Science.gov

Sample records for geomorphic stability field

  1. Stream Channel Stability. Appendix E. Geomorphic Controls of Channel Stability,

    DTIC Science & Technology

    1981-04-01

    Erosion and Channels Research Unit, USDA Sedimentation Laboratory, Oxford, MS. 1,"<Xi i .. i,,< .;,i,<..7 PREFACE This process -oriented study was...organized to investigate three complementary aspects of channel stability including (a) the nature of channel failure processes ; (b) the influences of...valley-fill depositional units on these processes and (c) the properties and distributions of the valley-fill units. The study was process oriented to

  2. Assessing the Stability of Precariously Balanced Rocks and their Geomorphic Setting

    NASA Astrophysics Data System (ADS)

    Haddad, D. E.; Arrowsmith, R.

    2010-12-01

    Precariously balanced rocks (PBRs) are balanced boulders that serve as in situ negative indicators for earthquake-generated strong ground motions and can physically validate seismic hazard analyses over multiple earthquake cycles. Understanding what controls the formation of PBRs, when they were formed, and how long they remained balanced is critical to their utility in seismic hazard assessment. The geologic and geomorphic settings of PBRs were investigated using PBR surveys, slenderness analysis from digital photographs, joint density analysis, and landscape morphometry. An efficient field methodology for documenting PBRs was designed and applied to 261 precarious rocks in central Arizona. An interactive computer program that estimates 2-dimensional (2D) PBR slenderness (αmin) from digital photographs was developed and tested against 3-dimensional (3D) photogrammetrically generated PBR models. 2D slenderness estimates are accurate compared to their 3D equivalents, attaining <8.8% error in the heights of the estimated PBR centers of mass. Mean height, diameter, and aspect ratio (diameter/height) values for the surveyed PBRs are 1.16 m, 1.32 m, and 1.25 with coefficients of variation 47%, 48%, and 40%, respectively. Mean αmin values for all PBRs estimated using the software is 29° with a coefficient of variation of 38%. The joint density analysis reveals a mean PBR joint density of 0.39 m-1 with few PBRs formed in joint densities <0.22 m-1 and >0.55 m-1. Landscape morphometry shows that PBRs are situated in upper reaches of drainage basins near divides and hillslope crests. Surveyed PBRs are preserved on local hillslope gradients between 10° and 45°, and contributing areas (per unit contour length) between 1 m2/m and 30 m2/m. The close comparison between the 2D and 3D PBR stability estimates indicates that our software may be used to estimate PBR slenderness from digital photographs taken in the field within reasonable accuracy. The streamlined workflow of the

  3. Field and laboratory rainfall simulation as a tool to investigate Quaternary badland geomorphic development

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Kasanin-Grubin, Milica; Yair, Aaron; Rorke, Brian; Schwanghart, Wolfgang

    2010-05-01

    Badlands are traditionally considered as natural analogue experiments of landscape development. Commonly, their morphology is linked to lithological properties of the bedrock. However, recent investigations indicate that the geomorphic development is sensitive to climate and in particular to precipitation characteristics. This sensitivity enables the combination of rainfall simulation experiments with numerical models to study the relevance of climate change for their long-term geomorphic development. In this study, the relevance of precipitation characteristics for the Quaternary landscape development in the Dinosaur Badlands in Alberta, Canada, and Zin Valley Badlands, Negev Desert, Israel is investigated. Runoff, erosion and weathering were simulated in the field and the laboratory to determine rates for modeling different precipitation regimes. Based on the results, a numerical model was developed and the effects of changing precipitation characteristics (rainfall, snow cover and melt) on long-term landscape development were simulated. In the Dinosoaur badlands, weathering and erosion experiments show that the balance between snowmelt induced weathering in the spring, summer rainfall, and erosion determines the rate of slope retreat. In the Zin Valley, on the other hand, the magnitude of the individual rainstorms determines whether a slope section is eroded or acts as a runoff and sediment sink. As a consequence, in the Zin Valley badland slopes experienced an auto-stabilization during the Quaternary. In the Dinosaur Badlands, on the other hand, Holocene climatic variations do not appear to have caused a permanent differentiation of patterns of erosion and deposition. Based on these results the reaction of badland slopes to changing precipitation characteristics was modeled. The model shows that both badland slope systems are currently fairly stable against climate change in the range of variations in rainfall characteristics experienced during the Holocene

  4. Predicting geomorphic stability in low-order streams of the western Lake Superior basin

    EPA Science Inventory

    Width:depth ratios, entrenchment ratios, gradients, and median substrate particle sizes (D50s) were measured in 32 second and third order stream reaches in the western Lake Superior basin, and stream reaches were assigned a Rosgen geomorphic classification. Over 700 measurements ...

  5. Geomorphic Assessment Approach to Evaluate Stream Channel Stability for Regions of Illinois, Case Study: Southern Illinois Region

    NASA Astrophysics Data System (ADS)

    Keefer, L. L.

    2004-12-01

    An array of different geomorphic assessment approaches for evaluating stream-channel stability is being utilized throughout the country to meet the demands of resource managers interested in stream channel restoration and management to reduce erosion and improve stream habitat. Over the last century, most of the Illinois landscape has experienced intensive land use changes which have contributed to stream channel instability. Stream channels in Illinois have adjusted to these changes either by increasing lateral rates of migration, downstream translation of meanders, widening, or development of headward retreat of knickpoints, depending on the region of the state. Illinois can be divided into at least four regions based on prevailing physiographic features and style of channel adjustment. Also, channel response in most of these regions tend to be more subtle than the dramatic response characteristics of streams in the Coastal Plains, mountain environments, and the desert southwest for which other geomorphic approaches have been developed. The observed magnitude and type of channel response are related to topography of the bedrock surface and extent and morphology of several glacial periods, which carry local significance for stream management. Given that geomorphic assessments for stream restoration require non-trivial professional, time, and financial resources, the development of approaches for Illinois regional conditions are more beneficial. A geomorphic assessment approach is being developed by adapting methods from existing process-based approaches utilized around the United States. A case-study was performed in the Big Creek watershed of the Cache River Basin for the southern Illinois region. This region was selected first because it exhibited dramatic channel responses to disturbances and had an extensive hydrologic, sediment, and land management record. This adapted approach includes systematic data collection protocols for characterization leading to an

  6. Field measurements confirm that hillslope sediment size varies with elevation and geomorphic process regime at Inyo Creek, California

    NASA Astrophysics Data System (ADS)

    Genetti, J. R.; Sklar, L. S.; Leclere, S.

    2015-12-01

    Correlating the spatial variation of hillslope sediment grain size with geomorphic process regimes is essential for understanding feedbacks between sediment production on hillslopes and channel processes. At our field site at Inyo Creek, California, an elevation gradient in the size of sediment produced on hillslopes has been quantified using cosmogenic nuclides and detrital thermochronometry with samples collected at the outlet. Here we report field measurements of surface sediment size from hillslopes within the catchment, which validate those findings. Specifically, we use multiple field methods to measure hillslope grain size distributions, and correlate size variations with geomorphic process regimes across an elevation gradient. We select sampling sites from maps of predicted grain size created by overlaying landscape attributes in GIS to delineate geomorphic landscape units (GLUs). Geomorphic process regimes include bare bedrock, angle of repose slopes of talus, landslide deposits and soil mantled convex hillslopes. We use tape transects and point counts to quantify size distributions of regolith covered slopes. We also analyze photographs using The Digital Grain Size Project software, and for sediments too small to be resolved in photos we collect bulk samples for sieve analysis in the lab. To measure joint spacing, and infer the initial size distribution of rock fragments produced by bare bedrock, we use combine photographs with measurements made with tape transects, and aerial photographs for inaccessible areas. Our findings indicate that higher elevation slopes do indeed supply coarser sediment. Lower elevations have bimodal size distributions composed of sand with scattered boulders, while at higher elevations, slopes are composed a unimodal distribution of gravel, cobbles, and boulders. While boulder density does not vary significantly with elevation, we find a highly significant linear increase in the fraction of gravel and cobble-sized particles with

  7. Ecosystem processes at the watershed scale: Geomorphic patterns and stability of forest catchment water, energy and nitrogen use efficiency in the southern Appalachians

    NASA Astrophysics Data System (ADS)

    Band, L. E.; Hwang, T.; Hales, T. C.; Ford, C. R.

    2012-12-01

    Since the classic work by Hack in Goodlett in 1960, it has been recognized that there is a close coupling of geomorphic, forest ecosystem and soil development in humid mountainous catchments, with the magnitude and frequency of mass wasting events. In the southern Appalachians of the southeast United States, dense forest cover limits erosion and sediment transport during moderate events in undisturbed catchments, with most sediment delivery to streams by mass wasting processes, including the interaction of diffusive processes (soil creep) and debris avalanches. We hypothesize that debris avalanches are frequently triggered in a zone with moderate concavity at the head or just above hollows where a critical combination of sufficient gradient, colluvial soil accumulation, storm throughflow convergence and canopy root strength are achieved. The forest ecosystem adjusts patterns of foliar and root biomass in response to accessible light, water and nutrient resources, which are in turn conditioned by hydroclimate and geomorphically mediated flowpath and transport dynamics. Long term adjustment of drainage network form and density by colluvial and fluvial transport mass budgets provide slowly varying boundary conditions to hillslope hydrologic and geomorphic dynamics. We use a combination of detailed empirical observations and simulation modeling of coupled ecosystem, hydroclimate and geomorphic systems to derive the co-evolution of patterns of forest catchment water, energy and nutrient use efficiency, and the stability and response catchment form to long and short term climate perturbations.

  8. Assessing the Stability of Hydrologic and Associated Biogeochemical and Geomorphic Regimes Using Historical Reconstructions

    NASA Astrophysics Data System (ADS)

    Duncan, J.; Kim, H.; Kumar, S.; Pastore, C.; Bain, D.; Green, M.; Pellerin, B.

    2008-12-01

    This presentation develops a foundation for future research into analyzing the stability of water quality and sediment dynamics by synthesizing existing studies and utilizing knowledge gleaned from contemporary long- term and experimental research sites. We synthesize existing historical biogeochemical and geomorphological studies for the Eastern US and present a possible path toward estimating these system stabilities through time. We hypothesize that understanding how trends in water quality and quantity change over multiple centuries will lead to improved environmental management and planning strategies. A suite of methods (sediment cores and pollen counts, tree rings, and social, historical data) were used to reconstruct historical hydrologic regimes. With this information we then utilize existing studies and contemporary scientific findings to infer biogeochemical and sediment regimes at a regional scale. This methodology explicitly accounts for human actions and highlights fundamental research needs. While uncertainty in reconstructing hydrologic data compounds when analyzing biogeochemistry and fluvial geomorphology, we argue that the trends and trajectories evident from this type of approach yield important insights into human-environment interactions, inform current management/restoration efforts and improve future predictions. One early finding suggests that nutrient management at a river basin scale could be conducted differently throughout the basin depending on current uses, legacy effects, and hydrologic connectivity.

  9. Geomorphic expression

    SciTech Connect

    Wallace, R.E.

    1990-01-01

    The San Andreas fault is marked in the landscape by a series of linear valleys and mountain fronts, aligned lakes and bays, elongate ridges, and disrupted or offset stream channels. This chapter describes regional features, local geomorphic features within the fault zone, and gives detailed maps of the fault system.

  10. Drumlin fields and glaciated mountains - A contrast in geomorphic perception from Seasat radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1981-01-01

    Digitally correlated Seasat synthetic-aperture radar (SAR) images of the Alaska Range, Alaska, and the drumlin-drift belt in Ireland are analyzed for the perception and identification of geomorphic features. The two terrains display strongly contrasted types of glacial topography whose identification in each case is related to the geometry of the Seasat imaging radar. Identification of terrain shape and form is important within the caveats imposed by the intrinsic distortions on the radar images. Image texture serves coarsely to distinguish topography. Image tones are scene-dependent and do not uniquely identify specific targets. Extensive alignments of linear and curvilinear features provide some of the more important image information from which to make geologic interpretations in each case.

  11. Field investigation of keyblock stability

    SciTech Connect

    Yow, J.L. Jr.

    1985-04-01

    Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. This engineering problem is divided into two parts: block identification, and evaluation of block stability. One stable keyblock and thirteen fallen keyblocks were observed in field investigations at the Nevada Test Site. Nine blocks were measured in detail sufficient to allow back-analysis of their stability. Measurements included block geometry, and discontinuity roughness and compressive strength. Back-analysis correctly predicted stability or failure in all but two cases. These two exceptions involved situations that violated the stress assumptions of the stability calculations. Keyblock faces correlated well with known joint set orientations. The effect of tunnel orientation on keyblock frequency was apparent. Back-analysis of physical models successfully predicted block pullout force for two-dimensional models of unit thickness. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were examined. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls block displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability increases as blocks become more slender. Rock mass temperature decreases reduce the confining stress magnitudes and can lead to failure. The pattern of stresses affecting each block face explains conceptually the occurrence of pyramidal keyblocks that are truncated near their apex.

  12. Field delineation of geomorphic process domains along river networks in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E. E.

    2012-12-01

    A few papers published over the last decade have explored the idea that consistent correlations exist between stream channel geometry/substrate type and slope-drainage area (S-A) characteristics in such a way that channel characteristics can be predicted using data obtained from digital elevation models (DEMs). Much of this research (i) comes from the Pacific Northwest region, (ii) was not designed to include a wide range of channel types, and (iii) does not explicitly evaluate how correlations vary between process domains. A more thorough study of a semiarid region such as the Colorado Front Range is required to understand whether and how these correlations vary with respect to climate, lithology, or tectonic regime. Objectives of the study were to 1) develop a dataset that includes channel geometry and gradient for numerous channel reaches in the Colorado Front Range in order to systematically examine correlations between channel geometry and gradient; 2) develop a field data set against which to test patterns between slope-drainage area (S-A) and channel type; and 3) examine whether relations between gradient and channel geometry, and S-A and channel type, vary significantly between glacial and fluvial process domains in the Colorado Front Range. Data were collected during summer 2012, primarily within the North St. Vrain Creek catchment, which begins at the Continental Divide in Rocky Mountain National Park, Colorado, and flows eastward through the park and into Roosevelt National Forest. Reaches were selected to have uniform gradient, substrate, and Montgomery and Buffington (1997) classification (cascade, step-pool, plane-bed, pool-riffle). For each reach, endpoints were mapped and the following parameters measured: bankfull width, bankfull depth, gradient, and substrate grain size. Drainage area and overall reach gradient were estimated from USGS StreamStats and digital elevation models (DEMs). Over 100 reaches were assessed during data collection, with more

  13. Experimental investigation into Quaternary badland geomorphic development

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Kuhn, Nikolaus; Yair, Aaron; Bryan, Rorke; Schwanghart, Wolfgang

    2010-05-01

    Badland morphology is commonly linked to lithological properties of the bedrock. However, recent investigations indicate that the geomorphic development is sensitive to climate and in particular to precipitation characteristics. In this study, the precipitation characteristics that are critical for the Quaternary landscape development in the Dinosaur Badlands in Alberta, Canada, and Zin Valley Badlands, Negev Desert, Israel are investigated. Runoff, erosion and weathering were simulated in the field and the laboratory to determine rates for modeling different precipitation regimes. Currently, the geomorphic development in the Dinosaur badlands is characterized by weathering/supply limited conditions, leading to slope retreat independent of lithology. In the Negev, transport limited conditions cause frequent runoff discontinuity, creating a pattern of areas dominated by erosion or deposition. The results of the weathering and erosion experiments show that the balance between snowmelt induced weathering in the spring and summer rainfall and erosion determine the rate of slope retreat in the Dinosaur Badlands. In the Zin Valley, on the other hand, the magnitude of the individual rainstorms determines whether a slope section is eroded or acts as a sediment sink. The experiments illustrate that the badland slopes experienced an auto-stabilization during the Quaternary in the Zin Valley. In the Dinosaur Badlands Holocene climatic variations have not caused a permanent differentiation of patterns of erosion and deposition. Based on these results the reaction of badland slopes to changing precipitation characteristics was modeled. In their current state, both badland slope systems appear to be fairly stable against climate change in the range of those occurring during the Holocene. However, the stability is achieved in different ways. In the Dinosaur Badlands, weathering rates are low compared to erosion capacity, maintaining continuous evacuation of sediment from slopes

  14. Mapping of geomorphic processes on abandoned fields and cultivated land in small catchments in semi-arid Spain

    NASA Astrophysics Data System (ADS)

    Geißler, C.; Ries, J. B.; Marzolff, I.

    2009-04-01

    In semi-arid landscapes vegetation succession on abandoned agricultural land is a long lasting process due to the water deficit for the best time of the year. During this phase of succession, geomorphic processes like the formation and development of rills, gullies and other geomorphic processes lead to a more or less constant deterioration of the abandoned land. But also on currently cultivated land and under quasi-natural vegetation the processes of soil degradation by flowing water take place. Regarding small catchments like gully catchments, the topography and the land cover (abandoned land, cultivated land, quasi-natural vegetation) are highly important factors in gully formation and soil degradation. Another important point is the distribution of different land cover units and therefore the connectivity of the catchment as described by Bracken & Croke (2007). In this study, 11 catchments of single gullies have been mapped geomorphologically and compared to the rate of gully development derived from small-format aerial photography. It could be shown that there is a high variability of processes due to differences in topography and the way the land is or has been cultivated. On abandoned land, geomorphic processes are highly active and enhance or even predestinate the direction of headcut movement. Another result is that geomorphological mapping of these gully catchments revealed interactions and dependencies of linear erosion features like the connection to the main drainage line, e.g. the gully. In the larger of the observed catchments (>5 ha) it became clear that some catchments have morphological features that tend to enhance connectivity (long rills, shallow drainage lines) and some catchments have features which tend to restrict connectivity (terraces, dense vegetation). In "more connected" catchments the retreat rate of the headcut is generally higher. By the method of geomorphological mapping, valuable information about the soil degrading processes

  15. A field study of the geomorphic effects of sublimating CO2 blocks on dune slopes at Coral Pink Dunes, Utah.

    NASA Astrophysics Data System (ADS)

    Bourke, Mary; Nield, Jo; Diniega, Serina; Hansen, Candy; McElwaine, Jim

    2016-04-01

    The seasonal sublimation of CO2 ice is an active driver of present-day surface change on Mars. Diniega et al (2013) proposed that a discrete type of Martian gully, found on southern hemisphere dunes, were formed by the movement of CO2 seasonal ice blocks. These 'Linear Gullies' consist primarily of long (100 m - 2.5 km) grooves with near-uniform width (few-10 m wide), and typical depth of <2 m. They are near-linear throughout most of their length but sometimes contains zones of low-to-high sinuosity. They are commonly bounded by levées. The groove is generally prefaced by a small alcove that originates at the dune brink. We present the results of a set of field experiments that were undertaken at the Coral Pink sand dunes, Utah. These are sister experiments to those undertaken in Arizona (Bourke et al, 2016). The experiments were undertaken on an active barchan dune with a 16 m long lee slope (30.3°). Ambient air temperature was 30°C and relative humidity was 25%; sand surface temperatures were 26.5°C. A CO2 ice block (60x205x210 mm) was placed at the dune brink and with a gentle nudge it moved downslope. The dynamics of the block movement were recorded using a pair of high resolution video cameras. Geomorphological observations were noted and topographic change was quantified using a Leica P20 terrestrial laser scanner with a resolution of 0.8 mm at 10 m, and change detection limits less than 3 mm. The block run was repeated a total of 10 times and launched from the same location at the dune brink. The experiment ran for 45 minutes. The block size was reduced to (45 x 190 x 195 mm) by the end of the run series. The resultant geomorphology shows that the separate block runs occupied different tracks leading to a triangular plan form shape with a maximum width of 3.5 m. This is different from the findings in Arizona where a narrower track span was recorded (1.7m) (Bourke et al, 2016). Similar block dynamics were observed at both sites (as blocks moved straight

  16. Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park - linking geomorphic field mapping with geomorphometric modelling

    NASA Astrophysics Data System (ADS)

    Messenzehl, Karoline; Hoffmann, Thomas; Dikau, Richard

    2014-09-01

    The efficiency of sediment routing through mountain sediment cascades is controlled by the connectivity of hillslopes to the main river system. A lack of connectivity may cause long-term sediment storage and exclude large fractions of a basin from the sediment routing for several thousand years. Here, we studied sediment dynamics in a small, formerly glaciated valley in the Swiss Alps. To characterise the sediment connectivity to the stream, we calculated a morphometric index using a GIS algorithm. The modelling results were tested against a field based geomorphic mapping of sediment storages, which were evaluated with respect to their state of (de)coupling. In accordance to the field diagnostics, the modelling results indicate very well that the present-day sediment flux is conditioned by the glacial valley morphometry inherited through Pleistocene glaciation. Especially in the upper hanging valleys, the connectivity index is reduced noticeably due to the glacial cirque morphology. Based on the field mapping, 30% of the hillslope sediment cascades are interrupted and 20% of the storage boundaries are currently affected by a lack of material transfer. As a consequence, ~ 29% of the basin surface is currently disconnected from the main river. Nevertheless, the GIS algorithm overestimates the connectivity within the basin, because it fails to calculate decoupling between neighbouring pixels in digital terrain models (DTMs). Around 35% of the basin surface, which has been mapped in the field as being decoupled, is related to relative high connectivity. Our study highlights the potential of morphometric GIS modelling for studying sediment connectivity, but additionally emphasises the indispensability of geomorphic field mapping for a holistic understanding of mountain cascading systems.

  17. Mapping geomorphic process domains to predict hillslope sediment size distribution using remotely-sensed data and field sampling, Inyo Creek, California

    NASA Astrophysics Data System (ADS)

    Leclere, S.; Sklar, L. S.; Genetti, J. R.

    2014-12-01

    The size distribution of sediments produced on hillslopes and supplied to channels depends on the geomorphic processes that weather, detach and transport rock fragments down slopes. Little in the way of theory or data is available to predict patterns in hillslope size distributions at the catchment scale from topographic and geologic maps. Here we use aerial imagery and a variety of remote sensing techniques to map and categorize geomorphic landscape units (GLUs) by inferred sediment production process regime, across the steep mountain catchment of Inyo Creek, eastern Sierra Nevada, California. We also use field measurements of particle size and local geomorphic attributes to test and refine GLU determinations. Across the 2 km of relief in this catchment, landcover varies from bare bedrock cliffs at higher elevations to vegetated, regolith-covered convex slopes at lower elevations. Hillslope gradient could provide a simple index of sediment production process, from rock spallation and landsliding at highest slopes, to tree-throw and other disturbance-driven soil production processes at lowest slopes. However, many other attributes are needed for a more robust predictive model, including elevation, curvature, aspect, drainage area, and color. We combine tools from ArcGIS, ERDAS Imagine and Envi with groundtruthing field work to find an optimal combination of attributes for defining sediment production GLUs. Key challenges include distinguishing: weathered from freshly eroded bedrock, boulders from intact bedrock, and landslide deposits from talus slopes. We take advantage of emerging technologies that provide new ways of conducting fieldwork and comparing field data to mapping solutions. In particular, cellphone GPS is approaching the accuracy of dedicated GPS systems and the ability to geo-reference photos simplifies field notes and increases accuracy of later map creation. However, the predictive power of the GLU mapping approach is limited by inherent uncertainty

  18. Predicting vegetation-stabilized dune field morphology

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2012-09-01

    The morphology of vegetation-stabilized dune fields on the North American Great Plains (NAGP) mostly comprises parabolic dunes; stabilized barchan and transverse dunes are rare, with the exception of transverse and barchan mega-dunes in the Nebraska Sand Hills. We present a hypothesis from a numerical dune field model explaining the vegetation-stabilized morphology of dunes under unidirectional wind. Simulations with a range of initial dune morphologies (closely-spaced transverse to disperse barchans) indicate that stabilized morphology is determined by the ratio of slipface deposition rate to deposition tolerance of vegetation. Slipface deposition rate is related to dune height, flux, and celerity. With a fixed depositional tolerance, large, slow-moving dunes have low slipface deposition rates and ‘freeze’ in place once vegetation is introduced. Relatively small, fast dunes have high slipface deposition rates and evolve into parabolic dunes, often colliding during stabilization. Our hypothesis could explain differences in stabilized morphology across the NAGP and elsewhere.

  19. Geomorphic status of regulated rivers in the Iberian Peninsula.

    PubMed

    Lobera, G; Besné, P; Vericat, D; López-Tarazón, J A; Tena, A; Aristi, I; Díez, J R; Ibisate, A; Larrañaga, A; Elosegi, A; Batalla, R J

    2015-03-01

    River regulation by dams modifies flow regimes, interrupts the transfer of sediment through channel networks, and alters downstream bed dynamics, altogether affecting channel form and processes. So far, most studies on the geomorphic impacts of dams are restricted to single rivers, or even single river stretches. In this paper we analyse the geomorphic status of 74 river sites distributed across four large basins in the Iberian Peninsula (i.e. 47 sites located downstream of dams). For this purpose, we combine field data with hydrological data available from water agencies, and analyse historical (1970) and current aerial photographs. In particular, we have developed a Geomorphic Status (GS) index that allows us to assess the physical structure of a given channel reach and its change through time. The GS encompasses a determination of changes in sedimentary units, sediment availability, bar stability and channel flow capacity. Sites are statistically grouped in four clusters based on contrasted physical and climate characteristics. Results emphasise that regulation changes river's flow regime with a generalized reduction of the magnitude and frequency of floods (thus flow competence). This, in addition to the decrease downstream sediment supply, results in the loss of active bars as they are encroached by vegetation, to the point that only reaches with little or no regulation maintain exposed sedimentary deposits. The GS of regulated river reaches is negatively correlated with magnitude of the impoundment (regulation). Heavily impacted reaches present channel stabilization and, in contrast to the hydrological response, the distance and number of tributaries do not reverse the geomorphic impact of the dams. Stabilization limits river dynamics and may contribute to the environmental degradation of the fluvial ecosystem. Overall, results describe the degree of geomorphological alteration experienced by representative Iberian rivers mostly because of regulation

  20. Stability under dilations of nonlinear spinor fields

    NASA Astrophysics Data System (ADS)

    Strauss, Walter A.; Vázquez, Luis

    1986-07-01

    The stability problem of the localized solutions for classical Dirac fields with scalar self-interactions is considered in the framework of the Shatah-Strauss formalism. We study the stability and instability under dilations and provide an application to the Soler model.

  1. Stability under dilations of nonlinear spinor fields

    SciTech Connect

    Strauss, W.A.; Va-acute-accentzquez, L.

    1986-07-15

    The stability problem of the localized solutions for classical Dirac fields with scalar self-interactions is considered in the framework of the Shatah-Strauss formalism. We study the stability and instability under dilations and provide an application to the Soler model.

  2. Modeling water stability and transport on Mars and Iapetus: Exploring their effects on geomorphic and atmospheric processes

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.

    2012-05-01

    The stability and transport of water on solid planetary surfaces strongly affects both atmospheric and surfaces processes. In this work, two bodies are specifically investigated where transport of water is relevant: Iapetus and Mars. Iapetus, an icy Kronian satellite, has a drastic albedo contrast on its surface and one of the darkest surfaces in the solar system. This extreme brightness contrast is suggested to occur via the transport of water ice from the leading hemisphere to the trailing hemisphere and the poles. Here a global heat and mass transfer model is developed for Iapetus in order to study the current state of H2O transport and to make inferences about the temporal evolution of this process on its surface. On Mars, atmosphere-regolith interactions have been suggested to control the near-surface water vapor cycle. Due to the large amount of experimental values of the absorptivity of soil materials, a model is developed in order to study the effects of an active regolith on the transport of water vapor. Liquid water has been a controversial subject in the martian literature. However, there exists sufficient evidence of past standing bodies of liquid on Mars. If these paleolakes contained dissolved salts, their evolution would be drastically affected. Therefore, a model is developed in order to study the effect of dissolved salts and investigate if there exists the possibility for brine residue formation. Recent observations also strongly suggest that liquid may be possible on present-day Mars. A model is developed in order to investigate the possibility of brine flows as the source for recurring slope lineae.

  3. Hillslope Sediment Size Distributions Linked to Geomorphic Process Regimes in a Steep Mountain Catchment: Field Data from Inyo Creek, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Genetti, J. R.; Sklar, L. S.; Leclere, S.

    2014-12-01

    The size of sediments produced on hillslopes and supplied to channels regulates river incision and thus landscape evolution in steep mountain catchments, yet the controls on sediment size are poorly understood. Analysis using cosmogenic nuclides and detrital thermochronometry on samples collected at the outlet of Inyo Creek, California, has quantified spatial variation in the size of sediment produced on hillslopes, however field data are needed to validate and explain the findings. We report on a field campaign to measure hillslope grain size distributions, and correlate size variations with topographic, geomorphic, and climatic attributes, across an elevation gradient in this steep catchment. We begin by mapping hillslope geomorphic process regimes, which in this watershed, underlain by granodiorite, are: bare bedrock that erodes by spallation and landsliding, angle of repose slopes of talus, landslide and debris flow deposits, and at lower elevations, soil-mantled convex hillslopes. For each process regime, we select sampling sites to span a wide elevation range. We use tape transects to measure the size of particles >100 mm, the extent of bedrock exposure, and density of vegetation. For finer sediments we collect bulk samples for sieve analysis in the lab. On bare bedrock, we measure joint spacing to infer the size of rock fragments produced. For steep, inaccessible areas we analyze photographs, scaled by objects of known size. Early results suggest that sediment production occurs primarily on bare bedrock surfaces that supply regolith-covered surfaces below, which serve as transport pathways and storage reservoirs. At lower elevations in the catchment, size distributions are bimodal, with only large boulders and fine-gravel and sand. At higher elevations, slopes near the channel have a more continuous distribution, including gravel, cobbles, and small boulders. Results to-date are broadly consistent with the geochemical analysis, which found that higher

  4. Using HEC-RAS to Enhance Interpretive Capabilities of Geomorphic Assessments

    NASA Astrophysics Data System (ADS)

    Keefer, L. L.

    2005-12-01

    The purpose of a geomorphic assessment is to characterize and evaluate a fluvial system for determining the past watershed and channel conditions, current geomorphic character and potential future channel adjustments. The geomorphic assessment approach utilized by the Illinois State Water Survey assesses channel response to disturbance at multiple temporal and spatial scales to help identify the underlying factors and events which led to the existing channel morphology. This is accomplished through two phases of investigation that involve a historical and physical analysis of the watershed, disturbance history, and field work at increasing levels of detail. To infer future channel adjustments, the geomorphic assessment protocol combines two methods of analyses that are dependent on the quantity and detail of the available data. The first method is the compilation of multiple lines of evidence using qualitative information related to the dominant fluvial environment, channel gradient, stream power thresholds, and channel evolution models. The second method is the use of hydraulic models which provide additional interpretative skills to evaluate potential channel adjustments. The structured data collection framework of the geomorphic assessment approach is used for the development of a HEC-RAS model. The model results are then used as another tool to determine the influence of bridges and control structures on channel stability, stream power profiles to identify potential channel bed degradation zones, and provide data for physically-based bank stability models. This poster will demonstrate the advantages of using a hydraulic model, such as HEC-RAS, to expand the interpretive capabilities of geomorphic assessments. The results from applying this approach will be demonstrated for the Big Creek watershed of the Cache River Basin in southern Illinois.

  5. Pedosediments of karstic sinkholes in the eolianites of NE Yucatán: A record of Late Quaternary soil development, geomorphic processes and landscape stability

    NASA Astrophysics Data System (ADS)

    Cabadas-Báez, H.; Solleiro-Rebolledo, E.; Sedov, S.; Pi-Puig, T.; Gama-Castro, J.

    2010-10-01

    The pedogenetic and geomorphic processes controlling soil development in tropical karstic landscapes, are still poorly understood. We have discovered and studied thick pedosediments in karst pockets, developed in Late Pleistocene lithified calcareous dunes (eolianites), in the NE coast of the Yucatán peninsula. The morphological geochemical and mineralogical characteristics of the pocket fills, were interpreted as a record of pedogenesis and geomorphic dynamics, that shaped the soil mantle during the Holocene. Sand fraction mineralogy and the Zr/Ti ratio, indicated a mixed origin of the soil parent material; volcanic and granitic/metamorphic components, redeposited in the lithoral and coastal environments were identified. Within the soil matrix, primary minerals were transformed by weathering and caused desilicification, accumulation of clay (hydroxy-interlayered vermiculite and kaolinite) and dithionite-citrate-bicarbonate extractable iron oxides (Fe d). Reworked pedofeatures indicative of clay illuviation and redoximorphic processes were observed. This set of processes points to a continuous phase of humid pedogenesis, several thousand years long in the Early-Middle Holocene. However, the development of thick recalcified pedosediments in the pockets, contrasting with the thin background Rendzinas requires active soil redeposition, during a late phase of geomorphic activity. The available Accelerator Mass Spectrometry (AMS) radiocarbon date indicates that the switch of the erosion/sedimentation processes could be related to ancient Maya land-use impact.

  6. Kinetic stability of field-reversed configurations

    SciTech Connect

    Staudenmeier, J.L.; Hsiao, M.-Y.

    1991-01-01

    The internal tilt mode is considered to be the biggest threat to Field-Reversed Configuration (FRC) global stability. The tilt stability of the FRC is studied using the MHD, Hall MHD, and the Vlasov-fluid (Vlasov ions, cold massless fluid electrons) models. Nonlinear Hall MHD calculations showed that the FRC was stable to the tilt mode when the s value of the FRC was below a critical value that was dependent on plasma length. The critical s value is larger for longer plasma equilibria. The stability of FRC's with toroidal field was studied with a linear initial value MHD code. The calculations showed an axial perturbation wavelength of the most unstable eigenfunction that was consistent with internal probe measurements made on translated FRC's. Linear Vlasov-fluid eigenvalue calculations showed that kinetic ion effects can change both the growth rate and the structure of the eigenfunctions when compared to the corresponding MHD modes. Calculations on short FRC equilibria indicate that MHD is not the appropriate small gyroradius limit of the Vlasov-fluid model because the axial transit time of a thermal ion is approximately equal to an MHD growth time for the tilt mode. Calculations were done using a small number of unstable MHD eigenfunctions as basis functions in order to reduce the dimensionality of the stability problem. The results indicated that this basis set can produce inaccurate growth rates at large value for s for some equilibria.

  7. Geomorphic field experiment to quantify grain size and biotic influence on riverbed sedimentation dynamics in a dry-season reservoir, Russian River, CA

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Ulrich, C.; Hubbard, S. S.; Borglin, S. E.; Rosenberry, D. O.

    2013-12-01

    An important problem in geomorphology is to differentiate between abiotic and biotic fine sediment deposition on coarse gravel river beds because of the potential for fine sediment to infiltrate and clog the pore space between gravel clasts. Infiltration of fines into gravel substrate is significant because it may reduce permeability; therefore, differentiation of abiotic vs. biotic sediment helps in understanding the causes of such changes. We conducted a geomorphic field experiment during May to November 2012 in the Russian River near Wohler, CA, to quantify biotic influence on riverbed sedimentation in a small temporary reservoir. The reservoir is formed upstream of a small dam inflated during the dry season to enhance water supply pumping from the aquifer below the channel; however, some flow is maintained in the reservoir to facilitate fish outmigration. In the Russian River field area, sediment transport dynamics during storm flows prior to dam inflation created an alternate bar-riffle complex with a coarser gravel surface layer over the relatively finer gravel subsurface. The objective of our work was to link grain size distribution and topographic variation to biotic and abiotic sediment deposition dynamics in this field setting where the summertime dam annually increases flow depth and inundates the bar surfaces. The field experiment investigated fine sediment deposition over the coarser surface sediment on two impounded bars upstream of the reservoir during an approximately five month period when the temporary dam was inflated. The approach included high resolution field surveys of topography, grain size sampling and sediment traps on channel bars, and laboratory analyses of grain size distributions and loss on ignition (LOI) to determine biotic content. Sediment traps were installed at six sites on bars to measure sediment deposited during the period of impoundment. Preliminary results show that fine sediment deposition occurred at all of the sample

  8. Investigation of Geomorphic and Seismic Effects on the 1959 Madison Canyon, Montana, Landslide Using an Integrated Field, Engineering Geomorphology Mapping, and Numerical Modelling Approach

    NASA Astrophysics Data System (ADS)

    Wolter, A.; Gischig, V.; Stead, D.; Clague, J. J.

    2016-06-01

    We present an integrated approach to investigate the seismically triggered Madison Canyon landslide (volume = 20 Mm3), which killed 26 people in Montana, USA, in 1959. We created engineering geomorphological maps and conducted field surveys, long-range terrestrial digital photogrammetry, and preliminary 2D numerical modelling with the objective of determining the conditioning factors, mechanisms, movement behaviour, and evolution of the failure. We emphasise the importance of both endogenic (i.e. seismic) and exogenic (i.e. geomorphic) processes in conditioning the slope for failure and hypothesise a sequence of events based on the morphology of the deposit and seismic modelling. A section of the slope was slowly deforming before a magnitude-7.5 earthquake with an epicentre 30 km away triggered the catastrophic failure in August 1959. The failed rock mass rapidly fragmented as it descended the slope towards Madison River. Part of the mass remained relatively intact as it moved on a layer of pulverised debris. The main slide was followed by several debris slides, slumps, and rockfalls. The slide debris was extensively modified soon after the disaster by the US Army Corps of Engineers to provide a stable outflow channel from newly formed Earthquake Lake. Our modelling and observations show that the landslide occurred as a result of long-term damage of the slope induced by fluvial undercutting, erosion, weathering, and past seismicity, and due to the short-term triggering effect of the 1959 earthquake. Static models suggest the slope was stable prior to the 1959 earthquake; failure would have required a significant reduction in material strength. Preliminary dynamic models indicate that repeated seismic loading was a critical process for catastrophic failure. Although the ridge geometry and existing tension cracks in the initiation zone amplified ground motions, the most important factors in initiating failure were pre-existing discontinuities and seismically induced

  9. Geomorphic considerations for erosion prediction

    USGS Publications Warehouse

    Osterkamp, W.R.; Toy, T.J.

    1997-01-01

    Current soil-erosion prediction technology addresses processes of rainsplash, overland-flow sediment transport, and rill erosion in small watersheds. The effects of factors determining sediment yield from larger-scale drainage basins, in which sediment movement is controlled by the combined small-scale processes and a complex set of channel and other basin-scale sediment-delivery processes, such as soil creep, bioturbation, and accelerated erosion due to denudation of vegetation, have been poorly evaluated. General suggestions are provided for the development of erosion-prediction technology at the geomorphic or drainage-basin scale based on the separation of sediment-yield data for channel and geomorphic processes from those of field-scale soil loss. An emerging technology must consider: (1) the effects on sediment yield of climate, geology and soils, topography, biotic interactions with other soil processes, and land-use practices; (2) all processes of sediment delivery to a channel system; and (3) the general tendency in most drainage basins for progressively greater sediment storage in the downstream direction.

  10. Southern San Andreas Fault evaluation field activity: approaches to measuring small geomorphic offsets--challenges and recommendations for active fault studies

    USGS Publications Warehouse

    Scharer, Katherine M.; Salisbury, J. Barrett; Arrowsmith, J. Ramon; Rockwell, Thomas K.

    2014-01-01

    In southern California, where fast slip rates and sparse vegetation contribute to crisp expression of faults and microtopography, field and high‐resolution topographic data (<1  m/pixel) increasingly are used to investigate the mark left by large earthquakes on the landscape (e.g., Zielke et al., 2010; Zielke et al., 2012; Salisbury, Rockwell, et al., 2012, Madden et al., 2013). These studies measure offset streams or other geomorphic features along a stretch of a fault, analyze the offset values for concentrations or trends along strike, and infer that the common magnitudes reflect successive surface‐rupturing earthquakes along that fault section. Wallace (1968) introduced the use of such offsets, and the challenges in interpreting their “unique complex history” with offsets on the Carrizo section of the San Andreas fault; these were more fully mapped by Sieh (1978) and followed by similar field studies along other faults (e.g., Lindvall et al., 1989; McGill and Sieh, 1991). Results from such compilations spurred the development of classic fault behavior models, notably the characteristic earthquake and slip‐patch models, and thus constitute an important component of the long‐standing contrast between magnitude–frequency models (Schwartz and Coppersmith, 1984; Sieh, 1996; Hecker et al., 2013). The proliferation of offset datasets has led earthquake geologists to examine the methods and approaches for measuring these offsets, uncertainties associated with measurement of such features, and quality ranking schemes (Arrowsmith and Rockwell, 2012; Salisbury, Arrowsmith, et al., 2012; Gold et al., 2013; Madden et al., 2013). In light of this, the Southern San Andreas Fault Evaluation (SoSAFE) project at the Southern California Earthquake Center (SCEC) organized a combined field activity and workshop (the “Fieldshop”) to measure offsets, compare techniques, and explore differences in interpretation. A thorough analysis of the measurements from the

  11. Estimating Earthquake Magnitude from the Kentucky Bend Scarp in the New Madrid Seismic Zone Using Field Geomorphic Mapping and High-Resolution LiDAR Topography

    NASA Astrophysics Data System (ADS)

    Kelson, K. I.; Kirkendall, W. G.

    2014-12-01

    Recent suggestions that the 1811-1812 earthquakes in the New Madrid Seismic Zone (NMSZ) ranged from M6.8-7.0 versus M8.0 have implications for seismic hazard estimation in the central US. We more accurately identify the location of the NW-striking, NE-facing Kentucky Bend scarp along the northern Reelfoot fault, which is spatially associated with the Lake County uplift, contemporary seismicity, and changes in the Mississippi River from the February 1812 earthquake. We use 1m-resolution LiDAR hillshades and slope surfaces, aerial photography, soil surveys, and field geomorphic mapping to estimate the location, pattern, and amount of late Holocene coseismic surface deformation. We define eight late Holocene to historic fluvial deposits, and delineate younger alluvia that are progressively inset into older deposits on the upthrown, western side of the fault. Some younger, clayey deposits indicate past ponding against the scarp, perhaps following surface deformational events. The Reelfoot fault is represented by sinuous breaks-in-slope cutting across these fluvial deposits, locally coinciding with shallow faults identified via seismic reflection data (Woolery et al., 1999). The deformation pattern is consistent with NE-directed reverse faulting along single or multiple SW-dipping fault planes, and the complex pattern of fluvial deposition appears partially controlled by intermittent uplift. Six localities contain scarps across correlative deposits and allow evaluation of cumulative surface deformation from LiDAR-derived topographic profiles. Displacements range from 3.4±0.2 m, to 2.2±0.2 m, 1.4±0.3 m, and 0.6±0.1 m across four progressively younger surfaces. The spatial distribution of the profiles argues against the differences being a result of along-strike uplift variability. We attribute the lesser displacements of progressively younger deposits to recurrent surface deformation, but do not yet interpret these initial data with respect to possible earthquake

  12. Kinetic stability of field-reversed configurations

    SciTech Connect

    Hsiao, Ming-Yuan; Staudenmeier, J.L.

    1990-05-01

    This project studies the linear stability of global MHD-like modes in the Field-Reversed Configuration (FRC) within the context of the Vlasov-fluid model (Vlasov ions, cold massless fluid electrons). The approach taken in this study is to use unstable MHD eigenfunctions as basis functions to solve a variational form of the linearized Vlasov-fluid equations. In this approach the Vlasov-fluid dispersion functional is separated into a fluid-like part and a part that depends on the ion orbits in the equilibrium electric and magnetic fields. The fluid-like part is equivalent in form to the MHD energy principle without the compressibility term. The part that depends on the equilibrium particle orbits contains finite larmor radius effects, the Hall effect and the parallel kinetic effects. The dispersion functional is solved by numerical computation. This project will try to determine the scaling of the Vlasov-fluid growth rates of unstable modes with variations in FRC equilibrium parameters such as s (the approximate number of ion gyroradii between the magnetic axis and the separatrix of the FRC), elongation, and other profile parameters.

  13. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina

    NASA Astrophysics Data System (ADS)

    Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.

    2016-09-01

    This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.

  14. STABILITY OF THE TOROIDAL MAGNETIC FIELD IN STELLAR RADIATION ZONES

    SciTech Connect

    Bonanno, Alfio; Urpin, Vadim E-mail: vadim.urpin@uv.es

    2012-03-10

    The stability of the magnetic field in radiation zones is of crucial importance for mixing, angular momentum transport, etc. We consider the stability properties of a star containing a predominant toroidal field in spherical geometry by means of a linear stability in the Boussinesq approximation taking into account the effect of thermal conductivity. We calculate the growth rate of instability and analyze in detail the effects of stable stratification and heat transport. We argue that the stabilizing influence of gravity can never entirely suppress the instability caused by electric currents in radiation zones. However, the stable stratification can essentially decrease the growth rate of instability.

  15. Field stabilization of Alvarez-type cavities

    NASA Astrophysics Data System (ADS)

    Du, X.; Groening, L.; Mickat, S.; Seibel, A.; Kester, O. K.

    2017-03-01

    Alvarez-type cavities are commonly used to reliably accelerate high quality hadron beams. Optimization of their longitudinal field homogeneity is usually accomplished by post-couplers, i.e., additional rods being integrated into the cavity. This paper instead proposes to use the stems that keep the drift tubes for that purpose. As their individual azimuthal orientations do not change the cavity's undisturbed operational mode, they comprise a set of free parameters that can be used to modify higher mode field patterns. The latter have significant impact on the robustness of the operational mode with respect to eventual perturbations. Several optimized stem configurations are presented and benchmarked against each other. The path to obtain these configurations is paved analytically and worked out in detail through simulations. It is shown also by measurements that the method provides for flat field distributions and very low field tilt sensitivities without insertion of post-couplers.

  16. Geosynthetic clay liners - slope stability field study

    SciTech Connect

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  17. Geomorphic terranes of the central Klamath Mountains: Applications to ecosystem management

    SciTech Connect

    De La Fuente, J.; Biery, E.; Creasy, M.; Elder, D.; Haessig, P.; Laurent, T.; Snavely, W. )

    1993-04-01

    Five geomorphic terranes have been identified in the Dillon Mountain area, about 20 miles southwest of Happy Camp, California. These terranes are defined as lands with similar geologic histories, where modern geomorphic processes are similar, and where soils and biotic communities are similar. They include: (1) slump/earthflow terrane; (2) glacial deposit terrane; (3) mountain slope terrane; (4) headwall terrane (steep, fan-shaped headwaters of first order drainages); and (5) inner gorge terrane (the steep landform which develops adjacent to rapidly downcutting streams). These primary geomorphic terranes are further subdivided on a basis of lithology, slope gradient, and geomorphic setting. Geomorphic terrane maps are derived from primary data layers in a geographic information system (GIS). The primary data layers include field-generated lithology, structure, and geomorphology. Slope gradient information is also used, and is derived from digital terrain data, modified by field observations. The distribution of geomorphic terranes is strongly influenced by local stratigraphy, which includes portions of the Western Jurassic Belt (Galice Formation), and the Western Paleozoic and Triassic Belt (Rattlesnake Creek, and Hayfork terranes). Tectonic and climatic events of the Pleistocene Epoch also played a major role in the formation and distribution of geomorphic terranes. These included rapid uplift, seismic activity, and alternating glacial and interglacial conditions. Work is underway to refine the geomorphic terranes by applying other variables such as bedrock structure, precipitation zones, and elevation zones.

  18. Phase stability of transition metal dichalcogenide by competing ligand field stabilization and charge density wave

    NASA Astrophysics Data System (ADS)

    C, Santosh K.; Zhang, Chenxi; Hong, Suklyun; Wallace, Robert M.; Cho, Kyeongjae

    2015-09-01

    Transition metal dichalcogenides (TMDs) have been investigated extensively for potential application as device materials in recent years. TMDs are found to be stable in trigonal prismatic (H), octahedral (T), or distorted octahedral (Td) coordination of the transition metal. However, the detailed understanding of stabilities of TMDs in a particular phase is lacking. In this work, the detailed TMD phase stability using first-principles calculations based on density functional theory (DFT) has been investigated to clarify the mechanism of phase stabilities of TMDs, consistent with the experimental observation. Our results indicate that the phase stability of TMDs can be explained considering the relative strength of two competing mechanisms: ligand field stabilization of d-orbitals corresponding to transition metal coordination geometry, and charge density wave (CDW) instability accompanied by a periodic lattice distortion (PLD) causing the phase transition in particular TMDs.

  19. Stability in higher-derivative matter fields theories

    NASA Astrophysics Data System (ADS)

    Tretyakov, Petr V.

    2016-09-01

    We discuss possible instabilities in higher-derivative matter field theories. These theories have two free parameters β _1 and β _4. By using a dynamical system approach we explicitly demonstrate that for the stability of Minkowski space in an expanding universe we need the condition β _4<0. By using the quantum field theory approach we also find an additional restriction for the parameters, β _1>-1/3β _4, which is needed to avoid a tachyon-like instability.

  20. Stability of large scale chromomagnetic fields in the early universe

    NASA Astrophysics Data System (ADS)

    Elmfors, Per; Persson, David

    1999-01-01

    It is well known that Yang-Mills theory in vacuum has a perturbative instability to spontaneously form a large scale magnetic field (the Savvidy mechanism) and that a constant field is unstable so that a possible ground state has to be inhomogenous over the non-perturbative scale Λ (the Copenhagen vacuum). We argue that this spontaneous instability does not occur at high temperature when the induced field strength gB~Λ2 is much weaker than the magnetic mass squared (g2T)2. At high temperature, oscillations of gauge fields acquire a thermal mass M~gT and we show that this mass stabilizes a magnetic field which is constant over length scales shorter than the magnetic screening length (g2T)-1. We therefore conclude that there is no indication for any spontaneous generation of weak non-abelian magnetic fields in the early universe.

  1. The Stability of Magnetized Rotating Plasmas with Superthermal Fields

    NASA Astrophysics Data System (ADS)

    Pessah, Martin E.; Psaltis, Dimitrios

    2005-08-01

    During the last decade it has become evident that the magnetorotational instability is at the heart of the enhanced angular momentum transport in weakly magnetized accretion disks around neutron stars and black holes. In this paper we investigate the local linear stability of differentially rotating, magnetized flows and the evolution of the magnetorotational instability beyond the weak-field limit. We show that, when superthermal toroidal fields are considered, the effects of both compressibility and magnetic tension forces, which are related to the curvature of toroidal field lines, should be taken fully into account. We demonstrate that the presence of a strong toroidal component in the magnetic field plays a nontrivial role. When strong fields are considered, the strength of the toroidal magnetic field not only modifies the growth rates of the unstable modes but also determines which modes are subject to instabilities. We find that, for rotating configurations with Keplerian laws, the magnetorotational instability is stabilized at low wavenumbers for toroidal Alfvén speeds exceeding the geometric mean of the sound speed and the rotational speed. For a broad range of magnetic field strengths, we also find that two additional distinct instabilities are present; they both appear as the result of coupling between the modes that become the Alfvén and the slow modes in the limit of no rotation. We discuss the significance of our findings for the stability of cold, magnetically dominated, rotating fluids and argue that, for these systems, the curvature of toroidal field lines cannot be neglected even when short-wavelength perturbations are considered. We also comment on the implications of our results for the validity of shearing box simulations in which superthermal toroidal fields are generated.

  2. The role of trees in the geomorphic system of forested hillslopes — A review

    NASA Astrophysics Data System (ADS)

    Pawlik, Łukasz

    2013-11-01

    Forested hillslopes form a special geoecosystem, an environment of geomorphic processes that depend strongly on forest ecology, including the growth and decay of trees, changes in structure, disturbances and other fluctuations. Hence, the following various functions of trees are reviewed here: their role in both biomechanical and biochemical weathering, as well as their importance for the hillslope geomorphic subsystem and for transport of soil material via tree uprooting and root growth. Special attention is paid to tree uprooting, a process considered the most efficient and most frequent biogeomorphological indicator of bio-physical activity within forest in complex terrain. Trees have varied implications for soil formation in different environments (boreal to tropical forests) and altitudes. In this paper an attempt has been made to emphasize how trees not only modulate geomorphic processes, but also how they act as a direct or indirect agent of microrelief formation, the most striking example of which being widespread and long-lasting pit-and-mound microtopography. Based on the analyzed literature it seems that some problems attributed to forest ecology can have a fundamental effect on forested hillslope dynamics, a relationship which points to the need for its integration and interpretation within the field of geomorphology. The biology of individual trees has a key influence on the development of e.g. rock faces, weathering front migration and changes in the soil biomantle within upper and lower forest belts. Additionally, forms and sediments depend largely on the horizontal and vertical extent, volume and structure of root systems, as well as on active processes taking place in the root zone and rhizosphere. Furthermore, although trees to a large extent stabilize slope surfaces, their presence can also have a dual effect on slope stability due to tree uprooting, a process which in some circumstances can trigger mass movements (e.g. debris avalanches). So far

  3. Profile stabilization of tilt mode in a Field Reversed Configuration

    SciTech Connect

    Cobb, J.W.; Tajima, T.; Barnes, D.C.

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

  4. Field stability in two-stem drift-tube linacs

    SciTech Connect

    Billen, J.H.; Spalek, G.; Shapiro, A.H.

    1988-01-01

    Drift tubes supported by two stems have been considered for cryogenic drift-tube linacs (DTLs) to reduce vibrations and to minimize drift-tube deflections upon cool down. We investigated rf properties of two-stem DTL structures at room temperature and low power. Even apart is inherently more stable against tuning errors than a similar structure with single stems. The increased stability is higher for DTLs with shorter drift tubes. Ordinary quarter-wavelength-long post couplers actually destabilize the two-stem DTL fields; the extra stem raises the post coupler frequency compared to the frequency of the same post coupler extended beyond the tank wall into coaxial stub tuners. Adjustment of the stub lengths tunes the post-coupler frequencies, but post-coupler lengths in the tank have no effect, which suggests a field pattern different from traditional post couplers. The stabilized DTL resembles multiple-stem DTLs in which the angle between stems is varied to achieve stabilization. Adjusting the coaxial stub length is mechanically simpler than changing the stem azimuth angle. 5 refs., 6 figs., 1 tab.

  5. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  6. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  7. On the stability of the asymptotically free scalar field theories

    SciTech Connect

    Shalaby, A M.

    2015-03-30

    Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.

  8. Stability of toroidal magnetic fields in stellar interiors

    NASA Astrophysics Data System (ADS)

    Ibáñez-Mejía, J. C.; Braithwaite, J.

    2015-06-01

    Aims: Magnetic fields play an important role during the formation and evolution of stars. Of particular interest in stellar evolution is what effect they have on the transport angular momentum and mixing of chemical elements along the radial direction in radiative regions. Current theories suggest a dynamo loop as the mechanism responsible for maintaining the magnetic field in the radiative zone. This loop consists of differential rotation on one side and magnetohydrodynamic (MHD) instability - the so-called Tayler instability - on the other. However, how this might work quantitatively is still an unsettled question, largely because we do not yet understand all the properties of the instability in question. In this paper we explore some properties of the Tayler instability. Methods: We present 3D MHD simulations of purely toroidal and mixed poloidal-toroidal magnetic field configurations to study the behavior of the Tayler instability. For the first time the simultaneous action of rotation and magnetic diffusion are taken into account and the effects of a poloidal field on the dynamic evolution of unstable toroidal magnetic fields is included. Results: In the absence of diffusion, fast rotation (rotation rate, Ω∥, compared to Alfvén frequency, ωA,φ) is able to suppress the instability when the rotation and magnetic axes are aligned and when the radial field strength gradient p< 1.5 (where p ≡ ∂lnB/∂lnϖ and ϖ is the cylindrical radius coordinate). When diffusion is included, this system turns unstable for diffusion dominated and marginally diffusive dominated regions. If the magnetic and rotation axes are perpendicular to each other, Ω⊥, the stabilizing effect induced by the Coriolis force is scale dependent and decreases with increasing wavenumber. In toroidal fields with radial field gradients bigger than p> 1.5, rapid rotation does not suppress the instability but instead introduces a damping factor ωA/ 2Ω∥ to the growth rate, in agreement

  9. Grays River Watershed Geomorphic Analysis

    SciTech Connect

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  10. Geomorphic characteristics and classification of Duluth-area streams, Minnesota

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.; DePhilip, Michele M.; Lee, Kathy E.

    2006-01-01

    In 2003 and 2004, a geomorphic assessment of streams in 20 watersheds in the Duluth, Minn., area was conducted to identify and summarize geomorphic characteristics, processes, disturbance mechanisms, and potential responses to disturbance. Methods used to assess the streams included watershed characterization, descriptions of segment slopes and valley types, historical aerial photograph interpretation, and rapid field assessments and intensive field surveys of stream reaches. Geomorphic conditions were summarized into a segment-scale classification with 15 categories mainly based on drainage-network position and slope, and, secondarily, based on geologic setting, valley type, and dominant geomorphic processes. Main causes of geomorphic disturbance included historical logging and agriculture, and ongoing urban development, human-caused channel alterations, road and storm sewer drainage, ditching, hiking trails, and gravel pits or quarries. Geomorphic responses to these disturbances are dependent on a combination of drainage-network position, slope, and geologic setting. Geologic setting is related to drainage-network position because the geologic deposits parallel the Lake Superior shoreline. Headwater streams in large watersheds flow over glacial deposits above altitudes of about 1,200 feet (ft). Headwater tributaries and upper main stems have ditch-like channels with gentle slopes and no valleys. Urban development and road drainage cause increased runoff and flood peaks in these segments resulting in channel widening. Below about 1,200 ft, main-stem segments generally are affected by bedrock type and structure and have steep slopes and confined or entrenched valleys. Increases in flood peaks do not cause incision or widening in the bedrock-controlled valleys; instead, the flow and scour areas are expanded. Feeder tributaries to these main stems have steep, confined valleys and may be sources for sediment from urban areas, road runoff, or storm sewer outfalls. Main

  11. Gully evolution and geomorphic adjustments of badlands to reforestation.

    PubMed

    Ballesteros Cánovas, J A; Stoffel, M; Martín-Duque, J F; Corona, C; Lucía, A; Bodoque, J M; Montgomery, D R

    2017-03-22

    Badlands and gullied areas are among those geomorphic environments with the highest erosion rates worldwide. Nevertheless, records of their evolution and their relations with anthropogenic land transformation are scarcer. Here we combine historical data with aerial photographs and tree-ring records to reconstruct the evolution of a badland in a Mediterranean environment of Central Spain. Historical sources suggest an anthropogenic origin of this badland landscape, caused by intense quarrying activities during the 18(th) century. Aerial photographs allowed detection of dramatic geomorphic changes and the evolution of an emerging vegetation cover since the 1960s, due to widespread reforestation. Finally, tree-ring analyses of exposed roots allowed quantification of recent channel incision of the main gully, and sheet erosion processes. Our results suggest that reforestation practices have influenced the initiation of an episode of incision in the main channel in the 1980s, through the hypothesized creation of disequilibrium in water-sediment balance following decoupling of hillslopes from channel processes. These findings imply an asymmetry in the geomorphic response of badlands to erosion such that in the early evolution stages, vegetation removal results in gullying, but that reforestation alone does not necessarily stabilize the landforms and may even promote renewed incision.

  12. Gully evolution and geomorphic adjustments of badlands to reforestation

    NASA Astrophysics Data System (ADS)

    Ballesteros Cánovas, J. A.; Stoffel, M.; Martín-Duque, J. F.; Corona, C.; Lucía, A.; Bodoque, J. M.; Montgomery, D. R.

    2017-03-01

    Badlands and gullied areas are among those geomorphic environments with the highest erosion rates worldwide. Nevertheless, records of their evolution and their relations with anthropogenic land transformation are scarcer. Here we combine historical data with aerial photographs and tree-ring records to reconstruct the evolution of a badland in a Mediterranean environment of Central Spain. Historical sources suggest an anthropogenic origin of this badland landscape, caused by intense quarrying activities during the 18th century. Aerial photographs allowed detection of dramatic geomorphic changes and the evolution of an emerging vegetation cover since the 1960s, due to widespread reforestation. Finally, tree-ring analyses of exposed roots allowed quantification of recent channel incision of the main gully, and sheet erosion processes. Our results suggest that reforestation practices have influenced the initiation of an episode of incision in the main channel in the 1980s, through the hypothesized creation of disequilibrium in water-sediment balance following decoupling of hillslopes from channel processes. These findings imply an asymmetry in the geomorphic response of badlands to erosion such that in the early evolution stages, vegetation removal results in gullying, but that reforestation alone does not necessarily stabilize the landforms and may even promote renewed incision.

  13. Gully evolution and geomorphic adjustments of badlands to reforestation

    PubMed Central

    Ballesteros Cánovas, J. A.; Stoffel, M.; Martín-Duque, J. F.; Corona, C.; Lucía, A.; Bodoque, J. M.; Montgomery, D. R.

    2017-01-01

    Badlands and gullied areas are among those geomorphic environments with the highest erosion rates worldwide. Nevertheless, records of their evolution and their relations with anthropogenic land transformation are scarcer. Here we combine historical data with aerial photographs and tree-ring records to reconstruct the evolution of a badland in a Mediterranean environment of Central Spain. Historical sources suggest an anthropogenic origin of this badland landscape, caused by intense quarrying activities during the 18th century. Aerial photographs allowed detection of dramatic geomorphic changes and the evolution of an emerging vegetation cover since the 1960s, due to widespread reforestation. Finally, tree-ring analyses of exposed roots allowed quantification of recent channel incision of the main gully, and sheet erosion processes. Our results suggest that reforestation practices have influenced the initiation of an episode of incision in the main channel in the 1980s, through the hypothesized creation of disequilibrium in water-sediment balance following decoupling of hillslopes from channel processes. These findings imply an asymmetry in the geomorphic response of badlands to erosion such that in the early evolution stages, vegetation removal results in gullying, but that reforestation alone does not necessarily stabilize the landforms and may even promote renewed incision. PMID:28327591

  14. Understanding stream geomorphic state in relation to ecological integrity: evidence using habitat assessments and macroinvertebrates.

    PubMed

    Sullivan, S Mazeika P; Watzin, Mary C; Hession, W Cully

    2004-11-01

    Scientists have long assumed that the physical structure and condition of stream and river channels have pervasive effects on biological communities and processes, but specific tests are few. To investigate the influence of the stream-reach geomorphic state on in-stream habitat and aquatic macroinvertebrate communities, we compared measures of habitat conditions and macroinvertebrate community composition between stable and unstable stream reaches in a paired-study design. We also explored potential associations between these ecological measures and individual geomorphic characteristics and channel adjustment processes (degradation, aggradation, overwidening, and change in planform). We found that habitat quality and heterogeneity were closely tied to stream stability, with geomorphically stable reaches supporting better habitat than unstable reaches. Geomorphic and habitat assessment scores were highly correlated (r = 0.624, P < 0.006, n = 18). Stable reaches did not support significantly greater macroinvertebrate densities than unstable reaches (t = -0.415, P > 0.689, df = 8). However, the percent of the macroinvertebrate community in the Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa was significantly correlated with the overall habitat assessment scores as well as with individual measures of geomorphic condition and habitat quality. While there is a clear need for more work in classifying and quantifying the responses of aquatic and aquatic-dependent biota to various geomorphic states and processes, this study provides solid preliminary evidence that macroinvertebrate communities are affected by the geomorphic condition of the stream reaches they inhabit and that geomorphic assessment approaches can be used as a tool for evaluating ecological integrity.

  15. Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington

    USGS Publications Warehouse

    Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.

    2012-01-01

    Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.

  16. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.; Gillies, D. C.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time- independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  17. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Gillies, D. C.; Volz, M. P.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time-independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  18. Nonlinear stability of field-reversed configurations with self-generated toroidal field

    SciTech Connect

    Omelchenko, Y. A.; Schaffer, M. J.; Parks, P. B.

    2001-10-01

    The field-reversed configuration (FRC) is a high-beta compact toroidal plasma confinement scheme in which the external poloidal field is reversed on the geometric axis by azimuthal (toroidal) plasma current. A quasineutral, hybrid, particle-in-cell (PIC) approach [Y. A. Omelchenko and R. N. Sudan, Phys. Plasmas 2, 2773 (1995)] is applied to study long-term nonlinear stability of computational FRC equilibria to a number of toroidal modes, including the most disruptive tilt mode. In particular, a self-generated toroidal magnetic field is found to be an important factor in mitigating the instability and preventing the confinement disruption. This is shown to be a unique FRC property resulting from the Hall effect in the regions of vanishing poloidal magnetic field. The instability-driven toroidal field stabilizes kink formation by increasing the magnetic field energy without destabilizing curvature-driven plasma motion. Finally, the tilt instability saturates due to nonlinear, finite Larmor radius (FLR) effects and plasma relaxation to a quasisteady kinetic state. During this transition the FRC is shown to dissipate a substantial amount of initially trapped flux and plasma energy. These effects are demonstrated for kinetic and fluid-like, spherical and prolate FRCs.

  19. Geomorphic change in Dingzi Bay, East China since the 1950s: impacts of human activity and fluvial input

    NASA Astrophysics Data System (ADS)

    Tian, Qing; Wang, Qing; Liu, Yalong

    2016-11-01

    This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, along with information obtained from Remote Sensing, Geographic Information System and Global Position System technology. The results show that the annual runoff and sediment load discharged into Dingzi Bay display significant decreasing trends overall, and marked downward steps were observed in 1966 and 1980. Around 60%-80% of the decline is attributed to decreasing precipitation in the Wulong River Basin. The landform types in Dingzi Bay have changed significantly since the 1950s, especially over the period between 1981 and 1995. Large areas of tidal flats, swamp, salt fields, and paddy fields have been reclaimed, and aquaculture ponds have been constructed. Consequently, the patterns of erosion and deposition in the bay have changed substantially. Despite a reduction in sediment input of 65.68% after 1966, low rates of sediment deposition continued in the bay. However, deposition rates changed significantly after 1981 owing to large-scale development in the bay, with a net depositional area approximately 10 times larger than that during 1961-1981. This geomorphic evolution stabilized following the termination of large-scale human activity in the bay after 1995. Overall, Dingzi Bay has shown a tendency towards silting-up during 1952-2010, with the bay head migrating seaward, the number of channels in the tidal creek system decreasing, and the tidal inlet becoming narrower and shorter. In conclusion, largescale development and human activity in Dingzi Bay have controlled the geomorphic evolution of the bay since the 1950s.

  20. Catchment rehabilitation and hydro-geomorphic characteristics of mountain streams in the western Rift Valley escarpment of Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Ghebreyohannes Asfaha, Tesfaalem; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2013-04-01

    The catchments in the western Rift Valley escarpment of Northern Ethiopia are highly responsive in terms of hydro-geomorphic changes. With rapid deforestation in the first half of the 20th century, dense gully and scar networks developed, exporting huge amounts of runoff and sediment down to the fertile and densely populated Raya Valley. Consequently, threatening the environment and the livelihoods of the people both in the upstream and downstream areas. To reverse this problem, catchment-scale rehabilitation activities were initiated in the mid-1980s. In this study, we examine the hydro-geomorphic response of streams after catchment rehabilitation. Scar density was digitized from Google Earth imagery (2005) in 20 adjacent catchments and was explained in terms of its corresponding Normalized Difference Vegetation Index (NDVI) and slope gradient. This was accompanied by analysis of incidental repeat photographs and field observations. As evidenced by the series of repeat photographs, the vegetation cover of the catchments decreased up to 1975 and rapid reforestation occurred thereafter. A multiple regression analysis (R2=0.53, P<0.01) showed that scar density is negatively correlated with NDVI and positively with average gradient of very steep slopes (>60%). Moreover, due to reduction in discharge and sediment flow from the rehabilitated catchments, stream adjustments were observed in the field: previously braided stream channels have changed to single-thread streams, many lateral bars are stabilized and covered by vegetation, stream channels are incising due to clear water effect and the size of boulder deposits decreases. Therefore, the study shows that, land degradation activities in the upper catchments resulted in changes in hydro-geomorphic characteristics of the streams and reduction in runoff and sediment transport to the Raya Valley. Key words: scar density; NDVI; stream incision; soil and water conservation; stream adjustment; land use change.

  1. Geomorphic control of landscape carbon accumulation

    USGS Publications Warehouse

    Rosenbloom, N.A.; Harden, J.W.; Neff, J.C.; Schimel, D.S.

    2006-01-01

    We use the CREEP process-response model to simulate soil organic carbon accumulation in an undisturbed prairie site in Iowa. Our primary objectives are to identify spatial patterns of carbon accumulation, and explore the effect of erosion on basin-scale C accumulation. Our results point to two general findings. First, redistribution of soil carbon by erosion results in a net increase in basin-wide carbon storage relative to a noneroding environment. Landscape-average mean residence times are increased in an eroding landscape owing to the burial/preservation of otherwise labile C. Second, field observations taken along a slope transect may overlook significant intraslope variations in carbon accumulation. Spatial patterns of modeled deep C accumulation are complex. While surface carbon with its relatively short equilibration time is predictable from surface properties, deep carbon is strongly influenced by the landscape's geomorphic and climatic history, resulting in wide spatial variability. Convergence and divergence associated with upland swales and interfluves result in bimodal carbon distributions in upper and mid slopes; variability in carbon storage within modeled mid slopes was as high as simulated differences between erosional shoulders and depositional valley bottoms. The bimodality of mid-slope C variability in the model suggests that a three-dimensional sampling strategy is preferable over the traditional two-dimensional analog or "catena" approach. Copyright 2006 by the American Geophysical Union.

  2. Gully evolution and geomorphic adjustments of badlands to recent afforestation

    NASA Astrophysics Data System (ADS)

    Ballesteros-Cánovas, Juan Antonio; Stoffel, Markus; Francisco Martín-Duque, Jose; Corona, Christophe; Lucia, Ana; María Bodoque, Jose

    2016-04-01

    Badlands and gullied areas are among the geomorphic environments with the highest erosion rates worldwide, however records on their evolution are very scarce and often limited to presumed initial conditions and the known present state. In this communication, we present a unique and very dense and annual record and outstanding example of erosion processes in a Mediterranean environment in Central Spain, where badland and gullying processes on sandy slopes of a set of mesas have been presumably triggered by quarrying activities since Medieval times. The gully channel evolution here analyzed provides an exceptional example of a larger setting of geomorphic. Besides the analysis of geomorphic adjustments to historical land-use changes induced by historical quarrying and gullying dynamics, we also quantified the impact of current geomorphic adjustments to 20th century afforestation by combining multiproxy such as aerial photography, historical archives, and large dataset of exposed roots to date, quantify, and reconstruct the morphology of a rapidly evolving channel in a gullied catchment. In this analysis, more than 150 exposed roots were analyzed to quantify and report channel incision; widening and gully retreatment rates during the last decades, as well as to quantify sheet erosion on different soil units. Our results suggest that, rather than stabilizing gully evolution, the afforestation carried out during 1960s has played an important role in water-sediment balance and connectivity and would have triggered the initiation of channel incision processes in the 1980s. Therefore, we observe that the channel incision match with a significant increase of the vegetation cover, which leads a significant decrease in sheet erosion rates. Based on our long-term annual gully reconstruction, we observed that sediment delivery does not correlate with the estimated intensity of precipitation (Fourier index). Instead, we observe abrupt morphological changes in the gully are

  3. Flute stabilization due to ponderomotive force created by an rf field with a variable gradient

    SciTech Connect

    Yasaka, Y.; Itatani, R.

    1986-06-30

    An rf-stabilization experiment was performed in the axisymmetric single-mirror device HIEI by controlling the radial-gradient scale length of the rf field with the aid of an azimuthally phased antenna array. The flute stability depends sensitively on the scale length of the perpendicular rf electric field, which shows that rf stabilization is caused by the ponderomotive force for ions.

  4. Measurements of magnetic field stability in inhomogeneous magnetic fields at low temperature

    NASA Astrophysics Data System (ADS)

    Hugon, Cedric; Jacquinot, Jacques-Francois; Sakellariou, Dimitris

    2010-01-01

    We present an original method for field stability measurements in a bath of liquid helium. This method is used to validate the power supply of a superconductive magnet operating in driven mode. The experiment consists in the measurement of the NMR signal of a sample of liquid 3He, placed inside the field of a test magnet driven by a power supply. The homogeneity of the magnet is a strongly limiting factor for measurements but through the use of an inductively coupled microcoil and careful signal processing, a precision of 5.5 ppm was achieved.

  5. Challenges for D-brane large-field inflation with stabilizer fields

    NASA Astrophysics Data System (ADS)

    Landete, Aitor; Marchesano, Fernando; Wieck, Clemens

    2016-09-01

    We study possible string theory compactifications which, in the low-energy limit, describe chaotic inflation with a stabilizer field. We first analyze type IIA setups where the inflationary potential arises from a D6-brane wrapping an internal three-cycle, and where the stabilizer field is either an open-string or bulk Kähler modulus. We find that after integrating out the relevant closed-string moduli consistently, tachyonic directions arise during inflation which cannot be lifted. This is ultimately due to the shift symmetries of the type IIA Kähler potential at large compactification volume. This motivates us to search for stabilizer candidates in the complex structure sector of type IIB orientifolds, since these fields couple to D7-brane Wilson lines and their shift symmetries are generically broken away from the large complex structure limit. However, we find that in these setups the challenge is to obtain the necessary hierarchy between the inflationary and Kaluza-Klein scales.

  6. A Photographic Atlas of Rock Breakdown Features in Geomorphic Environments

    NASA Technical Reports Server (NTRS)

    Bourke, Mary C. (Editor); Brearley, J. Alexander; Haas, Randall; Viles, Heather A.

    2007-01-01

    features (e.g., alveoli) occur across climate regimes. We have drawn on the published geomorphological literature and our own field experience. We use, where possible, images of extrusive igneous rocks as the data returned from Mars, Venus and the Moon indicates that this is the predominant rock type. One of the purposes of this atlas is to expand the range of surface features that are known to indicate a particular geomorphic environment or process history. The surface features on boulders in some environments such as aeolian and weathering are well understood. In contrast, those in fluvial or ejecta environments are not. Therefore we have presented a comprehensive assemblage of features that are likely to be produced in each of the geomorphic environments. We hope that this atlas will trigger more research on diagnostic features, particularly their morphometry and detailed morphology, their persistence and rates of formation. In this first edition of the atlas we detail the features found on clasts in three geomorphic environments: aeolian, fluvial and weathering. Future editions of the atlas will include chapters on ejecta, micro-impacts, coastal, colluvial, glacial and structural features.

  7. Kinetic Effects on the Stability Properties of Field-reversed Configurations: I. Linear Stability

    SciTech Connect

    Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada

    2003-01-28

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs. The n = 1 tilt instability mechanism and growth rate reduction mechanisms are investigated in detail including resonant particle effects, finite Larmor radius and Hall stabilization, and profile effects. It is shown that the Hall effect determines the mode rotation and the change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to finite Larmor radius effects. Resonant wave-particle interactions are studied as a function of (a) elongation, (b) the kinetic parameter S*, which is proportional to the ratio of the separatrix radius to the thermal ion Larmor radius, and (c) the separatrix shape. It is demonstrated that, contrary to the usually assumed stochasticity of the ion orbits in the FRC, a large fraction of the orbits are regular in long configurations when S* is small. A stochasticity condition is found, and a scaling with the S* parameter is presented. Resonant particle effects are shown to maintain the instability in the large gyroradius regime regardless of the separatrix shape.

  8. The topographic signature of anthropogenic geomorphic processes

    NASA Astrophysics Data System (ADS)

    Tarolli, P.; Sofia, G.

    2014-12-01

    Within an abiotic-dominated context, geomorphologic patterns and dynamics are single expressions of trade-offs between the physical resistance forces, and the mechanical and chemical forces related to climate and erosion. Recently, however, it has become essential for the geomorphological community to take into account also biota as a fundamental geomorphologic agent acting from local to regional scales. However, while there is a recent flourishing literature about the impacts of vegetation on geomorphic processes, the study of anthropogenic pressure on geomorphology is still at its early stages. Humans are indeed among the most prominent geomorphic agents, redistributing land surface, and causing drastic changes to the geomorphic organization of the landscape (e.g. intensive agriculture, urbanization), with direct consequences on land degradation and watershed response. The reconstruction or identification of artificial or anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the context of the Anthropocene epoch. High-resolution topographic data derived from the recent remote sensing technologies (e.g. lidar, SAR, SfM), offer now new opportunities to recognize better understand geomorphic processes from topographic signatures, especially in engineered landscapes where the direct anthropic alteration of processes is significant. It is possible indeed to better recognize human-induced geomorphic and anthropogenic features (e.g. road networks, agricultural terraces), and the connected erosion. The study presented here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during urban development and help guide future research directions for development-based watershed studies. Human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth

  9. Geomorphic factors related to the persistence of subsurface oil from the Exxon Valdez oil spill

    USGS Publications Warehouse

    Nixon, Zachary; Michel, Jacqueline; Hayes, Miles O.; Irvine, Gail V.; Short, Jeffrey

    2013-01-01

    Oil from the 1989 Exxon Valdez oil spill has persisted along shorelines of Prince William Sound, Alaska, for more than two decades as both surface and subsurface oil residues. To better understand the distribution of persistent subsurface oil and assess the potential need for further restoration, a thorough and quantitative understanding of the geomorphic factors controlling the presence or absence of subsurface oil is required. Data on oiling and geomorphic features were collected at 198 sites in Prince William Sound to identify and quantify the relationships among these geomorphic factors and the presence and absence of persistent subsurface oil. Geomorphic factors associated with the presence of subsurface oil were initial oil exposure, substrate permeability, topographic slope, low exposure to waves, armoring on gravel beaches, tombolos, natural breakwaters, and rubble accumulations. Geomorphic factors associated with the absence of subsurface oil were impermeable bedrock; platforms with thin sediment veneer; fine-grained, well-sorted gravel beaches with no armor; and low-permeability, raised bay-bottom beaches. Relationships were found between the geomorphic and physical site characteristics and the likelihood of encountering persistent subsurface oiling at those sites. There is quantitative evidence of more complex interactions between the overall wave energy incident at a site and the presence of fine-scale geomorphic features that may have provided smaller, local wave energy sheltering of oil. Similarly, these data provide evidence for interactions between the shoreline slope and the presence of angular rubble, with decreased likelihood for encountering subsurface oil at steeply sloped sites except at high-angle sheltered rubble shoreline locations. These results reinforce the idea that the interactions of beach permeability, stability, and site-specific wave exposure are key drivers for subsurface oil persistence in exposed and intermittently exposed mixed

  10. Geomorphic analysis of large alluvial rivers

    NASA Astrophysics Data System (ADS)

    Thorne, Colin R.

    2002-05-01

    Geomorphic analysis of a large river presents particular challenges and requires a systematic and organised approach because of the spatial scale and system complexity involved. This paper presents a framework and blueprint for geomorphic studies of large rivers developed in the course of basic, strategic and project-related investigations of a number of large rivers. The framework demonstrates the need to begin geomorphic studies early in the pre-feasibility stage of a river project and carry them through to implementation and post-project appraisal. The blueprint breaks down the multi-layered and multi-scaled complexity of a comprehensive geomorphic study into a number of well-defined and semi-independent topics, each of which can be performed separately to produce a clearly defined, deliverable product. Geomorphology increasingly plays a central role in multi-disciplinary river research and the importance of effective quality assurance makes it essential that audit trails and quality checks are hard-wired into study design. The structured approach presented here provides output products and production trails that can be rigorously audited, ensuring that the results of a geomorphic study can stand up to the closest scrutiny.

  11. On the history of humans as geomorphic agents

    NASA Astrophysics Data System (ADS)

    Leb. Hooke, Roger

    2000-09-01

    The human population has been increasing exponentially. Simultaneously, as digging sticks and antlers have given way to wooden plows, iron spades, steam shovels, and today's huge excavators, our ability and motivation to modify the landscape by moving earth in construction and mining activities have also increased dramatically. As a consequence, we have now become arguably the premier geomorphic agent sculpting the landscape, and the rate at which we are moving earth is increasing exponentially. As hunter-gatherer cultures were replaced by agrarian societies to feed this expanding population, erosion from agricultural fields also, until recently, increased steadily. This constitutes an unintended additional human impact on the landscape.

  12. Slope stability improvement using low intensity field electrosmosis

    NASA Astrophysics Data System (ADS)

    Armillotta, Pasquale

    2014-05-01

    The electrosmosis technique has been introduced in the past for slope stabilization. However, its application to real cases has been scarce due to several drawbacks mostly related to the high intensity electric field needed (1.0 V/cm or higher): the rapid degradation of the electrodes, the high system management cost, the heating and cracking of the soil and the reduction of its colloidal fraction. Thanks to the introduction of new materials, the technique is currently applied to decrease the consolidation time of saturated clay soils (forcing the elimination of water), consequently improving its mechanical strength. In clay soils, the volume variation is influenced by the presence of smectites. The clay compressibility decreases with the increasing of electrolytes concentration. Soil containing smectites that have interacted with calcium showed a reduction or the absence of swelling during hydration with distilled water and a positive increase of their shear strength. The different values of pH between the anode (acid) and the cathode (basic), induced by the electrosmosis create the conditions for the precipitation of CaCO3 near the cathode. The injection of solutions containing calcium in soils and their diffusion induced by the electrosmosis, lead to calcium precipitation and consequential increase of the shear strength. The material technological advances and the laboratory experiences described in this paper, demonstrate that the use low electric field (0.1 V/cm or lower) intensity electrosmosis (LEFE in acronym) can be effective for soil dewatering and shear strength increase while reducing its adverse effect. The LEFE can be used to: reduce the potential for swelling of active clay minerals through the introduction of ions and the precipitation of hardening substances; induce the "dewatering" in cohesive soils. Several Lab activities were carried out, using custom made electrosmosis equipment. These activities can be divided in two phases: Phase 1

  13. Geomorphic Surface Maps of Northern Frenchman Flat, Nevada Test Site, Southern Nevada

    SciTech Connect

    Bechtel Nevada

    2005-08-01

    Large-scale (1:6000) surficial geology maps of northern Frenchman Flat were developed in 1995 as part of comprehensive site characterization required to operate a low-level radioactive waste disposal facility in that area. Seven surficial geology maps provide fundamental data on natural processes and are the platform needed to reconstruct the Quaternary history of northern Frenchman Flat. Reconstruction of the Quaternary history provides an understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. Seven geomorphic surfaces (Units 1 through 7) are recognized, spanning from the early Quaternary to present time.

  14. Geomorphic Classification and Assessment of Channel Dynamics in the Missouri National Recreational River, South Dakota and Nebraska

    USGS Publications Warehouse

    Elliott, Caroline M.; Jacobson, Robert B.

    2006-01-01

    A multiscale geomorphic classification was established for the 39-mile, 59-mile, and adjacent segments of the Missouri National Recreational River administered by the National Park Service in South Dakota and Nebraska. The objective of the classification was to define naturally occurring clusters of geomorphic characteristics that would be indicative of discrete sets of geomorphic processes, with the intent that such a classification would be useful in river-management and rehabilitation decisions. The statistical classification was based on geomorphic characteristics of the river collected from 1999 orthophotography and the persistence of classified units was evaluated by comparison with similar datasets for 2003 and 2004 and by evaluating variation of bank erosion rates by geomorphic class. Changes in channel location and form were also explored using imagery and maps from 1993-2004, 1941 and 1894. The multivariate classification identified a hierarchy of naturally occurring clusters of reach-scale geomorphic characteristics. The simplest level of the hierarchy divides the river from segments into discrete reaches characterized by single and multithread channels and additional hierarchical levels established 4-part and 10-part classifications. The classification system presents a physical framework that can be applied to prioritization and design of bank stabilization projects, design of habitat rehabilitation projects, and stratification of monitoring and assessment sampling programs.

  15. The Geomorphic Effectiveness of a Woody Shrub

    NASA Astrophysics Data System (ADS)

    Manners, R.; Schmidt, J. C.; Wheaton, J. M.

    2010-12-01

    Vegetation plays a fundamental role in controlling channel form and influencing channel processes. Experimental work has shown that stem density, stem spacing, relative submergence, and stem flexibility are key indicators of the effectiveness of vegetation in altering the flow field. These parameters are likely to be species dependent and change over time as vegetation grows, dies back and is replaced by late successional species. Thus, the role of vegetation is highly variable in both space and time. Capturing this variability is essential in understanding how vegetation controls channel processes. Here, we investigate the spatial and temporal variability of stand characteristics (i.e. stem density and spacing) for the non-native riparian shrub, Tamarix spp. In the Colorado River basin, Tamarix dominates large portions of the riparian corridor. Tamarix is capable of establishing rapidly and in dense stands and as such been implicated in enhancing channel changes observed during the last century. However, questions relating to Tamarix’s role relative to other pervasive environmental changes necessitate a robust way to capture the effectiveness of Tamarix in altering the flow field and inducing deposition. We focus on the stand structure of aging Tamarix stands in order to relate Tamarix life-history to hydrodynamic roughness. High resolution terrestrial laser scans (TLS) were collected for Tamarix patches (10-15 m2) on different geomorphic surfaces (i.e. gravel bar, disconnected floodplain) and ages (5-60 years). Stem frontal area at varying depths was calculated from the scans over the patch and for the patch as a whole. We used Telemac 2D to evaluate how the stem density and spacing influence flow characteristics, such as drag on the stems and Froude number. To do this, the representative stem density and spacing was translated into cylindrical elements on a flat (i.e no topography) mesh. Elevation above the channel influences stand density. For example, a 20

  16. Classical stabilization of the hydrogen atom in a monochromatic field

    SciTech Connect

    Benvenuto, F.; Casati, G. ); Shepelyansky, D.L. )

    1993-02-01

    We report the results of analytical and numerical investigations on the ionization of a classical atom in a strong, linearly polarized, monochromatic field. We show that the ionization probability decreases with increasing field intensity at field amplitudes much larger than the classical chaos border. This effect should be observable in real laboratory experiments.

  17. Evolution of a Dammed River: Trajectories of Geomorphic Change on the Trinity River, CA

    NASA Astrophysics Data System (ADS)

    Curtis, J. A.; Guerrero, T. M.

    2012-12-01

    Historic landuse, dam construction (ca. 1964), water storage and flow diversion within the Trinity River watershed resulted in simplification of the river planform and dramatic losses in riparian habitat. The pre-dam Trinity River included a series of deep pools, active bar sequences, minor amounts of riparian vegetation, and an extensive floodplain. Dam construction and the export of ~ 75 to 90% of the average annual inflow at the top of the study reach lead to riparian encroachment, channel narrowing, stabilization of alluvial features, and a decline in coarse bed material. Following dam closure channel complexity decreased as bars were stabilized and coalesced into a system-wide post-dam topographic bench with an extensive riparian berm. Flow diversions further resulted in the abandonment of the pre-dam geomorphic floodplain and aggradation of tributary confluences due to dramatic reductions in flow competency and capacity. Beginning in 2001, the Trinity River Restoration Program (TRRP) implemented a combination of flow releases, gravel augmentation, bank rehabilitation, and watershed restoration to promote dynamic channel processes. The TRRP functions under an adaptive management framework which includes external peer review. In this regard the TRRP requested a geomorphic assessment of a 65-km restoration reach during pre- and post-restoration time periods which will be used to inform future restoration work. Building upon previous work at the site and reach scale we digitized a series of geomorphic maps and quantified the nature, extent and rates of geomorphic change during five post-dam time periods. Terrestrial and aquatic features were mapped using rectified orthophotography (1980, 1997, 2001, 2006, 2009, 2011) and the resultant data were used to determine trajectories of geomorphic change related to natural river processes and restoration actions. The series of geomorphic maps illustrate a system-wide perspective of evolving geomorphic features and

  18. Stability of nonlinear spinor fields with application to the Gross-Neveu model

    NASA Astrophysics Data System (ADS)

    Blanchard, Ph.; Stubbe, J.; Vàzquez, L.

    1987-10-01

    We consider the stability problem for the localized solutions of classical nonlinear spinor fields in space dimensions N=1 and N=3 within the framework of the Shatah-Strauss formalism. We show that the well-known relations existing between the different stability criteria for scalar field equations are no longer valid for spinor fields. We discuss the application of the Shatah-Strauss formalism to several models: e.g., the Gross-Neveu, Thirring, and the Soler models.

  19. ROTATION AND STABILITY OF THE TOROIDAL MAGNETIC FIELD IN STELLAR RADIATION ZONES

    SciTech Connect

    Bonanno, Alfio; Urpin, Vadim E-mail: vadim.urpin@uv.es

    2013-03-20

    The stability of the magnetic field in radiation zones is of crucial importance for mixing and angular momentum transport in the stellar interior. We consider the stability properties of stars containing a predominant toroidal field in spherical geometry by means of a linear stability in the Boussinesq approximation taking into account the effect of thermal conductivity. We calculate the growth rate of instability and analyze in detail the effects of stable stratification and heat transport. We argue that the stabilizing influence of gravity can never entirely suppress the instability caused by electric currents in radiation zones. However, the stable stratification can essentially decrease the growth rate of instability.

  20. Geomorphic Map of Worcester County, Maryland, Interpreted from a LIDAR-Based, Digital Elevation Model

    USGS Publications Warehouse

    Newell, Wayne L.; Clark, Inga

    2008-01-01

    A recently compiled mosaic of a LIDAR-based digital elevation model (DEM) is presented with geomorphic analysis of new macro-topographic details. The geologic framework of the surficial and near surface late Cenozoic deposits of the central uplands, Pocomoke River valley, and the Atlantic Coast includes Cenozoic to recent sediments from fluvial, estuarine, and littoral depositional environments. Extensive Pleistocene (cold climate) sandy dune fields are deposited over much of the terraced landscape. The macro details from the LIDAR image reveal 2 meter-scale resolution of details of the shapes of individual dunes, and fields of translocated sand sheets. Most terrace surfaces are overprinted with circular to elliptical rimmed basins that represent complex histories of ephemeral ponds that were formed, drained, and overprinted by younger basins. The terrains of composite ephemeral ponds and the dune fields are inter-shingled at their margins indicating contemporaneous erosion, deposition, and re-arrangement and possible internal deformation of the surficial deposits. The aggregate of these landform details and their deposits are interpreted as the products of arid, cold climate processes that were common to the mid-Atlantic region during the Last Glacial Maximum. In the Pocomoke valley and its larger tributaries, erosional remnants of sandy flood plains with anastomosing channels indicate the dynamics of former hydrology and sediment load of the watershed that prevailed at the end of the Pleistocene. As the climate warmed and precipitation increased during the transition from late Pleistocene to Holocene, dune fields were stabilized by vegetation, and the stream discharge increased. The increased discharge and greater local relief of streams graded to lower sea levels stimulated down cutting and created the deeply incised valleys out onto the continental shelf. These incised valleys have been filling with fluvial to intertidal deposits that record the rising sea

  1. Geomorphic Evidence for Martian Ground Ice and Climate Change

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Allen, C. C.; Bell, M. S.

    2004-01-01

    Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (>60 ) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35+/- 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a < km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 deg.N- 65 deg.N).

  2. Geomorphic Evidence for Martian Ground Ice and Climate Change

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Allen, C. C.; Bell, M. S.

    2004-01-01

    Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (greater than 60) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35 plus or minus 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a less than km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 degrees N- 65 degrees N).

  3. Riparian vegetation recovery patterns following stream channelization: a geomorphic perspective

    USGS Publications Warehouse

    Hupp, C.R.

    1992-01-01

    Hundreds of kilometres of West Tennessee streams have been channelized since the turn of the century. After a stream is straightened, dredged, or cleared, basin-wide ecologic, hydrologic, and geomorphic processes bring about an integrated, characteristic recovery sequence. The rapid pace of channel responses to channelization provides an opportunity to document and interpret vegetation recovery patterns relative to otherwise long-term, concomitant evolution of river geomorphology. The linkage of channel bed aggradation, woody vegetation establishment, and bank accretion all lead to recovery of the channel. Pioneer species are hardy and fast growing, and can tolerate moderate amounts of slope instability and sediment deposition; these species include river birch (Betula nigra), black willow (Salix nigra), boxelder (Acer negundo), and silver maple (Acer saccharinum). High stem densities and root-mass development appear to enhance bank stability. Tree-ring analyses suggest that on average 65 yr may be required for recovery after channelization. -from Author

  4. Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy

    SciTech Connect

    Xu, Xiaoji G.; Gilburd, Leonid; Walker, Gilbert C.

    2014-12-29

    Scattering type scanning near-field optical microscopy (s-SNOM) allows sub diffraction limited spatial resolution. Interferometric homodyne detection in s-SNOM can amplify the signal and extract vibrational responses based on sample absorption. A stable reference phase is required for a high quality homodyne-detected near-field signal. This work presents the development of a phase stabilization mechanism for s-SNOM to provide stable homodyne conditions. The phase stability is found to be better than 0.05 rad for the mid infrared light source. Phase stabilization results in improved near field images and vibrational spectroscopies. Spatial inhomogeneities of the boron nitride nanotubes are measured and compared.

  5. Stability and quasinormal modes of the massive scalar field around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A. V.

    2006-06-01

    In this paper, we find quasinormal spectrum of the massive scalar field in the background of the Kerr black holes. We show that all found modes are damped under the quasinormal modes boundary conditions when μM≲1, thereby implying stability of the massive scalar field. This complements the region of stability determined by the Beyer inequality for large masses of the field. We show that, similar to the case of a nonrotating black hole, the massive term of the scalar field does not contribute in the regime of high damping. Therefore, the high damping asymptotic should be the same as for the massless scalar field.

  6. Exploring the landscape evolution of the subalpine meadow-forest system driven by the geomorphic work performed by the Northern Pocket Gopher

    NASA Astrophysics Data System (ADS)

    Winchell, E. W.; Anderson, R. S.; Lombardi, E. M.; Doak, D. F.

    2015-12-01

    In the subalpine zone of the Colorado Front Range, field observations suggest that the Northern Pocket Gopher acts as a significant geomorphic agent within meadows, but not within forests. Field surveys during 2014 and 2015 demonstrate that the temporal and spatial digging patterns of gopher-excavated mounds and infilled tunnels are neither steady nor uniform. These include 1) gophers spend the winter near the forest-meadow (FM) edge and the remainder of the year within the meadow, and 2) surface mound generation greatly accelerates in late summer. Hourly subsurface temperatures across the FM pair, and daily digital snow depths at the FM boundary suggest that gophers spend the winter beneath thick snow cover where ground temperatures are warmest. LiDAR-based topography demonstrates that slopes are uniform across the FM pairs, diverging from that expected by extrapolation of the observed pattern of non-uniform geomorphic activity. The topography therefore suggests that the FM boundaries are not stationary. We hypothesize that the landscape is more uniformly impacted by gopher activity in the long term, which requires that 1) FM boundaries migrate significantly and/or 2) meadows are born in different places following forest death via fire followed by rapid gopher habitation. The vertical geomorphic signature of gopher activity is more distinct. Preliminary probing of meadows reveals a 20 cm thick biomantle with a high concentration of stones at ~20 cm depth. The annual surface areas of mounds and infilled tunnels suggest that the entire meadow can be exposed to excavated tillings on century timescales. Further, annual mound volumes suggest that the biomantle is turned over also on century timescales. We will report results of stone line surveys and 137Cs concentration profiles within the forest and meadow that will test the long-term stability of meadows and the timescale over which vertical churning mixes the near-surface material within this landscape.

  7. Kramers-map approach for stabilization of a hydrogen atom in a monochromatic field

    SciTech Connect

    Shepelyansky, D.L. )

    1994-07-01

    The phenomenon of stabilization of highly excited states of a hydrogen atom in a strong monochromatic field is discussed. An approximate description of the dynamics from the introduction of the Kramers map allows one to understand the main properties of this phenomenon through analogy with the Kepler map. The analogy between the stabilization and the channneling of particles in a crystal is also discussed.

  8. Interference stabilization and UV lasing in a plasma channel formed in gas by intense RF field

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Popov, A. M.

    2015-04-01

    The effect of interference stabilization of Rydberg atoms in a high-intensity IR laser field is proposed to create a plasma channel with population inversion for conversion of the input laser energy into the VUV and XUV frequency band.

  9. Influence of a magnetic field on the pulsational stability of stars

    NASA Technical Reports Server (NTRS)

    Strothers, R.

    1979-01-01

    Under certain simplifying assumptions the influence of a magnetic field on the pulsational stability of stars has been investigated, with a particular application to the problem of the stability of upper-main-sequence stars. It has been found that, if the magnetic field averaged over a spherical shell is either constant at all layers or distributed such that nu, the ratio of magnetic to thermodynamic pressure, is constant at all layers, the critical mass for stability against nuclear-energized pulsations is virtually unaffected by the presence of the field. On the other hand, if the field is strong in the envelope but weak in the core of the star, the critical mass is considerably increased; when nu exceeds about 0.1 in the envelope, stability is attained at all masses.

  10. Stabilization of helices in glycine and alanine dipeptides in a reaction field model of solvent

    SciTech Connect

    Shang, H.S. Lawrence Berkeley Lab., CA ); Head-Gordon, T. )

    1994-02-23

    We present molecular orbital calculations of the full conformational space of blocked glycine and alanine dipeptide in the presence of a reaction field representation of water. Secondary structures of right- and left-handed helices are found, in contrast to recent gas-phase results, indicating that the origin of helical stabilization in dipeptides is strictly due to environment. Limitations of the reaction field model and the various implications of stabilization due to environment are discussed. 43 refs., 2 figs., 3 tabs.

  11. High Volume Manufacturing and Field Stability of MEMS Products

    NASA Astrophysics Data System (ADS)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are

  12. High Volume Manufacturing and Field Stability of MEMS Products

    NASA Astrophysics Data System (ADS)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are

  13. Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon

    PubMed Central

    2012-01-01

    Here, we demonstrate the simple fabrication of a single-walled carbon nanotube (SWCNT) field emission electrode which shows excellent field emission characteristics and remarkable field emission stability without requiring posttreatment. Chemically functionalized SWCNTs were chemically attached to a silicon substrate. The chemical attachment led to vertical alignment of SWCNTs on the surface. Field emission sweeps and Fowler-Nordheim plots showed that the Si-SWCNT electrodes field emit with a low turn-on electric field of 1.5 V μm−1 and high electric field enhancement factor of 3,965. The Si-SWCNT electrodes were shown to maintain a current density of >740 μA cm−2 for 15 h with negligible change in applied voltage. The results indicate that adhesion strength between the SWCNTs and substrate is a much greater factor in field emission stability than previously reported. PMID:22853557

  14. Mississippi River Hydrodynamic and Delta Management Study (MRHDM) - Geomorphic Assessment

    DTIC Science & Technology

    2014-07-01

    system. Consequently, trends that are not sustained for more than a few years cannot be interpreted as evidence of either morphological evolution or...Feasibility Study. The overall objectives of the geomorphic assessment were to utilize all available data to document the historical trends in hydrology...Geomorphic reaches were defined, and the morphologic trends during different time periods were evaluated. The geomorphic assessment highlighted the

  15. Dependence of effective internal field of congruent lithium niobate on its domain configuration and stability

    SciTech Connect

    Das, Ranjit E-mail: souvik2cat@gmail.com Ghosh, Souvik E-mail: souvik2cat@gmail.com Chakraborty, Rajib E-mail: souvik2cat@gmail.com

    2014-06-28

    Congruent lithium niobate is characterized by its internal field, which arises due to defect clusters within the crystal. Here, it is shown experimentally that this internal field is a function of the molecular configuration in a particular domain and also on the stability of that particular configuration. The measurements of internal field are done using interferometric technique, while the variation of domain configuration is brought about by room temperature high voltage electric field poling.

  16. Examples of geomorphic reclamation on mined lands in Spain by using the GeoFluv method

    NASA Astrophysics Data System (ADS)

    Martín Duque, José F.; Bugosh, Nicholas; de Francisco, Cristina; Hernando, Néstor; Martín, Cristina; Nicolau, José M.; Nyssen, Sara; Tejedor, María; Zapico, Ignacio

    2015-04-01

    This paper describes seven examples of geomorphic reclamation on mined lands of Spain, as solutions for complex environmental problems, by using the GeoFluv method through the Natural Regrade software (Carlson). Of these seven examples, four of them have been partially or totally constructed. Each of them has its own particularities and contributions, becoming innovative geomorphic solutions to existing environmental (ecological, social and economic) problems. The Quebraderos de la Serrana example (Toledo province) allowed a local company to get permission for slate quarrying in a highly ecologically vulnerable area; before that, the permission for extracting rocks had been rejected with a conventional reclamation approach. The Somolinos case is, to this date, the most complete geomorphic reclamation in Spain, and the first one in Europe to have been built by using the GeoFluv method. This restoration has healed a degraded area of about six hectares at the outskirts of the Somolinos hamlet, in a valuable rural landscape of the Guadalajara province. The Arlanza example (Leon province) shows a design which proposes to restore the hydrological connectivity of a coal mine dump which blocked a valley. The Machorro and María Jose examples (Guadalajara province) are allowing kaolin mining to be compatible with the preservation of protected areas at the edge of the Upper Tagus Natural Park (UTNP), in highly vulnerable conditions for water erosion. The Campredó case (Tarragona province) shows an agreement between a mining company, the academia, and the Catalonian Agency of Water, to combine a high standard of geomorphic reclamation with solving problems caused by flooding downstream of a clay mining area. Finally, the Nuria example is also located at the UTNP area; the goals here are to stabilize a large landslide in a waste dump and to minimize the risk of occurrence of flash floods from mining ponds. Additional information on these examples and about the state of art of

  17. Field Programmable Gate Array-Based Attitude Stabilization

    DTIC Science & Technology

    2008-07-01

    Conversion ω θ RPM ω Inertial Interface Attitude Update Floating Point Figure 5. FPGA Block Diagram Inertial Interface A generic signal interface for the...With the FPGA operating at 50 MHz, the PWM interface is able to provide a command signal resolution of 1/50,000. The ability of the speed controller to...Center, Ohio University, Athens, OH 45701 A system for determining vehicle attitude using a field programmable gate array ( FPGA ) and low cost gyroscopes

  18. Field Emission Stability of Individual Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Fujieda, Tadashi; Okai, Makoto; Tokumoto, Hiroshi

    2009-02-01

    We investigated the emission stability of individual multi-walled carbon nanotubes (MWNTs) and clarified the mechanism of emission current instability. An initial decrease in the emission current, which is generally seen in the case of metal emitters, was hardly observed. Furthermore, the current fluctuation was much lower than that for a metal emitter, and the peak-to-peak fluctuation was less than 2% when the emission pattern was pentagonal. However, spikelike and steplike noises occurred, with a frequency approximately proportional to the product of the emission current and the background pressure. These noises may be caused by physical adsorption and ion impact desorption of residual gas molecules. The number of these noise events depended on the emission pattern: it was much greater in the case of a nonpentagonal emission pattern than in the case of a pentagonal emission pattern. This type of current noise is considered to be due to ionic-collision-induced damage at the surface of the tip when the emission pattern is nonpentagonal.

  19. Demonstration and Field Evaluation of Streambank Stabilization with Submerged Vanes

    USGS Publications Warehouse

    Whitman, H.; Hoopes, J.; Poggi, D.; Fitzpatrick, F.; Walz, K.; ,

    2001-01-01

    The effectiveness of submerged vanes for reducing bank erosion and improving aquatic habitat is being evaluated at a site on North Fish Creek, a Lake Superior tributary. Increased runoff from agricultural areas with clayey soils has increased flood magnitudes and the erosion potential/transport capacity of the stream. Most of the creek's sediment load originates from the erosion of 17 large bluffs. This creek contains important recreational fisheries that are potentially limited by the loss of aquatic habitat from deposition of sediment on spawning beds. Submerged vanes are a cost effective and environmentally less intrusive alternative to traditional structural stabilization measures. Submerged vanes protrude from a channel bed, are oriented at an angle to the local velocity, and are distributed along a portion of channel. They induce a transverse force and torque on the flow along with longitudinal vortexes that alter the cross sectional shape and alignment of the channel. Submerged vanes were installed at a bluff/bend site in summer and fall 2000. The number, size, and layout of the vanes were based upon the channel morphology under estimated bankfull conditions. The effectiveness of the vanes will be evaluated by comparing surveys of the bluff face, streamflow, and channel conditions for several years after installation of the submerged vanes with surveys before and immediately after their installation.

  20. Trapped Field Characteristics of Stacked YBCO Thin Plates for Compact NMR Magnets: Spatial Field Distribution and Temporal Stability.

    PubMed

    Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu

    2010-06-01

    This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed.

  1. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  2. Displaying and evaluating engineering properties and natural hazards using geomorphic mapping techniques: Telluride, Colorado

    SciTech Connect

    Gunawan, I.; Giardino, J.R.; Tchakerian, V.P. . Geography Dept.)

    1992-01-01

    Telluride, located in the San Juan mountains of southwestern Colorado, is situated in a glacially carved, fluvially modified alpine valley. Today this chic setting is experiencing rapid urban development resulting from flourishing tourist traffic during both the winter ski season and the summer vacation period. A new development, Mountain Village, is being built on an extensive and complex landslide that has only received superficial scrutiny. Recent fast growth is placing considerable pressure on pristine, undeveloped land. This timely quandary incorporates the interaction between prospective development, geomorphic processes, engineering factors, economic feasibility, and landuse adjudication. In an attempt to respond to these issues the State of Colorado enacted Senate Bill 35 (1972) and House Bills 1034 (1974) and 1041 (1974), all mandating assessment of the natural hazards of an area, preparatory to development. The key to evaluating the natural hazards is to comprehend the geomorphic processes. The area is highly-faulted with associated mineralization. Whereas the upper slopes are composed of massive rhyodacitic-tuff breccias and flows, the valley is sculpted from shales, sandstones, and conglomerates. Several periods of glaciation occurred in the area. Glacial till, talus slopes, avalanche chutes and cones, rock glaciers, alluvium, and landslides have been identified in the field and mapped on aerial photographs. Many of the slopes in the area are active. The authors have constructed a geomorphic map (1:12,500) that shows geology, landforms, geomorphic processes and engineering properties. This map can be used by regulatory agencies in identifying areas of natural hazards potentially sensitive to development.

  3. The geomorphic context of flood hazards in Haiti

    NASA Astrophysics Data System (ADS)

    Renwick, W.; Balthazar, S. L.; Boardman, M. R.; Hillaire, J. V.; Laviolette, L. L.; Primack, A. G.; Tardieu, J. F.; Eliacin, J.

    2005-05-01

    Devastating floods struck Fonds Verrettes, Mapou, and Gonaives, Haiti in 2004, killing thousands and calling attention to the threat of catastrophic flooding in that country. That threat provides a focus for expanding collaborations in field and service learning in Haiti. Past field and service-learning collaboration with Universite Notre Dame d'Haiti (UNDH) resulted in an invitation to evaluate the flooding potential of Haiti's largest city - Port-au-Prince. High population densities, land cover change, the geomorphic setting of Port-au-Prince, combine to make that city particularly vulnerable to catastrophic flooding. Climate change and associated sea level rise are also a concern. Port-au-Prince lies at the foot of steeply sloping mountain areas of the Massif de La Selle. Much of the urban area is built on alluvial fans, coastal plains, and recent deltaic deposits. While data are rare to nonexistent, deforestation in the mountain areas upstream from the city and extensive urbanization, especially in the last few decades, is virtually certain to have increased storm runoff volumes and reduced lag times. Different flood hazards can be identified in four geomorphic zones: 1) valleys in steeply sloping areas, where channel erosion and associated slope failures threaten streamside communities; 2) alluvial fans, where rapid aggradation, mudflow deposition and channel avulsion contribute to channel instability; 3) coastal plains, where gentle slopes impede drainage of flood water; and 4) deltaic areas formed and settled in the last few decades subject to storm surge and possibly subsidence in addition to runoff-derived flooding. These zones can serve as a framework for flood hazard identification and management. With the cooperation of the Haitian government and non-profit organizations, students and faculty from Miami University and UNDH will combine talents to measure the flood potential of a single, critical watershed in Port-au-Prince and establish a community

  4. Recent theoretical studies of internal structure and stability of field-reversed configurations

    SciTech Connect

    Webster, R.B.; Lewis, H.R.; Staudenmeier, J.L.; Milroy, R.D.; Barnes, D.C.; Bishop, R.C.; Spencer, R.L.; Xu, Y.H.; Matheson, P.L.

    1988-01-01

    In this paper we present the results of recent examinations of the low frequency, large scale stability of the field-reversed configurations (FRC). We also examined the ability to accurately infer internal transport quantities (e.g., field null resistivity) in an FRC. 7 refs., 5 figs.

  5. Stabilization of hydrocarbon fuel combustion by non-stationary electric field

    NASA Astrophysics Data System (ADS)

    Kozulin, V. S.; Tretyakov, P. K.; Tupikin, A. V.

    2016-10-01

    The research results of a non-stationary weak electric field effect on diffusion combustion of gas hydrocarbons are presented in the paper. The main attention was focused on the study of electric field parameters effect on a flame stabilization. The two field types were considered: pulse-periodic and with variable direction of an electric vector. In the experiments the direct photography and the video shooting were used, as well as the spectrozonal photography of the own flame luminescence (at the wavelengths of excited OH* and CH* radicals emission). It was shown that the stabilization zone tends to the place of the largest electric field strength. The rotation of the electric vector leads to the flame stabilization in the electrodes plane and the local intensification of combustion.

  6. Geomorphic Analysis Supporting Restoration of the Walker River, Nevada

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.; Echterling, C.; Majerova, M.; Wilcock, P.

    2012-12-01

    Agricultural water diversions have degraded the Walker River, Nevada, and have led to a reduction of water level at its terminus, Walker Lake. The geomorphic response of the river to water reallocation is an important issue associated with restoration of the system. To address this issue, we performed a geomorphic assessment of the portions of the river passing through the two main agricultural valleys in the watershed, Smith and Mason Valleys, Nevada. The project involved field data collection, analysis of remotely sensed data, and numerical modeling. Fieldwork focused primarily on characterizing bed and bank sediment grain size distributions and on delineating geomorphically similar reaches. The remote sensing analysis used LiDAR and air photograph mosaics from 1938, 1950, 1996, 1999, and 2006 to quantify historic changes in the active channel geometry and to identify banks that represent potential sediment sources or sinks. Polygons representing in-channel features (here defined as the scoured region between vegetation lines) were delineated by hand on each photograph. Channel centerlines were then derived from this data set and were used to identify locations of active channel movement by measuring either direct centerline offsets or local sinuosity increase rates. Both active bar area and channel migration were focused on reaches near the head of each agricultural valley, where slope decreases as the channel emerges from an upstream bedrock-controlled canyon. These same reaches also experienced large increases in width during the 1997 flood of record. The gage record shows that attenuation of this flood was most pronounced in the lower of the two agricultural valleys, Mason Valley. Surprisingly little attenuation occurred in the upstream Smith Valley, despite the relatively low relief of the valley floor, which consists primarily of Pleistocene lake deposits. The major difference between the two valleys is that the meander belt through Smith Valley is incised

  7. Log Distribution, Persistence, and Geomorphic Function in Streams and Rivers, in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    St Pierre, L.; Burchsted, D.; Warren, D.

    2015-12-01

    Large wood provides critical ecosystem services such as fish habitat, temperature regulation and bank stabilization. In the northeastern U.S., the distribution of large wood is documented; however, there is little understanding of the movement, longevity and geomorphic function. This research examines the hypothesis that tree species control the persistence and geomorphic function of instream wood in the Appalachian region of the northeastern U.S. To do this, we assessed size, location, and species of logs in New Hampshire rivers, including locations in the White Mountain National Forest (WMNF) where these data were collected ten years ago. We expanded the previous dataset to include assessment of geomorphic function, including creation of diversion channels, pool formation, and sediment storage, among others. We also added new sites in the WMNF and sites on a large rural river in southwestern NH to increase the range of geomorphic variables to now include: confined and unconfined channels; 1st to 4th order streams; low to high gradient; meandering, multithreaded, and straight channels; and land use such as historic logging, modern agriculture, and post-agricultural abandonment. At each study site, we located all large logs (>10cm diameter, > 1m length) and log jams (>3 accumulated logs that provide a geomorphic function) along 100m-700m reaches. We marked each identified log with a numbered tag and recorded species, diameter, length, orientation, GPS location, tag number, and photographs. We assessed function and accumulation, decay, stability, and source classes for each log. Along each reach we measured riparian forest composition and structure and channel width. Preliminary analysis suggests that tree species significantly affects the function of logs: yellow birch and American sycamore are highly represented. Additionally, geomorphic setting also plays a primary role, where unconfined reaches have large logs that provide important functions; those functions

  8. Acoustic Field Associated with Parabolized Stability Equation Models in Turbulent Jets

    DTIC Science & Technology

    2013-05-01

    discusses linear models of these wavepackets for supersonic turbulent jets based on Parabolized Stability Equations ( PSE ). In the past, results of...comparisons of the PSE models with near-field pressure fields from LES, filtered by means of Proper Orthogonal Decomposition (POD), demonstrate acceptable...fidelity of the model. Finally, the acoustic far-field associated with the PSE wavepackets is computed using a Kirchhoff surface method, capturing

  9. Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM

    SciTech Connect

    Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.

    2009-08-04

    A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.

  10. The geomorphic structure of the runoff peak

    NASA Astrophysics Data System (ADS)

    Rigon, R.; D'Odorico, P.; Bertoldi, G.

    2011-01-01

    This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analitical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF) curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period. Further, it is shown that the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. The same results are found when the effects of hydrodynamic dispersion are accounted for. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  11. The geomorphic structure of the runoff peak

    NASA Astrophysics Data System (ADS)

    Rigon, R.; D'Odorico, P.; Bertoldi, G.

    2011-06-01

    This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF) curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  12. The Promise for Geomorphic Discovery in the South.

    ERIC Educational Resources Information Center

    Mossa, Joann

    1998-01-01

    Presents an overview of current geomorphic research in the southern United States. Conveys that the limited historical effort offers both challenges and opportunities for conducting geomorphic work in the region; much is unknown about these unique landscapes. States applied and theoretical geomorphology will benefit the society and future of the…

  13. Evaluating the use of empirical error analyses on terrestrial lidar data for geomorphic change detection

    NASA Astrophysics Data System (ADS)

    Corbett, S.; Collins, B. D.

    2011-12-01

    The use of both terrestrial and airborne laser scanning as tools for determining geomorphic change has greatly increased the resolution at which "true" change can be determined. The data, similar to any other survey data, are subject to analytical errors originating from both the data collection and post-processing methodologies. In many cases this analytical error is the summation of three independent errors: (1) the error associated with the georeferenced position of the laser source, (2) the error associated with the projection of the laser beam, and (3) in some cases (terrestrial lidar) the error associated with combining point cloud data from multiple geospatially distinct locations. The difficulty with using the summation (RMSE) of the analytical errors is that the calculated number can be so great that actual changes are masked. Alternatively, by empirically quantifying the relative distance of key stationary objects (e.g. large rocks or other distinct objects visible in the scan data) from one scan period to another, a more robust error analysis can be calculated, where the actual change occurring can be better quantified. To explore these different methods of error analysis we use terrestrial lidar data collected multiple (5) times over a 5-year period from archeological sites in Grand Canyon National Park (GCNP), Arizona. The sites are being monitored as part of a larger effort to understand the natural and anthropogenic effects on archaeological site stability within the Colorado River corridor of the GCNP. The results show that whereas analytical errors can be as high as 5 to 8 cm (as determined by doubling the RMSE for two temporally different datasets), empirical errors indicate that actual change detection thresholds are as low as 2 cm. This improvement of the error assessment gives greater confidence and allows much lower change detection thresholding, which has improved our ability to monitor and understand ongoing geomorphic changes in the Grand

  14. Nonlinear restoring forces and geometry influence on stability in near-field acoustic levitation

    NASA Astrophysics Data System (ADS)

    Li, Jin; Liu, Pinkuan; Ding, Han; Cao, Wenwu

    2011-04-01

    Stability is a key factor in near-field acoustic levitation (NFAL), which is a popular method for noncontact transportation of surface-sensitive objects. Since the physical principle of NFAL is based on nonlinear vibration and nonuniform pressure distribution of a plate resonator, traditional linearized stability analysis cannot address this problem correctly. We have performed a theoretical analysis on the levitation stability using a nonlinear squeeze film model including inertia effects and entrance pressure drop, and obtained nonlinear effective restoring force and moment. It was found that the nonuniform pressure distribution is mode-dependent, which determines the stability of the levitation system. Based on the theoretical understanding, we have designed a NFAL resonator with tapered cross section, which can provide higher stability for the levitating object than the rectangular cross-section resonator.

  15. Geomorphic process from topographic form: automating the interpretation of repeat survey data in river valleys

    USGS Publications Warehouse

    Kasprak, Alan; Caster, Joshua; Bangen, Sara G.; Sankey, Joel B.

    2017-01-01

    The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High-resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process-based river management and restoration.

  16. Effect of an electric field on the stability of contaminated film flow down an inclined plane

    NASA Astrophysics Data System (ADS)

    Blyth, M. G.

    The stability of a liquid film flowing down an inclined plane is considered when the film is contaminated by an insoluble surfactant and subjected to a uniform normal electric field. The liquid is treated as a perfect conductor and the air above the film is treated as a perfect dielectric. Previous studies have shown that, when acting in isolation, surfactant has a stabilizing influence on the flow while an electric field has a destabilizing influence. The competition between these two effects is the focus of the present study. The linear stability problem is formulated and solved at arbitrary parameter values. An extended form of Squire's theorem is presented to argue that attention may be confined to two-dimensional disturbances. The stability characteristics for Stokes flow are described exactly; the growth rates of the normal modes at finite Reynolds number are computed numerically. We plot the neutral curves dividing regions of stability and instability, and trace how the topology of the curves changes as the intensity of the electric field varies both for a clean and for a contaminated film. With a sufficiently strong electric field, the neutral curve for a clean film consists of a lower branch trapping an area of stable modes around the origin, and an upper branch above which the flow is stable. With surfactant present, a similar situation obtains, but with an additional island of stable modes disjoint from the upper and lower branches.

  17. Experiments on the stability of a liquid bridge in an axial electric field

    NASA Astrophysics Data System (ADS)

    Sankaran, Subramanian; Saville, D. A.

    1993-04-01

    The behavior of a neutrally buoyant liquid bridge was studied in the presence of axial electric fields. Silicone oil and a castor-oil-eugenol mixture were used to form cylinders with slenderness ratios larger than π with strong, axial, dc electric fields. Below a certain field strength, a smooth transition to an axisymmetric, vaselike shape occurred. Circulation patterns were observed in these bridges. At lower field strengths, the bridge shape was more deformed and, at a well-defined field, pinch-off occurred. With ac fields, the field strength required to stabilize the bridge was higher and the collapse of the cylinder was much sharper. Upon interchanging the fluids, a steady axial field was found to destabilize cylinders with slenderness ratios less than 3. This behavior is consistent with that anticipated if the fluids behave as leaky dielectrics but not if they act as perfect dielectrics.

  18. Experiments on the stability of a liquid bridge in an axial electric field

    NASA Astrophysics Data System (ADS)

    Sankaran, Subramanian; Saville, D. A.

    1993-04-01

    The behavior of a neutrally buoyant liquid bridge was studied in the presence of axial electric fields. Silicone oil and a castor-oil-eugenol mixture were used to form cylinders with slenderness ratios larger than pi with strong, axial, dc electric fields. Below a certain field strength, a smooth transition to an axisymmetric, vaselike shape occurred. Circulation patterns were observed in these bridges. At lower field strengths, the bridge shape was more deformed and, at a well-defined field, pinch-off occurred. With ac fields, the field strength required to stabilize the bridge was higher and the collapse of the cylinder was much sharper. Upon interchanging the fluids, a steady axial field was found to destabilize cylinders with slenderness ratios less than 3. This behavior is consistent with that anticipated if the fluids behave as leaky dielectrics but not if they act as perfect dielectrics.

  19. Experiments on the stability of a liquid bridge in an axial electric field

    NASA Technical Reports Server (NTRS)

    Sankaran, Subramanian; Saville, D. A.

    1993-01-01

    The behavior of a neutrally buoyant liquid bridge was studied in the presence of axial electric fields. Silicone oil and a castor-oil-eugenol mixture were used to form cylinders with slenderness ratios larger than pi with strong, axial, dc electric fields. Below a certain field strength, a smooth transition to an axisymmetric, vaselike shape occurred. Circulation patterns were observed in these bridges. At lower field strengths, the bridge shape was more deformed and, at a well-defined field, pinch-off occurred. With ac fields, the field strength required to stabilize the bridge was higher and the collapse of the cylinder was much sharper. Upon interchanging the fluids, a steady axial field was found to destabilize cylinders with slenderness ratios less than 3. This behavior is consistent with that anticipated if the fluids behave as leaky dielectrics but not if they act as perfect dielectrics.

  20. Numerical Study of Global Stability of Oblate Field-Reversed Configurations

    SciTech Connect

    E.V. Belova; S.C. Jardin; H. Ji; M. Yamada; R. Kulsrud

    2000-10-27

    Global stability of the oblate (small elongation, E < 1) Field-Reversed Configuration (FRC) has been investigated numerically using both three-dimensional magnetohydrodynamic (MHD) and hybrid (fluid electrons and kinetic ions) simulations. For every non-zero value of the toroidal mode number n, there are three MHD modes that must be stabilized. For n = 1, these are the interchange, the tilt and the radial shift; while for n > 1 these are the interchange and two co-interchange modes with different polarization. It is shown that the n = 1 tilt mode becomes an external mode when E < 1, and it can be effectively stabilized by close-fitting conducting shells, even in the small Larmor radii (MHD) regime. The tilt mode stability improves with increasing oblateness, however at suffciently small elongations the radial shift mode becomes more unstable than the tilt mode. The interchange mode stability is strongly profile dependent, and all n * 1 interchange modes can be stabilized for a class of pressure profile with separatrix beta larger than 0.035. Our results show that all three n = 1 modes can be stabilized in the MHD regime, but the stabilization of the n > 1 co-interchange modes still remains an open question.

  1. Stability of a viscous fluid in a rectangular cavity in the presence of a magnetic field

    NASA Technical Reports Server (NTRS)

    Liang, C. Y.; Hung, Y. Y.

    1976-01-01

    The stability of an electrically conducting fluid subjected to two dimensional disturbance was investigated. A physical system consisting of two parallel infinite vertical plates which are thermally insulated was studied. An external magnetic field of constant strength was applied to normal plates. The fluid was heated from below so that a steady temperature gradient was maintained in the fluid. The governing equations were derived by perturbation technique, and solutions were obtained by a modified Galerkin method. It was found that the presence of the magnetic field increases the stability of the physical system and instability can occur in the form of neutral or oscillatory instability.

  2. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

    2015-01-01

    The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of "frozen" barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the

  3. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    SciTech Connect

    Tsventoukh, M. M.

    2010-10-15

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as {beta} {approx} 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field

  4. Columbia River Estuary Ecosystem Classification Geomorphic Catena

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  5. Geomorphic response to an extreme flood in two mountain rivers (northeastern Sardinia, Italy): the role of geomorphic and hydraulic controlling factors

    NASA Astrophysics Data System (ADS)

    Righini, Margherita; Surian, Nicola; Wohl, Ellen; Amponsah, William; Marchi, Lorenzo; Borga, Marco

    2016-04-01

    Geomorphic response to an extreme flood in two mountain rivers (northeastern Sardinia, Italy): the role of geomorphic and hydraulic controlling factors Margherita Righini (1), Nicola Surian (1), Ellen Wohl (2), William Amponsah (3, 4), Lorenzo Marchi (3), Marco Borga (4) (1) Department of Geosciences, University of Padova, Italy, (2) Department of Geosciences, Colorado State University, Fort Collins, Colorado, USA, (3) CNR IRPI, Padova, Italy, (4) Department of Land, Environment, Agriculture and Forestry, University of Padova, Italy. The investigation of geomorphic effectiveness of extreme floods is crucial to improve tools for assessing channel dynamics and our capability of forecasting geomorphological hazard. This work deals with geomorphic response of two mountain rivers in the Posada catchment (northeastern Sardinia, Italy), considering a range of morphological (i.e., lateral channel confinement, channel gradient, channel sinuosity, sediment sources, and vegetation) and hydraulic variables (i.e., cross-sectional stream power, unit stream power, flow duration and total energy expenditure) as possible controlling factors. On November 18th 2013, northeastern Sardinia was affected by an extreme meteorological event with hourly rainfall intensities up to 100 mm/h and a peak in rain accumulation up to 450 mm in 24 hours, with 18 casualties and damages to infrastructure and buildings. In the Posada and Mannu di Bitti Rivers, the geomorphic response (i.e., bank erosion, channel aggradation and incision, vegetation and wood dynamics, hillslope failure) was analyzed at different spatial scales. The observed dominant geomorphic change was channel widening. Therefore, channel width changes have been analyzed in detail by remote sensing and GIS tools integrated by field surveys. The study focuses on reaches (i.e., 22.5 km in the Posada River, upstream of Maccheronis dam; 18.2 km in the Mannu di Bitti River) affected by evident and significant geomorphic responses in terms

  6. Effect of external and internal magnetic fields on the bias stability in a Zeeman laser gyroscope

    SciTech Connect

    Kolbas, Yu Yu; Saveliev, I I; Khokhlov, N I

    2015-06-30

    With the specific features of electronic systems of a Zeeman laser gyroscope taken into account, the basic physical mechanisms of the magnetic field effect on the bias stability and the factors giving rise to the internal magnetic fields are revealed. The hardware-based methods of reducing the effect of external and internal magnetic fields are considered, as well as the algorithmic methods for increasing the stability of the bias magnetic component by taking into account its reproducible temperature and time dependences. Typical experimental temperature and time dependences of the magnetic component of the Zeeman laser gyro bias are presented, and by their example the efficiency of the proposed methods for reducing the effect of magnetic fields is shown. (laser gyroscopes)

  7. Identification of Geomorphic Signatures of Neotectonic Activity Using dem in the Precambrian Terrain of Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Jayappa, K. S.; Markose, V. J.; Nagaraju, M.

    2012-07-01

    To assess the relative tectonic activity classes, five geomorphic indices such as stream-gradient index (SL), drainage basin asymmetry (Af), hypsometric integral (Hi), valley floor width - valley height ratio (Vf) and drainage basin shape (Bs) of ninety-four sub-basins of Valapattanam river basin have been analysed by applying the standard formulae. Relative tectonic activity classes (Iat) obtained by the average (S/n) of different classes of geomorphic indices have been classified into three groups. Group I shows high tectonic activity with values of S/n < 2; group II shows moderate tectonic activity with S/n > 2 to < 2.5; and group III shows low tectonic activity with values of S/n ≥ 2.5. Field evidences such as deep valleys, sudden changes in the river course and waterfalls at fault planes clearly agree with the values and classes of tectonic geomorphic indices.

  8. Vastly enhancing the chemical stability of phosphorene by employing an electric field.

    PubMed

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2017-03-23

    Currently, a major hurdle preventing phosphorene from various electronic applications is its rapid oxidation under ambient conditions. Thus how to enhance its chemical stability by suppressing oxidation becomes an urgent task. Here, we reveal a highly effective procedure to suppress the oxidation of phosphorene by employing a suitable van der Waals (vdW) substrate and a vertical electric field. Our first-principles study shows that the phosphorene-MoSe2 vdW heterostructure is able to reverse the stability of physisorption and chemisorption of molecular O2 on phosphorene. With further application of a vertical electric field of -0.6 V Å(-1), the energy barrier for oxidation is able to further increase to 0.91 eV, leading to a 10(5) times enhancement in its lifetime compared with that without using the procedure at room temperature. Our work presents a viable strategy to vastly enhance the chemical stability of phosphorene in air.

  9. Characterising physical habitats and fluvial hydromorphology: A new system for the survey and classification of river geomorphic units

    NASA Astrophysics Data System (ADS)

    Belletti, Barbara; Rinaldi, Massimo; Bussettini, Martina; Comiti, Francesco; Gurnell, Angela M.; Mao, Luca; Nardi, Laura; Vezza, Paolo

    2017-04-01

    Geomorphic units are the elementary spatial physical features of the river mosaic at the reach scale that are nested within the overall hydromorphological structure of a river and its catchment. Geomorphic units also constitute the template of physical habitats for the biota. The assessment of river hydromorphological conditions is required by the European Water Framework Directive 2000/60 (WFD) for the classification and monitoring of water bodies and is useful for establishing links between their physical and biological conditions. The spatial scale of geomorphic units, incorporating their component elements and hydraulic patches, is the most appropriate to assess these links. Given the weakness of existing methods for the characterisation and assessment of geomorphic units and physical habitats (e.g., lack of a well-defined spatiotemporal framework, terminology issues, etc.), a new system for the survey and characterisation of river geomorphic units is needed that fits within a geomorphologically meaningful framework. This paper presents a system for the survey and classification of geomorphic units (GUS, geomorphic units survey and classification system) aimed at characterising physical habitats and stream morphology. The method is embedded into a multiscale, hierarchical framework for the analysis of river hydromorphological conditions. Three scales of geomorphic units are considered (i.e., macro-units, units, sub-units), organised within two spatial domains (i.e., bankfull channel and floodplain). Different levels of characterisation can be applied, depending on the aims of the survey: broad, basic, and detailed level. At each level, different, complementary information is collected. The method is applied by combining remote sensing analysis and field survey, according to the spatial scale and the level of description required. The method is applicable to most of fluvial conditions, and has been designed to be flexible and adaptable according to the

  10. New geomorphic data on the active Taiwan orogen: A multisource approach

    NASA Technical Reports Server (NTRS)

    Deffontaines, B.; Lee, J.-C.; Angelier, J.; Carvalho, J.; Rudant, J.-P.

    1994-01-01

    A multisource and multiscale approach of Taiwan morphotectonics combines different complementary geomorphic analyses based on a new elevation model (DEM), side-looking airborne radar (SLAR), and satellite (SPOT) imagery, aerial photographs, and control from independent field data. This analysis enables us not only to present an integrated geomorphic description of the Taiwan orogen but also to highlight some new geodynamic aspects. Well-known, major geological structures such as the Longitudinal Valley, Lishan, Pingtung, and the Foothills fault zones are of course clearly recognized, but numerous, previously unrecognized structures appear distributed within different regions of Taiwan. For instance, transfer fault zones within the Western Foothills and the Central Range are identified based on analyses of lineaments and general morphology. In many cases, the existence of geomorphic features identified in general images is supported by the results of geological field analyses carried out independently. In turn, the field analyses of structures and mechanisms at some sites provide a key for interpreting similar geomorphic featues in other areas. Examples are the conjugate pattern of strike-slip faults within the Central Range and the oblique fold-and-thrust pattern of the Coastal Range. Furthermore, neotectonic and morphological analyses (drainage and erosional surfaces) has been combined in order to obtain a more comprehensive description and interpretation of neotectonic features in Taiwan, such as for the Longitudinal Valley Fault. Next, at a more general scale, numerical processing of digital elevation models, resulting in average topography, summit level or base level maps, allows identification of major features related to the dynamics of uplift and erosion and estimates of erosion balance. Finally, a preliminary morphotectonic sketch map of Taiwan, combining information from all the sources listed above, is presented.

  11. Stability of modulated-gravity-induced thermal convection in magnetic fields.

    PubMed

    Li, B Q

    2001-04-01

    A stability analysis is presented of modulated-gravity-induced thermal convection in a heated fluid layer subject to an applied magnetic field. The nearest correction to the critical Rayleigh number for both single and multiple frequency oscillating-gravity components is obtained by solving the linearized magnetohydrodynamic equations using the small parameter perturbation technique. The correction depends on both the applied magnetic field and the oscillating frequency. In the absence of an applied magnetic field, the correction depends on the Prandtl number only when the exciting frequency is small. However, it asymptotically approaches zero as the frequency increases, with or without the presence of a magnetic field. The heated fluid layer is more stable with gravity modulation than with any type of wall temperature modulation. The difference becomes smaller with decreasing Prandtl number Pr. This finding is of critical importance in that ground-based experiments with appropriate wall temperature modulations may be conducted to simulate the oscillating-gravity effects on the onset of thermal convection in lower-Prandtl-number fluids. For conducting melts considered for microgravity applications, it is possible to apply an external magnetic field to further inhibit the onset of modulated-gravity-induced thermal convection. This effectiveness increases with the Hartmann number Ha. For large Ha, the nearest correction term R02 approximately Ha2 as the magnetic Prandtl number Pm<1. However, R02 approximately Ha(4/3) for Ha>1 and Pm>1, provided that Ha<0.5pi(Pm/Pr(3/2)), which is satisfied by a majority of space melt experiments. Thus, under normal laboratory conditions applied magnetic fields are more effective in stabilizing a conducting fluid subject to an oscillating-gravity field than one subject to a constant field. If Ha>0.5pi(Pm/Pr(3/2)), R02 approximately -Ha2 for Ha>1 and Pm>1 and the magnetic field becomes less effective in stabilizing thermal convection

  12. Human geomorphic footprint and global geomorphic change: implications for hydrogeomorphic hazards

    NASA Astrophysics Data System (ADS)

    Remondo, Juan

    2010-05-01

    The human geomorphic footprint (HGF), expressed as the area affected by the construction of new 'anthropogeoforms' or the volume of geologic materials directly or indirectly displaced by human action has grown considerably in the last decades. Available data suggest that the present HGF is roughly 50,000 km2 a-1 of new anthropogeoforms and 300 x109 t a-1 of solid materials transferred from one part of the earth's surface to another. The latter represents a 'technological denudation' that could be 1-2 orders of magnitude greater than denudation by natural agents or sediment transport by the world's rivers. This implies a profound modification of geomorphic processes that produces a series of often disregarded environmental consequences. Some of those can by directly linked to excavation/accumulation activities and are essentially local, but in other cases the possible relationship appears to be more indirect and could have a widespread character. The transformation of land surface by human action is shown not only by landform construction and transfer of geologic materials, but also by land-use change in general and modification of the characteristics of the surface layer. This seems to affect both the hydrologic response and the sensitivity of that surface layer to different geomorphic agents. The magnitude of the above mentioned modification is logically related to the intensity of human activities, themselves related to the number of people on the planet and their economic and technological capabilities, which grow practically in all regions of the planet. It is thus reasonable to expect that the HGF and its effects should grow with time. If this were so, we should expect to find evidences of a general acceleration of geomorphic processes in the world that could represent a 'global geomorphic change'. The final expression of geomorphic processes, which could be used to test that hypothesis, is sediment generation and deposition. Data are presented on

  13. Field stability of piezoelectric shear properties in PIN-PMN-PT crystals under large drive field.

    PubMed

    Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas

    2011-02-01

    The coercive fields (E(C)) of Pb(In₀.₅Nb₀.₅)O₃-Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (E(int)), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shearmode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥ 60% of their coercive fields, because of the developed E(int), induced by the acceptor-oxygen vacancy defect dipoles.

  14. Geomorphic tipping points: convenient metaphor or fundamental landscape property?

    NASA Astrophysics Data System (ADS)

    Lane, Stuart

    2016-04-01

    In 2000 Malcolm Gladwell published as book that has done much to publicise Tipping Points in society but also in academia. His arguments, re-expressed in a geomorphic sense, have three core elements: (1) a "Law of the Few", where rapid change results from the effects of a relatively restricted number of critical elements, ones that are able to rapidly connect systems together, that are particularly sensitive to an external force, of that are spatially organised in a particular way; (2) a "Stickiness" where an element of the landscape is able to assimilate characteristics which make it progressively more applicable to the "Law of the Few"; and (3), given (1) and (2) a history and a geography that means that the same force can have dramatically different effects, according to where and when it occurs. Expressed in this way, it is not clear that Tipping Points bring much to our understanding in geomorphology that existing concepts (e.g. landscape sensitivity and recovery; cusp-catastrophe theory; non-linear dynamics systems) do not already provide. It may also be all too easy to describe change in geomorphology as involving a Tipping Point: we know that geomorphic processes often involve a non-linear response above a certain critical threshold; we know that landscapes can, after Denys Brunsden, be though of as involving long periods of boredom ("stability") interspersed with brief moments of terror ("change"); but these are not, after Gladwell, sufficient for the term Tipping Point to apply. Following from these issues, this talk will address three themes. First, it will question, through reference to specific examples, notably in high Alpine systems, the extent to which the Tipping Point analogy is truly a property of the world in which we live. Second, it will explore how 'tipping points' become assigned metaphorically, sometimes evolving to the point that they themselves gain agency, that is, shaping the way we interpret landscape rather than vice versa. Third, I

  15. Inductive analysis about the impact of climate warming on regional geomorphic evolution in arid area

    NASA Astrophysics Data System (ADS)

    Anayit, Mattohti; Abulizi, Mailiya

    2016-04-01

    Climate change on the surface of earth will produce a chain reaction among so many global natural environmental elements. Namely, all the issues will be affected by the climate change, just like the regional water environment, formation and development of landscape, plants and animals living environment, the survival of microorganisms, the human economic environment and health, and the whole social environment changes at well. But because of slow frequency of climate change and it is volatility change, its influence on other factors and the overall environmental performance is not obvious, and its reflection performs slowly. Using regional weather data, we calculated qualitatively and quantitatively and did analysis the impact of climate warming on Xinjiang (a province of China) geomorphic evolution elements, including the ground weather, erosion rate, collapse change, landslide occurrences changes and impact debris flow, combining the field survey and indoor test methods. Key words: climate change; the geomorphic induction; landscape change in river basin; Xinjiang

  16. Stability of vaccinia-vectored recombinant oral rabies vaccine under field conditions: a 3-year study.

    PubMed

    Hermann, Joseph R; Fry, Alethea M; Siev, David; Slate, Dennis; Lewis, Charles; Gatewood, Donna M

    2011-10-01

    Rabies is an incurable zoonotic disease caused by rabies virus, a member of the rhabdovirus family. It is transmitted through the bite of an infected animal. Control methods, including oral rabies vaccination (ORV) programs, have led to a reduction in the spread and prevalence of the disease in wildlife. This study evaluated the stability of RABORAL, a recombinant vaccinia virus vaccine that is used in oral rabies vaccination programs. The vaccine was studied in various field microenvironments in order to describe its viability and facilitate effective baiting strategies. Field microenvironments influenced the stability of this vaccine in this study. This study emphasizes the importance of understanding how vaccines perform under varying field conditions in order to plan effective baiting strategies.

  17. Stabilization of the Resistive Wall Mode and Error Field Reduction by a Rotating Conducting Wall

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, Carlos

    2011-10-01

    The hypothesis that the Resistive Wall Mode (RWM) can be stabilized by high-speed differentially-rotating conducting walls is tested in a linear device. This geometry allows the use of cylindrical solid metal walls, whereas a torus would require a flowing liquid metal. Experiments over the past year have for the first time explored RWM stability with a rotating copper wall capable of achieving speeds (rΩw) of up to 280 km/h, equivalent to a magnetic Reynolds number (Rm) of 5. The main results are: 1) Wall rotation increases the stability window of the RWM, allowing ~ 25% more plasma current (Ip) at Rm = 5 while maintaining MHD stability. 2) Error field reduction below a critical value allows the observation of initial mode rotation, followed by braking, wall-locking, and subsequent faster growth. 3) Locking is found to depend on the direction of wall rotation (Ω̂w) with respect to the intrinsic plasma rotation, with locking to both the static wall (vacuum vessel) and rotating wall observed. Additionally, indirect effects on RWM stability are observed via the effect of wall rotation on device error fields. Wall rotation shields locking error fields, which reduces the braking torque and inhibits mode-locking. The linear superposition of error fields from guide field (Bz) solenoid misalignments and current-carrying leads is also shown to break symmetry in Ω̂w , with one direction causing stronger error fields and earlier locking irrespective of plasma flow. Vacuum field measurements further show that rotation decreases the error field penetration time and advects the field to a different orientation, as predicted by theory. Experiments are conducted on the Rotating Wall Machine, a 1.2 m long and 16 cm diameter screw-pinch with Bz ~ 500 G, where hollow-cathode injectors are biased to source up to 7 kA of Ip, exciting current-driven RWMs. MHD activity is measured through 120 edge Br, Bθ, Bz probes as well as internal Bdot, Langmuir and Mach probes. RWM

  18. Geomorphic coupling and sediment connectivity in an alpine catchment — Exploring sediment cascades using graph theory

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Schwanghart, Wolfgang

    2013-01-01

    Through their relevance for sediment budgets and the sensitivity of geomorphic systems, geomorphic coupling and (sediment) connectivity represent important topics in geomorphology. Since the introduction of the systems perspective to physical geography by Chorley and Kennedy (1971), a catchment has been perceived as consisting of landscape elements (e.g. landforms, subcatchments) that are coupled by geomorphic processes through sediment transport. In this study, we present a novel application of mathematical graph theory to explore the network structure of coarse sediment pathways in a central alpine catchment. Numerical simulation models for rockfall, debris flows, and (hillslope and channel) fluvial processes are used to establish a spatially explicit graph model of sediment sources, pathways and sinks. The raster cells of a digital elevation model form the nodes of this graph, and simulated sediment trajectories represent the corresponding edges. Model results are validated by visual comparison with the field situation and aerial photos. The interaction of sediment pathways, i.e. where the deposits of a geomorphic process form the sources of another process, forms sediment cascades, represented by paths (a succession of edges) in the graph model. We show how this graph can be used to explore upslope (contributing area) and downslope (source to sink) functional connectivity by analysing its nodes, edges and paths. The analysis of the spatial distribution, composition and frequency of sediment cascades yields information on the relative importance of geomorphic processes and their interaction (however regardless of their transport capacity). In the study area, the analysis stresses the importance of mass movements and their interaction, e.g. the linkage of large rockfall source areas to debris flows that potentially enter the channel network. Moreover, it is shown that only a small percentage of the study area is coupled to the channel network which itself is

  19. Automated Derivation of Fish Habitat, Geomorphic Units & Transition Zones from Topography (Invited)

    NASA Astrophysics Data System (ADS)

    Wheaton, J. M.; Bangen, S. G.; Bailey, P.; Bouwes, N.; McKean, J. A.

    2013-12-01

    Despite the growing availability of high resolution topography and imagery in fluvial environments, a systematic and coherent framework for the automated derivation of geomorphic units from topography alone does not exist. Coherent morphometric models of hillslope and upland topography have been around for some time. However, in fluvial environments the topographic derivation of geomorphic units is complicated by the stage dependence of features as well as inconsistent nomenclature and definitions. Moreover, defining fish habitat and geomorphic units in the absence of full hydraulic model solutions remains a challenge. A new tiered classification of geomorphic/habitat units is presented in which the tiers are tied to specific geoprocessing steps that can be readily confirmed or validated with simple field observations. The four tiers are i) detrended stage relative to bankfull, ii) shape/type (e.g. convexities, concavities, planar features, margins), iii) position (e.g. bank-attached, mid-channel, channel spanning) and iv) specific morphology (e.g. diagonal bar, plunge pool, rapid). The cell-by-cell raster-based workflow involves deriving a suite of different evidence rasters from raw DEMs, and using transform functions to translate these evidence rasters into a priori and conditional probabilities. These probabilities are then combined using Bayes Theorem and for every category a probability that a given cell is each category is produced. To produce a mutually exclusive mapping of geomorphic units and habitat from this probabilistic representation, each category is thresholded at a confidence interval (e.g. 90% probability) and then transition zones between unit types emerge. These transition zones often are hot-spots of biotic activity and are also some of the most important zones from a geomorphic change perspective from repeat topographic surveys. Examples of application from a diverse array of habitats throughout the Columbia Basin will be highlighted where

  20. On The Stability of A General Magnetic Field Topology In Stellar Radiative Zones

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle; Mathis, Stéphane; Strugarek, Antoine

    2016-10-01

    This paper provides a brief overview of the formation of stellar fossil magnetic fields and what potential instabilities may occur given certain configurations of the magnetic field. In particular, a purely magnetic instability can occur for poloidal, toroidal, and mixed poloidal-toroidal axisymmetric magnetic field configurations as originally studied in Tayler (1973), Markey & Tayler (1973), and Tayler (1980). However, most of the magnetic field configurations observed at the surface of massive stars are non- axisymmetric. Thus, extending earlier studies of the axisymmetric Tayler instability in spherical geometry (Goossens, 1980), we introduce a formulation for the global change in the potential energy contained in a convectively-stable region given an arbitrary Lagrangian perturbation, which permits the inclusion of both axisymmetric and non-axisymmetric magnetic fields. With this tool in hand, a path is shown by which more general stability criterion can be established.

  1. Utilisation of satellite data in identification of geomorphic landform and its role in arsenic release in groundwater

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Singh, N.; Shashtri, S.; Mukherjee, S.

    2014-11-01

    The present study was conducted to explore the influence of geomorphic features of the area on the mobilization of arsenic in groundwater. In this study, remote sensing and GIS techniques were used to prepare the geomorphic and slope map of the area. Different geomorphic features were identified on the basis of spectral signature on the LISS III and Landsat satellite image and field survey. Groundwater samples were collected from each representative geomorphic feature to inspect the arsenic contamination in the area. The study area is drained by the Brahmaputra river and its tributaries and contain mainly fluvial geomorphic units especially older flood plain, palaeochannels, oxbow lakes, channel islands; and hilly areas at some of the places. In this study it was observed that enrichment of arsenic in groundwater varies along the geomorphic units in following trends Paleochannel> Younger alluvial plain> Active flood plain> channel island > dissected hills. The above trend shows that a higher concentration of arsenic is found in the groundwater samples collected from the fluvial landforms as compared to those collected from structural landforms. Brahmaputra River and its tributaries carry the sediment load from the Himalayan foothills, which get deposited in these features during the lateral shift of the river's courses. Arsenic bearing minerals may get transported through river and deposit in the geomorphological features along with organic matter. The flat terrain of the area as seen from the slope map provides more residence time to water to infiltrate into the aquifer. The microbial degradation of organic matter generates the reducing environment and facilitates the dissolution of iron hydroxide thus releasing the adsorbed arsenic into the groundwater.

  2. Numerical study on the stability of weakly collisional plasma in E×B fields

    SciTech Connect

    Horký, M.

    2015-02-15

    Plasma stability in weakly collisional plasmas in the presence of E×B fields is studied with numerical simulations. Different types of ion-neutral collisions are considered in a fully magnetized regime. We study the influence of ion-neutral collisions and the role of collision types on the stability of plasma. It is found that the stability of plasma depends on the type of ion-neutral collisions, with the plasma being unstable for charge exchange collisions, and stable for the elastic scattering. The analysis focuses on the temporal evolution of the velocity phase space, RMS values of the potential fluctuations, and coherent structures in potential densities. For the unstable case, we observe growth and propagation of electrostatic waves. Simulations are performed with a three-dimensional electrostatic particle in cell code.

  3. The impact of 3D fields on tearing mode stability of H-modes

    NASA Astrophysics Data System (ADS)

    Buttery, R. J.; Gerhardt, S.; La Haye, R. J.; Liu, Y. Q.; Reimerdes, H.; Sabbagh, S.; Chu, M. S.; Osborne, T. H.; Park, J.-K.; Pinsker, R. I.; Strait, E. J.; Yu, J. H.; DIII-D, the; NSTX Teams

    2011-07-01

    New processes have been discovered in the interaction of 3D fields with tearing mode stability at low torque and modest β on DIII-D and NSTX. These are thought to arise from the plasma response at the tearing resonant surface, which theoretically is expected to depend strongly on plasma rotation and underlying intrinsic tearing stability. This leads to sensitivities additional to those previously identified at low density where the plasma rotation is more readily stopped, or at high βN where ideal MHD responses amplify the fields (where βN is the plasma β divided by the ratio of plasma current to minor radius multiplied by toroidal field). It is found that the threshold size for 3D fields to induce modes tends to zero as the natural tearing βN limit is approached. 3D field sensitivity is further enhanced at low rotation, with magnetic probing detecting an increased response to applied fields in such regimes. Modelling with the MARS-F code confirms the interpretation with the usual plasma screening response breaking down in low rotation plasmas and a tearing response developing, opening the door to additional sensitivities to β and the current profile. Typical field thresholds to induce modes in torque-free βN ~ 1.5 H-modes are well below those in ohmic plasmas or plasmas near the ideal βN limit. The strong interaction with the tearing mode βN limit is identified through rotation shear, which is decreased by the 3D field, leading to decreased tearing stability. Thus both locked and rotating mode field thresholds can be considered in terms of a torque balance, with sufficient braking leading to destabilization of a mode. On this basis new measurements of the principal parameter scalings for error field threshold have been obtained in torque-free H-modes leading to new predictions for error field sensitivity in ITER. The scalings have similar exponents to ohmic plasmas, but with seven times lower threshold at the ITER baseline βN value of 1.8, and a linear

  4. Field soil aggregate stability kit for soil quality and rangeland health evaluations

    USGS Publications Warehouse

    Herrick, J.E.; Whitford, W.G.; de Soyza, A. G.; Van Zee, J. W.; Havstad, K.M.; Seybold, C.A.; Walton, M.

    2001-01-01

    Soil aggregate stability is widely recognized as a key indicator of soil quality and rangeland health. However, few standard methods exist for quantifying soil stability in the field. A stability kit is described which can be inexpensively and easily assembled with minimal tools. It permits up to 18 samples to be evaluated in less than 10 min and eliminates the need for transportation, minimizing damage to soil structure. The kit consists of two 21??10.5??3.5 cm plastic boxes divided into eighteen 3.5??3.5 cm sections, eighteen 2.5-cm diameter sieves with 1.5-mm distance openings and a small spatula used for soil sampling. Soil samples are rated on a scale from one to six based on a combination of ocular observations of slaking during the first 5 min following immersion in distilled water, and the percent remaining on a 1.5-mm sieve after five dipping cycles at the end of the 5-min period. A laboratory comparison yielded a correlation between the stability class and percent aggregate stability based on oven dry weight remaining after treatment using a mechanical sieve. We have applied the method in a wide variety of agricultural and natural ecosystems throughout western North America, including northern Mexico, and have found that it is highly sensitive to differences in management and plant community composition. Although the field kit cannot replace the careful laboratory-based measurements of soil aggregate stability, it can clearly provide valuable information when these more intensive procedures are not possible.

  5. Cross-machine comparison of resonant field amplification and resistive wall mode stabilization by plasma rotation

    SciTech Connect

    Reimerdes, H.; Sabbagh, S.A.; Bialek, J.M.; Garofalo, A.M.; Navratil, G.A.; Sontag, A.C.; Zhu, W.; Hender, T.C.; Gryaznevich, M.P.; Howell, D F.; Bigi, M.; Vries, P. de; Liu, Y. Q.

    2006-05-15

    Dedicated experiments in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion, 42, 614 (2002)], the Joint European Torus (JET) [P. H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion 25, 1011 (1985)], and the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)] reveal the commonalities of resistive wall mode (RWM) stabilization by sufficiently fast toroidal plasma rotation in devices of different size and aspect ratio. In each device the weakly damped n=1 RWM manifests itself by resonant field amplification (RFA) of externally applied n=1 magnetic fields, which increases with the plasma pressure. Probing DIII-D and JET plasmas with similar ideal magnetohydrodynamic (MHD) stability properties with externally applied magnetic n=1 fields, shows that the resulting RFA is independent of the machine size. In each device the drag resulting from RFA slows the toroidal plasma rotation and can lead to the onset of an unstable RWM. The critical plasma rotation required for stable operation in the plasma center decreases with increasing q{sub 95}, which is explained by the inward shift of q surfaces where the critical rotation remains constant. The quantitative agreement of the critical rotation normalized to the inverse Alfven time at the q=2 surface in similar DIII-D and JET plasmas supports the independence of the RWM stabilization mechanism of machine size and indicates the importance of the q=2 surface. At low aspect ratio the required fraction of the Alfven velocity increases significantly. The ratio of the critical rotation in similar NSTX and DIII-D plasmas can be explained by trapped particles not contributing to the RWM stabilization, which is consistent with stabilization mechanisms that are based on ion Landau damping. Alternatively, the ratio of the required rotation to the sound wave velocity remains independent of aspect ratio.

  6. How Does Decommissioning Forest Roads Effect Hydrologic and Geomorphic Risk?

    NASA Astrophysics Data System (ADS)

    Black, T.; Luce, C.; Cissel, R. M.; Nelson, N.; Staab, B.

    2010-12-01

    The US Forest Service is investigating road decommissioning projects to understand how treatments change hydrologic and geomorphic risks. Road treatment effect was measured using a before after control impact design (BACI), using the Geomorphic Road Analysis and Inventory Package (http://www.fs.fed.us/GRAIP). This suite of inventory and analysis tools evaluates: road-stream hydrologic connectivity, fine sediment production and delivery, shallow landslide risk, gully initiation risk, and risks associated with stream crossing failures. The Skokomish River study site is steep and wet and received a high intensity treatment including the removal of stream crossing pipes and fills, all ditch relief pipes and a full hillslope recontouring. Road to stream hydrologic connectivity was reduced by 70%. The treatments reduced fine sediment delivery by 21.8 tons or 81%. The removal of the stream crossing culverts and large associated road fills eliminated the risk of pipe plugging related failures and the eventual erosion of over 4,000 m3 of fill. The slope stability risk was assessed using a modified version of SINMAP (Pack et al, 2005). Risk below drain point locations on the original road was reduced as water was redistributed across the hillslope to waterbars and diffuse drainage. It is unclear; however, if landslide risk was reduced across the entire treated road length because treatments slightly increased risk in some areas where new concentrated drainage features were added above steep slopes. Similarly, values of a gully index ESI (Istanbulluoglu et al, 2003), were reduced at many of the original drainage points, however some new drainage was added. ESI values still exceed a predicted conservative initiation thresholds at some sites, therefore it is uncertain if gully risk will be changed. Mann Creek occupies a moderately steep mid-elevation site in Southern Idaho. The high intensity treatments removed all constructed road drainage features including stream crossing

  7. Geomorphic adjustment to hydrologic modifications along a meandering river: Implications for surface flooding on a floodplain

    NASA Astrophysics Data System (ADS)

    Edwards, Brandon L.; Keim, Richard F.; Johnson, Erin L.; Hupp, Cliff R.; Marre, Saraline; King, Sammy L.

    2016-09-01

    Responses of large regulated rivers to contemporary changes in base level are not well understood. We used field measurements and historical analysis of air photos and topographic maps to identify geomorphic trends of the lower White River, Arkansas, USA, in the 70 years following base-level lowering at its confluence with the Mississippi River and concurrent with flood control by dams. Incision was identified below a knickpoint area upstream of St. Charles, AR, and increases over the lowermost ~90 km of the study site to ~2 m near the confluence with the Mississippi River. Mean bankfull width increased by 30 m (21%) from 1930 to 2010. Bank widening appears to be the result of flow regulation above the incision knickpoint and concomitant with incision below the knickpoint. Hydraulic modeling indicated that geomorphic adjustments likely reduced flooding by 58% during frequent floods in the incised, lowermost floodplain affected by backwater flooding from the Mississippi River and by 22% above the knickpoint area. Dominance of backwater flooding in the incised reach indicates that incision is more important than flood control on the lower White River in altering flooding and also suggests that the Mississippi River may be the dominant control in shaping the lower floodplain. Overall, results highlight the complex geomorphic adjustment in large river-floodplain systems in response to anthropogenic modifications and their implications, including reduced river-floodplain connectivity.

  8. Absolute stability and synchronization in neural field models with transmission delays

    NASA Astrophysics Data System (ADS)

    Kao, Chiu-Yen; Shih, Chih-Wen; Wu, Chang-Hong

    2016-08-01

    Neural fields model macroscopic parts of the cortex which involve several populations of neurons. We consider a class of neural field models which are represented by integro-differential equations with transmission time delays which are space-dependent. The considered domains underlying the systems can be bounded or unbounded. A new approach, called sequential contracting, instead of the conventional Lyapunov functional technique, is employed to investigate the global dynamics of such systems. Sufficient conditions for the absolute stability and synchronization of the systems are established. Several numerical examples are presented to demonstrate the theoretical results.

  9. Stabilization of circular Rydberg atoms by circularly polarized infrared laser fields

    SciTech Connect

    Askeland, S.; Soerngaard, S. A.; Nepstad, R.; Foerre, M.; Pilskog, I.

    2011-09-15

    The ionization dynamics of circular Rydberg states in strong circularly polarized infrared (800 nm) laser fields is studied by means of numerical simulations with the time-dependent Schroedinger equation. We find that at certain intensities, related to the radius of the Rydberg states, atomic stabilization sets in, and the ionization probability decreases as the intensity is further increased. Moreover, there is a strong dependence of the ionization probability on the rotational direction of the applied laser field, which can be understood from a simple classical analogy.

  10. Geomorphic Evolution of Sputnik Planum and Surrounding Terrain

    NASA Astrophysics Data System (ADS)

    Howard, A. D.; Moore, J. M.; White, O. L.; Umurhan, O. M.; Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Singer, K. N.; Spencer, J. R.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.

    2015-12-01

    The informally-named Sputnik Planum is a vast expanse (about 835 km east-west and 1500 km north-south) of N2, CH4, and CO ices which appears craterless at current resolutions, but which gives evidence of both glacial and convective flow in the ices (Stern and the New Horizons Team, Science, 2015). This ice field is surrounded by uplands of varying morphology from hilly terrain to the northeast, plains of apparent ices interspersed with rough terrain to the east, and textured ice surrounding the mountainous terrain to the southwest. The morphology and composition of this bordering terrain will provide clues to the long-term evolution of Sputnik Planum as higher resolution visual and spectral imaging of this region are returned from the New Horizons spacecraft over the next few months. Interactions between Sputnik Planum and surrounding terrain may have involved glacial erosion and deposition. The geomorphic evolution of this region will be discussed in the context of newly-returned encounter data.

  11. Kinetic simulations of the formation and stability of the field-reversed configuration

    SciTech Connect

    Omelchenko, Yu. A.

    2000-05-01

    The Field-Reversed Configuration (FRC) is a high-beta compact toroidal plasma confined primarily by poloidal fields. In the FRC the external field is reversed on axis by the diamagnetic current carried by thermal plasma particles. A three-dimensional, hybrid, particle-in-cell (zero-inertia fluid electrons, and kinetic ions), code FLAME, previously used to study ion rings [Yu. A. Omelchenko and R. N. Sudan, J. Comp. Phys. 133, 146 (1997)], is applied to investigate FRC formation and tilt instability. Axisymmetric FRC equilibria are obtained by simulating the standard experimental reversed theta-pinch technique. These are used to study the nonlinear tilt mode in the ''kinetic'' and ''fluid-like'' cases characterized by ''small'' ({approx}3) and ''large'' ({approx}12) ratios of the characteristic radial plasma size to the mean ion gyro-radius, respectively. The formation simulations have revealed the presence of a substantial toroidal (azimuthal) magnetic field inside the separatrix, generated due to the stretching of the poloidal field by a sheared toroidal electron flow. This is shown to be an important tilt-stabilizing effect in both cases. On the other hand, the tilt mode stabilization by finite Larmor radius effects has been found relatively insignificant for the chosen equilibria. (c) 2000 American Institute of Physics.

  12. Geomorphic and hydraulic assessment of the Bear River in and near Evanston, Wyoming

    USGS Publications Warehouse

    Smith, M.E.; Maderak, M.L.

    1993-01-01

    Geomorphic and hydraulic characteristics of the Bear River in and near Evanston, Wyoming, were assessed to assist planners in stabilizing the river channel. Present-day channel instability is the result of both human-made and natural factors. The primary factor is channelization of the river in Evanston, where several meander loops were cut off artificially during early development of the city. Other contributing factors include channel-width constrictions, bank stabilization, isolated bend cutoffs upstream from the city, and flooding in 1983 and 1984. A geomorphic analysis of bankfull-channel pattern, based on four aerial photographs taken during 1946-86, quantified geomorphic properties (reach sinuosity, bend sinuosity, bend radius of curvature, and bed length) that are characteristic of the study reach. The reach sinuosity of reach 2 (the channelized reach in Evanston) was 1.18 in 1986 and remained about the same throughout the period (1946-86). The reach sinuosity of reach 2 prior to channelization was substantially larger, about 2.3 as determined from maps prepared before 1946. Hydraulic analysis of the present-day channel (surveyed 1981-87) using a one-dimensional water-surface-profile computer model identified a bankfull discharge for the study reach of 3,600 cu ft/sec. A comparison of bankfull hydraulic properties for reaches 1, 2, and 3 indicated that the effects in reach 2 of channelization and channel-width constriction--increased slope, faster velocities, and greater hydraulic radii. The present-day channel slope in reach 2 is 0.00518 ft/ft, whereas a more stable slope would be between 0.00431 ft/ft (present-day slope in reach 1) and 0.00486 ft/ft (present-day slope in reach 3).

  13. Predicting the type, location and magnitude of geomorphic responses to dam removal: Role of hydrologic and geomorphic constraints

    NASA Astrophysics Data System (ADS)

    Gartner, John D.; Magilligan, Francis J.; Renshaw, Carl E.

    2015-12-01

    Using a dam removal on the Ashuelot River in southern New Hampshire, we test how a sudden, spatially non-uniform increase in river slope alters sediment transport dynamics and riparian sediment connectivity. Site conditions were characterized by detailed pre- and post-removal field surveys and high-resolution aerial lidar data, and locations of erosion and deposition were predicted through one-dimensional hydrodynamic modeling. The Homestead Dam was a ~ 200 year old, 4 m high, 50 m wide crib dam that created a 9.5 km long, relatively narrow reservoir. Following removal, an exhumed resistant bed feature of glaciofluvial boulders located 400 m upstream and ~ 2.5 m lower than the crest of the dam imposed a new boundary condition in the drained reservoir, acting as a grade control that maintained a backwater effect upstream. During the 15 months following removal, non-uniform erosion in the former reservoir totaled ~ 60,000 m3 (equivalent to ~ 9.3 cm when averaged across the reservoir). Net deposition of ~ 10,700 m3 was measured downstream of the dam, indicating most sediment from the reservoir was carried more than 8 km downstream beyond the study area. The most pronounced bed erosion occurred where modeled sediment transport increased in the downstream direction, and deposition occurred both within and downstream of the former reservoir where modeled sediment transport decreased in the downstream direction. We thus demonstrate that spatial gradients in sediment transport can be used to predict locations of erosion and deposition on the stream bed. We further observed that bed incision was not a necessary condition for bank erosion in the former reservoir. In this characteristically narrow and shallow reservoir lacking abundant dam-induced sedimentation, the variable resistance of the bed and banks acted as geomorphic constraints. Overall, the response deviated from the common conceptual model of knickpoint erosion and channel widening due to dam removal. With

  14. Seasonal logging, process response, and geomorphic work

    NASA Astrophysics Data System (ADS)

    Mohr, C. H.; Zimmermann, A.; Korup, O.; Iroumé, A.; Francke, T.; Bronstert, A.

    2013-09-01

    Deforestation is a prominent anthropogenic cause of erosive overland flow and slope instability, boosting rates of soil erosion and concomitant sediment flux. Conventional methods of gauging or estimating post-logging sediment flux focus on annual timescales, but potentially overlook important geomorphic responses on shorter time scales immediately following timber harvest. Sediments fluxes are commonly estimated from linear regression of intermittent measurements of water and sediment discharge using sediment rating curves (SRCs). However, these often unsatisfactorily reproduce non-linear effects such as discharge-load hystereses. We resolve such important dynamics from non-parametric Quantile Regression Forests (QRF) of high-frequency (3 min) measurements of stream discharge and sediment concentrations in similar-sized (~ 0.1 km2) forested Chilean catchments that were logged during either the rainy or the dry season. The method of QRF builds on the Random Forest (RF) algorithm, and combines quantile regression with repeated random sub-sampling of both cases and predictors. The algorithm belongs to the family of decision-tree classifiers, which allow quantifying relevant predictors in high-dimensional parameter space. We find that, where no logging occurred, ~ 80% of the total sediment load was transported during rare but high magnitude runoff events during only 5% of the monitoring period. The variability of sediment flux of these rare events spans four orders of magnitude. In particular dry-season logging dampened the role of these rare, extreme sediment-transport events by increasing load efficiency during more moderate events. We show that QRFs outperforms traditional SRCs in terms of accurately simulating short-term dynamics of sediment flux, and conclude that QRF may reliably support forest management recommendations by providing robust simulations of post-logging response of water and sediment discharge at high temporal resolution.

  15. Place field stability requires the metabotropic glutamate receptor, mGlu5

    PubMed Central

    Zhang, Sijie; Manahan-Vaughan, Denise

    2014-01-01

    The metabotropic glutamate (mGlu) receptors are critically involved in enabling the persistency of forms of synaptic plasticity that are believed to underlie hippocampus-dependent memory. These receptors and in particular, mGlu5, are also required for hippocampus-dependent learning and memory. In the hippocampus, synaptic plasticity is one of the mechanisms by which spatial information may be represented. Another mechanism involves increased firing of place cells. Place cells increase their firing activity when an animal is in a specific spatial location. Inhibition of factors that are essential for synaptic plasticity, such as N-methyl-d-aspartate receptors or protein synthesis, also impair place cell activity. This raises the question as to whether mGlu receptors, that are so important for synaptic plasticity and spatial memory, are also important for place cell encoding. We examined location-dependent place cell firing i.e. place fields. We observed that antagonism of mGlu5, using 2-methyl-6-(phenylethynyl) pyridine (MPEP) had no effect on place field profiles in a familiar environment. However, in a novel environment mGlu5-antagonism affected long-term place field stability, reduced place cell firing and spatial information. These data strongly suggest a role for mGlu5 in the mechanisms underlying informational content and long-term stability of place fields, and add to evidence supporting the importance of these receptors for hippocampal function. PMID:24910241

  16. Size-controlled nanopores in lipid membranes with stabilizing electric fields.

    PubMed

    Fernández, M Laura; Risk, Marcelo; Reigada, Ramon; Vernier, P Thomas

    2012-06-29

    Molecular dynamics (MD) has been shown to be a useful tool for unveiling many aspects of pore formation in lipid membranes under the influence of an applied electric field. However, the study of the structure and transport properties of electropores by means of MD has been hampered by difficulties in the maintenance of a stable electropore in the typically small simulated membrane patches. We describe a new simulation scheme in which an initially larger porating field is systematically reduced after pore formation to lower stabilizing values to produce stable, size-controlled electropores, which can then be characterized at the molecular level. A new method allows the three-dimensional modeling of the irregular shape of the pores obtained as well as the quantification of its volume. The size of the pore is a function of the value of the stabilizing field. At lower fields the pore disappears and the membrane recovers its normal shape, although in some cases long-lived, fragmented pores containing unusual lipid orientations in the bilayer are observed.

  17. STRUCTURE AND STABILITY OF MAGNETIC FIELDS IN SOLAR ACTIVE REGION 12192 BASED ON NONLINEAR FORCE-FREE FIELD MODELING

    SciTech Connect

    Inoue, S.; Hayashi, K.; Kusano, K.

    2016-02-20

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  18. Structure and Stability of Magnetic Fields in Solar Active Region 12192 Based on the Nonlinear Force-free Field Modeling

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Hayashi, K.; Kusano, K.

    2016-02-01

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  19. Numerical study of tilt stability of prolate field-reversed configurations

    SciTech Connect

    E. V. Belova; S. C. Jardin; H. Ji, M. Yamada; R. Kulsrud

    2000-06-21

    Global stability of the Field-Reversed Configuration (FRC) has been investigated numerically using both 3D MHD and hybrid (fluid electron and delta f particle ion) simulations. The stabilizing effects of velocity shear and large ion orbits on the n = 1 internal tilt mode in the prolate FRCs have been studied. Sheared rotation is found to reduce the growth rate, however a large rotation rate with Mach number of M greater than or approximately equal to 1 is required in order for significant reduction in the instability growth rate to occur. Kinetic effects associated with large thermal ion orbits have been studied for different kinetic equilibria. These simulations show that there is a reduction in the tilt mode growth rate due to finite ion Larmor radius (FLR) effects, but complete linear stability has not been found, even when the thermal ion gyroradius is comparable to the distance between the field null and the separatrix. The instability existing beyond the FLR theory threshold could be due to the resonant interaction of the wave with ions whose Doppler shifted frequency matches the betatron frequency.

  20. The double-gradient magnetic instability: Stabilizing effect of the guide field

    SciTech Connect

    Korovinskiy, D. B. Semenov, V. S.; Ivanova, V. V.; Divin, A. V.; Erkaev, N. V.; Artemyev, A. V.; Lapenta, G.; Markidis, S.; Biernat, H. K.

    2015-01-15

    The role of the dawn-dusk magnetic field component in stabilizing of the magnetotail flapping oscillations is investigated in the double-gradient model framework (Erkaev et al., Phys. Rev. Lett. 99, 235003 (2007)), extended for the magnetotail-like configurations with non-zero guide field B{sub y}. Contribution of the guide field is examined both analytically and by means of linearized 2-dimensional (2D) and non-linear 3-dimensional (3D) MHD modeling. All three approaches demonstrate the same properties of the instability: stabilization of current sheet oscillations for short wavelength modes, appearing of the typical (fastest growing) wavelength λ{sub peak} of the order of the current sheet width, decrease of the peak growth rate with increasing B{sub y} value, and total decay of the mode for B{sub y}∼0.5 in the lobe magnetic field units. Analytical solution and 2D numerical simulations claim also the shift of λ{sub peak} toward the longer wavelengths with increasing guide field. This result is barely visible in 3D simulations. It may be accounted for the specific background magnetic configuration, the pattern of tail-like equilibrium provided by approximated solution of the conventional Grad-Shafranov equation. The configuration demonstrates drastically changing radius of curvature of magnetic field lines, R{sub c}. This, in turn, favors the “double-gradient” mode (λ > R{sub c}) in one part of the sheet and classical “ballooning” instability (λ < R{sub c}) in another part, which may result in generation of a “combined” unstable mode.

  1. Geomorphic responses of Duluth-area streams to the June 2012 flood, Minnesota

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Ellison, Christopher A.; Czuba, Christiana R.; Young, Benjamin M.; McCool, Molly M.; Groten, Joel T.

    2016-09-01

    In 2013, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, completed a geomorphic assessment of 51 Duluth-area stream sites in 20 basins to describe and document the stream geomorphic changes associated with the June 2012 flood. Heavy rainfall caused flood peaks with annual exceedance probabilities of less than 0.002 (flood recurrence interval of greater than 500 years) on large and small streams in and surrounding the Duluth area. A geomorphic segment-scale classification previously developed in 2003–4 by the U.S. Geological Survey for Duluth-area streams was used as a framework to characterize the observed flood-related responses along a longitudinal continuum from headwaters to rivermouths at Lake Superior related to drainage network position, slope, geologic setting, and valley type. Field assessments in 2013 followed and expanded on techniques used in 2003–4 at intensive and rapid sites. A third level of assessment was added in 2013 to increase the amount of quantitative data at a subset of 2003–4 rapid sites. Characteristics of channel morphology, channel bed substrate, exposed bars and soft sediment deposition, large wood, pools, and bank erosion were measured; and repeat photographs were taken. Additional measurements in 2013 included identification of Rosgen Level II stream types. The comparative analyses of field data collected in 2003–4 and again in 2013 indicated notable geomorphic changes, some of them expected and others not. As expected, in headwaters with gently sloping wetland segments, geomorphic changes were negligible (little measured or observed change). Downstream, middle main stems generally had bank and bluff erosion and bar formation as expected. Steep bedrock sites along middle and lower main stems had localized bank and bluff erosion in short sections with intermittent bedrock. Lower main stem and alluvial sites had bank erosion, widening, gravel bar deposition, and aggradation. Bar formation

  2. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions.

    PubMed

    Oliveira, Rafael M; Miranda, José A; Leandro, Eduardo S G

    2008-01-01

    The response of a ferrofluid droplet to a radial magnetic field is investigated, when the droplet is confined in a Hele-Shaw cell. We study how the stability properties of the interface and the shape of the emerging patterns react to the action of the magnetic field. At early linear stages, it is found that the radial field is destabilizing and determines the growth of fingering structures at the interface. In the weakly nonlinear regime, we have verified that the magnetic field favors the formation of peaked patterned structures that tend to become sharper and sharper as the magnitude of the magnetic effects is increased. A more detailed account of the pattern morphology is provided by the determination of nontrivial exact stationary solutions for the problem with finite surface tension. These solutions are obtained analytically and reveal the development of interesting polygon-shaped and starfishlike patterns. For sufficiently large applied fields or magnetic susceptibilities, pinch-off phenomena are detected, tending to occur near the fingertips. We have found that the morphological features obtained from the exact solutions are consistent with our linear and weakly nonlinear predictions. By contrasting the exact solutions for ferrofluids under radial field with those obtained for rotating Hele-Shaw flows with ordinary nonmagnetic fluids, we deduce that they coincide in the limit of very small susceptibilities.

  3. Microtopographic patterns in an arctic baydjarakh field: do fine-grain patterns enforce landscape stability?

    NASA Astrophysics Data System (ADS)

    Gamon, John A.; Kershaw, G. Peter; Williamson, Scott; Hik, David S.

    2012-03-01

    Recent observations suggest that while some arctic landscapes are undergoing rapid change, others are apparently more resilient. In this study, we related surface cover and energy balance to microtopography in a degraded polygonal peat plateau (baydjarakh field) near Churchill, Manitoba in mid-summer 2010. The landscape consists of remnant high-centered polygons divided by troughs of varying widths. Historical aerial photos indicate these topographical features have been stable for over 80 years. Our goal was to explore patterns that might explain the apparent stability of this landscape over this time period and to evaluate remote sensing methods for characterizing microtopographic patterns that might resist change in the face of climate warming. Summertime surface albedo measurements were combined with several years of winter snow depth, snow heat flux, summer thaw depth and annual surface temperature, all of which had striking contrasts between wet troughs and high polygon centers. Measurements of albedo and the snowpack heat transfer coefficient were lowest for wet troughs (areas of standing water) dominated by graminoids, and were significantly higher for high polygon centers, dominated by dwarf shrubs and lichens. Snow depth, surface temperature and thaw depth were all significantly higher for wet troughs than high polygon centers. Together these patterns of cover and energy balance associated with microtopographic variation can contribute to the stability of this landscape through differential heat transfer and storage. We hypothesize that local thermal feedback effects, involving greater heat trapping in the troughs than on the baydjarakh tops, and effective insulation on the baydjarakh edges, have ensured landscape stability over most of the past century. These results suggest that high-resolution remote sensing, combined with detailed field monitoring, could provide insights into the dynamics or stability of arctic landscapes, where cover often varies

  4. Two-field Kaehler moduli inflation in large volume moduli stabilization

    SciTech Connect

    Yang, Huan-Xiong; Ma, Hong-Liang E-mail: hlma@mail.ustc.edu.cn

    2008-08-15

    In this paper we present a two-field inflation model, which is distinctive in having a non-canonical kinetic Lagrangian and comes from the large volume approach to the moduli stabilization in flux compactification of type IIB superstring on a Calabi-Yau orientifold with h{sup (1,2)}>h{sup (1,1)}{>=}4. The Kaehler moduli are classified as the volume modulus, heavy moduli and two light moduli. The axion-dilaton, complex structure moduli and all heavy Kaehler moduli including the volume modulus are frozen by a non-perturbatively corrected flux superpotential and the {alpha}{sup '}-corrected Kaehler potential in the large volume limit. The minimum of the scalar potential at which the heavy moduli are stabilized provides the dominant potential energy for the surviving light Kaehler moduli. We consider a simplified case where the axionic components in the light Kaehler moduli are further stabilized at the potential minimum and only the geometrical components are taken as scalar fields to drive an assisted-like inflation. For a certain range of moduli stabilization parameters and inflation initial conditions, we obtain a nearly flat power spectrum of the curvature perturbation, with n{sub s} Almost-Equal-To 0.96 at Hubble exit, and an inflationary energy scale of 3 Multiplication-Sign 10{sup 14} GeV. In our model, there is significant correlation between the curvature and isocurvature perturbations on super-Hubble scales, so at the end of inflation a great deal of the curvature power spectrum originates from this correlation.

  5. MHD STABILITY OF INTERSTELLAR MEDIUM PHASE TRANSITION LAYERS. I. MAGNETIC FIELD ORTHOGONAL TO FRONT

    SciTech Connect

    Stone, Jennifer M.; Zweibel, Ellen G.

    2009-05-01

    We consider the scenario of a magnetic field orthogonal to a front separating two media of different temperatures and densities, such as cold and warm neutral interstellar gas, in a two-dimensional plane-parallel geometry. A linear stability analysis is performed to assess the behavior of both evaporation and condensation fronts when subject to incompressible, corrugational perturbations with wavelengths larger than the thickness of the front. We discuss the behavior of fronts in both super-Alfvenic and sub-Alfvenic flows. Since the propagation speed of fronts is slow in the interstellar medium (ISM), it is the sub-Alfvenic regime that is relevant, and magnetic fields are a significant influence on front dynamics. In this case, we find that evaporation fronts, which are unstable in the hydrodynamic regime, are stabilized. Condensation fronts are unstable, but for parameters typical of the neutral ISM the growth rates are so slow that steady-state fronts are effectively stable. However, the instability may become important if condensation proceeds at a sufficiently fast rate. This paper is the first in a series exploring the linear and nonlinear effects of magnetic field strength and orientation on the corrugational instability, with the ultimate goal of addressing outstanding questions about small-scale ISM structure.

  6. On the problems of stability and durability of field-emission current sources for electrovacuum devices

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Akchurin, Garif G.; Akchurin, Georgy G.; Avetisyan, Yuri A.

    2016-03-01

    The results of the practical implementation of the concept of field-emission current source with high average current density of 0.1-0.3 A-cm-2 are shown. The durability of cathode samples at a level of 6000 hours is achieved under conditions of technical vacuum. A phenomenological model is suggested that describes the tunneling of both equilibrium and nonequilibrium electrons in a vacuum from the zone of concentration of electrostatic field. Conditions are discussed as the resulting increase in the emission current due to the connection mechanism of the photoelectric effect is thermodynamically favorable, that is not accompanied by an undesirable increase in the temperature of the local emission zone. It is shown that to ensure stability and durability of the cathode is also important to limit the concentration of equilibrium carriers using composite structures «DLC film on Mo substrate." This helps to reduce the criticality of the CVC. A possible alternative is to use a restrictive resistance in the cathode. However, this increases the heat losses and thus decreases assembly efficiency. The results of experimental studies of the structure showing the saturation of photoemission current component with an increase in operating voltage. This fact suggests the existence of an effective mechanism for control of emission at constant operating voltage. This is fundamentally important for the stabilization of field emission cathode, providing a reliability and durability. The single-photon processes and the small thickness DLC films (15-20 nm) provide high-speed process of control.

  7. Axisymmetric shapes and stability of charged drops in an external electric field

    NASA Astrophysics Data System (ADS)

    Basaran, O. A.; Scriven, L. E.

    1989-05-01

    A highly conducting charged drop that is surrounded by a fluid insulator of another density can be levitated by suitably applying a uniform electric field. Axisymmetric equilibrium shapes and stability of the levitated drop are found by solving simultaneously the augmented Young-Laplace equation for surface shape and the Laplace equation for the elecric field, together with constraints of fixed drop volume, charge, and center of mass. The means are a method of subdomains, finite element basis functions, and Galerkin's method of weighted residuals, all facilitated by a large-scale computer. Shape families of fixed charge are treated systematically by first-order continuation. Previous analyses by Abbas et al. in 1967 and Abbas and Latham in 1969, in which the shapes of levitated drops are approximated as spheroids, are corrected. The new analysis shows that drops charged to less than the Rayleigh limit lose shape stability at turning points, with respect to external field strength, and that the instability seen in experiments of Doyle et al. in 1964 and others is not a bifurcation to a family of two-lobed shapes, but rather is a related imperfect bifurcation.

  8. Axisymmetric shapes and stability of charged drops in an external electric field

    NASA Astrophysics Data System (ADS)

    Basaran, O. A.; Scriven, L. E.

    1989-05-01

    A highly conducting charged drop that is surrounded by a fluid insulator of another density can be levitated by suitably applying a uniform electric field. Axisymmetric equilibrium shapes and stability of the levitated drop are found by solving simultaneously the augmented Young-Laplace equation for surface shape and the Laplace equation for the electric field, together with constraints of fixed drop volume, charge, and center of mass. The means are a method of subdomains, finite element basis functions, and Galerkin's method of weighted residuals, all facilitated by a large-scale computer. Shape families of fixed charge are treated systematically by first-order continuation. Previous analyses by Abbas et al. in 1967 and Abbas and Latham in 1969, in which the shapes of levitated drops are approximated as spheroids, are corrected. The new analysis shows that drops charged to less than the Rayleigh limit lose shape stability at turning points, with respect to external field strength, and that the instability seen in experiments of Doyle et al. in 1964 and others is not a bifurcation to a family of two-lobed shapes, but rather is a related imperfect bifurcation.

  9. Formation, spin-up, and stability of field-reversed configurations

    DOE PAGES

    Omelchenko, Yuri A.

    2015-08-24

    Formation, spontaneous spin-up and stability of theta-pinch formed field-reversed configurations are studied self-consistently in three dimensions with a multiscale hybrid model that treats all plasma ions as full-orbit collisional macro-particles and the electrons as a massless quasineutral fluid. The end-to-end hybrid simulations for the first time reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three well-known discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration and the nonlinear evolution of a fast growing tearing mode.

  10. Gas field ion source current stability for trimer and single atom terminated W(111) tips

    SciTech Connect

    Urban, Radovan; Wolkow, Robert A.; Pitters, Jason L.

    2012-06-25

    Tungsten W(111) oriented trimer-terminated tips as well as single atom tips, fabricated by a gas and field assisted etching and evaporation process, were investigated with a view to scanning ion microscopy and ion beam writing applications. In particular, ion current stability was studied for helium and neon imaging gases. Large ion current fluctuations from individual atomic sites were observed when a trimer-terminated tip was used for the creation of neon ion beam. However, neon ion current was stable when a single atom tip was employed. No such current oscillations were observed for either a trimer or a single atom tip when imaged with helium.

  11. Acceleration and stability of a high-current ion beam in induction fields

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-01

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  12. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  13. Geomorphic control of radionuclide diffusion in desert soils

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Harrington, Charles D.; Whitney, John W.; Cline, Michael; DeLong, Stephen B.; Keating, Gordon; Ebert, K. Teryn

    2005-12-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137Cs profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide transport in desert soils within a pedotransfer-function approach.

  14. Tracking Geomorphic Signatures of Watershed Suburbanization with Multi-Temporal LiDAR

    EPA Science Inventory

    Urban development practices redistribute surface materials through filling, grading and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-t...

  15. Carbon nanotube—Based cold cathodes: Field emission angular properties and temporal stability

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Fratini, M.; Rizzo, A.; Zhang, Y.; Cole, M. T.; Milne, W. I.; Lagomarsino, S.; Liscio, A.; Stefani, G.

    2016-10-01

    The field emission (FE) properties of carbon nanotube (CNT)-based cathodes have been investigated on nanostructured surfaces grown by plasma enhanced chemical vapor deposition. The FE angular properties and temporal stability of the emergent electron beam have been determined using a dedicated apparatus for cathodes of various architectures and geometries, characterized by scanning electron microscopy and I-V measurements. The angular electron beam divergence and time instability at the extraction stage, which are crucial parameters in order to obtain high brilliance of FE-based-cathode electron sources, have been measured for electrons emitted by several regular architectures of vertically aligned arrays and critically compared to conventional disordered cathodes. The measured divergences strongly depend on the grid mesh. For regular arrays of individual CNT, divergences from 2° to 5° have been obtained; in this specific case, measurements together with ray-tracing simulations suggest that the maximum emission angle is of the order of ±30° about the tube main axis. Larger divergences have been measured for electron beams emitted from honeycomb-structured cathodes (6°) and significantly broader angle distributions (10°) from disordered CNT surfaces. Emission current instabilities of the order of 1% for temporal stability studies conducted across a medium time scale (hours) have been noted for all cathodes consisting of a high number (104 and larger) of aligned CNTs, with the degree of stability being largely independent of the architecture.

  16. Fractional quantum Hall effect in strained graphene: Stability of Laughlin states in disordered pseudomagnetic fields

    NASA Astrophysics Data System (ADS)

    Bagrov, Andrey A.; Principi, Alessandro; Katsnelson, Mikhail I.

    2017-03-01

    We address the question of the stability of the fractional quantum Hall effect in the presence of pseudomagnetic disorder generated by mechanical deformations of a graphene sheet. Neglecting the potential disorder and taking into account only strain-induced random pseudomagnetic fields, it is possible to write down a Laughlin-like trial ground-state wave function explicitly. Exploiting the Laughlin plasma analogy, we demonstrate that in the case of fluctuating pseudomagnetic fluxes of a relatively small amplitude, the fractional quantum Hall effect is always stable upon the deformations. By contrast, in the case of bubble-induced pseudomagnetic fields in graphene on a substrate (a small number of large fluxes) the disorder can be strong enough to cause a glass transition in the corresponding classical Coulomb plasma, resulting in the destruction of the fractional quantum Hall regime and in a quantum phase transition to a nonergodic state of the lowest Landau level.

  17. Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores.

    PubMed

    Ho, Ming-Chak; Casciola, Maura; Levine, Zachary A; Vernier, P Thomas

    2013-10-03

    Molecular dynamics (MD) simulations of electrophoretic transport of monovalent ions through field-stabilized electropores in POPC lipid bilayers permit systematic characterization of the conductive properties of lipid nanopores. The radius of the electropore can be controlled by the magnitude of the applied sustaining external electric field, which also drives the transport of ions through the pore. We examined pore conductances for two monovalent salts, NaCl and KCl, at physiological concentrations. Na(+) conductance is significantly less than K(+) and Cl(-) conductance and is a nonlinear function of pore radius over the range of pore radii investigated. The single pore electrical conductance of KCl obtained from MD simulation is comparable to experimental values measured by chronopotentiometry.

  18. On the Nonlinear Stability of Plane Parallel Shear Flow in a Coplanar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xu, Lanxi; Lan, Wanli

    2016-10-01

    Lyapunov direct method has been used to study the nonlinear stability of laminar flow between two parallel planes in the presence of a coplanar magnetic field for streamwise perturbations with stress-free boundary planes. Two Lyapunov functions are defined. By means of the first, it is proved that the transverse components of the perturbations decay unconditionally and asymptotically to zero for all Reynolds numbers and magnetic Reynolds numbers. By means of the second, it is showed that the other components of the perturbations decay conditionally and exponentially to zero for all Reynolds numbers and the magnetic Reynolds numbers below π ^2/2M , where M is the maximum of the absolute value of the velocity field of the laminar flow.

  19. Long-term stability of peneplains and landscape evolution in southern Tibet inferred from field data, cosmogenic nuclides, and digital elevation models

    NASA Astrophysics Data System (ADS)

    Strobl, M.; Hetzel, R.; Ding, L.; Zhang, L.

    2010-05-01

    Peneplains constitute a widespread and well developed geomorphic element on the Tibetan Plateau, nevertheless little is known about their formation and the subsequent landscape evolution. In southern Tibet, north of Nam Co (~31° 20'N, 90° E), a particularly well-preserved peneplain occurs at an elevation of ~5350 m in Cretaceous granitoids. The main planation surface has been incised by small streams that formed additional small low-relief surfaces at lower elevations. Fluvial incision of the main peneplain has generated a local relief of up to ~700 m. The progressive incision has led to hillslope gradients that increase with decreasing elevation, i.e. from the main peneplain at ~5350 m down to the current base level at ~4650 m, as revealed by field observations and the analysis of digital elevation model. In order to quantify the landscape evolution of the peneplain region we determined local and catchment-wide erosion rates from the concentration of in situ-produced cosmogenic 10Be. Local erosion rates on the main peneplain and the low-relief bedrock surfaces at lower elevation range from 6 to 12 m Ma-1 and indicate that the geomorphic surfaces are stable over long periods of time. Spatially integrated erosion rates of small river systems that are incising and eroding headwards into the main peneplain are only slightly higher and range from 11 to 18 m Ma-1. Even if river incision has proceeded at a rate that is 2-4 times higher than the catchment-wide erosion rates, i.e. at 30 to 60 m Ma-1, it would take about 10 to 20 Ma to generate the local relief of ~700 m observed today. This demonstrates that the major peneplain is a very stable geomorphic element with a minimum age of 10 to 20 Ma and that the landscape in the region has barely been modified by erosion in the last millions of years.

  20. Stability of Interfaces with Self-Gravity, Relative Flow, and {ital B} Field

    SciTech Connect

    Hunter, J.H. Jr.; Whitaker, R.W.; Lovelace, R.V.

    1998-12-01

    Observations with the {ital Hubble} {ital Space} {ital T}{ital elescope} (Hester et al.) of spectacular {open_quotes}fingers{close_quotes} or {open_quotes}elephant trunks{close_quotes} of gas protruding from a large star-forming cloud in the Eagle Nebula stimulate renewed interest in the stability of interfaces between different media in molecular clouds. Instability and nonlinear growth of crenelations of interfaces can lead to mass concentrations that in turn lead to star formation. In an earlier study of the stability of interfaces, we took into account the important physical effects{emdash}the different densities and temperatures of the media, the relative motion (Kelvin-Helmholtz instability), the gravitational acceleration perpendicular to the interface (Rayleigh-Taylor instability), and self-gravity. A new {ital self}-{ital gravitational} {ital instability} of an interface was found that was independent of the wavelength of the perturbation. At short wavelengths, the perturbations are essentially distortional, but compression becomes important as the Jeans length is approached from below. The {ital e}-folding time for the instability is comparable with the free-fall collapse time for the denser fluid. In the present work, we generalize our earlier theory in two ways: by including ordered magnetic fields parallel to the interface, and by examining the stability of long cylindrical interfaces. We show that dynamically important magnetic fields in the media can quench instabilities if the fields are oriented in different directions (that is, crossed); however, for astronomically plausible geometries in which the fields are closer to being parallel, but of different strengths in the two media, instabilities are free to grow in directions normal to the fields. A cylindrical interface between an interior medium of density {rho}{sub 1} and an exterior medium of density {rho}{sub 2} provides a model for the long filaments of dense gas observed in some molecular

  1. Hydrologic versus geomorphic drivers of trends in flood hazard

    NASA Astrophysics Data System (ADS)

    Slater, Louise J.; Bliss Singer, Michael; Kirchner, James W.

    2016-04-01

    Flooding is a major threat to lives and infrastructure, yet trends in flood hazard are poorly understood. The capacity of river channels to convey flood flows is typically assumed to be stationary, so changes in flood frequency are thought to be driven primarily by trends in streamflow. However, changes in channel capacity will also modify flood hazard, even if the flow frequency distribution does not change. We developed new methods for separately quantifying how trends in both streamflow and channel capacity have affected flood frequency at gauging sites across the United States. Using daily discharge records and manual field measurements of channel cross-sectional geometry for USGS gauging stations that have defined flood stages (water levels), we present novel methods for measuring long-term trends in channel capacity of gauged rivers, and for quantifying how they affect overbank flood frequency. We apply these methods to 401 U.S. rivers and detect measurable trends in flood hazard linked to changes in channel capacity and/or the frequency of high flows. Flood frequency is generally nonstationary across these 401 U.S. rivers, with increasing flood hazard at a statistically significant majority of sites. Changes in flood hazard driven by channel capacity are smaller, but more numerous, than those driven by streamflow, with a slight tendency to compensate for streamflow changes. Our results demonstrate that accurately quantifying changes in flood hazard requires accounting separately for trends in both streamflow and channel capacity, or using water levels directly. They also show that channel capacity trends may have unforeseen consequences for flood management and for estimating flood insurance costs. Slater, L. J., M. B. Singer, and J. W. Kirchner (2015), Hydrologic versus geomorphic drivers of trends in flood hazard, Geophys. Res. Lett., 42, 370-376, doi:10.1002/2014GL062482.

  2. Geomorphic legacy of medieval Himalayan earthquakes in the Pokhara Valley

    NASA Astrophysics Data System (ADS)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R.; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    The Himalayas and their foreland belong to the world's most earthquake-prone regions. With millions of people at risk from severe ground shaking and associated damages, reliable data on the spatial and temporal occurrence of past major earthquakes is urgently needed to inform seismic risk analysis. Beyond the instrumental record such information has been largely based on historical accounts and trench studies. Written records provide evidence for damages and fatalities, yet are difficult to interpret when derived from the far-field. Trench studies, in turn, offer information on rupture histories, lengths and displacements along faults but involve high chronological uncertainties and fail to record earthquakes that do not rupture the surface. Thus, additional and independent information is required for developing reliable earthquake histories. Here, we present exceptionally well-dated evidence of catastrophic valley infill in the Pokhara Valley, Nepal. Bayesian calibration of radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments yields a robust age distribution that matches the timing of nearby M>8 earthquakes in ~1100, 1255, and 1344 AD. The upstream dip of tributary valley fills and X-ray fluorescence spectrometry of their provenance rule out local sediment sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from the Annapurna Massif >60 km away. The landscape-changing consequences of past large Himalayan earthquakes have so far been elusive. Catastrophic aggradation in the wake of two historically documented medieval earthquakes and one inferred from trench studies underscores that Himalayan valley fills should be considered as potential archives of past earthquakes. Such valley fills are pervasive in the Lesser Himalaya though high erosion rates reduce

  3. Stabilization window and attosecond pulse train production at atom ionization in superintense laser field.

    PubMed

    Ryabikin, M; Sergeev, A

    2000-12-04

    We present the results of numerical experiments on a two-dimensional model atom driven by a high-intense laser pulse. The electron wave-packet behavior is studied in a range of laser parameters corresponding to the dynamic stabilization regime. Wave packet localization in this regime with arbitrary laser polarizations is shown to manifest itself macroscopically by high-order harmonic production in the form of long trains of attosecond pulses. Calculations for the sub-relativistic regime of laser-atom interaction are carried out without making the dipole approximation in order to take into account the Lorentz force effect in wave packet evolution. The transition from polychotomy to the magnetic-field-induced drifting at very high laser intensities is documented which results in the electron delocalization. As a consequence, the intensity dependence of the atomic survival probability as well as that of the efficiency of high-order harmonic production possess a wide "stabilization window" followed by an abrupt drop because of the magnetic field effect.

  4. Quantifying atmospheric stability conditions at a swine facility and an adjacent corn field in Iowa, USA

    NASA Astrophysics Data System (ADS)

    Hernandez-Ramirez, Guillermo; Sauer, Thomas J.; Hatfield, Jerry L.; Prueger, John H.

    2011-10-01

    Atmospheric stability conditions in the atmospheric surface layer control the distance and direction of transport of air contaminants. Near confined animal facilities, transport processes significantly impact air quality as these sites typically act as point sources of dust and odor constituents; however, little information is available on atmospheric stability effects. This study was conducted to assess year-round temporal patterns of atmospheric stability at a swine production facility and an adjacent commercial corn field (CF) in the US Midwest. Two towers of 10 and 20 m heights for continuous micrometeorological measurements were deployed within a CF and between swine buildings (BSB), respectively. Each tower was equipped with an eddy-covariance system at 6.8 m height, infrared thermometers, and six cup anemometers with thermocouples installed at log-distributed heights. Overall results from gradient Richardson number and Monin-Obukhov (z/L) calculations revealed a greater prevalence of unstable conditions for BSB compared with CF. During the 13-month measurement period, unstable cases (z/L ranging from -1 to -0.01) occurred 1.4 times more frequently for BSB than CF (52 vs. 39%, respectively), while stable cases (0.011-0.2) were 1.8 times more frequent for CF than BSB (24 vs. 14%, respectively). These patterns were partly associated with higher surface radiometric temperatures for BSB. Relatively greater diurnal heat capture at BSB (ground and roof surfaces) and a cooling effect in CF through active canopy transpiration during the daytime explain these z/L and radiometric temperature results. Prevalent diurnal atmospheric instability at BSB suggests enhanced ascendant vertical transport of air pollutants perhaps causing greater mixing/dilution with the atmospheric layer and/or their facilitated transport over greater distances when sorbed onto particles. This enhanced understanding of the spatio-temporal patterns of atmospheric stability can be subsequently

  5. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  6. Automated identification of stream-channel geomorphic features from high‑resolution digital elevation models in West Tennessee watersheds

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Diehl, Timothy H.

    2017-01-17

    High-resolution digital elevation models (DEMs) derived from light detection and ranging (lidar) enable investigations of stream-channel geomorphology with much greater precision than previously possible. The U.S. Geological Survey has developed the DEM Geomorphology Toolbox, containing seven tools to automate the identification of sites of geomorphic instability that may represent sediment sources and sinks in stream-channel networks. These tools can be used to modify input DEMs on the basis of known locations of stormwater infrastructure, derive flow networks at user-specified resolutions, and identify possible sites of geomorphic instability including steep banks, abrupt changes in channel slope, or areas of rough terrain. Field verification of tool outputs identified several tool limitations but also demonstrated their overall usefulness in highlighting likely sediment sources and sinks within channel networks. In particular, spatial clusters of outputs from multiple tools can be used to prioritize field efforts to assess and restore eroding stream reaches.

  7. Influence of magnetic field and mechanical scratch on the recorded magnetization stability of longitudinal and perpendicular recording media

    NASA Astrophysics Data System (ADS)

    Nagano, Katsumasa; Tobari, Kousuke; Futamoto, Masaaki

    The influences of magnetic field and mechanical scratch on the magnetization structural stability are investigated for longitudinal (LMR) and perpendicular (PMR) recording media by using a magnetic force microscope. For both media, the magnetization structure started to change at lower magnetic fields in the areas near and below mechanical scratches when compared with normal areas with no scratches. For PMR samples, the magnetization stability of recorded bits near and below mechanical scratches is enhanced with increasing the area density. The recorded magnetization stability decreases near and below mechanical scratches depending delicately on the depth and the width for both types of media.

  8. Geomorphic responses as indicators of paleoclimate and climatic change

    SciTech Connect

    1998-07-01

    There is little doubt that climate is an important parameter affecting the shape of the Earth`s surface. However absolute observance to the principles of climatic geomorphology leads us away from the study of processes because the analyses passes directly from climate to landscape form. An alternative approach is to examine the effects of climate change on the nature of the processes operating in the near surface environment. Utilizing this methodology, the climate-process relations take on greater significance, and lead to an understanding of the response(s) of geomorphic systems to shifts in climatic regime. Given that geomorphic systems respond to changes in climate regime, it should also be true that delineation of the changes in the types, rates, and magnitudes of geomorphic processes will provide insights into the timing and nature of past shifts in climate, particularly effective moisture. It is this approach that has been utilized herein. Specifically, geomorphic responses in eolian, lacustrine, and fluvial systems that have resulted in erosional and depositional events have been documented for several sites in Nevada (Figure 1), and used to infer the timing and character of climatic change in the Basin and Range Physiographic Province. The results and conclusions of the specific studies are provided.

  9. EFFECTS OF GEOMORPHIC PROCESSES AND HYDROLOGIC REGIMES ON RIPARIAN VEGETATION

    EPA Science Inventory

    In this chapter, the relationships among riparian vegetation and geomorphic and hydrologic processes in central Great Basin watersheds are evaluated over a range of scales. These relationships are examined through a series of case studies that have been conducted by the Great Ba...

  10. GEOMORPHIC THRESHOLDS AND CHANNEL MORPHOLOGY IN LARGE RIVERS

    EPA Science Inventory

    Systematic changes in channel morphology occur as channel gradient, streamflow, and sediment character change and interact. Geomorphic thresholds of various kinds are useful metrics to define these changes along the river network, as they are based on in-channel processes that d...

  11. Geomorphic Consequences of Volcanic Eruptions in Alaska: A Review

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite

  12. Assessing geomorphic sensitivity in relation to river capacity for adjustment

    NASA Astrophysics Data System (ADS)

    Reid, H. E.; Brierley, G. J.

    2015-12-01

    River sensitivity describes the nature and rate of channel adjustments. An approach to analysis of geomorphic river sensitivity outlined in this paper relates potential sensitivity based on the expected capacity of adjustment for a river type to the recent history of channel adjustment. This approach was trialled to assess low, moderate and high geomorphic sensitivity for four different types of river (10 reaches in total) along the Lower Tongariro River, North Island, New Zealand. Building upon the River Styles framework, river types were differentiated based upon valley setting (width and confinement), channel planform, geomorphic unit assemblages and bed material size. From this, the behavioural regime and potential for adjustment (type and extent) were determined. Historical maps and aerial photographs were geo-rectified and the channel planform digitised to assess channel adjustments for each reach from 1928 to 2007. Floodplain width controlled by terraces, exerted a strong influence upon reach scale sensitivity for the partly-confined, wandering, cobble-bed river. Although forced boundaries occur infrequently, the width of the active channel zone is constrained. An unconfined braided river reach directly downstream of the terrace-confined section was the most geomorphically sensitive reach. The channel in this reach adjusted recurrently to sediment inputs that were flushed through more confined, better connected upstream reaches. A meandering, sand-bed river in downstream reaches has exhibited negligible rates of channel migration. However, channel narrowing in this reach and the associated delta indicate that the system is approaching a threshold condition, beyond which channel avulsion is likely to occur. As this would trigger more rapid migration, this reach is considered to be more geomorphically sensitive than analysis of its low migration rate alone would indicate. This demonstrates how sensitivity is fashioned both by the behavioural regime of a reach

  13. Laboratory and field experiments on the stability of wind driven water surfaces.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Melville, W. Kendall

    2000-11-01

    We present the results of laboratory experiments on the stability of a wind-driven water surface to surface waves and Langmuir circulations. Using modern quantitative flow visualization techniques, we show that wave generation is accompanied by other phenomena, including Langmuir circulations which grow, dislocate, and provide a transition to turbulence of the surface flow. The length and velocity scales associated with transition are comparable to those of the surface wave field, providing clear evidence of the influence of Langmuir circulations on the structure of the growing wave field. Direct measurements of the modulated wave variables are qualitatively consistent with wave action conservation, but quantitative comparisons remain inconclusive. Field observations show a similar transition of the surface flow occurring over comparable length and time scales to those in the laboratory. We conclude that the observed transition rapidly disrupts the surface skin layer and efficiently mixes momentum and heat from the surface to depth. We discuss the results in the context of the available theoretical models for the interfacial fluxes of mass (gas), heat and momentum.

  14. Detailed balance condition and ultraviolet stability of scalar field in Horava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Borzou, Ahmad; Lin, Kai; Wang, Anzhong

    2011-05-01

    Detailed balance and projectability conditions are two main assumptions when Horava recently formulated his theory of quantum gravity - the Horava-Lifshitz (HL) theory. While the latter represents an important ingredient, the former often believed needs to be abandoned, in order to obtain an ultraviolet stable scalar field, among other things. In this paper, because of several attractive features of this condition, we revisit it, and show that the scalar field can be stabilized, if the detailed balance condition is allowed to be softly broken. Although this is done explicitly in the non-relativistic general covariant setup of Horava-Melby-Thompson with an arbitrary coupling constant λ, generalized lately by da Silva, it is also true in other versions of the HL theory. With the detailed balance condition softly breaking, the number of independent coupling constants can be still significantly reduced. It is remarkable to note that, unlike other setups, in this da Silva generalization, there exists a master equation for the linear perturbations of the scalar field in the flat Friedmann-Robertson-Walker background.

  15. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates

    NASA Astrophysics Data System (ADS)

    Liarte, Danilo B.; Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P.

    2017-03-01

    Theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field {H}{sh}, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for {H}{sh}, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.

  16. Massive vector field perturbations in the Schwarzschild background: Stability and quasinormal spectrum

    SciTech Connect

    Konoplya, R. A.

    2006-01-15

    We consider the perturbations of the massive vector field around Schwarzschild, Schwarzschild-de Sitter, and Schwarzschild-anti-de Sitter black holes. Equations for a spherically symmetric massive vector perturbation can be reduced to a single wavelike equation. We have proved the stability against these perturbations and investigated the quasinormal spectrum. The quasinormal behavior for Schwarzschild black hole is quite unexpected: the fundamental mode and higher overtones show totally different dependence on the mass of the field m: as m is increasing, the damping rate of the fundamental mode is decreasing, what results in appearing of the infinitely long living modes, while, on the contrary, damping rate of all higher overtones are increasing, and their real oscillation frequencies gradually go to tiny values. Thereby, for all higher overtones, almost nonoscillatory, damping modes can exist. In the limit of asymptotically high damping, Re{omega} goes to ln3/(8{pi}M), while imaginary part shows equidistant behavior with spacing Im{omega}{sub n+1}-Im{omega}{sub n}=1/4M. In addition, we have found quasinormal spectrum of massive vector field for Schwarzschild-anti-de Sitter black hole.

  17. Generic super-exponential stability of elliptic equilibrium positions for symplectic vector fields

    NASA Astrophysics Data System (ADS)

    Niederman, Laurent

    2013-11-01

    In this article, we consider linearly stable elliptic fixed points (equilibrium) for a symplectic vector field and prove generic results of super-exponential stability for nearby solutions. We will focus on the neighborhood of elliptic fixed points but the case of linearly stable isotropic reducible invariant tori in a Hamiltonian system should be similar. More specifically, Morbidelli and Giorgilli have proved a result of stability over superexponentially long times if one considers an analytic Lagrangian torus, invariant for an analytic Hamiltonian system, with a diophantine translation vector which admits a sign-definite torsion. Then, the solutions of the system move very little over times which are super-exponentially long with respect to the inverse of the distance to the invariant torus. The proof proceeds in two steps: first one constructs a high-order Birkhoff normal form, then one applies the Nekhoroshev theory. Bounemoura has shown that the second step of this construction remains valid if the Birkhoff normal form linked to the invariant torus or the elliptic fixed point belongs to a generic set among the formal series. This is not sufficient to prove this kind of super-exponential stability results in a general setting. We should also establish that the most strongly non resonant elliptic fixed point or invariant torus in a Hamiltonian system admits Birkhoff normal forms fitted for the application of the Nekhoroshev theory. Actually, the set introduced by Bounemoura is already very large but not big enough to ensure that a typical Birkhoff normal form falls into this class. We show here that this property is satisfied generically in the sense of the measure (prevalence) through infinite-dimensional probe spaces (that is, an infinite number of parameters chosen at random) with methods similar to those developed in a paper of Gorodetski, Kaloshin and Hunt in another setting.

  18. Geomorphic responses of lower Bega River to catchment disturbance, 1851?1926

    NASA Astrophysics Data System (ADS)

    Brooks, Andrew P.; Brierley, Gary J.

    1997-03-01

    Prior to significant European settlement of the area in the 1850s, lower Bega River on the South Coast of NSW had a narrow, relatively deep channel lined by river oaks. The river had a suspended or mixed load, with platypus habitat available in pools. Banks were fine-grained and relatively cohesive (silts and clays), as was the floodplain, which graded to a series of valley-marginal swamps and lakes. Extensive evidence from maps and portion plans, archival photographs, bridge surveys, and anecdotal sources, complemented by field analysis of floodplain sedimentology (including radiocarbon-dated samples) and vegetation remnants are used to document the dramatic metamorphosis in the character and behaviour of lower Bega River in the latter half of the nineteenth century. By 1926 the channel had widened extensively (up to 340%) and shallowed in association with bed aggradation by coarse sandy bedload. Floodplain accretion was dominated by fine to medium sands, with some coarse sand splays. In contrast with most other studies of channel metamorphosis in Australia, which have emphasised river responses to climatically-induced flood histories, relegating human impacts to a secondary role, the profound changes to the geomorphic condition and behaviour of Bega River reflect indirect human disturbance of Bega catchment, and direct but non point source disturbance to the channel. Extensive clearance of catchment, floodplain, and channel-marginal vegetation occurred within a few decades of European settlement, altering the hydrologic and sediment regime of the river, and transforming the geomorphic effectiveness of floods. Although this study is situated in a relatively sensitive, granitic catchment, catchment clearance is likely to have induced equally significant responses in many other river systems in eastern Australia. In some instances the diffuse aspects of human disturbance on landscapes induce impacts on river character that are just as profound as major direct

  19. A comparison of post-wildfire geomorphic response over annual and millennial time scales

    NASA Astrophysics Data System (ADS)

    Schaffrath, K. R.; Belmont, P.

    2014-12-01

    Wildfires have profound, highly variable impacts on erosion, sediment transport, and stream channel morphology. Climate change and fuel management actions have altered the current fire regime relative to the historic fire regime. Many researchers have quantified post-fire geomorphic response immediately following events and also over millennial timescales using geochronologic techniques and field study. While these studies have informed our understanding of the post-fire geomorphic response during the dry and wet periods of the Holocene, there are still some fundamental questions about long-term landscape erosion that we have yet to answer, particularly in fire-dominated landscapes. The Hayman fire burned 55,700 hectares in Pikes Peak National Forest, Colorado in 2002. Hillslope- and small watershed-scale sediment yield data were previously collected for 5 to 7 years in areas burned by high severity immediately after the fire. Plot data from 33 hillslope-scale plots indicate an average of 0.8 mm per year of erosion. Wildfires are common to this area and there is observable evidence of extreme geomorphic response following historic fires, similar to what has been monitored after the Hayman fire. In this study, we collected samples of channel alluvium deposited since the Hayman fire and sediment from alluvial fans thought to have been deposited in association with wildfires that may have occurred pre-European settlement. Samples were used to measure in-situ 10Be to estimate millennial-scale, catchment-averaged denudation rates that were compared to the erosion rates measured from the hillslope and watershed-scale plots to determine the proportion of erosion that is generated post-wildfire relative to undisturbed periods. Material from older alluvial fans was collected to try to evaluate whether denudation rates have changed and the ages of the older alluvial fans were determined using radiocarbon or optically-stimulated luminescence.

  20. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.

    2015-12-01

    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  1. Immobilization of magnetic modified Flavobacterium ATCC 27551 using magnetic field and evaluation of the enzyme stability of immobilized bacteria.

    PubMed

    Robatjazi, Seyed Mortaza; Shojaosadati, Seyed Abbas; Khalilzadeh, Rassoul; Farahani, Ebrahim Vasheghani; Balochi, Nooshin

    2012-01-01

    The magnetic modified Flavobacterium sp. was prepared by covalently binding carboxylate-modified magnetic nanoparticles, and also, ionic adsorption of magnetic Fe(3)O(4) nanoparticles on the cell surface. The magnetic modified bacteria were immobilized by both internal and external magnetic fields. The pH stability and inherent resistance of the enzyme activity of the immobilized bacteria under acidic and alkaline conditions were increased. Immobilization of the magnetic modified bacteria using an external magnetic field improved the enzyme thermal stability. The results revealed that immobilization of the magnetic modified bacteria by an external magnetic field keeps 50% of the enzyme activity after 23.4, 16.6 and 6 h of incubation at 55 °C for the covalently binding of magnetic nanoparticles, the ionic adsorption of magnetic nanoparticles and the free cells, respectively. The results demonstrated the negative effect of various magnetic beads on the enzyme thermal stability of immobilized magnetic modified bacteria using an internal magnetic field.

  2. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  3. Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring

    PubMed Central

    Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie

    2014-01-01

    A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline. PMID:25025089

  4. Chemical stabilization of subgrade soil for the strategic expeditionary landing field

    NASA Astrophysics Data System (ADS)

    Conaway, M. H.

    1983-06-01

    The Strategic Expeditionary Landing Field (SELF) is a military expeditionary-type airfield with an aluminum matted surface that is designed for sustained tactical and cargo airlift operations in an amphibious objective area. Because of the operational traffic parameters such as loads of the various types of aircraft, tire pressures and volume of traffic, a base layer must be constructed over subgrade soil support conditions which may be only marginal. The base layer could be constructed with conventional soil construction techniques (compaction) and yield the required strength. It would be difficult, however, to maintain this strength for the required one-year service life under many climatic conditions due to the degrading effects of water on the support capacity of many soils. Chemical soil stabilization with lime, portland cement and asphalt stabilizing agents could be used to treat the soil. These additives, when properly mixed with certain types of soils, initiate reactions which will increase soil support strength and enhance durability (resistance to the degrading effects of water). Technically, this procedure is quite viable but logistically, it may not be feasible.

  5. Feedback stabilization of resistive wall modes in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Cecconello, M.; Drake, J. R.; Manduchi, G.; Marchiori, G.

    2005-09-01

    An array of saddle coils having Nc=16 equally spaced positions along the toroidal direction has been installed for feedback control of resistive wall modes (RWMs) on the EXTRAP T2R reversed-field pinch [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]. Using feedback, multiple nonresonant RWMs are simultaneously suppressed for three to four wall times. Feedback stabilization of RWMs results in a significant prolongation of the discharge duration. This is linked to a better sustainment of the plasma and tearing mode toroidal rotation with feedback. Due to the limited number of coils in the toroidal direction, pairs of modes with toroidal mode numbers n ,n' that fulfill the condition ∣n-n'∣=Nc are coupled by the feedback action from the discrete coil array. With only one unstable mode in a pair of coupled modes, the suppression of the unstable mode is successful. If two modes are unstable in a coupled pair, two possibilities exist: partial suppression of both modes or, alternatively, complete stabilization of one target mode while the other is left unstable.

  6. Ant colony optimization analysis on overall stability of high arch dam basis of field monitoring.

    PubMed

    Lin, Peng; Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie

    2014-01-01

    A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline.

  7. The field stabilization and adaptive optics mirrors for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Vernet, Elise; Jochum, Lieselotte; La Penna, Paolo; Hubin, Norbert; Muradore, Riccardo; Casalta, Joan Manel; Kjelberg, Ivar; Sinquin, Jean-Christophe; Locre, Frédéric; Morin, Pierre; Cousty, Raphaël; Lurçon, Jean-Marie; Roland, Jean-Jacques; Crepy, Bruno; Gabriel, Eric; Biasi, Roberto; Andrighettoni, Mario; Angerer, Gerald; Gallieni, Daniele; Mantegazza, Marco; Tintori, Matteo; Molinari, Emilio; Tresoldi, Daniela; Toso, Giorgio; Spanó, Paolo; Riva, Marco; Crimi, Giuseppe; Riccardi, Armando; Marque, Gilles; Carel, Jean-Louis; Ruch, Eric

    2008-07-01

    A 42 meters telescope does require adaptive optics to provide few milli arcseconds resolution images. In the current design of the E-ELT, M4 provides adaptive correction while M5 is the field stabilization mirror. Both mirrors have an essential role in the E-ELT telescope strategy since they do not only correct for atmospheric turbulence but have also to cancel part of telescope wind shaking and static aberrations. Both mirrors specifications have been defined to avoid requesting over constrained requirements in term of stroke, speed and guide stars magnitude. Technical specifications and technological issues are discussed in this article. Critical aspects and roadmap to assess the feasibility of such mirrors are outlined.

  8. Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null

    SciTech Connect

    Kim, J.S.

    1984-01-01

    Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.

  9. Radiation hardening of MOS devices by boron. [for stabilizing gate threshold potential of field effect device

    NASA Technical Reports Server (NTRS)

    Danchenko, V. (Inventor)

    1974-01-01

    A technique is described for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device with a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. The boron is introduced within a layer of the oxide of about 100 A-300 A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 to the 18th power atoms/cu cm. The technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations.

  10. Transverse oscillations and stability of prominences in a magnetic field dip

    NASA Astrophysics Data System (ADS)

    Kolotkov, D. Y.; Nisticò, G.; Nakariakov, V. M.

    2016-05-01

    Aims: We developed an analytical model of the global transverse oscillations and mechanical stability of a quiescent prominence in the magnetised environment with a magnetic field dip that accounts for the mirror current effect. Methods: The model is based on the interaction of line currents through the Lorentz force. Within this concept the prominence is treated as a straight current-carrying wire, and the magnetic dip is provided by two photospheric current sources. Results: Properties of both vertical and horizontal oscillations are determined by the value of the prominence current, its density and height above the photosphere, and the parameters of the magnetic dip. The prominence can be stable in both horizontal and vertical directions simultaneously when the prominence current dominates in the system and its height is less than the half-distance between the photospheric sources.

  11. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    SciTech Connect

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken

    2006-08-03

    The {approx}80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching {approx}800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to {approx}20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km{sup 3}, scoria cone--0.02 km{sup 3}, and lavas--0.03 km{sup 3}. Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of {approx}21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of

  12. Fast ion confinement and stability in a neutral beam injected reversed field pincha)

    NASA Astrophysics Data System (ADS)

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A.; Lin, L.; Liu, D.; Fiksel, G.; Sakakita, H.; Spong, D. A.; Titus, J.

    2013-05-01

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3-5% D2) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ˜50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  13. Fast ion confinement and stability in a neutral beam injected reversed field pinch

    SciTech Connect

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A.; Lin, L.; Liu, D.; and others

    2013-05-15

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3–5% D{sub 2}) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ∼50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  14. Anomalies in the applied magnetic fields in DIII-D and their implications for the understanding of stability experiments

    SciTech Connect

    Luxon, J. L.; Schaffer, M. J.; Jackson, G. L.; Leuer, J. A.; Nagy, A.; Scoville, J. T.; Strait, E. J.

    2003-12-01

    Small non-axisymmetric magnetic fields are known to cause serious loss of stability in tokamaks leading to loss of confinement and abrupt termination of plasma current (disruptions). The best known examples are the locked mode and the resistive wall mode. Understanding of the underlying field anomalies (departures in the hardware-related fields from ideal toroidal and poloidal fields on a single axis) and the interaction of the plasma with them is crucial to tokamak development. Results of both locked mode experiments and resistive wall mode experiments done in DIII-D tokamak plasmas have been interpreted to indicate the presence of a significant anomalous field. New measurements of the magnetic field anomalies of the hardware systems have been made on DIII-D. The measured field anomalies due to the plasma shaping coils in DIII-D are smaller than previously reported. Additional evaluations of systematic errors have been made. New measurements of the anomalous fields of the ohmic heating and toroidal coils have been added. Such detailed in situ measurements of the fields of a tokamak are unique. The anomalous fields from all of the coils are one third of the values indicated from the stability experiments. These results indicate limitations in the understanding of the interaction of the plasma with the external field. They indicate that it may not be possible to deduce the anomalous fields in a tokamak from plasma experiments and that we may not have the basis needed to project the error field requirements of future tokamaks.

  15. Geomorphic Characterization of the FortyMile Wash Alluvial Fan, Nye County, Nevada, In Support of the Yucca Mountain Project

    SciTech Connect

    Cline; De Long; Pelletier; Harrington

    2005-09-06

    In the event of an unlikely volcanic eruption through the proposed high-level radioactive waste repository at Yucca Mountain, contaminated ash would be deposited in portions of the Fortymile Wash drainage basin and would subsequently be redistributed to the Fortymile Wash alluvial fan by fluvial processes. As part of an effort to quantify the transport of contaminated ash throughout the fluvial system, characterization of the Fortymile Wash alluvial fan is required, especially the spatial distribution of fluvial activity over time scales of repository operation, and the rates of radionuclide migration into different soils on the fan. The Fortymile Wash alluvial fan consists of extremely low relief terraces as old as 70 ka. By conducting soils-geomorphic mapping and correlating relative surface ages with available geochronology from the Fortymile Wash fan and adjacent piedmonts, we identified 4 distinct surfaces on the fan. Surface ages are used to predict the relative stability of different areas of the fan to fluvial activity. Pleistocene-aged surfaces are assumed to be fluvially inactive over the 10 kyr time scale, for example. Our mapping and correlation provides a map of the depozone for contaminated ash that takes into account long-term channel migration the time scales of repository operation, and it provides a geomorphic framework for predicting radionuclide dispersion rates into different soils across the fan. The standard model for vertical migration of radionuclides in soil is diffusion; therefore we used diffusion profiles derived from {sup 137}Cs fallout to determine infiltration rates on the various geomorphic surfaces. The results show a strong inverse correlation of the geomorphic surface age and diffusivity values inferred from the {sup 137}Cs profiles collected on the different surfaces of the fan.

  16. Geomorphic characterization of the Fortymile Wash alluvial fan, Nye County, Nevada, in support of the Yucca Mountain Project

    NASA Astrophysics Data System (ADS)

    Cline, M.; Delong, S.; Pelletier, J.

    2005-12-01

    In the event of an unlikely volcanic eruption through the proposed high-level radioactive waste repository at Yucca Mountain, contaminated ash may be deposited in portions of the Fortymile Wash drainage basin and subsequently redistributed to the Fortymile Wash alluvial fan by fluvial processes. Characterization of the Fortymile Wash alluvial fan has been undertaken as part of an effort to quantify the transport of contaminated ash throughout the fluvial system, especially to define the spatial distribution of fluvial activity over time scales of repository operation, and the rates of radionuclide migration into different soils on the fan. The Fortymile Wash alluvial fan consists of extremely low relief terraces as old as 70 ka. By conducting soils-geomorphic mapping and correlating relative surface ages with available geochronology from the Fortymile Wash fan and adjacent piedmonts, we identified 4 distinct surfaces on the fan. Surface ages are used to predict the relative stability of different areas of the fan to fluvial activity. Pleistocene-aged surfaces are assumed to be fluvially inactive over the 10 kyr time scale, for example. Our mapping and correlation provides a map of the depozone for contaminated ash that takes into account long-term channel migration for the time scales of repository operation, and it provides a geomorphic framework for predicting radionuclide dispersion rates into different soils across the fan. The standard model for vertical migration of radionuclides in soil is diffusion; therefore we used diffusion profiles derived from 137Cs fallout to determine radionuclide infiltration rates on the various geomorphic surfaces. The results show a strong inverse correlation of the geomorphic surface age and diffusivity values inferred from the 137Cs profiles collected on the different surfaces of the fan.

  17. Gravitational forces in the Randall-Sundrum model with a scalar stabilizing field

    NASA Astrophysics Data System (ADS)

    Arnowitt, R.; Dent, J.

    2007-03-01

    We consider the problem of gravitational forces between point particles on the branes in a five-dimensional (5D) Randall-Sundrum model with two branes (at y1 and y2) and S1/Z2 symmetry of the fifth dimension. The matter on the branes is viewed as a perturbation on the vacuum metric and treated to linear order. In a previous work [R. Arnowitt and J. Dent, Phys. Rev. D 71, 124024 (2005).PRVDAQ0556-282110.1103/PhysRevD.71.124024] it was seen that the trace of the transverse part of the 4D metric on the TeV brane, fT(y2), contributed a Newtonian potential enhanced by e2βy2≅1032 and thus produced gross disagreement with the experiment. In this work we include a scalar stabilizing field ϕ and solve the coupled Einstein and scalar equations to leading order for the case where ϕ02/M53 is small and the vacuum field ϕ0(y) is a decreasing function of y. fT then grows a mass factor e-μr where, however, μ is suppressed from its natural value, O(MPl), by an exponential factor e-(1+λb)βy2, λb>0. Thus agreement with the experiment depends on the interplay between the enhancing and decaying exponentials. Current data eliminates a significant part of the parameter space, and the Randall-Sundrum model will be sensitive to any improvements on the tests of the Newtonian force law at smaller distances. An example of coupling of the ϕ field to the Higgs field is examined and found to generally produce very small effects.

  18. Landscape-scale geomorphic change detection: Quantifying spatially variable uncertainty and circumventing legacy data issues

    NASA Astrophysics Data System (ADS)

    Schaffrath, Keelin R.; Belmont, Patrick; Wheaton, Joseph M.

    2015-12-01

    Repeat surveys of high-resolution topographic data enable analysis of geomorphic change through digital elevation model (DEM) differencing. Such analyses are becoming increasingly common. However, techniques for developing robust estimates of spatially variable uncertainty in DEM differencing estimates have been slow to develop and are underutilized. Further, issues often arise when comparing recent to older data sets, because of differences in data quality. Airborne lidar data were collected in 2005 and 2012 in Blue Earth County, Minnesota (1980 km2) and the occurrence of an extreme flood in 2010 produced geomorphic change clearly observed in the field, providing an opportunity to estimate landscape-scale geomorphic change. Initial assessments of the lidar-derived digital elevation models (DEMs) indicated both a vertical bias attributed to different geoid models and localized offset strips in the DEM of difference from poor coregistration of the flightlines. We applied corrections for both issues and describe the methods we used to discern those issues and correct them. We then compare different threshold models to quantify uncertainty. Poor quantification of uncertainty can erroneously over- or underestimate real change. We show that application of a uniform threshold, often called a minimum level of detection, overestimates change in areas where change would not be expected, such as stable hillslopes, and underestimates change in areas where it is expected and has been observed, such as channel banks. We describe a spatially variable DEM error model that combines the influence of slope, point density, and vegetation in a fuzzy inference system. Vegetation is represented with a metric referred to as the cloud point density ratio that assesses the complete point cloud to describe the density of above ground features that may hinder bare-earth returns. We compare the significance of spatially variable versus spatially uniform DEM errors on change detection by

  19. Improving dust emission characterization in dust models using dynamic high-resolution geomorphic erodibility map

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z.; Kocurek, G.

    2013-12-01

    Dust is known to affect the earth radiation budget, biogeochemical cycle, precipitation, human health and visibility. Despite the increased research effort, dust emission modeling remains challenging because dust emission is affected by complex geomorphological processes. Existing dust models overestimate dust emission and rely on tuning and a static erodibility factor in order to make simulated results comparable to remote sensing and ground-based observations. In most of current models, dust emission is expressed in terms of threshold friction speed, which ultimately depends mainly upon the percentage clay content and soil moisture. Unfortunately, due to the unavailability of accurate and high resolution input data of the clay content and soil moisture, estimated threshold friction speed commonly does not represent the variability in field condition. In this work, we attempt to improve dust emission characterization by developing a high resolution geomorphic map of the Middle East and North Africa (MENA), which is responsible for more than 50% of global dust emission. We develop this geomorphic map by visually examining high resolution satellite images obtained from Google Earth Pro and ESRI base map. Albeit subjective, our technique is more reliable compared to automatic image classification technique because we incorporate knowledge of geological/geographical setting in identifying dust sources. We hypothesize that the erodibility is unique for different geomorphic landforms and that it can be quantified by the correlation between observed wind speed and satellite retrieved aerosol optical depth (AOD). We classify the study area into several key geomorphological categories with respect to their dust emission potential. Then we quantify their dust emission potential using the correlation between observed wind speed and satellite retrieved AOD. The dynamic, high-resolution geomorphic erodibility map thus prepared will help to reduce the uncertainty in current

  20. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    SciTech Connect

    Loomis, G.G.; Farnsworth, R.K.

    1997-12-31

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m{sup 3} of transuranic (TRU) waste is co-mingled with over 170,000 m{sup 3} of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste.

  1. On the stability conditions for theories of modified gravity in the presence of matter fields

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios

    2017-03-01

    We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.

  2. Stability of vortex rotation around a mesoscopic square superconducting ring under radially injected current and an external magnetic field

    NASA Astrophysics Data System (ADS)

    Xue, Cun; He, An; Li, Chun; Zhou, Youhe

    2017-04-01

    We present the stability of vortex rotation around a mesoscopic square superconducting ring under radially injected currents and external magnetic fields based on time-dependent Ginzburg–Landau equations. We demonstrate that the vortex rotation around a square ring can lead to voltage oscillations as the vortices periodically pass by the corners. The amplitude of the time evolution of the voltage oscillations as a function of external current is studied at different magnetic fields, and the effect of thermal noise on the voltage oscillations is discussed. The rotation frequency depends linearly on external current at lower magnetic fields, whereas it is a nonlinear function of external current at higher magnetic fields. The stable vortex rotation appears in a certain range of injected currents under magnetic fields, but it is unstable at high injected currents. It is found that such a transition from stability to instability can lead to an abrupt jump in current–voltage characteristics.

  3. Stability of vortex rotation around a mesoscopic square superconducting ring under radially injected current and an external magnetic field.

    PubMed

    Xue, Cun; He, An; Li, Chun; Zhou, Youhe

    2017-04-05

    We present the stability of vortex rotation around a mesoscopic square superconducting ring under radially injected currents and external magnetic fields based on time-dependent Ginzburg-Landau equations. We demonstrate that the vortex rotation around a square ring can lead to voltage oscillations as the vortices periodically pass by the corners. The amplitude of the time evolution of the voltage oscillations as a function of external current is studied at different magnetic fields, and the effect of thermal noise on the voltage oscillations is discussed. The rotation frequency depends linearly on external current at lower magnetic fields, whereas it is a nonlinear function of external current at higher magnetic fields. The stable vortex rotation appears in a certain range of injected currents under magnetic fields, but it is unstable at high injected currents. It is found that such a transition from stability to instability can lead to an abrupt jump in current-voltage characteristics.

  4. Cause and effect in geomorphic systems: Complex systems perspectives

    NASA Astrophysics Data System (ADS)

    Murray, A. Brad; Coco, Giovanni; Goldstein, Evan B.

    2014-06-01

    Applying complex systems perspectives to geomorphic systems leads to the conclusion that cause and effect in landscape systems does not always apply in the ways that common sense and traditional assumptions would suggest. Geomorphologists have long thought that events must have causes and that landscape structures exist where they do for particular reasons. In addition, since the rise of process geomorphology, geomorphologists have often assumed that small-scale processes directly cause large-scale, long-term landscape evolution; that for understanding or predicting the large-scale behaviors, the details of the small-scale processes matter; and that large-scale processes do not directly cause behaviors at much smaller scales. However, in self-organized systems, autogenic events can arise from feedbacks internal to the system, without any variation in the forcing to cause the event. Similarly, structures within self-organized patterns in the landscape can emerge spontaneously, even though there may not be any pre-existing heterogeneity to cause the localization of the structure. In addition, cause and effect can operate from large scales to small ones as well as the reverse, and interactions that emerge at larger scales can determine the characteristics of the landscape, independent of the details of the small-scale processes. To exemplify these points, we will use research on 'sorted bedforms', striking shallow seabed grain-sized sorted patterns on scales ranging from tens of meters to kilometers. The stripes of coarse sand or gravel that are segregated from intervening fine-sand domains were originally ascribed to hypothesized, spatially focused currents. However, more recent modeling and field observations point to a self-organization mechanism in which the locations of the features do not correspond with any heterogeneity in the forcing or antecedent conditions. Very recent modeling work shows that regionally the pattern can spontaneously break down and reform

  5. Geomorphic changes in Ras Al-Subiyah area, Kuwait

    NASA Astrophysics Data System (ADS)

    Al Hurban, A.; El-Gamily, H.; El-Sammak, A.

    2008-06-01

    The Ras Al-Subiyah area is considered one of the most promising areas in Kuwait for future development. This development will include a new town called Subiyah and its associated infrastructure. This area is also being considered as the location for connection between Boubyan Island, which is now undergoing major development and the Kuwait mainland. The present study investigates the geomorphology of the Ras Al-Sabiyah area in the northern sector of Kuwait. The study area is generally flat, and it is located west of the Jal Az-Zor escarpment. It is bordered on the east by the Khor Al-Sabiyah tidal channel and on the south by Kuwait Bay. The area receives sediments from several sources; currently the most important are aeolian sediments and the deposition of mud delivered through the Khor Al-Sabiyah from the Iraqi marshes. The study area has been subjected to severe environmental changes due to the Gulf wars and the drainage of Iraqi marshes and the associated artificial changes in fluvial system. Twenty-two surface sediments were collected from the Ras Al-Subiyah area. Samples were collected to include the main geomorphologic characteristic features of the study area. Field observations and remote sensing images from 1990 and 2001 were used to produce an updated geomorphologic map for the Ras Al-Subiyah and a map showing geomorphic changes between 1990 and 2001. Grain size of the surface sediment ranges from gravel to medium sand. In general, grain size statistical analysis indicates that most of the areas are composed of two or more classes of sands transported and deposited from different sources including aeolian, sabkhas, river and the bays. The variability in the grain size statistical parameters may be attributed to the complexity of surface morphology as well as the diversity in the type of depositional environment in the Ras Al-Subiyah area. The total area subjected to change during the 12-year period (1990 2001) is about 32 km2 as calculated using GIS

  6. Geomorphic control of radionuclide diffusion in desert soils

    USGS Publications Warehouse

    Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.

    2005-01-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.

  7. Geomorphic processes on the North Slope of Alaska

    NASA Technical Reports Server (NTRS)

    Hall, D. K.

    1979-01-01

    Three physiographic provinces comprise the North Slope of Alaska: the Arctic Mountains, the Arctic Foothills and the Arctic Coastal Plain Provinces. The features and processes in the Arctic Coastal Plain, a zone of continuous permafrost, are stressed in this paper. The evidence for and mechanisms of the geomorphic cycle are discussed starting with frost cracks. Frost cracks may form polygonal ground which leads to low-centered ice wedge polygons in areas having ice-rich permafrost. As the low-centered ice wedge polygons enlarge due to thermal erosion they may evolve into thaw lakes which are largely oriented in a northwest-southeast direction on the Arctic Coastal Plain. Eventual drainage of a deep lake may result in a closed-system pingo. Evidence of the various stages of the geomorphic cycle is ubiquitous on the Alaskan Arctic Coastal Plain and indicates the ice content of the permafrost in some areas.

  8. Preliminary Correlation Map of Geomorphic Surfaces in North-Central Frenchman Flat, Nevada Test Site

    SciTech Connect

    Bechtel Nevada

    2005-08-01

    This correlation map (scale = 1:12,000) presents the results of a mapping initiative that was part of the comprehensive site characterization required to operate the Area 5 Radioactive Waste Management Site, a low-level radioactive waste disposal facility located in northern Frenchman Flat at the Nevada Test Site. Eight primary map units are recognized for Quaternary surfaces: remnants of six alluvial fan or terrace surfaces, one unit that includes colluvial aprons associated with hill slopes, and one unit for anthropogenically disturbed surfaces. This surficial geology map provides fundamental data on natural processes for reconstruction of the Quaternary history of northern Frenchman Flat, which in turn will aid in the understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. The bedrock units identified on this map were derived from previous published mapping efforts and are included for completeness.

  9. Geomorphic Investigation of Bakers Bayou Near Lonoke, Arkansas

    DTIC Science & Technology

    2005-05-01

    However, both of these soils contain a well-developed argillic (t) B horizon (Appendix E). An argillic horizon corresponds to a B horizon with...greater amounts of clay relative to the A or C horizon. The significance of an argillic horizon from a geomorphic perspective is that the clay has been...time has developed an argillic (Bt) horizon. Soil characteristics are an important diagnostic tool to this study. A key question to this study is

  10. Improved Fluvial Geomorphic Interpretation Derived From DEM Differencing

    NASA Astrophysics Data System (ADS)

    Wheaton, J. M.; Brasington, J.; Brewer, P. A.; Darby, S.; Pasternack, G. B.; Sear, D.; Vericat, D.; Williams, R.

    2007-12-01

    Technological advances over the past two decades in remotely-sensed and ground-based topographic surveying technologies have made the rapid acquisition of topographic data in the fluvial environment possible at spatial resolutions and extents previously unimaginable. Consequently, monitoring geomorphic changes and estimating fluvial sediment budgets through comparing repeat topographic surveys (DEM differencing) has now become a tractable, affordable approach for both research purposes and long-term monitoring associated with river restoration. However, meaningful quantitative geomorphic interpretation of repeat topographic surveys has received little attention from either researchers or practitioners. Previous research has shown that quantitative estimates of erosion and deposition from DEM differencing are highly sensitive to DEM uncertainty, with minimum level of detection techniques typically discarding between 40% and 90% of the predicted changes. A series of new methods for segregating reach-scale sediment budgets into their specific process components, while accounting for the influence of DEM uncertainty, were developed and explored to highlight distinctive geomorphic signatures between different styles of change. To illustrate the interpretive power of the techniques in different settings, results are presented from analyses across a range of gravel-bed river types: a) the braided River Feshie, Scotland, UK; b) the formerly gravel-mined, wandering Sulphur Creek, California, USA; c) a heavily regulated reach of the Mokelumne River, California, USA that has been subjected to over 5 years of spawning habitat rehabilitation; and d) a restored meandering channel and floodplain of the Highland Water, New Forest, UK. Despite fundamentally different process suites between the study sites, the budget segregation technique is in each case able to aid in more reliable and meaningful geomorphic interpretations of DEM differences.

  11. Tokamak equilibria and edge stability when non-axisymmetric fields are applied

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Chapman, I. T.; Simpson, J.; Suzuki, Y.

    2015-05-01

    Tokamaks are traditionally viewed as axisymmetric devices. However this is not always true, for example in the presence of saturated instabilities, error fields, or resonant magnetic perturbations (RMPs) applied for edge localized mode (ELM) control. We use the VMEC code (Hirshman and Whitson 1983 Phys. Fluids 26 3553) to calculate three dimensional equilibria by energy minimization for tokamak plasmas. MAST free boundary equilibria have been calculated with profiles for plasma pressure and current derived from two dimensional reconstruction. It is well known that ELMs will need to be controlled in ITER to prevent damage that may limit the lifetime of the machine (Loarte et al 2003 Plasma Phys. Control. Fusion 45 1549). ELM control has been demonstrated on several tokamaks including MAST (Kirk et al 2013 Nucl. Fusion 53 043007). However the application of RMPs causes the plasma to gain a displacement or corrugation (Liu et al 2011 Nucl. Fusion 51 083002). Previous work has shown that the phase and size of these corrugations is in agreement with experiment (Chapman et al 2012 Plasma Phys. Control. Fusion 54 105013). The interaction of these corrugations with the plasma control system (PCS) may cause high heat loads at certain toroidal locations if care is not taken (Chapman et al 2014 Plasma Phys. Control. Fusion 56 075004). VMEC assumes nested flux surfaces but this assumption has been relaxed in other stellarator codes. These codes allow equilibria where magnetic islands and stochastic regions can form. We show some initial results using the HINT2 code (Suzuki et al 2006 Nucl. Fusion 46 L19). The Mercier stability of VMEC equilibria with RMPs applied is calculated. The geodesic curvature contribution can be strongly influenced by helical Pfirsch-Schlüter currents driven by the applied RMPs. ELM mitigation is not fully understood but one of the factors that influences peeling-ballooning stability, which is linked to ELMs, is a three dimensional corrugation of the

  12. Observations of Radiation Divergence and Stability Driven Slope Flows during the Field Experiment KASCADE

    NASA Astrophysics Data System (ADS)

    Duine, Gert-Jan; Durand, Pierre; Hedde, Thierry; Roubin, Pierre; Augustin, Patrick; Fourmentin, Marc; Lohou, Fabienne; Lothon, Marie

    2014-05-01

    This work is in the frame of the PhD-thesis entitled "Dispersion of pollutants in stable boundary layer conditions in the middle valley of the Durance", financed by the Commissariat à l'Energie Atomique (CEA) and jointly supervised by CEA and Laboratoire d'Aérologie (LA), Toulouse. It takes place in a wider context of R & D work performed at CEA to characterize the site specific atmospheric conditions, with a view to improve the knowledge of the impact of the potential release of pollutants. During the winter of 2013 the intensive field measurement campaign KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) has been carried out at Cadarache, a research centre of CEA, located in South-Eastern France. The stability of the lower atmospheric boundary layer caused by radiative cooling at night, combined with the local orography, strongly affects the conditions for the dispersion of potential pollutants. Understanding the complex patterns of drainage flow and cold pool build up in the smaller valleys confluent to the Durance river is thus a major issue for refining the models used to assess the sanitary and environmental impact of Cadarache. Stability is easily formed in the region and in combination with the orographic complexity, there is a need to study the Stable Boundary Layer (SBL), which potentially can have a large impact on the dispersion of gaseous emissions released by the various facilities of Cadarache. KASCADE was designed to characterize the local SBL in order to feed future planned numerical simulations with WRF and impact studies involving numerical models coping with dispersion. With a focus on night time, a combination of continuous observations (SODAR and a flux-measurement tower of 30 meter [M30]) and 23 Intensive Observational Periods (IOPs) (Tethered Balloon [TB] profiling and radio-soundings) allows to study the relevant phenomena for SBL-formation. M30 was equipped with sonic anemometers at 3 levels for

  13. Geomorphic Classification of the Lower Platte River, Nebraska

    USGS Publications Warehouse

    Elliott, Caroline M.; Huhmann, Brittany L.; Jacobson, Robert B.

    2009-01-01

    Geomorphic attributes were collected from natural color aerial orthophotography to develop a multiscale classification for the downstream-most 220 kilometers of the Platte River in eastern Nebraska. The intent of this classification is to define discrete reaches that have geomorphic characteristics favorable to endangered interior least terns (Sternula antillarum) and threatened piping plovers (Charadrius melodus) who use riverine sandbars for nesting habitat. Annual to daily fluctuations in discharge present a challenge to characterizing emergent sandbar habitat directly from existing aerial orthophotography for the Platte River. Therefore, this classification is based on geomorphic measures that are relatively insensitive to prevailing river discharge but may be physically related to emergent sandbar locations. Such features include valley width, channel width, and sinuosity. The results provide four-cluster and seven-cluster classifications for the Lower Platte River based on naturally occurring, statistically determined clusters of features. The classification was validated using tern and plover nest data for 2006-08. Forty-nine percent of the nest locations fell within the same class type in the four-cluster classification, which represented 18 percent of the study area. This class is found primarily in the Eastern Platte River Gorge, downstream from Salt Creek and upstream from the junction of the Platte River with the Missouri River.

  14. Topics in Cosmic String Physics and Vacuum Stability of Field Theories

    NASA Astrophysics Data System (ADS)

    Dasgupta, Indranil

    1998-01-01

    In this thesis I examine aspects of the vacuum state of quantum field theories. Namely, I study topological defects in the vacuum which appear as localized regions of non-zero energy density if the model system is unable to relax to a homogeneous and isotropic ground state because of topological constraints. I also examine the stability of the so called false vacua in theories that have multiple vacuum states with different energy densities. I first consider topological defects in the form of strings and independently the decay of false vacua in models of particle physics where the presence of either defects or of false vacua leads to interesting phenomenology. Then I describe a situation in which the defects arising from topological properties of the vacuum in turn affect the stability of the vacuum itself. In the first part of this work (chapters 2 and 3), I explore the phenomenology of cosmic strings. I introduce new string-like topological defects that resemble pairs of strings bound together. I give an existence proof of these 'binary strings' and then develop their cosmological properties in detail. I then propose a simple extension of the Standard Model in which cosmic strings may form and then decay through baryon number violating interactions leading to baryogenesis. I show that the model has distinct and testable signatures. In the second part of this work (chapters 4 and 5), I examine the vacua of several proposed models of gauge mediated dynamical supersymmetry breaking and show that the viable vacua are often unstable. I develop a rigorous theory for approximating vacuum tunneling rates in multi-scalar field theories and by computing bounds on the decay rate of the vacua in these models obtain useful constraints on the parameter space. In the final part of this work (chapter 6), I develop a theory of vacuum tunneling induced by topological defects. I show that defects can speed up vacuum tunneling rates by seeding new kinds of bubbles during a first

  15. Nonlinear polarization response of a gaseous medium in the regime of atom stabilization in a strong radiation field

    NASA Astrophysics Data System (ADS)

    Volkova, E. A.; Popov, A. M.; Tikhonova, O. V.

    2013-03-01

    The nonlinear polarization response of a quantum system modeling a silver atom in the field of high-intensity radiation in the IR and UV spectral ranges has been studied by direct numerical integration of a nonstationary Schrödinger equation. The domains of applicability of perturbation theory and polarization expansion in powers of the field intensity are determined. The contribution of excited atoms and electrons in a continuum to the atomic polarization response at the field frequency, which arises due to the radiation-induced excitation and photoionization processes, is analyzed. Features of the nonlinear response to an external field under conditions of atom stabilization are considered.

  16. Coastal morphodynamics and Chenier-Plain evolution in southwestern Louisiana, USA: A geomorphic model

    NASA Astrophysics Data System (ADS)

    McBride, Randolph A.; Taylor, Matthew J.; Byrnes, Mark R.

    2007-08-01

    ridge, and spit. To understand the long-term evolution of a coastal depositional system, primary process-response mechanisms and patterns found along the modern Chenier-Plain coast were first identified, especially tidal-inlet processes associated with the Sabine, Calcasieu, and Mermentau Rivers. Tidal prism ( Ω) and quantity of littoral transport ( Mtotal) are the most important factors controlling inlet stability. Greater discharge and/or tidal prism increase the ability of river and estuarine systems to interrupt longshore sediment transport, maintain and naturally stabilize tidal entrances, and promote updrift deposition. Thus, prior to human modification and stabilization efforts, the Mermentau River entrance would be classified as wave-dominated, Sabine Pass as tide-dominated, and Calcasieu Pass as tide-dominated to occasionally mixed. Hoyt [Hoyt, J.H., 1969. Chenier versus barrier, genetic and stratigraphic distinction. Am. Assoc. Petrol. Geol. Bull., 53: 299-306] presented the first detailed depositional model for chenier genesis and mudflat progradation, which he attributed to changes in Mississippi River flow direction (i.e., delta switching) caused by upstream channel avulsion. However, Hoyt's model oversimplifies Chenier-Plain evolution because it omits ridges created by other means. Thus, the geologic evolution of the Chenier Plain is more complicated than channel avulsions of the Mississippi River, and it involved not only chenier ridges (i.e., transgressive), but also ridges that are genetically tied to regression (beach ridges) and lateral accretion (recurved spits). A six-stage geomorphic process-response model was developed to describe Chenier-Plain evolution primarily as a function of: (i) the balance between sediment supply and energy dissipation associated with Mississippi River channel avulsions, (ii) local sediment reworking and lateral transport, (iii) tidal-entrance dynamics, and (iv) possibly higher-than-present stands of Holocene sea level

  17. Current distribution and stability criteria for superconducting cables in transient magnetic fields

    NASA Astrophysics Data System (ADS)

    Ferri, Matthew Anthony

    1997-08-01

    A theoretical model of current distribution is developed to explain the performance limitations of superconducting cables in transient magnetic fields. The model self- consistently handles the coupled non-linear electromagnetic and thermal equations which govern the behavior of the cable during both normal operation and quench/recovery events. A two-strand cable is used as an analogy to clarify critical concepts which would be mathematically intractable for larger cable geometries. The model emphasizes the role of 'circulating currents' which are induced by ramping magnetic fields in the vicinity of the low resistance cable terminations. Unlike the fine-scale eddy currents which cause inter-strand coupling losses in cabled superconductors, circulating currents can cause significantly uneven distributions of the net transport current carried by the cable. Since circulating currents have not attracted much attention in the literature, the theoretical model offers unique insights into this important determinant of magnet performance. Characteristic length scales have been identified which differentiate cable designs into one of nine classifications. Analytic formulae characterizing current distribution for each case are presented. Further, the stability criteria for cables in transient magnetic fields is shown to be heavily dependent on cable length. These results have important implications for researchers attempting to model full-scale magnets with lab-scale experiments. The theoretical model is shown to explain some of the more confounding results from previously conducted experiments. The 'Ramp-Rate Limitation' phenomenon first encountered in the United States Demonstration Poloidal Coil (US-DPC) experiment is shown to be a direct result of induced current imbalances within the conductor. The model would need further refinement, however, to accurately predict all features witnessed experimentally. Finally, the findings of the theoretical analysis are used to

  18. Rotational stability of a long, high-beta, field-reversed column

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.; Steinhauer, L. C.; Freidberg, J. P.

    2012-10-01

    Rotationally driven modes are observed to be important in determining FRC stability and confinement. As a first model, we consider a long, rotating column. The B is in the axial direction and the pressure gradient and centripetal acceleration are balanced by a strong radial gradient of B, which may pass through zero and reverse on axis, as in an FRC. The non-reversed version of this problem was considered earlierfootnotetextJ. P. Freidberg and L. D. Pearlstein, Phys. Fluids 21, 1207 (1978). using an approximate solution of the ion kinetic equation. We simplify the present analysis by assuming incompressible motion of the plasma and including the gyro-viscous (GV) stress to construct an eigenvalue problem. This leads to a formally symmetric o.d.e. which contains the eigenfrequency in a complicated manner. Finite axial wavenlength is included to leading order. Regular solutions, which satisfy the outer boundary condition at a conducting wall, give normal modes, and are found by the shooting method. We show that this procedure reproduces the results of Ref. 1 and generalizes to more complicated equilibria having rotational shear and field reversal. In the case of field reversal, it is necessary to employ a GV form that is appropriate for small B. For this we use either the collisional formfootnotetextN. Iwasawa, A. Ishida, L. C. Steinhauer, Phys. Fluids B8, 1240 (2001). or a new low-collisionality form which accounts for the de-magnetization of the ion orbits at small B. Results for FRC's with and without strong shear are presented.

  19. Field-Scale Partitioning of Ecosystem Respiration Components Suggests Carbon Stabilization in a Bioenergy Grass Ecosystem

    NASA Astrophysics Data System (ADS)

    Black, C. K.; Miller, J. N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2014-12-01

    Annually-harvested agroecosystems have the potential to be net carbon sinks only if their root systems allocate sufficient carbon belowground and if this carbon is then retained as stable soil organic matter. Soil respiration measurements are the most common approach to evaluate the stability of soil carbon at experimental time scales, but valid inferences require the partitioning of soil respiration into root-derived (current-year C) and heterotrophic (older C) components. This partitioning is challenging at the field scale because roots and soil are intricately mixed and physical separation in impossible without disturbing the fluxes to be measured. To partition soil flux and estimate the C sink potential of bioenergy crops, we used the carbon isotope difference between C3 and C4 plant species to quantify respiration from roots of three C4 grasses (maize, Miscanthus, and switchgrass) grown in a site with a mixed cropping history where respiration from the breakdown of old soil carbon has a mixed C3-C4 signature. We used a Keeling plot approach to partition fluxes both at the soil surface using soil chambers and from the whole field using continuous flow sampling of air within and above the canopy. Although soil respiration rates from perennial grasses were higher than those from maize, the isotopic signature of respired carbon indicated that the fraction of soil CO2 flux attributable to current-year vegetation was 1.5 (switchgrass) to 2 (Miscanthus) times greater in perennials than that from maize, indicating that soil CO2 flux came mostly from roots and turnover of soil organic matter was reduced in the perennial crops. This reduction in soil heterotrophic respiration, combined with the much greater quantities of C allocated belowground by perennial grasses compared to maize, suggests that perennial grasses grown as bioenergy crops may be able to provide an additional climate benefit by acting as carbon sinks in addition to reducing fossil fuel consumption.

  20. Analysis of the intraseasonal stability of field test performances in young academy soccer players.

    PubMed

    Francioni, Fabio Massimo; Figueiredo, António José; Terribili, Marco; Tessitore, Antonio

    2016-01-01

    This study aimed to observe the intraseasonal stability of anthropometric, technical and functional test results in academy soccer players of different age categories. In total, 103 participants (age range: 7.7-13.4 years) by 5 age categories of the same academy were recruited for this study. Players were submitted to a field-test battery comprising 3 anthropometric measurements (body mass, stature and body mass index), 6 soccer technical tests (to assess the ability of ball control, ball control with the head, pass accuracy, shooting accuracy, dribbling and dribbling with pass) and 3 functional tests (countermovement jump with the hands on the hip, countermovement jump with free hands and 15-m linear sprint) that was administered in 4 test sessions during the same season. Though anthropometric results showed a clear increment in each age category across the season, the fluctuation of technical test results depended on age category and test session. Moreover, a significant increase in the results of functional tests was observed in most of the age categories, in particular, for the assessment of lower power limb. In conclusion, collecting repeated intraseason measurements permits the identification of players' fluctuations of performance across the season and allows coaches to make frequent adjustments of their programmes.

  1. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    PubMed Central

    Tsao, Jeng-Ting; Lee, Lin-Wen; Lin, Che-Tong

    2015-01-01

    One of the causes of dental pulpitis is lipopolysaccharide- (LPS-) induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs), and dental pulp stem cells (DPSCs) will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF) can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability. PMID:25884030

  2. Non-Ideal ELM Stability and Non-Axisymmetric Field Penetration Calculations with M3D-C1

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.; Chu, M. S.; Snyder, P. B.; Jardin, S. C.; Luo, X.

    2009-11-01

    Numerical studies of ELM stability and non-axisymmetric field penetration in diverted DIII-D and NSTX equilibria are presented, with resistive and finite Larmor radius effects included. These results are obtained with the nonlinear two-fluid code M3D-C1, which has recently been extended to allow linear non-axisymmetric calculations. Benchmarks of M3D-C1 with ideal codes ELITE and GATO show good agreement for the linear stability of peeling-ballooning modes in the ideal limit. New calculations of the resistive stability of ideally stable DIII-D equilibria are presented. M3D-C1 has also been used to calculate the linear response to non-axisymmetric external fields; these calculations are benchmarked with Surfmn and MARS-F. New numerical methods implemented in M3D-C1 are presented, including the treatment of boundary conditions with C^1 elements in a non-rectangular mesh.

  3. Stability of the circular Couette flow of a ferrofluid in an axial magnetic field: influence of polydispersity.

    PubMed

    Leschhorn, A; Lücke, M; Hoffmann, C; Altmeyer, S

    2009-03-01

    The gap between two concentric rotating cylinders is filled with a ferrofluid. A homogeneous magnetic field is applied parallel to the cylinder axis. The stability of the circular Couette flow is analyzed with different models that take into account the polydispersity of the ferrofluid to a varying degree. Their results are compared and their merits are discussed.

  4. Geomorphic indicators of deeper seated structure on the southern margin, East Texas basin

    SciTech Connect

    Lemons, D.

    1985-02-01

    Surface geomorphic features are frequently difficult to relate to potential productive structures, but in the East Texas basin there appears to be a significant correlation between surface features and oil fields. The surface topography overlying the East Texas basin gives little indication of subsurface structure. However, conspicuous to southeastern Houston County on the southern margin of the East Texas basin, and to a large part of the entire basin, is a series of northwest- and northeast-trending stream and topographic alignments. These mappable linear geomorphic features (termed lineaments) may indicate fracturing, faulting, and jointing, and thus may be a clue to subsurface structure. The lineaments of southeastern Houston County were mapped and analyzed on a local scale, and those of Houston, Cherokee, Trinity, and Angelina Counties were mapped and analyzed on a more regional scale. Both the local and regional scale lineament analyses indicated preferential orientations of north 30/sup 0/ west and north 30/sup 0/ east. These lineaments are thought to reflect fracturing and faulting although field reconnaissance could not confirm this. It is suggested that gravity slide of the East Texas basin gulfward from the updip edge of the Lousann Salt provided the tensional forces necessary for major lineament formation. However on a more local scale there is a correlation between lineaments and productive fields. Areas of minimum lineament density on the lineament-density contour maps represent subtle subsurface structural highs and, conversely, areas of maximum lineament density on the lineament density contour maps represent subtle subsurface structural lows. Therefore, petroleum potential is generally limited to areas of minimum lineament density.

  5. Altered hydrologic and geomorphic processes and bottomland hardwood plant communities of the lower White River Basin

    USGS Publications Warehouse

    King, Sammy L.; Keim, Richard F.; Hupp, Cliff R.; Edwards, Brandon L.; Kroschel, Whitney A.; Johnson, Erin L.; Cochran, J. Wesley

    2016-09-12

    Determine stand establishment patterns of bottomland hardwoods within selected plant communities along three sections of the floodplain. This study provides baseline information on the current geomorphic and hydrologic conditions of the river and can assist in the interpretation of forest responses to past hydrologic and geomorphic processes. Understanding the implications for floodplain forests of geomorphic adjustment in the Lower Mississippi Alluvial Valley is key to managing the region’s valuable resources for a sustainable future.

  6. Geomorphic Investigation of the Bayou Bodcau and Tributaries Project Area, Louisiana

    DTIC Science & Technology

    1982-09-01

    Bayou and Flat River (covered on the Sligo, Elm Grove, Bossier Point, and East Point 1:24,000 topographic quadrangles). While most of the geomorphic...River in at least several ways during the last several tens of thousands of years. The primary influence has been ’he worldwide climatic oscil - lations...Contributions of Geomorphic Analyses 50. As a precursor to the cultural resource survey, a comprehen- sive geomorphic analysis can provide the archaeologist

  7. Long-term channel adjustment and geomorphic feature creation by vegetation in a lowland, low energy river

    NASA Astrophysics Data System (ADS)

    Grabowski, Robert; Gurnell, Angela

    2016-04-01

    Physical habitat restoration is increasingly being used to improve the ecological status of rivers. This is particularly true for lowland streams which are perceived to lack sufficient energy to create new features or to flush out fine sediment derived from agricultural and urban sources. However, this study has found that even in low-energy, base-flow dominated chalk streams, physical habitat improvement can happen naturally without direct human intervention. Furthermore this positive change is achieved by components of the river that are often regarded as management problems: in-stream macrophytes (i.e. weed), riparian trees, woody debris, and most importantly fine sediment. This project investigated the long-term changes in channel planform for the River Frome (Dorset, UK) over the last 120 years and the role of aquatic and riparian vegetation in driving this change. Agricultural census data, historical maps, recent aerial images and field observations were analysed within a process-based, hierarchical framework for hydromorphological assessment, developed in the EU FP7 REFORM project, to investigate the source and timing of fine sediment production in the catchment, to quantify the reach-scale geomorphic response, and to identify vegetation-related bedforms that could be responsible for the adjustment. The analysis reveals that the channel has narrowed and become more sinuous in the last 50-60 years. The timing of this planform adjustment correlates with substantial changes in land use and agricultural practices (post-World War II) that are known to increase soil erosion and sediment connectivity. The field observations and recent aerial images suggest that the increased delivery of fine sediment to the channel has been translated into geomorphic adjustment and diversification though the interactions between vegetation, water flow and sediment. Emergent aquatic macrophytes are retaining fine sediment, leading to the development of submerged shelves that aggrade

  8. Coastal Evolution of the Mississippi River Chenier Plain: A Geomorphic Process-Response Model

    NASA Astrophysics Data System (ADS)

    McBride, R. A.; Taylor, M. J.; Byrnes, M. R.

    2007-12-01

    Using 28 topographic profiles, air-photo interpretation, and historical shoreline-change data, coastal processes were evaluated along the Mississippi River Chenier Plain to explain the occurrence, distribution, and geomorphic hierarchy of primary landforms. The Louisiana Chenier Plain, classified as a low-profile, microtidal, storm- dominated coast, is located west and downdrift of the Mississippi River deltaic plain. This late-Holocene, marginal-deltaic environment is 200 km long, less than 30 km wide, and composed of mud deposits capped by marsh interspersed with thin sand- and shell-rich ridges ("cheniers") that are less than 4 m in elevation. Most Chenier-Plain ridges represent open-Gulf paleoshorelines. Past shoreline morphodynamics allow ridges to be classified as transgressive (cheniers), regressive (beach ridges), or laterally accreted (spits). Geomorphic zones that contain two or more regressive, transgressive, or laterally accreted ridges are termed complexes. Consequently, we further refine the Chenier-Plain definition by Otvos and Price (1979, Marine Geology) and define Chenier Plain as containing at least two or more chenier complexes. As such, a geomorphic hierarchy of landforms is devised relative to dominant coastal process. The Chenier Plain is defined as a first-order feature (5000 km2) composed of three second-order features (30 to 300 km2): chenier complex, beach ridge complex, and spit complex. Individual ridges of each complex type were further separated into third-order features: chenier, beach ridge, and spit. To understand long-term evolution of the Chenier Plain, modern tidal-inlet processes operating at Sabine, Calcasieu, and Mermentau river entrances were also examined relative to the inlet-stability ratio. Prior to human modification and stabilization efforts, the Mermentau River entrance is classified as wave-dominated, Sabine Pass as tide-dominated, and Calcasieu Pass as tide-dominated to mixed. Hoyt (1969, American Association of

  9. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: insights on geomorphic controls and post-flood geomorphic response

    USGS Publications Warehouse

    Dean, David J.; Schmidt, John C.

    2013-01-01

    Since the 1940s, the Rio Grande in the Big Bend region has undergone long periods of channel narrowing, which have been occasionally interrupted by rare, large floods that widen the channel (termed a channel reset). The most recent channel reset occurred in 2008 following a 17-year period of extremely low stream flow and rapid channel narrowing. Flooding was caused by precipitation associated with the remnants of tropical depression Lowell in the Rio Conchos watershed, the largest tributary to the Rio Grande. Floodwaters approached 1500 m3/s (between a 13 and 15 year recurrence interval) and breached levees, inundated communities, and flooded the alluvial valley of the Rio Grande; the wetted width exceeding 2.5 km in some locations. The 2008 flood had the 7th largest magnitude of record, however, conveyed the largest volume of water than any other flood. Because of the narrow pre-flood channel conditions, record flood stages occurred. We used pre- and post-flood aerial photographs, channel and floodplain surveys, and 1-dimensional hydraulic models to quantify the magnitude of channel change, investigate the controls of flood-induced geomorphic changes, and measure the post-flood response of the widened channel. These analyses show that geomorphic changes included channel widening, meander migration, avulsions, extensive bar formation, and vertical floodplain accretion. Reach-averaged channel widening between 26 and 52% occurred, but in some localities exceeded 500%. The degree and style of channel response was related, but not limited to, three factors: 1) bed-load supply and transport, 2) pre-flood channel plan form, and 3) rapid declines in specific stream power downstream of constrictions and areas of high channel bed slope. The post-flood channel response has consisted of channel contraction through the aggradation of the channel bed and the formation of fine-grained benches inset within the widened channel margins. The most significant post-flood geomorphic

  10. A field experimental study of lignin sand stabilizing material (LSSM) extracted from spent-liquor of straw pulping paper mills.

    PubMed

    Wang, Han-Jie; Li, Jing; Lu, Xiao-Zhen; Jin, Yong-Can

    2005-01-01

    A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material (LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the extracts of black-liquor issued by straw pulp paper mills. Unlike the polyvinyl acetate or foamed asphalt commonly used for dune stabilization, the new material is plant-friendly and can be used with virescence actions simultaneously. The field experimental study was conducted since 2001 in China's Northwest Ningxia Hui Autonomous Region and has been proved that LSSM is effective in stabilizing the fugitive dunes, making the arenaceous plants survive and the bare dune vegetative. The advisable solution concentration is 2% and the optimal field spraying quantity is 2.5 L/m2. The soil nutrients of the stabilized and greened dune, such as organic matter, available phosphorous and total nitrogen are all increased compared with the control treatment, which is certainly helpful to the growth of arenaceous plants. The technique is worthwhile to be popularized because it is provided not only a new method for desertification control but also an outlet for cleaning contaminants issued from the straw paper mills.

  11. The Genotypic and Phenotypic Stability of Plasmodium falciparum Field Isolates in Continuous In Vitro Culture

    PubMed Central

    Yeda, Redemptah; Ingasia, Luicer A.; Cheruiyot, Agnes C.; Okudo, Charles; Chebon, Lorna J.; Cheruiyot, Jelagat; Akala, Hoseah M.; Kamau, Edwin

    2016-01-01

    The Plasmodium falciparum in vitro culture system is critical for genotypic and phenotypic analyses of the parasites. For genotypic analysis, the genomic DNA can be obtained directly from the patient blood sample or from culture adapted parasites whereas for phenotypic analysis, immediate ex vivo or in vitro culture adapted parasites are used. However, parasite biology studies have not investigated whether culture adaptation process affects genotypic and/or phenotypic characteristics of the parasites in short- or long-term cultures. Here, we set out to study the dynamics and stability of parasite genetic and phenotypic profiles as field isolate parasites were adapted in continuous cultures. Parasites collected from three different patients presenting with uncomplicated malaria were adapted and maintained in drug-free continuous cultures. Aliquots from the continuous cultures were collected every 24–48 hours for analyses. Each aliquot was treated as a separate parasite sample. For genetic analysis, microsatellite (MS) typing and single nucleotide polymorphism (SNP) analyses of 23 drug resistance markers were done. The 50% inhibitory concentrations (IC50) for some of the samples were also established for four antimalarial drugs. Samples from each patient (parasite-line) were compared as they were passed through the continuous culture. Data revealed genotypic and phenotypic profiles for the three parasite-lines fluctuated from one generation to the next with no specific pattern or periodicity. With few exceptions, multilocus analysis revealed samples from each parasite-line had high genetic diversity with unique haplotypes. Interestingly, changes in MS and SNP profiles occurred simultaneously. The difference in the IC50s of samples in each parasite-line reached statistical significance. However, phenotypic changes did not correspond or correlate to genotypic changes. Our study revealed parasite genetic and phenotypic characteristics fluctuates in short- and long

  12. Experimental melting of phlogopite-peridotite in the garnet stability field

    NASA Astrophysics Data System (ADS)

    Condamine, Pierre; Médard, Etienne; Devidal, Jean-Luc

    2016-11-01

    Melting experiments have been performed at 3 GPa, between 1150 and 1450 °C, on a phlogopite-peridotite source in the garnet stability field. We succeeded to extract and determine the melt compositions of both phlogopite-bearing lherzolite and harzburgite from low to high degrees of melting (ϕ = 0.008-0.256). Accounting for the presence of small amounts of F in the mantle, we determined that phlogopite coexists with melt >150 °C above the solidus position (1150-1200 °C). Fluorine content of phlogopite continuously increases during partial melting from 0.2 to 0.9 wt% between 1000 and 1150 °C and 0.5 to 0.6 wt% between 1150 and 1300 °C at 1 and 3 GPa, respectively. The phlogopite continuous breakdown in the lherzolite follows the reaction: 0.59 phlogopite + 0.52 clinopyroxene + 0.18 garnet = 0.06 olivine + 0.23 orthopyroxene + 1.00 melt. In the phlogopite-harzburgite, the reaction is: 0.93 phlogopite + 0.46 garnet = 0.25 olivine + 0.14 orthopyroxene + 1.00 melt. Melts from phlogopite-peridotite sources at 3 GPa are silica-undersaturated and are foiditic to trachybasaltic in composition from very low (0.8 wt%) to high (25.6 wt%) degrees of melting. As observed at 1 GPa, the potassium content of primary mantle melts is buffered by the presence of phlogopite, but the buffering values are higher, from 6.0 to 8.0 wt% depending on the source fertility. We finally show that phlogopite garnet-peridotite melts are very close to the composition of the most primitive post-collisional lavas described worldwide.

  13. Analyze and experiment on AC magnetic field's effect to fiber optic gyroscopes in compact stabilization control systems

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mao, Yao; Tian, Jing; Li, Zhijun

    2015-10-01

    Fiber optic gyroscopes (FOG) are getting more and more attention in areas such as stabilization control systems as they are all solid state and have a wide bandwidth. In stabilization systems that require wide bandwidth control, motors are usually used as actuating mechanism for active disturbance restrain. Voice coil motors (VCMs) are usually used in compact stabilization systems that require large torque and fast response. However, AC magnetic field, which can affect the output of FOG due to Faraday effect, will be generated during operation of VCMs. The frequency range affected by the AC magnetic field to the FOG's output is the same as VCMs drive signal frequency range, which is also exactly the stabilization system's working range. Therefore the effect of the AC magnetic field to FOGs must be evaluated to verify the feasibility of a stable system design that uses both FOGs and VCMs. In this article, the basic structure and operating principle of stabilization system is introduced. The influence of AC magnetic field to FOG is theoretically analyzed. The magnetic field generated by VCMs is numerically simulated based on the theory deduction of the magnetic field near energized wires. To verify the influence of the VCM generated magnetic field to the FOGs in practical designs, a simplified random fiber coil model is built for it's hard to accurately test the exact polarize axis's twisting rate in a fiber coil. The influence to the FOG's output of different random coil model is simulated and the result shows a same trend that the influence of the VCM's magnetic field to the FOG is reduced as the distance between the VCM and the FOG increasing. The influence of a VCM to a FOG with the same parameters is experimentally tested. In the Fourier transformed FOG data the same frequency point as the VCM drive signal frequency can be read. The result fit simulated result that as the distance increases, the influence decreases. The amplitude of the frequency point is just

  14. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Coriell, S. R.; Mcfadden, G. B.; Hurle, D. T. J.

    1988-01-01

    A fully time-dependent linear stability analysis of the morphological stability of a planar interface during directional solidification of a binary alloy at constant velocity in the presence of an electric field, is performed. The electromigration of solute and the differing electrical conductivities of solid and liquid for a model in which the temperature gradient is constant are taken into account. The present results are compared with the constitutional supercooling criterion, and it is shown there may be substantial differences. A modified constitutional supercooling criterion which is valid over a large range of conditions is derived. It is also found under certain conditions that the onset of instability may be time dependent.

  15. Geomorphic Map of Region Around Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map shows shows a color-coded interpretation of geomorphic units categories based on surface textures and contours in the region where NASA's Phoenix Mars Lander has studied an arctic Martian plain. It covers an area about 65 kilometers by 65 kilometers (40 miles by 40 miles).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. SEM analysis of rock varnish chemistry: A geomorphic age discriminator

    SciTech Connect

    Harrington, C.D.; Raymond, R. Jr.

    1989-07-01

    Rock varnish, a manganese- and iron-rich coating commonly found on rock surfaces in arid and semiarid regions, has long been of interest as a potential age indicator. Rock varnish has been shown to be an effective medium for dating of geomorphic surfaces over a time range of several thousand to over a million years, utilizing a ratio among minor cations ((K + Ca)/Ti) for the total volume of rock varnish. We have recently, developed a technique using the scanning electron microscope (SEM) equipped with an energy dispersive x-ray analyzer (EDAX) to analyze the chemistry of rock varnish. This technique has several advantages over the earlier cation ratio technique.

  17. Glacial Geomorphic Characteristics of the Antarctic Peninsula Fjords

    NASA Astrophysics Data System (ADS)

    Wellner, J. S.; Munoz, Y. P.; Mead, K. A.; Hardin, L. A.

    2011-12-01

    A distinctive suite of subglacial geomorphic features, representing the grounding of an ice sheet and its subsequent retreat, has been well documented for many parts of the Antarctic continental shelf. Geomorphic features include meltwater channels, drumlins, mega-scale glacial lineations, and gullies cut into the upper slope. Many of these same features occur in more recently deglaciated fjords, but at different scales and in different combinations. We have surveyed twelve fjords on the Antarctic Peninsula, from the Graham Land Coast to Hope Bay as well as on Anvers Island and in the South Shetland Islands. Surveys include multibeam swath bathymetry, CHIRP 3.5 kHz seismic, and sediment cores. Recently, we have reprocessed much of the multibeam data using new software allowing higher-resolution imagery. Unlike on the outer continental shelf of the Antarctic Peninsula, where there is a relatively simple suite of geomorphic features and a uniform retreat history, the fjords on the inner shelf show a complex geomorphic pattern representing somewhat unique glacial retreat histories for each fjord. Several fjords have distinctive grounding zone wedge deposits, and some fjords have such wedges in multiple locations, representing multiple pauses in the retreat history, or a stepped retreat of the ice. Drumlins and mega-scale glacial lineations are present in the fjords, but extend for kms rather than the tens of kms that are typical of the outer shelf. If drumlins are interpreted to indicate acceleration of grounded ice, as they are on the outer shelf, then there must have been multiple zones of acceleration across the flow path of the ice as drumlin sets occur in multiple zones in a single flow path. The inner parts of many fjords along the coast of the peninsula are characterized by features interpreted as erosional meltwater channels, although such features are not common in fjords in the islands off the peninsula, despite the similar scale of the fjords themselves

  18. Misfit strain-temperature phase diagrams and domain stability of asymmetric ferroelectric capacitors: Thermodynamic calculation and phase-field simulation

    SciTech Connect

    Chen, W. J.; Zheng, Yue Wu, C. M.; Wang, B. Ma, D. C.

    2014-03-07

    Thermodynamic calculation and phase-field simulation have been conducted to investigate the misfit strain-temperature phase diagrams, dielectric property, and domain stability of asymmetric ferroelectric capacitors (FCs), with considering the effects of dissimilar screening properties and work function steps at the two interfaces. The distinct features of asymmetric FCs from their symmetric counterparts have been revealed and discussed. Polar states with nonzero out-of-plane polarization in parallel with the built-in field are found preferential to form in asymmetric FCs. Meanwhile, the built-in field breaks the degeneracy of states with out-of-plane polarization in anti-directions. This leads to the necessity of redefining phases according to the bistability of out-of-plane polarization. Moreover, the phase stability as well as the dielectric behavior can be significantly controlled by the properties of electrodes, misfit strain, and temperature. The phase-field simulation result also shows that polydomain instability would happen in asymmetric FCs as the equivalence of domain stability in anti-directions is destroyed.

  19. Field Validation of the Stability Limit of a Multi MW Turbine

    NASA Astrophysics Data System (ADS)

    Kallesøe, Bjarne S.; Kragh, Knud A.

    2016-09-01

    Long slender blades of modern multi-megawatt turbines exhibit a flutter like instability at rotor speeds above a critical rotor speed. Knowing the critical rotor speed is crucial to a safe turbine design. The flutter like instability can only be estimated using geometrically non-linear aeroelastic codes. In this study, the estimated rotor speed stability limit of a 7 MW state of the art wind turbine is validated experimentally. The stability limit is estimated using Siemens Wind Powers in-house aeroelastic code, and the results show that the predicted stability limit is within 5% of the experimentally observed limit.

  20. Geomorphic Effects, Chronologies, and Archaeological Significance of El Nino Floods in Southern Peru

    NASA Astrophysics Data System (ADS)

    Magilligan, F. J.; Manners, R.; Goldstein, P.

    2003-12-01

    The catastrophic effects of large floods have been well documented, on both contemporary and paleo-timecales, especially for the conterminous U.S. Less is known, however, about extreme events in hyper-arid sub-tropical climates where synoptic scale meteorological causes, such as El Nino-Southern Oscillation events, are the driving atmospheric mechanism. This research documents the geomorphic effects of extreme floods in the Moquegua River valley of southern Peru, in the core of the Atacama Desert. Using a combination of geomorphic mapping, hydrolologic modeling, aerial photography, ASTER satellite imagery, and GIS, we document the geomorphic signature of large contemporary floods within the mid-valley section (1500 masl) of the Rio Moquegua. Stratigraphic evidence and paleostage indicators of paleofloods, such as slackwater deposits and preserved high level flood gravels, are used to evidence late Holocene paleoflood magnitude-frequency relationships. On contemporary timescales, channel belt expansion by lateral erosion during large floods, such as the recent '97 and '98 floods, correspond to as much as 30-40 hectares of floodplain loss along the 20 km study reach. Sixty years of repeat aerial photography indicates that channel belt expansion and floodplain erosion commonly occurs along the Rio Moquegua. The frequent resetting of floodplain alluvium conditioned by these large floods is supported by radiocarbon dating of floodplain exposures. These dates indicate that most of the contemporary floodplain alluvium is younger that 560 14C yrs BP. The highest terrace remnants date to 3250 14C yrs BP and record a series of overbank flood gravels. Evidence for the regionally extensive Miraflores ENSO flood, ca. 1300 AD, exists in tributary and along mainstem sections. This flood has been documented along the coasts of Northern Chile to northern Peru, and has been evoked to explain significant social collapse. Our field evidence indicates that it catastrophically affected

  1. Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps

    NASA Astrophysics Data System (ADS)

    Steger, Stefan; Brenning, Alexander; Bell, Rainer; Petschko, Helene; Glade, Thomas

    2016-06-01

    maps that explicitly expressed geomorphically implausible relationships indicating that the predictive performance of a model might be misleading in the case a predictor systematically relates to a spatially consistent bias of the inventory. Furthermore, we observed that random forest-based maps displayed spatial artifacts. The most plausible susceptibility map of the study area showed smooth prediction surfaces while the underlying model revealed a high predictive capability and was generated with an accurate landslide inventory and predictors that did not directly describe a bias. However, none of the presented models was found to be completely unbiased. This study showed that high predictive performances cannot be equated with a high plausibility and applicability of subsequent landslide susceptibility maps. We suggest that greater emphasis should be placed on identifying confounding factors and biases in landslide inventories. A joint discussion between modelers and decision makers of the spatial pattern of the final susceptibility maps in the field might increase their acceptance and applicability.

  2. Relation of urbanization to stream habitat and geomorphic characteristics in nine metropolitan areas of the United States

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.

    2010-01-01

    environmental settings. The relations between watershed-scale indicators of urbanization and stream habitat depended on physiography and climate, hydrology, pre-urban channel alterations, reach-scale slope and presence of bedrock, and amount of bank stabilization and grade control. Channels increased in size with increasing percentages of impervious surfaces in southeastern and midwestern metropolitan areas regardless of whether the pre-existing land use was forest or agriculture. The amount of enlargement depended on annual precipitation and frequency of high-flow events. The lack of a relation between channel enlargement and increasing impervious surfaces in other metropolitan areas was thought to be confounded by pre-urbanization hydrologic and channel alterations. Direct relations of channel shape and streambed substrate to urbanization were variable or lacking, probably because the type, amount, and source of sediment are dependent on the phase of urbanization. Reach-scale slope also was important for determining variations in streambed substrate and habitat complexity (percentage of riffles and runs). Urbanization-associated changes in reach-scale riparian vegetation varied geographically, partially depending on pre-existing riparian vegetation characteristics. Bank erosion increased in Milwaukee?Green Bay and Boston urban streams, and bank erosion also increased with an increase in a streamflow flashiness index. However, potential relations likely were confounded by the frequent use of channel stabilization and bank protection in urban settings. Low-flow reach volume did not decrease with increasing urbanization, but instead was related to natural landscape characteristics and possibly other unmeasured factors. The presence of intermittent bedrock in some sampled reaches likely limited some geomorphic responses to urbanization, such as channel bed erosion. Results from this study emphasize the importance of including a wide range of landscape variables at m

  3. Mean-field dispersion-induced spatial synchrony, oscillation and amplitude death, and temporal stability in an ecological model.

    PubMed

    Banerjee, Tanmoy; Dutta, Partha Sharathi; Gupta, Anubhav

    2015-05-01

    One of the most important issues in spatial ecology is to understand how spatial synchrony and dispersal-induced stability interact. In the existing studies it is shown that dispersion among identical patches results in spatial synchrony; on the other hand, the combination of spatial heterogeneity and dispersion is necessary for dispersal-induced stability (or temporal stability). Population synchrony and temporal stability are thus often thought of as conflicting outcomes of dispersion. In contrast to the general belief, in this present study we show that mean-field dispersion is conducive to both spatial synchrony and dispersal-induced stability even in identical patches. This simultaneous occurrence of rather conflicting phenomena is governed by the suppression of oscillation states, namely amplitude death (AD) and oscillation death (OD). These states emerge through spatial synchrony of the oscillating patches in the strong-coupling strength. We present an interpretation of the mean-field diffusive coupling in the context of ecology and identify that, with increasing mean-field density, an open ecosystem transforms into a closed ecosystem. We report on the occurrence of OD in an ecological model and explain its significance. Using a detailed bifurcation analysis we show that, depending on the mortality rate and carrying capacity, the system shows either AD or both AD and OD. We also show that the results remain qualitatively the same for a network of oscillators. We identify a new transition scenario between the same type of oscillation suppression states whose geneses differ. In the parameter-mismatched case, we further report on the direct transition from OD to AD through a transcritical bifurcation. We believe that this study will lead to a proper interpretation of AD and OD in ecology, which may be important for the conservation and management of several communities in ecosystems.

  4. Stability of binary and ternary model oil-field particle suspensions: a multivariate analysis approach.

    PubMed

    Dudásová, Dorota; Rune Flåten, Geir; Sjöblom, Johan; Øye, Gisle

    2009-09-15

    The transmission profiles of one- to three-component particle suspension mixtures were analyzed by multivariate methods such as principal component analysis (PCA) and partial least-squares regression (PLS). The particles mimic the solids present in oil-field-produced water. Kaolin and silica represent solids of reservoir origin, whereas FeS is the product of bacterial metabolic activities, and Fe(3)O(4) corrosion product (e.g., from pipelines). All particles were coated with crude oil surface active components to imitate particles in real systems. The effects of different variables (concentration, temperature, and coating) on the suspension stability were studied with Turbiscan LAb(Expert). The transmission profiles over 75 min represent the overall water quality, while the transmission during the first 15.5 min gives information for suspension behavior during a representative time period for the hold time in the separator. The behavior of the mixed particle suspensions was compared to that of the single particle suspensions and models describing the systems were built. The findings are summarized as follows: silica seems to dominate the mixture properties in the binary suspensions toward enhanced separation. For 75 min, temperature and concentration are the most significant, while for 15.5 min, concentration is the only significant variable. Models for prediction of transmission spectra from run parameters as well as particle type from transmission profiles (inverse calibration) give a reasonable description of the relationships. In ternary particle mixtures, silica is not dominant and for 75 min, the significant variables for mixture (temperature and coating) are more similar to single kaolin and FeS/Fe(3)O(4). On the other hand, for 15.5 min, the coating is the most significant and this is similar to one for silica (at 15.5 min). The model for prediction of transmission spectra from run parameters gives good estimates of the transmission profiles. Although the

  5. The stability of two layer dielectric-electrolyte micro-flow subjected to an external electric field

    NASA Astrophysics Data System (ADS)

    Demekhin, E. A.; Ganchenko, G. S.; Navarkar, A.; Amiroudine, S.

    2016-09-01

    The two-phase microflow of conductive (electrolyte) and non-conductive (dielectric) viscous liquids bounded by two solid walls in an external electric field is scrutinized. The lower solid wall, which is adjoined to the electrolyte, is a charged dielectric surface; the upper wall which bounds the dielectric is insulated. The problem has a steady one-dimensional (1D) solution. The theoretical results for a plug-like velocity profile are successfully compared with available theoretical and experimental data from the literature. The linear stability of the steady-state flow is investigated numerically with spectral Galerkin's method for solving linearized eigenvalue problem. This method was successfully applied for related problem of electroosmosis of ultrathin film. The numerical analysis provides insights on the coexistence of long and short-wave instabilities. The influence of control parameters such as the ratio of the viscosities of both liquids and the ratio of the channel heights on the stability of one-dimensional flow was investigated for different values of external electric field. The influence of an external pressure gradient on the flow stability is also investigated. The experimental facts established by other authors, according to which the system destabilizes if the electroosmotic flow is oppositely directed to the external pressure gradient, is confirmed in this work. Otherwise stabilization takes place.

  6. First-principles study of electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate.

    PubMed

    Li, Zhimin; Huang, Huisheng; Zhang, Tonglai; Zhang, Shengtao; Zhang, Jianguo; Yang, Li

    2014-01-01

    The electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate have been studied using density functional theory. The results indicate that the influence of external electric field on the crystal structure is anisotropic. The electric field effects on the distance of the Pb-O ionic interactions are stronger than those on the covalent interactions. However, the changes of most structural parameters are not monotonically dependent on the increased electric field. This reveals that lead styphnate can undergo a phase transition upon the external electric field. When the applied field is increased to 0.003 a.u., the effective band gap and total density of states vary evidently. And the Franz-Keldysh effect yields larger influence on the band gap than the structural change induced by external electric field. Furthermore, lead styphnate has different initial decomposition reactions in the presence and absence of the electric field. Finally, we find that its sensitivity becomes more and more sensitive with the increasing electric field.

  7. Equilibrium shapes and stability of nonconducting pendant drops surrounded by a conducting fluid in an electric field

    SciTech Connect

    Harris, M.T.; Basaran, O.A.

    1995-03-15

    The shapes and stability of pendant drops in the presence of an electric field is a classical problem in capillarity. This problem has been studied in great detail by numerous investigators when the drops are either perfect conductors or nonconductors and the surrounding fluid is a nonconductor. In this paper, the axisymmetric equilibrium shapes and stability of a nonconducting drop hanging from a nonconducting nozzle that is immersed in a perfectly conducting ambient fluid, a problem that has heretofore not been considered in the literature, are determined by solving the free boundary problem comprised of the Young-Laplace equation for drop shape and an integral equation for the electric field distribution. Here the free boundary problem is discretized by a hybrid technique in which the Young-Laplace equation is solved by the finite element method and the electrostatic problem solved by the boundary element method.

  8. Detecting geomorphic processes and change with high resolution topographic data

    NASA Astrophysics Data System (ADS)

    Mudd, Simon; Hurst, Martin; Grieve, Stuart; Clubb, Fiona; Milodowski, David; Attal, Mikael

    2016-04-01

    The first global topographic dataset was released in 1996, with 1 km grid spacing. It is astonishing that in only 20 years we now have access to tens of thousands of square kilometres of LiDAR data at point densities greater than 5 points per square meter. This data represents a treasure trove of information that our geomorphic predecessors could only dream of. But what are we to do with this data? Here we explore the potential of high resolution topographic data to dig deeper into geomorphic processes across a wider range of landscapes and using much larger spatial coverage than previously possible. We show how this data can be used to constrain sediment flux relationships using relief and hillslope length, and how this data can be used to detect landscape transience. We show how the nonlinear sediment flux law, proposed for upland, soil mantled landscapes by Roering et al. (1999) is consistent with a number of topographic tests. This flux law allows us to predict how landscapes will respond to tectonic forcing, and we show how these predictions can be used to detect erosion rate perturbations across a range of tectonic settings.

  9. Part 1: The geomorphic evolution of Eastern Margaritifer Sinus, Mars

    NASA Technical Reports Server (NTRS)

    Grant, John A., III

    1987-01-01

    Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins, were used to trace the geologic evolution of Margaritifer Sinus Quandrangle. The oldest dated surface covering these basins evolved during the period of intense bombardment. Since that time four resurfacing events have occurred. The first three were all of regional extent, while the fourth, occurred locally, filling basins. Valley networks, incised in the third event unit, are always buried by the fourth event unit when present. A peak in geomorphic activity occurred from 10,000 to 5000. Events during this period included the formation of Uzboi/Ladon Valles with deposition in Ladon Basin, and the formation of Samara and Parana/Loire Valles in MC19SE. Flow out of Ladon Basin and to a lesser extent Samara and Parana/Loire Valles created etched terrain at their confluence that was synchronous with initiation of Margaritifer and Iani Chaos. The range of dates for the chaos may be due to periodic collapse. The extensive, well integrted nature of Samara and Parana/Loire Valles requires the existence of a long period of favorable climatic conditions to allow their formation. Development of these two systems was probably through sapping processes.

  10. Geomorphic Responses to Stream Channel Restoration at Minebank Run, Baltimore County, Maryland, 2002--2008

    EPA Science Inventory

    Data collected from 2002 through 2008 were used to assess geomorphic characteristics and geomorphic changes over time in a selected reach of Minebank Run, a small urban watershed near Towson, Maryland, prior to and after its physical restoration in 2004 and 2005. Data collected ...

  11. Avoiding Tokamak Disruptions by Applying Static Magnetic Fields That Align Locked Modes with Stabilizing Wave-Driven Currents.

    PubMed

    Volpe, F A; Hyatt, A; La Haye, R J; Lanctot, M J; Lohr, J; Prater, R; Strait, E J; Welander, A

    2015-10-23

    Nonrotating ("locked") magnetic islands often lead to complete losses of confinement in tokamak plasmas, called major disruptions. Here locked islands were suppressed for the first time, by a combination of applied three-dimensional magnetic fields and injected millimeter waves. The applied fields were used to control the phase of locking and so align the island O point with the region where the injected waves generated noninductive currents. This resulted in stabilization of the locked island, disruption avoidance, recovery of high confinement, and high pressure, in accordance with the expected dependencies upon wave power and relative phase between the O point and driven current.

  12. Role of external magnetic field and current closure in the force balance mechanism of a magnetically stabilized plasma torch

    NASA Astrophysics Data System (ADS)

    G, Ravi; Goyal, Vidhi

    2012-10-01

    Experimental investigations on the role of applied external magnetic field and return current closure in the force balance mechanism of a plasma torch are reported. The plasma torch is of low power and has wall, gas and magnetic stabilization mechanisms incorporated in it. Gas flow is divided into two parts: axial-central and peripheral-shroud, applied magnetic field is axial and return current is co-axial. Results indicate that application of large external magnetic field gives rise to not only J x B force but also, coupled with gas flow, to a new drag-cum-centrifugal force that acts on the plasma arc root and column. The magnetic field also plays a role in the return current closure dynamics and thus in the overall force balance mechanism. This in turn affects the electro-thermal efficiency of the plasma torch. Detailed experimental results, analytical calculations and physical model representing the processes will be presented and discussed.

  13. High Field-Emission Stability of Offset-Thin-Film Transistor-Controlled Al-Doped Zinc Oxide Nanowires

    NASA Astrophysics Data System (ADS)

    Yang, Po-Yu; Wang, Jyh-Liang; Tsai, Wei-Chih; Wang, Shui-Jinn; Lin, Jia-Chuan; Lee, I.-Che; Chang, Chia-Tsung; Cheng, Huang-Chung

    2011-04-01

    Aluminum-doped zinc oxide (AZO) nanowire (NW) arrays incorporating an offset thin-film transistor (offset-TFT) have been proposed to achieve high field-emission (FE) stability. The AZO NW field emission arrays (FEAs) were hydrothermally grown at a low temperature of 85 °C. The uncontrolled AZO NW FEAs demonstrated superior FE characteristics (i.e., turn-on field of ˜2.17 V/µm and threshold field of ˜3.43 V/µm) compared with those of the conventional CNT FEAs grown at a temperature below 600 °C. However, uncontrolled AZO NW FEAs show a larger current fluctuation of 15.6%. Therefore, the offset-TFTs were used to control the AZO NW FEAs. Consequently, the fluctuation of AZO NW FEAs could be significantly reduced to less than 2%. This novel field emission device exhibits good emission stability, low-voltage controllability, low-temperature processing, and structural simplicity, making it promising for applications in flat panel displays.

  14. Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Huiping; Kirby, Eric; Pitlick, John; Anderson, Robert S.; Zhang, Peizhen

    2017-02-01

    Analysis of hillslope gradient, landscape relief, and channel steepness in the Daxia River basin provides evidence of a transient geomorphic response to base-level fall on the northeastern Tibetan Plateau. Low-gradient channels and gentle hillslopes of the upper watershed are separated from a steeper, high-relief landscape by a series of convex knickzones along channel longitudinal profiles. Downstream projection of the "relict" portions of the profiles implies 800-850 m of incision, consistent with geologic and geomorphic records of post 1.7 Ma incision in the lower watershed. We combine optically stimulated luminescence dating of fluvial terrace deposits to constrain incision rates downstream of knickpoints with catchment-averaged 10Be concentrations in modern sediment to estimate erosion rates in tributary basins both above and below knickpoints. Both sources of data imply landscape lowering rates of 300 m Ma-1 below the knickpoint and 50-100 m Ma-1 above. Field measurements of channel width (n = 48) and calculations of bankfull discharge (n = 9) allow determination of scaling relations among channel hydraulic geometry, discharge, and contributing area that we employ to estimate the patterns of basal shear stress, unit stream power, and bed load transport rate throughout the channel network. Our results imply a clear downstream increase of incision potential; this result would appear to be consistent with a detachment-limited response to imposed base-level fall, in which steepening of channels drives an increase in erosion rates. In contrast, however, we do not observe apparent narrowing of channels across the transition from slowly eroding to rapidly eroding portions of the watershed. Rather, the present-day channel morphology as well as its scaling of hydraulic geometry imply that the river is primarily adjusted to transport its sediment load and suggest that channel morphology may not always reflect the presence of knickpoints and differences in landscape

  15. Gophers as geomorphic agents in the Colorado Front Range subalpine zone

    NASA Astrophysics Data System (ADS)

    Winchell, Eric W.; Anderson, Robert S.; Lombardi, Elizabeth M.; Doak, Daniel F.

    2016-07-01

    Gophers are significant geomorphic agents in many landscapes. We document activity of the northern pocket gopher (Thomomys talpoides) in two small subalpine meadows (1050-1800 m2) of the Front Range, Colorado, USA. We tracked locations and volumes of mounds and subnivean infilled tunnels over one year and probed the thickness of the biomantle within one meadow. We infer that only 5-7 gophers occupied each meadow, implying a gopher density of 28-67 ha- 1. Fractional areal coverage of the meadows by diggings suggests that within 49-95 years gophers would fully resurface the meadows. Annual volumes of excavated soil correspond to the equivalent of 1 mm of material spread evenly over the meadows. Probed meadow resistance depths reveal a pattern we interpret to be stone lines at roughly 15 cm depths; implied vertical turnover times are therefore roughly 150 years. These spatial and temporal patterns imply that gophers should be able to churn the biomantle on approximately century timescales and should fully resurface the meadow areas in similar timescales. These field data also contribute to an investigation of lateral sediment transport; given the local slope of the landscape, gopher-driven sediment transport within our two study sites suggests a landscape diffusivity of 0.008 m2y- 1. At no time do gophers occupy the forest. As evidenced by subnivean infilled tunnels, winter activity is restricted to the upslope (and hence upwind) meadow edges, which correspond to high snow cover and warm (> 0 °C) shallow subsurface soil temperatures. Subsequent activity expands downhill into the meadows and shows a distinct pulse of mound activity in late summer through early fall prior to snowfall. Local forest fire history has led to much more extensive meadows in the past, suggesting that the geomorphic influence of gophers in the landscape is much more widespread than the present distribution of meadows and may cover the entire subalpine region of the Front Range on millennial

  16. Automated Detection of Geomorphic Features in LiDAR Point Clouds of Various Spatial Density

    NASA Astrophysics Data System (ADS)

    Dorninger, Peter; Székely, Balázs; Zámolyi, András.; Nothegger, Clemens

    2010-05-01

    relevant results. Consequently, it could be verified that a topographic surface can be properly represented by a set of distinct planar structures. Therefore, the subsequent interpretation of those planes with respect to geomorphic characteristics is acceptable. The additional in situ geological measurements verified some of our findings in the sense that similar primary directions could be found that were derived from the LiDAR data set and (Zámolyi et al., 2010, this volume). References: P. Dorninger, N. Pfeifer: "A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds"; Sensors, 8 (2008), 11; 7323 - 7343. C. Nothegger, P. Dorninger: "3D Filtering of High-Resolution Terrestrial Laser Scanner Point Clouds for Cultural Heritage Documentation"; Photogrammetrie, Fernerkundung, Geoinformation, 1 (2009), 53 - 63. A. Zámolyi, B. Székely, G. Molnár, A. Roncat, P. Dorninger, A. Pocsai, M. Wyszyski, P. Drexel: "Comparison of LiDAR derived directional topographic features with geologic field evidence: a case study of Doren landslide (Vorarlberg, Austria)"; EGU General Assembly 2010, Vienna, Austria

  17. EDITORIAL: 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control

    NASA Astrophysics Data System (ADS)

    Buttery, Richard

    2011-08-01

    This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http

  18. Field-induced Bragg diffraction in polymer stabilized cholesteric liquid crystal bubbles

    NASA Astrophysics Data System (ADS)

    Varanytsia, Andrii; Chien, Liang-Chy

    2015-03-01

    Cholesteric liquid crystals (CLC) with a specific confinement conditions are known to form bubble domain (BD) texture. We have developed the CLC BD texture stabilized with a small amount of polymer. CLC bubbles of a BD texture self-assemble into domains with a hexagonal ordering and optically perform as a diffraction grating. By stabilization of the BD texture with a polymer we have improved optical quality of the diffractive CLC layer and have increased its mechanical stability. We discuss details about samples preparation, Bragg diffraction, electro-optical performance and present results of scanning electron microscopy (SEM) morphological study of the polymer network formed in the bulk of the diffractive liquid crystal layer.

  19. Geomorphic and human influence on large-scale coastal change

    NASA Astrophysics Data System (ADS)

    Hapke, Cheryl J.; Kratzmann, Meredith G.; Himmelstoss, Emily A.

    2013-10-01

    An increasing need exists for regional-scale measurements of shoreline change to aid in management and planning decisions over a broad portion of the coast and to inform assessments of coastal vulnerabilities and hazards. A recent dataset of regional shoreline change, covering a large portion of the U.S. East coast (New England and Mid-Atlantic), provides rates of shoreline change over historical (~ 150 years) and recent (25-30 years) time periods making it ideal for a broad assessment of the regional variation of shoreline change, and the natural and human-induced influences on coastal behavior. The variable coastal landforms of the region provide an opportunity to investigate how specific geomorphic landforms relate to the spatial variability of shoreline change. In addition to natural influences on the rates of change, we examine the effects that development and human modifications to the coastline have on the measurements of regional shoreline change. Regional variation in the rates of shoreline change is a function of the dominant type and distribution of coastal landform as well as the relative amount of human development. Our results indicate that geomorphology has measurable influence on shoreline change rates. Anthropogenic impacts are found to be greater along the more densely developed and modified portion of the coast where jetties at engineered inlets impound large volumes of sediment resulting in extreme but discrete progradation updrift of jetties. This produces a shift in averaged values of rates that may mask the natural long-term record. Additionally, a strong correlation is found to exist between rates of shoreline change and relative level of human development. Using a geomorphic characterization of the types of coastal landform as a guide for expected relative rates of change, we found that the shoreline appears to be changing naturally only along sparsely developed coasts. Even modest amounts of development influence the rates of change and

  20. Geomorphic and human influence on large-scale coastal change

    USGS Publications Warehouse

    Hapke, Cheryl J.; Kratzmann, Meredith G.; Himmelstoss, Emily A.

    2013-01-01

    An increasing need exists for regional-scale measurements of shoreline change to aid in management and planning decisions over a broad portion of the coast and to inform assessments of coastal vulnerabilities and hazards. A recent dataset of regional shoreline change, covering a large portion of the U.S. East coast (New England and Mid-Atlantic), provides rates of shoreline change over historical (~ 150 years) and recent (25–30 years) time periods making it ideal for a broad assessment of the regional variation of shoreline change, and the natural and human-induced influences on coastal behavior. The variable coastal landforms of the region provide an opportunity to investigate how specific geomorphic landforms relate to the spatial variability of shoreline change. In addition to natural influences on the rates of change, we examine the effects that development and human modifications to the coastline have on the measurements of regional shoreline change.Regional variation in the rates of shoreline change is a function of the dominant type and distribution of coastal landform as well as the relative amount of human development. Our results indicate that geomorphology has measurable influence on shoreline change rates. Anthropogenic impacts are found to be greater along the more densely developed and modified portion of the coast where jetties at engineered inlets impound large volumes of sediment resulting in extreme but discrete progradation updrift of jetties. This produces a shift in averaged values of rates that may mask the natural long-term record. Additionally, a strong correlation is found to exist between rates of shoreline change and relative level of human development. Using a geomorphic characterization of the types of coastal landform as a guide for expected relative rates of change, we found that the shoreline appears to be changing naturally only along sparsely developed coasts. Even modest amounts of development influence the rates of change

  1. Stream Stability and Scour Assessments at Bridges in Massachusetts

    USGS Publications Warehouse

    Parker, Gene W.; Bratton, Lisa; Armstrong, David S.

    1997-01-01

    In 1989, the Federal Highway Administration mandated that every state establish a program to evaluate the vulnerability to floods of all bridges over water. The Massachusetts Highway Department entered into a cooperative effort with the U.S. Geological Survey to comply with this mandate. Geomorphic and hydraulic characteristics were collected and were used to assess the processes that affect stream stability and current scour problems and potential near 2,361 bridge sites in Massachusetts. As a result of these assessments, the Massachusetts Highway Department will prioritize the bridge inventory for action regarding scour safety. A data base was prepared that includes the geomorphic and hydraulic data collected during field assessments. In addition to the data base, this report includes the historical development of the bridge scour program, the methods used for data collection during assessments, the methods used for quality assurance and quality control, and how the data base was digitally formatted to be presented on a CD-ROM. A user's guide provides assistance in the use of this electronic data base and report.

  2. Atmospheric Stability Measurements at a Swine Facility and an Adjacent Corn Field in Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric stability conditions at the surface layer can determine direction and momentum transport of air contaminants. Near confined animal facilities, these transport processes can significantly impact air quality as these sites typically act as net source of pollutants; however, little informat...

  3. OBSERVATIONS OF SIMILARITY THEORY STABILITY CORRECTION TERMS FOR MOMENTUM AND TEMPERATURE, OVER AGRICULTURAL FIELDS AND FORESTS.

    EPA Science Inventory

    Many observations of temperature and wind speed profiles have been taken over "ideal" terrain and analyzed to develop the stability correction terms which are commonly used in the application of similarity theory. Fewer observations have been taken and analyzed in this manner ov...

  4. FIELD DEMONSTRATION OF LEAD-BASED PAINT REMOVAL AND INORGANIC STABILIZATION TECHNOLOGIES

    EPA Science Inventory

    A study was conducted to demonstrate the effectiveness of a wet abrasive blasting technology to remove lead-based paint from exterior wood siding and brock substrates and to stabilize the resultant blasting media (coal slag and mineral sand) paint debris to reduce the leachable l...

  5. Investigation of Resistive Wall Mode Stabilization Physics in High-beta Plasmas Using Applied Non-axisymmetric Fields in NSTX

    SciTech Connect

    Sontag, A. C.; Sabbagh, S. A.; Zhu, W.; Menard, J. E.; Bell, R. E.; Bialek, J. M.; Bell, M. G.; Gates, D. A.; Glasser, A. H.; LeBlanc, B. P.; Shaing, K. C.; Stutman, D.; Tritz, K. L.

    2009-06-16

    The National Spherical Torus Experiment (NSTX) offers an operational space characterized by high-beta (βt = 39%, βN > 7, βN/βno-wall N > 1.5) and low aspect ratio (A > 1.27) to leverage the plasma parameter dependences of RWM stabilization and plasma rotation damping physics giving greater confidence for extrapolation to ITER. Significant new capability for RWM research has been added to the device with the commissioning of a set of six nonaxisymmetric magnetic field coils, allowing generation of fields with dominant toroidal mode number, n, of 1–3. These coils have been used to study the dependence of resonant field amplification on applied field frequency and RWMstabilization physics by reducing the toroidal rotation profile belowits steady-state value through non-resonant magnetic braking. Modification of plasma rotation profiles shows that rotation outside q = 2.5 is not required for passive RWM stability and there is large variation in the RWM critical rotation at the q = 2 surface, both of which are consistent with distributed dissipation models.

  6. Hillslope stability and land use (1985). Volume II

    SciTech Connect

    Sidle, R.C.; Pearce, A.J.; O'Loughlin, C.L.

    1985-01-01

    This book emphasizes the natural factors affecting slope stability, including soils and geomorphic, hydrologic, vegetative, and seismic factors and provides information on landslide classification, global damage, and analytical methods. The effects of various extensive and intensive land management practices on slope stability are discussed together with methods for prediction, avoidance, and control. Examples of terrain evaluation procedures and land management practices are presented.

  7. Flood management along the Lower Mississippi and Rhine Rivers (The Netherlands) and the continuum of geomorphic adjustment

    NASA Astrophysics Data System (ADS)

    Hudson, Paul F.; Middelkoop, Hans; Stouthamer, Esther

    2008-10-01

    the 1928 Mississippi River & Tributaries Act have rapidly infilled, with 67% of the lake area converted to wetlands. In comparison, older oxbow lakes located outside of the embanked floodplain have undergone much lower amounts of infilling, averaging 37% of oxbow lake area converted to wetlands. The floodplain geomorphology is further modified by numerous large floodplain borrow pits and the selective removal of fine-grained deposits, primarily created for dike (levee) construction and maintenance. The Dutch Rhine has been managed for flooding for over eight centuries and exhibits specific types of humanized embanked floodplain geomorphology that require a greater period of adjustment. Dike breaches create ponds (wielen) and sandy splay-like deposits, which represent distinctive anthro-geomorphic environments along the margins of embanked floodplains. Channel stabilization by groynes and dikes has resulted in the formation of new floodplains along Rhine distributaries. The trapping of flood sediments within the embanked floodplain has resulted in aggradation that has reduced the inundation capacity of the embanked floodplain. This geomorphic alteration reduced the effectiveness of the existing flood management infrastructure and has stimulated a change towards a new flood management approach designed to "work with the river". The major conclusions are placed within a conceptual model, and illustrate that; 1. in many instances specific flood management options were constrained by the type of floodplain deposit; 2. geomorphic adjustment to flood management occurs along a time-space continuum; 3. flood management initiates positive feedbacks with unintended geomorphic consequences that require further management options to minimize flood risk.

  8. Are coarse-grained models apt to detect protein thermal stability? The case of OPEP force field

    PubMed Central

    Kalimeri, Maria; Derreumaux, Philippe; Sterpone, Fabio

    2017-01-01

    We present the first investigation of the kinetic and thermodynamic stability of two homologous thermophilic and mesophilic proteins based on the coarse-grained model OPEP. The object of our investigation is a pair of G-domains of relatively large size, 200 amino acids each, with an experimental stability gap of about 40 K. The OPEP force field is able to maintain stable the fold of these relatively large proteins within the hundrend-nanosecond time scale without including external constraints. This makes possible to characterize the conformational landscape of the folded protein as well as to explore the unfolding. In agreement with all-atom simulations used as a reference, we show that the conformational landscape of the thermophilic protein is characterized by a larger number of substates with slower dynamics on the network of states and more resilient to temperature increase. Moreover, we verify the stability gap between the two proteins using replica-exchange simulations and estimate a difference between the melting temperatures of about 23 K, in fair agreement with experiment. The detailed investigation of the unfolding thermodynamics, allows to gain insight into the mechanism underlying the enhanced stability of the thermophile relating it to a smaller heat capacity of unfolding. PMID:28100926

  9. Are coarse-grained models apt to detect protein thermal stability? The case of OPEP force field.

    PubMed

    Kalimeri, Maria; Derreumaux, Philippe; Sterpone, Fabio

    2015-01-01

    We present the first investigation of the kinetic and thermodynamic stability of two homologous thermophilic and mesophilic proteins based on the coarse-grained model OPEP. The object of our investigation is a pair of G-domains of relatively large size, 200 amino acids each, with an experimental stability gap of about 40 K. The OPEP force field is able to maintain stable the fold of these relatively large proteins within the hundrend-nanosecond time scale without including external constraints. This makes possible to characterize the conformational landscape of the folded protein as well as to explore the unfolding. In agreement with all-atom simulations used as a reference, we show that the conformational landscape of the thermophilic protein is characterized by a larger number of substates with slower dynamics on the network of states and more resilient to temperature increase. Moreover, we verify the stability gap between the two proteins using replica-exchange simulations and estimate a difference between the melting temperatures of about 23 K, in fair agreement with experiment. The detailed investigation of the unfolding thermodynamics, allows to gain insight into the mechanism underlying the enhanced stability of the thermophile relating it to a smaller heat capacity of unfolding.

  10. Structural Stability of Planar Homogeneous Polynomial Vector Fields: Applications to Critical Points and to Infinity

    NASA Astrophysics Data System (ADS)

    Llibre, Jaume; Pérez del Río, Jesús S.; Rodríguez, José Angel

    1996-03-01

    LetHmbe the space of planar homogeneous polynomial vector fields of degreemendowed with the coefficient topology. We characterize the setΩmof the vector fields ofHmthat are structurally stable with respect to perturbations inHmand we determine the exact number of the topological equivalence classes inΩm. The study of structurally stable homogeneous polynomial vector fields is very useful for understanding some interesting features of inhomogeneous vector fields. Thus, by using this characterization we can do first an extension of the Hartman-Grobman Theorem which allows us to study the critical points of planar analytical vector fields whosek-jets are zero for allkfields in a neighborhood of the infinity also under generic assumptions.

  11. Microstructural Stability of 316 Stainless Steel During Long Term Exposure to High Magnetic Fields at Cryogenic Temperatures

    SciTech Connect

    Nishimura, A.; Kakeshita, T.

    2004-06-28

    The effect of long term exposure to high magnetic fields at cryogenic temperatures on the microstructural stability of austenitic stainless steel was investigated. Three samples of SUS316 were prepared. One was as-machined, the second was solution heat-treated, and the last was solution heat-treated followed by a sensitization heat treatment. The samples were attached to the helical coil cover of the Large Helical Device, which is a large plasma experimental device operating with a superconducting magnet system. The maximum magnetic field the samples experienced was about 2.56 T for over 100 cycles during which time the temperature was kept at about 4.5 K for approximately 300 days. Before and after the exposure, the susceptibility was measured by a superconducting quantum interference device and it was confirmed that the austenitic phase was stable and did not produce any additional martensite by the long term exposure to the high magnetic fields at cryogenic temperatures.

  12. Geomorphic and biophysical factors affecting water tracks in northern Alaska

    NASA Astrophysics Data System (ADS)

    Trochim, E. D.; Jorgenson, M. T.; Prakash, A.; Kane, D. L.

    2016-03-01

    A better understanding of water movement on hillslopes in Arctic environments is necessary for evaluating the effects of climate variability. Drainage networks include a range of features that vary in transport capacity from rills to water tracks to rivers. This research focuses on describing and classifying water tracks, which are saturated linear-curvilinear stripes that act as first-order pathways for transporting water off of hillslopes into valley bottoms and streams. Multiple factor analysis was used to develop five water tracks classes based on their geomorphic, soil, and vegetation characteristics. The water track classes were then validated using conditional inference trees, to verify that the classes were repeatable. Analysis of the classes and their characteristics indicate that water tracks cover a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrates an improved approach to quantifying water track characteristics for specific areas, which is a major step toward understanding hydrological processes and feedbacks within a region.

  13. The incorporation of geomorphic information in storage-zone models.

    NASA Astrophysics Data System (ADS)

    Boufadel, M. C.; Gabriel, M.

    2001-12-01

    Three stream-tracer studies were conducted in a 190-m reach of an urban stream in Philadelphia to investigate the interactions between the main channel and transverse storage zones. Sodium chloride was used as a conservative tracer and was monitored at two downstream locations using electric conductivity measurements. The experiments were simulated using the advection-dispersion equation with additional terms that account for the transverse exchange. The fit of the model to the data was good when all the parameters were assumed to be sub-reach-averaged. When measurements of the cross sectional area at various downstream distances were introduced into the model, the remaining reach-averaged parameters had to take extreme values to achieve agreement with the experimental breakthrough curve. This indicates that additional but incomplete geomorphic information does not necessarily improve the understanding of a particular stream system. The variation of the parameters with scale was also explored.

  14. The incorporation of geomorphic information in storage-zone models

    NASA Astrophysics Data System (ADS)

    Boufadel, M.

    2003-04-01

    Three stream-tracer studies were conducted in a 190-m reach of an urban stream in Philadelphia to investigate the interactions between the main channel and transverse storage zones. Sodium chloride was used as a conservative tracer and was monitored at two downstream locations using electric conductivity measurements. The experiments were simulated using the advection-dispersion equation with additional terms that account for the transverse exchange. The fit of the model to the data was good when all the parameters were assumed to be sub-reach-averaged. When measurements of the cross sectional area at various downstream distances were introduced into the model, the remaining reach-averaged parameters had to take extreme values to achieve agreement with the experimental breakthrough curve. This indicates that additional but incomplete geomorphic information does not necessarily improve the understanding of a particular stream system. The variation of the parameters with scale was also explored.

  15. Stabilization of atoms in ultra-strong laser fields, a decade later

    NASA Astrophysics Data System (ADS)

    Gavrila, M.

    2000-07-01

    This overview presents basic notions on atomic stabilization, some new illustrative results, as well as the recent controversy it has stirred. We start with quasistationary (adiabatic) stabilization (QS), the original form in which the concept has emerged from high-frequency Floquet theory (HFFT). QS designates the property of the high-frequency ionization rates to decrease with intensity beyond some critical high value of the latter. Other forms of Floquet theory (Sturmian basis diagonalization, close coupling in the angular momentum basis, R-matrix) have confirmed the existence of QS, and obtained concordant numerical values for the rates of H. The experimental manifestation of QS can be obtained with adiabatically varying pulses. Dynamic stabilization (DS), on the other hand, is the general form of the phenomenon, covering also the case of rapidly turned-on pulses. It designates the fact that, for wave-packet solutions of the time-dependent Schrödinger equation, the ionization probability of an atomic electron at the end of a laser pulse of given shape and length, starts decreasing (albeit in an oscillatory manner) beyond a certain critical value of the peak intensity. At still higher intensities, a "destabilization" regime was found, in which the ionization probability increases slowly to 1. We illustrate this behavior with recent results. Further, we give an interpretation of DS based on the expansion of Schrödinger wave packets in terms of Floquet eigenstates ("multistate Floquet theory"). The interpretation relies on the fact that the Floquet states involved manifest QS, that several of them may be populated during the turn-on of the pulse ("shake-up"), and that, if the turn-on is very rapid, the initial population can be projected directed directly into the continuum ("shake-off"). We also comment on the controversy around DS in recent years, originating, on the one hand, in numerical results disagreeing with mainstream calculations, and, on the other, in

  16. Human topographic signatures and derived geomorphic processes across landscapes

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Sofia, Giulia

    2016-02-01

    The Earth's surface morphology, in an abiotic context, is a consequence of major forcings such as tectonic uplift, erosion, sediment transport, and climate. Recently, however, it has become essential for the geomorphological community to also take into account biota as a geomorphological agent that has a role in shaping the landscape, even if at a different scale and magnitude from that of geology. Although the modern literature is flourishing on the impacts of vegetation on geomorphic processes, the study of anthropogenic pressures on geomorphology is still in its early stages. Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes. This review provides an overview of the recent literature on the role of humans as a geological agent in shaping the morphology of the landscape. We explore different contexts that are significantly characterized by anthropogenic topographic signatures: landscapes affected by mining activities, road networks and agricultural practices. We underline the main characteristics of those landscapes and the implications of human impacts on Earth surface processes. The final section considers future challenges wherein we explore recent novelties and trials in the concept of anthropogenic geomorphology. Herein, we focus on the role of high-resolution topographic and remote-sensing technologies. The reconstruction or identification of artificial or anthropogenic topographies provides a mechanism for quantifying anthropogenic changes to landscape systems. This study may allow an improved understanding and targeted mitigation of the processes driving geomorphic

  17. Geomorphic Controls on Aquifer Geometry in Northwestern India

    NASA Astrophysics Data System (ADS)

    van Dijk, W. M.; Densmore, A. L.; Sinha, R.; Gupta, S.; Mason, P. J.; Singh, A.; Joshi, S. K.; Nayak, N.; Kumar, M.; Shekhar, S.

    2014-12-01

    The Indo-Gangetic foreland basin suffers from one of the highest rates of groundwater extraction in the world, especially in the Indian states of Punjab, Haryana and Rajasthan. To understand the effects of this extraction on ground water levels, we must first understand the geometry and sedimentary architecture of the aquifer system, which in turn depend upon its geomorphic setting. We use satellite images and digital elevation models to map the geomorphology of the Sutlej and Yamuna river systems, while aquifer geometry is assessed using ~250 wells that extend to ~300 m depth in Punjab and Haryana. The Sutlej and Yamuna rivers have deposited large sedimentary fans at their outlets. Elongate downslope ridges on the fan surfaces form distributary networks that radiate from the Sutlej and Yamuna fan apices, and we interpret these ridges as paleochannel deposits associated with discrete fan lobes. Paleochannels picked out by soil moisture variations illustrate a complex late Quaternary history of channel avulsion and incision, probably associated with variations in monsoon intensity. Aquifer bodies on the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow a heavy-tailed distribution, probably because of stacked sand bodies. The percentage of aquifer material in individual lithologs decreases downstream, although the exponent on the thickness distribution remains the same, indicating that aquifer bodies decrease in number down fan but do not thin appreciably. Critically, the interfan area between the Sutlej and Yamuna fans has thinner aquifers and a lower proportion of aquifer material, despite its proximal location. Our data show that the Sutlej and Yamuna fan systems form the major aquifer systems in this area, and that their geomorphic setting therefore provides a first-order control on aquifer distribution and geometry. The large spatial heterogeneity of the system must be considered in any future aquifer management scheme.

  18. Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields

    SciTech Connect

    A. Reiman

    2007-10-02

    Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a relatively simple set of parallelogram-shaped coils.

  19. Operational stability enhancement of low-voltage organic field-effect transistors based on bilayer polymer dielectrics

    NASA Astrophysics Data System (ADS)

    She, Xiao-Jian; Liu, Jie; Zhang, Jing-Yu; Gao, Xu; Wang, Sui-Dong

    2013-09-01

    Bilayer polymer dielectrics consisting of hydrophobic thin layers on high-k polyvinylalcohol (PVA) are utilized to realize p-type and n-type low-voltage organic field-effect transistors (OFETs), which show superior mobility and operational stability compared with the devices with PVA single-layer dielectric. The OFETs with top layers containing discrete π-groups, such as polystyrene (PS) and poly(2-vinyl naphthalene) (PVN), show stronger bias stress instability than those with π-group free polymethylmethacrylate (PMMA), and it is ascribed to slow charge trapping into the π-groups under bias stress. By integrating p-type and n-type low-voltage OFETs based on PMMA/PVA bilayer dielectric, a low-power high-stability complementary inverter is achieved.

  20. Chemical Stabilization of Subgrade Soil for the Strategic Expeditionary Landing Field.

    DTIC Science & Technology

    1983-06-01

    used by the NCF: the Pettibone Wood Model 750C "Speedmixer" and the Buffalo-Springfield Model 733 "Soil Stabilizer." The Pettibone Wood unit is...this model, vice the Pettibone Wood model would be assigned to the construction units. Construction Procedures I The objective in constructing a...condition to one that would not be desirable. The Pettibone Wood Company has provided some production data for its model 750C "Speedmixer" [37] which will

  1. Quantitative analysis of geomorphic processes using satellite image data at different scales

    NASA Technical Reports Server (NTRS)

    Williams, R. S., Jr.

    1985-01-01

    When aerial and satellite photographs and images are used in the quantitative analysis of geomorphic processes, either through direct observation of active processes or by analysis of landforms resulting from inferred active or dormant processes, a number of limitations in the use of such data must be considered. Active geomorphic processes work at different scales and rates. Therefore, the capability of imaging an active or dormant process depends primarily on the scale of the process and the spatial-resolution characteristic of the imaging system. Scale is an important factor in recording continuous and discontinuous active geomorphic processes, because what is not recorded will not be considered or even suspected in the analysis of orbital images. If the geomorphic process of landform change caused by the process is less than 200 m in x to y dimension, then it will not be recorded. Although the scale factor is critical, in the recording of discontinuous active geomorphic processes, the repeat interval of orbital-image acquisition of a planetary surface also is a consideration in order to capture a recurring short-lived geomorphic process or to record changes caused by either a continuous or a discontinuous geomorphic process.

  2. 'You are HERE': Connecting the dots with airborne lidar for geomorphic fieldwork

    NASA Astrophysics Data System (ADS)

    Roering, Joshua J.; Mackey, Benjamin H.; Marshall, Jill A.; Sweeney, Kristin E.; Deligne, Natalia I.; Booth, Adam M.; Handwerger, Alexander L.; Cerovski-Darriau, Corina

    2013-10-01

    The emergence of airborne lidar data for studying landscape evolution and natural hazards has revolutionized our ability to document the topographic signature of active and ancient surface processes. Notable lidar-facilitated discoveries, however, would not have been possible without the coupling of fieldwork and lidar analysis, which contradicts the ill-considered notion that high resolution remote sensing technologies will replace geomorphic field investigations. Here, we attempt to identify the primary means by which lidar has and will continue to transform how geomorphologists study landscape form and evolution: (1) lidar serves as a detailed base map for field mapping and sample collection, (2) lidar allows for rapid and accurate description of morphologic trends and patterns across broad areas, which facilitates model testing through increased accuracy and vastly increased sample sizes, and (3) lidar enables the identification of unanticipated landforms, including those with unknown origin. Finally, because the adoption of new technologies can influence cognition and perception, we also explore the notion that the ongoing use of lidar enables geomorphologists to more effectively conceptualize landforms in the field.

  3. GIS Framework for Large River Geomorphic Classification to Aid in the Evaluation of Flow-Ecology Relationships

    SciTech Connect

    Vernon, Christopher R.; Arntzen, Evan V.; Richmond, Marshall C.; McManamay, R. A.; Hanrahan, Timothy P.; Rakowski, Cynthia L.

    2013-02-01

    Assessing the environmental benefits of proposed flow modification to large rivers provides invaluable insight into future hydropower project operations and relicensing activities. Providing a means to quantitatively define flow-ecology relationships is integral in establishing flow regimes that are mutually beneficial to power production and ecological needs. To compliment this effort an opportunity to create versatile tools that can be applied to broad geographic areas has been presented. In particular, integration with efforts standardized within the ecological limits of hydrologic alteration (ELOHA) is highly advantageous (Poff et al. 2010). This paper presents a geographic information system (GIS) framework for large river classification that houses a base geomorphic classification that is both flexible and accurate, allowing for full integration with other hydrologic models focused on addressing ELOHA efforts. A case study is also provided that integrates publically available National Hydrography Dataset Plus Version 2 (NHDPlusV2) data, Modular Aquatic Simulation System two-dimensional (MASS2) hydraulic data, and field collected data into the framework to produce a suite of flow-ecology related outputs. The case study objective was to establish areas of optimal juvenile salmonid rearing habitat under varying flow regimes throughout an impounded portion of the lower Snake River, USA (Figure 1) as an indicator to determine sites where the potential exists to create additional shallow water habitat. Additionally, an alternative hydrologic classification useable throughout the contiguous United States which can be coupled with the geomorphic aspect of this framework is also presented. This framework provides the user with the ability to integrate hydrologic and ecologic data into the base geomorphic aspect of this framework within a geographic information system (GIS) to output spatiotemporally variable flow-ecology relationship scenarios.

  4. Linear stability of buoyant convective flow in a vertical channel with internal heat sources and a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Hudoba, A.; Molokov, S.

    2016-11-01

    Linear stability of buoyant convective flow of an electrically conducting fluid in a vertical channel owing to internal heat sources has been studied. The flow takes place in a transverse, horizontal magnetic field. The results show that up to four different local minima may be present in the neural stability curve. Up to two of these modes may be the most unstable depending, critically, on the value of the Hartmann number. Over a wide range of moderate to high Hartmann numbers, thermal waves dominate the instability. As the Hartmann number increases, however, this mode is strongly damped. Then the so-called Hartmann mode takes over, which involves the characteristic Hartmann layers at the walls appearing due to modification of the basic velocity profile by the magnetic field. Overall, for liquid metals at high magnetic fields, the basic flow is very stable. Variation of the Prandtl number in a wide range has also been performed as, depending on the type of an electrically conducting fluid (liquid metal or various kinds of electrolytes), the Prandtl number varies over several orders of magnitude. As may be expected, the increase of the Prandtl number lowers the instability threshold for the thermal waves.

  5. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application

    PubMed Central

    Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A.; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  6. Geomorphic Function and Restoration Potential of Spring Creeks in Southeastern Idaho: Analysis and Communication

    NASA Astrophysics Data System (ADS)

    Hanrahan, T. P.; Hill, Z.; Levell, A.; Maguire, T.; Risso, D.

    2014-12-01

    A large wetland and floodplain complex adjacent to the Snake River in southeastern Idaho, USA, encompasses numerous spring-fed creeks that originate on the floodplain and discharge at their confluence with the Snake River and American Falls Reservoir. Resource managers are implementing a program to restore these spring creeks for the recovery of Yellowstone cutthroat trout and ecosystem health. Our objectives were to evaluate the physical characteristics of these spring creeks, develop a conceptual model of their geomorphic function, compare the restoration potential of individual reaches, and communicate our findings to a broad audience of resource managers and regional stakeholders in order to foster restoration planning. A geomorphic assessment along 38 km of three spring creeks was completed by collecting data at several transects within distinct geomorphic reaches, and by collecting data continuously throughout all reaches. These data were summarized in a GIS database and used to quantify the overall geomorphic functioning of each reach. The geomorphic functional scores were scaled from 0% (non-functional) to 100% (fully functional). Among all three spring creeks, geomorphic function ranged from 29% to 63%, with bank conditions and riparian vegetation being the primary causes of overall channel degradation. Results from the geomorphic assessment fostered the development of a conceptual model for spring creek function, whereby degraded bank conditions represent the primary controlling factor of decreased geomorphic function and fish habitat quality. The reach-based geomorphic functional scoring provides an indicator of relative restoration potential for each reach, and is one of the factors used in determining site-specific priorities for protecting, enhancing, and restoring spring creeks on the Fort Hall Bottoms. The study results, conceptual model and restoration strategy were communicated to resource managers and regional stakeholders through a graphically

  7. Geomorphic and hydrologic controls on riparian vegetation in the Grand Canyon, Arizona

    SciTech Connect

    Bechtel, D.A.; Stevens, L.E.; Kearsley, M.J.; Ayers, T.J. )

    1993-06-01

    Interactions between geomorphology and hydrology largely control the structure and composition of riparian vegetation in the Grand Canyon. Geologic structure, water table elevation, flooding and sediment deposition collectively create distinctive habitats required by major riparian assemblages in the dam-controlled Colorado River and its unregulated tributaries. Riparian assemblages in dominant geomorphic settings are associated with different combinations of substrata, inundation frequencies, and geomorphic features along this dam-regulated system. Data on recruitment, growth and water potential confirm that physical attributes of geomorphic zones are the causal force behind plant community structure. Alternative biotic hypotheses regarding community organization (e.g. competition, herbivory, dispersal) are discussed and dismissed.

  8. Geomorphic and vegetative recovery processes along modified stream channels of West Tennessee

    USGS Publications Warehouse

    Simon, Andrew; Hupp, C.R. Tennessee

    1992-01-01

    Hundreds of miles of streams in West Tennessee have been channelized or otherwise modt@ed since the turn of century. After all or parts of a stream are straightened, dredged, or cleared, systematic hydrologic, geomorphic, and ecologic processes collectively begin to reduce energy conditions towards the premodified state. One hundred and five sites along 15 streams were studied in the Obion, Forked Deer, Hatchie, and Wolf River basins. All studied streams, except the Hatchie River, have had major channel modi@cation along all or parts of their courses. Bank material shear-strength properties were determined through drained borehole-shear testing (168 tests) and used to interpret present critical bank conditions and factors of safety, and to estimate future channel-bank stability. Mean values of cohesive strength and angle of internal friction were 1.26 pounds per square inch and 30.1 degrees, respectively. Dendrogeomorphic analyses were made using botanical evidence of channel-bank failures to determine rates of channel widening; buried riparian stems were analyzed to determine rates of bank accretion. Channel bed-level changes through time and space were represented by a power equation. Plant ecological analyses were ma& to infer relative bank stability, to identify indicator species of the stage of bank recovery, and to determine patterns of vegetation development through the course of channel evolution. Quantitative data on morphologic changes were used with previously developed six-stage models of channel evolution and bank-slope development to estimate trends of geomorphic and ecologic processes and forms through time. Immediately after channel modr@cations, a 10- to 1%yearperiod of channel-bed degradation ensues at and upstream from the most recent modifications (area of maximum disturbance). Channel-bed lowering by &gradation was as much as 20 feet along some stream reaches. Downstream from the area of maximum disturbance, the bed was aggraded by the

  9. Controls on gas hydrate stability in methane depleted sediments: Laboratory and field measurements

    NASA Astrophysics Data System (ADS)

    Lapham, L.; Chanton, J.; Martens, C. S.

    2009-12-01

    Gas hydrate deposits are the Earth’s largest reservoir of the powerful greenhouse gas methane and thus a key future energy resource. However, hydrate stability in sedimentary environments featuring highly variable methane concentrations needs to be understood to allow resource estimation and recovery. Hydrates are at chemical equilibrium and therefore stable where high pressures, low temperatures, and moderate salinities coexist with methane-saturated pore waters. When all of these conditions are not met, hydrates should dissociate or dissolve, releasing methane to the overlying water and possibly the atmosphere. In addition, other natural factors may control the kinetics of their degradation complicating models for hydrate stability and occurrence. Our measurements indicate that the pore-waters surrounding some shallow buried hydrates are not methane-saturated suggesting that dissolution should occur relatively rapidly. Yet, these hydrate deposits are known to persist relatively unchanged for years. We hypothesize that, once formed, hydrate deposits may be stabilized by natural factors inhibiting dissolution, including oil or microbial biofilm coatings. While most studies have focused on pressure and temperature changes where hydrates occur, relatively few have included measurements of in situ methane concentration gradients because of the difficulties inherent to making such measurements. Here we present recent measurements of methane concentration and stable carbon isotope gradients immediately adjacent to undisturbed hydrate surfaces obtained through deployments of novel seafloor instruments. Our results suggest that the hydrates studied are relatively stable when exposed to overlying and pore-waters that are undersaturated with methane. Concurrent laboratory measurements of methane concentration gradients next to artificial hydrate surfaces were utilized to test our protective coating hypothesis. After a stable dissolution rate for hydrate samples was

  10. Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation

    SciTech Connect

    Brihaye, Yves; Hartmann, Betti

    2011-10-15

    We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field that possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.

  11. Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment.

    PubMed

    Cho, Yeo-Myoung; Ghosh, Upal; Kennedy, Alan J; Grossman, Adam; Ray, Gary; Tomaszewski, Jeanne E; Smithenry, Dennis W; Bridges, Todd S; Luthy, Richard G

    2009-05-15

    We report results on the first field-scale application of activated carbon (AC) amendment to contaminated sediment for in-situ stabilization of polychlorinated biphenyls (PCBs). The test was performed on a tidal mud flat at South Basin, adjacent to the former Hunters Point Naval Shipyard, San Francisco Bay, CA. The major goals of the field study were to (1) assess scale up of the AC mixing technology using two available, large-scale devices, (2) validate the effectiveness of the AC amendment at the field scale, and (3) identify possible adverse effects of the remediation technology. Also, the test allowed comparison among monitoring tools, evaluation of longer-term effectiveness of AC amendment, and identification of field-related factors that confound the performance of in-situ biological assessments. Following background pretreatment measurements, we successfully incorporated AC into sediment to a nominal 30 cm depth during a single mixing event, as confirmed by total organic carbon and black carbon contents in the designated test plots. The measured AC dose averaged 2.0-3.2 wt% and varied depending on sampling locations and mixing equipment. AC amendment did not impact sediment resuspension or PCB release into the water column over the treatment plots, nor adversely impactthe existing macro benthic community composition, richness, or diversity. The PCB bioaccumulation in marine clams was reduced when exposed to sediment treated with 2% AC in comparison to the control plot Field-deployed semi permeable membrane devices and polyethylene devices showed about 50% reduction in PCB uptake in AC-treated sediment and similar reduction in estimated pore-water PCB concentration. This reduction was evident even after 13-month post-treatment with then 7 months of continuous exposure, indicating AC treatment efficacy was retained for an extended period. Aqueous equilibrium PCB concentrations and PCB desorption showed an AC-dose response. Field-exposed AC after 18 months

  12. Reprint of: Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change

    NASA Astrophysics Data System (ADS)

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua B.; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-10-01

    A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of 1 m (greater where pools filled), changed the river from pool-riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, 1.2 million t of new sediment ( 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the

  13. Large-Scale Dam Removal on the Elwha River, Washington, USA: River Channel and Floodplain Geomorphic Change

    NASA Astrophysics Data System (ADS)

    East, A. E.; Pess, G. R.; Bountry, J.; Magirl, C. S.; Ritchie, A. C.; Logan, J. B.; Randle, T. J.; Mastin, M. C.; Duda, J.; Liermann, M. C.; McHenry, M. L.; Beechie, T. J.; Shafroth, P. B.

    2014-12-01

    A substantial increase in fluvial sediment supply causes complex, large-magnitude changes in river and floodplain morphology. Although sedimentary and geomorphic responses to sediment influx are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated downstream effects of sediment released during the largest dam removal in history, on the Elwha River, WA, USA, by measuring changes in riverbed elevation and topography, bed-sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~1 m (greater where pools filled), changed the river from pool-riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to ten-fold greater geomorphic response to dam removal (bed-elevation change) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through the new deposits, approximately 1.2 million t of new sediment (~10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed-sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat

  14. Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change

    NASA Astrophysics Data System (ADS)

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua B.; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool-riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along

  15. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    PubMed Central

    Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.

    2016-01-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312

  16. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes.

    PubMed

    Creissen, Henry E; Jorgensen, Tove H; Brown, James K M

    2016-07-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming.

  17. Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides

    PubMed Central

    Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.; Veprek, S.; Zurek, E.; Mao, H. K.

    2016-01-01

    The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids. PMID:26976479

  18. Effects of Three-Dimensional Electromagnetic Structures on Resistive-Wall-Mode Stability of Reversed Field Pinches

    SciTech Connect

    Villone, F.

    2008-06-27

    In this Letter, the linear stability of the resistive wall modes (RWMs) in toroidal geometry for a reversed field pinch (RFP) plasma is studied. Three computational models are used: the cylindrical code ETAW, the toroidal MHD code MARS-F, and the CarMa code, able to take fully into account the effects of a three-dimensional conducting structure which mimics the real shell geometry of a reversed field pinch experimental device. The computed mode growth rates generally agree with experimental data. The toroidal effects and the three-dimensional features of the shell, like gaps, allow a novel interpretation of the RWM spectrum in RFP's and remove its degeneracy. This shows the importance of making accurate modeling of conductors for the RWM predictions also in future devices such as ITER.

  19. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    SciTech Connect

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  20. Self-oscillation in spin torque oscillator stabilized by field-like torque

    SciTech Connect

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-04-14

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation.

  1. Large amplitude oscillation of magnetization in spin-torque oscillator stabilized by field-like torque

    SciTech Connect

    Taniguchi, Tomohiro Kubota, Hitoshi; Imamura, Hiroshi; Tsunegi, Sumito

    2015-05-07

    Oscillation frequency of spin torque oscillator with a perpendicularly magnetized free layer and an in-plane magnetized pinned layer is theoretically investigated by taking into account the field-like torque. It is shown that the field-like torque plays an important role in finding the balance between the energy supplied by the spin torque and the dissipation due to the damping, which results in a steady precession. The validity of the developed theory is confirmed by performing numerical simulations based on the Landau-Lifshitz-Gilbert equation.

  2. Fourth derivative gravity in the auxiliary fields representation and application to the black-hole stability

    NASA Astrophysics Data System (ADS)

    Mauro, Sebastião; Balbinot, Roberto; Fabbri, Alessandro; Shapiro, Ilya L.

    2015-07-01

    We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in detail and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results clearer. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.

  3. The Global Nonlinear Stability of Minkowski Space for Self-gravitating Massive Fields. The Wave-Klein-Gordon Model

    NASA Astrophysics Data System (ADS)

    LeFloch, Philippe G.; Ma, Yue

    2016-09-01

    The Hyperboloidal Foliation Method (introduced by the authors in 2014) is extended here and applied to the Einstein equations of general relativity. Specifically, we establish the nonlinear stability of Minkowski spacetime for self-gravitating massive scalar fields, while existing methods only apply to massless scalar fields. First of all, by analyzing the structure of the Einstein equations in wave coordinates, we exhibit a nonlinear wave-Klein-Gordon model defined on a curved background, which is the focus of the present paper. For this model, we prove here the existence of global-in-time solutions to the Cauchy problem, when the initial data have sufficiently small Sobolev norms. A major difficulty comes from the fact that the class of conformal Killing fields of Minkowski space is significantly reduced in the presence of a massive scalar field, since the scaling vector field is not conformal Killing for the Klein-Gordon operator. Our method relies on the foliation (of the interior of the light cone) of Minkowski spacetime by hyperboloidal hypersurfaces and uses Lorentz-invariant energy norms. We introduce a frame of vector fields adapted to the hyperboloidal foliation and we establish several key properties: Sobolev and Hardy-type inequalities on hyperboloids, as well as sup-norm estimates, which correspond to the sharp time decay for the wave and the Klein-Gordon equations. These estimates allow us to control interaction terms associated with the curved geometry and the massive field by distinguishing between two levels of regularity and energy growth and by a successive use of our key estimates in order to close a bootstrap argument.

  4. Geomorphic Response to Flat Slab Subduction along the Eastern Foothills of the Colombian Andes

    NASA Astrophysics Data System (ADS)

    Veloza, G.; Taylor, M. H.; Gosse, J. C.; Mora, A.; Becker, T. W.

    2013-12-01

    It is thought that in northwest South America flat slab subduction plays a key role in the recent development of the eastern Colombian Andes. Here we show that the geomorphic response to flat slab subduction is presently occurring >500 km inboard of the subduction zone plate boundary. The Llanos basin located along the eastern edge of the Colombian Andes is experiencing active uplift along the seismically active Cusiana, Yopal, Paz de Ariporo and Tame thrust faults, which we refer to as the Llanos Foothills thrust system (LFTS). The LFTS is comprised of east-directed thrust faults that are listric in geometry with shallowly west-dipping decollements. Locally, actively growing north-south plunging folds are cored by blind thrust faults, and are being incised by antecedent east-flowing streams. Using a combination of field-based observations on the geometry of faulted and folded fluvial terraces, and geochronology from terrestrial cosmogenic nuclides, we show that the fluvial terraces have been uplifted, and locally, incised >200 meters at incision rates exceeding 3 mm/yr. The field observations in combination with earthquakes and geodynamic simulations can be reconciled by flat slab subduction, but it is presently unknown whether the flat slab has a Caribbean or Nazca plate affinity. Different geodynamic scenarios can be tested to understand how the leading edge of the flat slab interacts with the South American craton, and how that interaction controls upper crustal deformation.

  5. Modeling post-fire hydro-geomorphic recovery in the Waldo Canyon Fire

    NASA Astrophysics Data System (ADS)

    Kinoshita, Alicia; Nourbakhshbeidokhti, Samira; Chin, Anne

    2016-04-01

    Wildfire can have significant impacts on watershed hydrology and geomorphology by changing soil properties and removing vegetation, often increasing runoff and soil erosion and deposition, debris flows, and flooding. Watershed systems may take several years or longer to recover. During this time, post-fire channel changes have the potential to alter hydraulics that influence characteristics such as time of concentration and increase time to peak flow, flow capacity, and velocity. Using the case of the 2012 Waldo Canyon Fire in Colorado (USA), this research will leverage field-based surveys and terrestrial Light Detection and Ranging (LiDAR) data to parameterize KINEROS2 (KINematic runoff and EROSion), an event oriented, physically-based watershed runoff and erosion model. We will use the Automated Geospatial Watershed Assessment (AGWA) tool, which is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to parameterize, execute, and spatially visualize runoff and sediment yield for watersheds impacted by the Waldo Canyon Fire. Specifically, two models are developed, an unburned (Bear Creek) and burned (Williams) watershed. The models will simulate burn severity and treatment conditions. Field data will be used to validate the burned watersheds for pre- and post-fire changes in infiltration, runoff, peak flow, sediment yield, and sediment discharge. Spatial modeling will provide insight into post-fire patterns for varying treatment, burn severity, and climate scenarios. Results will also provide post-fire managers with improved hydro-geomorphic modeling and prediction tools for water resources management and mitigation efforts.

  6. Enhanced Surface Mine Reclamation Using Geomorphic Landform Principles

    NASA Astrophysics Data System (ADS)

    Sears, A.; Hopkinson, L. C.; Bise, C.; Quaranta, J.

    2013-12-01

    Approximately 40% of operating mines in West Virginia are surface mines, producing approximately 50 million tons of coal annually. Traditional surface mine techniques include end-dumping burden material removed from the surface into nearby valleys, resulting in valley fills with uniform slopes, terraces, and drainage ditches. These techniques provide the opportunity for improvement in the areas of stream loss, surface water infiltration and runoff, and downstream water quality. The objective of this research was to create alternative surface mine reclamation designs for a permitted valley fill. Four designs were created: i) dendritic drainage; ii) retrofit; iii) dendritic drainage with bench ponds; and iv) dendritic drainage with valley ponds. All designs were based on a permitted surface mine site (1.4 km2) in southern West Virginia. Characteristics such as stream length and cut/fill volume were compared among the four created designs, the traditional design, and the original pre-mined surface. Geomorphic landform principles including creating landforms with overall hydrologic balance were applied to the design permit area. The geomorphic landform design (GLD) resulted in approximately 5.3 km of created channel length, 5.7 x 107 m3 of fill material (same volume cut during mining), and was comprised of ridges, valleys, and channels. The same design principles were applied to the top surface of the traditional valley fill to create the retrofit design. The traditional valley fill (6.9 x 107 m3 volume) consisted of a level top surface with drainage ditches around the perimeter. Features of the retrofit GLD included complex slope profiles and a dendritic drainage pattern. The design resulted in 6.7 x 107 m3 of cut volume and 5.7 x 107 m3 of fill volume and approximately 8.4 km of stream length. The GLD design surface was used as the base for the surface water retention designs, which included a design with three bench ponds and one with three valley ponds. The bench

  7. Applications of Quaternary stratigraphic, soil-geomorphic, and quantitative geomorphic analyses to the evaluation of tectonic activity and landscape evolution in the Upper Coastal Plain, South Carolina

    SciTech Connect

    Hanson, K.L.; Bullard, T.F.; de Wit, M.W.; Stieve, A.L.

    1993-07-01

    Geomorphic analyses combined with mapping of fluvial terraces and upland geomorphic surfaces provide new approaches and data for evaluating the Quaternary activity of post-Cretaceous faults that are recognized in subsurface data at the Savannah River Site in the Upper Coastal Plain of southwestern South Carolina. Analyses of longitudinal stream and terrace profiles, regional slope maps, and drainage basin morphometry indicate long-term uplift and southeast tilt of the site region. Preliminary results of drainage basin characterization suggests an apparent rejuvenation of drainages along the trace of the Pen Branch fault (a Tertiary reactivated reverse fault that initiated as a basin-margin normal fault along the northern boundary of the Triassic Dunbarton Basin). This apparent rejuvenation of drainages may be the result of nontectonic geomorphic processes or local tectonic uplift and tilting within a framework of regional uplift.

  8. Geomorphic evolution of the Lilas River fan delta (Central Evia, Greece), during the Quaternary

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Valkanou, Kanella; Tsironis, Giorgos; Tsodoulos, Ioannis; Iliopoulos, George; Tsanakas, Konstantinos; Batzakis, Vasilis

    2015-04-01

    This study deals with the geomorphic evolution of the Lilas river fan delta, which is a late Holocene fan delta with an area of about 25 km2, extended mainly towards the south Evoikos Gulf and a secondary extension of approximately 5 km2 towards the north Evoikos Gulf (Central Evia Isl., Greece). This work has combined field geomorphological mapping with the study of the stratigraphy of late Pleistocene - Holocene deltaic sediments. A detailed geomorphic map at the scale of 1:5,000 has been prepared showing both the deltaic plain and the coastal zone features using GIS techniques. Comparative interpretation of aerial photographs taken in different dates and reliable maps of the last two centuries along with field observations depict recent changes of the delta morphology. Profiles of seven drill cores up to the depth of 70 m, provided by the municipality authorities, were considered in order to study the late Pleistocene - Holocene stratigraphy of the broader fan delta plain. Additionally, two boreholes reaching the depth of 4.75 m were drilled with a portable drilling set. The stratigraphy of the late Holocene sediments was studied in detail and 41 sediment samples, collected from selected sedimentary layers, were analyzed using micropaleontological and grain size analysis methods, while samples were dated using OSL. The study of the stratigraphy of the late Holocene deltaic sediments showed that during this period the sea invaded the area of the northwestern delta and created a shallow open marine environment which at times was disturbed by multiple quiet lagoonal phases of fine sediment deposition. Geomorphological mapping showed that among the most important factor for the recent development of the delta is fluvial sedimentation. The dominant landforms in the deltaic plain are the numerous abandoned palaeochannels. The main channel of the river changed its course several times leading to the building and subsequent abandonment of at least four fan delta lobes

  9. The Lower Tagus Valley Fault Zone and its associated geomorphic features

    NASA Astrophysics Data System (ADS)

    Besana-Ostman, G. M.; Ferreira, H.; Falcão Flor, A. P.; Narciso, J.; Pinheiro, P.; Heleno, S.; Nemser, E. S.; Vilanova, S. P.; Fonseca, J. F.

    2010-12-01

    Portugal and the SW Iberian region have experienced moderate to strong earthquakes in the past ( e.g. 1344, 1531, 1858, and 1909 events). These earthquakes are generally linked with the Lower Tagus Valley Fault Zone (LTV) and its associated splays. However, despite major contention with respect to its activity, the LTV region is one of two regions identified in Portugal with the highest seismic hazard. Thus, to address the very important issues relating to the fault activity of the LTV, several studies were undertaken to identify and characterize the deformation related to this structure, specifically its location and geometry. To ascertain and establish the location of the LTV, topographic maps, aerial photos, and river systems were analyzed together with other remotely-sensed data coupled with numerous field mapping activities. Results from these efforts indicate recent faulting along the LTV with the trace located within the valley that transects major rivers, tributaries and young terraces. The mapped trace is generally very linear, steeply dipping with landforms indicative of left-lateral displacements. Identified geomorphic features include fault scarps, tectonic bulges & depressions and linear valleys. Other field activities include profile measurements across the fault and evaluation of any possible cumulative lateral displacements. Based on the strike changes along the approximately 85km trace under investigation, at least 2 segments have been identified. Thus, considering its location, strike, and sense of displacement, the newly-identified geomorphic features along the Lower Tagus floodplains may be the most probable active trace associated with the LTV. Trench excavations yielded at least one and possibly two earthquake events recorded in the stratigraphic deformations. The new information above about the LTV location together with its possible segments can be essential input for an improved seismic hazards assessment while the data about the extent of

  10. Improved Resistance Switching Stability in Fe-Doped ZnO Thin Films Through Pulsed Magnetic Field Annealing.

    PubMed

    Xu, Hongtao; Wu, Changjin; Xiahou, Zhao; Jung, Ranju; Li, Ying; Liu, Chunli

    2017-12-01

    Five percent of Fe-doped ZnO (ZnO:Fe) thin films were deposited on Pt/TiO2/SiO2/Si substrates by a spin-coating method. The films were annealed without (ZnO:Fe-0T) and with a pulsed magnetic field of 4 T (ZnO:Fe-4TP) to investigate the magnetic annealing effect on the resistance switching (RS) behavior of the Pt/ZnO:Fe/Pt structures. Compared with the ZnO:Fe-0T film, the ZnO:Fe-4TP film showed improved RS performance regarding the stability of the set voltage and the resistance of the high resistance state. Transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the ZnO:Fe-4TP film contains more uniform grains and a higher density of oxygen vacancies, which promote the easier formation of conducting filaments along similar paths and the stability of switching parameters. These results suggest that external magnetic fields can be used to prepare magnetic oxide thin films with improved resistance switching performance for memory device applications.

  11. Improved Resistance Switching Stability in Fe-Doped ZnO Thin Films Through Pulsed Magnetic Field Annealing

    NASA Astrophysics Data System (ADS)

    Xu, Hongtao; Wu, Changjin; Xiahou, Zhao; Jung, Ranju; Li, Ying; Liu, Chunli

    2017-03-01

    Five percent of Fe-doped ZnO (ZnO:Fe) thin films were deposited on Pt/TiO2/SiO2/Si substrates by a spin-coating method. The films were annealed without (ZnO:Fe-0T) and with a pulsed magnetic field of 4 T (ZnO:Fe-4TP) to investigate the magnetic annealing effect on the resistance switching (RS) behavior of the Pt/ZnO:Fe/Pt structures. Compared with the ZnO:Fe-0T film, the ZnO:Fe-4TP film showed improved RS performance regarding the stability of the set voltage and the resistance of the high resistance state. Transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the ZnO:Fe-4TP film contains more uniform grains and a higher density of oxygen vacancies, which promote the easier formation of conducting filaments along similar paths and the stability of switching parameters. These results suggest that external magnetic fields can be used to prepare magnetic oxide thin films with improved resistance switching performance for memory device applications.

  12. Role of the crystal field stabilization energy in the formation of metal(II) formate mixed crystals

    NASA Astrophysics Data System (ADS)

    Balarew, Christo; Stoilova, Donka; Vassileva, Violeta

    A relationship between the distribution coefficient values and the factors determining the isomorphous substitution of some metal(II) formates (Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) has been found, given by D=[exp⁡{aṡf[ΔR/R]+bṡϕ(Δɛ)+cṡψ(Δs)}/{RT}, where Δ R/R is the relative difference in the ionic radii of the intersubstituting ions, Δɛ is the difference in the Me sbnd O bond energy, Δ s is the difference in the crystal field stabilization energy. The pre-exponential term represents the balance in bonding factors between the ions in the crystal and in the aqueous solution, in the case of ideally mixing in the solid state. The exponential term takes into account the enthalpy of mixing in the solid state. For the isostructural formate salts in which the substitution of a given cation by another one occurs in equivalent octahedral positions, the difference in the crystal field stabilization energy exerts the most important influence on the enthalpy of mixing.

  13. Maturation and Hardening of the Stabilized Radiometer Platforms (STRAPS) Field Campaign Report

    SciTech Connect

    Bucholtz, A.; Bluth, R.; Pfaff, B.

    2016-04-01

    Measurements of solar and infrared irradiance by instruments rigidly mounted to an aircraft have historically been plagued by the introduction of offsets and fluctuations into the data that are solely due to the pitch and roll movements of the aircraft. Two STabilized RAdiometer Platforms (STRAPs) were developed for the U.S. Navy in the early to mid-2000s to address this problem. The development was a collaborative effort between the Naval Research Laboratory (NRL), the Naval Postgraduate School Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), and the U.S. Department of Energy (DOE) Sandia National Laboratories. The STRAPs were designed and built by L-3 Communications Sonoma EO (formerly the small business Sonoma Design Group).

  14. Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1976-01-01

    A quasi-steady analysis of the aeroelastic stability of the lateral (antisymmetric) modes of the 747/orbiter vehicle was accomplished. The interference effect of the orbiter wake on the 747 tail furnishes an aerodynamic undamping contribution to the elastic modes. Likewise, the upstream influence of the 747 tail and aft fuselage on the orbiter beaver-tail rail fairing also is undamping. Fortunately these undamping effects cannot overpower the large damping contribution of the 747 tail and the modes are damped for the configurations analyzed. However, significant interference effects of the orbiter on the 747 tail have been observed in the pitch plane. The high response of the 747 vertical tail in the orbiter wave was also considered. Wind tunnel data points to flapping of the OMS pod wakes as the source of the wake resonance phenomenon.

  15. Changes and Stability in Reasoning after a Field Trip to a Natural History Museum

    ERIC Educational Resources Information Center

    Tenenbaum, Harriet R.; To, Cheryl; Wormald, Daniel; Pegram, Emma

    2015-01-01

    Darwinian evolution is difficult to understand because of conceptual barriers stemming from intuitive ideas. This study examined understanding of evolution in 52 students (M = 14.48 years, SD = 0.89) before and after a guided field trip to a natural history museum and in a comparison group of 18 students (M = 14.17 years, SD = 0.79) who did not…

  16. Numerical Simulations, Mean Field Theory and Modulational Stability Analysis of Thermohaline Intrusions

    DTIC Science & Technology

    2011-09-01

    the temporal and spatial variability of the ocean circulation (Schmitt, 2003). This signifies that these thermohaline intrusions cannot be ignored...still calculating the net effects of double diffusion via crude parameterizations, the study showed that the thermohaline circulations in the model...SIMULATIONS, MEAN FIELD THEORY AND MODULATIONAL STABLITY ANALYSIS OF THERMOHALINE INTRUSIONS by Mark A. Hebert September 2011 Thesis Advisor

  17. Microbial Biomass and Activity in Geomorphic Features in Forested and Urban Restored and Degraded Streams

    EPA Science Inventory

    Geomorphic spatial heterogeneity affects sediment denitrification, an anaerobic microbial process that results in the loss of nitrogen (N), and other anaerobic microbial processes such as methanogenesis in urban streams. We measured sediment denitrification potential (DEA), metha...

  18. Scaling Considerations Related to Interactions of Hydrologics, Pedologic and Geomorphic Processes

    EPA Science Inventory

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K...

  19. Modeling relative frost weathering rates at geomorphic scales

    NASA Astrophysics Data System (ADS)

    Rempel, Alan W.; Marshall, Jill A.; Roering, Joshua J.

    2016-11-01

    Frost damage is a powerful agent of geomorphic change. Cracks can grow when the ice pressure in pores reaches a threshold that depends on matrix properties and crack geometry. Mineral surfaces that are preferentially wetted by liquid water rather than ice are coated by premelted liquid at a pressure that is lower than the ice pressure. Because this pressure difference increases as the temperature cools, when the ice pressure is effectively pinned at the cracking threshold, temperature gradients induce gradients in liquid pressure that draw water towards colder temperatures. Porosity increases and frost damage accumulates in regions where water supplies crack growth. To apply this understanding over the large spatial and temporal scales that are relevant to evolving landscapes, we develop a simple model that tracks porosity changes. Our central assumption is that frost damage is correlated with porosity increases under conditions where frost cracking takes place. Accordingly, we account for the permeability reductions with decreased temperature that accompany ice growth along porous pathways and derive general expressions for the porosity change through time at particular depths, as well as the total porosity increase through all depths beneath a point at the ground surface over the time during which cracking occurs each year. To illustrate the resulting patterns of frost weathering, we consider a general case in which the permeability has a power law dependence on temperature and the annual surface-temperature variation is sinusoidal. We find that the degree of frost damage generally decreases with depth, except at localized depths where damage is elevated because the rock spends longer times near the threshold for cracking, leading to enhanced water supply in comparison with neighboring regions. The magnitude of the net expansion that results from porosity changes at all depths beneath the ground surface is increased for seasonal thermal cycles with larger

  20. Network Dynamic Connectivity for Identifying Hotspots of Fluvial Geomorphic Change

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; Foufoula-Georgiou, E.

    2014-12-01

    The hierarchical branching structure of a river network serves as a template upon which environmental fluxes of water, sediment, nutrients, etc. are conveyed and organized both spatially and temporally within a basin. Dynamical processes occurring on a river network tend to heterogeneously distribute fluxes on the network, often concentrating them into "clusters," i.e., places of excess flux accumulation. Here, we put forward the hypothesis that places in the network predisposed (due to process dynamics and network topology) to accumulate excess bed-material sediment over a considerable river reach and over a considerable period of time reflect locations where a local imbalance in sediment flux may occur thereby highlighting a susceptibility to potential fluvial geomorphic change. We have developed a framework where we are able to track fluxes on a "static" river network using a simplified Lagrangian transport model and use the spatial-temporal distribution of that flux to form a new "dynamic" network of the flux that evolves over time. From this dynamic network we can quantify the dynamic connectivity of the flux and integrate emergent "clusters" over time through a cluster persistence index (CPI) to assess the persistence of mass throughout the network. The framework was applied to sand transport on the Greater Blue Earth River Network in Minnesota where three hotspots of fluvial geomorphic change have been defined based on high rates of channel migration observed from aerial photographic analysis. Locations within the network with high CPI coincided with two of these hotspots, possibly suggesting that channel migration here is driven by sediment deposition "pushing" the stream into and thus eroding the opposite bank. The third hotspot was not identified by high CPI, but instead is believed to be a hotspot of streamflow-driven change based on additional information and the fact that high bed shear stress coincided with this hotspot. The proposed network

  1. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    SciTech Connect

    Afach, S.; Fertl, M.; Franke, B. E-mail: bernhard.lauss@psi.ch; Kirch, K.; Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B. E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G.; Bodek, K.; Zejma, J.; Grujic, Z.; Kasprzak, M.; Weis, A.; Hélaine, V.; Koch, H.-C.; and others

    2014-08-28

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  2. Exploring geomorphic controls on fish bioenergetics in mountain streams: linkages between channel morphology and rearing habitat for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Hassan, M. A.

    2013-12-01

    Landscape heterogeneity constitutes an important control on spatial distribution of habitat for living organisms, at a range of spatial scales. For example, spatial variation in geomorphic processes can spatially structure populations as well as entire communities, and affect various ecosystem processes. We have coupled a 2D hydrodynamic model with a bioenergetic model to study the effects of various channel morphologies and bed textures on rearing habitat for coastal cutthroat trout (Oncorhynchus clarki clarki) in four reaches of a mountain stream. The bioenergetic model uses energy conservation principle to calculate energy budget for fish at any point of the study domain, given a set of relevant local conditions. Specifically, the energy intake is a function of food availability (invertebrate drift) while the energy expenditure occurs through, for example, basal metabolism and swimming to hold position against the flow. Channel morphology and bed texture, through their influence on channel hydraulics, can exert strong control on the spatial pattern of both food flux and swimming cost for drift-feeding fish. Therefore, the coupled hydrodynamic and bioenergetic models, parameterized using an extensive field data set, enabled us to explore mechanistic linkages between geomorphic properties of the study reaches, food resource availability, and the energetic profitability of rearing habitat for different age-classes at both between- and within-reach spatial scales.

  3. Geomorphic signatures of active tectonics in the Trans-Yamuna segment of the western Doon valley, northwest Himalaya, India

    NASA Astrophysics Data System (ADS)

    Philip, George; Sah, Madho P.

    Being involved in the late orogenic movements of the sub-Himalaya, the Doon valley and its Quaternary formations have received considerable attention from Earth scientists in the study of active tectonics and paleoseismic events. Study of aerial photographs and satellite data, and selected field checks not only confirmed neotectonic features already reported by various authors but also revealed the presence of more such features. In response to active tectonics, these features have affected very young terraces and Quaternary sediments in the Trans-Yamuna segment of the Doon valley in the western sub-Himalaya. In the present study, an attempt has been made to understand the neotectonic implications of these movements on landforms in and around Sataun-Sirmuri Tal. Ground evidence indicates that the area has experienced at least three major tectonic impulses since the generation of the Main Boundary Thrust. The major tectonic disturbances are most likely due to co-seismic activity along the ongoing Himalayan tectonic processes. In this paper, we discuss some of the strong geomorphic signatures, such as lineament and active fault traces, pressure ridges, sag ponds, alluvial fans, river terraces and finally landslides, which are indicative of active tectonics in this area. On the basis of the present-day geomorphic configuration of this sub-Himalayan basin, a possible evolutionary history is also presented.

  4. Stability of black holes in Einstein-charged scalar field theory in a cavity

    NASA Astrophysics Data System (ADS)

    Dolan, Sam R.; Ponglertsakul, Supakchai; Winstanley, Elizabeth

    2015-12-01

    Can a black hole that suffers a superradiant instability evolve towards a "hairy" configuration which is stable? We address this question in the context of Einstein-charged scalar field theory. First, we describe a family of static black hole solutions which possess charged scalar-field hair confined within a mirror-like boundary. Next, we derive a set of equations which govern the linear, spherically symmetric perturbations of these hairy solutions. We present numerical evidence which suggests that, unlike the vacuum solutions, the (single-node) hairy solutions are stable under linear perturbations. Thus, it is plausible that stable hairy black holes represent the end point of the superradiant instability of electrically charged Reissner-Nordström black holes in a cavity; we outline ways to explore this hypothesis.

  5. Slope stability analysis of landslide in Wayang Windu Geothermal Field, Pangalengan, West Java Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Yuhendar, A. H.; Wusqa, U.; Kartiko, R. D.; Raya, N. R.; Misbahudin

    2016-05-01

    Large-scale landslide occurred in Margamukti village, Pangalengan, Bandung Regency, West Java Province, Indonesia. The landslide damaged geothermal gas pipeline along 300 m in Wayang Windu Geothermal Field. Based on field observation, landslide occured in rotational sliding movement. Laboratory analysis were conducted to obtain the characteristics of the soil. Based on the condition of the landslide in this area, the Factor of Safety can be simulated by the soil mechanics approach. Factor of safety analysis based on soil cohesion and internal friction angle was conducted using manual sensitivity analysis for back analysis. The analysis resulted soil cohesion in critical condition (FS<1) is 6.01 kPa. This value is smaller than cohesion of undisturbed slope soil sample. Water from rainfall is the most important instability factors in research area. Because it decreases cohesion in soils and increases weight and pore water pressure in granular media.

  6. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1990-01-01

    Methods and systems for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a "packing" are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets.

  7. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1990-07-17

    Methods and systems are disclosed for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a packing'' are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets. 2 figs.

  8. The stability of de Sitter space with a scalar quantum field (II). The linear analysis

    NASA Astrophysics Data System (ADS)

    Rogers, Barrett; Isaacson, Jeffrey A.

    1992-01-01

    Using the semiclassical Einstein equations, we study the spatially homogeneous perturbations of a spatially flat de Sitter metric arising from fluctuations of a scalar quantum field about the Bunch-Davies vacuum state. The exact solution for the metric perturbation in the linear approzimation is obtained in terms of its Laplace transform, and analyzed for late times and arbitrary initial conditions. The results indicate the existence of only two undamped modes: (i) a "neutrally stable" mode, which derives from a spatial coordinate re-scaling symmetry in flat, Robertson-Walker space-times, and (ii) an unstable but unphysical "ghost" mode with a typical time scale m P-1 = G, which is related to the Landau ghost of the underlying quantum field theory. We show how to remove the latter mode by a restriction on the initial data. The existence of any physical instability in this spatially homogeneous system has been ruled out.

  9. An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability

    NASA Astrophysics Data System (ADS)

    Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.

    2016-04-01

    We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton's [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show that anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.

  10. Structure and Stability of Filamentary Clouds Supported by Lateral Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hanawa, Tomoyuki; Tomisaka, Kohji

    2015-03-01

    We have constructed two types of analytical models for an isothermal filamentary cloud supported mainly by magnetic tension. The first one describes an isolated cloud while the second considers filamentary clouds spaced periodically. Both models assume that the filamentary clouds are highly flattened. The former is proved to be the asymptotic limit of the latter in which each filamentary cloud is much thinner than the distance to the neighboring filaments. We show that these models reproduce the main features of the 2D equilibrium model of Tomisaka for a filamentary cloud threaded by a perpendicular magnetic field. It is also shown that the critical mass to flux ratio is M/Φ={{(2π \\sqrt{G})}-1}, where M, Φ and G denote the cloud mass, the total magnetic flux of the cloud, and the gravitational constant, respectively. This upper bound coincides with that for an axisymmetric cloud supported by poloidal magnetic fields. We apply the variational principle for studying the Jeans instability of the first model. Our model cloud is unstable against fragmentation as well as the filamentary clouds threaded by a longitudinal magnetic field. The fastest growing mode has a wavelength several times longer than the cloud diameter. The second model describes quasi-static evolution of a filamentary molecular cloud by ambipolar diffusion.

  11. Formulation, stability and application of a semi-coupled 3-D four-field algorithm

    SciTech Connect

    Kunz, R.F.; Siebert, B.W.; Cope, W.K.; Foster, N.F.; Antal, S.P.; Ettorre, S.M.

    1996-06-01

    A new 3-D four-field algorithm has been developed to predict general two-phase flows. Ensemble averaged transport equations of mass, momentum, energy and turbulence transport are solved for each field (continuous liquid, continuous vapor, disperse liquid, disperse vapor). This four-field structure allows for analysis of adiabatic and boiling systems which contain flow regimes from bubbly through annular. Interfacial mass, momentum, turbulence and heat transfer models provide coupling between phases. A new semi-coupled implicit method is utilized to solve the set of 25 equations which arise in the formulation. In this paper, three important component numerical strategies employed in the method are summarized. These include: (1) incorporation of interfacial momentum force terms in the control volume face flux reconstruction, (2) phase coupling at the linear solver level, and in the pressure-velocity coupling itself and (3) a multi-step Jacobi block correction scheme for efficient solution of the pressure-Poisson equation. The necessity/effectiveness of these strategies is demonstrated in applications to realistic engineering flows. Though some heated flow test cases are considered, the particular numerics discussed here are germane to adiabatic flows with and without mass transfer.

  12. The Ordinary High Water Mark in New England Rivers: Relationships Between Field Indicators and Hydrology

    NASA Astrophysics Data System (ADS)

    Mersel, M. K.; Lichvar, R. W.; Lefebvre, L. E.; Gillrich, J. J.

    2013-12-01

    The Ordinary High Water Mark (OHWM) defines the lateral extent of Federal jurisdiction in rivers and streams of the United States for the purposes of enforcing the Clean Water Act (Section 404) and Rivers and Harbors Act of 1899 (Sections 9 and 10). Substantial intra- and inter-regional variability with respect to hydrology, fluvial dynamics, and the physical and biological indicators of 'ordinary' streamflow conditions makes accurate and consistent identification of the OHWM challenging. These challenges are compounded by inconsistent interpretations of what the OHWM represents geomorphically (in terms of where the OHWM occurs in the fluvial landscape and the physical processes that shape and maintain it) and hydrologically (in terms of the streamflow conditions associated with the OHWM). While scientifically-based and ecologically-conscious concepts and methods for determining the location of the OHWM are essential for protection of fluvial systems, they must be constrained by the practical need for rapid, repeatable, and legally-defensible OHWM identification and delineation practices. This study explores the relationships between OHWM field indicators and the associated hydrologic conditions that shape and maintain them in New England rivers and streams. Based on field sampling in a variety of fluvial settings throughout New Hampshire and Vermont, the existence of hydrologically and/or geomorphically consistent OHWM indicators is assessed. The spatial and temporal stability of various physical and biological indicators of ordinary high water and how these vary in different fluvial settings is explored. This study provides insight into both the conceptual understanding of the OHWM and the field methods used to identify and delineate it in New England. Additionally, this work allows for inter-regional comparison of OHWM indicator occurrence and stability and the hydrologic and geomorphic concepts associated with the OHWM based on similar work in other regions.

  13. Melt Stabilization of PbSnTe in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, William J.; Rosch, William; Chait, Arnon; Yao, Minwu; Szofran, Frank R.

    1999-01-01

    Both the experimental observation and numerical simulation indicate that the Bridgman growth of PbSnTe under the microgravity environment in space is still greatly influenced by buoyancy-induced convection. The application of a magnetic field during the semiconductor growth can dampen the convective flow in the metal-like melt. However, for Bridgman growth of PbSnTe on earth (with either vertical or horizontal configuration), both experimental observation and numerical modeling suggest that even with a strong magnetic furnace (5-Tesla constant axial magnetic field), the convective flow in the melt still cannot be sufficiently suppressed to reach the diffusion-controlled level. In order to completely dampen the buoyancy-induced convection on earth, estimates based on scaling analysis indicate that for common experimental conditions, an extremely high magnetic field is required, far beyond the capacity of the experimental apparatus currently available. Therefore, it is proposed that only the combination of microgravity environment and magnetic damping will produce the desired diffusion-controlled growth state for this particular material. The primary objectives of this study are to provide a quantitative understanding of the complex transport phenomena during solidification of non-dilute binarys, to furnish a numerical tool for furnace design and growth condition optimization, to provide estimates of the required magnetic field strength for low gravity growth, and to assess the role of magnetic damping for space and earth control of the double-diffusive convection. As an integral part of a NASA research program, our numerical simulation supports both the flight and ground-based experiments in an effort to bring together a complete picture of the complex physical phenomena involved in the crystal growth process. For Bridgman growth of PbSnTe under microgravity (with both vertical and horizontal configurations), the simulations suggest that a moderate axial magnetic

  14. Effect of rotating magnetic field on thermocapillary flow stability and the FZ crystal growth on the ground and in space

    NASA Astrophysics Data System (ADS)

    Feonychev, A. I.

    It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of

  15. Predicting the Presence of Large Fish through Benthic Geomorphic Features

    NASA Astrophysics Data System (ADS)

    Knuth, F.; Sautter, L.; Levine, N. S.; Kracker, L.

    2013-12-01

    Marine Protected Areas are critical in sustaining the resilience of fish populations to commercial fishing operations. Using acoustic data to survey these areas promises efficiency, accuracy, and minimal environmental impact. In July, 2013, the NOAA Ship Pisces collected bathymetric, backscatter and water column data for 10 proposed MPA sites along the U.S. Southeast Atlantic continental shelf. A total of 205 km2 of seafloor were mapped between Mayport, FL and Wilmington, NC, using the SIMRAD ME70 and EK60 echosounder systems. These data were processed in Caris HIPS, QPS FMGT, MATLAB and ArcGIS. The backscatter and bathymetry reveal various benthic geomorphic features, including flat sand, rippled sand, and rugose hard bottom. Water column data directly above highly rugose hardbottom contains the greatest counts for large fish populations. Using spatial statistics, such as a geographically weighted regression model, we aim to identify features of the benthic profile, including rugosity, curvature and slope, that can predict the presence of large fish. The success of this approach will greatly expedite fishery surveys, minimize operational cost and aid in making timely management decisions.

  16. Flash floods, hydro-geomorphic response and risk management

    NASA Astrophysics Data System (ADS)

    Braud, Isabelle; Borga, Marco; Gourley, Jonathan; Hürlimann, Marcel; Zappa, Massimilano; Gallart, Francesc

    2016-10-01

    Each year, natural disasters are responsible for fatalities and economic losses worldwide with 101 billion USD in economic losses and 7000 fatalities reported for 2014 (SwissRE, 2015). Even if earthquakes are responsible for most of these fatalities, flash floods and landslides are recognized as a significant source of threat to human lives (SwissRE, 2015). Jonkman (2005), in a global assessment of flood-related casualties, showed that flash floods lead to the highest mortality (number of fatalities divided by the number of affected people). They are also often associated with shallow landslides and geomorphic processes that can increase threat to human lives. Analysis of a global data set of fatalities from non-seismically triggered landslides (Petley, 2012) shows that 2620 fatal landslides were recorded worldwide in the period 2004-2010, causing a total of 32,322 recorded fatalities. In addition, heavy precipitation events, at the origin of flash floods and shallow landsliding are expected to increase in the future (e.g. Scoccimarro et al., 2016 for a recent study in Europe). Progress in flash floods and landslides understanding, forecasting and warning is therefore still needed to disentangle the complex interactions between hazards, exposure and vulnerability and to increase resilience (Borga et al., 2014).

  17. Geomorphic controls on elevational gradients of species richness

    PubMed Central

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-01-01

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity. PMID:26831107

  18. St. Louis Metro East region sediment and geomorphic study

    USGS Publications Warehouse

    Straub, T.D.; ,

    2004-01-01

    Judy's Branch, a small basin (8.64 mi2) near Glen Carbon, Illinois, is selected as a pilot site to determine sediment yield and channel erosion of streams draining the bluffs of the American Bottoms in the Metro East area of Illinois. This paper presents results of an on-going sediment and geomorphic study in Judy's Branch. The average suspended-sediment yield from two upland sub-basins (drainage area equals 0.23 and 0.40 miles2) is 851 tons/mile2-year between October 2000 and September 2003. The suspended-sediment yield at the Route 157 gage (2,188 tons/mile 2-year) (near outlet of the watershed; drainage area = 8.33 miles2) is approximately 1300 tons/mile2-year greater than the average of the upland gages for the same time period. This result is unexpected in that generally the suspended-sediment yield decreases as the watershed area increases because of sediment being stored in the channel and floodplain. The difference indicates a possible increase in yield from a source, such as streambank erosion, and supports the theory that land-use changes increase streamflows that may result in higher rates of streambank erosion. The best estimate of sediment yield from streambank erosion is 1,009 tons/mile 2-year at Route 157. This value is obtained utilizing both bank-rod data and resurveyed cross-section data.

  19. Geomorphic controls on elevational gradients of species richness.

    PubMed

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-02-16

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.

  20. Geomorphic features of Oregon-Washington Project EEZ-SCAN

    SciTech Connect

    Hampton, M.A.; Karl, H.A.; Kenyon, N.H.

    1985-02-01

    During Leg 4 of Project EEZ-SCAN, long-range side-scan sonographs and seismic-reflection profiles were collected off Oregon and Washington, from the edge of the continental shelf to the boundary of the US Exclusive Economic Zone (375 km from shore). The survey was extended seaward where necessary to include the Juan de Fuca Ridge. The project utilized the British GLORIA side-scan sonar system. The records were slant-range corrected and anamorphosed, and mosaics were constructed at a scale of 1:375,000. The sonographs display precise geometry of the major geomorphic features of the area: accretionary ridges, submarine canyons, and fan valleys on the continental slope; deep-sea fans and channels in Cascadia basin; and elongate volcanic ridges making up Gorda and Juan de Fuca Ridges. Canyons with gullied walls deeply incise the upper continental slope off Washington. On the lower slope, the regime apparently changes from one of downcutting to one of overbank deposition. Cascadia basin and Cascadia Channel record intricate and complex drainage histories. The channel is not evident as a major feature on Nitinat Fan but becomes more prominent to the south, especially where it crosses Blanco Fracture Zone and enters Tufts Abyssal Plain. Recent tectonic deformation of oceanic crust in the vicinity of Gorda Ridge is evident in the sonographs. For example, long, linear volcanic ridges flanking the spreading center are distorted and rotated westward at the north end where the Gorda Ridge meets the Blanco Fracture Zone.

  1. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron.

    PubMed

    Johnson, Richard L; Nurmi, James T; O'Brien Johnson, Graham S; Fan, Dimin; O'Brien Johnson, Reid L; Shi, Zhenqing; Salter-Blanc, Alexandra J; Tratnyek, Paul G; Lowry, Gregory V

    2013-02-05

    The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and <2% of the injected nZVI concentration reached that distance. The experimental data also indicated that groundwater flow changed during injection, likely due to hydrogen bubble formation, which diverted the nZVI away from the targeted flow path. The leading edge of the iron plume became fully oxidized during transport. However, within the plume, oxidation of nZVI decreased in a fashion consistent with progressive depletion of aquifer "reductant demand". To directly quantify the extent of nZVI transport, a spectrophotometric method was developed, and the results indicated that deployment of unoxidized nZVI for groundwater remediation will likely be difficult.

  2. √Structure and Stability of Filamentary Clouds Supported by Lateral Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hanawa, Tomoyuki; Tomisaka, Kohji

    2015-08-01

    We have constructed two types of analytical models for an isothermal filamentary cloud supported mainly by magnetic tension. The first one describes an isolated cloud while the second considers filamentary clouds spaced periodically. Both the models assume that the filamentary clouds are highly flattened. The former is proved to be the asymptotic limit of the latter in which each filamentary cloud is much thinner than the distance to the neighboring filaments. We show that these models reproduce the main features of the 2D equilibrium model of a filamentary cloud threaded by a perpendicular magnetic field. It is also shown that the critical mass to flux ratio is M/Φ = 1/(2 π√G ) , where M, Φ, and G denote the cloud mass, the total magnetic flux of the cloud, and the gravitational constant, respectively. This upper bound coincides with that for an axisymmetric cloud supported by poloidal magnetic fields. We apply the variational principle for studying the Jeans instability of the first model. Our model cloud is unstable against fragmentation as well as the filamentary clouds threaded by a longitudinal magnetic field. The fastest growing mode has a wavelength several times longer than the cloud diameter. This is because the first model is supercritical. The second model describes quasi-static evolution of a filamentary molecular cloud by ambipolar diffusion. The mass to flux ratio increases at the filament center and exceeds the critical value at a certain point. It is suggested that the filamentary cloud becomes unstable against fragmentation at the critical mass to flux ratio.

  3. Tune-stabilized, non-scaling, fixed-field, alternating gradient accelerator

    DOEpatents

    Johnstone, Carol J [Warrenville, IL

    2011-02-01

    A FFAG is a particle accelerator having turning magnets with a linear field gradient for confinement and a large edge angle to compensate for acceleration. FODO cells contain focus magnets and defocus magnets that are specified by a number of parameters. A set of seven equations, called the FFAG equations relate the parameters to one another. A set of constraints, call the FFAG constraints, constrain the FFAG equations. Selecting a few parameters, such as injection momentum, extraction momentum, and drift distance reduces the number of unknown parameters to seven. Seven equations with seven unknowns can be solved to yield the values for all the parameters and to thereby fully specify a FFAG.

  4. Wide field array calibration dependence on the stability of measured dose distributions

    SciTech Connect

    Simon, Thomas A.; Simon, William E.; Kahler, Darren; Li, Jonathan; Liu, Chihray

    2010-07-15

    Purpose: The aim of this work was to simulate the effect of dose distribution changes on detector array calibrations and to explore compensatory methods that are used during calibration measurements. Methods: The array calibration technique that was investigated is known as wide field (WF) calibration. Using this method, a linear array [y-axis (65 detectors) of the IC PROFILER (Sun Nuclear Corporation, Melbourne, FL)] is calibrated with three measurements ({alpha}, {theta}, and {lambda}); each measurement uses the same radiation field, which is larger than the array. For measurement configuration {theta}, the array is rotated by 180 deg. from its position in {alpha}; for {lambda}, the array is shifted by one detector from its position in {theta}. The relative detector sensitivities are then determined through ratios of detector readings at the same field locations (using {theta} and {lambda}). This method results in error propagation that is proportional to the number of detectors in the array. During the procedure, the calibration protocol operates under three postulates, which state that (a) the beam shape does not change between measurements; (b) the relative sensitivities of the detectors do not change; and (c) the scatter to the array does not change as the array is moved. The WF calibration's sensitivity to a postulate (a) violation was quantified by applying a sine shaped perturbation (of up to 0.1%) to {alpha}, {theta}, or {lambda}, and then determining the change relative to a baseline calibration. Postulate (a) violations were minimized by using a continuous beam and mechanized array movement during {theta} and {lambda}. A continuously on beam demonstrated more stable beam symmetry as compared to cycling the beam on and off between measurements. Additional side-scatter was also used to satisfy postulate (c). Results: Simulated symmetry perturbations of 0.1% to {theta} or {lambda} resulted in calibration errors of up to 2%; {alpha} was relatively immune to

  5. A roughness-corrected index of relative bed stability for regional stream surveys

    EPA Science Inventory

    Quantitative regional assessments of streambed sedimentation and its likely causes are hampered because field investigations typically lack the requisite sample size, measurements, or precision for sound geomorphic and statistical interpretation. We adapted an index of relative b...

  6. The Growth of Simple Mountain Ranges: 2. Geomorphic Evolution at Fault Linkage Sites

    NASA Astrophysics Data System (ADS)

    Dawers, N. H.; Densmore, A. L.; Davis, A. M.; Gupta, S.

    2002-12-01

    Large normal faults grow partly through linkage of fault segments and partly by fault tip propagation. The process by which fault segments interact and link is critical to understanding how topography is created along fault-bounded ranges. Structural studies and numerical models have shown that fault linkage is accompanied by localised increased displacement rate, which in turn drives rapid base level fall at the evolving range front. The changes in both along-strike fault structure and base level are most pronounced at and adjacent to sites of fault linkage. These areas, known as relay zones, thus preserve clues to both the tectonic history and the geomorphic evolution of large fault-bounded mountain ranges. We discuss the temporal and spatial constraints on the evolution of footwall-range topography, by comparing a number of active fault linkage sites, using field and DEM observations of the spatial pattern of footwall denudation. In particular, we focus on sites in Pleasant Valley, Nevada (Pearce and Tobin fault segments) and in the northeastern Basin and Range (the Beaverhead fault, Idaho, and the Star Valley fault, Wyoming). The study areas represent different stages in the structural and geomorphic evolution of relay zones, and allow us to propose a developmental model of large fault evolution and landscape response. Early in the growth of fault segments into an overlapping geometry, catchments may form within the evolving relay. However, increasing displacement rate associated with fault interaction and linkage makes these catchments prone to capture by streams that have incised headward from the range front. This scenario leads to locally increased footwall denudation in the vicinity of the capture site. Longitudinal profiles of streams differ with respect to position along relays and whether or not any particular stream has been able to capture early-formed drainages. The restricted space between interacting en echelon fault segments helps preserve close

  7. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes

    NASA Astrophysics Data System (ADS)

    D'Alpaos, Andrea; Marani, Marco

    2016-07-01

    How do interacting physical and biological processes control the form and evolution of salt-marsh landscapes? Salt marshes are shaped by the erosion, transport and deposition of sediment, all of which are mediated by vegetation. In addition, vegetation plays a key role in deposition of organic material within marsh sediments. The influence of biota on salt-marsh landscapes is indeed well established. However, a fascinating and relevant question is whether one can identify the signatures of the underlying and intertwined physical and biological processes in marsh landscapes, and indeed infer from them the dynamic behavior of these coupled physical and biological systems. Can one detect landscape features that would not have emerged in the absence of interactions and feedbacks between physical and biological processes? Here we use field evidence and a two-dimensional biomorphodynamic model to show that the interplay between physical and biological processes generates striking biological and morphological patterns. One such pattern, vegetation zonation, consists of a mosaic of vegetation patches, of approximately uniform composition, displaying sharp transitions in the presence of extremely small topographic gradients. The model describes the mutual interaction and adjustment between tidal flows, sediment transport, morphology, and vegetation distribution, thus allowing us to study the biomorphodynamic evolution of salt-marsh platforms. A number of different scenarios were modelled to analyze the changes induced in bio-geomorphic patterns by varying environmental forcings, such as the rate of relative sea level rise (RSLR) andsediment supply (SS), and by plant species with different characteristics. Model results show how marsh responses to changes in forcings are highly spatially dependent: while changes in SS most directly affect marsh areas closest to the channels, changes in the rate of RSLR affect the marsh platform as a whole. Organic sediment accretion is very

  8. Shocks in unmagnetized plasma with a shear flow: Stability and magnetic field generation

    SciTech Connect

    Dieckmann, M. E.; Bock, A.; Ynnerman, A.; Ahmed, H.; Doria, D.; Sarri, G.; Borghesi, M.

    2015-07-15

    A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that are coherent over tens of electron skin depths.

  9. The effects of a uniform axial magnetic field on the global stability of the rotating-disk boundary-layer

    NASA Astrophysics Data System (ADS)

    Davies, Christopher; Thomas, Christian

    2006-11-01

    Following on from the earlier discovery by Lingwood (1995) that the rotating-disk boundary-layer is absolutely unstable, Jasmine & Gajjar (2005) have shown that the application of a uniform axial magnetic field can raise the critical Reynolds number for the onset of absolute instability. As with Lingwood's analysis, a parallel-flow' type of approximation is needed in order to derive this locally-based stability result. The approximation amounts to a freezing out' of the underlying radial variation of the mean flow. Numerical simulations have been conducted to investigate the behaviour of linearized disturbances in the genuine rotating disk boundary layer, where the radial dependence of the mean flow is fully accounted for. This extends the work of Davies & Carpenter (2003), who studied the more usual rotating-disk problem, in the absence of any magnetic field. The simulation results suggest that globally unstable behaviour can be promoted when a uniform axial magnetic field is applied. Impulsively excited disturbances were found to display an increasingly rapid growth at the radial position of the impulse, albeit without any selection of a dominant frequency, as would be more usual for an unstable global mode. This is very similar to the behaviour to that was observed in a recent investigation by Davies & Thomas (2005) of the effects of mass transfer, where suction was also found to promote global instability.

  10. Explosively produced fracture of oil shale. Progress report, July-September 1981. [Field experiments; computer models; retort stability

    SciTech Connect

    1982-04-01

    The Los Alamos National Laboratory is conducting rock fragmentation research in oil shale to develop the blasting technologies and designs required to create a rubble bed for a modified in situ retort. This report outlines our first field experiments at the Anvil Points Mine in Colorado. These experiments are part of a research program, sponsored by the Laboratory through the Department of Energy and by a Consortium of oil companies. Also included are some typical numerical calculations made in support of proposed field experiments. Two papers detail our progress in computer modeling and theory. The first presents a method for eliminating hourglassing in two-dimensional finite-difference calculations of rock fracture without altering the physical results. The second discusses the significant effect of buoyancy on tracer gas flow through the retort. A paper on retort stability details a computer application of the Schmidt graphical method for calculating fine-scale temperature gradients in a retort wall. The final paper, which describes our approach to field experiments, presents the instrumentation and diagnostic techniques used in rock fragmentation experiments at Anvil Points Mine.

  11. Mapping fields of 137Cs contamination in soils in the context of their stability and hierarchical spatial structure

    NASA Astrophysics Data System (ADS)

    Korobova, E.; Romanov, S.

    2009-04-01

    Technogenic radioisotopes now dispersed in the environment are involved in natural and technogenic processes forming specific geochemical fields and serving as tracers of modern mass migration and geofield transformation. Cs-137 radioisotopes having a comparatively long life time are known for a fast fixation by the top soil layer; radiocesium activity can be measured in the surface layer in field conditions. This makes 137Cs rather convenient for the study and modeling a behavior of toxic elements in soils [1-3, 5] and for the investigation of relative stability and hierarchical fractal structures of the soil contamination of the atmospheric origin [2]. The objective of the experimental study performed on the test site in Bryansk region was to find and prove polycentric regularities in the structure of 137Cs contamination field formed after the Chernobyl accident in natural conditions. Such a character of spatial variability can be seen on the maps showing different soil parameters and chemical element distribution measured in grids [3-5]. The research was undertaken to support our idea of the regular patterns in the contamination field structure that enables to apply a mathematical theory of the field to the geochemical fields modeling on the basis of a limited number of direct measurements sufficient to reproduce the configuration and main parameters of the geochemical field structure on the level of the elementary landscape geochemical system (top-slope-bottom). Cs-137 field measurements were verified by a direct soil sampling. Soil cores dissected into subsamples with increments of 2, 5 and 10 cm, were taken to the depth of 40 cm at points with various surface activity located at different elements of relief. According to laboratory measurements 137Cs inventory in soils varied from 344 to 3448 kBq/m2 (983 kBq/m2 on the average). From 95,1% to 98,0% to of the total inventory was retained in the top 20-cm soil layer. This confirmed that field gamma spectrometry

  12. Global seafloor geomorphic features map: applications for ocean conservation and management

    NASA Astrophysics Data System (ADS)

    Harris, P. T.; Macmillan-Lawler, M.; Rupp, J.; Baker, E.

    2013-12-01

    Seafloor geomorphology, mapped and measured by marine scientists, has proven to be a very useful physical attribute for ocean management because different geomorphic features (eg. submarine canyons, seamounts, spreading ridges, escarpments, plateaus, trenches etc.) are commonly associated with particular suites of habitats and biological communities. Although we now have better bathymetric datasets than ever before, there has been little effort to integrate these data to create an updated map of seabed geomorphic features or habitats. Currently the best available global seafloor geomorphic features map is over 30 years old. A new global seafloor geomorphic features map (GSGM) has been created based on the analysis and interpretation of the SRTM (Shuttle Radar Topography Mission) 30 arc-second (~1 km) global bathymetry grid. The new map includes global spatial data layers for 29 categories of geomorphic features, defined by the International Hydrographic Organisation. The new geomorphic features map will allow: 1) Characterization of bioregions in terms of their geomorphic content (eg. GOODS bioregions, Large Marine Ecosystems (LMEs), ecologically or biologically significant areas (EBSA)); 2) Prediction of the potential spatial distribution of vulnerable marine ecosystems (VME) and marine genetic resources (MGR; eg. associated with hydrothermal vent communities, shelf-incising submarine canyons and seamounts rising to a specified depth); and 3) Characterization of national marine jurisdictions in terms of their inventory of geomorphic features and their global representativeness of features. To demonstrate the utility of the GSGM, we have conducted an analysis of the geomorphic feature content of the current global inventory of marine protected areas (MPAs) to assess the extent to which features are currently represented. The analysis shows that many features have very low representation, for example fans and rises have less than 1 per cent of their total area

  13. The role of feedbacks between geomorphic and vegetation dynamics for lateral moraine slope configuration and development

    NASA Astrophysics Data System (ADS)

    Eichel, Jana; Corenblit, Dov; Dikau, Richard

    2015-04-01

    In proglacial areas, lateral moraines represent one of the most important sediment storages and dynamic areas. Glacier retreat since the Little Ice Age is accelerated by climate change and believed to control simultaneous paraglacial adjustment and vegetation succession on lateral moraine slopes. Biogeomorphic research suggests strong feedbacks between geomorphic processes, landforms, vegetation and vegetation dynamics in these environments. However, for lateral moraine slopes, these feedbacks are only partly understood. In our study, we use and develop biogeomorphic concepts in a scale-based approach to understand the role of feedbacks between geomorphic and vegetation dynamics for lateral moraine slope configuration and development. We illustrate our concepts with empirical evidences from on-going research in the Turtmann glacier forefield (Switzerland) and give first answers to the following questions: (i) Which plant species can influence geomorphic dynamics on lateral moraine slopes, and how? (ii) Under which conditions can feedbacks between geomorphic and vegetation dynamics occur? (iii) Which are the main factors influencing lateral moraine slope configuration and development? On a small scale (i), we identify dwarf shrubs (e.g., Dryas octopetala L.) as an engineer species, which can influence geomorphic processes through their specifically adapted plant functional traits, e.g., the trapping of fine sediments in their high-cover mats. On a meso scale (ii), feedbacks between geomorphic and vegetation dynamics can occur in a 'biogeomorphic feedback window' with moderate magnitude and frequency processes, e.g., debris slides, interrill erosion, or between lower frequency processes, e.g., debris flows and snow avalanches. Under these conditions, engineer species with high resistance can establish and change the dominant geomorphic processes from flow and sliding to bound solifluction. Our empirical data shows that on a large scale (iii), vegetation and

  14. Geomorphically Effective Energy Expenditure for Quantifying Channel Responses to Extreme Floods

    NASA Astrophysics Data System (ADS)

    Amponsah, William; Righini, Margherita; Wohl, Ellen E.; Borga, Marco; Marchi, Lorenzo; Rathburn, Sara L.; Surian, Nicola; Zoccatelli, Davide

    2016-04-01

    Flash floods are characterized by strong spatio-temporal rainfall variability and therefore show variations in energy expenditure and associated geomorphic impacts that depend on geological controls on channel geometry and sediment characteristics, as well as on variations in flood intensity. Geomorphic modification is expected to occur in river channels when driving forces (i.e., hydraulic and abrasive forces of water and sediment acting on the channel) exceed threshold of resisting forces (i.e., the ability of channel boundaries to remain unchanged by the passage of water and sediments). However, these forces that determine the capacity of floods to modify existing channel configuration are extremely difficult to quantify. Geomorphic impacts or hazards usually take the form of erosional and depositional modification of the pre-flood channel and valley geometry. A central question in hydrogeomorphology relates to why flash floods of similar magnitudes and intensities sometimes produce dissimilar geomorphic results? In fact, some less magnitude floods in terms of discharge per unit of drainage area have been found to produce major geomorphic damage than some high magnitude events. Furthermore, the use of peak instantaneous flow parameters such as discharge, velocity, shear stress and stream power to quantify geomorphic changes have often been non-deterministic and/or inconclusive. Investigations are therefore needed on how factors such as channel geometry, substrate, riparian vegetation, sediment supply, and flood magnitude and duration can interact and influence geomorphic effectiveness of high magnitude floods. The main objective of this study is to assess the coupled influence of flood-flow duration and total energy expenditure on geomorphic response to extreme flash floods, which is aimed at developing an index that combines flow duration, stream power per unit area and threshold for major channel erosion to be evaluated as a predictor of geomorphic adjustment

  15. Hydrologic and geomorphic changes resulting from episodic glacial lake outburst floods: Rio Colonia, Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Jacquet, J.; McCoy, S. W.; McGrath, D.; Nimick, D. A.; Fahey, M.; O'kuinghttons, J.; Friesen, B. A.; Leidich, J.

    2017-01-01

    Glacial lake outburst floods (GLOFs) are a prominent but poorly understood cryospheric hazard in a warming climate. We quantify the hydrologic and geomorphic response to 21 episodic GLOFs that began in April 2008 using multitemporal satellite imagery and field observations. Peak discharge exiting the source lake became progressively muted downstream. At 40-60 km downstream, where the floods entered and traveled down the main stem Rio Baker, peak discharges were generally < 2000 m3 s-1, although these flows were still >1-2 times the peak annual discharge of this system, Chile's largest river by volume. As such, caution must be applied to empirical relationships relating lake volume to peak discharge, as the latter is dependent on where this observation is made along the flood path. The GLOFs and subsequent periods of free drainage resulted in > 40 m of incision, the net removal of 25 × 106 m3 of sediment from the source lake basin, and a nonsteady channel configuration downstream. These results demonstrate that GLOFs sourced from low-order tributaries can produce significant floods on major main stem rivers, in addition to significantly altering sediment dynamics.

  16. Low 10Be concentrations in geomorphic studies: Problems, strategies, and examples

    NASA Astrophysics Data System (ADS)

    Savi, Sara; Tofelde, Stefanie; Wittmann, Hella; Binnie, Steven; Heinze, Stefan; Schildgen, Taylor

    2016-04-01

    In the last two decades, the use of in situ cosmogenic nuclides for the quantification of exogenic processes and the determination of exposure ages of landforms has seen a fast and broad expansion. Among the group of terrestrial cosmogenic nuclides that can be used to study geomorphic processes (e.g. 10Be, 26Al, 36Cl, 3He, 21Ne and 22Ne), in situ-produced 10Be is the most widely used, especially for the quantification of denudation rates. However, there are a number of problematic issues related to the use of cosmogenic nuclide techniques in rapidly evolving landscapes because of the typically low 10Be abundancies. The difficulties encountered in these settings are mainly related to (1) the mass of clean quartz that can be obtained and thus the total amount of 10Be available, and (2) the backgrounds of the sample preparation and measurement processes. In order to improve measurements in these circumstances, a series of steps can be taken into consideration during field work and sample preparation to help improve the final results. We discuss the quality of the blanks, blank corrections, and the limits of detection of the technique in the specific case of low concentration samples. Based on a number of different synthetic scenarios, we demonstrate the importance of blank corrections and utility of determination limits, and we highlight how these parameters may affect the reliability and meaningfulness of the results. This information in turn helps to illustrate how low-concentration data should be interpreted and reported.

  17. Allozyme genotype in mosquitofish, Gambusia holbrooki, during mercury exposure: Temporal stability, concentration effects and field verification

    SciTech Connect

    Heagler, M.G. Rutgers, The State Univ. of New Jersey, New Brunswick )

    1993-02-01

    Genotype frequencies at nine enzyme loci were examined in a population of mosquito fish, Gambusia holbrooki, during acute inorganic mercury exposure at three concentration. Genotype at one locus, glucose phosphate isomerase-2 (Gpi-2), was correlated with time to death (TTD) at the low mercury concentration, but genotypes at none of the nine loci were related to TTD at the medium or the high mercury concentration. A survey of mosquitofish from a mercury-contaminated canal was undertaken to determine if the results of laboratory exposures could be used to predict accurately the genetic profile of mercury-contaminated field populations. Mosquitofish collected from the contaminated canal had a significantly lower frequency of the Gpi-2[sup 38] allele than mosquitofish collected from the adjacent noncontaminated river. The Gpi-2 allozymes may be useful as an indicator of pollutant stress if used in conjunction with a thorough understanding of the structure and history of the population.

  18. Nitrapyrin in streams: The first study documenting off-field transport of a nitrogen stabilizer compound

    USGS Publications Warehouse

    Woodward, Emily; Hladik, Michelle; Kolpin, Dana W.

    2016-01-01

    Nitrapyrin is a bactericide that is co-applied with fertilizer to prevent nitrification and enhance corn yields. While there have been studies of the environmental fate of nitrapyrin, there is no documentation of its off-field transport to streams. In 2016, 59 water samples from 11 streams across Iowa were analyzed for nitrapyrin and its degradate, 6-chloropicolinic acid (6-CPA), along with three widely used herbicides, acetochlor, atrazine, and metolachlor. Nitrapyrin was detected in seven streams (39% of water samples) with concentrations ranging from 12 to 240 ng/L; 6-CPA was never detected. The herbicides were ubiquitously detected (100% of samples, 28–16000 ng/L). Higher nitrapyrin concentrations in streams were associated with rainfall events following spring fertilizer applications. Nitrapyrin persisted in streams for up to 5 weeks. These results highlight the need for more research focused on the environmental fate and transport of nitrapyrin and the potential toxicity this compound could have on nontarget organisms.

  19. Flexible Organic/Inorganic Hybrid Field-Effect Transistors with High Performance and Operational Stability.

    PubMed

    Dahiya, Abhishek S; Opoku, Charles; Poulin-Vittrant, Guylaine; Camara, Nicolas; Daumont, Christophe; Barbagiovanni, Eric G; Franzò, Giorgia; Mirabella, Salvo; Alquier, Daniel

    2017-01-11

    The production of high-quality semiconducting nanostructures with optimized electrical, optical, and electromechanical properties is important for the advancement of next-generation technologies. In this context, we herein report on highly obliquely aligned single-crystalline zinc oxide nanosheets (ZnO NSs) grown via the vapor-liquid-solid approach using r-plane (01-12) sapphire as the template surface. The high structural and optical quality of as-grown ZnO NSs has been confirmed using high-resolution transmission electron microscopy and temperature-dependent photoluminescence, respectively. To assess the potential of our NSs as effective building materials in high-performance flexible electronics, we fabricate organic (parylene C)/inorganic (ZnO NS) hybrid field-effect transistor (FET) devices on flexible substrates using room-temperature assembly processes. Extraction of key FET performance parameters suggests that as-grown ZnO NSs can successfully function as excellent n-type semiconducting modules. Such devices are found to consistently show very high on-state currents (Ion) > 40 μA, high field-effect mobility (μeff) > 200 cm(2)/(V s), exceptionally high on/off current modulation ratio (Ion/off) of around 10(9), steep subthreshold swing (s-s) < 200 mV/decade, very low hysteresis, and negligible threshold voltage shifts with prolonged electrical stressing (up to 340 min). The present study delivers a concept of integrating high-quality ZnO NS as active semiconducting elements in flexible electronic circuits.

  20. Validity decay versus validity stability in STEM and non-STEM fields

    NASA Astrophysics Data System (ADS)

    Westrick, Paul Andrew

    The main purpose of this study was to determine if validity coefficients for ACT scores, both composite scores and subject area test scores, and high school grade point average (HSGPA) decayed or held stable over eight semesters of undergraduate study in science, technology, engineering, and mathematics (STEM) fields at civilian four-year institutions, and whether the decay patterns differed from those found in non-STEM fields at the same institutions. Data from 62,212 students at 26 four-year institutions were analyzed in a hierarchical meta-analysis in which student major category (SMC), gender, and admission selectivity levels were considered potential moderators. Four sets of analyses were run. The first was by the three SMCs: STEM-Quantitative majors, STEM-Biological majors, and non-STEM majors. The second was SMC by gender. The third was SMC by admission selectivity level. The fourth was SMC by gender by admission selectivity level. The results across all four analyses indicated that ACT score validity coefficients for STEM-Quantitative and STEM-Biological majors decayed less over eight semesters than the validity coefficients for non-STEM majors did. This was true for the uncorrected and corrected validity coefficients. For the HSGPA validity coefficients, this was true for the corrected validity coefficients. Non-STEM majors had very similar validity decay patterns regardless of the level of analysis. However, four of the eight STEM subgroups in the final set of analyses had minimal amounts of decay, and in some instances small amounts of validity growth.

  1. Field Dissipation and Storage Stability of Glufosinate Ammonium and Its Metabolites in Soil

    PubMed Central

    Zhang, Yun; Wang, Kai; Wu, Junxue; Zhang, Hongyan

    2014-01-01

    A simple analytical method was developed to measure concentrations of glufosinate ammonium and its metabolites, 3-methylphosphinico-propionic acid (MPP) and 2-methylphosphinico-acetic acid (MPA), in field soil samples. To determine the minimum quantification limit, samples were spiked at different levels (0.1, 0.5, and 1.0 mg/kg). Soil samples were extracted with ammonium hydroxide solution 5% (v/v), concentrated, and reacted with trimethyl orthoacetate (TMOA) in the presence of acetic acid for derivatization. The derivatives were quantified by gas chromatography (GC) using a flame photometric detector (FPD). The linear correlation coefficients of glufosinate ammonium, MPP, and MPA in soil were 0.991, 0.999, and 0.999, respectively. The recoveries of this method for glufosinate ammonium, MPP, and MPA in soil were 77.2–95.5%, 98.3–100.3%, and 99.3–99.6% with relative standard deviations (RSD) of 1.8–4.1%, 0.4–1.4%, and 1.3–2.0%, respectively. Glufosinate ammonium dissipated rapidly in soil to MPA in hours and gradually degraded to MPP. The half-life of glufosinate ammonium degradation in soil was 2.30–2.93 days in an open field. In soil samples stored at −20°C glufosinate ammonium was stable for two months. The results of this study should provide guidance for the safe application of the herbicide glufosinate ammonium to agricultural products and the environment. PMID:25374604

  2. Phase-field simulation of the stability of reaction phases at UO2/β-Zr interface

    NASA Astrophysics Data System (ADS)

    Nishida, Yuki; Tsukada, Yuhki; Koyama, Toshiyuki; Kurata, Masaki

    2015-11-01

    The stability of reaction phases at the UO2/Zr (β-Zr) interface in the O-U-Zr system was simulated by a newly constructed multi-phase-field model. At the UO2/Zr (β-Zr) interface, we assumed a liquid phase and an α-Zr (Hcp) phase. The phase growths and atomic diffusions of the constituent elements were simultaneously calculated in one-dimensional simulations. During isothermal aging at 1500 °C and 1600 °C, the thicknesses of both reaction phases increased. As O diffused much faster than U, O concentration increased immediately in the α-Zr (Hcp) phase. On account of its high O concentration, the α-Zr (Hcp) phase rapidly expanded toward the β-Zr (Bcc) side, blocking the diffusion of U from the liquid phase to the β-Zr (Bcc) phase. The stability of the liquid phase was influenced by the U concentration in the liquid phase and was correlated to the growth of the α-Zr (Hcp) phase that was accelerated by the diffusion of O from UO2 to the α-Zr (Hcp) phase.

  3. 1/R multidimensional gravity with form-fields: Stabilization of extra dimensions, cosmic acceleration, and domain walls

    SciTech Connect

    Saidov, Tamerlan; Zhuk, Alexander

    2007-04-15

    We study multidimensional gravitational models with scalar curvature nonlinearity of the type 1/R and with form-fields (fluxes) as a matter source. It is assumed that the higher dimensional space-time undergoes Freund-Rubin-like spontaneous compactification to a warped product manifold. It is shown that for certain parameter regions the model allows for a freezing stabilization of the internal space near the positive minimum of the effective potential which plays the role of the positive cosmological constant. This cosmological constant provides the observable late-time accelerating expansion of the Universe if the parameters of the model are fine tuned. Additionally, the effective potential has the saddle point. It results in domain walls in the Universe. We show that these domain walls do not undergo inflation.

  4. 1/R multidimensional gravity with form-fields: Stabilization of extra dimensions, cosmic acceleration, and domain walls

    NASA Astrophysics Data System (ADS)

    Saidov, Tamerlan; Zhuk, Alexander

    2007-04-01

    We study multidimensional gravitational models with scalar curvature nonlinearity of the type 1/R and with form-fields (fluxes) as a matter source. It is assumed that the higher dimensional space-time undergoes Freund-Rubin-like spontaneous compactification to a warped product manifold. It is shown that for certain parameter regions the model allows for a freezing stabilization of the internal space near the positive minimum of the effective potential which plays the role of the positive cosmological constant. This cosmological constant provides the observable late-time accelerating expansion of the Universe if the parameters of the model are fine tuned. Additionally, the effective potential has the saddle point. It results in domain walls in the Universe. We show that these domain walls do not undergo inflation.

  5. Attention Induced Gain Stabilization in Broad and Narrow-Spiking Cells in the Frontal Eye-Field of Macaque Monkeys

    PubMed Central

    Brandt, Christian; Dasilva, Miguel; Gotthardt, Sascha; Chicharro, Daniel; Panzeri, Stefano; Distler, Claudia

    2016-01-01

    Top-down attention increases coding abilities by altering firing rates and rate variability. In the frontal eye field (FEF), a key area enabling top-down attention, attention induced firing rate changes are profound, but its effect on different cell types is unknown. Moreover, FEF is the only cortical area investigated in which attention does not affect rate variability, as assessed by the Fano factor, suggesting that task engagement affects cortical state nonuniformly. We show that putative interneurons in FEF of Macaca mulatta show stronger attentional rate modulation than putative pyramidal cells. Partitioning rate variability reveals that both cell types reduce rate variability with attention, but more strongly so in narrow-spiking cells. The effects are captured by a model in which attention stabilizes neuronal excitability, thereby reducing the expansive nonlinearity that links firing rate and variance. These results show that the effect of attention on different cell classes and different coding properties are consistent across the cortical hierarchy, acting through increased and stabilized neuronal excitability. SIGNIFICANCE STATEMENT Cortical processing is critically modulated by attention. A key feature of this influence is a modulation of “cortical state,” resulting in increased neuronal excitability and resilience of the network against perturbations, lower rate variability, and an increased signal-to-noise ratio. In the frontal eye field (FEF), an area assumed to control spatial attention in human and nonhuman primates, firing rate changes with attention occur, but rate variability, quantified by the Fano factor, appears to be unaffected by attention. Using recently developed analysis tools and models to quantify attention effects on narrow- and broad-spiking cell activity, we show that attention alters cortical state strongly in the FEF, demonstrating that its effect on the neuronal network is consistent across the cortical hierarchy. PMID

  6. Variable stability of antibiotic-resistance markers in Bacillus cereus UW85 in the soybean rhizosphere in the field.

    PubMed

    Halverson, L J; Clayton, M K; Handelsman, J

    1993-04-01

    We compared the stability of antibiotic-resistance markers in strains derived from Bacillus cereus UW85 in culture media and in the soybean rhizosphere in a growth chamber and in the field. We studied two independent, spontaneous mutants resistant to neomycin, three independent, spontaneous mutants resistant to streptomycin, and strains carrying plasmid pBC16, which encodes tetracycline resistance. Antibiotic-resistance markers were maintained in populations of all UW85 derivatives in culture and in the rhizosphere of soybeans grown in soil in a growth chamber. In two field experiments, antibiotic resistance was substantially lost in rhizosphere populations of B. cereus as early as 14 or as late as 116 days after planting. To distinguish between death of the inoculated strain and loss of its marker, we tested populations of B. cereus for other phenotypes (orange pigmentation, plasmid-borne resistance to tetracycline, and biocontrol activity) that are typical of UW85-derivatives used as inoculum, but atypical of the indigenous populations of B. cereus, and these phenotypes were maintained in populations from which the marker was lost. In general, neomycin-resistance markers were maintained at a higher frequency than streptomycin-resistance markers, and maintenance of antibiotic-resistance markers varied with position on the root and with the year of the experiment. In a semi-defined medium, the UW85 derivatives grew at the same rate as the wild type at 28 degrees C, but most grew more slowly than the wild type at 16 degrees C, demonstrating that antibiotic resistance can affect fitness under some conditions. The results suggest that the stability of antibiotic-resistance markers should be assessed in the ecosystems in which they will be studied.

  7. Using Mixed Morphometrics and Near-Surface Geophysics to Characterize Geomorphic Evolution of the South Texas Coastal Zone

    NASA Astrophysics Data System (ADS)

    Weymer, B. A.; Barrineau, C. P.; Bishop, M. P.; Everett, M. E.; Tchakerian, V. P.; Houser, C.

    2013-12-01

    different depositional environments, while surface parameters reveal zones of instability and stability. It is believed that these are related and different surface characteristics signify divergent process-morphological histories within the landscape. As a result, we aim to classify the landscape by landform / process regime as well as geomorphic history using non-invasive geophysical methods and aerial LiDAR.

  8. The Geomorphic Role of Large Woody Debris in River Avulsions

    NASA Astrophysics Data System (ADS)

    Stout, J. C.; Grove, J. R.; Rutherfurd, I.; Marren, P.

    2014-12-01

    The avulsion or abandonment of a river channel in favor of a new course on the floodplain is integral to the development and maintenance of anabranching planforms. Avulsions tend to occur on rivers where the rate of vertical aggradation outpaces lateral migration. In fine cohesive floodplain sediments, avulsions evolve through five stages dependent on the amount of flow and sediment being captured by the new channel. There is limited data available to allow the prediction of autogenic and allogenic controls on: the time over which an avulsion is active; its likely location; the frequency of occurrence; and the length of the interavulsion period. The delivery of wood to the river channel is an autogenic process which has received much attention over the last three decades. Surprisingly it has not previously been considered in anabranch avulsions, apart from where log-jams entirely block channels. The presence of large woody debris in the channel acts as a roughness element, trapping, and impeding the movement of sediments and deflecting flow onto the floodplain. We hypothesize that the delivery rates of wood to the channel, and its subsequent configuration (i.e. dimension, amount, volume, spatial arrangement and blockage ratio), alters flow and sediment routing through the channel. These changes directly influence the stages of avulsion development. To test this conceptual model we have used eleven floodplain cores to reconstruct the timing of a Holocene avulsion. The morphology of the channel in each evolutionary stage was used to estimate the relative role of wood as a roughness element. This was done by coupling a mass balance wood delivery model, run in a Monte Carlo simulation, to the geomorphic processes of each evolutionary stage of the avulsion. Our results allow us to quantify the importance of in-channel wood during each stage of the avulsion. These data highlight that there are critical points in the evolution of anabranching channels when large wood

  9. Geomorphic response to historic drought in northern California

    NASA Astrophysics Data System (ADS)

    Bennett, Georgina; Roering, Joshua; Mackey, Ben; Handwerger, Alexander; Guillod, Benoit; Schmidt, David

    2016-04-01

    California declared a state of drought emergency in early 2014 with a recent study showing that 2012 - 2015 constitutes a drought unprecedented in the state's historical record. Much has been reported on the drought's devastating impacts on water supply, agriculture and wildfire occurrence as well as its possible origins, including the role of anthropogenic climate change. However, its geomorphic impact has been given little attention. We address this gap by assessing the response of earthflows to drought in the Eel River in northern California. Despite their slow-moving nature, earthflows contribute ~50% of erosion in the region and are a constant threat to transport routes, making their behavior important to understand. We used pixel tracking in the program COSI CORR to measure velocities of 98 earthflows for the periods 2009 - 2012 and 2012 - 2015 from 0.5 m resolution Worldview satellite imagery. Putting these measurements in the context of velocities manually measured from aerial photographs dating back to the 1950s indicates that whilst earthflows have decelerated significantly in the ensuing drought this is part of a slowing trend commencing around 2000. We show that decadal earthflow velocities are closely correlated with the Palmer Drought Severity Index (PDSI), which in turn is correlated with North American Land Data Assimilation System (NLDAS)-modeled soil moisture. Slowing of earthflows since 2000 is coincident with a reduction of soil moisture, starting with the 2000 - 2001 drought from which earthflows have not yet returned to their pre-drought values and which set the stage for the slowest mean velocities observed in recent decades during the current drought. It will be important to continue to monitor these earthflows as rains return, particularly given the hypothesis that extreme drying may increase pathways for future runoff into earthflows.

  10. Flood Hazard Mapping over Large Regions using Geomorphic Approaches

    NASA Astrophysics Data System (ADS)

    Samela, Caterina; Troy, Tara J.; Manfreda, Salvatore

    2016-04-01

    Historically, man has always preferred to settle and live near the water. This tendency has not changed throughout time, and today nineteen of the twenty most populated agglomerations of the world (Demographia World Urban Areas, 2015) are located along watercourses or at the mouth of a river. On one hand, these locations are advantageous from many points of view. On the other hand, they expose significant populations and economic assets to a certain degree of flood hazard. Knowing the location and the extent of the areas exposed to flood hazards is essential to any strategy for minimizing the risk. Unfortunately, in data-scarce regions the use of traditional floodplain mapping techniques is prevented by the lack of the extensive data required, and this scarcity is generally most pronounced in developing countries. The present work aims to overcome this limitation by defining an alternative simplified procedure for a preliminary, but efficient, floodplain delineation. To validate the method in a data-rich environment, eleven flood-related morphological descriptors derived from DEMs have been used as linear binary classifiers over the Ohio River basin and its sub-catchments, measuring their performances in identifying the floodplains at the change of the topography and the size of the calibration area. The best performing classifiers among those analysed have been applied and validated across the continental U.S. The results suggest that the classifier based on the index ln(hr/H), named the Geomorphic Flood Index (GFI), is the most suitable to detect the flood-prone areas in data-scarce environments and for large-scale applications, providing good accuracy with low requirements in terms of data and computational costs. Keywords: flood hazard, data-scarce regions, large-scale studies, binary classifiers, DEM, USA.

  11. Three-dimensional visualization for evaluating automated, geomorphic pattern-recognition analyses of crustal structures

    NASA Astrophysics Data System (ADS)

    Foley, M. G.

    1991-02-01

    We are developing and applying a suite of automated remote geologic analysis (RGA) methods at Pacific Northwest Laboratory (PNL) for extracting structural and tectonic patterns from digital models of topography and other spatially registered geophysical data. In analyzing a map area, the geologist employs a variety of spatial representations (e.g., topographic maps; oblique, vertical and vertical stereographic aerial photographs; satellite-sensor images) in addition to actual field observations to provide a basis for recognizing features (patterns) diagnostic or suggestive of various geologic and geomorphic features. We intend that our automated analyses of digital models of elevation use the same photogeologic pattern-recognition methods as the geologist's; otherwise there is no direct basis for manually evaluating results of the automated analysis. Any system for automating geologic analysis should extend the geologist's pattern-recognition abilities and quantify them, rather than replace them. This requirement means that results of automated structural pattern-recognition analyses must be evaluated by geologists using the same method that would be employed in manual field checking: visual examination of the three-dimensional relationships among rocks, erosional patterns, and identifiable structures. Interactive computer-graphics in quantitative (i.e., spatially registered), simulated three-dimensional perspective and stereo are thus critical to the integration and interpretation of topography, imagery, point data, RGA-identified fracture/fault planes, stratigraphy, contoured geophysical data, nonplanar surfaces, boreholes, and three-dimensional zones (e.g., crush zones at fracture intersections). This graphical interaction presents the megabytes of digital geologic and geophysical data to the geologist in the same spatial format that field observations would take, permitting direct evaluation of RGA methods and results.

  12. Biogeochemical patchiness, geomorphic feedbacks, and flow connectivity in river-floodplain corridors

    NASA Astrophysics Data System (ADS)

    Larsen, L.; Harvey, J. W.; Maglio, M.

    2014-12-01

    Ecogeomorphology is the understanding of the signature of life on landforms. The field has advanced primarily on the basis of studies of physical-biological feedbacks between vegetation, flow, and sediment transport. However, biogeochemistry also has the potential to exert strong feedback on life and landforms. This potential is particularly high in tropical and subtropical regions, where vegetation is often phosphorus (P)-limited. Aquatic landscapes are essentially closed systems for P—in contrast to nitrogen—and the transport of P primarily in particulate form can establish a tight feedback between biogeochemical and geomorphic processes in these regions. Here we examine mechanisms that can contribute to spatial patterning, or patchiness, in nutrient distributions and vegetated landforms. We evaluated hypotheses for evapotranspiration focusing, differential hydrologic exchange, and particulate nutrient redistribution mechanisms to explain spatial patterns of P retention and function of the Everglades. Based on field measurements in sloughs and on slightly higher and more densely vegetated ridges and field-grounded mechanistic models, we quantified P fluxes attributable to the three mechanisms. Findings suggest that evapotranspiration focusing is not a driver of Everglades nutrient retention nor of ridge and slough patterning. Instead, differential hydrologic exchange, driven by different periods of groundwater-surface water connectivity across topographic elements, is the primary cause of elevated P concentrations on ridges and can completely explain interpatch differences in long-term P accumulation rates. With historical flow velocities, which were an order of magnitude higher than at present, particulate P redistribution would have further increased the interpatch difference in long-term P retention rates nearly twofold, with potential consequences for landscape pattern development. In conclusion, differential hydrologic exchange and particulate nutrient

  13. Field Deployment for In-situ Metal and Radionuclide Stabilization by Microbial Metabolites

    SciTech Connect

    Turick, C. E.; Knox, A. S.; Dixon, K. L.; Roseberry, R. J.; Kritzas, Y. G

    2005-09-26

    A novel biotechnology is reported here that was demonstrated at SRS that facilitates metal and actinide immobilization by incorporating the physiology and ecology of indigenous bacteria. This technology is based on our previous work with pyomelanin-producing bacteria isolated from SRS soils. Through tyrosine supplementation, overproduction of pyomelanin was achieved, which lead ultimately to metal and actinide immobilization, both in-vitro and in-situ. Pyomelanin is a recalcitrant microbial pigment and a humic type compound in the class of melanin pigments. Pyomelanin has electron shuttling and metal chelation capabilities and thus accelerates the bacterial reduction and/or immobilization of metals. Pyomelanin is produced outside the cell and either diffuses away or attaches to the cell surface. In either case, the reduced pyomelanin is capable of transferring electrons to metals as well as chelating metals. Because of its recalcitrance and redox cycling properties, pyomelanin molecules can be used over and over again for metal transformation. When produced in excess, pyomelanin produced by one bacterial species can be used by other species for metal reduction, thereby extending the utility of pyomelanin and further accelerating metal immobilization rates. Soils contaminated with Ni and U were the focus of this study in order to develop in-situ, metal bioimmobilization technologies. We have demonstrated pyomelanin production in soil from the Tims Branch area of SRS as a result of tyrosine amendments. These results were documented in laboratory soil column studies and field deployment studies. The amended soils demonstrated increased redox behavior and sequestration capacity of U and transition metals following pyomelanin production. Treatments incorporating tyrosine and lactate demonstrated the highest levels of pyomelanin production. In order to determine the potential use of this technology at other areas of SRS, pyomelanin producing bacteria were also quantified

  14. The origin of excellent gate-bias stress stability in organic field-effect transistors employing fluorinated-polymer gate dielectrics.

    PubMed

    Kim, Jiye; Jang, Jaeyoung; Kim, Kyunghun; Kim, Haekyoung; Kim, Se Hyun; Park, Chan Eon

    2014-11-12

    Tuning of the energetic barriers to charge transfer at the semiconductor/dielectric interface in organic field-effect transistors (OFETs) is achieved by varying the dielectric functionality. Based on this, the correlation between the magnitude of the energy barrier and the gate-bias stress stability of the OFETs is demonstrated, and the origin of the excellent device stability of OFETs employing fluorinated dielectrics is revealed.

  15. Age calibration of weathering fractures in desert clasts: A new approach to dating geomorphic surfaces in arid landscapes

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Roda Boluda, Duna; Whittaker, Alex

    2014-05-01

    Advances in geomorphological and sedimentological research depend on the availability of reliable exposure age constraints. Establishing robust age models at a high spatial and temporal resolution is crucial for measuring rates of geomorphological change and decoding complex landscapes shaped by time-dependent forces, e.g. climate fluctuations. A number of isotopic and luminescence techniques are now available for dating geomorphic surfaces, however they remain expensive and time-consuming to deploy with detailed coverage over space and time in many study areas. For this reason, quick and accessible methods for correlating and extrapolating these chronologies are needed. In arid landscapes, among others, a variety of weathering-induced changes occur to geomorphic and sedimentary surfaces, and many of these processes occur at predictable rates and can be quantified using objective, field based measurements. One example is the gradual widening of fractures that exist within boulders on desert surfaces, by a combination of processes including salt weathering and freeze-thaw cycles. The recent emergence of very detailed exposure age models in a number of locations means it is now possible to measure the rates of desert weathering processes, and use them as fully calibrated age indicators themselves. With the potential to significantly extend the coverage of existing age constraints, this kind of quantitative age correlation would enable a broad range of geomorphological and sedimentological research that depends on detailed absolute age models. We have measured the mean widths of hundreds of vertical fractures that dissect granitic boulders, on a variety of alluvial surfaces in Owens Valley, California, which have themselves been independently dated in detail using cosmogenic nuclides. Our data demonstrates for the first time that these fractures widen at a predictable, steady rate of approximately 1 mm ka-1 for at least the last 150 ka, in this arid study area in the

  16. On a family of (1+1)-dimensional scalar field theory models: Kinks, stability, one-loop mass shifts

    SciTech Connect

    Alonso-Izquierdo, A.; Mateos Guilarte, J.

    2012-09-15

    In this paper we construct a one-parametric family of (1+1)-dimensional one-component scalar field theory models supporting kinks. Inspired by the sine-Gordon and {phi}{sup 4} models, we look at all possible extensions such that the kink second-order fluctuation operators are Schroedinger differential operators with Poeschl-Teller potential wells. In this situation, the associated spectral problem is solvable and therefore we shall succeed in analyzing the kink stability completely and in computing the one-loop quantum correction to the kink mass exactly. When the parameter is a natural number, the family becomes the hierarchy for which the potential wells are reflectionless, the two first levels of the hierarchy being the sine-Gordon and {phi}{sup 4} models. - Highlights: Black-Right-Pointing-Pointer We construct a family of scalar field theory models supporting kinks. Black-Right-Pointing-Pointer The second-order kink fluctuation operators involve Poeschl-Teller potential wells. Black-Right-Pointing-Pointer We compute the one-loop quantum correction to the kink mass with different methods.

  17. Overview of transport and MHD stability study: focusing on the impact of magnetic field topology in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ida, K.; Nagaoka, K.; Inagaki, S.; Kasahara, H.; Evans, T.; Yoshinuma, M.; Kamiya, K.; Ohdach, S.; Osakabe, M.; Kobayashi, M.; Sudo, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kawamura, G.; Kato, D.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohno, N.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yokoyama, M.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, C.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tsuchiya, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; T., Ii; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Kobayashi, T.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Shimizu, A.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.; Collaborators

    2015-10-01

    The progress in the understanding of the physics and the concurrent parameter extension in the large helical device since the last IAEA-FEC, in 2012 (Kaneko O et al 2013 Nucl. Fusion 53 095024), is reviewed. Plasma with high ion and electron temperatures (Ti(0) ˜ Te(0) ˜ 6 keV) with simultaneous ion and electron internal transport barriers is obtained by controlling recycling and heating deposition. A sign flip of the nondiffusive term of impurity/momentum transport (residual stress and convection flow) is observed, which is associated with the formation of a transport barrier. The impact of the topology of three-dimensional magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum, particle/impurity transport and magnetohydrodynamic stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1 × 1019 m-3 and with high electron and ion temperatures (Ti(0) ˜ Te(0) ˜ 2 keV), resulting in 3.36 GJ of input energy, is achieved.

  18. Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions.

    PubMed

    Hily, Jean-Michel; Scorza, Ralph; Malinowski, Tadeusz; Zawadzka, Barbara; Ravelonandro, Michel

    2004-10-01

    Plum pox virus (PPV) is one of the most devastating diseases of Prunus species. Since few sources of resistance to PPV have been identified, transgene-based resistance offers a complementary approach to developing PPV-resistant stone fruit cultivars. C5, a transgenic clone of Prunus domestica L., containing the PPV coat protein (CP) gene, has been described as highly resistant to PPV in greenhouse tests, displaying characteristics typical of post-transcriptional gene silencing (PTGS). We show in this report that C5 trees exposed to natural aphid vectors in the field remained uninfected after 4 years while susceptible transgenic and untransformed trees developed severe symptoms within the first year. C5 trees inoculated by chip budding showed only very mild symptoms and PPV could be detected in these trees by IC-RT-PCR. The PPV-CP transgene in C5 was specifically hyper-methylated with no detectable expression. These results indicate both stability and efficiency of PTGS-based PPV resistance in plum under field conditions.

  19. Discussion of parameters, lattices and beam stability for a 200-TeV low-field collider

    SciTech Connect

    Neuffer, D.

    1996-03-01

    Recently, it has been suggested that improved technology and reduced costs in remotely-drilled small-diameter tunnels, coupled with improvements in robotic technology, may make the original concept of the ``desertron`` more realistic and affordable. In this concept, a long, small-diameter tunnel is drilled (<{approximately}1m diameter ``sewer`` pipe) and filled with long, low-cost magnets, which are installed and serviced robotically. To obtain high-energy then requires low cost magnets, which are iron-dominated ``superferric`` magnets (B{approximately}2 T). A large circumference is then required ({approximately}1000 km for {approximately}100 TeV/beam). Table 1 shows parameters for a 200 TeV proton-proton collider, based on the premise of a large low-cost ring with super-ferric magnets. While outline designs for a low-cost {approximately}2T dipole have been initiated, an accelerator requires beam stability, which means quadrupole fields for focusing, as well as sextupoles for chromatic correction, and further design tolerances and correctors to obtain sufficiently linear fields. Previously we have developed initial lattices and dynamic motion discussions for the earlier 40 TeV incarnation of the superferric supercollider. In this note we apply those results to initiate discussions of the dynamic requirements of this 200 TeV collider.

  20. Increased size and stability of CA1 and CA3 place fields in HCN1 knockout mice

    PubMed Central

    Hussaini, Syed A.; Kempadoo, Kimberly A.; Thuault, Sébastien J.; Siegelbaum, Steven A.; Kandel, Eric R.

    2015-01-01

    Summary Hippocampal CA1 and CA3 pyramidal neuron place cells encode the spatial location of an animal through localized firing patterns called “place fields”. To explore the mechanisms that control place cell firing and their relationship to spatial memory, we studied mice with enhanced spatial memory resulting from forebrain-specific knockout of the HCN1 hyperpolarization-activated cation channel. HCN1 is strongly expressed in CA1 neurons and entorhinal cortex grid cells, which provide spatial information to the hippocampus. Both CA1 and CA3 place fields were larger but more stable in the knockout mice, with the effect greater in CA1 than CA3. As HCN1 is only weakly expressed in CA3 place cells, their altered activity likely reflects loss of HCN1 in grid cells. The more pronounced changes in CA1 likely reflect the intrinsic contribution of HCN1. The enhanced place field stability may underlie the effect of HCN1 deletion to facilitate spatial learning and memory. PMID:22099465

  1. Stability properties of the steady state solutions of a non-neutral plasma diode when there is a uniform magnetic field along transverse direction

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. I.; Pramanik, Sourav; Gerasimenko, A. B.; Chakrabarti, Nikhil

    2017-02-01

    The stability properties of a non-neutral plasma diode [Pramanik et al., Phys. Plasmas 23, 103105 (2016)] have been investigated for the stationary states taking arbitrary value of the neutralization parameter. A constant magnetic field is also assumed to be applied externally along the transverse direction. The (η, ɛ)-diagram technique is used to study the stability features of all types of solutions with respect to small aperiodic perturbations. Employing the first order perturbation theory, a relevant dispersion relation has been derived and analyzed for the regimes when electrons are not turned around by the magnetic field. These regimes of solutions belong to the "Normal C branch" and "C-overlap branch" of the "emitter field strength vs. diode gap"-diagrams. With the help of this dispersion relation, both aperiodic and oscillatory stability properties of such solutions have been presented.

  2. Eco-geomorphic processes that maintain a small coral reef island: Ballast Island in the Ryukyu Islands, Japan

    NASA Astrophysics Data System (ADS)

    Kayanne, Hajime; Aoki, Kenji; Suzuki, Takuya; Hongo, Chuki; Yamano, Hiroya; Ide, Yoichi; Iwatsuka, Yuudai; Takahashi, Kenya; Katayama, Hiroyuki; Sekimoto, Tsunehiro; Isobe, Masahiko

    2016-10-01

    Landform changes in Ballast Island, a small coral reef island in the Ryukyu Islands, were investigated by remote sensing analysis and a field survey. The area of the island almost doubled after a mass coral bleaching event in 1998. Coral branches generated by the mass mortality and broken by waves were delivered and stocked on a reef flat and accumulated to expand the area of the island. In 2012 high waves generated by typhoons also changed the island's topography. Overall, the island moved in the downdrift direction of the higher waves. Waves impacting both sides of the island piled up a large volume of coral gravels above the high-tide level. Eco-geomorphic processes, including a supply of calcareous materials from the corals on the same reef especially during stormy wave conditions, were key factors in maintaining the dynamic topographic features of this small coral reef island.

  3. THE USE OF GEOMORPHOLOGY IN THE ASSESSMENT OF STREAM STABILITY

    EPA Science Inventory

    Various applications of geomorphic data and stream stability rating systems are being considered in order to establish tools for the development of TMDLs for clean sediment in streams. The transport of "clean" sediment, as opposed to contaminated sediment, is of concern to the en...

  4. Predicting geomorphic stability in low-order streams of the western Lake Superior basin - Poster

    EPA Science Inventory

    Width:depth ratios, entrenchment ratios, gradients, and median substrate particle sizes (D50s) were measured in 32 second- and third-order stream reaches in the western Lake Superior basin in 1997-1998. More than 700 measurements of suspended sediment concentration during snowmel...

  5. Lithologic, structural, and geomorphic controls on ribbon forest patterns in a glaciated mountain environment

    NASA Astrophysics Data System (ADS)

    Butler, David R.; Malanson, George P.; Bekker, Matthew F.; Resler, Lynn M.

    2003-09-01

    So-called "ribbon forests" have been attributed to snowdrift patterns and fire history without reference to geomorphology [Vegetatio 19 (1969) 192.]. This paper illustrates how site conditions of geomorphology and geology explain the origin of ribbon forests. In Glacier National Park, MT (USA), regional tectonic uplift associated with the Laramide Orogeny produced structural features that amplify lithologic differences. Pleistocene glaciation scoured deeply along the strike of bedding planes, highlighting this pattern and in some cases producing fine-scale parallel finger lakes between forested ribbon strips. Twelve ribbon forest sites on both sides of the Continental Divide were closely studied on stereoscopic aerial photographs, and several of these sites were examined in the field or from helicopter overflights. In all cases, geologic and geomorphic conditions explain the location and distribution of the ribbon forests. Change-detection of the distribution of trees versus nontree-covered surfaces in an area of ribbon forest on Flattop Mountain, a complex uplifted synclinal structure, was undertaken using panchromatic, low-altitude aerial photographs from 1966 to 1991. Areas changed from forest to meadow and from meadow to forest in roughly equal amounts in a generally random spatial pattern. No evidence was seen to suggest that the creation of one ribbon eventually created another downwind, as suggested by Billings. Aerial photograph interpretation, field examination and soils analyses of forest ribbons and adjacent unforested meadows clearly illustrated that trees occupy higher, parallel to subparallel, well-drained sites where the spatial pattern is in turn a distinct reflection of the spatial pattern of structure and stratigraphy. Meadows occupy topographically lower positions between ridges where erosion along bedding plane strike was concentrated. Topography sets conditions that allow tree growth in certain locations while precluding it in immediately

  6. Inductive sustainment of oblate field-reversed configurations with the assistance of magnetic diffusion, shaping, and finite-Larmor radius stabilization

    SciTech Connect

    Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Jacobson, C. M.; McGeehan, B.; Ren, Y.; Inomoto, M.; Maqueda, R.

    2008-02-15

    Oblate field-reversed configurations (FRCs) have been sustained for >300 {mu}s, or >15 magnetic diffusion times, through the use of an inductive solenoid. These argon FRCs can have their poloidal flux sustained or increased, depending on the timing and strength of the induction. An inward pinch is observed during sustainment, leading to a peaking of the pressure profile and maintenance of the FRC equilibrium. The good stability observed in argon (and krypton) does not transfer to lighter gases, which develop terminal co-interchange instabilities. The stability in argon and krypton is attributed to a combination of external field shaping, magnetic diffusion, and finite-Larmor radius effects.

  7. Geomorphic Mapping and Paleoterrain Generation for use in Modeling Holocene (8,000 1,500 yr) Agropastoral Landuse and Landscape Interactions in Southeast Spain

    NASA Astrophysics Data System (ADS)

    Arrowsmith, J. R.; Dimaggio, E. N.; Barton, C. M.; Sarjoughian, H. S.; Fall, P.; Falconer, S. E.; Ullah, I. I.

    2006-12-01

    Dramatic changes in land use were associated with the rise of agriculture in the mid Holocene. Both the surface properties and the drainage networks were changed. Along with the direct modifications to surface properties (vegetation change, sediment liberation, and compaction) and drainage network alteration (terracing, canals), up and downstream responses in the watersheds communicated these changes throughout the landscape. The magnitude, rate, and feedbacks with the growing human populations are critical questions in our effort to assess human-landscape interactions. Our interdisciplinary team has focused on two field sites around the Mediterranean for model development and testing. We are combining high resolution process- based models of landscape change implemented within the GRASS GIS with agent based models of agropastoral behavior and driven by high resolution climate and vegetation models. In the Spanish field area (Penaguila Valley, 38.41 N 0.23 W), we have produced detailed (1:10,000) geomorphic maps which we combine with high resolution Digital Elevation Models (DEMs) on which we can run the surface process models to assess the portions of the landscape that are most sensitive to the postulated agropastoral landuse changes. To support this modeling we have produced the 1 m DEMs from softcopy photogrammetry. This DEM has greatly improved our overall spatial resolution to permit more accurate terrace correlations and improved quantitative assessment of morphologic processes (e.g. channel erosion, slope stability). In stereo, we have mapped overall landscape morphology that emphasizes areas of active erosion and alluvial terrace surfaces. Alluvial terraces are crucial to this research because they record periods of past stable topography and those of mid Holocene age were settled and farmed. We have correlated mapped terraces across the landscape using elevation and morphological distinctions. Using ArcGIS, we interpolated surfaces across equivalent

  8. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis

    NASA Astrophysics Data System (ADS)

    Dotterweich, Markus

    2013-11-01

    This paper presents a global synopsis about the geomorphic evidence of soil erosion in humid and semihumid areas since the beginning of agriculture. Historical documents, starting from ancient records to data from the mid-twentieth century and numerous literature reviews form an extensive assortment of examples that show how soil erosion has been perceived previously by scholars, land surveyors, farmers, land owners, researchers, and policy makers. Examples have been selected from ancient Greek and Roman Times and from central Europe, southern Africa, North America, the Chinese Loess Plateau, Australia, New Zealand, and Easter Island. Furthermore, a comprehensive collection on the development of soil erosion research and soil conservation has been provided, with a particular focus on Germany and the USA. Geomorphic evidence shows that most of the agriculturally used slopes in the Old and New Worlds had already been affected by soil erosion in earlier, prehistoric times. Early descriptions of soil erosion are often very vague. With regard to the Roman Times, geomorphic evidence shows seemingly opposing results, ranging from massive devastation to landscapes remaining stable for centuries. Unfortunately, historical documentation is lacking. In the following centuries, historical records become more frequent and more precise and observations on extreme soil erosion events are prominent. Sometimes they can be clearly linked to geomorphic evidence in the field. The advent of professional soil conservation took place in the late eighteenth century. The first extensive essay on soil conservation known to the Western world was published in Germany in 1815. The rise of professional soil conservation occurred in the late nineteenth and early twentieth centuries. Soil remediation and flood prevention programs were initiated, but the long-term success of these actions remains controversial. In recent years, increasing interest is to recover any traditional knowledge of soil

  9. Geomorphic surfaces and supergene enrichment in Northern Chile.

    NASA Astrophysics Data System (ADS)

    Evenstar, Laura; Mather, Anne; Stuart, Finlay; Cooper, Frances; Sparks, Steve

    2014-05-01

    Supergene enrichment of porphyry copper deposits in the central Andes is thought to be closely correlated with periods of relatively humid climate and the formation of regionally extensive paleosurfaces (e.g. Mortimer, C. 1973) . In northern Chile, two such paleosurfaces have been proposed: the ca. 23 Ma Tarapaca paleosurface within the Coastal Cordillera, and the ca. 10 Ma Pacific paleosurface within the Longitudinal Valley. The Pacific paleosurface is regarded as a single stratigraphic horizon that formed due to either a marked increase in the aridity of the area (Galli-Oliver 1967), regional surface uplift that created a change in the locus of deposition (e.g. Mortimer and Rendic 1975), or a combination of the two. The formation of this surface has been associated with the timing of supergene enrichment throughout the northern Chile and southern Peru (Alpers and Brimhall 1988). Multispectral satellite mapping of the Pacific paleosurface in northern Chile using Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Digital Elevation Model (DEM) imagery, combined with seismic data (Jordan et al. 2010) indicates that the Pacific paleosurface is not a single chronostratigraphic surface, as previously thought, but an amalgamation of surfaces that have both an erosional and depositional history. New in situ cosmogenic exposure dating of alluvial boulders on the paleosurface is combined with previous data (Dunai et al. 2005, Kober et al. 2007 and Evenstar et al., 2009) giving ages ranging from ca. 23 Ma to <1 Ma, supporting a multiphase and much more continuous history. By combining these apparent exposure ages with regional geomorphology, underlying sedimentology, and seismic sections, the geomorphic evolution of the Longitudinal Valley can be constrained. The results show a complex interplay between uplift within the Coastal Cordillera and Precordillera in the south and a distinct change in depositional pattern towards the north. The

  10. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  11. Don't fight the site: three geomorphic considerations in catchment-scale river rehabilitation planning.

    PubMed

    Brierley, Gary; Fryirs, Kirstie

    2009-06-01

    Three geomorphic considerations that underpin the design and implementation of realistic and strategic river conservation and rehabilitation programs that work with the nature are outlined. First, the importance of appreciating the inherent diversity of river forms and processes is discussed. Second, river dynamics are appraised, framing the contemporary behavioral regime of a reach in relation to system evolution to explain changes to river character and behavior over time. Third, the trajectory of a reach is framed in relation to downstream patterns of river types, analyzing landscape connectivity at the catchment scale to interpret geomorphic river recovery potential. The application of these principles is demonstrated using extensive catchment-scale analyses of geomorphic river responses to human disturbance in the Bega and Upper Hunter catchments in southeastern Australia. Differing implications for reach- and catchment-scale rehabilitation planning prompt the imperative that management practices work with nature rather than strive to 'fight the site.'

  12. Historic Geomorphic Adjustment and Restoration of Channel Morphology and Floodplain Connectivity on the Upper Truckee River, Lake Tahoe, California

    NASA Astrophysics Data System (ADS)

    Belby, B. R.

    2008-12-01

    Lake Tahoe in California and Nevada of the United States is world renowned for its spectacular alpine setting and deep water clarity. Unfortunately, Lake Tahoe's water clarity has declined since measurements began in the 1960s due to increased atmospheric and watershed pollutant inputs of fine-grained minerals and phosphorous and nitrogen nutrients. The Upper Truckee River watershed drains 145 square kilometers and is the largest tributary in the Lake Tahoe Basin. Before the river empties into the lake, it flows through one of the largest meadows in the Sierra Nevada. Historically, the meadow stored fine-grained minerals and nutrients deposited by the river's near-annual floods, thus filtering pollutants and contributing to the maintenance of Lake Tahoe's water clarity. Multiple watershed-scale and direct channel disturbances over the past 150 years have degraded the river's geomorphic condition, resulting in channel incision, widening, and accelerated bank collapse. Field studies and modeling show the river currently has twice the in-channel flow capacity it did prior to degradation. As a result, the meadow floodplain is becoming increasingly hydrologically disconnected from the channel and now only receives overbank flows approximately once every five years. The severity of the channel degradation and loss of floodplain connectivity has led to the river's identification as a major contributor of pollutants detrimental to Lake Tahoe's water clarity. ENTRIX is working with federal, state, and local agencies to implement Upper Truckee River channel and floodplain restoration designs for projects that extend eleven kilometers through delta and meadow environments. The primary goals of the projects are to reduce suspended sediment and nutrient delivery to Lake Tahoe and to improve aquatic and riparian habitat. Construction on the first project to re-meander a channelized reach of the river and restore a floodplain began in summer 2008. This presentation focuses on

  13. Reconciling Geomorphic Observations with Simulations of a Modern Landslide-dam Outburst Flood Using GeoClaw Software, Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Turzewski, M. D.; Huntington, K. W.; LeVeque, R. J.

    2015-12-01

    High-magnitude (>105 m3/s) outburst floods have the potential to dramatically alter landscapes and greatly impact human lives and infrastructure. Numerical modeling can help us understand the hydraulics of these infrequent and difficult to observe floods, but their scale makes simulation challenging and computationally expensive, particularly where rugged mountain topography produces complex flow hydraulics. Here we simulate the second largest historical outburst flood on record using GeoClaw open source software for modeling geophysical flows, and ground-truth the results of these simulations using observations and geomorphic evidence of the event. This landslide-dam outburst flood was sourced in Tibet on the Yigong River in June 2000, scouring vegetation, triggering landslides and depositing flood sands in hydraulically sheltered areas downstream. We mapped these features in the field and remotely using Google Earth and Landsat-7 imagery, and simulated the flood with a reconstructed 2 Gm3 impounded lake using instantaneous dam failure. Simulated inundation and the arrival-time of the flood wave downstream are relatively insensitive to the Manning bed-roughness parameter implemented in GeoClaw, but are very sensitive to grid-resolution and the chosen Adaptive Mesh Refinement scheme. High-resolution simulations produce estimates of discharge and the arrival-time for the initial flood wave that compare favorably to observations of the event recorded at locations up to 450 km downstream, and inundation maps that match the mapped distribution of high water marks. GeoClaw simulations (1) show inundation and decreasing bed shear stresses during the waning stage of the flood in the areas that contain observed slackwater deposits and (2) produce sustained deep flows in regions where landslides were observed directly after the event, showing a clear link between flood hydraulics and geomorphic change due to erosion/deposition. Results suggest that GeoClaw can accurately

  14. Combining long term field experiments and nanoscale analysis to enhance process understanding of root litter stabilization by mineral interactions

    NASA Astrophysics Data System (ADS)

    Chabbi, Abad; Baumann, Karen; Remusat, Laurent; Barre, Pierre; Dignac, Marie-France; Rumpel, Cornelia

    2015-04-01

    stabilised OM may consist primarily of microbial cells. Thus our study is consistent with the microbial efficiency-matrix stabilisation (MEMS) hypothesis (Cotrufo et al., 2013), which says that microbial use efficiency determines stabilisation through interaction with the mineral phase. It also shows the importance of using long term field observations in addition to short term laboratory studies. Reference Cotrufo, M.F., Wallenstein, M.D., Boot, C., Denef, K., Paul, E., 2013. The microbial efficiency-matrix stabilisation (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable organic matter? Global Change Biology, 19, 988-995.

  15. Tracking geomorphic signatures of watershed suburbanization with multi-temporal LiDAR

    USGS Publications Warehouse

    Jones, Daniel K.; Baker, Matthew E.; Miller, Andrew J.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-01-01

    Urban development practices redistribute surface materials through filling, grading, and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-time comparisons of disparate urban and rural landscapes. However, no previous studies have documented geomorphic changes from development using multiple dates of high-resolution topographic data at the watershed scale. This study utilized a time series of five sequential light detection and ranging (LiDAR) derived digital elevation models (DEMs) to track watershed geomorphic changes within two watersheds throughout development (2002–2008) and across multiple spatial scales (0.01–1 km2). Development-induced changes were compared against an undeveloped forested watershed during the same time period. Changes in elevations, slopes, hypsometry, and surface flow pathways were tracked throughout the development process to assess watershed geomorphic alterations. Results suggest that development produced an increase in sharp topographic breaks between relatively flat surfaces and steep slopes, replacing smoothly varying hillslopes and leading to greater variation in slopes. Examinations of flowpath distributions highlight systematic modifications that favor rapid convergence in unchanneled upland areas. Evidence of channel additions in the form of engineered surface conduits is apparent in comparisons of pre- and post-development stream maps. These results suggest that topographic modification, in addition to impervious surfaces, contributes to altered hydrologic dynamics observed in urban systems. This work highlights important considerations for the use of repeat LiDAR flights in analyzing watershed change through time. Novel methods introduced here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during development and help guide future

  16. Tracking geomorphic signatures of watershed suburbanization with multitemporal LiDAR

    NASA Astrophysics Data System (ADS)

    Jones, Daniel K.; Baker, Matthew E.; Miller, Andrew J.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-08-01

    Urban development practices redistribute surface materials through filling, grading, and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-time comparisons of disparate urban and rural landscapes. However, no previous studies have documented geomorphic changes from development using multiple dates of high-resolution topographic data at the watershed scale. This study utilized a time series of five sequential light detection and ranging (LiDAR) derived digital elevation models (DEMs) to track watershed geomorphic changes within two watersheds throughout development (2002-2008) and across multiple spatial scales (0.01-1 km2). Development-induced changes were compared against an undeveloped forested watershed during the same time period. Changes in elevations, slopes, hypsometry, and surface flow pathways were tracked throughout the development process to assess watershed geomorphic alterations. Results suggest that development produced an increase in sharp topographic breaks between relatively flat surfaces and steep slopes, replacing smoothly varying hillslopes and leading to greater variation in slopes. Examinations of flowpath distributions highlight systematic modifications that favor rapid convergence in unchanneled upland areas. Evidence of channel additions in the form of engineered surface conduits is apparent in comparisons of pre- and post-development stream maps. These results suggest that topographic modification, in addition to impervious surfaces, contributes to altered hydrologic dynamics observed in urban systems. This work highlights important considerations for the use of repeat LiDAR flights in analyzing watershed change through time. Novel methods introduced here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during development and help guide future

  17. Analysing connectivity through landslide-channel geomorphic coupling in a large drainage system of Southern Romania

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta

    2014-05-01

    Unlike creep, splash erosion and linear erosion which sometimes are called "continuous" slope processes, since they are perceived as causing relatively continuous erosion on slopes and a rather rapid transport towards river channels, mass movement processes, excepting flows, have a discontinuous behavior, manifesting stochastically on time intervals ranging from one year to tens of years, while the displaced material can remain suspended in different parts of the slope forming sediment stores. It is obviously why estimating the sediment delivered to the river network by landslides becomes a difficult task. Landslide control on channel dynamics is just one of the several forms of hillslope-channel coupling. Landslide-channel connectivity is relevant for understanding the way landslides are contributing to the sediment flux within catchments and how their study should be integrated in the estimation of sediment budgets. This paper explores the geomorphic coupling of landslides with river channels based on an extensive landslide inventory. The study area is a large drainage basin (> 2400 km2) in southern Romania encompassing four different geomorphic units (mountains, hills, piedmont and plain). The region is highly affected by a wide range of geomorphic processes which contribute to supplying sediments to the drainage network. The presence of a reservoir at the river outlet emphasizes the importance of estimating sediment budgets, the first stage of which consists in studying sediment sources. High sediment transport is associated to flash floods, a fraction of which is due to the slope failures occurring in response to the undercutting of river channels. Nominal classification systems as well as quantitative measures available in the connectivity literature are adopted here to describe the landslides-channels contact zones. Characteristics of the geomorphic coupling interfaces are further linked to the resulting geomorphic effects of landslides on the drainage

  18. Reach-scale geomorphic differences between headwater streams draining mountaintop mined and unmined catchments

    NASA Astrophysics Data System (ADS)

    Jaeger, Kristin L.

    2015-05-01

    Mountaintop surface mining (MTM) is a controversial coal extraction method commonly practiced in the central and southern Appalachian Mountains, USA, that drastically reengineers previously steep, forested landscapes and alters sediment and water delivery processes to and along headwater channels draining mined areas. Although sediment delivery and hydrologic response from MTM operations remain highly variable and poorly resolved, the inherent close coupling between hillslopes and headwater channels is expected to result in geomorphic differences in stream channels draining MTM landscapes relative to unmined landscapes. Dedicated geomorphic studies are severely lacking in comparison to extensive research on water quality impacts of MTM. This study reports moderate geomorphic differences between headwater (catchment area <~ 6 km2) stream channels draining MTM and unmined catchments in tributaries of the Mud River in southern West Virginia. Univariate and multivariate analyses indicate that MTM streams are characterized by deeper maximum channel depths, smaller width-to-depth ratios, increased bedrock exposure along the streambed, and increased frequency of very fine silt and sand deposition relative to channels draining unmined catchments. Geomorphic differences are most pronounced for streams draining the smallest catchment areas (< 3.5 km2). Collectively, geomorphic differences provide evidence for relatively rapid channel adjustment of accelerated bedrock incision attributed to potential increased hydraulic driving forces and altered sediment regimes in MTM channels, notably sustained delivery of very fine sediment and potentially reduced coarse sediment delivery. More rapid delivery and transfer of water in addition to excess delivery of very fine sediments to and through headwater channels will have consequences to flooding and water quality in the short term and landscape evolution processes over longer time scales. Given the extent of MTM operations in this

  19. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions.

    PubMed

    Kristensen, N B; Sloth, K H; Højberg, O; Spliid, N H; Jensen, C; Thøgersen, R

    2010-08-01

    The present study aimed to investigate the effects of 2 corn silage inoculation strategies (homofermentative vs. heterofermentative inoculation) under field conditions and to monitor responses in silage variables over the feeding season from January to August. Thirty-nine commercial dairy farms participated in the study. Farms were randomly assigned to 1 of 3 treatments: control (nonactive carrier; Chr. Hansen A/S, Hørsholm, Denmark), Lactisil (inoculation with 1 x 10(5)Lactobacillus pentosus and 2.5 x 10(4)Pediococcus pentosaceus per gram of fresh matter; Chr. Hansen A/S), and Lalsil Fresh (inoculation with 3 x 10(5)Lactobacillus buchneri NCIMB 40788 per gram of fresh matter; Lallemand Animal Nutrition, Blagnac, France). Inoculation with Lactisil had no effects on fermentation variables and aerobic stability. On the contrary, inoculation with Lalsil Fresh doubled the aerobic stability: 37, 38, and 80+/-8h for control, Lactisil, and Lalsil Fresh, respectively. The effect of Lalsil Fresh on aerobic stability tended to differ between sampling times, indicating a reduced difference between treatments in samples collected in April. Lalsil Fresh inoculation increased silage pH and contents of acetic acid, propionic acid, propanol, propyl acetate, 2-butanol, propylene glycol, ammonia, and free AA. The contents and ratios of DL-lactic acid, L-lactic acid relative to DL-lactic acid, free glucose, and DL-lactic acid relative to acetic acid decreased with Lalsil Fresh inoculation. Lalsil Fresh inoculation increased the silage counts of total lactic acid bacteria and reduced yeast counts. The Fusarium toxins deoxynivalenol, nivalenol, and zearalenone were detected in all silages at all collections, but the contents were not affected by ensiling time or by inoculation treatment. The effect of inoculation treatments on milk production was assessed by collecting test-day results from the involved farms and comparing the actual milk production with predicted milk production

  20. Monitoring and research to describe geomorphic effects of the 2011 controlled flood on the Green River in the Canyon of Lodore, Dinosaur National Monument, Colorado and Utah

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Kaplinski, Matt; Alexander, Jason A.; Kohl, Keith

    2014-01-01

    In 2011, a large magnitude flow release from Flaming Gorge Reservoir, Wyoming and Utah, occurred in response to high snowpack in the middle Rocky Mountains. This was the third highest recorded discharge along the Green River downstream of Flaming Gorge Dam, Utah, since its initial closure in November 1962 and motivated a research effort to document effects of these flows on channel morphology and sedimentology at four long-term monitoring sites within the Canyon of Lodore in Dinosaur National Monument, Colorado and Utah. Data collected in September 2011 included raft-based bathymetric surveys, ground-based surveys of banks, channel cross sections and vegetation-plot locations, sand-bar stratigraphy, and painted rock recovery on gravel bars. As part of this surveying effort, Global Navigation Satellite System (GNSS) data were collected at benchmarks on the canyon rim and along the river corridor to establish a high-resolution survey control network. This survey control network allows for the collection of repeatable spatial and elevation data necessary for high accuracy geomorphic change detection. Nearly 10,000 ground survey points and more than 20,000 bathymetric points (at 1-meter resolution) were collected over a 5-day field campaign, allowing for the construction of reach-scale digital elevation models (DEMs). Additionally, we evaluated long-term geomorphic change at these sites using repeat topographic surveys of eight monumented cross sections at each of the four sites. Analysis of DEMs and channel cross sections show a spatially variable pattern of erosion and deposition, both within and between reaches. As much as 5 meters of scour occurred in pools downstream from flow constrictions, especially in channel segments where gravel bars were absent. By contrast, some channel cross sections were stable during the 2011 floods, and have shown almost no change in over a decade of monitoring. Partial mobility of gravel bars occurred, and although in some locations

  1. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives

    NASA Astrophysics Data System (ADS)

    Nikolka, Mark; Nasrallah, Iyad; Rose, Bradley; Ravva, Mahesh Kumar; Broch, Katharina; Sadhanala, Aditya; Harkin, David; Charmet, Jerome; Hurhangee, Michael; Brown, Adam; Illig, Steffen; Too, Patrick; Jongman, Jan; McCulloch, Iain; Bredas, Jean-Luc; Sirringhaus, Henning

    2016-12-01

    Due to their low-temperature processing properties and inherent mechanical flexibility, conjugated polymer field-effect transistors (FETs) are promising candidates for enabling flexible electronic circuits and displays. Much progress has been made on materials performance; however, there remain significant concerns about operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode displays. Here, we investigate the physical mechanisms behind operational and environmental degradation of high-mobility, p-type polymer FETs and demonstrate an effective route to improve device stability. We show that water incorporated in nanometre-sized voids within the polymer microstructure is the key factor in charge trapping and device degradation. By inserting molecular additives that displace water from these voids, it is possible to increase the stability as well as uniformity to a high level sufficient for demanding industrial applications.

  2. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives.

    PubMed

    Nikolka, Mark; Nasrallah, Iyad; Rose, Bradley; Ravva, Mahesh Kumar; Broch, Katharina; Sadhanala, Aditya; Harkin, David; Charmet, Jerome; Hurhangee, Michael; Brown, Adam; Illig, Steffen; Too, Patrick; Jongman, Jan; McCulloch, Iain; Bredas, Jean-Luc; Sirringhaus, Henning

    2017-03-01

    Due to their low-temperature processing properties and inherent mechanical flexibility, conjugated polymer field-effect transistors (FETs) are promising candidates for enabling flexible electronic circuits and displays. Much progress has been made on materials performance; however, there remain significant concerns about operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode displays. Here, we investigate the physical mechanisms behind operational and environmental degradation of high-mobility, p-type polymer FETs and demonstrate an effective route to improve device stability. We show that water incorporated in nanometre-sized voids within the polymer microstructure is the key factor in charge trapping and device degradation. By inserting molecular additives that displace water from these voids, it is possible to increase the stability as well as uniformity to a high level sufficient for demanding industrial applications.

  3. A geomorphic approach to the analysis of bedload and bed morphology of the Lower Mississippi River near the Old River Control Structure

    NASA Astrophysics Data System (ADS)

    Knox, Richard L.; Latrubesse, Edgardo M.

    2016-09-01

    The Mississippi River is the ultimate single-thread meandering river. Five hundred kilometers upstream from its mouth, about 25% of the river's discharge and sediment load is diverted into the Atchafalaya River. This diversion is controlled by the Old River Control Structure (ORCS), built by the U.S. Army Corps of Engineers (USACE) in stages since 1961, to stop the avulsion of the Mississippi River into the Atchafalaya. The effects of ORCS on sediment and water discharge and geomorphic change to the Lower Mississippi River (LMR) channel are not yet completely understood and require placing the river into a geomorphic context, first classifying the channel into similar categories before evaluating change. The objectives of this study are to estimate the LMR bedload, develop and apply a geomorphic classification of the LMR near the ORCS, and explore geomorphic change within the classified areas. We studied a 115-km-long stretch between ORCS and Baton Rouge that is highly impacted by engineering. We used six sets of bathymetric multibeam echosounder surveys conducted by the USACE, multitemporal cartographies, and a field survey supported by multibeam echosounder bathymetry, acoustic Doppler current profiler (ADCP) measurements, sediment samples collection, and geomorphic observations. A three-dimensional method for estimating bedload from time-elapsed bathymetric surveys was developed and applied on seven sets of time-elapsed surveys downstream from ORCS from 2010, 2011, and 2012. We estimate that the fraction of bedload as a percentage of total sand load between 2003 and 2011 was 13.2%. A bedform classification scheme, based on bedform height, was developed. The bed was almost completely mantled by sandy bedforms above the - 24-m isoline. The studied reach was divided into ten zones according to four geomorphic types based on channel planform, geologic controls, presence of islands, and other morphometric parameters. These zones were shown to be physically distinct

  4. Pre-Restoration Geomorphic Characteristics of Minebank Run, Baltimore County, Maryland, 2002-04

    USGS Publications Warehouse

    Doheny, Edward J.; Starsoneck, Roger J.; Mayer, Paul M.; Striz, Elise A.

    2007-01-01

    Data collected from 2002 through 2004 were used to assess geomorphic characteristics and geomorphic changes over time in a selected reach of Minebank Run, a small urban watershed near Towson, Maryland, prior to its physical restoration in 2004 and 2005. Longitudinal profiles of the channel bed, water surface, and bank features were developed from field surveys. Changes in cross-section geometry between field surveys were documented. Grain-size distributions for the channel bed and banks were developed from pebble counts and laboratory analyses. Net changes in the elevation of the channel bed over time were documented at selected locations. Rosgen Stream Classification was used to classify the stream channel according to morphological measurements of slope, entrenchment ratio, width-to-depth ratio, sinuosity, and median-particle diameter of the channel materials. An analysis of boundary shear stress in the vicinity of the streamflow-gaging station was conducted by use of hydraulic variables computed from cross-section surveys and slope measurements derived from crest-stage gages in the study reach. Analysis of the longitudinal profiles indicated noticeable changes in the percentage and distribution of riffles, pools, and runs through the study reach between 2002 and 2004. Despite major changes to the channel profile as a result of storm runoff events, the overall slope of the channel bed, water surface, and bank features remained constant at about 1 percent. The cross-sectional surveys showed net increases in cross-sectional area, mean depth, and channel width at several locations between 2002 and 2004, which indicate channel degradation and widening. Two locations were identified where significant amounts of sediment were being stored in the study reach. Data from scour chains identified several locations where maximum scour ranged from 1.0-1.4 feet during storm events. Bank retreat varied widely throughout the study reach and ranged from 0.2 feet to as much as 7

  5. Does mycorrhizal inoculation improve plant survival, aggregate stability, and fine root development on a coarse-grained soil in an alpine eco-engineering field experiment?

    NASA Astrophysics Data System (ADS)

    Bast, A.; Wilcke, W.; Graf, F.; Lüscher, P.; Gärtner, H.

    2016-08-01

    Steep vegetation-free talus slopes in high mountain environments are prone to superficial slope failures and surface erosion. Eco-engineering measures can reduce slope instabilities and thus contribute to risk mitigation. In a field experiment, we established mycorrhizal and nonmycorrhizal research plots and determined their biophysical contribution to small-scale soil fixation. Mycorrhizal inoculation impact on plant survival, aggregate stability, and fine root development was analyzed. Here we present plant survival (ntotal = 1248) and soil core (ntotal = 108) analyses of three consecutive years in the Swiss Alps. Soil cores were assayed for their aggregate stability coefficient (ASC), root length density (RLD), and mean root diameter (MRD). Inoculation improved plant survival significantly, but it delayed aggregate stabilization relative to the noninoculated site. Higher aggregate stability occurred only after three growing seasons. Then also RLD tended to be higher and MRD increased significantly at the mycorrhizal treated site. There was a positive correlation between RLD, ASC, and roots <0.5 mm, which had the strongest impact on soil aggregation. Our results revealed a temporal offset between inoculation effects tested in laboratory and field experiments. Consequently, we recommend to establish an intermediate to long-term field experimental monitoring before transferring laboratory results to the field.

  6. Molecular dynamics simulations of stability of metal-organic frameworks against H2O using the ReaxFF reactive force field.

    PubMed

    Han, Sang Soo; Choi, Seung-Hoon; van Duin, Adri C T

    2010-08-21

    We introduce the reactive force field (ReaxFF) simulation to predict the hydrolysis reactions and water stability of metal-organic frameworks (MOFs) where the simulation showed that MOF-74 has superior water-resistance compared with isoreticular IRMOF-1 and IRMOF-10.

  7. A stability analysis of semi-cohesive streambanks with CONCEPTS: Coupling field and laboratory investigations to quantify the onset of fluvial erosion and mass failure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overarching goal of this study is to perform a comprehensive bank stability analysis that is phenomenologically sound by considering both mass failure and fluvial erosion. The nature of this study is twofold. First, field and experimental analysis is conducted to generate data for channel cross-...

  8. A geomorphic-geochemical framework for quantifying the cycling of sediment-associated contaminants in fluvial systems

    NASA Astrophysics Data System (ADS)

    Byrne, Patrick; Lopez-Tarazon, Jose; Williams, Richard

    2016-04-01

    Recent high-profile contamination events linked to extreme floods have underlined the persistent environmental risk posed by legacy metals stored in fluvial systems worldwide. While we understand that the fate of sediment-associated metals is largely determined by the dynamics of the fluvial transport system, we still lack a process-based understanding of the spatial and temporal mechanisms that affect the physical and geochemical transfer of metals through catchments. This interdisciplinary project will exploit advances in geomorphic and geochemical analyses to develop a methodological approach and conceptual framework to answer key questions related to the dynamics and timescales of metal cycling in fluvial systems. The approach will be tested in two reaches of the mining-impacted Afon Twymyn, Wales. The main objectives are: (i) quantify the physical transport of sediment and metals over a range of river flows and model sediment pathways; (ii) establish the geochemical mobility and speciation of sediment-associated metals and how this is modified through the sediment pathways. To achieve these objectives a geomorphic-geochemical combined methodology will be applied. It includes: (i) Aerial imagery that will be acquired from UAV surveys pre- and post-high flows and transformed into high-resolution DEMs using Structure-from-Motion; (ii) suspended sediment flux will be estimated indirectly by field calibration with a logging turbidimeter; (iii) 2D hydraulic and sediment transport model (Delft3D) will be used to quantify the transport of sediment and associated metals and to map the source, pathway and sink of contaminated sediment; (iv) soil and sediment samples (including suspended sediment) will be collected pre- and post-high flows for geochemical (concentration, speciation) and mineralogical (XRD, SEM) analyses; (v) finally, a geochemical model (Geochemists Workbench) will be developed to generate hypotheses that explain observed geochemical change as a function

  9. Mid-Late Holocene Arroyo Stratigraphy in Southern Utah; Balance between Climate Forcing and Geomorphic Thresholds

    NASA Astrophysics Data System (ADS)

    Riley, K. E.; Rittenour, T. M.

    2015-12-01

    Historic arroyo entrenchment at the turn of the 20th century signified a rapid and widespread change in stream dynamics throughout much of the southwest U.S.A.. Arroyo walls along modern channels expose multiple unconformity-bound sediment packages that record mid-to-late Holocene arroyo cut-fill dynamics. Many of these different-aged periods of aggradation appear to have reached a similar tread height through time, suggesting that a 'geomorphic threshold' may partially control end-member stream grade and the timing of channel entrenchment. However, observations of near-synchronous regional cut-fill events support an alternative hypothesis that climate is a primary control of arroyo dynamics. In order to test the role of allogenic forcing versus autogenic processes on arroyo cut-fill dynamics, three datasets were constructed and analyzed from Johnson Wash (JW), a drainage containing a ~40 km long arroyo in the Grand Staircase region of the Colorado Plateau in south-central Utah. The chronostratigraphy of arroyo cut-fill events was reconstructed using a combination of field observations and age control from radiocarbon (n=57) and optically stimulated luminescence dating (OSL; n=27) collected from 15 stratigraphic sections that bracket episodes of incision and characterize alluvial-fill packages. These data are compared to regional cut-fill chronologies from other arroyo systems. Temporal and spatial variability in catchment averaged erosion rates was quantified using terrestrial in-situ Beryllium-10 measured in quartz from alluvial and colluvial sediment samples (n=24) collected from the modern channel and paleo-arroyo walls located in JW and the adjacent upper Kanab Creek watershed. The third dataset consists of longitudinal profile concavities of the currently entrenched channel and the relict aggraded valley-fill surfaces and is used to identify systematic trends in aggraded versus entrenched channel forms.

  10. Geomorphic constraints on the geologic history of Gale Crater (Invited)

    NASA Astrophysics Data System (ADS)

    Palucis, M. C.; Dietrich, W. E.; Hayes, A. G.; Williams, R. M.; Calef, F. J.; Sumner, D. Y.; Parker, T. J.; Bridges, N. T.; Team, M.

    2013-12-01

    count on the entire wall of Gale (~14,200 km2) as well as on the PV fan (~80 km2) and its headwaters (~730 km2). We found that both the wall of Gale and the PV headwaters are ~3.6 Ga, similar in age to that of the crater itself, while the fan is perhaps the youngest hydro-geomorphic feature in the crater. These data suggest that perhaps Gale was never fully buried after formation, or if so, burial and excavation occurred very rapidly. Based on the geomorphological evidence, shortly after impact, Gale may have hosted a series of large lakes, sourced by FV, thereby saturating the mound sediment and the crater walls. We do not observe any morphological evidence on the PV fan surface, however, suggesting the decline in lake levels post-dates Peace Vallis fan formation.

  11. A hydrologic and geomorphic model of estuary breaching and closure

    NASA Astrophysics Data System (ADS)

    Rich, Andrew; Keller, Edward A.

    2013-06-01

    To better understand how the hydrology of bar-built estuaries affects breaching and closing patterns, a model is developed that incorporates an estuary hydrologic budget with a geomorphic model of the inlet system. Erosion of the inlet is caused by inlet flow, whereas the only morphologic effect of waves is the deposition of sand into the inlet. When calibrated, the model is able to reproduce the initial seasonal breaching, seasonal closure, intermittent closures and breaches, and the low-streamflow (closed state) estuary hydrology of the Carmel Lagoon, located in Central California. Model performance was tested against three separate years of water-level observations. When open during these years, the inlet was visually observed to drain directly across the beach berm, in accordance with model assumptions. The calibrated model predicts the observed 48-h estuary stage amplitude with root mean square errors of 0.45 m, 0.39 m and 0.42 m for the three separate years. For the calibrated model, the probability that the estuary inlet is closed decreases exponentially with increasing inflow (streamflow plus wave overtopping), decreasing 10-fold in probability as mean daily inflow increases from 0.2 to 1.0 m3/s. Seasonal patterns of inlet state reflect the seasonal pattern of streamflow, though wave overtopping may become the main hydrologic flux during low streamflow conditions, infrequently causing short-lived breaches. In a series of sensitivity analyses it is seen that the status of the inlet and storage of water are sensitive to factors that control the storage, transmission, and inflow of water. By varying individual components of the berm system and estuary storage, the amount of the time the estuary is open may increase by 57%, or decrease by 44%, compared to the amount of time the estuary is open during calibrated model conditions for the 18.2-year model period. The individual components tested are: berm height, width, length, and hydraulic conductivity; estuary

  12. Field Demonstration, Optimization, and Rigorous Validation of Peroxygen-Based ISCO for the Remediation of Contaminated Groundwater - CHP Stabilization Protocol

    DTIC Science & Technology

    2014-05-01

    phytate is isolated from soybeans . However, the three stabilizer vary in price and availability. Phytate, the most expensive of the stabilizers, is...mM stabilizer 16 Hydrogen peroxide concentrations as a function of time in slurries containing the Washington subsurface solid with and without...port of the MCS column as a function of cumulative flow are shown in Figures 1-20 and 1-21, respectively. Similar to results in the ICS system, the

  13. Geomorphic changes induced by the April-May 2015 earthquake sequence in the Pharak-Khumbu area (Nepal): preliminary assessments.

    NASA Astrophysics Data System (ADS)

    Fort, Monique

    2016-04-01

    Landsliding is a common process shaping mountain slopes. There are various potential landslide triggers (rainfall, bank erosion, earthquakes) and their effectiveness depends on their distribution, frequency and magnitude. In a Himalayan context, the effects of monsoon rainfall can be assessed every year whereas the unpredictability and low frequency of large earthquakes make their role in triggering slope instability more obscure. A 7.8 magnitude earthquake struck central Nepal (Gorkha District) on 25 April 2015 and was followed by many aftershocks exceeding magnitude 5, including another strong 7.3 magnitude earthquake on May 12, 2015 (Dolakha District). This seismic crisis provides an exceptional opportunity to assess the disruptions that earthquakes may cause in "regular" geomorphic systems controlled by rainfall. Here we present field observations carried out in the Pharak-Khumbu area (East Nepal, Dudh Kosi catchment) before and after the April-May 2015 earthquakes. The Pharak, a "middle mountains" (2000-4500 m) area, is affected by monsoon rains (3000 m/yr at 2500 m) and characterised by steep hillslopes, shaped by different geomorphic processes according to slope height and aspect, rock type and strength, inherited landforms, stream connectivity and current land use changes. This study focuses on the south of Lukla (Phakding District), and more specifically on the Khari Khola catchment and its surroundings. The area lies at the transition between the Higher Himalayan crystallines and the Lesser Himalayan meta-sediments. On the basis of our diachronic observations (March and November 2015), we surveyed and mapped new earthquake-induced slope instabilities such as rock falls, rockslides, landslides and debris flows and a combination of several of them. Interviews with local people also helped to assess the exact timing of some events. While the first M 7.8 earthquake produced significant impacts in the northern Khumbu area, the M 7.3 aftershock seems to have

  14. Automatic geomorphic feature extraction from lidar in flat and engineered landscapes

    NASA Astrophysics Data System (ADS)

    Passalacqua, P.; Belmont, P.; Foufoula, E.

    2011-12-01

    High resolution topography derived from light detection and ranging (lidar) technology enables detailed geomorphic observations to be made on spatially extensive landforms in a way that was previously not possible. This provides new opportunities to study the spatial organization of landscapes and channel network features, increase the accuracy of environmental transport models and inform decisions for targeting conservation practices. However, with the opportunity of increased resolution topography data over large areas come formidable challenges in terms of automatic geomorphic feature extraction, analysis, and interpretation. This is particularly true in low relief landscapes since the topographic gradients are low and both the landscape and the channel network are often heavily modified by humans. Recently, a comprehensive framework was developed for the automatic extraction of geomorphic features (channel network, channel heads and channel morphology) from high resolution topographic data by combining nonlinear diffusion and geodesic minimization principles. The feature extraction method was packaged in a software called GeoNet (which is publicly available). In this talk, we focus on the application of GeoNet to a variety of landscapes, and, in particular, to flat and engineered landscapes where the method has been recently extended to perform automated channel morphometric analysis (including extraction of cross-sections, detection of bank locations, and identification of geomorphic bankfull water surface elevation) and to differentiate between natural channels and manmade structures (including artificial ditches, roads and bridges across channels).

  15. Geomorphic Mapping and Analysis of the Eastern Medusae Fossae Region of Mars

    NASA Technical Reports Server (NTRS)

    Takagi, M.; Zimbelman, J. R.

    2001-01-01

    A geomorphic map of the MC-8SE quadrangle on Mars is used to examine hypotheses of origin for the Medusae Fossae Formation, as well as to characterize the regional setting of these enigmatic materials. Additional information is contained in the original extended abstract.

  16. Geomorphic modeling of macro-tidal embayment with extensive tidal flats: Skagit Bay, Washington

    DTIC Science & Technology

    2012-09-30

    DISTRIBUTION A: Distribution approved for public release; distribution is unlimited. Geomorphic modeling of macro- tidal embayment with extensive... tidal flats: Skagit Bay, Washington Lyle Hibler Battelle-Pacific Northwest Division Marine Sciences Laboratory Sequim, WA 98382 phone: (360) 681...of muddy tidal flats and to quantify the effects of tidal action, river discharge, and shoreline development (e.g. dikes and jetties) on these

  17. Geomorphic and hydrologic controls of dust emissions during drought from Yellow Lake playa, West Texas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on the factors that control dust emissions from playas has revealed a number of complex geomorphic and hydrologic factors, yet there are few measurements of dust emissions from playas during drought or low-emission seasons. Deflation of Yellow Lake, a saline playa in West Texas, produces sa...

  18. Legacy effects in linked ecological-soil-geomorphic systems of drylands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A legacy effect refers to the impact that previous conditions have on current processes or properties. Ecological legacies in drylands result from feedbacks among biotic, soil, and geomorphic processes that operate at multiple spatial and temporal scales. Legacy effects depend on (1) the magnitude o...

  19. Evaluating the accuracy of low cost UAV generated topography and its effectiveness for geomorphic change detection

    NASA Astrophysics Data System (ADS)

    Cook, Kristen

    2015-04-01

    With the recent explosion in the use and availability of unmanned aerial vehicle platforms and development of easy to use structure from motion (SfM) software, UAV based photogrammetry is increasingly being adopted to produce high resolution topography for the study of surface processes. UAV systems can vary substantially in price and complexity, but the tradeoffs between these and the quality of the resulting data are not well constrained. We look at one end of this spectrum and evaluate the effectiveness of a simple low cost UAV setup for obtaining high resolution topography in a challenging field setting. Our study site is the Daan River gorge in western Taiwan, a rapidly eroding bedrock gorge that we have monitored with terrestrial Lidar since 2009. The site presents challenges for the generation and analysis of high resolution topography, including vertical gorge walls, vegetation, wide variation in surface roughness, and a complicated 3D morphology. In order to evaluate the accuracy of the UAV-derived topography, we compare it with terrestrial Lidar data collected during the same survey period. Our UAV setup combines a DJI Phantom 2 quadcopter with a 16 megapixel Canon Powershot camera for a total platform cost of less than 850. The quadcopter is flown manually, and the camera is programmed to take a photograph every 4 seconds, yielding 200-250 pictures per flight. We measured ground control points and targets for both the Lidar scans and the aerial surveys using a Leica RTK GPS with 1-2 cm accuracy. UAV derived point clouds were obtained using Agisoft Photoscan software. We conducted both Lidar and UAV surveys before and after the 2014 typhoon season, allowing us to evaluate the reliability of the UAV survey to detect geomorphic changes in the range of one to several meters. The accuracy of the SfM point clouds depends strongly on the characteristics of the surface being considered, with vegetation and small scale texture causing inaccuracies. However, we

  20. The Effect of Oregano and Cinnamon Essential Oils on Fermentation Quality and Aerobic Stability of Field Pea Silages

    PubMed Central

    Soycan-Önenç, Sibel; Koc, Fisun; Coşkuntuna, Levent; Özdüven, M. Levent; Gümüş, Tuncay

    2015-01-01

    This study was performed to determine the effect of field pea silages which were the organic acid (OA) alternative of oregano and cinnamon essential oils on fermentation quality and aerobic stability. Whole crop pea was harvested at full pod stage and wilted in the laboratory at the 48 h. The chopped pea was mixed and divided into equal portions allocated to five groups: CON (non-treated), distilled water, denoted as control group; OA group, a mixture of 60% formic acid, 20% sodium formate and 20% water applied at a rate of 5 g/kg fresh forage (Silofarm Liquid, Farmavet); origanum (ORE) group, Origanum onites essential oil at 400 mg/kg fresh forage; cinnamon (CIN) group, cinnamon essential oil at 400 mg/kg fresh forage; origanum+cinnamon (ORECIN) group, a mixture of ORE and CIN applied at an equal rate of 400 mg/kg fresh forage. Cinnamon decreased acetic acid (AA), ammonia nitrogen (NH3-N) and weight loss (WL) at the end of 60 days silage. Crude protein (CP) and dry matter (DM) increased by cinnamon essential oil. Yeasts were not detected in any treatments, including the control, after 7 days of air exposure. The CO2 amount decreased and the formation mold was inhibited in the aerobic period by the addition of cinnamon oil. Oregano did not show a similar effect, but when it was used with cinnamon, it showed synergic effect on AA and during aerobic period, it showed antagonistic effect on mold formation and DM losses. It was found in this study that cinnamon can be an alternative to organic acids. PMID:26323518

  1. The Effect of Oregano and Cinnamon Essential Oils on Fermentation Quality and Aerobic Stability of Field Pea Silages.

    PubMed

    Soycan-Önenç, Sibel; Koc, Fisun; Coşkuntuna, Levent; Özdüven, M Levent; Gümüş, Tuncay

    2015-09-01

    This study was performed to determine the effect of field pea silages which were the organic acid (OA) alternative of oregano and cinnamon essential oils on fermentation quality and aerobic stability. Whole crop pea was harvested at full pod stage and wilted in the laboratory at the 48 h. The chopped pea was mixed and divided into equal portions allocated to five groups: CON (non-treated), distilled water, denoted as control group; OA group, a mixture of 60% formic acid, 20% sodium formate and 20% water applied at a rate of 5 g/kg fresh forage (Silofarm Liquid, Farmavet); origanum (ORE) group, Origanum onites essential oil at 400 mg/kg fresh forage; cinnamon (CIN) group, cinnamon essential oil at 400 mg/kg fresh forage; origanum+cinnamon (ORECIN) group, a mixture of ORE and CIN applied at an equal rate of 400 mg/kg fresh forage. Cinnamon decreased acetic acid (AA), ammonia nitrogen (NH3-N) and weight loss (WL) at the end of 60 days silage. Crude protein (CP) and dry matter (DM) increased by cinnamon essential oil. Yeasts were not detected in any treatments, including the control, after 7 days of air exposure. The CO2 amount decreased and the formation mold was inhibited in the aerobic period by the addition of cinnamon oil. Oregano did not show a similar effect, but when it was used with cinnamon, it showed synergic effect on AA and during aerobic period, it showed antagonistic effect on mold formation and DM losses. It was found in this study that cinnamon can be an alternative to organic acids.

  2. Effect of field natural rubber latex with different ammonia contents and storage period on physical properties of latex concentrate, stability of skim latex and dipped film

    NASA Astrophysics Data System (ADS)

    Santipanusopon, Sirinapa; Riyajan, Sa-Ad

    2009-07-01

    The effect of ammonia treatment in field natural rubber (NR) latex with different storage period time on the properties of concentrated NR latex and stability of skim latex was investigated. Fresh NR latex was treated with various ammonia contents such as 0.35, 0.60 and 0.80% w/w, and then they were centrifuged to get the concentrated NR latex with 60% dry rubber content (DRC) containing 0.16, 0.18 and 0.25% w/w, respectively and skim NR latex with roughly 5% DRC containing 0.42, 0.60 and 0.80% w/w, respectively. The effect of storage times with ∼0, 15, 30 and 45 days for concentrated NR latex with different ammonia contents on their properties such as alkalinity, magnesium content and viscosity was observed. It was found that generally, magnesium content in field NR latex and latex concentrate decreased with storage period times. The alkalinity content in both concentrated NR and skim latex increased with increasing ammonia content in field latex. The viscosity of concentrated NR latex increased as a function of storage period time of field NR latex. The stability of skim latex depends on storage period time of field NR latex with different ammonias. The tensile strength of dipped films obtained from field NR latex with 0.80% w/w of ammonia was dependent on storage period time of field NR latex.

  3. Spatial scale and place field stability in a grid-to-place cell model of the dorsoventral axis of the hippocampus.

    PubMed

    Lyttle, David; Gereke, Brian; Lin, Kevin K; Fellous, Jean-Marc

    2013-08-01

    The rodent hippocampus and entorhinal cortex contain spatially modulated cells that serve as the basis for spatial coding. Both medial entorhinal grid cells and hippocampal place cells have been shown to encode spatial information across multiple spatial scales that increase along the dorsoventral axis of these structures. Place cells near the dorsal pole possess small, stable, and spatially selective firing fields, while ventral cells have larger, less stable, and less spatially selective firing fields. One possible explanation for these dorsoventral changes in place field properties is that they arise as a result of similar dorsoventral differences in the properties of the grid cell inputs to place cells. Here, we test the alternative hypothesis that dorsoventral place field differences are due to higher amounts of nonspatial inputs to ventral hippocampal cells. We use a computational model of the entorhinal-hippocampal network to assess the relative contributions of grid scale and nonspatial inputs in determining place field size and stability. In addition, we assess the consequences of grid node firing rate heterogeneity on place field stability. Our results suggest that dorsoventral differences in place cell properties can be better explained by changes in the amount of nonspatial inputs, rather than by changes in the scale of grid cell inputs, and that grid node heterogeneity may have important functional consequences. The observed gradient in field size may reflect a shift from processing primarily spatial information in the dorsal hippocampus to processing more nonspatial, contextual, and emotional information near the ventral hippocampus.

  4. Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal

    NASA Astrophysics Data System (ADS)

    Hoffmann, Bernd; Feakins, Sarah J.; Bookhagen, Bodo; Olen, Stephanie M.; Adhikari, Danda P.; Mainali, Janardan; Sachse, Dirk

    2016-10-01

    Fixation of atmospheric CO2 in terrestrial vegetation, and subsequent export and deposition of terrestrial plant organic matter in marine sediments is an important component of the global carbon cycle, yet it is difficult to quantify. This is partly due to the lack of understanding of relevant processes and mechanisms responsible for organic-matter transport throughout a landscape. Here we present a new approach to identify terrestrial plant organic matter source areas, quantify contributions and ascertain the role of ecologic, climatic, and geomorphic controls on plant wax export in the Arun River catchment spanning the world's largest elevation gradient from 205 to 8848 m asl, in eastern Nepal. Our approach takes advantage of the distinct stable hydrogen isotopic composition (expressed as δD values) of plant wax n-alkanes produced along this gradient, transported in river waters and deposited in flood deposits alongside the Arun River and its tributaries. In mainstem-flood deposits, we found that plant wax n-alkanes were mostly derived from the lower elevations constituting only a small fraction (15%) of the catchment. Informed by remote sensing data, we tested four differently weighted isotopic mixing models that quantify sourcing of tributary plant-derived organic matter along the Arun and compare it to our field observations. The weighting parameters included catchment area, net primary productivity (NPP) and annual rainfall amount as well as catchment relief as erosion proxy. When weighted by catchment area the isotopic mixing model could not explain field observations on plant wax δD values along the Arun, which is not surprising because the large arid Tibetan Plateau is not expected to be a major source. Weighting areal contributions by annual rainfall and NPP captured field observations within model prediction errors suggesting that plant productivity may influence source strength. However weighting by a combination of rainfall and catchment relief also

  5. Riverbank Collapse on the lower Murray River: recent phenomenon or long-term geomorphic process?

    NASA Astrophysics Data System (ADS)

    De Carli, E.; Hubble, T.; Jaksa, M.; Clarke, S. L.; Airey, D.; O'Toole, J.; Carpenter, G.

    2013-12-01

    The lower Murray River connects the Murray-Darling River Basin to the Southern Ocean and drains 14% of Australia's landmass. During the Millennium Drought (1997-2011) record low inflows for the Basin were recorded and the lower Murray River received only 19% of its long-term average inflow for 2008-2009, causing the pool-level in the lowermost reaches near Goolwa to fall 1 m below sea level. This event triggered widespread mass failure in the alluvial river banks and ground subsidence in some river-adjacent floodplain deposits between Blanchetown and Lake Alexandrina. Multi-beam bathymetry, sediment core and geotechnical data are presented for a number of sites investigated between Mannum and White Sands. Interpretation of this data indicates three different bank-failure slide morphologies present in the banks and adjacent channel. Type 1, ';recent' (2009-2011) deep-seated rotational slumps characterised by distinct, sharply-defined failure scars and associated debris fields of angular blocks shed from the failure site. Type 2, ';relatively-recent' shallow planar-failures, with less well-defined smoother failure scars and associated debris fields of smoothed or rounded blocks and pinnacles. Type 3, ';relatively-old' shallow planar-failures characterised by subdued relief slump scars that do not present an associated debris field. It is suspected that successive floods or high-flow events progressively erode and redistribute material, smoothing the landslide scars and redistributing the slide-debris deposits. Bank-failure and the delivery of material from the slides into the channel is interpreted as an ongoing and long-term geomorphic characteristic of the lower Murray River, rather than a new phenomenon that occurred as a response to unusually low river levels during the Millennium Drought. The larger size and rotational style of the recent Type 1 failures is most likely to be a consequence of the drought and anthropogenic modifications of the river channel and

  6. Assessing Geomorphic and Vegetative Responses to Environmental Flows in the Willamette River Basin

    NASA Astrophysics Data System (ADS)

    Mangano, J.; Jones, K.; Wallick, R.; Bach, L.; Olson, M.; Bervid, H.

    2015-12-01

    On regulated rivers, restoring flow regimes is a process-based restoration approach that may strongly affect downstream ecosystems. Developing realistic flow targets with meaningful geomorphic and ecological benefits, however, is challenging. For instance, hydraulic, geomorphic and biological processes are affected by more than manipulating water release—sediment supply and transport conditions also require consideration. Also, funding and programmatic directives rarely require the monitoring necessary to adaptively manage environmental flow programs. Recent research in the Willamette River basin in support of the Sustainable Rivers Project (SRP) demonstrates how such a monitoring program can be implemented. At the reach scale, initial efforts have assessed geomorphic and vegetative changes in alluvial sections of the Middle Fork Willamette and McKenzie Rivers using repeat mapping from aerial photographs and flow analyses. Overall, both rivers are largely stable because of reduced discharge, bed-material supply and local revetments, but some reaches of the McKenzie River are more dynamic, perhaps reflecting greater inputs of sediment from unregulated tributaries and higher magnitude peak flows. Repeat, reach-scale mapping on the Middle Fork Willamette River shows that frequent bankfull flows are able to scour minimally vegetated gravel bars and sustain a patchwork of actively shifting bed-material sediment. Repeat mapping on the McKenzie River in summer 2015 will reveal insights about the geomorphic effectiveness of bankfull flows. At the site scale, monitoring at two bars in summer 2015 is linking streamflow with the establishment of black cottonwood. Lastly, a review of hydrographs from 2000-2015 and retrospectively applying stakeholder-defined flow targets showed substantial variability in meeting objectives for the timing and types of flows under traditional regulated conditions and the SRP. Altogether, these related efforts help link streamflow, geomorphic

  7. Scale-dependent geomorphic responses to active restoration and implications for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Salant, N.; Miller, S. W.

    2009-12-01

    The predominant goal of instream habitat restoration is to increase the diversity, density and/or biomass of aquatic organisms through enhanced physical heterogeneity and increased food availability. In physically homogenized systems, habitat restoration is most commonly achieved at the reach-scale through the addition of structures or channel reconfiguration. Despite the completion of over 6,000 restoration projects in the United States, studies of fish responses to habitat restoration have largely produced equivocal results. Paradoxically, restoration monitoring overwhelmingly focuses on fish response without understanding how these responses link to the physical variables being altered and the scale at which geomorphic changes occur. Our study investigates whether instream habitat restoration affects geomorphic conditions at spatial scales relevant to the organism of interest (i.e. the spatial scale of the variables limiting to that organism). We measure the effects of active restoration on geomorphic metrics at three spatial scales (local, unit, and reach) using a before-after-control-impact design in a historically disturbed and heavily managed cutthroat trout stream. Observed trout habitat preferences (for spawning and juvenile/adult residence) are used to identify the limiting physical variables and are compared to the scale of spatially explicit geomorphic responses. Four reaches representing three different stages of restoration (before, one month and one year after) are surveyed for local-scale physical conditions, unit- and reach-scale morphology, resident fish use, and redd locations. Local-scale physical metrics include depth, nearbed and average velocity, overhead cover, particle size, and water quality metrics. Point measurements stratified by morphological unit are used to determine physical variability among unit types. Habitat complexity and availability are assessed at the reach-scale from topographic surveys and unit maps. Our multi

  8. Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington

    USGS Publications Warehouse

    Shafroth, Patrick B.; Perry, Laura G; Rose, Chanoane A; Braatne, Jeffrey H

    2016-01-01

    Understanding how dams affect the shifting habitat mosaic of river bottomlands is key for protecting the many ecological functions and related goods and services that riparian forests provide and for informing approaches to riparian ecosystem restoration. We examined the downstream effects of two large dams on patterns of forest composition, structure, and dynamics within different geomorphic contexts and compared them to upstream reference conditions along the Elwha River, Washington, USA. Patterns of riparian vegetation in river segments downstream of the dams were driven largely by channel and bottomland geomorphic responses to a dramatically reduced sediment supply. The river segment upstream of both dams was the most geomorphically dynamic, whereas the segment between the dams was the least dynamic due to substantial channel armoring, and the segment downstream of both dams was intermediate due to some local sediment supply. These geomorphic differences were linked to altered characteristics of the shifting habitat mosaic, including older forest age structure and fewer young Populus balsamifera subsp. trichocarpa stands in the relatively static segment between the dams compared to more extensive early-successional forests (dominated by Alnus rubra and Salix spp.) and pioneer seedling recruitment upstream of the dams. Species composition of later-successional forest communities varied among river segments as well, with greater Pseudotsuga menziesii and Tsuga heterophylla abundance upstream of both dams, Acer spp. abundance between the dams, and P. balsamifera subsp. trichocarpa and Thuja plicata abundance below both dams. Riparian forest responses to the recent removal of the two dams on the Elwha River will depend largely on channel and geomorphic adjustments to the release, transport, and deposition of the large volume of sediment formerly stored in the reservoirs, together with changes in large wood dynamics.

  9. Modeling the gopher-meadow eco-geomorphic system on montane hillslopes

    NASA Astrophysics Data System (ADS)

    Winchell, E. W.; Doak, D. F.; Anderson, R. S.

    2013-12-01

    On montane hillslopes of Colorado's Front Range, the transport of soil by gophers can dominate the modern geomorphic system in meadows. Qualitative observations reveal that gophers prefer to forage in meadows over forests, that seedling roots are consumed by gophers, and that trees commonly occupy the rocky crests of hills overlooking open meadow hillslopes. This motivates a numerical model of gopher-mediated transport of soil and the long-term evolution of the coupled ecological-geomorphic system through quantitative observations from a manipulative experiment on meadow-centered plots in the Boulder Creek CZO in the Colorado Front Range montane forest. The ecological and geomorphic processes in the coupled system we wish to model must include: seedling establishment and damage, gopher tunneling geometries and resulting mound generation, mound material transport driven by rain and hail and by ungulate trampling, vegetative lock-down of mound material, and resulting changes in the soil depth and rockiness of the landscape. We must therefore have algorithms to capture the feedback mechanisms between gopher activity and the growth and potential death of trees, the casting of seeds and their likelihood of germination, and the spatial distribution of plants. The ecological component interacts with the soils/critical zone layer through feedbacks that include the dependence of gopher activity on root density, depth, and size, undergrowth availability, and the dependence of the rate of change of soil thickness on gradients in gopher-mediated transport. Results of a preliminary cellular automaton model which captures the essence of these geomorphic-ecological feedbacks can readily address the role of gophers in limiting the encroachment of trees into meadow patches. The bioturbation of the meadows, and the downslope transport of soil within them, is much more efficient than that in the forest, which sees little to no gopher activity. These geomorphic transport hotspots will

  10. Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Shi, Z. H.; Fang, N. F.; Guo, M. H.

    2015-04-01

    The geomorphic characteristics of a watershed affect the energy fluxes, mass movement, and water and sediment dispersion within the watershed. This paper examines how watershed complexity affects sediment yield in terms of rainfall and geomorphic characteristics. The geomorphic characteristics include primary, secondary and compound topographic attributes; watershed shape characteristics; relief parameters; and stream network characteristics. Because of the high co-dependence among these characteristics, partial least-squares regression (PLSR) was used to identify the relationships between the sediment yield and 29 selected watershed characteristics. The PLSR combines the features of a principal component analysis and multiple linear regression and is a robust multivariate regression method that is appropriate when the predictors exhibit multiple co-linearity. The first-order factors were determined by calculating the variable importance for the projection (VIP). Those variables with high VIP values are the most relevant for explaining the dependent variable. The results showed that the watershed shape and relief parameters have large influences on the sediment yield. The VIP values revealed that the sediment yield is primarily controlled by the plan curvature (VIP = 1.87) and the highest order channel length (VIP = 1.53), followed by the hypsometric integral (VIP = 1.49), rainfall (VIP = 1.44), basin relief (VIP = 1.19), slope (VIP = 1.15), sediment transport capacity index (VIP = 1.13), length ratio (VIP = 1.06), profile curvature (VIP = 1.01) and divide average relief (VIP = 1.00). This paper quantified the effects and relative importance of different geomorphic attributes on sediment yield. The insight provided by these results can be used in the selection of appropriate geomorphic variables for watershed erosion and hydrological models. Thus, this study is intended to elucidate the internal dynamics of sediment transport and storage in a watershed and provide

  11. Synthesizing Fluvial Sedimentary and Geomorphic Response to Dam Removal—A Two-Decade Perspective

    NASA Astrophysics Data System (ADS)

    East, A. E.; Major, J. J.; Bountry, J.; Randle, T. J.; O'Connor, J. E.; Grant, G.; Wilcox, A. C.; Magirl, C. S.; Magilligan, F. J.; Collins, M. J.; Pess, G. R.; Tullos, D. D.

    2015-12-01

    Over the last several decades there has been a marked increase in the number of dams removed in the United States, including the recent removal of large dams impounding millions of cubic meters of sediment. From these removals, common findings have begun to emerge: (1) Rivers are resilient, showing rapid geomorphic and sedimentary response to dam removals, especially when removals are sudden rather than prolonged, and where rivers have adequate stream power. Rivers can rapidly evacuate large percentages of stored reservoir sediment (≥40% within one year)—particularly where sediment is coarse-grained (sand and gravel), and can move evacuated sediment long distances (>20 km downstream) within a year, given sufficient transport capacity. The channel downstream typically takes months to years—not decades—to achieve a degree of stability within its natural range of variability. (2) Modest flows can erode large amounts of reservoir sediment and move it downstream. Large floods are not required to move substantial sediment volumes, especially from non-cohesive reservoir deltas. Once the most easily accessed sediment is eroded, however, larger floods can continue to access the remnant reservoir sediment and redistribute it downstream. Portions of the redistributed sediment remain (up- and downstream of the dam site), shaping a new landscape. (3) Dam height, sediment volume, and sediment grain size and cohesion strongly influence response to dam removal. Although removals of small dams with little stored sediment are more common, removals of large dams (≥10 m) with major sediment releases have had longer-lasting and more widespread downstream effects. (4) Downstream valley morphology and hydrology strongly influence the distribution of released sediment. Bedrock confinement versus wide alluvial reaches, downstream channel gradient, locations and depths of channel pools, locations and geometries of existing channel bars, position of the dam within a watershed, and

  12. Stability of Streaming in an Electrified Maxwell Fluid Sheet Influenced by a Vertical Periodic Field in the Absence of Surface Charges.

    PubMed

    El-Dib; Matoog

    2000-09-01

    The problem of electroviscoelastic Kelvin-Helmholtz waves of Maxwellian fluids under the influence of a vertical periodic electric field is studied in the absence of surface charges. The system is composed of a streaming dielectric fluid sheet of finite thickness embedded between two different streaming semi-infinite dielectric fluids. Due to the streaming flow and the influence of a periodic force, a mathematical simplification is considered. The weak viscoelastic effects are taken into account so that their contributions are demonstrated in the boundary conditions. The approximate equations of motion are solved in the absence of viscoelastic effects. The solutions of the linearized equations of motion and boundary conditions lead to two simultaneous Mathieu equations of damping terms having complex coefficients. Symmetric or antisymmetric deformation that relaxes the coupled Mathieu equations and yields a single Mathieu equation is considered. Stability criteria are discussed and numerical estimation shows that the increase in the sheet thickness plays a destabilizing effect in the presence or in the absence of the field frequency as well as the field intensity. In the absence of the field frequency the velocity ratio between the upper fluid velocity and the sheet velocity has a destabilizing influence, while that between the velocity of the lower fluid and the velocity of the sheet has a stabilizing influence. Moreover, the viscosity ratios have a damping influence while the elasticity ratios have a destabilizing influence. Furthermore, a range of general deformations of the surface deflections is studied. Moreover, the stability behavior for the resonance cases is studied and discussed. The coupled Mathieu equations are analyzed by the multiple scale method. The numerical examination for stability yields some changes in the stability behavior. The fluid sheet thickness plays a stabilizing role in the presence of a constant field while the damping role is

  13. Solar radiation signature manifested on the spatial patterns of modeled soil moisture, vegetation, and topography using an ecohydro-geomorphic landscape evolution model

    NASA Astrophysics Data System (ADS)

    Yetemen, O.; Flores Cervantes, J. H.; Istanbulluoglu, E.; Vivoni, E. R.

    2013-12-01

    The role of solar radiation on ecohydrologic fluxes, vegetation dynamics, species composition, and landscape morphology have long been documented in field studies. However a numerical model framework to integrate a range of ecohydrologic and geomorphic processes to explore the integrated ecohydro-geomorphic landscape response have been missing. In this study, our aim is to realistically represent flood generation and solar-radiation-driven echydrologic dynamics in a landscape evolution model (LEM) to investigate how ecohydrologic differences caused by differential irradiance on opposing hillslopes manifest themselves on the organization of modeled topography, soil moisture and plant biomass. We use the CHILD LEM equipped with a spatially-distributed solar-radiation component, leading to spatial patterns of soil moisture; a vegetation dynamics component that explicitly tracks above- and below-ground biomass; and a runoff component that allows for runoff-runon processes along the landscape flow paths. Ecohydrological component has been verified using a detailed data gathered from Sevilleta National Wildlife Refuge in central New Mexico, and Walnut Gulch Experimental Watershed in southern Arizona. LEM scenarios were designed to compare the outcomes of spatially distributed versus spatially uniform solar radiation forced with a constant climate and variable uplift. Modeled spatial patterns of soil moisture confirm empirical observations at the landscape scale and other hydrologic modeling studies. The spatial variability in soil moisture is controlled by aspect prior to the wet season (North American Monsoon, NAM), and by the hydraulic connectivity of the flow network during NAM. Aspect and network connectivity signatures are also manifested on plant biomass with typically denser vegetation cover on north-facing slopes than south facing slopes. Over the long-term, CHILD gives slightly steeper and less dissected north-facing slopes more dissected south facing slopes and

  14. Processing, validating, and comparing DEMs for geomorphic application on the Puna de Atacama Plateau, northwest Argentina

    NASA Astrophysics Data System (ADS)

    Purinton, Benjamin; Bookhagen, Bodo

    2016-04-01

    the field of quantitative geomorphology are topometrics (e.g., relief, channel steepness, and hillslope concavity) derived from the DEMs. The accuracy of these metrics is partly dependent on the overall DEM accuracy, but also on the accuracy of the depiction of the river network (a small areal fraction of the DEM). In addition, several topometrics depend on the first and second derivative of elevation (slope and curvature), which are affected by DEM accuracy and noise. In light of these issues, topometrics are compared across the DEM datasets in order to assess their quality for specific geomorphic applications.

  15. Pyromellitic dithioimides: thionation improves air-stability and electron mobility of N-type organic field-effect transistors.

    PubMed

    Yang, Te-Fang; Huang, Sheng-Han; Chiu, Yi-Pang; Chen, Bo-Hsiang; Shih, Yu-Wei; Chang, Yu-Chang; Yao, Jie-Yi; Lee, Yao-Jen; Kuo, Ming-Yu

    2015-09-18

    Thionation and fluorination of pyromellitic diimides (PyDIs) increased the electron mobility and on/off ratio of the original diimides by two orders of magnitude and improved the threshold voltage and air-stability of diimide compounds.

  16. Potential Geomorphic Consequences of Wave Climate Alterations along Cuspate Coastlines

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Moore, L. J.; Ells, K. D.; Murray, A.

    2012-12-01

    While much attention has been given to the effects of sea level rise on coastal environments, changes in wave climate (in response to predicted increases in tropical storm intensity) may also significantly impact coastal areas in the future. Characterized by rapid alongshore shifts in shoreline orientation, cuspate coastlines are particularly sensitive to changes in wave climate and thus represent the best type of coastline for detecting initial responses to changing wave conditions. Previous work indicates that Cape Hatteras and Cape Lookout, NC have become increasingly asymmetric in response to an increase in Atlantic summer wave heights identified by Komar and Allen (2007). Here, we contrast historic and recent patterns of erosion and accretion for areas surrounding Cape Fear, NC and Fishing Point, VA to determine if a similar coastline response can be detected for a location heavily impacted by shoreline stabilization efforts and a location experiencing a less-pronounced trend of increasing wave energy, respectively. We obtained shorelines from NOAA, the USGS, and the North Carolina Department of Natural Resources and used the Digital Shoreline Analysis System (DSAS) to calculate shoreline change rates for historic (pre-1975) and recent (post-1975) time periods. The 1975 breakpoint was chosen to correspond with the timing of reported increases in hurricane-generated (summer) wave heights. Initial results suggest that the influence of shoreline stabilization efforts (primarily beach nourishment, one jetty and a few groins) has overwhelmed any wave-climate change response that may otherwise have been detectable surrounding Cape Fear, NC. Preliminary results for Fishing Point, VA indicate no discernible wave-climate related trend in shoreline change, suggesting that wave climate changes have not been of a significant magnitude to significantly influence patterns of erosion and accretion along this stretch of coastline. Coastline Evolution Model (CEM) simulations

  17. Geomorphic response to flow regulation and channel and floodplain alteration in the gravel-bedded Cedar River, Washington, USA

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.

    2012-01-01

    Decadal- to annual-scale analyses of changes to the fluvial form and processes of the Cedar River in Washington State, USA, reveal the effects of flow regulation, bank stabilization, and log-jam removal on a gravel-bedded river in a temperate climate. During the twentieth century, revetments were built along ~ 60% of the lower Cedar River's length and the 2-year return period flow decreased by 47% following flow regulation beginning in 1914. The formerly wide, anastomosing channel narrowed by over 50% from an average of 47 m in 1936 to 23 m in 1989 and became progressively single threaded. Subsequent high flows and localized revetment removal contributed to an increase in mean channel width to about 34 m by 2011. Channel migration rates between 1936 and 2011 were up to 8 m/year in reaches not confined by revetments or valley walls and less than analysis uncertainty throughout most of the Cedar River's length where bank armoring restricted channel movement. In unconfined reaches where large wood and sediment can be recruited, contemporary high flows, though smaller in magnitude than preregulation high flows, form and maintain geomorphic features such as pools, gravel bars, and side channels. Reaches confined by revetments remain mostly unmodified in the regulated flow regime. While high flows are important for maintaining channel dynamics in the Cedar River, their effectiveness is currently reduced by revetments, limited sediment supply, the lack of large wood available for recruitment to the channel, and decreased magnitude since flow regulation.

  18. Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers.

    PubMed

    DeVries, Paul; Aldrich, Robert

    2015-08-01

    A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m(3)/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.

  19. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.

    PubMed

    Szefczyk, Borys; Mulholland, Adrian J; Ranaghan, Kara E; Sokalski, W Andrzej

    2004-12-15

    Chorismate mutase is a key model system in the development of theories of enzyme catalysis. To analyze the physical nature of catalytic interactions within the enzyme active site and to estimate the stabilization of the transition state (TS) relative to the substrate (differential transition state stabilization, DTSS), we have carried out nonempirical variation-perturbation analysis of the electrostatic, exchange, delocalization, and correlation interactions of the enzyme-bound substrate and transition-state structures derived from ab initio QM/MM modeling of Bacillus subtilis chorismate mutase. Significant TS stabilization by approximately -23 kcal/mol [MP2/6-31G(d)] relative to the bound substrate is in agreement with that of previous QM/MM modeling and contrasts with suggestions that catalysis by this enzyme arises purely from conformational selection effects. The most important contributions to DTSS come from the residues, Arg90, Arg7, Glu78, a crystallographic water molecule, Arg116, and Arg63, and are dominated by electrostatic effects. Analysis of the differential electrostatic potential of the TS and substrate allows calculation of the catalytic field, predicting the optimal location of charged groups to achieve maximal DTSS. Comparison with the active site of the enzyme from those of several species shows that the positions of charged active site residues correspond closely to the optimal catalytic field, showing that the enzyme has evolved specifically to stabilize the TS relative to the substrate.

  20. Dating young geomorphic surfaces using age of colonizing Douglas fir in southwestern Washington and northwestern Oregon, USA

    USGS Publications Warehouse

    Pierson, T.C.

    2007-01-01

    Dating of dynamic, young (<500 years) geomorphic landforms, particularly volcanofluvial features, requires higher precision than is possible with radiocarbon dating. Minimum ages of recently created landforms have long been obtained from tree-ring ages of the oldest trees growing on new surfaces. But to estimate the year of landform creation requires that two time corrections be added to tree ages obtained from increment cores: (1) the time interval between stabilization of the new landform surface and germination of the sampled trees (germination lag time or GLT); and (2) the interval between seedling germination and growth to sampling height, if the trees are not cored at ground level. The sum of these two time intervals is the colonization time gap (CTG). Such time corrections have been needed for more precise dating of terraces and floodplains in lowland river valleys in the Cascade Range, where significant eruption-induced lateral shifting and vertical aggradation of channels can occur over years to decades, and where timing of such geomorphic changes can be critical to emergency planning. Earliest colonizing Douglas fir (Pseudotsuga menziesii) were sampled for tree-ring dating at eight sites on lowland (<750 m a.s.l.), recently formed surfaces of known age near three Cascade volcanoes - Mount Rainier, Mount St. Helens and Mount Hood - in southwestern Washington and northwestern Oregon. Increment cores or stem sections were taken at breast height and, where possible, at ground level from the largest, oldest-looking trees at each study site. At least ten trees were sampled at each site unless the total of early colonizers was less. Results indicate that a correction of four years should be used for GLT and 10 years for CTG if the single largest (and presumed oldest) Douglas fir growing on a surface of unknown age is sampled. This approach would have a potential error of up to 20 years. Error can be reduced by sampling the five largest Douglas fir instead of