of the Eastern Alps in Austria. The catchment elevation ranges from 268 to 323 m a.s.l. and has a mean slope angle of 8%. The climate in this region can be characterized as humid. The lithology mainly consists of Tertiary marly to sandy deposits which are superimposed by Quaternary sediments (e.g. loesses). Dominant soil types are Cambisols, Luvisols, and Planosols. Furthermore, the catchment is used as a Hydrological Open Air Laboratory (HOAL) implemented for the long-term research of water-related flow and transport processes in the landscape (http://hoal.hydrology.at). The main objective of this research project is to reconstruct Holocene landscape evolution by analyzing physical parameters of sediment cores taken from colluvial and alluvial sediment archives with additional 14C and OSL dating as well as by the measurement of truncated and covered standardized Luvisol profiles. First results will be presented at the EGU General Assembly 2016.
Hirmas, D.R.; Graham, R.C.; Kendrick, K.J.
2011-01-01
Mountains comprise an extensive and visually prominent portion of the landscape in the Mojave Desert, California. Landform surface properties influence the role these mountains have in geomorphic processes such as dust flux and surface hydrology across the region. The primary goal of this study was to describe and quantify land surface properties of arid-mountain landforms as a step toward unraveling the role these properties have in soil-geomorphic processes. As part of a larger soil-geomorphic study, four major landform types were identified within the southern Fry Mountains in the southwestern Mojave Desert on the basis of topography and landscape position: mountaintop, mountainflank, mountainflat (intra-range low-relief surface), and mountainbase. A suite of rock, vegetation, and morphometric land surface characteristic variables was measured at each of 65 locations across the study area, which included an associated piedmont and playa. Our findings show that despite the variation within types, landforms have distinct land surface properties that likely control soil-geomorphic processes. We hypothesize that surface expression influences a feedback process at this site where water transports sediment to low lying areas on the landscape and wind carries dust and soluble salts to the mountains where they are washed between rocks, incorporated into the soil, and retained as relatively long-term storage. Recent land-based video and satellite photographs of the dust cloud emanating from the Sierra Cucapá Mountains in response to the 7.2-magnitude earthquake near Mexicali, Mexico, support the hypothesis that these landforms are massive repositories of dust.
a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image
NASA Astrophysics Data System (ADS)
Li, L.; Yang, H.; Chen, Q.; Liu, X.
2018-04-01
Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.
Development and Application of Flow Duration Curves for Stream Restoration
2016-02-01
hydrograph (TNC 2009). Colorado State University’s GeoTools offers an FDC computation focusing on the geomorphic implications of hydrology (Bledsoe...processes • Assessment of changes in stream metabolism using temperature duration curves • Evaluation of pollutant or contaminant transport using...major concern associated with stream restoration projects, due to the many chemical, ecological, and geomorphic advantages a robust riparian buffer
The Geomorphic Road Analysis and Inventory Package (GRAIP) Volume 2: Office Procedures
Richard M. Cissel; Thomas A. Black; Kimberly A. T. Schreuders; Ajay Prasad; Charles H. Luce; David G. Tarboton; Nathan A. Nelson
2012-01-01
An important first step in managing forest roads for improved water quality and aquatic habitat is the performance of an inventory. The Geomorphic Roads Analysis and Inventory Package (GRAIP) was developed as a tool for making a comprehensive inventory and analysis of the effects of forest roads on watersheds. This manual describes the data analysis and process of a...
Novel Features for Brain-Computer Interfaces
Woon, W. L.; Cichocki, A.
2007-01-01
While conventional approaches of BCI feature extraction are based on the power spectrum, we have tried using nonlinear features for classifying BCI data. In this paper, we report our test results and findings, which indicate that the proposed method is a potentially useful addition to current feature extraction techniques. PMID:18364991
NASA Astrophysics Data System (ADS)
Sonam; Jain, Vikrant
2018-03-01
Long profiles of rivers provide a platform to analyse interaction between geological and geomorphic processes operating at different time scales. Identification of an appropriate model for river long profile becomes important in order to establish a quantitative relationship between the profile shape, its geomorphic effectiveness, and inherent geological characteristics. This work highlights the variability in the long profile shape of the Ganga River and its major tributaries, its impact on stream power distribution pattern, and role of the geological controls on it. Long profile shapes are represented by the sum of two exponential functions through the curve fitting method. We have shown that coefficients of river long profile equations are governed by the geological characteristics of subbasins. These equations further define the spatial distribution pattern of stream power and help to understand stream power variability in different geological terrains. Spatial distribution of stream power in different geological terrains successfully explains spatial variability in geomorphic processes within the Himalayan hinterland area. In general, the stream power peaks of larger rivers lie in the Higher Himalaya, and rivers in the eastern hinterland area are characterised by the highest magnitude of stream power.
Gully evolution and geomorphic adjustments of badlands to reforestation
Ballesteros Cánovas, J. A.; Stoffel, M.; Martín-Duque, J. F.; Corona, C.; Lucía, A.; Bodoque, J. M.; Montgomery, D. R.
2017-01-01
Badlands and gullied areas are among those geomorphic environments with the highest erosion rates worldwide. Nevertheless, records of their evolution and their relations with anthropogenic land transformation are scarcer. Here we combine historical data with aerial photographs and tree-ring records to reconstruct the evolution of a badland in a Mediterranean environment of Central Spain. Historical sources suggest an anthropogenic origin of this badland landscape, caused by intense quarrying activities during the 18th century. Aerial photographs allowed detection of dramatic geomorphic changes and the evolution of an emerging vegetation cover since the 1960s, due to widespread reforestation. Finally, tree-ring analyses of exposed roots allowed quantification of recent channel incision of the main gully, and sheet erosion processes. Our results suggest that reforestation practices have influenced the initiation of an episode of incision in the main channel in the 1980s, through the hypothesized creation of disequilibrium in water-sediment balance following decoupling of hillslopes from channel processes. These findings imply an asymmetry in the geomorphic response of badlands to erosion such that in the early evolution stages, vegetation removal results in gullying, but that reforestation alone does not necessarily stabilize the landforms and may even promote renewed incision. PMID:28327591
Wildfire in the Critical Zone: Pyro-Geomorphic Feedbacks in Upland Forests
NASA Astrophysics Data System (ADS)
Sheridan, G. J.; Inbar, A.; Metzen, D.; Van der Sant, R.; Lane, P. N. J.; Nyman, P.
2017-12-01
Wildfire often triggers a dramatic geomorphic response, with erosion rates several orders of magnitude greater than background rates. The fact that wildfire is linked to increased soil erosion is well established, but could it also work the other way around? Is it possible that, over time, soil erosion could lead to an increase in wildfire? The proposed mechanism for this is a potential positive feedback between post-fire soil erosion, soil depth, and forest flammability. More fire-related erosion may, over time, lead to less soil water holding capacity, more open vegetation with drier fuels, more fire, and in turn more fire related erosion. These pyro-geomorphic feedbacks may help explain the co-evolved soil-vegetation-fire systems that are observed in the landscape. More broadly, the concept of "wildfire in the critical zone", with a greater emphasis on the interactions between fire, vegetation, hydrology, and geomorphology, may help us understand and predict the trajectory of change as the vegetation-soil-fire system responds and adjusts to the new climate forcing. This presentation will combine an extensive soil, vegetation, and post fire erosion experimental dataset, with conceptual and numerical modelling, to evaluate the significance of the potential pyro-geomorphic feedbacks described above.
Elephants (and extinct relatives) as earth-movers and ecosystem engineers
NASA Astrophysics Data System (ADS)
Haynes, Gary
2012-07-01
Modern African elephants affect habitats and ecosystems in significant ways. They push over trees to feed on upper branches and often peel large sections of bark to eat. These destructive habits sometimes transform woody vegetation into grasslands. Systems of elephant trails may be used and re-used for centuries, and create incised features that extend for many kilometers on migration routes. Elephants, digging in search of water or mineral sediments, may remove several cubic meters of sediments in each excavation. Wallowing elephants may remove up to a cubic meter of pond sediments each time they visit water sources. Accumulations of elephant dung on frequented land surfaces may be over 2 kg per square meter. Elephant trampling, digging, and dust-bathing may reverse stratigraphy at archeological localities. This paper summarizes these types of effects on biotic, geomorphic, and paleontological features in modern-day landscapes, and also describes several fossil sites that indicate extinct proboscideans had very similar effects, such as major sediment disturbances.
Use of ERTS-1 images in the search for porphyry copper deposits in Pakistani Baluchistan
NASA Technical Reports Server (NTRS)
Schmidt, R. G.
1973-01-01
Geomorphic features related to a known porphyry copper deposit at Saindak, western Chagai District, Pakistan, are easily distinguished on ERTS-1 images. New geologic information from the images was used in conjunction with known geology to evaluate one previously known prospect area and to suggest two additional ones, but no new prospects were recognized on the basis of the images alone. The study also showed that Saindak-type deposits are not likely to be present in some extensive areas of the Chagai District. The Saindak deposit is in an area of relatively easily eroded folded sedimentary and volcanic rocks. The deposit is characterized by an elongate zone of easily eroded sulfide-rich rock surrounded by this rim and the central sulfide-rich valley are conspicuous features on the images. Swarms of dikes are probably useful for distinguishing real rims from other resistant rock types, but there is no expression of them on the image, although they are easily seen on aerial photographs of the Saindak rim.
Landslide inventory for the Little North Santiam River Basin, Oregon
Sobieszczyk, Steven
2010-01-01
This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).
NASA Astrophysics Data System (ADS)
Zani, Hiran; Assine, Mario Luis; McGlue, Michael Matthew
2012-08-01
Traditional Shuttle Radar Topography Mission (SRTM) topographic datasets hold limited value in the geomorphic analysis of low-relief terrains. To address this shortcoming, this paper presents a series of techniques designed to enhance digital elevation models (DEMs) of environments dominated by low-amplitude landforms, such as a fluvial megafan system. These techniques were validated through the study of a wide depositional tract composed of several megafans located within the Brazilian Pantanal. The Taquari megafan is the most remarkable of these features, covering an area of approximately 49,000 km2. To enhance the SRTM-DEM, the megafan global topography was calculated and found to be accurately represented by a second order polynomial. Simple subtraction of the global topography from altitude produced a new DEM product, which greatly enhanced low amplitude landforms within the Taquari megafan. A field campaign and optical satellite images were used to ground-truth features on the enhanced DEM, which consisted of both depositional (constructional) and erosional features. The results demonstrate that depositional lobes are the dominant landforms on the megafan. A model linking baselevel change, avulsion, clastic sedimentation, and erosion is proposed to explain the microtopographic features on the Taquari megafan surface. The study confirms the potential promise of enhanced DEMs for geomorphological research in alluvial settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: The purpose of this research is investigating which texture features extracted from FDG-PET images by gray-level co-occurrence matrix(GLCM) have a higher prognostic value than the other texture features. Methods: 21 non-small cell lung cancer(NSCLC) patients were approved in the study. Patients underwent 18F-FDG PET/CT scans with both pre-treatment and post-treatment. Firstly, the tumors were extracted by our house developed software. Secondly, the clinical features including the maximum SUV and tumor volume were extracted by MIM vista software, and texture features including angular second moment, contrast, inverse different moment, entropy and correlation were extracted using MATLAB.The differences can be calculatedmore » by using post-treatment features to subtract pre-treatment features. Finally, the SPSS software was used to get the Pearson correlation coefficients and Spearman rank correlation coefficients between the change ratios of texture features and change ratios of clinical features. Results: The Pearson and Spearman rank correlation coefficient between contrast and SUV maximum is 0.785 and 0.709. The P and S value between inverse difference moment and tumor volume is 0.953 and 0.942. Conclusion: This preliminary study showed that the relationships between different texture features and the same clinical feature are different. Finding the prognostic value of contrast and inverse difference moment were higher than the other three textures extracted by GLCM.« less
Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat
2015-06-01
Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.
Research of facial feature extraction based on MMC
NASA Astrophysics Data System (ADS)
Xue, Donglin; Zhao, Jiufen; Tang, Qinhong; Shi, Shaokun
2017-07-01
Based on the maximum margin criterion (MMC), a new algorithm of statistically uncorrelated optimal discriminant vectors and a new algorithm of orthogonal optimal discriminant vectors for feature extraction were proposed. The purpose of the maximum margin criterion is to maximize the inter-class scatter while simultaneously minimizing the intra-class scatter after the projection. Compared with original MMC method and principal component analysis (PCA) method, the proposed methods are better in terms of reducing or eliminating the statistically correlation between features and improving recognition rate. The experiment results on Olivetti Research Laboratory (ORL) face database shows that the new feature extraction method of statistically uncorrelated maximum margin criterion (SUMMC) are better in terms of recognition rate and stability. Besides, the relations between maximum margin criterion and Fisher criterion for feature extraction were revealed.
NASA Astrophysics Data System (ADS)
Wallick, R.; Anderson, S.; Keith, M.; Cannon, C.; O'Connor, J. E.
2010-12-01
Gravel bed rivers in the Pacific Northwest and elsewhere provide an important source of commercial aggregate. Mining in-stream gravel, however, can alter channel and bar morphology, resulting in habitat degradation for aquatic species. In order to sustainably manage rivers subject to in-stream gravel extraction, regulatory agencies in Oregon have requested that the USGS complete a series of comprehensive geomorphic and sediment transport studies to provide context for regulatory-agency management of in-stream gravel extraction in Oregon streams. The Umpqua River in western Oregon poses special challenges to this type of assessment. Whereas most rivers subject to gravel extraction are relatively rich in bed-material sediment, the Umpqua River is a mixed bedrock-alluvium system draining a large (1,804 km2) basin; hence typical bed-material transport analyses and ecologic and geomorphic lessons of in-stream gravel extraction on more gravel-rich rivers have limited applicability. Consequently, we have relied upon multiple analyses, including comprehensive historical mapping, bedload transport modeling, and a GIS-based sediment yield analysis to assess patterns of bed-material transport and annual rates of bed-material flux. These analyses, combined with numerous historical accounts, indicate that since at least the 1840’s, the Umpqua River planform has been stable, as bar geometry is largely fixed by valley physiography and the channel itself is underlain mainly by bedrock. Preliminary estimates of annual bedload transport rates calculated for the period 1951-2008 from bed-material transport capacity relations at 42 bars along the South Umpqua and mainstem Umpqua Rivers vary from 0 to 600,000 metric tons per year, with this large spread reflecting variability in bar geometry and grainsize. Large stable bars are activated only during exceptionally large floods and have negligible transport during most years whereas smaller, low elevation bars serve as transient storage for gravel transported during typical flood events. A more plausible range of average annual transport rates, based on bedload transport capacity estimates for bars with reasonable values for reference shear stress, is 500-50,000 metric tons/year. Our sediment yield and mapping analyses support these more conservative estimates, providing annual transport rates of 13,000-50,000 metric tons per year for the South Umpqua River and mainstem Umpqua River through the Coast Range. Downstream, predicted flux rates decrease as attrition exceeds input of bed material, gradually diminishing to 30,000-40,000 metric tons at the head of tide. Because bed-material transport along the supply-limited Umpqua River is highly variable in time and space, the range of predicted flux values is thought to characterize the upper bounds of annual gravel transport.
Capability of geometric features to classify ships in SAR imagery
NASA Astrophysics Data System (ADS)
Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li
2016-10-01
Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.
Andrean examples of mega-geomorphology themes
NASA Technical Reports Server (NTRS)
Bloom, A. L.
1985-01-01
Geomorphic (or physiographic) provinces have been a well known and useful method of regional landform classification for a century. Every earth scientist will recognize a phrase such as Appalachian Plateau or Southern Rocky Mountains as defining a discrete region of consistent geologic structure that has experienced a similar interval of erosion by a similar process or set of processes. The geomorphic provinces formalized in the United States by Fenneman in the 1920's continue to be highly satisfactory even though some boundaries were only vaguely drawn. Mosaics of LANDSAT images illustrate better than any earlier maps the validity and coherence of Fenneman's provinces. The concept of geomorphic provinces has been used subconsciously or intuitively, to describe the relief of the ocean floor and the topography of the Moon and other planets.
Legacy effects in linked ecological-soil-geomorphic systems of drylands
Monger, Curtis; Sala, Osvaldo E.; Duniway, Michael C.; Goldfus, Haim; Meir, Isaac A.; Poch, Rosa M.; Throop, Heather L.; Vivoni, Enrique R.
2015-01-01
A legacy effect refers to the impacts that previous conditions have on current processes or properties. Legacies have been recognized by many disciplines, from physiology and ecology to anthropology and geology. Within the context of climatic change, ecological legacies in drylands (eg vegetative patterns) result from feedbacks between biotic, soil, and geomorphic processes that operate at multiple spatial and temporal scales. Legacy effects depend on (1) the magnitude of the original phenomenon, (2) the time since the occurrence of the phenomenon, and (3) the sensitivity of the ecological–soil–geomorphic system to change. Here we present a conceptual framework for legacy effects at short-term (days to months), medium-term (years to decades), and long-term (centuries to millennia) timescales, which reveals the ubiquity of such effects in drylands across research disciplines.
Vegetation ecogeomorphology, dynamic equilibrium, and disturbance: chapter 7
Hupp, Cliff R.
2013-01-01
Early ecologists understood the need to document geomorphic form and process to explain plant species distributions. Although this relationship has been acknowledged for over a century, with the exception of a few landmark papers, only the past few decades have experienced intensive research on this interdisciplinary topic. Here the authors provide a summary of the intimate relations between vegetation and geomorphic/process on hillslopes and fluvial systems. These relations are separated into systems (primarily fluvial) in dynamic equilibrium and those that are in nonequilibrium conditions including the impacts of various human disturbances affecting landforms, geomorphic processes, and interrelated, attendant vegetation patterns and processes. The authors conclude with a conceptual model of stream regime focusing on sediment deposition, erosion, and equilibrium that can be expanded to organize and predict vegetation patterns and life history strategies.
Human geomorphic footprint and global geomorphic change: implications for hydrogeomorphic hazards
NASA Astrophysics Data System (ADS)
Remondo, Juan
2010-05-01
The human geomorphic footprint (HGF), expressed as the area affected by the construction of new 'anthropogeoforms' or the volume of geologic materials directly or indirectly displaced by human action has grown considerably in the last decades. Available data suggest that the present HGF is roughly 50,000 km2 a-1 of new anthropogeoforms and 300 x109 t a-1 of solid materials transferred from one part of the earth's surface to another. The latter represents a 'technological denudation' that could be 1-2 orders of magnitude greater than denudation by natural agents or sediment transport by the world's rivers. This implies a profound modification of geomorphic processes that produces a series of often disregarded environmental consequences. Some of those can by directly linked to excavation/accumulation activities and are essentially local, but in other cases the possible relationship appears to be more indirect and could have a widespread character. The transformation of land surface by human action is shown not only by landform construction and transfer of geologic materials, but also by land-use change in general and modification of the characteristics of the surface layer. This seems to affect both the hydrologic response and the sensitivity of that surface layer to different geomorphic agents. The magnitude of the above mentioned modification is logically related to the intensity of human activities, themselves related to the number of people on the planet and their economic and technological capabilities, which grow practically in all regions of the planet. It is thus reasonable to expect that the HGF and its effects should grow with time. If this were so, we should expect to find evidences of a general acceleration of geomorphic processes in the world that could represent a 'global geomorphic change'. The final expression of geomorphic processes, which could be used to test that hypothesis, is sediment generation and deposition. Data are presented on sedimentation rates in different areas showing that in most of them sedimentation has increased significantly during the last century (by about one order of magnitude in most cases) and that such increase does not seem to be related to climate but rather to human activity. If a global geomorphic change is indeed taking place, an increase in the frequency/intensity of related hazards, such as landslides or floods, should be expected. Data are presented indicating that it could be so. If what the data presented suggest is confirmed by further and deeper analyses, existing hazard and risk assessments for those processes should be reconsidered, because they would likely represent underestimates. The CAMGEO Team is formed by the following persons: Antonio Cendrero1, Gonzalo Méndez2, Jaime Bonachea1, José Gómez-Arozamena1, José Luis Cavallotto5, José Manuel Naredo3, Juan Remondo1, Lazaro V. Zuquette6, Luis Salas1, Luis M. Forte4, Marcilene Dantas-Ferreira6, Maria Angélica de O. Bezerra7, Mario da Silva, Martín A. Hurtado4, Osni J. Pejon6, Victoria Rivas1, Viola M. Bruschi1. 1) Universidad de Cantabria, Spain; 2) Universidad de Vigo, Spain; 3) Universidad Politécnica de Madrid, Spain; 4) Universidad Nacional de La Plata, Argentina; 5) Servicio de Hidrografía Naval, Argentina; 6) Universidade de Sao Paulo, Sao Carlos, Brazil; 7) Universidade Federal de Mato Grosso do Sul, Brazil.
Question analysis for Indonesian comparative question
NASA Astrophysics Data System (ADS)
Saelan, A.; Purwarianti, A.; Widyantoro, D. H.
2017-01-01
Information seeking is one of human needs today. Comparing things using search engine surely take more times than search only one thing. In this paper, we analyzed comparative questions for comparative question answering system. Comparative question is a question that comparing two or more entities. We grouped comparative questions into 5 types: selection between mentioned entities, selection between unmentioned entities, selection between any entity, comparison, and yes or no question. Then we extracted 4 types of information from comparative questions: entity, aspect, comparison, and constraint. We built classifiers for classification task and information extraction task. Features used for classification task are bag of words, whether for information extraction, we used lexical, 2 previous and following words lexical, and previous label as features. We tried 2 scenarios: classification first and extraction first. For classification first, we used classification result as a feature for extraction. Otherwise, for extraction first, we used extraction result as features for classification. We found that the result would be better if we do extraction first before classification. For the extraction task, classification using SMO gave the best result (88.78%), while for classification, it is better to use naïve bayes (82.35%).
Nonlinear features for classification and pose estimation of machined parts from single views
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-10-01
A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.
Information based universal feature extraction
NASA Astrophysics Data System (ADS)
Amiri, Mohammad; Brause, Rüdiger
2015-02-01
In many real world image based pattern recognition tasks, the extraction and usage of task-relevant features are the most crucial part of the diagnosis. In the standard approach, they mostly remain task-specific, although humans who perform such a task always use the same image features, trained in early childhood. It seems that universal feature sets exist, but they are not yet systematically found. In our contribution, we tried to find those universal image feature sets that are valuable for most image related tasks. In our approach, we trained a neural network by natural and non-natural images of objects and background, using a Shannon information-based algorithm and learning constraints. The goal was to extract those features that give the most valuable information for classification of visual objects hand-written digits. This will give a good start and performance increase for all other image learning tasks, implementing a transfer learning approach. As result, in our case we found that we could indeed extract features which are valid in all three kinds of tasks.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-03-10
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-01-01
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems. PMID:25763645
NASA Astrophysics Data System (ADS)
Wang, Ke; Guo, Ping; Luo, A.-Li
2017-03-01
Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.
Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao
2017-01-01
To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181
Houshyarifar, Vahid; Chehel Amirani, Mehdi
2016-08-12
In this paper we present a method to predict Sudden Cardiac Arrest (SCA) with higher order spectral (HOS) and linear (Time) features extracted from heart rate variability (HRV) signal. Predicting the occurrence of SCA is important in order to avoid the probability of Sudden Cardiac Death (SCD). This work is a challenge to predict five minutes before SCA onset. The method consists of four steps: pre-processing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In second step, bispectrum features of HRV signal and time-domain features are obtained. Six features are extracted from bispectrum and two features from time-domain. In the next step, these features are reduced to one feature by the linear discriminant analysis (LDA) technique. Finally, KNN and support vector machine-based classifiers are used to classify the HRV signals. We used two database named, MIT/BIH Sudden Cardiac Death (SCD) Database and Physiobank Normal Sinus Rhythm (NSR). In this work we achieved prediction of SCD occurrence for six minutes before the SCA with the accuracy over 91%.
NASA Astrophysics Data System (ADS)
Farnsworth, L. B.; Kelly, M. A.; Axford, Y.; Bromley, G. R.; Osterberg, E. C.; Howley, J. A.; Zimmerman, S. R. H.; Jackson, M. S.; Lasher, G. E.; McFarlin, J. M.
2015-12-01
Defining the late glacial and Holocene fluctuations of the Greenland Ice Sheet (GrIS) margin, particularly during periods that were as warm or warmer than present, provides a longer-term perspective on present ice margin fluctuations and informs how the GrIS may respond to future climate conditions. We focus on mapping and dating past GrIS extents in the Nunatarssuaq region of northwestern Greenland. During the summer of 2014, we conducted geomorphic mapping and collected rock samples for 10Be surface exposure dating as well as subfossil plant samples for 14C dating. We also obtained sediment cores from an ice-proximal lake. Preliminary 10Be ages of boulders deposited during deglaciation of the GrIS subsequent to the Last Glacial Maximum range from ~30-15 ka. The apparently older ages of some samples indicate the presence of 10Be inherited from prior periods of exposure. These ages suggest deglaciation occurred by ~15 ka however further data are needed to test this hypothesis. Subfossil plants exposed at the GrIS margin on shear planes date to ~ 4.6-4.8 cal. ka BP and indicate less extensive ice during middle Holocene time. Additional radiocarbon ages from in situ subfossil plants on a nunatak date to ~3.1 cal. ka BP. Geomorphic mapping of glacial landforms near Nordsø, a large proglacial lake, including grounding lines, moraines, paleo-shorelines, and deltas, indicate the existence of a higher lake level that resulted from a more extensive GrIS margin likely during Holocene time. A fresh drift limit, characterized by unweathered, lichen-free clasts approximately 30-50 m distal to the modern GrIS margin, is estimated to be late Holocene in age. 10Be dating of samples from these geomorphic features is in progress. Radiocarbon ages of subfossil plants exposed by recent retreat of the GrIS margin suggest that the GrIS was at or behind its present location at AD ~1650-1800 and ~1816-1889. Results thus far indicate that the GrIS margin in northwestern Greenland responded sensitively to Holocene climate changes. Ongoing research will improve the chronological constraints on these fluctuations.
NASA Astrophysics Data System (ADS)
Webster, A.; Cadenasso, M. L.
2016-12-01
Interactions among runoff, riparian and stream ecosystems, and water quality remain uncertain in many settings, particularly those heavily impacted by human activities. For example, waterways in the irrigated agricultural landscape of California's Central Valley are seasonally disconnected from groundwater tables and are extensively modified by infrastructure and management. These conditions make the impact of riparian and channel management difficult to predict across scales, which hinders efforts to promote best management practices to improve water quality. We seek to link observations across catchment, reach, and patch scales to understand patterns of nitrate and turbidity in waterways draining irrigated cropland. Data was collected on 80 reaches spanning two water management districts. At the catchment scale, water districts implemented waterway and riparian management differently: one water district had a decentralized approach, allowing individual land owners to manage their waterway channels and banks, while the other had a centralized approach, in which land owners defer management to a district-run program. At the reach scale, riparian and waterway vegetation, geomorphic complexity, and flow conditions were quantified. Reach-scale management such as riparian planting projects and channel dredging frequency were also considered. At the patch scale, denitrification potential and organic matter were measured in riparian toe-slope soils and channel sediments, along with associated vegetation and geomorphic features. All factors were tested for their ability to predict water quality using generalized linear mixed effects models and the consistency of predictors within and across scales was evaluated. A hierarchy of predictors emerges: catchment-scale management regimes predict reach-scale geomorphic and vegetation complexity, which in turn predicts sediment denitrification potential - the patch-scale factor most associated with low nitrate. Similarly, turbidity conveyance was most associated with reach-scale factors. These findings suggest that, in the absence of other regulations, a decentralized management approach to riparian zones and waterways allows reach-scale complexity to arise, which in turn promotes ecosystem function and improved water quality.
NASA Astrophysics Data System (ADS)
Curran, M. L.; Hales, G.; Michalak, M.
2016-12-01
Digital Terrain Models (DTMs) generated in Agisoft Photoscan from photogrammetry provide a basis for a high resolution, quantitative analysis of geomorphic features that are difficult to describe using conventional, commonly used techniques. Photogrammetric analysis can be particularly useful in investigating the spatial and temporal dispersal of gravel in high gradient mountainous streams. The Oak Grove Fork (OGF), located in northwestern Oregon, is one of the largest tributaries to the Clackamas River. Lake Harriet Dam and diversion was built on the OGF in 1924 as part of a hydroelectric development by Portland General Electric. Decreased flow and sediment supply downstream of Lake Harriet Dam has resulted in geomorphic and biological changes, including reduced salmonid habitat. As part of a program to help restore a portion of the natural sediment supply and improve salmonid habitat, gravel augmentation is scheduled to begin September 2016. Tracking the downstream movement of augmented gravels is crucial to establishing program success. The OGF provides a unique setting for this study; flow is regulated at the dam, except for spillover during high flow events, and a streamflow gaging station downstream of the study area reports discharge. As such, the controlled environment of the OGF provides a natural laboratory to study how a sediment-depleted channel responds geomorphically to a known volume of added gravel. This study uses SfM to evaluate deposition of the augmented gravel following its introduction. The existing channel is characterized by coarse, angular gravel, cobble, and boulder; the augmented gravel is finer, rounded, and 5% of the volume is an exotic lithology to provide a visual tracer. Baseline, pre-gravel introduction DTMs are constructed and will be differenced with post-gravel introduction DTMs to calculate change at four study sites. Our preliminary pilot testing on another river shows that centimeter-scale accretion and aggradation within the wetted channel and on exposed gravel bars can be detected using this methodology. The resolution of the baseline DTMs on the Oak Grove Fork support these initial results. Continued monitoring and quantifying of vertical change within the study reach will inform future rehabilitation efforts and gravel augmentation practices.
Excursions in fluvial (dis)continuity
NASA Astrophysics Data System (ADS)
Grant, Gordon E.; O'Connor, Jim; Safran, Elizabeth
2017-01-01
Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences. In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands: punctuated episodes of cutting and filling, discretization of landscapes into hierarchies of structure and control, the work of extreme events. Orderly and progressive evolution towards a steady or ideal state is replaced by chaotic episodes of disturbance and recovery. Recent developments in the field of geomorphology suggest that we may be on the cusp of a new paradigm that recognizes that both continuous and discontinuous processes and mechanisms play a role in fluvial processes and landscape evolution with neither holding sway over the other and both needed to see rivers as they are.
NASA Astrophysics Data System (ADS)
Eldridge, David J.
1999-05-01
The distribution and abundance of soil crust lichens and bryophytes was examined in a patterned Callitris glaucophylla woodland in eastern Australia. Twenty-one lichen species and 26 bryophyte species were collected within thirty quadrats along a sequence of runoff, interception and runoff zones. Crust cover was significantly greatest in the interception zones (79.0 %), followed by the runoff zones (24.0 %), and lowest in the groved, runon zones (6.6 %). Lichens and bryophytes were distributed across all geomorphic zones, and, although there were significantly more moss species in the interception zones (mean = 9.1) compared with either the runoff (4.2) or runon (3.2) zones, the number of lichen species did not vary between zones. Ordination of a reduced data set of 32 species revealed a separation of taxa into distinct groups corresponding to the three geomorphic zones. Canonical correspondence analysis (CCA) of the 32 species and thirteen environmental variables revealed that the most important factors associated with the distribution of species were sheet and scarp erosion, soil stability and coherence, litter cover and crust cover. Surface cracking, microtopography and plant cover were of intermediate importance. The CCA biplot revealed that the timbered runon zones (groves) were dominated by `shade-tolerant' mosses Fissidens vittatus and Barbula hornschuchiana, whilst the heavily eroded runoff zones supported sparse populations of `erosion tolerant' lichens ( Endocarpon rogersii) and mosses (Bryum argenteum and Didymodon torquatus). Interception zones supported a rich suite of `crust forming' mosses and lichens capable of tolerating moderate inundation by overland flow. Two other groups of taxa were identified by this analysis: the `pioneer' group, comprising mainly nitrogen-fixing lichens which occupy the zone of active erosion at the lower edge of the groves, and the `opportunists' dominated by liverworts, occupying the shallow depressions or bays at the margins of the groves and the interception zones. This study confirms that the non-vascular lichens and bryophytes in these arid soil crusts, are, like the vascular plants, strongly patterned according to geomorphic zone, being most strongly associated with soil surface and erosional features.
Excursions in fluvial (dis)continuity
Grant, Gordon E.; O'Connor, James E.; Safran, Elizabeth
2017-01-01
Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences.In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands: punctuated episodes of cutting and filling, discretization of landscapes into hierarchies of structure and control, the work of extreme events. Orderly and progressive evolution towards a steady or ideal state is replaced by chaotic episodes of disturbance and recovery. Recent developments in the field of geomorphology suggest that we may be on the cusp of a new paradigm that recognizes that both continuous and discontinuous processes and mechanisms play a role in fluvial processes and landscape evolution with neither holding sway over the other and both needed to see rivers as they are.
The geomorphic effect of recent storms - Quantifying meso scale abrasion across a shore platform
NASA Astrophysics Data System (ADS)
Cullen, Niamh; Bourke, Mary; Naylor, Larissa
2017-04-01
Boulder abrasion trails (BATs) are lineations on the surface of rock platforms formed by the movement of traction-load clasts by waves. They have been observed on a variety of platform lithologies, including limestone, granite and basalt. Despite previous reporting of these features, the abrasion styles and geomorphic work done by boulder transport has not been quantified. We present the first quantitative measurement of shore platform erosion by boulder transport during extreme storms that occurred in the winter of 2015-2016. Following two storm events in 2016 we mapped and measured 33 individual BATs on a sandstone platform on the west coast of Ireland. The total (minimum) abraded surface area was 10m2. The total (minimum) volume of material abraded was 0.2m3. In order to test the efficacy of this process during non-storm conditions we conducted field experiments on the same platform. We identified two sites on the platform that were similar, but differed in their intertidal roughness. We installed an RBR solo wave pressure transducer (PT) at 0m OD at both locations to record wave data. We measured platform roughness, determined as the fractal dimension of the platform profiles at both sites. We deployed an array of boulders of known dimensions and mass, parallel to the shoreline at 0.5m intervals from the PTs. The experiments were conducted 1. during relatively calm conditions and 2. during higher energy conditions. Data was collected for one tidal cycle. Any boulder displacement distance and direction was measured and geomorphic effects were documented. We find that BATs are formed under a range of wave energy conditions. Our observations indicate that along the North Atlantic coastline, BATs can occur at a high frequency, only limited by sediment supply. Our data show that abrasion by boulder transport is a potentially significant geomorphological process acting to abrade platforms under contemporary climate conditions. In addition, our preliminary findings suggest that platform roughness exerts a strong influence on wave energy and potential boulder transport. We find that abrasion of the platform surface is a fundamentally important process which contributes to lowering of the platform surface over time.
NASA Astrophysics Data System (ADS)
Bullard, T. F.; Bacon, S. N.; Kimball, V. R.
2015-12-01
The geomorphology and stratigraphy preserved in a canyon reach of the Middle Snake River provide model parameter constraints for estimating Holocene paleohydrology. Channel constrictions, which acted as hydraulic weirs throughout the Holocene, were created in this reach by the Bonneville Flood (~17.5 ka) that left very large (>10 m) slabs of basalt and 2-3 m diameter boulder deposits near the canyon floor. Post-Bonneville Flood landforms and deposits that formed during the Holocene are situated less than ~30 m above river level (arl) in this reach and include fluvial and boulder terraces, alluvial fans, and incised tributary alluvial units. Relative topographic position of these geomorphic features, cross-cutting relations, multiple buried soils, depositional and erosional contacts, and radiocarbon dates from terraces (Qt) and alluvial fans provide a geomorphic and stratigraphic framework and a Holocene chronology for this area. The relative stratigraphic position of a massive silty sand that overlies Bonneville Flood gravel in Qt5 (~20 m arl) and Qt4 (~10 m arl) deposits and comprises all of Qt3 (~5 m arl) deposits indicates changes in Holocene discharge; longitudinal profiles of fluvial terraces graded to hydraulic constrictions provide reasonable estimates of paleo-stage. Fifteen radiocarbon dates yielded ages of ~8670 and ~3500 cal yr BP for Qt4 deposits and ~1100 and ~100 cal yr BP for Qt3 deposits and help define periods of episodic cutting and filling. Timing of Qt4 and Qt3 cut-and-fill episodes and alluvial fan formation correlates well with Holocene global and regional paleoclimate events inferred from Great Basin lake histories including wet periods from ~9.0 to 8.0 ka and ~4.2 to 2.5 ka, the Medieval Climatic Anomaly (~1.2 to 0.8 ka), and the Little Ice Age (~0.3 to 0.6 ka). The fluvial geomorphology documented in this study will be used to develop a watershed-scale hydrologic model to infer paleoprecipitation in the region during the Holocene.
Automated Image Registration Using Morphological Region of Interest Feature Extraction
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2005-01-01
With the recent explosion in the amount of remotely sensed imagery and the corresponding interest in temporal change detection and modeling, image registration has become increasingly important as a necessary first step in the integration of multi-temporal and multi-sensor data for applications such as the analysis of seasonal and annual global climate changes, as well as land use/cover changes. The task of image registration can be divided into two major components: (1) the extraction of control points or features from images; and (2) the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual control feature extraction can be subjective and extremely time consuming, and often results in few usable points. Automated feature extraction is a solution to this problem, where desired target features are invariant, and represent evenly distributed landmarks such as edges, corners and line intersections. In this paper, we develop a novel automated registration approach based on the following steps. First, a mathematical morphology (MM)-based method is used to obtain a scale-orientation morphological profile at each image pixel. Next, a spectral dissimilarity metric such as the spectral information divergence is applied for automated extraction of landmark chips, followed by an initial approximate matching. This initial condition is then refined using a hierarchical robust feature matching (RFM) procedure. Experimental results reveal that the proposed registration technique offers a robust solution in the presence of seasonal changes and other interfering factors. Keywords-Automated image registration, multi-temporal imagery, mathematical morphology, robust feature matching.
NASA Astrophysics Data System (ADS)
Patil, Sandeep Baburao; Sinha, G. R.
2017-02-01
India, having less awareness towards the deaf and dumb peoples leads to increase the communication gap between deaf and hard hearing community. Sign language is commonly developed for deaf and hard hearing peoples to convey their message by generating the different sign pattern. The scale invariant feature transform was introduced by David Lowe to perform reliable matching between different images of the same object. This paper implements the various phases of scale invariant feature transform to extract the distinctive features from Indian sign language gestures. The experimental result shows the time constraint for each phase and the number of features extracted for 26 ISL gestures.
NASA Astrophysics Data System (ADS)
Blinova, I.; Bredikhin, A.
2012-04-01
Attractiveness of relief, diversity and rareness were always the basic features of overall recreational attractiveness of a territory. Mountainous regions with high geomorphic diversity served as model for first recreation and tourism researches. The above features often favoured sustainability of touristic system. Unique relief forms are commonly referred to natural sites. They differ from the others in structure or have some morphological and morphometric characteristics not found in other forms of the earth's surface. Such monuments form the main natural functional kernel for a recreation system which is created and exists around them. In general, functions of geomorphological sites in recreation can be divided into socio-cultural and economic. Socio-cultural function is the principal function of recreation. It responds to the cultural or spiritual needs of people such as the knowledge in the broader sense, knowledge of the world and their place in it. The economic function is to create consumer demand for goods and services, and sometimes an entire economy sector. Natural sites are particularly vulnerable to dangerous occurrence of endogenous and exogenous processes as guarantee of environmental stability is an essential condition for a proper system functioning. This requires a comprehensive study of relief dynamics, monitoring and forecasting its evolution in recreation areas. Nowadays educational and environmental tourism in Russia develop rapidly. The unique tectonic position of Kamchatka Peninsula (the active geodynamic area dedicated to the subduction zone) formed a variety of landscapes, attracting visitors from all over the world. Recreational development of this region is slow due to remoteness and poor transport accessibility. However, there are 3 state federal reserves and one federal wildlife sanctuary, 4 natural parks of regional significance, 23 nature preserves of regional significance, and 105 natural monuments officially marked in this region. "Volcanoes of Kamchatka" are included on UNESCO's World Heritage List. In spite of general fame of Far East recreational resources there are still areas which are not affected by human activities (including recreation and tourism) in immediate proximity to the regional center. This is usually caused by poor infrastructure and lack of information about natural objects. Natural Park Nalychevo, located 50 km NE from Petropavlovsk-Kamchatsky, represents an example of wild area not involved in human activities. The diversity of natural conditions and relief forms creates the necessary prerequisites for assignment a wide range of recreation specialization: balneal, hillwalking, sports (skiing, hiking etc.), environmental education. Hierarchical polycentric structure of Nature Park hampers its management and further development. Moreover, poor infrastructure aggravates the situation. Speaking of prospects for further elaboration of Nature Park, along with high geomorphic attractiveness we should take into account enormous risks induced by active relief dynamics. Sober assessment and analysis of these peculiarities allows to manage it effectively.
NASA Astrophysics Data System (ADS)
Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi
2016-10-01
The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.
Automatic Extraction of Planetary Image Features
NASA Technical Reports Server (NTRS)
Troglio, G.; LeMoigne, J.; Moser, G.; Serpico, S. B.; Benediktsson, J. A.
2009-01-01
With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration.
Waveform fitting and geometry analysis for full-waveform lidar feature extraction
NASA Astrophysics Data System (ADS)
Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu
2016-10-01
This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.
Hussain, Lal; Ahmed, Adeel; Saeed, Sharjil; Rathore, Saima; Awan, Imtiaz Ahmed; Shah, Saeed Arif; Majid, Abdul; Idris, Adnan; Awan, Anees Ahmed
2018-02-06
Prostate is a second leading causes of cancer deaths among men. Early detection of cancer can effectively reduce the rate of mortality caused by Prostate cancer. Due to high and multiresolution of MRIs from prostate cancer require a proper diagnostic systems and tools. In the past researchers developed Computer aided diagnosis (CAD) systems that help the radiologist to detect the abnormalities. In this research paper, we have employed novel Machine learning techniques such as Bayesian approach, Support vector machine (SVM) kernels: polynomial, radial base function (RBF) and Gaussian and Decision Tree for detecting prostate cancer. Moreover, different features extracting strategies are proposed to improve the detection performance. The features extracting strategies are based on texture, morphological, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) features. The performance was evaluated based on single as well as combination of features using Machine Learning Classification techniques. The Cross validation (Jack-knife k-fold) was performed and performance was evaluated in term of receiver operating curve (ROC) and specificity, sensitivity, Positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR). Based on single features extracting strategies, SVM Gaussian Kernel gives the highest accuracy of 98.34% with AUC of 0.999. While, using combination of features extracting strategies, SVM Gaussian kernel with texture + morphological, and EFDs + morphological features give the highest accuracy of 99.71% and AUC of 1.00.
NASA Astrophysics Data System (ADS)
Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.
2015-06-01
Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.
A method for automatic feature points extraction of human vertebrae three-dimensional model
NASA Astrophysics Data System (ADS)
Wu, Zhen; Wu, Junsheng
2017-05-01
A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.
Extraction of linear features on SAR imagery
NASA Astrophysics Data System (ADS)
Liu, Junyi; Li, Deren; Mei, Xin
2006-10-01
Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.
NASA Astrophysics Data System (ADS)
Jiang, Li; Xuan, Jianping; Shi, Tielin
2013-12-01
Generally, the vibration signals of faulty machinery are non-stationary and nonlinear under complicated operating conditions. Therefore, it is a big challenge for machinery fault diagnosis to extract optimal features for improving classification accuracy. This paper proposes semi-supervised kernel Marginal Fisher analysis (SSKMFA) for feature extraction, which can discover the intrinsic manifold structure of dataset, and simultaneously consider the intra-class compactness and the inter-class separability. Based on SSKMFA, a novel approach to fault diagnosis is put forward and applied to fault recognition of rolling bearings. SSKMFA directly extracts the low-dimensional characteristics from the raw high-dimensional vibration signals, by exploiting the inherent manifold structure of both labeled and unlabeled samples. Subsequently, the optimal low-dimensional features are fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories and severities of bearings. The experimental results demonstrate that the proposed approach improves the fault recognition performance and outperforms the other four feature extraction methods.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-01-01
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features. PMID:27649171
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
NASA Astrophysics Data System (ADS)
Goodwin, Nicholas R.; Armston, John D.; Muir, Jasmine; Stiller, Issac
2017-04-01
Airborne laser scanning (ALS) and terrestrial laser scanning (TLS) technologies capture spatially detailed estimates of surface topography and when collected multi-temporally can be used to assess geomorphic change. The sensitivity and repeatability of ALS measurements to characterise geomorphic change in topographically complex environments such as gullies; however, remains an area lacking quantitative research. In this study, we captured coincident ALS and TLS datasets to assess their ability and synergies to detect geomorphic change for a gully located in Aratula, southeast Queensland, Australia. We initially used the higher spatial density and ranging accuracy of TLS to provide an assessment of the Digital Elevation Models (DEM) derived from ALS within a gully environment. Results indicated mean residual errors of 0.13 and 0.09 m along with standard deviation (SD) of residual errors of 0.20 and 0.16 m using pixel sizes of 0.5 and 1.0 m, respectively. The positive mean residual errors confirm that TLS data consistently detected deeper sections of the gully than ALS. We also compared the repeatability of ALS and TLS for characterising gully morphology. This indicated that the sensitivity to detect change using ALS is substantially lower than TLS, as expected, and that the ALS survey characteristics influence the ability to detect change. Notably, we found that using one ALS transect (mean density of 5 points / m2) as opposed to three transects increased the SD of residual error by approximately 30%. The supplied classification of ALS ground points was also demonstrated to misclassify gully features as non-ground, with minimum elevation filtering found to provide a more accurate DEM of the gully. The number and placement of terrestrial laser scans were also found to influence the derived DEMs. Furthermore, we applied change detection using two ALS data captures over a four year period and four TLS field surveys over an eight month period. This demonstrated that ALS can detect large scale erosional changes with head cutting of gully branches migrating approximately 10 m upslope. In comparison, TLS captured smaller scale intra-annual erosional patterns largely undetectable by the ALS dataset with a large rainfall event coinciding with the highest volumetric change (net change > 46 m3). Overall, these findings reaffirm the importance of quantifying DEM errors and demonstrate that ALS is unlikely to detect subtle geomorphic changes (< 0.45 m) potentially missing significant sediment change. TLS was able to detect more subtle intra-annual changes but was limited in its spatial coverage. This suggests TLS and ALS surveys are complementary technologies and when used together can provide a more detailed understanding of gully processes at different temporal and spatial scales, provided the inherent errors are taken into account.
What’s in a URL? Genre Classification from URLs
2012-01-01
webpages with access to the content of a document and feature extraction from URLs alone. Feature Extraction from Webpages Stylistic and structural...2010). Character n-grams (sequence of n characters) are attractive because of their simplicity and because they encapsulate both lexical and stylistic ...report might be stylistic . Feature Extraction from URLs The syntactic characteristics of URLs have been fairly sta- ble over the years. URL terms are
Detection of goal events in soccer videos
NASA Astrophysics Data System (ADS)
Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas
2005-01-01
In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.
Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong
2018-05-11
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images
Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-01-01
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang’s method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used. PMID:29762519
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
Cheng, Gang; Chen, Xihui
2018-01-01
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-03
... surface of ponds. The goal of the project is to define the rate of geomorphic change in Garwood Valley in response to changing climate conditions. The geomorphic record will be reconstructed over the past 1-=2- kyr to infer past climate-driven landscape alteration at the end of the LGM and examine the current...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... 20g each. The goal of the project is to define the rate of geomorphic change in Garwood Valley in response to changing climate conditions. The geomorphic record will be reconstructed over the past 1- = 2-kyr to infer past climate-driven landscape alteration at the end of the LGM and examine the current...
Sara E. Jenkins; Carolyn Hull Sieg; Diana E. Anderson; Darrell S. Kaufman; Philip A. Pearthree
2011-01-01
Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area...
P. Charles Goebel; Kurt S. Pregitzer; Brain J. Palik
2003-01-01
We quantified large wood loadings and seasonal concentrations of particulate organic matter (POM) and dissolved organic carbon (DOC) in three different geomonghic zones (each with unique hydrogeomorphic characteristics) of a pristine, old-growth northern hardwood watershed. The highest large wood dam loadings were in the high-gradient, bedrock controlled geomorphic...
The Geomorphic Road Analysis and Inventory Package (GRAIP) Volume 1: Data Collection Method
Thomas A. Black; Richard M. Cissel; Charles H. Luce
2012-01-01
An important first step in managing forest roads for improved water quality and aquatic habitat is the performance of an inventory. The Geomorphic Roads Analysis and Inventory Package (GRAIP) was developed as a tool for making a comprehensive inventory and analysis of the effects of forest roads on watersheds. This manual describes the data collection and process of a...
Jacobson, Robert B.; Colvin, Michael E.; Bulliner, Edward A.; Pickard, Darcy; Elliott, Caroline M.
2018-06-07
Management actions intended to increase growth and survival of pallid sturgeon (Scaphirhynchus albus) age-0 larvae on the Lower Missouri River require a comprehensive understanding of the geomorphic habitat template of the river. The study described here had two objectives relating to where channel-reconfiguration projects should be located to optimize effectiveness. The first objective was to develop a bend-scale (that is, at the scale of individual bends, defined as “cross-over to cross-over”) geomorphic classification of the Lower Missouri River to help in the design of monitoring and evaluation of such projects. The second objective was to explore whether geomorphic variables could provide insight into varying capacities of bends to intercept drifting larvae. The bend-scale classification was based on geomorphic and engineering variables for 257 bends from Sioux City, Iowa, to the confluence with the Mississippi River near St. Louis, Missouri. We used k-means clustering to identify groupings of bends that shared the same characteristics. Separate 3-, 4-, and 6-cluster classifications were developed and mapped. The three classifications are nested in a hierarchical structure. We also explored capacities of bends to intercept larvae through evaluation of linear models that predicted persistent sand area or catch per unit effort (CPUE) of age-0 sturgeon as a function of the same geomorphic variables used in the classification. All highly ranked models that predict persistent sand area contained mean channel width and standard deviation of channel width as significant variables. Some top-ranked models also included contributions of channel sinuosity and density of navigation structures. The sand-area prediction models have r-squared values of 0.648–0.674. In contrast, the highest-ranking CPUE models have r-squared values of 0.011–0.170, indicating much more uncertainty for the biological response variable. Whereas the persistent sand model documents that physical processes of transport and accumulation are systematic and predictable, the poor performance of the CPUE models indicate that additional processes will need to be considered to predict biological transport and accumulation.
Dean, David J.; Schmidt, John C.
2013-01-01
Since the 1940s, the Rio Grande in the Big Bend region has undergone long periods of channel narrowing, which have been occasionally interrupted by rare, large floods that widen the channel (termed a channel reset). The most recent channel reset occurred in 2008 following a 17-year period of extremely low stream flow and rapid channel narrowing. Flooding was caused by precipitation associated with the remnants of tropical depression Lowell in the Rio Conchos watershed, the largest tributary to the Rio Grande. Floodwaters approached 1500 m3/s (between a 13 and 15 year recurrence interval) and breached levees, inundated communities, and flooded the alluvial valley of the Rio Grande; the wetted width exceeding 2.5 km in some locations. The 2008 flood had the 7th largest magnitude of record, however, conveyed the largest volume of water than any other flood. Because of the narrow pre-flood channel conditions, record flood stages occurred. We used pre- and post-flood aerial photographs, channel and floodplain surveys, and 1-dimensional hydraulic models to quantify the magnitude of channel change, investigate the controls of flood-induced geomorphic changes, and measure the post-flood response of the widened channel. These analyses show that geomorphic changes included channel widening, meander migration, avulsions, extensive bar formation, and vertical floodplain accretion. Reach-averaged channel widening between 26 and 52% occurred, but in some localities exceeded 500%. The degree and style of channel response was related, but not limited to, three factors: 1) bed-load supply and transport, 2) pre-flood channel plan form, and 3) rapid declines in specific stream power downstream of constrictions and areas of high channel bed slope. The post-flood channel response has consisted of channel contraction through the aggradation of the channel bed and the formation of fine-grained benches inset within the widened channel margins. The most significant post-flood geomorphic changes have occurred at and downstream from ephemeral tributaries that contribute large volumes of sediment.
Tichavský, Radek; Šilhán, Karel; Tolasz, Radim
2017-02-01
Hydro-geomorphic processes have significantly influenced the recent development of valley floors, river banks and depositional forms in mountain environments, have caused considerable damage to manmade developments and have disrupted forest management. Trees growing along streams are affected by the transported debris mass and provide valuable records of debris flow/flood histories in their tree-ring series. Dendrogeomorphic approaches are currently the most accurate methods for creating a chronology of the debris flow/flood events in forested catchments without any field-monitoring or a stream-gauging station. Comprehensive studies focusing on the detailed chronology of hydro-geomorphic events and analysis of meteorological triggers and weather circulation patterns are still lacking for the studied area. We provide a spatio-temporal reconstruction of hydro-geomorphic events in four catchments of the Hrubý Jeseník Mountains, Czech Republic, with an analysis of their triggering factors using meteorological data from four nearby rain gauges. Increment cores from 794 coniferous trees (Picea abies [L.] Karst.) allowed the identification of 40 hydro-geomorphic events during the period of 1889-2013. Most of the events can be explained by extreme daily rainfalls (≥50mm) occurring in at least one rain gauge. However, in several cases, there was no record of extreme precipitation at rain gauges during the debris flow/flood event year, suggesting extremely localised rainstorms at the mountain summits. We concluded that the localisation, intensity and duration of rainstorms; antecedent moisture conditions; and amount of available sediments all influenced the initiation, spatial distribution and characteristics of hydro-geomorphic events. The most frequent synoptic situations responsible for the extreme rainfalls (1946-2015) were related to the meridional atmospheric circulation pattern. Our results enhance current knowledge of the occurrences and triggers of debris flows/floods in the Central European mountains in transition between temperate oceanic and continental climatic conditions and may prompt further research of these phenomena in the Eastern Sudetes in general. Copyright © 2016 Elsevier B.V. All rights reserved.
Gully evolution and geomorphic adjustments of badlands to recent afforestation
NASA Astrophysics Data System (ADS)
Ballesteros-Cánovas, Juan Antonio; Stoffel, Markus; Francisco Martín-Duque, Jose; Corona, Christophe; Lucia, Ana; María Bodoque, Jose
2016-04-01
Badlands and gullied areas are among the geomorphic environments with the highest erosion rates worldwide, however records on their evolution are very scarce and often limited to presumed initial conditions and the known present state. In this communication, we present a unique and very dense and annual record and outstanding example of erosion processes in a Mediterranean environment in Central Spain, where badland and gullying processes on sandy slopes of a set of mesas have been presumably triggered by quarrying activities since Medieval times. The gully channel evolution here analyzed provides an exceptional example of a larger setting of geomorphic. Besides the analysis of geomorphic adjustments to historical land-use changes induced by historical quarrying and gullying dynamics, we also quantified the impact of current geomorphic adjustments to 20th century afforestation by combining multiproxy such as aerial photography, historical archives, and large dataset of exposed roots to date, quantify, and reconstruct the morphology of a rapidly evolving channel in a gullied catchment. In this analysis, more than 150 exposed roots were analyzed to quantify and report channel incision; widening and gully retreatment rates during the last decades, as well as to quantify sheet erosion on different soil units. Our results suggest that, rather than stabilizing gully evolution, the afforestation carried out during 1960s has played an important role in water-sediment balance and connectivity and would have triggered the initiation of channel incision processes in the 1980s. Therefore, we observe that the channel incision match with a significant increase of the vegetation cover, which leads a significant decrease in sheet erosion rates. Based on our long-term annual gully reconstruction, we observed that sediment delivery does not correlate with the estimated intensity of precipitation (Fourier index). Instead, we observe abrupt morphological changes in the gully are presumably related with changes in connectivity after a specific intense event. Consequently, we hypothesize that the gullying process-vegetation interactions are subsidiary of the geomorphic adjustments and connectivity states of the system; and speculate that this understanding is essential for suitable restoration and management plans.
Automated feature extraction and classification from image sources
,
1995-01-01
The U.S. Department of the Interior, U.S. Geological Survey (USGS), and Unisys Corporation have completed a cooperative research and development agreement (CRADA) to explore automated feature extraction and classification from image sources. The CRADA helped the USGS define the spectral and spatial resolution characteristics of airborne and satellite imaging sensors necessary to meet base cartographic and land use and land cover feature classification requirements and help develop future automated geographic and cartographic data production capabilities. The USGS is seeking a new commercial partner to continue automated feature extraction and classification research and development.
Mc Keown, L E; Bourke, M C; McElwaine, J N
2017-10-27
Carbon dioxide is Mars' primary atmospheric constituent and is an active driver of Martian surface evolution. CO 2 ice sublimation mechanisms have been proposed for a host of features that form in the contemporary Martian climate. However, there has been very little experimental work or quantitative modelling to test the validity of these hypotheses. Here we present the results of the first laboratory experiments undertaken to investigate if the interaction between sublimating CO 2 ice blocks and a warm, porous, mobile regolith can generate features similar in morphology to those forming on Martian dunes today. We find that CO 2 sublimation can mobilise grains to form (i) pits and (ii) furrows. We have documented new detached pits at the termini of linear gullies on Martian dunes. Based on their geomorphic similarity to the features observed in our laboratory experiments, and on scaling arguments, we propose a new hypothesis that detached pits are formed by the impact of granular jets generated by sublimating CO 2 . We also study the erosion patterns formed underneath a sublimating block of CO 2 ice and demonstrate that these resemble furrow patterns on Mars, suggesting similar formation mechanisms.
Approaches to defining reference regimes for river restoration planning
NASA Astrophysics Data System (ADS)
Beechie, T. J.
2014-12-01
Reference conditions or reference regimes can be defined using three general approaches, historical analysis, contemporary reference sites, and theoretical or empirical models. For large features (e.g., floodplain channels and ponds) historical data and maps are generally reliable. For smaller features (e.g., pools and riffles in small tributaries), field data from contemporary reference sites are a reasonable surrogate for historical data. Models are generally used for features that have no historical information or present day reference sites (e.g., beaver pond habitat). Each of these approaches contributes to a watershed-wide understanding of current biophysical conditions relative to potential conditions, which helps create not only a guiding vision for restoration, but also helps quantify and locate the largest or most important restoration opportunities. Common uses of geomorphic and biological reference conditions include identifying key areas for habitat protection or restoration, and informing the choice of restoration targets. Examples of use of each of these three approaches to define reference regimes in western USA illustrate how historical information and current research highlight key restoration opportunities, focus restoration effort in areas that can produce the largest ecological benefit, and contribute to estimating restoration potential and assessing likelihood of achieving restoration goals.
Prominent feature extraction for review analysis: an empirical study
NASA Astrophysics Data System (ADS)
Agarwal, Basant; Mittal, Namita
2016-05-01
Sentiment analysis (SA) research has increased tremendously in recent times. SA aims to determine the sentiment orientation of a given text into positive or negative polarity. Motivation for SA research is the need for the industry to know the opinion of the users about their product from online portals, blogs, discussion boards and reviews and so on. Efficient features need to be extracted for machine-learning algorithm for better sentiment classification. In this paper, initially various features are extracted such as unigrams, bi-grams and dependency features from the text. In addition, new bi-tagged features are also extracted that conform to predefined part-of-speech patterns. Furthermore, various composite features are created using these features. Information gain (IG) and minimum redundancy maximum relevancy (mRMR) feature selection methods are used to eliminate the noisy and irrelevant features from the feature vector. Finally, machine-learning algorithms are used for classifying the review document into positive or negative class. Effects of different categories of features are investigated on four standard data-sets, namely, movie review and product (book, DVD and electronics) review data-sets. Experimental results show that composite features created from prominent features of unigram and bi-tagged features perform better than other features for sentiment classification. mRMR is a better feature selection method as compared with IG for sentiment classification. Boolean Multinomial Naïve Bayes) algorithm performs better than support vector machine classifier for SA in terms of accuracy and execution time.
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Tseng, Tzu-Liang B.; Zheng, Bin; Zhang, Jianying; Qian, Wei
2015-03-01
A novel breast cancer risk analysis approach is proposed for enhancing performance of computerized breast cancer risk analysis using bilateral mammograms. Based on the intensity of breast area, five different sub-regions were acquired from one mammogram, and bilateral features were extracted from every sub-region. Our dataset includes 180 bilateral mammograms from 180 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including sub-region segmentation, bilateral feature extraction, feature selection, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under the curve (AUC) is 0.763 ± 0.021 when applying the multiple sub-region features to our testing dataset. The positive predictive value and the negative predictive value were 0.60 and 0.73, respectively. The study demonstrates that (1) features extracted from multiple sub-regions can improve the performance of our scheme compared to using features from whole breast area only; (2) a classifier using asymmetry bilateral features can effectively predict breast cancer risk; (3) incorporating texture and morphological features with density features can boost the classification accuracy.
Line fitting based feature extraction for object recognition
NASA Astrophysics Data System (ADS)
Li, Bing
2014-06-01
Image feature extraction plays a significant role in image based pattern applications. In this paper, we propose a new approach to generate hierarchical features. This new approach applies line fitting to adaptively divide regions based upon the amount of information and creates line fitting features for each subsequent region. It overcomes the feature wasting drawback of the wavelet based approach and demonstrates high performance in real applications. For gray scale images, we propose a diffusion equation approach to map information-rich pixels (pixels near edges and ridge pixels) into high values, and pixels in homogeneous regions into small values near zero that form energy map images. After the energy map images are generated, we propose a line fitting approach to divide regions recursively and create features for each region simultaneously. This new feature extraction approach is similar to wavelet based hierarchical feature extraction in which high layer features represent global characteristics and low layer features represent local characteristics. However, the new approach uses line fitting to adaptively focus on information-rich regions so that we avoid the feature waste problems of the wavelet approach in homogeneous regions. Finally, the experiments for handwriting word recognition show that the new method provides higher performance than the regular handwriting word recognition approach.
Artificially intelligent recognition of Arabic speaker using voice print-based local features
NASA Astrophysics Data System (ADS)
Mahmood, Awais; Alsulaiman, Mansour; Muhammad, Ghulam; Akram, Sheeraz
2016-11-01
Local features for any pattern recognition system are based on the information extracted locally. In this paper, a local feature extraction technique was developed. This feature was extracted in the time-frequency plain by taking the moving average on the diagonal directions of the time-frequency plane. This feature captured the time-frequency events producing a unique pattern for each speaker that can be viewed as a voice print of the speaker. Hence, we referred to this technique as voice print-based local feature. The proposed feature was compared to other features including mel-frequency cepstral coefficient (MFCC) for speaker recognition using two different databases. One of the databases used in the comparison is a subset of an LDC database that consisted of two short sentences uttered by 182 speakers. The proposed feature attained 98.35% recognition rate compared to 96.7% for MFCC using the LDC subset.
NASA Technical Reports Server (NTRS)
Moore, J. M.; Horner, V. M.; Greeley, R.
1985-01-01
Rhea was imaged to a resolution of approximately 1 km/lp by the Voyager spacecraft, providing the most detailed view of any Saturnian satellite. A preliminary study of Rhea divided the northern hemisphere into population 1 cratered terrain (between 20 deg and 120 deg) and population 2 cratered terrain (between 300 deg and 360 deg). Population 1 includes craters that are 40 km and were formed before the termination of population 2 bombardment, which formed craters primarily 40 km. Several geomorphic features on Rhea are classified and interpreted including three physiographic provinces, multiringed basins, craters, megascarps, ridges and scarps, and troughs and coalescing pit chains. A generalized chronology for Rhea is constructed from an analysis of the superposition relationships among the landforms and physiographic provinces.
Planetary geomorphology field studies: Washington and Alaska
NASA Technical Reports Server (NTRS)
Malin, M. C.
1984-01-01
Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. Investigations discussed address principally mudflow phenomena and drainage development. At the Valley of 10,000 Smokes (Katmai, AK) and Mount St. Helens, WA, studies of the development of erosional landforms (in particular, drainage) on fresh, new surfaces permitted analysis of the result of competition between geomorphic processes. Of specific interest is the development of stream pattern as a function of the competition between perennial seepage overland flow (from glacial or groundwater sources), ephemeral overland flow (from pluvial or seasonal melt sources), and ephemeral/perennial groundwater sapping, as a function of time since initial resurfacing, material properties, and seasonal/annual environmental conditions.
NASA Technical Reports Server (NTRS)
Goudge, T. A.; Fassett, C. I.
2017-01-01
Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..
Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data
NASA Technical Reports Server (NTRS)
Knepper, D. H., Jr. (Compiler)
1973-01-01
The author has identified the following significant results. Geologic interpretation of ERTS-1 imagery is dependent on recognition of the distribution, continuity, trend, and geometry of key surface features. In the examination of ERTS-1 imagery, lithology must be interpreted largely from the geomorphic expression of the terrain. ERTS-1 imagery is extremely useful in detecting local structures. Most mapped structures are topographically-expressed. Consequently, ERTS-1 imagery acquired during mid-winter, when the solar illumination angle is low, provides the largest amount of structural information. Stereoscopic analyses of ERTS-1 images significantly aid geologic interpretation. Positive transparencies of ERTS-1 images (1:1,000,000) commonly contain more geologic information than can be adequately annotated during geologic interpretation.
NASA Astrophysics Data System (ADS)
Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki
2017-09-01
Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.
NASA Astrophysics Data System (ADS)
Paino, A.; Keller, J.; Popescu, M.; Stone, K.
2014-06-01
In this paper we present an approach that uses Genetic Programming (GP) to evolve novel feature extraction algorithms for greyscale images. Our motivation is to create an automated method of building new feature extraction algorithms for images that are competitive with commonly used human-engineered features, such as Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG). The evolved feature extraction algorithms are functions defined over the image space, and each produces a real-valued feature vector of variable length. Each evolved feature extractor breaks up the given image into a set of cells centered on every pixel, performs evolved operations on each cell, and then combines the results of those operations for every cell using an evolved operator. Using this method, the algorithm is flexible enough to reproduce both LBP and HOG features. The dataset we use to train and test our approach consists of a large number of pre-segmented image "chips" taken from a Forward Looking Infrared Imagery (FLIR) camera mounted on the hood of a moving vehicle. The goal is to classify each image chip as either containing or not containing a buried object. To this end, we define the fitness of a candidate solution as the cross-fold validation accuracy of the features generated by said candidate solution when used in conjunction with a Support Vector Machine (SVM) classifier. In order to validate our approach, we compare the classification accuracy of an SVM trained using our evolved features with the accuracy of an SVM trained using mainstream feature extraction algorithms, including LBP and HOG.
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, S.; Yang, D.
2017-09-01
Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.
Geomorphic and Ecological Disturbance and Recovery from Two Small Dams and Their Removal
Tullos, Desirée D.; Finn, Debra S.; Walter, Cara
2014-01-01
Dams are known to impact river channels and ecosystems, both during their lifetime and in their decommissioning. In this study, we applied a before-after-control-impact design associated with two small dam removals to investigate abiotic and biotic recovery trajectories from both the elimination of the press disturbance associated with the presence of dams and the introduction of a pulse disturbance associated with removal of dams. The two case studies represent different geomorphic and ecological conditions that we expected to represent low and high sensitivities to the pulse disturbance of dam removal: the 4 m tall, gravel-filled Brownsville Dam on the wadeable Calapooia River and the 12.5 m tall, sand and gravel-filled Savage Rapids Dam on the largely non-wadeable Rogue River. We evaluated both geomorphic and ecological responses annually for two years post removal, and asked if functional traits of the macroinvertebrate assemblages provided more persistent signals of ecological disturbance than taxonomically defined assemblages over the period of study. Results indicate that: 1) the presence of the dams constituted a strong ecological press disturbance to the near-downstream reaches on both rivers, despite the fact that both rivers passed unregulated flow and sediment during the high flow season; 2) ecological recovery from this press disturbance occurred within the year following the restoration action of dam removal, whereas signals of geomorphic disturbance from the pulse of released sediment persisted two years post-removal, and 3) the strength of the press disturbance and the rapid ecological recovery were detected regardless of whether recovery was assessed by taxonomic or functional assemblages and for both case studies, in spite of their different geomorphic settings. PMID:25233231
Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply
Ganju, N.K.; Schoellhamer, D.H.
2010-01-01
Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales. ?? The Author(s) 2009.
Designing forward with an eye to the past: Morphogenesis of the lower Yuba River
NASA Astrophysics Data System (ADS)
James, L. Allan
2015-12-01
The early geomorphic evolution of the lower Yuba River (LYR), northern California, up to 1906 is reconstructed using cartographic, documentary, topographic, and stratigraphic evidence. The importance of early river mining is identified along with rates and patterns of floodplain aggradation and channel incision at the turn of the 20th century. The LYR is a classic example of anthropogeomorphic transformation of a river by episodic hydraulic mining sedimentation. This was followed by channelization, damming, dredging, and other engineering works to redirect, contain, and stabilize channels. These geomorphic changes and engineering controls continue to govern channel and floodplain form and process, control the trajectory of river responses, and constrain flood control, water quality, and aquatic ecosystem management options. Returning a river system to a prior condition should not be the primary goal of river rehabilitation projects, especially if hydrologic inputs have substantially changed. Reconstructing former conditions may be impractical and unsustainable under modern circumstances. Instead, fluvial systems should be designed and managed for present inputs and processes while anticipating future conditions. Rapid changes in land use and climate that generate changes in runoff and sediment loadings are likely to generate morphological instability, and these changes should be considered in the design and management of fluvial systems. The past geomorphic evolution of fluvial systems should also be considered in design and management decisions to recognize trajectories and suppressed tendencies. Recognition of trends and system vulnerabilities may avoid potential blunders, such as removing critical stabilizing works. Complex causalities may be difficult to reconstruct from geomorphic form alone, however, due to process-form dynamics. Detailed research on the geomorphic and engineering history of a river is essential, therefore, if substantial changes and morphologic instabilities have occurred.
NASA Astrophysics Data System (ADS)
Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad
2016-07-01
We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.
New England salt marsh pools: A quantitative analysis of geomorphic and geographic features
Adamowicz, S.C.; Roman, C.T.
2005-01-01
New England salt marsh pools provide important wildlife habitat and are the object of on-going salt marsh restoration projects; however, they have not been quantified in terms of their basic geomorphic and geographic traits. An examination of 32 ditched and unditched salt marshes from the Connecticut shore of Long Island Sound to southern Maine, USA, revealed that pools from ditched and unditched marshes had similar average sizes of about 200 m2, averaged 29 cm in depth, and were located about 11 m from the nearest tidal flow. Unditched marshes had 3 times the density (13 pools/ha), 2.5 times the pool coverage (83 m pool/km transect), and 4 times the total pool surface area per hectare (913 m2 pool/ha salt marsh) of ditched sites. Linear regression analysis demonstrated that an increasing density of ditches (m ditch/ha salt marsh) was negatively correlated with pool density and total pool surface area per hectare. Creek density was positively correlated with these variables. Thus, it was not the mere presence of drainage channels that were associated with low numbers of pools, but their type (ditch versus creek) and abundance. Tidal range was not correlated with pool density or total pool surface area, while marsh latitude had only a weak relationship to total pool surface area per hectare. Pools should be incorporated into salt marsh restoration planning, and the parameters quantified here may be used as initial design targets.
Spatial heterogeneity of within-stream methane concentrations
NASA Astrophysics Data System (ADS)
Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.
2017-05-01
Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4 and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.
Volatile reservoirs below the surface of the Elysium region of Mars: Geomorphic evidence
NASA Technical Reports Server (NTRS)
Christiansen, Eric H.; Hopler, Jennifer A.
1987-01-01
The Elysium volcanic province contains a variety of geomorphic evidence for the existence of large volatile reservoirs of subsurface volatiles. Study of these landforms yields insight into the distribution and size of these reservoirs and how they interact with the surface environment and will ultimately place constraints on the geometry, constitution, origin, time of formation, and temporal evolution of these important components of the Martian crust. Three principal types of landforms appear to be related to subsurface volatile reservoirs in the Elysium region of Mars: small outflow channels; large lahars; and vast expanses of knobby terranes around the margins of the Elysium dome. The evidence provided by these landforms is internally consistent with the presence of a large relatively shallow volatile reservoir in the Elysium region. If the geologic features described are reliable indicators of subsurface volatiles, they imply that: volatile reservoirs lie relatively close to the surface and underlie millions of sq km in this region; there is no apparent latitudinal variation in the depth or thickness of the volatile reservoirs; the precursors of the knobby terranes are or were important volatile reservoirs; volatiles may be lost in a variety of ways from these reservoirs; and volatiles were incorporated in an easily eroded surficial deposit in the middle history of Mars. The ultimate origin of water in this reservoir is uncertain. A model to explain the preferential entrapment of volatiles into the region's surface materials may be required.
NASA Astrophysics Data System (ADS)
Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.
2018-04-01
A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.
NASA Astrophysics Data System (ADS)
Thomaz, Ricardo L.; Carneiro, Pedro C.; Patrocinio, Ana C.
2017-03-01
Breast cancer is the leading cause of death for women in most countries. The high levels of mortality relate mostly to late diagnosis and to the direct proportionally relationship between breast density and breast cancer development. Therefore, the correct assessment of breast density is important to provide better screening for higher risk patients. However, in modern digital mammography the discrimination among breast densities is highly complex due to increased contrast and visual information for all densities. Thus, a computational system for classifying breast density might be a useful tool for aiding medical staff. Several machine-learning algorithms are already capable of classifying small number of classes with good accuracy. However, machinelearning algorithms main constraint relates to the set of features extracted and used for classification. Although well-known feature extraction techniques might provide a good set of features, it is a complex task to select an initial set during design of a classifier. Thus, we propose feature extraction using a Convolutional Neural Network (CNN) for classifying breast density by a usual machine-learning classifier. We used 307 mammographic images downsampled to 260x200 pixels to train a CNN and extract features from a deep layer. After training, the activation of 8 neurons from a deep fully connected layer are extracted and used as features. Then, these features are feedforward to a single hidden layer neural network that is cross-validated using 10-folds to classify among four classes of breast density. The global accuracy of this method is 98.4%, presenting only 1.6% of misclassification. However, the small set of samples and memory constraints required the reuse of data in both CNN and MLP-NN, therefore overfitting might have influenced the results even though we cross-validated the network. Thus, although we presented a promising method for extracting features and classifying breast density, a greater database is still required for evaluating the results.
Structural and lithographic study of northern coast ranges and Sacramento Valley, California
NASA Technical Reports Server (NTRS)
Rich, E. I. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The analysis of the ERTS data has disclosed three potentially important linear systems within the northern coast ranges and Sacramento Valley, California. A preliminary geomorphic analysis of the northern coast ranges discloses that the geomorphic characteristics of the area underlain by the Coastal system are much different from those associated with the Central system in the core of the Coast Ranges. Within the Coastal system, or Coastal belt, the drainage networks are moderately fine-textured and have moderately high density. The area associated with the Central system seems to be underlain by an heterogeneous assemblage of rock types which vary in their resistance to erosion. The boundary between the Coastal and Central geomorphic regions is poorly defined and, in a few places, the two regions can be separated only approximately.
Feature extraction applied to agricultural crops as seen by LANDSAT
NASA Technical Reports Server (NTRS)
Kauth, R. J.; Lambeck, P. F.; Richardson, W.; Thomas, G. S.; Pentland, A. P. (Principal Investigator)
1979-01-01
The physical interpretation of the spectral-temporal structure of LANDSAT data can be conveniently described in terms of a graphic descriptive model called the Tassled Cap. This model has been a source of development not only in crop-related feature extraction, but also for data screening and for haze effects correction. Following its qualitative description and an indication of its applications, the model is used to analyze several feature extraction algorithms.
Optical character recognition with feature extraction and associative memory matrix
NASA Astrophysics Data System (ADS)
Sasaki, Osami; Shibahara, Akihito; Suzuki, Takamasa
1998-06-01
A method is proposed in which handwritten characters are recognized using feature extraction and an associative memory matrix. In feature extraction, simple processes such as shifting and superimposing patterns are executed. A memory matrix is generated with singular value decomposition and by modifying small singular values. The method is optically implemented with two liquid crystal displays. Experimental results for the recognition of 25 handwritten alphabet characters clearly shows the effectiveness of the method.
Spectral Analysis of Breast Cancer on Tissue Microarrays: Seeing Beyond Morphology
2005-04-01
Harvey N., Szymanski J.J., Bloch J.J., Mitchell M. investigation of image feature extraction by a genetic algorithm. Proc. SPIE 1999;3812:24-31. 11...automated feature extraction using multiple data sources. Proc. SPIE 2003;5099:190-200. 15 4 Spectral-Spatial Analysis of Urine Cytology Angeletti et al...Appendix Contents: 1. Harvey, N.R., Levenson, R.M., Rimm, D.L. (2003) Investigation of Automated Feature Extraction Techniques for Applications in
A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification
Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.
2015-01-01
In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898
Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming
2015-01-01
Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832