Science.gov

Sample records for geophysical drill cores

  1. Geologic, geotechnical, and geophysical properties of core from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming

    USGS Publications Warehouse

    Collins, Donley S.

    1983-01-01

    A preliminary core study from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming, revealed that the upper portion of the core had been baked by a fire confined to the underlying Monarch coal bed. The baked (clinkered) sediment above the Monarch coal bed was determined to have higher point-load strength values (greater than 2 MPa) than the sediment under the burned coal

  2. Chemical analysis of water samples and geophysical logs from cored test holes drilled in the central Oklahoma Aquifer, Oklahoma

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Funkhouser, Ron A.

    1991-01-01

    Chemical analyses of water from eight test holes and geophysical logs for nine test holes drilled in the Central Oklahoma aquifer are presented. The test holes were drilled to investigate local occurrences of potentially toxic, naturally occurring trace substances in ground water. These trace substances include arsenic, chromium, selenium, residual alpha-particle activities, and uranium. Eight of the nine test holes were drilled near wells known to contain large concentrations of one or more of the naturally occurring trace substances. One test hole was drilled in an area known to have only small concentrations of any of the naturally occurring trace substances. Water samples were collected from one to eight individual sandstone layers within each test hole. A total of 28 water samples, including four duplicate samples, were collected. The temperature, pH, specific conductance, alkalinity, and dissolved-oxygen concentrations were measured at the sample site. Laboratory determinations included major ions, nutrients, dissolved organic carbon, and trace elements (aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium, and zinc). Radionuclide activities and stable isotope d values also were determined, including: gross-alpha-particle activity, gross-beta-particle activity, radium-226, radium-228, radon-222, uranium-234, uranium-235, uranium-238, total uranium, carbon-13/carbon-12, deuterium/hydrogen-1, oxygen-18/oxygen-16, and sulfur-34/sulfur-32. Additional analyses of arsenic and selenium species are presented for selected samples as well as analyses of density and iodine for two samples, tritium for three samples, and carbon-14 for one sample. Geophysical logs for most test holes include caliper, neutron, gamma-gamma, natural-gamma logs, spontaneous potential, long- and short-normal resistivity, and single-point resistance

  3. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  4. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  5. A Model of the Chicxulub Impact Basin Based on Evaluation of Geophysical Data, Well Logs, and Drill Core Samples

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Marin, Luis E.; Carney, John D.; Lee, Scott; Ryder, Graham; Schuraytz, Benjamin C.; Sikora, Paul; Spudis, Paul D.

    1996-01-01

    Abundant evidence now shows that the buried Chicxulub structure in northern Yucatan, Mexico, is indeed the intensely sought-after source of the ejecta found world-wide at the Cretaceous-Tertiary (K/T) boundary. In addition to large-scale concentric patterns in gravity and magnetic data over the structure, recent analyses of drill-core samples reveal a lithological assemblage similar to that observed at other terrestrial craters. This assemblage comprises suevite breccias, ejecta deposit breccias (Bunte Breccia equivalents), fine-grained impact melt rocks, and melt-matrix breccias. All these impact-produced lithologies contain diagnostic evidence of shock metamorphism, including planar deformation features in quartz, feldspar, and zircons; diaplectic glasses of quartz and feldspar; and fused mineral melts and whole-rock melts. In addition, elevated concentrations of Ir, Re, and Os, in meteoritic relative proportions, have been detected in some melt-rock samples from the center of the structure. Isotopic analyses, magnetization of melt-rock samples, and local stratigraphic constraints identify this crater as the source of K/T boundary deposits.

  6. Comparative analysis of core drilling and rotary drilling in volcanic terrane

    SciTech Connect

    Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr.

    1987-04-01

    Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

  7. Geothermal temperature gradient core drill, Santiam Pass

    SciTech Connect

    Not Available

    1989-01-01

    DOE is proposing to share in the cost of drilling a 3000-ft core hole to evaluate temperature gradients, subsurface geology and the geothermal potential of an area in the Cascade Mountains. The proposed core hole will be located in the Deschutes National Forest in Oregon, near Santiam Pass. The proposed action has been described in the Environmental Assessment (EA) for Geothermal Temperature Gradient Core Drill Santiam Pass Area (No. OR-050-9-51) prepared by the US Bureau of Land Management (BLM). DOE has determined that the BLM EA adequately addresses the impacts of the proposal and is hereby adopting the EA in partial fulfillment of its NEPA responsibilities. Based upon a review of the EA and an independent analysis, DOE has concluded that the proposed corehole drilling project does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, an environmental impact statement will not be prepared.

  8. Geophysical investigations in deep horizontal holes drilled ahead of tunnelling

    USGS Publications Warehouse

    Carroll, R.D.; Cunningham, M.J.

    1980-01-01

    Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.

  9. Buckling and dynamic analysis of drill strings for core sampling

    SciTech Connect

    Ziada, H.H., Westinghouse Hanford

    1996-05-15

    This supporting document presents buckling and dynamic stability analyses of the drill strings used for core sampling. The results of the drill string analyses provide limiting operating axial loads and rotational speeds to prevent drill string failure, instability and drill bit overheating during core sampling. The recommended loads and speeds provide controls necessary for Tank Waste Remediation System (TWRS) programmatic field operations.

  10. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    USGS Publications Warehouse

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  11. Integrated deep drilling, coring, downhole logging, and data management in the Chicxulub Scientific Drilling Project (CSDP), Mexico

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, Lothar; Bintakies, Eckhard; Kück, Jochem; Conze, Ronald; Harms, Ulrich

    2004-06-01

    Impact structures in the solar system are mainly recognized and explored through remote sensing and, on Earth, through geophysical deep sounding. To date, a continuous scientific sampling of large impact craters from cover rocks to target material has only seldom been performed. The first project to deep-drill and core into one of the largest and well-preserved terrestrial impact structures was executed in the winter of 2001/2002 in the 65 Myr-old Chicxulub crater in Mexico using integrated coring sampling and in situ measurements. The combined use of different techniques allows a three-dimensional insight and a better understanding of impact processes. Here, we report the integration of conventional rotary drilling techniques with wireline mining coring technology that was applied to drill the 1510 m-deep Yaxcopoil-1 (Yax-1) well about 40 km southwest of Mérida, Yucatán, Mexico. During the course of the project, we recovered approximately 900 m of intact core samples including the transitions of reworked ejecta to post-impact sediments, and that one from large blocks of tilted target material to impact-generated rocks, i.e., impact melt breccias and suevites. Coring was complemented by wireline geophysical measurements to obtain a continuous set of in situ petrophysical data of the borehole walls. The data acquired is comprised of contents of a natural radioactive element, velocities of compressional sonic waves, and electrical resistivity values. All the digital data sets, including technical drilling parameters, initial scientific sample descriptions, and 360° core pictures, were distributed during the course of the operations via Internet and were stored in the ICDP Drilling Information System (http://www.icdp-online.org), serving the global community of cooperating scientists as a basic information service.

  12. Concepts and Benefits of Lunar Core Drilling

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Bogard, D. D.; Derkowski, B. J.; George, J. A.; Askew, R. S.; Lindsay, J. F.

    2007-01-01

    Understanding lunar material at depth is critical to nearly every aspect of NASA s Vision and Strategic Plan. As we consider sending human s back to the Moon for brief and extended periods, we will need to utilize lunar materials in construction, for resource extraction, and for radiation shielding and protection. In each case, we will be working with materials at some depth beneath the surface. Understanding the properties of that material is critical, thus the need for Lunar core drilling capability. Of course, the science benefit from returning core samples and operating down-hole autonomous experiments is a key element of Lunar missions as defined by NASA s Exploration Systems Architecture Study. Lunar missions will be targeted to answer specific questions concerning lunar science and re-sources.

  13. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    SciTech Connect

    Fairbank, Brian D.; Smith, Nicole

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  14. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  15. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact

  16. Recent Developments and Adaptations in Diamond Wireline Core Drilling Technology

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Nielson, D. L.; Howell, B. B.; Pardey, M.

    2001-05-01

    Scientific drilling using diamond wireline technology is presently undergoing a significant expansion and extension of activities that has allowed us to recover geologic samples that have heretofore been technically or financially unattainable. Under the direction and management of DOSECC, a high-capacity hybrid core drilling system was designed and fabricated for the Hawaii Scientific Drilling Project (HSDP) in 1998. This system, the DOSECC Hybrid Coring System (DHCS), has the capacity to recover H-sized core from depths of more than 6 km. In 1999, the DHCS completed the first phase of the HSDP to a depth of 3100 m at a substantially lower cost per foot than any previous scientific borehole to comparable depths and, in the process, established a new depth record for recovery of H-sized wireline core. This system has been offered for use in the Unzen Scientific Drilling Project, the Chicxulub (impact crater) Scientific Drilling Project, and the Geysers Deep Geothermal Reservoir Project. More recently, DOSECC has developed a smaller barge-mounted wireline core drilling system, the GLAD800, that is capable of recovering P-sized sediment core to depths of up to 800 m. The GLAD800 has been successfully deployed on Great Salt Lake and Bear Lake in Utah and is presently being mobilized to Lake Titicaca in South America for an extensive core recovery effort there. The coring capabilities of the GLAD800 system will be available to the global lakes drilling community for acquisition of sediment cores from many of the world's deep lakes for use in calibrating and refining global climate models. Presently under development by DOSECC is a heave-compensation system that will allow us to expand the capabilities of the moderate depth coring system to allow us to collect sediment and bottom core from the shallow marine environment. The design and capabilities of these coring systems will be presented along with a discussion of their potential applications for addressing a range of

  17. Preliminary report on geophysical well-logging activity on the Salton Sea Scientific Drilling Project, Imperial Valley, California

    USGS Publications Warehouse

    Paillet, Frederick L.; Morin, R.H.; Hodges, H.E.

    1986-01-01

    The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous

  18. Data from core analyses, aquifer testing, and geophysical logging of Denver Basin bedrock aquifers at Castle Pines, Colorado

    USGS Publications Warehouse

    Robson, S.G.; Banta, E.R.

    1993-01-01

    This report contains data pertaining to the geologic and hydrologic characteristics of the bedrock aquifers of the Denver basin at a site near Castle Pines, Colorado. Data consist of a lithologic- description of about 2,400 ft of drill core and laboratory determinations of mineralogy, grain size, bulk and grain density, porosity, specific yield, and specific retention for selected core samples. Water-level data, atmospheric-pressure measurements, aquifer-compression measurements, and borehole geophysical logs also are included.

  19. Ultrasonic/Sonic Mechanisms for Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Dolgin, Benjamin; Askin, Steve; Peterson, Thomas M.; Bell, Bill; Kroh, Jason; Pal, Dharmendra; Krahe, Ron; Du, Shu

    2003-01-01

    Two apparatuses now under development are intended to perform a variety of deep-drilling, coring, and sensing functions for subsurface exploration of rock and soil. These are modified versions of the apparatuses described in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. In comparison with the drilling equipment traditionally used in such exploration, these apparatuses weigh less and consume less power. Moreover, unlike traditional drills and corers, these apparatuses function without need for large externally applied axial forces.

  20. Drilling the Thuringian Syncline, Germany: core processing during the INFLUINS scientific deep drilling campaign

    NASA Astrophysics Data System (ADS)

    Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe

    2014-05-01

    Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the

  1. Preliminary geophysical, geohazard, and geomorphic mapping of the Alpine Fault Deep Fault Drilling Project (DFDP), Gaunt Creek, New Zealand

    NASA Astrophysics Data System (ADS)

    de Pascale, G. P.; Davies, T.; Nobes, D. C.; Quigley, M.; Sutherland, R.; Toy, V. G.; Norris, R. J.; Langridge, R. M.; Stahl, T.; Klahn, A.; Townend, J.

    2010-12-01

    In central South Island, the dextral-reverse Alpine Fault Zone (AFZ) forms the major plate boundary structure between the Pacific and Australian plates. The AFZ is thought to fail in large earthquakes (~ Mw 7-8) approximately every 200 to 400 years, to have last ruptured in 1717 and is associated with high rates of strain release and exhumation. The AFZ is the target of a multidisciplinary proposal called the Deep Fault Drilling Project or DFDP which proposes to drill, retrieve core, and test subsurface conditions of the AFZ from a shallow, < 200 m-long core at Gaunt Creek, followed by a < 1500 m-long core near Whataroa to characterise the fault zone. Most recent traces of the AFZ are concealed at Gaunt Creek due to a combination of post-1717 fluvial erosion and deposition and landslides, therefore geophysical, geomorphic, and geohazard mapping was undertaken to map fault traces and subsurface geometry, and geohazards at the proposed drilling site and observatory. Geohazard reconnaissance was undertaken to determine site suitability for drilling and long-term occupation by the DFDP observatory because major flooding occurred at the site in 1967 and abundant landslides are present at the site. Site suitability was evaluated based on the fluvial, tectonic, and landslide history of fluvial terraces on the northern side of Gaunt Creek. Vegetation colonization (reflecting recent flooding) and presence of boulders and landslide debris were used to select sites. Over 600 m of ground penetrating radar (GPR) transects using a 50 MHz antenna, and 400 m of electrical resistivity data, were collected along the Late-Holocene alluvial fans to map subsurface stratigraphy. Preliminary GPR results show fluvial stratigraphy, bedrock contacts and faults in bedrock and sediments between 0 and 25 m below ground surface at Gaunt Creek. Electrical resistivity data imaged to 10 m. Geomorphic mapping (including fault trace mapping, terrace mapping, and surficial geological mapping) was

  2. Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico

    SciTech Connect

    Musgrave, J.A.; Goff, F.; Shevenell, L.; Trujillo, P.E. Jr.; Counce, D.; Luedemann, G.; Garcia, S.; Dennis, B.; Hulen, J.B.; Janik, C.; Tomei, F.A.

    1989-02-01

    This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.

  3. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs

    USGS Publications Warehouse

    Wu, H.-Y.; Ma, K.-F.; Zoback, M.; Boness, N.; Ito, H.; Hung, J.-H.; Hickman, S.

    2007-01-01

    The Taiwan Chelungpu-fault Drilling Project (TCDP) drilled a 2-km-deep research borehole to investigate the structure and mechanics of the Chelungpu Fault that ruptured in the 1999 Mw 7.6 Chi-Chi earthquake. Geophysical logs of the TCDP were carried out over depths of 500-1900 in, including Dipole Sonic Imager (DSI) logs and Formation Micro Imager (FMI) logs in order to identify bedding planes, fractures and shear zones. From the continuous core obtained from the borehole, a shear zone at a depth of 1110 meters is interpreted to be the Chelungpu fault, located within the Chinshui Shale, which extends from 1013 to 1300 meters depth. Stress-induced borehole breakouts were observed over nearly the entire length of the wellbore. These data show an overall stress direction (???N115??E) that is essentially parallel to the regional stress field and parallel to the convergence direction of the Philippine Sea plate with respect to the Eurasian plate. Variability in the average stress direction is seen at various depths. In particular there is a major stress orientation anomaly in the vicinity of the Chelungpu fault. Abrupt stress rotations at depths of 1000 in and 1310 in are close to the Chinshui Shale's upper and lower boundaries, suggesting the possibility that bedding plane slip occurred during the Chi-Chi earthquake. Copyright 2007 by the American Geophysical Union.

  4. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    USGS Publications Warehouse

    Spengler, Richard W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five fault zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members, restricted log coverage to the lower half of the drill hole.

  5. Drilling report and core logs for the 1981 drilling of Kilauea Iki lava lake, Kilauea volcano, Hawaii, with comparative notes on earlier (1967-1979) drilling experiences

    SciTech Connect

    Helz, R.T.; Wright, T.L.

    1983-01-01

    The purpose is: (1) to describe the 1981 drilling of Kilauea Iki lava lake, (2) to present the logs for the drill core recovered during the 1981 drilling, and (3) to present a summary of some of the field observations made during the 1967, 1975, 1976 and 1979 drillings that are relevant to the crystallization history of Kilauea Iki lava lake. This report supplements logs for the 1967-1979 core presented in Helz et al. (1980). 21 references, 4 figures, 4 tables.

  6. Drilling-induced core fractures and in situ stress

    NASA Astrophysics Data System (ADS)

    Li, Yongyi; Schmitt, Douglas R.

    1998-03-01

    The relationship between the shapes of drilling-induced core fractures and the in situ state of stress is developed. The stress concentrations at the well bore bottom are first determined using a complete three-dimensional finite element analysis. Existing in situ compressional stresses generate large tensions in the immediate vicinity of the bottom hole which are sufficient to rupture the rock. Tensile fracture trajectories within these concentrated stress fields are predicted using a simple model of fracture propagation. These modeled fracture trajectories resemble well the observed shapes of drilling-induced core disking, petal, and petal-centerline fractures. Further, this agreement suggests that both the shape of the drilling-induced fracture and the location at which it initiates depends on the in situ stress state existing in the rock mass prior to drilling; the core fractures contain substantial information on in situ stress conditions. In all faulting regimes the coring-induced fractures initiate near the bit cut except for most cases under thrust faulting regime where the fracture initiates on the well bore axis. Further, under thrust faulting conditions only disk fractures appear possible. Both petal and disking fractures can be produced in strike-slip and normal faulting regimes depending upon the relative magnitudes between the least compressive horizontal principal stress and the vertical overburden stress. The predicted fracture shapes are in good qualitative agreement with observations of drilling-induced fractures described in the literature from laboratory experiments and field programs in which in situ stresses are measured by other means. The relationship of the morphology of coring induced fractures and in situ stresses suggests that the fractures can be used as independent complementary indicators in identifying stress regimes.

  7. Application of scientific core drilling to geothermal exploration: Platanares, Honduras and Tecuamburro Volcano, Guatemala, Central America

    SciTech Connect

    Goff, S.J.; Goff, F.E.; Heiken, G.H.; Duffield, W.A.; Janik, C.J.

    1994-04-01

    Our efforts in Honduras and Guatemala were part of the Central America Energy Resource Project (CAERP) funded by the United States Agency for International Development (AID). Exploration core drilling operations at the Platanares, Honduras and Tecuamburro Volcano, Guatemala sites were part of a geothermal assessment for the national utility companies of these countries to locate and evaluate their geothermal resources for electrical power generation. In Honduras, country-wide assessment of all thermal areas determined that Platanares was the site with the greatest geothermal potential. In late 1986 to middle 1987, three slim core holes were drilled at Platanares to a maximum depth of 680 m and a maximum temperature of 165{degree}C. The objectives were to obtain information on the geothermal gradient, hydrothermal alterations, fracturing, and possible inflows of hydrothermal fluids. Two holes produced copious amounts of water under artesian conditions and a total of 8 MW(t) of energy. Geothermal investigations in Guatemala focused on the Tecuamburro Volcano geothermal site. The results of surface geological, volcanological, hydrogeochemical, and geophysical studies at Tecuamburro Volcano indicated a substantial shallow heat source. In early 1990 we drilled one core hole, TCB-1, to 808 m depth. The measured bottom hole temperature was 238{degree}C. Although the borehole did not flow, in-situ samples indicate the hole is completed in a vapor-zone above a probable 300{degree}C geothermal reservoir.

  8. Depositional history of the Apollo 16 deep drill core

    NASA Technical Reports Server (NTRS)

    Gose, W. A.; Morris, R. V.

    1977-01-01

    Ferromagnetic resonance and magnetic hysteresis loop measurements were performed on 212 samples from the Apollo 16 deep drill core. The total iron content is generally uniform with a mean value of 5.7 plus or minus 0.9 wt%. The soils range in maturity from immature to mature. Two major contacts were observed. The contact at 13 cm depth represents a fossil surface whereas the contact at 190 cm depth has no time-stratigraphic significance. The data suggest that the core section below 13 cm depth was deposited in a single impact event and subjected to meteoritic gardening for about 450 m.y. However, our data do not preclude deposition by a series of closely spaced events. About 50 m.y. ago, the top 13 cm were added. Comparison with the Apollo 16 double drive tube 60009/60010 does not yield any evidence for a stratigraphic correlation with the deep drill core.

  9. Stratigraphy and depositional history of the Apollo 17 drill core

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Warner, R. D.; Keil, K.

    1979-01-01

    Lithologic abundances obtained from modal analyses of a continuous string of polished thin sections indicate that the Apollo 17 deep drill core can be divided into three main zones: An upper zone (0-19 cm depth) characterized by high abundances of agglutinates (30%) and a high ratio of mare to non-mare lithic fragments (less than 0.8); a coarse-grained layer (24-56 cm) rich in fragments of high-Ti mare basalts and mineral fragments derived from them, and poor in agglutinates (6%); and a lower zone (56-285 cm) characterized by variable but generally high agglutinate abundances (25%) and a low ratio of mare to nonmare lithic fragments (0.6). Using observations of the geology of the landing site, the principles of cratering dynamics, and the vast amount of data collected on the core, the following depositional history for the section of regolith sampled by the Apollo 17 drill core: was devised.

  10. Comparison of core control and geophysical investigations, silica sand deposits, Dawmat Al Jandal, Al Jawf at Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alsulaimani, Ghassan Salem

    This thesis is a summary of a comprehensive geophysical investigation in southern Dawmat Al Jandal, Al Jawf in Saudi Arabia. This research demonstrates that the acquisition of both core control and geophysical data is superior to the acquisition of core control alone. Coring is expensive and is limited in subsurface coverage. Geophysical surveying, however, is a relatively rapid and cost-effective means of deriving information about the subsurface between core holes. Ground penetrating radar (GPR), Multichannel Analysis of Surface Waves (MASW), and Seismic Refraction methods were used as exploration techniques to locate surficial mineral deposits within the study area. During the course of these investigations, the author tries to review the acquired 1620 meters of ground penetrating radar (GPR) data to image internal reflections (if any) within the sand and the top of the underlying sandstone; 27 MASW field records were acquired at each core hole location, which generated 1-D and 2-D shear wave velocity profiles, and 27 seismic refraction profiles were acquired, which did not image the top of the sandstone. The purpose was to estimate the thickness of the sand and to map bedding planes within the sand to better understand depositional environments under the same conditions, based on the high-resolution 2-D surveys, mostly performed in mining areas. The Geophysical investigations were successful and proved to be useful methods for the exploration of shallow subsurface areas where the results are equal to, or slightly different from, the corresponding with of the core holes' values. Therefore, geophysical surveying does not remove the need for core control, but when it is properly applied it can optimize exploration rating programs by maximizing the rate of ground coverage and minimizing the amount of core drilling that is required.

  11. Preliminary Physical Stratigraphy and Geophysical Data From the USGS Dixon Core, Onslow County, North Carolina

    USGS Publications Warehouse

    Seefelt, Ellen L.; Gonzalez, Wilma Aleman B.; Self-Trail, Jean M.; Weems, Robert E.; Edwards, Lucy E.; Pierce, Herbert A.; Durand, Colleen T.

    2009-01-01

    , N.C. (Zarra, 1989); and the Cape Fear River outcrops in Bladen County, N.C. (Farrell, 1998; Farrell and others, 2001). This report contains the lithostratigraphic summary recorded at the drill site, core photographs, geophysical data, and calcareous nannofossil biostratigraphic correlations.

  12. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  13. Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo

    NASA Astrophysics Data System (ADS)

    Freudenthal, T.; Wefer, G.

    2013-12-01

    The sea floor drill rig MeBo (acronym for Meeresboden-Bohrgerät, German for sea floor drill rig) is a robotic drill rig that is deployed on the sea floor and operated remotely from the research vessel to drill up to 80 m into the sea floor. It was developed at the MARUM Research Center for Marine Environmental Sciences at Bremen University. The complete system - comprising the drill rig, winch, control station, and the launch and recovery system - is transported in six containers and can be deployed worldwide from German and international research ships. It was the first remote-controlled deep sea drill rig to use a wireline coring technique. Compared to drilling vessels this technology has the advantage of operating from a stable platform at the sea bed, which allows for optimal control over the drilling process. Especially for shallow drillings in the range of tens to hundreds of metres, sea bed drill rigs are time-efficient since no drill string has to be assembled from the ship to the sea floor before the first core can be taken. The MeBo has been successfully operated, retrieving high-quality cores at the sea bed for a variety of research fields, including slope stability studies and palaeoclimate reconstructions. Based on experience with the MeBo, a rig is now being built that will be able to drill to a depth of 200 m.

  14. The Collisional Orogeny in the Scandinavian Caledonides (COSC) Project: Investigating Exposed Middle Crust Through Geological Mapping, Drilling and Geophysics

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Almqvist, B. S. G.; Lorenz, H.; Berthet, T.; Hedin, P.; Gee, D. G.

    2015-12-01

    The COSC project aims to provide a deeper understanding of mountain belt dynamics in the Scandinavian Caledonides. Scientific investigations include a range of topics, from understanding the ancient orogeny to the present-day hydrological cycle. Main objectives of the project, from a tectonic viewpoint, are to obtain (i) better understanding of the exhumation and emplacement of the hot middle allochthon, which may enable comparison with exhumation processes in the Himalaya-Tibet orogen, (ii) a broad understanding of orogeny and deformation in the middle to deep crust and upper mantle of mountain belts, and (iii) constraints on the abundant geophysical data that have been acquired in the area. COSC investigations and drilling activities are focused in central Scandinavia, near Åre (Sweden), where rocks from the mid to lower crust of the orogen are exposed. Rock units of interest include granulite facies migmatites (locally ultra-high pressure), gneisses and amphibolites in the middle allochthon (Seve nappe) that overlie greenschist facies metasedimentary rocks in the lower allochthons (Särv and Jämtlandian nappes). The base of the lower allochthon marks the contact with the autochthonous Precambrian basement. To investigate the high grade Seve nappe the COSC-1 borehole was drilled to 2496 m, with almost 100 % core recovery, during summer 2014. The top 1800 m consists mostly of sub-horizontal and shallowly dipping intermittent layers of gneiss and amphibolite, with lesser amounts of calc-silicates, metagabbro, marble and lenses of pegmatite. The first signs of increasing strain appear shortly below 1700 m in the form of narrow deformation bands and thin mylonites. Below c. 2100 m, mylonites dominate and garnets become common. A transition from gneiss into lower-grade metasedimentary rocks occurs between 2345 and 2360 m. The lower part of the drill core to TD is dominated by quartzites and metasandstones of unclear tectonostratigraphic position that are mylonitized

  15. REVIEW ARTICLE: Geophysical signatures of oceanic core complexes

    NASA Astrophysics Data System (ADS)

    Blackman, Donna K.; Canales, J. Pablo; Harding, Alistair

    2009-08-01

    Oceanic core complexes (OCCs) provide access to intrusive and ultramafic sections of young lithosphere and their structure and evolution contain clues about how the balance between magmatism and faulting controls the style of rifting that may dominate in a portion of a spreading centre for Myr timescales. Initial models of the development of OCCs depended strongly on insights available from continental core complexes and from seafloor mapping. While these frameworks have been useful in guiding a broader scope of studies and determining the extent of OCC formation along slow spreading ridges, as we summarize herein, results from the past decade highlight the need to reassess the hypothesis that reduced magma supply is a driver of long-lived detachment faulting. The aim of this paper is to review the available geophysical constraints on OCC structure and to look at what aspects of current models are constrained or required by the data. We consider sonar data (morphology and backscatter), gravity, magnetics, borehole geophysics and seismic reflection. Additional emphasis is placed on seismic velocity results (refraction) since this is where deviations from normal crustal accretion should be most readily quantified. However, as with gravity and magnetic studies at OCCs, ambiguities are inherent in seismic interpretation, including within some processing/analysis steps. We briefly discuss some of these issues for each data type. Progress in understanding the shallow structure of OCCs (within ~1 km of the seafloor) is considerable. Firm constraints on deeper structure, particularly characterization of the transition from dominantly mafic rock (and/or altered ultramafic rock) to dominantly fresh mantle peridotite, are not currently in hand. There is limited information on the structure and composition of the conjugate lithosphere accreted to the opposite plate while an OCC forms, commonly on the inside corner of a ridge-offset intersection. These gaps preclude full

  16. Development of a drilling and coring test-bed for lunar subsurface exploration and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng; Deng, Zongquan; Quan, Qiquan; Tang, Dewei; Hou, Xuyan; Jiang, Shengyuan

    2014-07-01

    Drill sampling has been widely employed as an effective way to acquire deep samples in extraterrestrial exploration. A novel sampling method, namely, flexible-tube coring, was adopted for the Chang'e mission to acquire drilling cores without damaging stratification information. Since the extraterrestrial environment is uncertain and different from the terrestrial environment, automated drill sampling missions are at risk of failure. The principles of drilling and coring for the lunar subsurface should be fully tested and verified on earth before launch. This paper proposes a test-bed for conducting the aforementioned experiments on earth. The test-bed comprises a rotary-percussive drilling mechanism, penetrating mechanism, drilling medium container, and signal acquisition and control system. For granular soil, coring experiments indicate that the sampling method has a high coring rate greater than 80%. For hard rock, drilling experiments indicate that the percussive frequency greatly affects the drilling efficiency. A multi-layered simulant composed of granular soil and hard rock is built to test the adaptability of drilling and coring. To tackle complex drilling media, an intelligent drilling strategy based on online recognition is proposed to improve the adaptability of the sampling drill. The primary features of this research are the proposal of a scheme for drilling and coring a test-bed for validation on earth and the execution of drilling experiments in complex media.

  17. Drilling and geophysical logs of the tophole at an oil-and-gas well site, Central Venango County, Pennsylvania

    USGS Publications Warehouse

    Williams, John H.; Bird, Philip H.; Conger, Randall W.; Anderson, J. Alton

    2014-01-01

    Collection and integrated analysis of drilling and geophysical logs provided an efficient and effective means for characterizing the geohydrologic framework and conditions penetrated by the tophole at the selected oil-and-gas well site. The logging methods and lessons learned at this well site could be applied at other oil-and-gas drilling sites to better characterize the shallow subsurface with the overall goal of protecting freshwater aquifers during hydrocarbon development.

  18. Petrophysical and paleomagnetic data of drill cores from the Bosumtwi impact structure, Ghana

    NASA Astrophysics Data System (ADS)

    Elbra, T.; Kontny, A.; Pesonen, L. J.; Schleifer, N.; Schell, C.

    Physical properties from rocks of the Bosumtwi impact structure, Ghana, Central Africa, are essential to understand the formation of the relatively young (1.07 Ma) and small (10.5 km) impact crater and to improve its geophysical modeling. Results of our petrophysical studies of deep drill cores LB-07A and LB-08A reveal distinct lithological patterns but no depth dependence. The most conspicuous difference between impactites and target lithologies are the lower bulk densities and significantly higher porosities of the suevite and lithic breccia units compared to meta-graywacke and metapelites of target lithologies. Magnetic susceptibility shows mostly paramagnetic values (200-500 × 10-6 SI) throughout the core, with an exception of a few metasediment samples, and correlates positively with natural remanent magnetization (NRM) and Q values. These data indicate that magnetic parameters are related to inhomogeneously distributed ferrimagnetic pyrrhotite. The paleomagnetic data reveals that the characteristic direction of NRM has shallow normal (in a few cases shallow reversed) polarity, which is in agreement with the Lower Jaramillo N-polarity chron direction, and is carried by ferrimagnetic pyrrhotite. However, our study has not revealed the expected high magnetization body required from previous magnetic modeling. Furthermore, the LB-07A and LB08-A drill cores did not show the predicted high content of melt in the rocks, requiring a new interpretation model for magnetic data.

  19. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  20. Core formation and core composition from coupled geochemical and geophysical constraints

    PubMed Central

    Badro, James; Brodholt, John P.; Piet, Hélène; Siebert, Julien; Ryerson, Frederick J.

    2015-01-01

    The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal−silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium. PMID:26392555

  1. Core formation and core composition from coupled geochemical and geophysical constraints.

    PubMed

    Badro, James; Brodholt, John P; Piet, Hélène; Siebert, Julien; Ryerson, Frederick J

    2015-10-06

    The formation of Earth's core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal-silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth's magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7-5% oxygen along with 2-3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.

  2. Core formation and core composition from coupled geochemical and geophysical constraints

    SciTech Connect

    Badro, James; Brodholt, John P.; Piet, Helene; Siebert, Julien; Ryerson, Frederick J.

    2015-09-21

    The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. As a result, this core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.

  3. Research core drilling in the Manson impact structure, Iowa

    NASA Technical Reports Server (NTRS)

    Anderson, R. R.; Hartung, J. B.; Roddy, D. J.; Shoemaker, E. M.

    1992-01-01

    The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence

  4. Drilling cores on the sea floor with the remote-controlled sea-floor drilling rig MeBo

    NASA Astrophysics Data System (ADS)

    Freudenthal, T.; Wefer, G.

    2013-07-01

    Sampling of the upper 50 to 200 m of the sea floor to address questions relating to marine mineral resources and gas hydrates, for geotechnical research in areas of planned offshore installations, to study slope stability, and to investigate past climate fluctuations, to name just a few examples, is becoming increasingly important both in shallow waters and in the deep sea. As a rule, the use of drilling ships for this kind of drilling is inefficient because before the first core can be taken a drill string has to be assembled extending from the ship to the sea floor. Furthermore, movement of the ship due to wave motion disturbs the drilling process and often results in poor core quality, especially in the upper layers of the sea floor. For these reasons, the MeBo drilling rig, which is lowered to the sea floor and operated remotely from the ship to drill up to 80 m into the sea floor, was developed at the MARUM Research Center for Marine Environmental Sciences at Bremen University. The complete system, comprising the drill rig, winch, control station, and the launch and recovery system, is transported in six containers and can be deployed worldwide from German and international research ships. It was the first remote-controlled deep sea drill rig that uses a wireline coring technique. Based on the experiences with the MeBo a rig is now being built that will be able to drill to a depth of 200 m.

  5. Comparison and analysis of subglacial bedrock core drilling technology in Polar Regions

    NASA Astrophysics Data System (ADS)

    Wang, Jinsong; Cao, PinLu; Liu, ChunPeng; Talalay, P. G.

    2015-06-01

    The Gamburtsev Mountains, located in East Antarctica, is the direct geomorphological cause of the formation of Dome A. Drilling the core of the Gamburtsev subglacial mountains is one of the primary goals of modern polar research, which is important to understand its formation and evolution process, the ice sheet formation of Dome A, glacial motion, climate change, and so on. This paper describes the status and progress of subglacial bedrock drilling technology. Existing subglacial bedrock drilling technologies are also discussed, including common rig rotary drilling, wire-line core drilling, coiled tubing drilling, and electromechanical drilling. Results of this paper will provide valuable information for Chinese subglacial bedrock core drilling project in the Gamburtsev mountains.

  6. Core formation and core composition from coupled geochemical and geophysical constraints

    DOE PAGES

    Badro, James; Brodholt, John P.; Piet, Helene; ...

    2015-09-21

    The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Heremore » we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. As a result, this core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.« less

  7. Petrophysical analysis of geophysical logs of the National Drilling Company-U.S. Geological Survey ground-water research project for Abu Dhabi Emirate, United Arab Emirates

    USGS Publications Warehouse

    Jorgensen, Donald G.; Petricola, Mario

    1994-01-01

    A program of borehole-geophysical logging was implemented to supply geologic and geohydrologic information for a regional ground-water investigation of Abu Dhabi Emirate. Analysis of geophysical logs was essential to provide information on geohydrologic properties because drill cuttings were not always adequate to define lithologic boundaries. The standard suite of logs obtained at most project test holes consisted of caliper, spontaneous potential, gamma ray, dual induction, microresistivity, compensated neutron, compensated density, and compensated sonic. Ophiolitic detritus from the nearby Oman Mountains has unusual petrophysical properties that complicated the interpretation of geophysical logs. The density of coarse ophiolitic detritus is typically greater than 3.0 grams per cubic centimeter, porosity values are large, often exceeding 45 percent, and the clay fraction included unusual clays, such as lizardite. Neither the spontaneous-potential log nor the natural gamma-ray log were useable clay indicators. Because intrinsic permeability is a function of clay content, additional research in determining clay content was critical. A research program of geophysical logging was conducted to determine the petrophysical properties of the shallow subsurface formations. The logging included spectral-gamma and thermal-decay-time logs. These logs, along with the standard geophysical logs, were correlated to mineralogy and whole-rock chemistry as determined from sidewall cores. Thus, interpretation of lithology and fluids was accomplished. Permeability and specific yield were calculated from geophysical-log data and correlated to results from an aquifer test. On the basis of results from the research logging, a method of lithologic and water-resistivity interpretation was developed for the test holes at which the standard suite of logs were obtained. In addition, a computer program was developed to assist in the analysis of log data. Geohydrologic properties were

  8. Radionuclide sorption on drill core material from the Canadian Shield

    SciTech Connect

    Vandergraat, T.T.; Abry, D.R.

    1982-06-01

    The sorption of four radionuclides, /sup 90/Sr, /sup 137/Cs, /sup 144/Ce, and /sup 237/Pu, on drill core material from two rock formations in the Canadian Shield has been studied as part of the Canadian Nuclear Fuel Waste Management Program. For all four radionuclides, sorption increased with increased mafic mineral content of the rock. Autoradiographic investigations showed enhanced sorption on dark, or mafic, minerals and high sorption on chlorite infilling material in a closed fracture. Desorption was less complete than sorption after the same equilibration time, indicating a degree of irreversible sorption, or slower desorption kinetics. The effect of surface roughness (measured by mercury porosimetry) on sorption was not as great as that of the chemical and mineral composition of the rock.

  9. Preliminary physical stratigraphy, biostratigraphy, and geophysical data of the USGS South Dover Bridge Core, Talbot County, Maryland

    USGS Publications Warehouse

    Alemán González, Wilma B.; Powars, David S.; Seefelt, Ellen L.; Edwards, Lucy E.; Self-Trail, Jean M.; Durand, Colleen T.; Schultz, Arthur P.; McLaughlin, Peter P.

    2012-01-01

    The South Dover Bridge (SDB) corehole was drilled in October 2007 in Talbot County, Maryland. The main purpose for drilling this corehole was to characterize the Upper Cretaceous and Paleogene lithostratigraphy and biostratigraphy of the aquifers and confining units of this region. The data obtained from this core also will be used as a guide to geologic mapping and to help interpret well data from the eastern part of the Washington East 1:100,000-scale map near the town of Easton, Md. Core drilling was conducted to a depth of 700 feet (ft). The Cretaceous section was not penetrated due to technical problems during drilling. This project was funded by the U.S. Geological Survey’s (USGS) Eastern Geology and Paleoclimate Science Center (EGPSC) as part of the Geology of the Atlantic Watersheds Project; this project was carried out in cooperation with the Maryland Geological Survey (MGS) through partnerships with the Aquifer Characterization Program of the USGS’s Maryland-Delaware-District of Columbia Water Science Center and the National Cooperative Geologic Mapping Program. The SDB corehole was drilled by the USGS drilling crew in the northeastern corner of the Trappe 7.5-minute quadrangle, near the type locality of the Boston Cliffs member of the Choptank Formation. Geophysical logs (gamma ray, single point resistance, and 16-inch and 64-inch normal resistivity) were run to a depth of 527.5 ft; the total depth of 700.0 ft could not be reached because of the collapse of the lower part of the hole. Of the 700.0 ft drilled, 531.8 ft of core were recovered, representing a 76 percent core recovery. The elevation of the top of the corehole is approximately 12 ft above mean sea level; its coordinates are lat 38°44′49.34″N. and long 76°00′25.09″W. (38.74704N., 76.00697W. in decimal degrees). A groundwater monitoring well was not installed at this site. The South Dover Bridge corehole was the first corehole that will be used to better understand the geology and

  10. Physical-Property Measurements on Core samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada

    USGS Publications Warehouse

    Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant

    2009-01-01

    From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.

  11. Agglutinates as recorders of regolith evolution - Application to the Apollo 17 drill core

    SciTech Connect

    Laul, J.C.; Smith, M.R.

    1984-11-15

    Chemical data are reported for agglutinates from 26 depth intervals of the Apollo 17 deep drill core, and the compositions of the agglutinates are compared with those of the soils in which they occur. The agglutinate sequence suggests a scenario in which several closely-spaced depositional events were involved in the formation of the drill core, rather than a continuous accumulation process.

  12. Alteration in Hawaiian Drill Core: An analog for Martian basalts

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.; Fraeman, A.; Ehlmann, B. L.; Lautze, N. C.

    2015-12-01

    The Humu'ula Groundwater Research Project (HGRP) drilled their first continuously-cored hole in the saddle region of the big island of Hawaii in March of 2013. Temperatures at the bottom of the hole were unexpectedly high and reached over 100C. The core traverses various lava flows, representing the shield-building phase of the island and the lithology is dominantly basalt with varying amounts of plagioclase and olivine phenocrysts. Logging of the core noted that discontinuous alteration became prevalent starting at ~ 1 km depth. In May of 2015 we collected 780 infrared spectra of the core from depths of 0.97 to 1.76 km using our portable field spectrometer with a contact probe and field of view of 10 mm. Many of the spectra are unaltered, showing mafic mineralogy (augite or augite with olivine). Minerals from aqueous alteration include clinochlore, micaceous minerals likely mixed with other common phyllic alteration products, and three groups of spectral types associated with zeolites. This suite of minerals suggests alteration was initiated from higher temperature and moderate pH fluids. Based on the field reconnaissance spectroscopy, 25 sections were cut that represent the alteration diversity for thin section and subsequent detailed petrologic analyses. Eight of these sections were examined using the Ultra-Compact Imaging Spectrometer (UCIS) prototype instrument at the Jet Propulsion Laboratory. UCIS collects spectra at 80 μm / pixel and identifies the same alteration mineralogy as the bulk samples, but clearly shows that the alteration occurs in veins and vugs. Unaltered olivine and pyroxene phenocrysts occur in the groundmass adjacent to highly altered vugs, and are preserved throughout the section surveyed. Given the limited alteration and abundant preservation of olivine to depths of 1.5 km, the core may be representative of alteration in moderate pH environments on Mars, where unaltered basaltic materials occur in close proximity to alteration products

  13. High-resolution gamma ray attenuation density measurements on mining exploration drill cores, including cut cores

    NASA Astrophysics Data System (ADS)

    Ross, P.-S.; Bourke, A.

    2017-01-01

    Physical property measurements are increasingly important in mining exploration. For density determinations on rocks, one method applicable on exploration drill cores relies on gamma ray attenuation. This non-destructive method is ideal because each measurement takes only 10 s, making it suitable for high-resolution logging. However calibration has been problematic. In this paper we present new empirical, site-specific correction equations for whole NQ and BQ cores. The corrections force back the gamma densities to the "true" values established by the immersion method. For the NQ core caliber, the density range extends to high values (massive pyrite, 5 g/cm3) and the correction is thought to be very robust. We also present additional empirical correction factors for cut cores which take into account the missing material. These "cut core correction factors", which are not site-specific, were established by making gamma density measurements on truncated aluminum cylinders of various residual thicknesses. Finally we show two examples of application for the Abitibi Greenstone Belt in Canada. The gamma ray attenuation measurement system is part of a multi-sensor core logger which also determines magnetic susceptibility, geochemistry and mineralogy on rock cores, and performs line-scan imaging.

  14. Density of basalt core from Hilo drill hole, Hawaii

    USGS Publications Warehouse

    Moore, J.G.

    2001-01-01

    Density measurements of 1600 samples of core from 889 to 3097 m depth below sea level in the Hawaii Scientific Drilling Program hole near Hilo, Hawaii show marked differences between the basaltic rock types and help define stratigraphy in the hole. Water-saturated densities of subaerial lava flows (occurring above 1079 m depth) have the broadest range because of the large density variation within a single lava flow. Water-saturated densities commonly range from 2.0 to 3.0 with an average of 2.55 ?? 0.24 g/cc. Dikes and sills range from 2.8 to 3.1 g/cc). Densities of hyaloclastite commonly range from 2.3 to 2.7, with an overall average of about 2.5 g/cc. The low-density of most hyaloclastite is due primarily to palagonitization of abundant glass and presence of secondary minerals in the interstices between fragments. Four principal zones of pillow lava, separated by hyaloclastite, occur in the drill core. The shallowest (1983-2136 m) is paradoxically the densest, averaging 3.01 ?? 0.10 g/cc. The second (2234-2470 m) is decidedly the lightest, averaging 2.67 ?? 0.13 g/cc. The third (2640-2790 m) and fourth (2918-bottom at 3097 m) are high, averaging 2.89 ?? 0.17 and 2.97 ?? 0.08 g/cc, respectively. The first pillow zone includes degassed pillows i.e. lava erupted on land that flowed into the sea. These pillows are poor in vesicles, because the subaerial, one-atmosphere vesicles were compressed when the flow descended to deeper water and higher pressure. The second (low-density, non-degassed) pillow zone is the most vesicle-rich, apparently because it was erupted subaqueously at a shallow depth. The higher densities of the third and fourth zones result from a low vesicularity of only a few percent and an olivine content averaging more than 5% for the third zone and about 10% for the fourth zone. The uppermost hyaloclastite extending about 400 m below the bottom of the subaerial basalt is poorly cemented and absorbs up to 6 wt% of water when immersed. Progressing

  15. The Chicxulub Multiring Impact Crater and the Cretaceous/Paleogene Boundary: Results From Geophysical Surveys and Drilling

    NASA Astrophysics Data System (ADS)

    Urrutia-Fucugauchi, J.; Perez-Cruz, Ligia

    2010-03-01

    different geophysical aerial, land and marine methods including gravity, magnetics, electromagnetics and seismic refraction and reflection. The impact lithologies and carbonate sequence have been cored as part of several drilling projects. Here we analyze the stratigraphy of Chicxulub from borehole logging data and core analyses, with particular reference to studies on CSDP Yaxcopoil-1 and UNAM Santa Elena boreholes. Analyses of core samples have examined the stratigraphy of the cover carbonate sequence, impact breccia contact and implications for impact age, K/Pg global correlations and paleoenvironmental conditions following impact. The K/Pg age for Chicxulub has been supported from different studies, including Ar/Ar dating, magnetic polarity stratigraphy, geochemistry and biostratigraphy. A Late Maastrichtian age has also been proposed for Chicxulub from studies in Yaxcopoil-1 basal Paleocene carbonates, with impact occurring 300 ka earlier predating the K/Pg boundary. This proposal calls attention to the temporal resolution of stratigraphic and chronological methods, and the need for further detailed analyses of the basal carbonate sections in existing boreholes and new drilling/coring projects. Stratigraphy of impact ejecta and basal sediments in Yaxcopoil-1 and UNAM boreholes indicates a hiatus in the basal sequence. Modeling of post- impact processes suggest erosion effects due to seawater back surge, block slumping and partial rim collapse of post-impact crater modification. Analyses of stable isotopes and magnetostratigraphic data for the Paleocene carbonate sequences in Yaxcopoil-1 and Santa Elena boreholes permit to investigate the post- impact processes, depositional conditions and age of basal sediments. Correlation of stable isotopes with the global pattern for marine carbonate sediments provides a stratigraphic framework for the basal Paleocene carbonates. The analyses confirm a K/Pg boundary age for the Chicxulub impact. References: Collins et al, 2008

  16. Preliminary Physical Stratigraphy and Geophysical Data of the USGS Hope Plantation Core (BE-110), Bertie County, North Carolina

    USGS Publications Warehouse

    Weems, Robert E.; Seefelt, Ellen L.; Wrege, Beth M.; Self-Trail, Jean M.; Prowell, David C.; Durand, Colleen; Cobbs, Eugene F.; McKinney, Kevin C.

    2007-01-01

    Introduction In March and April, 2004, the U.S. Geological Survey (USGS), in cooperation with the North Carolina Geological Survey (NCGS) and the Raleigh Water Resources Discipline (WRD), drilled a stratigraphic test hole and well in Bertie County, North Carolina (fig. 1). The Hope Plantation test hole (BE-110-2004) was cored on the property of Hope Plantation near Windsor, North Carolina. The drill site is located on the Republican 7.5 minute quadradrangle at lat 36?01'58'N., long 78?01'09'W. (decimal degrees 36.0329 and 77.0192) (fig. 2). The altitude of the site is 48 ft above mean sea level as determined by Paulin Precise altimeter. This test hole was continuously cored by Eugene F. Cobbs, III and Kevin C. McKinney (USGS) to a total depth of 1094.5 ft. Later, a ground water observation well was installed with a screened interval between 315-329 feet below land surface (fig. 3). Upper Triassic, Lower Cretaceous, Upper Cretaceous, Tertiary, and Quaternary sediments were recovered from the site. The core is stored at the NCGS Coastal Plain core storage facility in Raleigh, North Carolina. In this report, we provide the initial lithostratigraphic summary recorded at the drill site along with site core photographs, data from the geophysical logger, calcareous nannofossil biostratigraphic correlations (Table 1) and initial hydrogeologic interpretations. The lithostratigraphy from this core can be compared to previous investigations of the Elizabethtown corehole, near Elizabethtown, North Carolina in Bladen County (Self-Trail, Wrege, and others, 2004), the Kure Beach corehole, near Wilmington, North Carolina in New Hanover County (Self-Trail, Prowell, and Christopher, 2004), the Esso #1, Esso #2, Mobil #1 and Mobil #2 cores in the Albermarle and Pamlico Sounds (Zarra, 1989), and the Cape Fear River outcrops in Bladen County (Farrell, 1998; Farrell and others, 2001). This core is the third in a series of planned benchmark coreholes that will be used to elucidate the

  17. Application of drilling, coring, and sampling techniques to test holes and wells

    USGS Publications Warehouse

    Shuter, Eugene; Teasdale, Warren E.

    1989-01-01

    The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.

  18. Improved diamond coring bits developed for dry and chip-flush drilling

    NASA Technical Reports Server (NTRS)

    Decker, W. E.; Hampe, W. R.; Hampton, W. H.; Simon, A. B.

    1971-01-01

    Two rotary diamond bit designs, one operating with a chip-flushing fluid, the second including auger section to remove drilled chips, enhance usefulness of tool for exploratory and industrial core-drilling of hard, abrasive mineral deposits and structural masonry.

  19. Drilling on Mars---Mathematical Model for Rotary-Ultrasonic Core Drilling of Brittle Materials

    NASA Astrophysics Data System (ADS)

    Horne, Mera Fayez

    The results from the Phoenix mission led scientists to believe it is possible that primitive life exists below the Martian surface. Therefore, drilling in Martian soil in search for organisms is the next logical step. Drilling on Mars is a major engineering challenge due to the drilling depth requirement. Mars lacks a thick atmosphere and a continuous magnetic field that shield the planet's surface from solar radiation and solar flares. As a result, the Martian surface is sterile and if life ever existed, it must be found below the surface. In 2001, NASA's Mars Exploration Payload Advisory Group proposed that drilling should be considered as a priority investigation on Mars in an effort of finding evidence of extinct or extant life. On August 6, 2012, the team of engineers landed the spacecraft Curiosity on the surface of Mars by using a revolutionary hovering platform. The results from the Curiosity mission suggested the next logical step, which is drilling six meters deep in the red planet in search of life. Excavation tools deployed to Mars so far have been able to drill to a maximum depth of 6.5 cm. Thus, the drilling capabilities need to be increased by a factor or approximately 100 to achieve the goal of drilling six meters deep. This requirement puts a demand on developing a new and more effective technologies to reach this goal. Previous research shows evidence of a promising drilling mechanism in rotary-ultrasonic for what it offers in terms of high surface quality, faster rate of penetration and higher material removal rate. This research addresses the need to understand the mechanics of the drill bit tip and rock interface in rotary-ultrasonic drilling of brittle materials. A mathematical model identifying all contributing independent parameters, such as drill bit design parameters, drilling process parameters, ultrasonic wave amplitude and rocks' material properties, that have effect on rate of penetration is developed. Analytical and experimental

  20. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  1. Design and testing of coring bits on drilling lunar rock simulant

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo; Ma, Chao; Zhang, Hui; Qin, Hongwei; Deng, Zongquan

    2017-02-01

    Coring bits are widely utilized in the sampling of celestial bodies, and their drilling behaviors directly affect the sampling results and drilling security. This paper introduces a lunar regolith coring bit (LRCB), which is a key component of sampling tools for lunar rock breaking during the lunar soil sampling process. We establish the interaction model between the drill bit and rock at a small cutting depth, and the two main influential parameters (forward and outward rake angles) of LRCB on drilling loads are determined. We perform the parameter screening task of LRCB with the aim to minimize the weight on bit (WOB). We verify the drilling load performances of LRCB after optimization, and the higher penetrations per revolution (PPR) are, the larger drilling loads we gained. Besides, we perform lunar soil drilling simulations to estimate the efficiency on chip conveying and sample coring of LRCB. The results of the simulation and test are basically consistent on coring efficiency, and the chip removal efficiency of LRCB is slightly lower than HIT-H bit from simulation. This work proposes a method for the design of coring bits in subsequent extraterrestrial explorations.

  2. Impacts onto the Early Earth: Archean Spherule Layers from the ICDP Drill Core BARB5

    NASA Astrophysics Data System (ADS)

    Fritz, J. P.; Mohr-Westheide, T.; Reimold, W. U.; Schmitt, R. T.; Hofmann, A.; Koeberl, C.; McDonald, I.; Luais, B.; Tagle, R.; Schulz, T.; Mader, D.; Hoehnel, D.

    2014-09-01

    Geochemical and petrologic studies of the BARB5 ICDP drill core samples aim on identifying the “primary” signatures of the impact events least affected by (re)deposition and metamorphic overprint.

  3. Geophysics

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Cassen, P.

    1976-01-01

    Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.

  4. Deep Rotary-Ultrasonic Core Drill for Exploration of Europa and Enceladus

    NASA Astrophysics Data System (ADS)

    Paulsen, G. L.; Zacny, K.; Bar-Cohen, Y.; Beegle, L. W.; Corsetti, F. A.; Mellerowicz, B.; Badescu, M.; Sherrit, S.; Ibarra, Y.

    2012-12-01

    Since water is an important requisite for life as we know it, likely exobiologic exploration targets in our Solar System include Mars, Europa, and Enceladus, where water/ice is known to exist. Because of oxidizing nature of Mars atmosphere, as well as increased radiation at the surfaces of Mars, Europa and Enceladus, samples must be acquired from the subsurface at greater depths, presenting a great challenge to off-world drilling design. For the past 3 years, we have been developing a prototype wireline coring drill, called the Auto-Gopher, for the capability to acquire samples from hundreds of meters depth. The drill is capable of penetrating both rock and ice. However, because of large geological uncertainty on Mars and issues related to borehole collapse, we specifically target ice formations present on Europa and Enceladus. The main feature of the Auto-Gopher is its wireline operation. The drill is essentially suspended on a tether and the motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill (plus core) is retracted from the borehole by a pulley system (the pulley system can be either on the surface or integrated into a top part of the drill itself). Once on the surface, the core is deposited into a sample transfer system, and the drill is lowered back into the hole in order to drill the next segment. Each segment is typically 10 cm long. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections. With traditional continuous drill string systems (the major competition to the Autor-Gopher), new drill sections need to be added to the string as the drill gets deeper. This of course requires multiple drill sections, which add significantly to the mass of the system very quickly, and requires

  5. Core formation, evolution, and convection - A geophysical model

    NASA Technical Reports Server (NTRS)

    Ruff, L.; Anderson, D. L.

    1980-01-01

    A model for the formation and evolution of the earth's core, which provides an adequate energy source for maintaining the geodynamo, is proposed. A modified inhomogeneous accretion model is proposed which leads to initial iron and refractory enrichment at the center of the planet. The probable heat source for melting of the core is the decay of Al-26. The refractory material is emplaced irregularly in the lowermost mantle with uranium and thorium serving as a long-lived heat source. Fluid motions in the core are driven by the differential heating from above and the resulting cyclonic motions may be the source of the geodynamo.

  6. Core formation, evolution, and convection: A geophysical model

    NASA Technical Reports Server (NTRS)

    Ruff, L.; Anderson, D. L.

    1978-01-01

    A model is proposed for the formation and evolution of the Earth's core which provides an adequate energy source for maintaining the geodynamo. A modified inhomogeneous accretion model is proposed which leads to initial iron and refractory enrichment at the center of the planet. The probable heat source for melting of the core is the decay of Al. The refractory material is emplaced irregularly in the lowermost mantle with uranium and thorium serving as a long lived heat source. Fluid motions in the core are driven by the differential heating from above and the resulting cyclonic motions may be the source of the geodynamo.

  7. Exploring ice core drilling chips from a cold Alpine glacier for cosmogenic radionuclide (10Be) analysis

    NASA Astrophysics Data System (ADS)

    Zipf, Lars; Merchel, Silke; Bohleber, Pascal; Rugel, Georg; Scharf, Andreas

    Ice cores offer unique multi-proxy paleoclimate records, but provide only very limited sample material, which has to be carefully distributed for various proxy analyses. Beryllium-10, for example, is analysed in polar ice cores to investigate past changes of the geomagnetic field, solar activity, and the aerosol cycle, as well as to more accurately date the material. This paper explores the suitability of a drilling by-product, the so-called drilling chips, for 10Be-analysis. An ice core recently drilled at a cold Alpine glacier is used to directly compare 10Be-data from ice core samples with corresponding drilling chips. Both sample types have been spiked with 9Be-carrier and identically treated to chemically isolate beryllium. The resulting BeO has been investigated by accelerator mass spectrometry (AMS) for 10Be/9Be-ratios to calculate 10Be-concentrations in the ice. As a promising first result, four out of five sample-combinations (ice core and drilling chips) agree within 2-sigma uncertainty range. However, further studies are needed in order to fully demonstrate the potential of drilling chips for 10Be-analysis in alpine and shallow polar ice cores.

  8. Footwall rotation in an oceanic core complex quantified using reoriented Integrated Ocean Drilling Program core samples

    NASA Astrophysics Data System (ADS)

    Morris, A.; Gee, J. S.; Pressling, N.; John, B. E.; MacLeod, C. J.; Grimes, C. B.; Searle, R. C.

    2009-09-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. The common occurrence of these structures in slow and ultra-slow spread oceanic crust suggests that they accommodate a significant component of plate divergence. However, the subsurface geometry of detachment faults in oceanic core complexes remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We address this debate using palaeomagnetic remanences as markers for tectonic rotation within a unique 1.4 km long footwall section of gabbroic rocks recovered by Integrated Ocean Drilling Program (IODP) sampling at Atlantis Massif oceanic core complex on the Mid-Atlantic Ridge (MAR). These rocks contain a complex record of multipolarity magnetizations that are unrelated to alteration and igneous stratigraphy in the sampled section and are inferred to result from progressive cooling of the footwall section over geomagnetic polarity chrons C1r.2r, C1r.1n (Jaramillo) and C1r.1r. For the first time we have independently reoriented drill-core samples of lower crustal gabbros, that were initially azimuthally unconstrained, to a true geographic reference frame by correlating structures in individual core pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of the palaeomagnetic data, placing far more rigorous constraints on the tectonic history than those possible using only palaeomagnetic inclination data. Analysis of the reoriented high temperature reversed component of magnetization indicates a 46° ± 6° anticlockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011° ± 6°. Reoriented lower temperature components of normal and reversed

  9. Core Cracking and Hydrothermal Circulation Profoundly Affect Ceres' Geophysical Evolution

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Desch, Steven J.; Castillo-Rogez, Julie C.

    2014-11-01

    The dwarf planet (1)Ceres is about to be visited by the Dawn spacecraft [1]. In addition to a recent report of water vapor emission [2], observations and models of Ceres suggest that its evolution was shaped by interactions between liquid water and silicate rock [3,4].Hydrothermal processes in a heated core require both fractured rock and liquid. Using a new core cracking model coupled to a thermal evolution code [5], we find volumes of fractured rock always large enough for significant interaction to occur. Therefore, liquid persistence is key. It is favored by antifreezes such as ammonia [4], by silicate dehydration which releases liquid, and by hydrothermal circulation itself, which enhances heat transport into the hydrosphere. The heating effect from silicate hydration seems minor. Hydrothermal circulation can profoundly affect Ceres' evolution: it prevents core dehydration via “temperature resets”, global cooling events lasting ~50 Myr, followed by ~1 Gyr periods during which Ceres' interior is nearly isothermal and its hydrosphere largely liquid. Whether Ceres has experienced such extensive hydrothermalism may be determined through examination of its present-day structure. A large, fully hydrated core (radius 420 km) suggests that extensive hydrothermal circulation prevented core dehydration. A small, dry core (radius 350 km) suggests early dehydration from short-lived radionuclides, with shallow hydrothermalism at best. Intermediate structures with a partially dehydrated core seem ambiguous, compatible both with late partial dehydration without hydrothermal circulation, and with early dehydration with extensive hydrothermal circulation. Thus, gravity measurements by the Dawn orbiter [1] could help discriminate between scenarios for Ceres' evolution.References:[1] Russell C. T. & Raymond C. A. (2011) Sp. Sci. Rev. 163, 3-23.[2] Küppers M. et al. (2014) Nature 505, 525-527.[3] Rivkin A. et al. (2011) Sp. Sci. Rev. 163, 95-116.[4] Castillo-Rogez J. C. & Mc

  10. Coring to the West Antarctic ice sheet bed with a new Deep Ice Sheet Coring (DISC) drill

    NASA Astrophysics Data System (ADS)

    Bentley, C. R.; Taylor, K. C.; Shturmakov, A. J.; Mason, W. P.; Emmel, G. R.; Lebar, D. A.

    2005-05-01

    As a contribution to IPY 2007-2008, the U.S. ice core research community, supported by the National Science Foundation, plans to core through the West Antarctic ice sheet (WAIS) at the ice-flow divide between the Ross Sea and Amundsen Sea drainage systems. The aim is to develop a unique series of interrelated climatic, ice-dynamic, and biologic records focused on understanding interactions among global earth systems. There will be approximately 15 separate but synergistic projects to analyze the ice and interpret the records. The most significant expected outcome of the WAIS Divide program will be climate records for the last ~40,000 years with an annually resolved chronology (through layer counting), comparable to the records from central Greenland. The data will also extend, at lower temporal resolution, to approximately 100,000 BP. These records will permit comparison of environmental conditions between the northern and southern hemispheres, and study of greenhouse gas concentrations in the paleoatmosphere, with unprecedented detail. To accomplish the coring, an innovative new Deep Ice Sheet Coring (DISC) drill is being built at the University of Wisconsin. The modular design of the bore-hole assembly (sonde) provides high flexibility for producing a 122 mm diameter ice core to depths of 4,000 m with maximum core lengths of 4 m. The DISC drill has a rotating outer barrel that can be used with or without an inner barrel designed to improve core recovery in brittle ice. Separate and independent motors for the drill and pump allow cutter speeds from 0 to 150 rpm and pump rates from 0 to 140 gpm. The high pumping rate should alleviate problems drilling in warm ice near the bed; it also helps make tripping speeds several times faster than with the old US drill. Other innovations include vibration and acoustic sensors for monitoring the drilling process, a segmented core barrel to avoid the formerly persistent problem of bent core barrels, and a high-speed data

  11. GRED STUDIES AND DRILLING OF AMERICULTURE STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM

    SciTech Connect

    Witcher, James

    2006-08-01

    This report summarizes the GRED drilling operations in the AmeriCulture State 2 well with an overview of the preliminary geologic and geothermal findings, from drill cuttings, core, geophysical logs and water geochemical sampling.

  12. A soil flowing characteristics monitoring method in planetary drilling and coring verification experiments

    NASA Astrophysics Data System (ADS)

    Tang, Junyue; Quan, Qiquan; Jiang, Shengyuan; Chen, Chongbin; Yuan, Fengpei; Deng, Zongquan

    2017-03-01

    Some type of piercing into the subsurface formation is required in future planetary explorations to enhance the understanding of early stars' geological evolution and the origin of life. Compared with other technical methods, drilling & coring, only utilizing the compound locomotion of rotation and penetration, can sample the subsurface soil relatively efficient and convenient. However, given the uncertain mechanical properties of planetary soil, drilling state signals should be monitored online to improve the robustness of drilling system and avoid potential drilling faults. Since the flowing characteristics of interacted soil, such as removal volume, coring height, removal velocity and accumulation angle, directly reveal the drilling conditions, they are enhancing resources to comprehend the sampling phenomenon and can be used to help control the drill tool. This paper proposed a novel soil flowing characteristics (SFC) monitoring method by applying an industrial camera to record the flowing characteristics of removed cuttings and by utilizing an ultrasonic sensor into the hollow auger to monitor the sampled core. Experiments in one typical lunar regolith simulant indicate that the monitored SFC accurately reflects the interaction between the drill tool and soil.

  13. Fischer Assays of Oil Shale Drill Cores and Rotary Cuttings from the Piceance Basin, Colorado - 2009 Update

    USGS Publications Warehouse

    Mercier, Tracey J.; Brownfield, Michael E.; Johnson, Ronald C.; Self, Jesse G.

    1998-01-01

    This CD-ROM includes updated files containing Fischer assays of samples of core holes and cuttings from exploration drill holes drilled in the Eocene Green River Formation in the Piceance Basin of northwestern Colorado. A database was compiled that includes more than 321,380 Fischer assays from 782 boreholes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 1,042 core and rotary holes, oil and gas tests, as well as a few surface sections are listed in a spreadsheet and included in the CD-ROM. These assays are part of a larger collection of subsurface information held by the U.S. Geological Survey, including geophysical and lithologic logs, water data, and chemical and X-ray diffraction analyses having to do with the Green River oil shale deposits in Colorado, Wyoming, and Utah. Because of an increased interest in oil shale, this CD-ROM disc containing updated Fischer assay data for the Piceance Basin oil shale deposits in northwestern Colorado is being released to the public.

  14. Fischer Assays of Oil-Shale Drill Cores and Rotary Cuttings from the Greater Green River Basin, Southwestern Wyoming

    USGS Publications Warehouse

    ,

    2008-01-01

    Chapter 1 of this CD-ROM is a database of digitized Fischer (shale-oil) assays of cores and cuttings from boreholes drilled in the Eocene Green River oil shale deposits in southwestern Wyoming. Assays of samples from some surface sections are also included. Most of the Fischer assay analyses were made by the former U.S. Bureau of Mines (USBM) at its laboratory in Laramie, Wyoming. Other assays, made by institutional or private laboratories, were donated to the U.S. Geological Survey (USGS) and are included in this database as well as Adobe PDF-scanned images of some of the original laboratory assay reports and lithologic logs prepared by USBM geologists. The size of this database is 75.2 megabytes and includes information on 971 core holes and rotary-drilled boreholes and numerous surface sections. Most of these data were released previously by the USBM and the USGS through the National Technical Information Service but are no longer available from that agency. Fischer assays for boreholes in northeastern Utah and northwestern Colorado have been published by the USGS. Additional data include geophysical logs, groundwater data, chemical and X-ray diffraction analyses, and other data. These materials are available for inspection in the office of the USGS Central Energy Resources Team in Lakewood, Colorado. The digitized assays were checked with the original laboratory reports, but some errors likely remain. Other information, such as locations and elevations of core holes and oil and gas tests, were not thoroughly checked. However, owing to the current interest in oil-shale development, it was considered in the public interest to make this preliminary database available at this time. Chapter 2 of this CD-ROM presents oil-yield histograms of samples of cores and cuttings from exploration drill holes in the Eocene Green River Formation in the Great Divide, Green River, and Washakie Basins of southwestern Wyoming. A database was compiled that includes about 47

  15. Alteration of Crystalline and Glassy Basaltic Protolith by Seawater as Recorded by Drill Core and Drill Cutting Samples

    NASA Astrophysics Data System (ADS)

    Fowler, A. P.; Zierenberg, R. A.; Schiffman, P.

    2015-12-01

    The major and trace element composition of hydrothermally altered basaltic drill core and drill cutting samples from the seawater recharged Reykjanes geothermal system in Iceland are compared to unaltered surface flows from the Reykjanes Peninsula compiled from the literature. Trace element characteristics of deep (>2000 m) core samples record bimodal compositions similar to trace element enriched and trace element depleted Reykjanes Ridge basalts. Drill cuttings (350-3000 m) overwhelmingly reflect the more common trace element enriched igneous precursor. Crystalline protoliths (dolerite dykes and pillow lava cores) are depleted in Cs, Rb, K, and Ba (± Pb and Th) relative to an unaltered equivalent, despite variations in the extent of alteration ranging from from minor chloritization with intact igneous precursor minerals through to extensive chloritization and uralitization. Glassy protoliths (dyke margins, pillow edges, and hyaloclastites) show similar depletions of Cs, Rb, K, and Ba, but also show selective depletions of the light rare earth elements (LREE) La, Ce, Pr, Nd and Eu due to extensive recrystallization to hydrothermal hornblende. Lower grade alteration shows less pronounced decoupling of LREE and is likely controlled by a combination of Cl complexation in the seawater-derived recharge fluid, moderated by anhydrite and epidote precipitation. These results suggest that alteration of glassy protolith in seawater-recharged systems is an important contribution to the consistently light rare earth and Eu enriched patterns observed in seafloor hydrothermal fluids from basaltic systems. An important conclusion of this study is that that drill cuttings samples are strongly biased toward unaltered rock and more resistant alteration minerals including epidote and quartz potentially resulting in misidentification of lithology and extent of alteration.

  16. Greenland Ice Core: Geophysics, Geochemistry, and the Environment

    NASA Astrophysics Data System (ADS)

    Langway, C. C., Jr.; Oeschger, H.; Dansgaard, W.

    The Greenland Ice Sheet Program (GISP) is already recognized as a major achievement in glaciology. GISP support came from the Swiss National Science Foundation, the Danish Commission for Scientific Research in Greenland and the United States National Science Foundation. And with the spirit, drive, and ability of Hans Oeschger, Willi Dansgaard and Chester Langway, GISP was planned, undertaken and successfully concluded. The results presented here demonstrate the significance of the climatic record stored in ice sheets and reemphasizes the need for additional deep ice cores from Greenland and Antarctica.

  17. Preliminary report on the geology, geophysics and hydrology of USBM/AEC Colorado core hole No. 2, Piceance Creek Basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Ege, J.R.; Carroll, R.D.; Welder, F.A.

    1967-01-01

    Approximately 1,400 feet of continuous core was taken .between 800-2,214 feet in depth from USBM/AEC Colorado core hole No. 2. The drill, site is located in the Piceance Creek basin, Rio Blanco County, Colorado. From ground surface the drill hole penetrated 1,120 feet of the Evacuation Creek Member and 1,094 feet of oil shale in the Parachute Creek Member of the Green River Formation. Oil shale yielding more than 20 gallons per ton occurs between 1,260-2,214 feet in depth. A gas explosion near the bottom of the hole resulted in abandonment of the exploratory hole which was still in oil shale. The top of the nahcolite zone is at 1,693 feet. Below this depth the core contains common to abundant amounts of sodium bicarbonate salt intermixed with oil shale. The core is divided into seven structural zones that reflect changes in joint intensity, core loss and broken core due to natural causes. The zone of poor core recovery is in the Interval between 1,300-1,450 feet. Results of preliminary geophysical log analyses indicate that oil yields determined by Fischer assay compare favorably with yields determined by geophysical log analyses. There is strong evidence that analyses of complete core data from Colorado core holes No. 1 and No. 2 reveal a reliable relationship between geophysical log response and oil yield. The quality of the logs is poor in the rich shale section and the possibility of repeating the logging program should be considered. Observations during drilling, coring, and hydrologic testing of USBM/AEC Colorado core hole No. 2 reveal that the Parachute Creek Member of the Green River Formation is the principal aquifer water in the Parachute Creek Member is under artesian pressure. The upper part of the aquifer has a higher hydrostatic head than, and is hydrologically separated from the lower part of the aquifer. The transmissibility of the aquifer is about 3500 gpd per foot. The maximum water yield of the core hole during testing was about 500 gpm. Chemical

  18. Lithologic logs and geophysical logs from test drilling in Palm Beach County, Florida, since 1974

    USGS Publications Warehouse

    Swayze, Leo J.; McGovern, Michael C.; Fischer, John N.

    1980-01-01

    Test-hole data that may be used to determine the hydrogeology of the zone of high permeability in Palm Beach County, Fla., are presented. Lithologic logs from 46 test wells and geophysical logs from 40 test wells are contained in this report. (USGS)

  19. Open Core Data: Semantic driven data access and distribution for terrestrial and marine scientific drilling data

    NASA Astrophysics Data System (ADS)

    Fils, D.; Noren, A. J.; Lehnert, K. A.

    2015-12-01

    Open Core Data (OCD) is a science-driven, innovative, efficient, and scalable infrastructure for data generated by scientific drilling and coring projects across all Earth sciences. It is designed to make make scientific drilling data semantically discoverable, persistent, citable, and approachable to maximize their utility to present and future geoscience researchers. Scientific drilling and coring is crucial for the advancement of the Earth Sciences, unlocking new frontiers in the geologic record. Open Core Data will utilize and link existing data systems, services, and expertise of the JOIDES Resolution Science Operator (JRSO), the Continental Scientific Drilling Coordination Office (CSDCO), the Interdisciplinary Earth Data Alliance (IEDA) data facility, and the Consortium for Ocean Leadership (OL). Open Core Data will leverage efforts currently taking place under the EarthCube GeoLink Building Block and other previous efforts in Linked Open Data around ocean drilling data coordinated by OL. The OCD architecture for data distribution blends Linked Data Platform approaches with web services and schema.org use. OCD will further enable integration and tool development by assigning and using vocabularies, provenance, and unique IDs (DOIs, IGSN, URIs) in scientific drilling resources. A significant focus of this effort is to enable large scale automated access to the data by domain specific communities such as MagIC and Neotoma. Providing them a process to integrate the facility data into their data models, workflows and tools. This aspect will encompass methods to maintain awareness of authority information enabling users to trace data back to the originating facility. Initial work on OCD is taking place under a supplemental awarded to IEDA. This talk gives an overview of that work to date and planned future directions for the distribution of scientific drilling data by this effort.

  20. Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    SciTech Connect

    Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

    1982-07-01

    The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain.

  1. Permeability and of the San Andreas Fault core and damage zone from SAFOD drill core

    NASA Astrophysics Data System (ADS)

    Rathbun, A. P.; Fry, M.; Kitajima, H.; Song, I.; Carpenter, B. M.; Marone, C.; Saffer, D. M.

    2012-12-01

    Quantifying fault-rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that may affect faulting and earthquake mechanics by mediating effective stress. These include persistent fluid overpressures hypothesized to reduce fault strength, as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. To date, studies of permeability on fault rocks and gouge from plate-boundary strike-slip faults have mainly focused on samples from surface outcrops. We report on permeability tests conducted on the host rock, damage zone, and a major actively creeping fault strand (Central Deformation Zone, CDZ) of the San Andreas Fault (SAF), obtained from coring across the active SAF at ~2.7 km depth as part of SAFOD Phase III. We quantify permeability on subsamples oriented both perpendicular and parallel to the coring axis, which is nearly perpendicular to the SAF plane, to evaluate permeability anisotropy. The fault strand samples were obtained from the CDZ, which accommodates significant creep, and hosts ~90% of the observed casing deformation measured between drilling phases. The CDZ is 2.6 m thick with a matrix grain size < 10 μm and ~5% vol. clasts, and contains ~80% clay, of which ~90% is smectite. We also tested damage zone samples taken from adjacent core sections within a few m on either side of the CDZ. Permeability experiments were conducted in a triaxial vessel, on samples 25.4 mm in diameter and ~20-35 mm in length. We conducted measurements under isotropic stress conditions, at effective stress (Pc') of ~5-70 MPa. We measure permeability using a constant head flow-through technique. At the highest Pc', low permeability of the CDZ and damage zone necessitates using a step loading transient method and is in good agreement with permeabilities obtained from flow-through experiments. We quantify compression behavior by monitoring

  2. Application of the IGSN for improved data - sample - drill core linkage

    NASA Astrophysics Data System (ADS)

    Behnken, Andree; Wallrabe-Adams, Hans-Joachim; Röhl, Ursula; Krysiak, Frank

    2016-04-01

    The large number of samples resulting from geoscientific research creates a need for a system that has the ability to allocate unique identifiers for individual samples (cores, core sections, rock samples...). In this abstract we present a solution that utilises the IGSN (1) Registry Metadata Store (2) to automatically register unique IGSN's for samples and submit corresponding metadata. An automated workflow has been set up to register IGSN's and submit metadata for cores stored for example at the IODP (3) Bremen Core Repository (BCR) in Bremen and the BGR National Core Repository for Research Drilling in Berlin, and partly transfer the core information to the GESEP (4) Virtual Core Repository (5). Detailed metadata for these cores are stored in a DIS (6), from which xml files containing all necessary information for IGSN and metadata submission are automatically generated. These files are automatically processed to extract and register the unique IGSN as well as the corresponding metadata. After this parsing process, the IGSN registration and metadata submission processes are triggered by posting the appropriate IGSN API (7) service calls. 1. International Geo Sample Number 2. https://doidb.wdc-terra.org/igsn/ 3. Integrated Ocean Drilling Program / International Ocean Discovery Program 4. German Scientific Earth Probing Consortium 5. http://www.gesep.org/infrastruktur/kernlager/portal/ 6. Drilling Information System 7. https://doidb.wdc-terra.org/igsn/static/apidoc

  3. A Mentoring Program Drills down on the Common Core

    ERIC Educational Resources Information Center

    Davis, Emily; Sinclair, Steve; Gschwend, Laura

    2015-01-01

    The Santa Cruz/Silicon Valley New Teacher Project--under the aegis of the New Teacher Center--devised a program to train teacher mentors to help new teachers incorporate the Common Core standards into their teaching. The three-year program yielded five critical lessons: Mentors need ongoing support to develop their readiness and willingness to…

  4. Diaplectic transformation of minerals: Vorotilov drill core, Puchezh-Katunki impact crater, Russia

    NASA Technical Reports Server (NTRS)

    Feldman, V. I.

    1992-01-01

    The Vorotilov core was drilled in the central uplift of the Puchezh-Katunki astrobleme to a depth of 5.1 km. Impactites are revealed in the rocks of the core beginning from a depth of 366 m: suevites (66 m), allogenic breccias (112 m), and autogenic breccias (deeper than 544 m). These rocks are represented by shocked-metamorphic gneisses, schists, amphibolites of Archean age, and magmatic rocks (dolerites, olivines, and peridotites) that lie between them.

  5. Inert gas stratigraphy of Apollo 15 drill core sections 15001 and 15003

    NASA Technical Reports Server (NTRS)

    Huebner, W.; Kirsten, T.; Heymann, D.

    1973-01-01

    Rare gase contents were studied in Apollo 15 drill core sections corresponding to 207 to 238 and 125 to 161-cm depths, with respect to layering of the core, turnover on a centimeter scale, and cosmic proton bombardment history. Trapped gas abundance was established in all samples, the mean grain size being a major factor influencing the absolute rare gas contents. Analysis of the results suggests that the regolith materials were exposed to galactic and solar cosmic rays long before their deposition.

  6. The remarkable chemical uniformity of Apollo 16 layered deep drill core section 60002

    NASA Technical Reports Server (NTRS)

    Nava, D. F.; Philpotts, J. A.; Lindstrom, M. M.; Schuhmann, P. J.; Lindstrom, D. J.

    1976-01-01

    Atomic absorption and colorimetric spectrophotometers were used to determine major- and minor-element abundances in 12 samples from layered section 60002 of the Apollo 16 deep drill core. It is suggested that gardening of a relatively thick local unit produced the layering in this section in such a manner that the proportions of materials of different compositions remained virtually unchanged.

  7. Drilling and coring methods that minimize the disturbance of cuttings, core, and rock formation in the unsaturated zone, Yucca Mountain, Nevada

    SciTech Connect

    Hammermeister, D.P.; Blout, D.O.; McDaniel, J.C.

    1985-12-31

    A drilling-and-casing method (Odex 115 system) utilizing air as a drilling fluid was used successfully to drill through various rock types within the unsaturated zone at Yucca Mountain, Nevada. This paper describes this method and the equipment used to rapidly penetrate bouldery alluvial-colluvial deposits, poorly consolidated bedded and nonwelded tuff, and fractured, densely welded tuff to depths of about 130 meters. A comparison of water-content and water-potential data from drill cuttings with similar measurements on rock cores indicates that drill cuttings were only slightly disturbed for several of the rock types penetrated. Coring, sampling, and handling methods were devised to obtain minimally disturbed drive core from bouldery alluvial-colluvial deposits. Bulk-density values obtained from bulk samples dug from nearby trenches were compared to bulk-density values obtained from drive core to determine the effects of drive coring on the porosity of the core. Rotary coring methods utilizing a triple-tube core barrel and air as the drilling fluid were used to obtain core from welded and nonwelded tuff. Results indicate that the disturbance of the water content of the core was minimal. Water-content distributions in alluvium-colluvium were determined before drilling occurred by drive-core methods. After drilling, water-content distributions were determined by nuclear-logging methods. A comparison of the water-content distributions made before and after drilling indicates that Odex 115 drilling minimally disturbs the water content of the formation rock. 10 refs., 12 figs., 4 tabs.

  8. Al-26 depth profile in Apollo 15 drill core

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Klein, J.; Middleton, R.

    1984-01-01

    Accelerator mass spectrometry is used in a study of galactic cosmic ray production profiles based on cosmic ray-produced Al-26 in the Apollo 15 long core. The results, which are in general agreement with earlier nondestructive counting data, are of significantly higher precision, yet systematically lower. The half-attenuation length for Al-26 production is presently calculated to be 122 g/sq cm, after normalizing the data to average chemical composition.

  9. Pervasive, high temperature hydrothermal alteration in the RN-17B drill core, Reykjanes Geothermal System-Iceland Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Schiffman, P.; Marks, N. E.; Reed, M. H.; Elders, W. A.; Fridleifsson, G. O.

    2010-12-01

    In November 2008, 9.5 m of core were recovered from Reykjanes production well RN-17B at a depth of 2800m. The core consists mainly of hyaloclastite breccias, hetrolithic breccias with clasts of crystalline basalt, and volcaniclastic sandstones/siltstones. Much of the material appears to have been transported and redeposited, but homolithic breccias and hyaloclastites, some with upright flow lobes of basalt with quenched rims, are interpreted to have erupted in situ. Fine-scale features (glass rims, quench crystals, vesicles, phenocrysts) are well preserved, but all lithologies are pervasively hydrothermally altered such that primary clinopyroxene is ubiquitously uralitized and primary plagioclase (An42-80) is replaced by albite and/or more calcic plagioclase. In contrast, cuttings of similar lithologies, recovered by rotary drilling in intervals immediately above and below the core, exhibit much lesser degrees of hydrothermal alteration and commonly contain igneous plagioclase and clinopyroxene. Vitric clasts in the core are recrystallized into aggregates of chlorite and actinolite. In some breccias, cm-scale metadomains are composed of patchy albite or actinolite/magnesiohornblende giving the core a green and white spotted appearance. Minor amounts (<1%) of disseminated pyrite occur throughout the core, but two intervals with more abundant sulfide contain chalcopyrite and sphalerite in addition to pyrite. Amygdales and vugs in the breccias, initially filled with chlorite, actinolite, epidote, and/or albite, have been partly overprinted with hornblende and anorthite. The core is cut in places by < 1 cm- wide veins composed of early epidote + actinolite + titanite and later anorthite + magnesiohornblende/pargasite. Quartz is not present in any alteration domains observed in the core, although it is reported from virtually all of the cutting intervals above and below the cored section. Seawater-basalt reaction calculations suggest that albite formed during early

  10. Hyaloclastites and the slope stability of Hawaiian volcanoes: Insights from the Hawaiian Scientific Drilling Project's 3-km drill core

    NASA Astrophysics Data System (ADS)

    Schiffman, Peter; Watters, Robert J.; Thompson, Nick; Walton, Anthony W.

    2006-03-01

    Core samples recovered during the Hawaiian Scientific Drilling Project (HSDP) drilling project reveal that the upper 1 km of the submarine flank of Mauna Kea is comprised mainly of hyaloclastites. Progressive, very low-temperature alteration of these hyaloclastites has been accompanied by systematic transformations in physical properties of these deposits. Hyaloclastite deposits which directly underlie ca. 1 km of subaerially-emplaced lavas are very poorly consolidated. But over a depth interval of ca. 500 m, compaction and, especially, precipitation of zeolitic, pore-filling cements associated with palagonitization of sideromelane, have eliminated porosity as well as promoted the consolidation of these hyaloclastites. The latter is reflected in unconfined compressive strengths which increase from mean values, respectively, of 2.5 and 4.6 MPa in weakly consolidated, smectite-rich hyaloclastites from the incipient (1080 to 1335 mbsl) and smectitic (1405-1573 mbsl) alteration zones, to a mean value of 10.0 MPa in the more highly consolidated hyaloclastites of the palagonitic zone of alteration (from 1573 mbsl to the bottom of the drill hole). Conversely, overlying, intercalated, and underlying lava flows are generally much less altered, and have mean compressive strengths which are 1 to 2 orders of magnitude greater then hyaloclastites at equivalent depths. The shear strengths of the hyaloclastites also increase with depth and grade of alteration, but are uniformly and substantially lower in the lavas. Those hyaloclastites exhibiting the highest grade of alteration (i.e., palagonitic) also exhibit the highest measured strengths, and thus the alteration of hyaloclastites appears to strengthen as opposed to weaken the flanks of the edifice. However, the contrast in strength between hyaloclastites and lavas may be a primary factor in localizing destabilization, and the zones of weak and poorly consolidated hyaloclastites may facilitate slumping by servings as hosts for

  11. Bacterial study of Vostok drilling fluid: the tool to make ice core finding confident

    NASA Astrophysics Data System (ADS)

    Alekhina, I. A.; Petit, J. R.; Lukin, V. V.; Bulat, S. A.

    2003-04-01

    Decontamination of Vostok ice core is a critical issue in molecular biology studies. Core surface contains a film of hardly removable 'dirty' drilling fluid representing a mixture of polyhydrocarbons (PHC) including polyaromatic hydrocarbons (PAH) and freon. To make ice microbial finding more confident the original Vostok drilling fluid sampled from different depths (110m - 3600m) was analyzed for bacterial content by ribosomal DNA sequencing. Total, 33 clones of 16S ribosomal DNA were recovered from four samples of drilling fluid at 110, 2750, 3400, and 3600m leading to identification of 8 bacterial species. No overlapping was observed even for neighboring samples (3400m and 3600m). At present four major bacteria with the titer more than 103-104 cells per ml (as estimated from PCR results) are identified. Among them we found: unknown representative of Desulfobacteraceae which are able to oxidize sulphates and degrade benzenes (110m); PAH-degrading alpha-proteobacterium Sphingomonas natatoria (3400m); alpha-proteobacterium representing closely-related group of Sphingomonas sp. (e.g., S. aurantiaca) which are able to degrade PAH as well, and human pathogen closely related to Haloanella gallinarum of CFB group (3600m). Four additional species were revealed as single clones and showed relatedness to human pathogens and saprophytes as well as soil bacteria. These bacteria may represent drilling fluid contaminants introduced during its sampling or DNA extraction procedure. Of four major bacteria revealed, one species, Sphingomonas natatoria, has been met by us in the Vostok core from 3607 m depth (AF532054) whereas another Sphingomonas sp. which we refer to as S. aurantiaca was found in Antarctic microbial endolithic community (AF548567), hydrocarbon-containing soil near Scott Base in Antarctica (AF184221) and even isolated from 3593m Vostok accretion ice (AF324199) and Taylor Dome core (AF395031). The source for major human pathogen-related bacteria is rather uncertain

  12. Paleomagnetic Reorientation of Structural Elements in Drill Cores: an example from Tolhuaca Geothermal Field

    NASA Astrophysics Data System (ADS)

    Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.

    2013-12-01

    Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25

  13. The Apollo 17 drill core - Modal petrology and glass chemistry /sections 70007, 70008, 70009/

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1977-01-01

    On the basis of modal petrography the upper, mare basalt-rich portion of the Apollo 17 drill core (sections 70007, 70008, 70009) can be subdivided into three major stratigraphic units. The lower unit (a) falls within 70007, is relatively mature, and contains evidence of an increase in highland component and decrease of mare component within the lower approximately 8 cm. The middle unit (b) is coarse-grained and relatively immature; this unit has the highest concentration of mare basalt lithic and mineral fragments and mare orange/black glasses. The top unit (c) falls within 70009 and is relatively mature. Within these three sections of the drill core, there are compositional clusters of glass beads that correspond to high Ti subfloor basalt (orange/black glass), anorthositic gabbro (clear glass), and a new very low Ti (VLT) mare basalt (yellow/green glass).

  14. Concrete drill core characterization finalized to optimal dismantling and aggregates recovery.

    PubMed

    Bonifazi, Giuseppe; Palmieri, Roberta; Serranti, Silvia

    2017-02-01

    An innovative strategy, based on micro X-ray fluorescence and HyperSpectralImaging in the short wave infrared range (1000-2500nm), was developed in order to characterize drill core samples collected from End-of-Life concrete. Micro X-ray fluorescence maps were realized to check the drill cores chemical composition, to develop the best approach for HSI analyses and to verify the correctness of the obtained HSI results. HSI analysis was carried out in order to recognize and classify aggregates and mortar paste in concrete. A morphological and morphometrical analysis of aggregates was also carried out on the prediction maps. Results showed as the proposed approach can be profitably applied to analyze and characterize demolition waste materials before dismantling. Starting from an efficient in-situ characterization of the objects to dismantle, demolition actions can be optimized in order to maximize the EOL concrete derived materials, minimizing the final waste.

  15. Intermediate-depth ice coring of high-altitude and polar glaciers with a lightweight drilling system

    NASA Astrophysics Data System (ADS)

    Zagorodnov, V.; Thompson, L. G.; Ginot, P.; Mikhalenko, V.

    A total of 11 ice cores to a maximum depth of 460 m have been obtained over the past 3 years from high-altitude glaciers on the saddle of Mount Bona and Mount Churchill in Alaska (designated B C), and on Quelccaya ice cap and Nevado Coropuna in Peru. Ice coring was conducted using an intermediate-depth drilling system. The system includes an electromechanical drill (EMD) and an ethanol thermal electric drill (ETED). The EMD permitted an average ice-core production rate (ICPR) of 7.0 m h-1 down to 150 m. An average ICPR of 2 m h-1 to 460 m depth was possible with the ETED. The quality of the B C ice cores is better than that of cores previously drilled with an EMD and ETED system. A new cutter design, drilling with a lubricant/cutting fluid and a new anti-torque assembly were tested in the laboratory and in glacier boreholes. We examine the performance of the drills in cold and temperate ice and in clean and particle-laden ice. The influence of the ethanol drilling fluid on ice-core isotopic, ionic and dust composition is discussed.

  16. Mineralogic variation in drill core UE-25 UZ{number_sign}16, Yucca Mountain, Nevada

    SciTech Connect

    Chipera, S.J.; Vaniman, D.T.; Carlos, B.A.; Bish, D.L.

    1995-02-01

    Quantitative X-ray powder diffraction methods have been used to analyze 108 samples from drill core UE-25 UZ{number_sign}16 at Yucca Mountain, Nevada. This drill hole, located within the imbricate fault zone east of the potential Yucca Mountain repository site, confirms the authors` previous knowledge of gross-scale mineral distributions at Yucca Mountain and provides insight into possible shallow pathways for hydrologic recharge into the potential host rock. Analyses of samples from UE-25 UZ{number_sign}16 have shown that the distribution of major zeolitized horizons, of silica phases, and of glassy tuffs are similar to those noted in nearby drill cores. However, the continuous core and closer sample spacing in UE-25 UZ{number_sign}16 provide a more exact determination of mineral stratigraphy, particularly in hydrologically important units such as the Paintbrush bedded tuffs above the Topopah Spring Tuff and in the upper vitrophyre of the Topopah Spring Tuff. The discovery of matrix zeolitization in the devitrified Topopah Spring Tuff of UE25 UZ{number_sign}16 shows that some unexpected mineralogic features can still be encountered in the exploration of Yucca Mountain and emphasizes the importance of obtaining a more complete three-dimensional model of Yucca Mountain mineralogy.

  17. Revised magnetostratigraphic chronologies for New Harbour drill cores, southern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Ohneiser, Christian; Wilson, Gary

    2012-02-01

    The Taylor Valley (DVDP-10, -11) and Ferrar Fiord (CIROS-2) drill cores offer a window into the evolution of southern Victoria Land glaciers and the Antarctic climate system during the late-Neogene. Here we present new magnetostratigraphic chronologies, which we use to correlate the drill core successions with onshore dry-valleys geomorphic records and offshore deep-ocean records. Magnetostratigraphies were constructed using stepwise AF and/or thermal demagnetisation of discrete specimens from the drill cores. Correlation of magnetostratigraphies with the magnetic polarity timescale was guided by biostratigraphic and radiometric constraints. We recognise five styles of sedimentation in the Taylor/Ferrar fiords, which we correlate with discrete climate phases. During the latest Miocene-early Pliocene, wet based glaciers filled the Taylor and Ferrar fiords with active sedimentation in the Taylor Fiord and erosion of basement rocks in the Ferrar Fiord. Glaciers retreated during the Pliocene warm period leaving open marine conditions and deep fiords (> 300 m) at a time when the Ross Sea was free of ice and sea surface temperatures around Antarctica were at least 5 °C warmer than today. We recognise the first significant cooling in DVDP-11 post 2.6 Ma by a shift to current winnowed sediments sourced from the Ross Sea rather than from East Antarctic glaciers. Post 1.7 Ma, lacustrine sediments were deposited behind ice-dammed lakes, which formed when West Antarctic ice expanded and grounded across the Ross Embayment and abutted the Transantarctic Mountains.

  18. Reprint of: Revised magnetostratigraphic chronologies for New Harbour drill cores, southern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Ohneiser, Christian; Wilson, Gary

    2012-10-01

    The Taylor Valley (DVDP-10, -11) and Ferrar Fiord (CIROS-2) drill cores offer a window into the evolution of southern Victoria Land glaciers and the Antarctic climate system during the late-Neogene. Here we present new magnetostratigraphic chronologies, which we use to correlate the drill core successions with onshore dry-valleys geomorphic records and offshore deep-ocean records. Magnetostratigraphies were constructed using stepwise AF and/or thermal demagnetisation of discrete specimens from the drill cores. Correlation of magnetostratigraphies with the magnetic polarity timescale was guided by biostratigraphic and radiometric constraints. We recognise five styles of sedimentation in the Taylor/Ferrar fiords, which we correlate with discrete climate phases. During the latest Miocene-early Pliocene, wet based glaciers filled the Taylor and Ferrar fiords with active sedimentation in the Taylor Fiord and erosion of basement rocks in the Ferrar Fiord. Glaciers retreated during the Pliocene warm period leaving open marine conditions and deep fiords (> 300 m) at a time when the Ross Sea was free of ice and sea surface temperatures around Antarctica were at least 5 °C warmer than today. We recognise the first significant cooling in DVDP-11 post 2.6 Ma by a shift to current winnowed sediments sourced from the Ross Sea rather than from East Antarctic glaciers. Post 1.7 Ma, lacustrine sediments were deposited behind ice-dammed lakes, which formed when West Antarctic ice expanded and grounded across the Ross Embayment and abutted the Transantarctic Mountains.

  19. Core drilling provides information about Santa Fe Group aquifer system beneath Albuquerque's West Mesa

    USGS Publications Warehouse

    Allen, B.D.; Connell, S.D.; Hawley, J.W.; Stone, B.D.

    1998-01-01

    Core samples from the upper ???1500 ft of the Santa Fe Group in the Albuquerque West Mesa area provide a first-hand look at the sediments and at subsurface stratigraphic relationships in this important part of the basin-fill aquifer system. Two major hydrostratigraphic subunits consisting of a lower coarse-grained, sandy interval and an overlying fine-grained, interbedded silty sand and clay interval lie beneath the water table at the 98th St core hole. Borehole electrical conductivity measurements reproduce major textural changes observed in the recovered cores and support subsurface correlations of hydrostratigraphic units in the Santa Fe Group aquifer system based on geophysical logs. Comparison of electrical logs from the core hole and from nearby city wells reveals laterally consistent lithostratigraphic patterns over much of the metropolitan area west of the Rio Grande that may be used to delineate structural and related stratigraphic features that have a direct bearing on the availability of ground water.

  20. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    USGS Publications Warehouse

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth.  Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data.  Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes.  Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes.  In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient.  Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.

  1. Comparative evaluation of the indigenous microbial diversity vs. drilling fluid contaminants in the NEEM Greenland ice core.

    PubMed

    Miteva, Vanya; Burlingame, Caroline; Sowers, Todd; Brenchley, Jean

    2014-08-01

    Demonstrating that the detected microbial diversity in nonaseptically drilled deep ice cores is truly indigenous is challenging because of potential contamination with exogenous microbial cells. The NEEM Greenland ice core project provided a first-time opportunity to determine the origin and extent of contamination throughout drilling. We performed multiple parallel cultivation and culture-independent analyses of five decontaminated ice core samples from different depths (100-2051 m), the drilling fluid and its components Estisol and Coasol, and the drilling chips collected during drilling. We created a collection of diverse bacterial and fungal isolates (84 from the drilling fluid and its components, 45 from decontaminated ice, and 66 from drilling chips). Their categorization as contaminants or intrinsic glacial ice microorganisms was based on several criteria, including phylogenetic analyses, genomic fingerprinting, phenotypic characteristics, and presence in drilling fluid, chips, and/or ice. Firmicutes and fungi comprised the dominant group of contaminants among isolates and cloned rRNA genes. Conversely, most Proteobacteria and Actinobacteria originating from the ice were identified as intrinsic. This study provides a database of potential contaminants useful for future studies of NEEM cores and can contribute toward developing standardized protocols for contamination detection and ensuring the authenticity of the microbial diversity in deep glacial ice.

  2. Characterization of the indigenous microorganisms in Exter Formation sandstone rock cores obtained during deep drilling and evaluation of contamination by drill mud using fluorescein.

    NASA Astrophysics Data System (ADS)

    Pellizzari, Linda; Neumann, Dominik; Würdemann, Hilke

    2013-04-01

    Microorganisms are very effective catalysts and have an important function in mineral and elemental distribution within geological formations. CO2 injection may influence the microbial activities by affecting the composition of the rock-fluid system. Reactions like mineral dissolution and precipitation, related to biological processes may influence aquifer injectivity or permeability of faults. In subsurface reservoirs, a baseline characterization of pristine rock cores is required to monitor changes in the indigenous microbial communities and to study interactions with geotechnical installations. However, drilling procedures and technical fluids, particularly drill mud, are sources of core contamination. To measure the penetration of drill mud into the cores the tracer fluorescein was tested under laboratory as well as under field conditions. The actual penetration depths seem to be related to differences in geology, such as structural heterogeneities or microfractures. The application of fluorescein was successfully applied during a deep drilling campaign at the CO2 storage pilot site in Ketzin, Germany, in August 2011. During inner coring, crowns of 17.5 mm were removed from the outside. Fluorescein analysis showed that after an inner coring 45% (five samples out of eleven) were not influenced by drill mud. The results highlight that the use of tracers is indispensable to ensuring the quality of core samples for microbiological and biogeochemical analysis. Core samples of the Exter Formation (sandstone above the caprock, 400-440 m depth) were retrieved in order to investigate the indigenous microbial community and to investigate the interaction between CO2, fluid formation, rock substrate and microorganisms in long term experiments with geochemical and molecularbiological techniques. The microbial baseline characterization for rock cores of Exter Formation before CO2 exposure revealed a similar bacterial community composition in all samples. First results of

  3. First CSDP (Continental Scientific Drilling Program)/thermal regimes core hole project at Valles Caldera, New Mexico (VC-1): Drilling report

    SciTech Connect

    Rowley, J.; Hawkins, W.; Gardner, J.

    1987-02-01

    This report is a review and summary of the core drilling operations of the first Valles Caldera research borehole (VC-1) under the Thermal Regimes element of the Continental Scientific Drilling Program (CSDP). The project is a portion of a broader program that seeks to answer fundamental scientific questions about magma, rock/water interactions, and volcanology through shallow (<1-km) core holes at Long Valley, California; Salton Sea, California; and the Valles Caldera, New Mexico. The report emphasizes coring operations with reference to the stratigraphy of the core hole, core quality description, core rig specifications, and performance. It is intended to guide future research on the core and in the borehole, as well as have applications to other areas and scientific problems in the Valles Caldera. The primary objectives of this Valles Caldera coring effort were (1) to study the hydrogeochemistry of a subsurface geothermal outflow zone of the caldera near the source of convective upflow, (2) to obtain structural and stratigraphic information from intracaldera rock formations in the southern ring-fracture zone, and (3) to obtain continuous core samples through the youngest volcanic unit in Valles Caldera, the Banco Bonito rhyolite (approximately 0.1 Ma). All objectives were met. The high percentage of core recovery and the excellent quality of the samples are especially notable. New field sample (core) handling and documentation procedures were successfully utilized. The procedures were designed to provide consistent field handling of the samples and logs obtained through the national CSDP.

  4. Lithologic and geophysical logs of drill holes Felderhoff Federal 5-1 and 25-1, Amargosa Desert, Nye County, Nevada

    SciTech Connect

    Carr, W.J.; Grow, J.A.; Keller, S.M.

    1995-10-01

    Two wildcat oil and gas exploration holes drilled in 1991 on the northern edge of the Amargosa Desert penetrated Tertiary and Quaternary sedimentary rocks, alluvium, and basalt, possible Tertiary volcanic or volcaniclastic rocks, and Tertiary (?) and Paleozoic carbonate rocks. The easternmost of the two holes, Felderhoff-Federal 5-1, encountered about 200 feet of alluvium, underlain by 305 feet of basalt breccia and basalt, about 345 feet of probable Tertiary tuffaceous sedimentary rocks, and 616 feet of dense limestone and dolomite of uncertain age. Drill hole 25-1 penetrated 240 feet of alluvium and marl (?), and 250 feet of basalt breccia (?) and basalt, 270 feet of tuff (?) and/or tuffaceous sedimentary rocks, 360 feet of slide blocks (?) and large boulders of Paleozoic carbonate rocks, and 2,800 feet of Paleozoic limestone and dolomite. The two drill holes are located within a northerly trending fault zone defined largely by geophysical data; this fault zone lies along the east side of a major rift containing many small basalt eruptive centers and, farther north, several caldera complexes. Drill hole 25-1 penetrated an inverted paleozoic rock sequence; drill hole 5-1 encountered two large cavities 24-inches wide or more in dense carbonate rock of uncertain, but probable Paleozoic age. These openings may be tectonic and controlled by a regional system of northeast-striking faults.

  5. Geochemistry of drill core headspace gases and its significance in gas hydrate drilling in Qilian Mountain permafrost

    NASA Astrophysics Data System (ADS)

    Lu, Zhengquan; Rao, Zhu; He, Jiaxiong; Zhu, Youhai; Zhang, Yongqin; Liu, Hui; Wang, Ting; Xue, Xiaohua

    2015-02-01

    Headspace gases from cores are sampled in the gas hydrate drilling well DK-8 in the Qilian Mountain permafrost. Gas components and carbon isotopes of methane from headspace gas samples are analyzed. The geochemical features of the headspace gases along the well profile are compared with occurrences of gas hydrate, and with the distribution of faults or fractures. Their geochemical significance is finally pointed out in gas hydrate occurrences and hydrocarbon migration. Results show high levels of hydrocarbon concentrations in the headspace gases at depths of 149-167 m, 228-299 m, 321-337 m and 360-380 m. Visible gas hydrate and its associated anomalies occur at 149-167 m and 228-299 m; the occurrence of high gas concentrations in core headspace gases was correlated to gas hydrate occurrences and their associated anomalies, especially in the shallow layers. Gas compositions, gas ratios of C1/ΣC1-5, C1/(C2 + C3), iC4/nC4, and iC5/nC5, and carbon isotopic compositions of methane (δ13C1, PDB‰) indicate that the headspace gases are mainly thermogenic, partly mixed with biodegraded thermogenic sources with small amounts derived from microbial sources. Faults or fracture zones are identified at intervals of 149-167 m, 228-299 m, 321-337 m, and near 360-380 m; significantly higher gas concentrations and lower dryness ratio were found in the headspace gases within the fault or fracture zones compared with areas above these zones. In the shallow zones, low dryness ratios were observed in headspace gases in zones where gas hydrate and faults or fracture zones were found, suggesting that faults or fracture zones serve as migration paths for gases in the deep layers and provide accumulation space for gas hydrate in the shallow layers of the Qilian Mountain permafrost.

  6. Strike-dip determination of fractures in drill cores by an astatic-magnetometer

    SciTech Connect

    Hayashi, M.; Furutani, N.

    1982-10-01

    The strike and dip of fractures in drillcores from Well HT-4 drilled in the Hatchobaru geothermal field, Kyushu, Japan, have been determined using an astatic-magnetometer. Since the drill cores consist mainly of younger andesite lavas, the measurements of the declination and inclination of remnant magnetism should yield the strike and dip of the fractures. The results show that they dip generally southward with angles from 40/sup 0/ to 80/sup 0/ (62.5 on the average), and strike NW-SE or NE-SW. The NW-SE trending fractures predominate in the Pleistocene series, which persists at depths shallower than 1000 m, while the NE-SW trending ones occur in the Neogene system at deeper levels, and are considered to be older than the former. The stress field can also be estimated by the strike-dip data and the direction of lineation on a slickenside.

  7. Carbon chemistry of the Apollo 15 and 16 deep drill cores

    NASA Technical Reports Server (NTRS)

    Wszolek, P. C.; Burlingame, A. L.

    1973-01-01

    The carbon chemistry of the Apollo 15 and 16 deep drill cores is a function of the surface exposure plus the chemical and mineralogical composition of the individual samples. The depth profiles of carbide and methane yields in the Apollo 15 core show a general decline with depth and correlate with the solar wind noble gas content, percentage agglutinates, track densities, and metallic iron. All horizons examined were exposed for a considerable time on the lunar surface. The Apollo 16 core samples show that chemical and mineralogical composition plays an important role in determining the nature of carbide-like material present in the fines. The higher aluminum and calcium contents and lower iron contents of highlands material result in carbide-like material yielding less CD4 and more C2D2 (deuteroacetylene) upon DF acid dissolution.

  8. The Chicxulub impact structure: What does the Yaxcopoil-1 drill core reveal?

    NASA Astrophysics Data System (ADS)

    Elbra, T.

    2013-05-01

    The Chicxulub impact structure, one of the largest impact structures on Earth, was formed 65 Ma by hypervelocity impact which led to the large mass-extinction at K-Pg boundary. This well preserved but buried structure has undergone numerous drillings and studies aimed to understand the formation mechanism, structure and age of the crater. The Yaxcopoil-1 (Yax-1) drill core, located in the southern sector of the Chicxulub crater, in the outer part of an annular trough, 62 km from the crater center, was drilled by ICDP in 2001-2002. Petrophysical, rock- and paleomagnetic studies of Yax-1 (Elbra and Pesonen, 2011) showed that physical properties characterize the various lithological units. Dependence on mineral composition rather than fabric was observed in pre-impact lithologies contrarily to the post-impact and impact rocks where the physical properties were dominated by porosity and reflected, in case of impactites, the impact formation mechanism with its numerous features resulting from melting, brecciation and fracturing. Furthermore, while the pre- and post-impact lithologies in Yax-1 are mostly dia- or paramagnetic, the impactite units indicated enhanced magnetizations and the presence of ferromagnetic, probably hydrothermally deposited magnetite and pyrrhotite. The sharp contrast of the impactites to the target and to post-impact lithologies allowed establishing the contact (especially the K-Pg boundary) between. The anisotropy, shape and orientation of the magnetic fraction illustrated the fabric randomization and showed the influence of impact-related redeposition and hydrothermal activity. The paleomagnetic data suggested that the Chicxulub impact occurred during the reverse polarity geomagnetic chron 29R, which is in agreement with the isotopic dates of the Chicxulub impact as well as with expected K-Pg boundary polarity. Reference Elbra, T. and Pesonen, L.J., 2011. Physical properties of the Yaxcopoil-1 deep drill core, Chicxulub impact structure, Mexico

  9. Quaternary paleoceanography of the central Arctic based on Integrated Ocean Drilling Program Arctic Coring Expedition 302 foraminiferal assemblages

    USGS Publications Warehouse

    Cronin, T. M.; Smith, S.A.; Eynaud, F.; O'Regan, M.; King, J.

    2008-01-01

    The Integrated Ocean Drilling Program (IODP) Arctic Coring Expedition (ACEX) Hole 4C from the Lomonosov Ridge in the central Arctic Ocean recovered a continuous 18 in record of Quaternary foraminifera yielding evidence for seasonally ice-free interglacials during the Matuyama, progressive development of large glacials during the mid-Pleistocene transition (MPT) ???1.2-0.9 Ma, and the onset of high-amplitude 100-ka orbital cycles ???500 ka. Foraminiferal preservation in sediments from the Arctic is influenced by primary (sea ice, organic input, and other environmental conditions) and secondary factors (syndepositional, long-term pore water dissolution). Taking these into account, the ACEX 4C record shows distinct maxima in agglutinated foraminiferal abundance corresponding to several interglacials and deglacials between marine isotope stages (MIS) 13-37, and although less precise dating is available for older sediments, these trends appear to continue through the Matuyama. The MPT is characterized by nearly barren intervals during major glacials (MIS 12, 16, and 22-24) and faunal turnover (MIS 12-24). Abundant calcareous planktonic (mainly Neogloboquadrina pachyderma sin.) and benthic foraminifers occur mainly in interglacial intervals during the Brunhes and very rarely in the Matuyama. A distinct faunal transition from calcareous to agglutinated foraminifers 200-300 ka in ACEX 4C is comparable to that found in Arctic sediments from the Lomonosov, Alpha, and Northwind ridges and the Morris Jesup Rise. Down-core disappearance of calcareous taxa is probably related to either reduced sea ice cover prior to the last few 100-ka cycles, pore water dissolution, or both. Copyright 2008 by the American Geophysical Union.

  10. Rare gases and Ca, Sr, and Ba in Apollo 17 drill-core fines

    NASA Technical Reports Server (NTRS)

    Pepin, R. O.; Dragon, J. C.; Johnson, N. L.; Bates, A.; Coscio, M. R., Jr.; Murthy, V. R.

    1975-01-01

    Trapped gas isotopic compositions and spallation gas concentrations as functions of depth in the Apollo 17 drill core were determined from mass spectrometer studies by means of correlation techniques. The distribution of He, Ne, Ar, Kr, and Xe as well as Ca, Sr, and Ba was investigated, and rare-gas spallation and neutron capture profiles are compared with attention to proposed depositional models for the Taurus-Littrow regolith. The data exclude a sedimentation pattern similar to that found at the Apollo 15 site but are possibly compatible with long-term continuous accretion models or models of very recent rapid accumulation of regolith.

  11. Characterization and depositional and evolutionary history of the Apollo 17 deep drill core

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Lauer, H. V., Jr.; Gose, W. A.

    1979-01-01

    With a depth resolution of about 0.5 cm, the stratigraphy of the approximately 3 m Apollo 17 deep drill core by measurement of the total FeO concentration is characterized along with the FMR surface exposure (maturity) index Is/FeO, the metallic iron concentration Fe-vsm, and the FMR linewidth delta-H. For stratigraphic characterization, the first two parameters are the most important. Most of the core is characterized by a FeO concentration of approximately 15.5 wt. %; there is a more mafic zone in the upper approximately 75 cm where the maximum FeO concentration is approximately 18.5 wt. %, and a more felsic zone between approximately 225 and 260 cm where the minimum FeO concentration is approximately 14.0%. As indicated by Is/FeO, most of the soil in the core is submature to mature; the only immature zone is located between approximately 20 and 60 cm and is one of the most distinctive features in the core. A two stage model for the depositional and evolutionary history of the Apollo 17 deep drill core is proposed: (1) deposition by one event approximately 110 m.y. ago or deposition by a sequence of closely spaced events initating a maximum of approximately 200 m.y. ago and terminating approximately 110 m.y. ago, (2) in situ reworking (gardening) to a depth of approximately 26 cm in the period between approximately 110 m.y. ago and the present day.

  12. Interrelating the breakage and composition of mined and drill core coal

    NASA Astrophysics Data System (ADS)

    Wilson, Terril Edward

    property) indicated that the size distribution and size fraction composition of the drop-shattered/tumbled core more closely resembled the plant feed than the crushed core. An attempt to determine breakage parameters (to allow use of selection and breakage functions and population balance models in the description of bore core size reduction) was initiated. Rank determination of the three coal types was done, indicating that higher rank associates with higher breakage propensity. The two step procedure of drop-shatter and dry batch tumbling simulates the first-order (volume breakage) and zeroth-order (abrasion of particle surfaces) that occur in excavation and handling operations, and is appropriate for drill core reduction prior to laboratory analysis.

  13. Yucatan Subsurface Stratigraphy from Geophysical Data, Well Logs and Core Analyses in the Chicxulub Impact Crater and Implications for Target Heterogeneities

    NASA Astrophysics Data System (ADS)

    Canales, I.; Fucugauchi, J. U.; Perez-Cruz, L. L.; Camargo, A. Z.; Perez-Cruz, G.

    2011-12-01

    Asymmetries in the geophysical signature of Chicxulub crater are being evaluated to investigate on effects of impact angle and trajectory and pre-existing target structural controls for final crater form. Early studies interpreted asymmetries in the gravity anomaly in the offshore sector to propose oblique either northwest- and northeast-directed trajectories. An oblique impact was correlated to the global ejecta distribution and enhanced environmental disturbance. In contrast, recent studies using marine seismic data and computer modeling have shown that crater asymmetries correlate with pre-existing undulations of the Cretaceous continental shelf, suggesting a structural control of target heterogeneities. Documentation of Yucatan subsurface stratigraphy has been limited by lack of outcrops of pre-Paleogene rocks. The extensive cover of platform carbonate rocks has not been affected by faulting or deformation and with no rivers cutting the carbonates, information comes mainly from the drilling programs and geophysical surveys. Here we revisit the subsurface stratigraphy in the crater area from the well log data and cores retrieved in the drilling projects and marine seismic reflection profiles. Other source of information being exploited comes from the impact breccias, which contain a sampling of disrupted target sequences, including crystalline basement and Mesozoic sediments. We analyze gravity and seismic data from the various exploration surveys, including multiple Pemex profiles in the platform and the Chicxulub experiments. Analyses of well log data and seismic profiles identify contacts for Lower Cretaceous, Cretaceous/Jurassic and K/Pg boundaries. Results show that the Cretaceous continental shelf was shallower on the south and southwest than on the east, with emerged areas in Quintana Roo and Belize. Mesozoic and upper Paleozoic sediments show variable thickness, possibly reflecting the crystalline basement regional structure. Paleozoic and Precambrian

  14. The Olorgesailie Drilling Project (ODP): a high-resolution drill core record from a hominin site in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Dommain, R.; Potts, R.; Behrensmeyer, A. K.; Deino, A. L.

    2014-12-01

    The East African rift valley contains an outstanding record of hominin fossils that document human evolution over the Plio-Pleistocene when the global and regional climate and the rift valley itself changed markedly. The sediments of fossil localities typically provide, however, only short time windows into past climatic and environmental conditions. Continuous, long-term terrestrial records are now becoming available through core drilling to help elucidate the paleoenvironmental context of human evolution. Here we present a 500,000 year long high-resolution drill core record obtained from a key fossil and archeological site - the Olorgesailie Basin in the southern Kenya Rift Valley, well known for its sequence of archeological and faunal sites for the past 1.2 million years. In 2012 two drill cores (54 and 166 m long) were collected in the Koora Plain just south of Mt. Olorgesailie as part of the Olorgesailie Drilling Project (ODP) to establish a detailed climate and ecological record associated with the last evidence of Homo erectus in Africa, the oldest transition of Acheulean to Middle Stone Age technology, and large mammal species turnover, all of which are documented in the Olorgesailie excavations. The cores were sampled at the National Lacustrine Core Facility. More than 140 samples of tephra and trachytic basement lavas have led to high-precision 40Ar/39Ar dating. The cores are being analyzed for a suite of paleoclimatic and paleoecological proxies such as diatoms, pollen, fungal spores, phytoliths, ostracodes, carbonate isotopes, leaf wax biomarkers, charcoal, and clay mineralogy. Sedimentological analyses, including lithological descriptions, microscopic smear slide analysis (242 samples), and grain-size analysis, reveal a highly variable sedimentary sequence of deep lake phases with laminated sediments, diatomites, shallow lake and near shore phases, fluvial deposits, paleosols, interspersed carbonate layers, and abundant volcanic ash deposits. Magnetic

  15. Timescale Calculations for Ice Core Drilling Sites on the Temperate Ice Caps in Iceland

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, T.; Einarsson, B.

    2005-12-01

    Modelling of age vs. depth profiles and annual-layer thickness changes with depth in ice sheets forms part of the investigations carried out prior to the selection of ice core drilling sites. The well known Nye model, which assumes a constant vertical strain rate with depth in an ice sheet of thickness H is generally applicable in the upper half of polar and temperate ice caps, but the assumption of a constant vertical strain rate is unrealistic near the bed in an ice sheet frozen to bedrock. Dansgaard-Johnsen (D-J) type models assume that the vertical strain rate is constant down to height h above bedrock and then decreases linearly with depth towards zero at the bed. The parameter h can be calibrated according to the way in which the horizontal velocity varies with depth. Here we introduce a new derivation of the D-J model that accounts for bottom melting due to the geothermal heat flux, which averages 200 mW/m2 in Iceland. The model is then applied to five different locations on the temperate ice caps in Iceland, with ice thicknesses varying between 220 m and 850 m and accumulation rates ranging between 2.0 and 3.6 m ice/year. Data from ice cores drilled at three of these sites are used to calibrate the model. For the summit location on the Hofsjokull ice cap (H = 300 m), we find that a D-J model with a relatively high h/H ratio reproduces the timescale from a 100 m ice core better than the Nye model. Results indicate that a continuous precipitation record covering the last 400-500 years could be retrieved at the Hofsjokull summit (1790 m a.s.l.), and the assumption of bottom melting has a large effect on the modelled timescale at this site, yielding 50% lower ages at 90% of the ice depth than model runs that neglect bottom melting. For deeper drillings in Iceland, the ice-filled caldera at Bardarbunga, NW-Vatnajokull (H = 850 m), where a 415 m core was drilled in 1972, is among the most promising sites. Selection of the h/H ratio in the D-J model for timescale

  16. Initial Paleomagnetic Results from a New Drill Core from Clear Lake, California

    NASA Astrophysics Data System (ADS)

    Levin, E.; Byrne, R.; Looy, C. V.; Wahl, D.; Noren, A. J.; Verosub, K. L.

    2014-12-01

    We report the initial paleomagnetic results from a new core from Clear Lake, California. Drilling progressed to 160 meters sediment depth at a site close to the location of Core 4 collected by John Sims and his USGS colleagues in 1973. Throughout the core, the NRM has only moderate intensity but directions appear to be stable after demagnetization to 20 mT. A relatively large fluctuation of the geomagnetic field is observed at a depth of about 48.5 meters. The pattern of changes in inclination and declination can be interpreted as a subdued version of the Mono Lake excursion, whose age is between 32,000 and 35,000 years BP. A chronology for the upper third of the Clear Lake core derived from 20 radiocarbon determinations on fossil pollen samples gives an age of about 34,000 years BP for the feature, consistent with the age of the Mono Lake excursion. The observation of the Mono Lake excursion in the Clear Lake core implies that the paleomagnetic directions provide a reliable record of geomagnetic field behavior and that it should be possible to correlate the secular variation record from Clear Lake with secular variation curves from western North America spanning the last hundred thousand years or more. In the lower portion of the Clear Lake core are several 10-20 cm intervals where the NRM intensity increases about an order of magnitude. In some cases, these intervals are associated with rather anomalous directions. Investigations are underway to determine if these high-intensity intervals arise from coring disturbances, large-scale variations in lithology and/or magnetic mineral concentration, or unusual geomagnetic field behavior. These features do not correspond to tephra layers observed in the core.

  17. Tecuamburro Volcano, Guatemala geothermal gradient core hole drilling, operations, and preliminary results

    SciTech Connect

    Goff, S.; Heiken, G.; Goff, F.; Gardner, J. ); Duffield, W. ); Martinelli, L.; Aycinena, S. ); Castaneda, O. . Inst. Nacional de Electrificacion)

    1990-01-01

    A geothermal gradient core hole (TCB-1) was drilled to a depth of 700+ m at the Tecuamburro geothermal site, Guatemala during February and March, 1990. The core hole is located low on the northern flank of the Tecuamburro Volcano complex. Preliminary analysis of cores (>98% core recovery) indicates that the hydrothermal system may be centered in the 4-km-diameter Chupadero Crater, which has been proposed as the source of pyroxene pumice deposits in the Tecuamburro area. TCB-1 is located 300 m south of a 300-m-diameter phreatic crater, Laguna Ixpaco; the core hole penetrates the thin edge of a tuff ring surrounding Ixpaco and zones of hydrothermal brecciation within the upper 150 m may be related to the phreatic blast, dated at 2,910 {sup 14}C years. At the time of this writing, the unequilibrated temperature at a depth of 570m was 180{degree}C. Data on fracturing, permeability, hydrothermal alteration, and temperature will be presented. 3 refs., 3 figs.

  18. The COSC-1 drill core - a geological sample through a hot allochthon and the underlying thrust zone

    NASA Astrophysics Data System (ADS)

    Lorenz, Henning; Almqvist, Bjarne; Berthet, Théo; Klonowska, Iwona

    2015-04-01

    The ICDP (International Continental Scientific Drilling Program) supported Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project has the aim to study mountain building processes in a major Paleozoic orogen. COSC-1, drilled in 2014 near Åre (Sweden), was planned to sample a section from the hot allochthon of the Lower Seve Nappe through the thrust zone and into the underlying less metamorphic rocks of the Särv and/or Jämtlandian nappes. Diamond core drilling operations resulted in 2396.0 m of drill core with only about 2.5 m documented core loss (technical failure of the core catcher). Down to about 1800 m, the COSC-1 drill hole penetrated a succession that is dominated by gneisses of varying compositions (felsic, amphibole, calc-silicate gneisses, and more), often garnet and diopside bearing. Meta-gabbros and amphibolites are common and apparently correlate well with seismic reflectors between 500 and 1000 m depth. Also marbles, pegmatite dykes and minor mylonites occur. These rocks are highly strained. Small scale structures (e.g. isoclinal folding) are occasionally discernible in the narrow section provided by the drill cores. (Young) Fractures are sparse. Only a set of very steep fractures results in fluid conduction zones at several levels throughout the drill hole. At 175 m and between 1200 and 1300 m, this results in the dissolution of calcite-rich bands in the gneisses to form "micro-karst". First signs of the thrust zone below the Seve Nappe appear just below 1700 m in form of narrow deformation bands and thin mylonites. The mylonites increase in thickness and reach a thickness of around 1 m between 1900 and 2000 m. Below c. 2100 m, mylonites are dominating and garnets become common (but are not present in all mylonites). The deepest rock of mafic origin (possibly amphibolite in the Seve Nappe) was identified at 2314 m, a transition from gneiss into lower grade metasedimentary rocks occurs between 2345 and 2360 m. The

  19. Structure and stress state of Hawaiian island basalts penetrated by the Hawaii Scientific Drilling Project deep core hole

    USGS Publications Warehouse

    Morin, R.H.; Wilkens, R.H.

    2005-01-01

    As part of the Hawaii Scientific Drilling Project (HSDP), an exploratory hole was drilled in 1993 to a depth of 1056 meters below sea level (mbsl) and a deeper hole was drilled to 3098 mbsl in 1999. A set of geophysical well logs was obtained in the deeper hole that provides fundamental information regarding the structure and the state of stress that exist within a volcanic shield. The acoustic televiewer generates digital, magnetically oriented images of the borehole wall, and inspection of this log yields a continuous record of fracture orientation with depth and also with age to 540 ka. The data depict a clockwise rotation in fracture strike through the surficial Mauna Loa basalts that settles to a constant heading in the underlying Mauna Kea rocks. This behavior reflects the depositional slope directions of lavas and the locations of volcanic sources relative to the drill site. The deviation log delineates the trajectory of the well bore in three-dimensional space. This path closely follows changes in fracture orientation with depth as the drill bit is generally prodded perpendicular to fracture strike during the drilling process. Stress-induced breakouts observed in the televiewer log identify the orientations ot the maximum and minimum horizontal principal stresses to be north-south and east-west, respectively. This stress state is attributed to the combination of a sharp break in onshore-offshore slope that reduces stress east-west and the emergence of Kilauea that increases stress north-south. Breakouts are extensive and appear over approximately 30% of the open hole. Copyright 2005 by the American Geophysical Union.

  20. Results of core drilling for uranium-bearing lignites in the Bar H area, Slim Buttes, Harding County, South Dakota

    USGS Publications Warehouse

    Zeller, Howard D.

    1953-01-01

    Core drilling in the Car H area, Slim Buttes, Harding County, South Dakota, under a contract with the B. H. Mott Drilling Co., Huntington, West Virginia, was resumed June 12, 1952 after a 6-month recess during the winter and was completed July 18, 1952. The drilling was undertaken to obtain information on the distribution and extent of the uranium-bearing lignite beds along the southeast edge of the Bar H area. Eight holes totalling 885 feet were drilled and 52 feet of lignite core submitted for study and analysis. The report includes detailed lithographic descriptions of the lignite cores, Bureau of Mines coal analyses, and the results of 100 chemical analyses for uranium. The drilling showed that the thicker, more persistent lignite beds exposed in the northern part of the Bar H area were removed by erosion prior to the deposition of the overlaying White River formation in the south-eastern part of the area. The beds penetrated by drilling were not of sufficient thickness or uranium content to add to the previously known reserves.

  1. Evaluation of commercial drilling and geological software for deep drilling applications

    NASA Astrophysics Data System (ADS)

    Pierdominici, Simona; Prevedel, Bernhard; Conze, Ronald; Tridec Team

    2013-04-01

    The avoidance of operational delays, financial losses and drilling hazards are key indicators for successful deep drilling operations. Real-time monitoring of drilling operation data as well as geological and petrophysical information obtained during drilling provide valuable knowledge that can be integrated into existing geological and mechanical models in order to improve the drilling performance. We have evaluated ten different geological and drilling software packages capable to integrate real-time drilling and planning data (e.g. torque, drag, well path, cementing, hydraulic data, casing design, well control, geo-steering, cost and time) as well as other scientific and technical data (i.e. from drilling core, geophysical downhole logging, production test) to build geological and geophysical models for planning of further deep drillings in a given geological environment. To reach this goal, the software has to be versatile to handle different data formats from disciplines such as geology, geophysics, petrophysics, seismology and drilling engineering as well as data from different drilling targets, such as geothermal fluids, oil/gas, water reservoirs, mining purpose, CO2 sequestration, or scientific goals. The software must be capable to analyze, evaluate and plan in real-time the next drilling steps in the best possible way and under safe conditions. A preliminary geological and geophysical model with the available data from site surveys and literature is built to address a first drilling plan, in which technical and scientific aspects are taken into consideration to perform the first drilling (wildcat well). During the drilling, the acquired scientific and technical data will be used to refine the previous geological-drilling model. The geological model hence becomes an interactive object strongly linked to the drilling procedure, and the software should allow to make rapid and informed decisions while drilling, to maximize productivity and minimize drilling

  2. HSDP II Drill Core: Preliminary Rock Strength Results and Implications to Flank Stability, Mauna Kea Volcano

    NASA Astrophysics Data System (ADS)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2004-12-01

    Selected portions of the 3-km HSDP II core were tested to provide unconfined rock strength data from hyaloclastite alteration zones and pillow lavas. Though the drilling project was not originally intended for strength purpose, it is believed the core can provide unique rock strength insights into the flank stability of the Hawaiian Islands. The testing showed that very weak rock exists in the hyaloclastite abundant zones in the lower 2-km of the core with strength dependent on the degree of consolidation and type of alteration. Walton and Schiffman identified three zones of alteration, an upper incipient alteration zone (1080-1335m), a smectitic zone (1405-1573m) and a lower palagonitic zone from about 1573 m to the base of the core. These three zones were sampled and tested together with pillow lava horizons for comparison. Traditional cylindrical core was not available as a consequence of the entire core having been split lengthwise for archival purposes. Hence, point load strength testing was utilized which provides the unconfined compressive strength on irregular shaped samples. The lowest unconfined strengths were recorded from incipient alteration zones with a mean value of 9.5 MPa. Smectitic alteration zones yielded mean values of 16.4 MPa, with the highest measured alteration strengths from the palagonite zones with a mean value of 32.1 MPa. As anticipated, the highest strengths were from essentially unaltered lavas with a mean value of 173 MPa. Strength variations of between one to two orders of magnitude were identified in comparing the submarine hyaloclastite with the intercalated submarine lavas. The weakest zones within the hyaloclastites may provide horizons for assisting flank collapse by serving as potential thrust zones and landslide surfaces.

  3. Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field

    SciTech Connect

    Iglesias, E.R.; Contreras L., E.; Garcia G., A.; Dominquez A., Bernardo

    1987-01-20

    For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributions of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.

  4. Physical properties of the Yaxcopoil-1 deep drill core, Chicxulub impact structure, Mexico

    NASA Astrophysics Data System (ADS)

    Elbra, Tiiu; Pesonen, Lauri J.

    2011-11-01

    The Chicxulub structure in Mexico, one of the largest impact structures on Earth, was formed 65 Ma by a hypervelocity impact that led to the large mass extinction at the K-Pg boundary. The Chicxulub impact structure is well preserved, but is buried beneath a sequence of carbonate sediments and, thus, requires drilling to obtain subsurface information. The Chicxulub Scientific Drilling Program was carried out at Hacienda Yaxcopoil in the framework of the International Continental Scientific Drilling Program in 2001-2002. The structure was cored from 404 m down to 1511 m, through three intervals: 794 m of postimpact Tertiary sediments, a 100 m thick impactite sequence, and 616 m of preimpact Cretaceous rocks thought to represent a suite of megablocks. Physical property investigations show that the various lithologies, including the impactite units and the K-Pg boundary layer, can be characterized by their physical properties, which depend on either changes in fabric or on mineralogical variations. The magnetic properties show mostly dia- or paramagnetic behavior, with the exception of the impactite units that indicate the presence of ferromagnetic, probably hydrothermally deposited magnetite and pyrrhotite. The magnetic fraction contributes mainly to enhanced magnetization in the impactite lithologies and, in this way, to the observed magnetic anomalies. The shape and orientation of the magnetic grains are varied and reflect inhomogeneous fabric development and the influence of impact-related redeposition and hydrothermal activity. The Chicxulub impact occurred at the time of the reverse polarity geomagnetic chron 29R, and this finding is consistent with the age of the K-Pg boundary.

  5. Drilling, Coring and Sampling Using Piezoelectric Actuated Mechanisms: From the USDC to a Piezo-Rotary-Hammer Drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi

    2012-01-01

    NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms

  6. Environmental sampling and mud sampling program of CSDP (Continental Scientific Drilling Program) core hole VC-2B, Valles Caldera, New Mexico

    SciTech Connect

    Meeker, K.; Goff, F.; Gardner, J.N.; Trujillo, P.E.; Counce, D.

    1990-03-01

    An environmental sampling and drilling mud sampling program was conducted during the drilling operations of Continental Scientific Drilling Program (CSDP) core hole VC-2B, Valles caldera, New Mexico. A suite of four springs and creeks in the Sulphur Springs area were monitored on a regular basis to ensure that the VC-2B drilling program was having no environmental impact on water quality. In addition, a regional survey of springs in and around the Jemez Mountains was conducted to provide background data for the environmental monitoring. A drilling mud monitoring program was conducted during the operations to help identify major fluid entries in the core hole. 32 refs., 14 figs., 7 tabs.

  7. Deformed sediments in the Dead Sea drill core: a long-term palaeoseismic record

    NASA Astrophysics Data System (ADS)

    Marco, Shmuel; Kagan, Elisa J.

    2014-05-01

    The lacustrine 70 ka sediments outcropping around the Dead Sea contain superb examples of seismites that were formed at the margins of the lakes in water depths of <100 m. In previous studies we explored the temporal distribution and the physics of seismite formation. Now we examine the drill cores from the depocentre in order to understand how the deep basin sediments reacted to the earthquake vibrations and compare the record with that from the margins. Our interpretation is largely based on our acquaintance with the outcrops, on mechanical analyses, and on modern analogs. We realize that several types of disturbed layers that appear in the cores are seismites that do not appear in the lake margin facies but only at the depocentre, mostly transported material in the form of turbiditic slumps. We recognize numerous slumps of various thicknesses ranging from mm to several decimeters. The allochtonous contribution to the depocentre sediment load results with three times the thickness at the margins. Analyses of the anisotropy of the magnetic susceptibility (AMS) show mostly sedimentary fabric (vertical K3) or unstable scatter. Standard AMS analysis procedure requires multiple sampling for each level, but we can only recover one specimen. Therefore, we regard the results inconclusive. The main product of this stage is an inventory of all the features in the cores that we suspect to be seismites.

  8. U.S. geological survey core drilling on the Atlantic shelf

    USGS Publications Warehouse

    Hathaway, J.C.; Poag, C.W.; Valentine, P.C.; Miller, R.E.; Schultz, D.M.; Manheim, F. T.; Kohout, F.A.; Bothner, Michael H.; Sangrey, D.A.

    1979-01-01

    The first broad program of scientific shallow drilling on the U.S. Atlantic continental shelf has delineated rocks of Pleistocene to Late Cretaceous age, including phosphoritic Miocene strata, widespread Eocene carbonate deposits that serve as reflective seismic markers, and several regional unconformities. Two sites, off Maryland and New Jersey, showed light hydrocarbon gases having affinity to mature petroleum. Pore fluid studies showed that relatively fresh to brackish water occurs beneath much of the Atlantic continental shelf, whereas increases in salinity off Georgia and beneath the Florida-Hatteras slope suggest buried evaporitic strata. The sediment cores showed engineering properties that range from good foundation strength to a potential for severe loss of strength through interaction between sediments and manmade structures. Copyright ?? 1979 AAAS.

  9. Petrology and geochemistry of lithic fragments separated from the Apollo 15 deep-drill core

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Nielsen, R. L.; Drake, M. J.

    1977-01-01

    Petrological and geochemical analysis of lithic fragments separated from the Apollo 15 deep-drill core showed these fragments to fall into the essentially the same range of rock types as observed in surface soil samples and large rock samples. Three particles are singled out as being of special interest. One sample is a mare basalt containing extremely evolved phases. The particle may represent small-scale imperfect crystal/liquid separation in a lava flow. A green glass particle is not the ultramafic emerald green glass described from the Apollo 15 site, but rather an ANT-like light green color, and has a quite different chemical composition from the ultramafic variety. One mare basalt displays a positive Eu anomaly and is enriched in plagioclase relative to olivine plus pyroxene.

  10. Very low Ti /VLT/ basalts - A new mare rock type from the Apollo 17 drill core

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1977-01-01

    Phaneritic fragments, vitrophyres, and glass beads of a new very low Ti (VLT) mare basalt are found in the Apollo 17 drill core. VLT lithic fragments are characterized by TiO2 content of approximately 0.5%, Mg/(Mg + Fe) of approximately 0.52, CaO/Al2O3 of approximately 0.9, and low alkali content. Although mineral systematics and modal composition of VLT basalt are similar to Apollo 12 and 15 low Ti basalts, VLT basalts cannot be related to these mare basalts by crystal fractionation. Since VLT basalt is isochemical with some of the less mafic green glasses, fractionation of VLT magma from a liquid of green-glass composition is a possibility. Spectral reflectance studies suggest that VLT-type basalts may be relatively common in mare basins.

  11. Characterization of tuyere-level core-drill coke samples from blast furnace operation

    SciTech Connect

    S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti

    2007-12-15

    A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

  12. Earthquakes and Ice Cores Point to Wet Feet at the NorthGRIP Deep Drill Site

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, D.; Dahl-Jensen, T.; Gundestrup, N. S.

    2001-12-01

    A seismic broadband station was placed at the NorthGRIP deep drill site (75N, 42W) on the Greenland Ice Cap for the summer 2000. During the 2 month acquisition period 15 earthquakes with sufficient quality for Receiver Function analysis aimed at crust and mantle structure under NorthGRIP were recorded. The models are consistent with the presence of a thin sedimentary layer at the base of the ice. The seismic velocities in the sediments are lower than in the ice, indicating wet sediments. The results from the deep drilling program reveal high basal temperatures at the base of the 3080 m thick ice at NorthGRIP. The measured temperatures and the observed layer thickness' in the ice core indicate that there is basal melting of the order of 5 mm /yr. and that the geothermal heatflow is of the order of 100 mW/m2 (REF), much higher than expected. A detailed radio echo mapping of the bedrock show that NorthGRIP is located in a large, flat-bottomed valley, suggesting that the sediments observed are lacustrine. The thin layer of sediments cannot account for the unexpected high heatflow causing equally unexpected basal melting. The geology is presumed to be Precambrian. Heatflow determined in a similar way at the GRIP deep drill site (73N, 38W) is 51 mW/ m2 (Dahl-Jensen et al, 1998), more in line with expected values. Magnetic anomaly data do not indicate any volcanic structures, which could help explain the high heatflow. Gravity anomaly data show that NorthGRIP is located at the edge of marked gravity discontinuity. The cause of the discontinuity is not known, but "edge effects" could be speculated upon to be the cause of the high heatflow. D. Dahl-Jensen, N. Gundestrup, H. Miller, O. Watanabe, S.J. Johnsen, J.P. Steffensen, H.B. Clausen, A. Svensson, L.B. Larsen in press: The NorthGRIP drilling program. Annals of Glaciology, vol 35 D. Dahl-Jensen, K Mosegaard, N. Grundestrup, G.D. Clow, S.J. Johnson and N. Balling 1998: Past Temperatures Directly from the Greenland Ice

  13. High permafrost ice contents in Holocene slope deposits as observed from shallow geophysics and a coring program in Pangnirtung, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Carbonneau, A.; Allard, M.; L'Hérault, E.; LeBlanc, A.

    2011-12-01

    A study of permafrost conditions was undertaken in the Hamlet of Pangnirtung, Nunavut, by the Geological Survey of Canada (GSC) and Université Laval's Centre d'études nordiques (CEN) to support decision makers in their community planning work. The methods used for this project were based on geophysical and geomorphological approaches, including permafrost cores drilled in surficial deposits and ground penetrating radar surveys using a GPR Pulse EKKO 100 extending to the complete community area and to its projected expansion sector. Laboratory analysis allowed a detailed characterization of permafrost in terms of water contents, salinity and grain size. Cryostratigraphic analysis was done via CT-Scan imagery of frozen cores using medical imaging softwares such as Osiris. This non destructive method allows a 3D imaging of the entire core in order to locate the amount of the excess ice, determine the volumetric ice content and also interpret the ice-formation processes that took place during freezing of the permafrost. Our new map of the permafrost conditions in Pangnirtung illustrates that the dominant mapping unit consist of ice-rich colluvial deposits. Aggradationnal ice formed syngenitically with slope sedimentation. Buried soils were found imbedded in this colluvial layer and demonstrates that colluviation associated with overland-flow during snowmelt occurred almost continuously since 7080 cal. BP. In the eastern sector of town, the 1 to 4 meters thick colluviums cover till and a network of ice wedges that were revealed as spaced hyperbolic reflectors on GPR profiles. The colluviums also cover ice-rich marine silt and bedrock in the western sector of the hamlet; marine shells found in a permafrost core yielded a radiocarbon date of 9553 cal. BP which provides a revised age for the local deglaciation and also a revised marine submergence limit. Among the applied methods, shallow drilling in coarse grained permafrost, core recovery and CT-Scan allowed the

  14. Geology and geochemistry of shallow drill cores from the Bosumtwi impact struture, Ghana

    NASA Astrophysics Data System (ADS)

    Boamah, D.; Koeberl, C.

    2003-08-01

    The 1.07 Ma well-preserved Bosumtwi impact structure in Ghana (10.5 km in diameter) formed in 2 Ga-old metamorphosed and crystalline rocks of the Birimian system. The interior of the structure is largely filled by the 8 km diameter Lake Bosumtwi, and the crater rim and region in the environs of the crater is covered by tropical rainforest, making geological studies rather difficult and restricted to road cuts and streams. In early 1999, we undertook a shallow drilling program to the north of the crater rim to determine the extent of the ejecta blanket around the crater and to obtain subsurface core samples for mineralogical, petrological, and geochemical studies of ejecta of the Bosumtwi impact structure. A variety of impactite lithologies are present, consisting of impact glass- rich suevite and several types of breccia: lithic breccia of single rock type, often grading into unbrecciated rock, with the rocks being shattered more or less in situ without much relative displacement (autochthonous?), and lithic polymict breccia that apparently do not contain any glassy material (allochtonous?). The suevite cores show that melt inclusions are present throughout the whole length of the cores in the form of vesicular glasses with no significant change of abundance with depth. Twenty samples from the 7 drill cores and 4 samples from recent road cuts in the structure were studied for their geochemical characteristics to accumulate a database for impact lithologies and their erosion products present at the Bosumtwi crater. Major and trace element analyses yielded compositions similar to those of the target rocks in the area (graywacke-phyllite, shale, and granite). Graywacke-phyllite and granite dikes seem to be important contributors to the compositions of the suevite and the road cut samples (fragmentary matrix), with a minor contribution of Pepiakese granite. The results also provide information about the thickness of the fallout suevite in the northern part of the

  15. Trace elements profiles, notably Hg, from a preliminary study of the Apollo 15 deep-drill core.

    NASA Technical Reports Server (NTRS)

    Jovanovic, S.; Reed, G. W., Jr.

    1972-01-01

    The possible thermal gradient near the surface during a lunation is considered together with the heat flow from the interior, the physical process of Hg migration, the results from core and trench samples from previous missions, and other temperature sensitive phenomena that may help understand the processes. U, Os, and Ru concentrations in the deep drill core samples are of potential interest and are summarized in a table. The Os tends to parallel the Hg profile with depth.

  16. Drill core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-04-01

    Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  17. The ICDP Dead Sea deep drill cores: records of climate change and tectonics in the Levant

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.

    2012-12-01

    The Dead Sea drainage basin sits at the boundary of the Mediterranean and the Saharan climate zones, and the basin is formed by the Dead Sea transform fault. The ICDP-funded Dead Sea Deep Drilling Project recovered the longest and most complete paleo-environmental and paleo-seismic record in the Middle East, drilling holes of ~450 and ~350 meters in deep (~300 m below the lake level) and shallow sites (~3 m), respectively, and. The sediments record the evolving environmental conditions (e.g. droughts, rains, floods, dust-storms), as well as tectonics (earthquake layers). The core can be dated using 14C on organic materials, U-Th on inorganic aragonite, stable isotopes, and layer counting. They were opened, described, and XRF-scanned during June to November 2011, the first sampling party took place in July 2012, and study is now underway. Some important conclusions can already be drawn. The stratigraphy reflects the climate conditions. During wet climate intervals the lithology is typically varve-like laminated aragonite and detritus (aad), reflecting summer and winter seasons, respectively, and sequences of mud. Gypsum layers reflect more arid climate, and salt (halite) indicates extreme aridity. The Dead Sea expands during glacials, and the portion of the core that corresponds to the last glacial Lisan Formation above the shoreline is easily recognized in the core based on the common lithological sequence, and this allows us to infer a broad scale age model. Interglacials show all the lithologic facies (aad, mud, gypsum, salt), reflecting extreme climate variability, while glacials contain the aad, mud, and gypsum but lack salt layers. Thus we estimate that the deep site hole extends into MIS 7 (to ~200,000 years). Thin (up to several cm thick) seismic layers occur throughout the core, but thick (up to several meters) landslide deposits only occur during glacial intervals. The most dramatic discovery is evidence of an extreme dry interval during MIS 5 at the deep

  18. Hydrothermal mineralogy of core from geothermal drill holes at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; Keith, Terry E.

    1999-01-01

    Hydrothermal mineralogy studies of specimens collected from nine geothermal drill holes suggest that, at the locations and depths drilled, past temperatures have been hottest (exceeding 300?C) near ring fractures on the south and west sides of Newberry Volcano.

  19. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry.

    PubMed

    Kruse, Fred A; L Bedell, Richard; Taranik, James V; Peppin, William A; Weatherbee, Oliver; Calvin, Wendy M

    2012-03-20

    Imaging spectrometer data (also known as 'hyperspectral imagery' or HSI) are well established for detailed mineral mapping from airborne and satellite systems. Overhead data, however, have substantial additional potential when used together with ground-based measurements. An imaging spectrometer system was used to acquire airborne measurements and to image in-place outcrops (mine walls) and boxed drill core and rock chips using modified sensor-mounting configurations. Data were acquired at 5 nm nominal spectral resolution in 360 channels from 0.4 to 2.45 μm. Analysis results using standardized hyperspectral methodologies demonstrate rapid extraction of representative mineral spectra and mapping of mineral distributions and abundances in map-plan, with core depth, and on the mine walls. The examples shown highlight the capabilities of these data for mineral mapping. Integration of these approaches promotes improved understanding of relations between geology, alteration and spectral signatures in three dimensions and should lead to improved efficiency of mine development, operations and ultimately effective mine closure.

  20. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry

    PubMed Central

    Kruse, Fred A.; L. Bedell, Richard; Taranik, James V.; Peppin, William A.; Weatherbee, Oliver; Calvin, Wendy M.

    2011-01-01

    Imaging spectrometer data (also known as ‘hyperspectral imagery’ or HSI) are well established for detailed mineral mapping from airborne and satellite systems. Overhead data, however, have substantial additional potential when used together with ground-based measurements. An imaging spectrometer system was used to acquire airborne measurements and to image in-place outcrops (mine walls) and boxed drill core and rock chips using modified sensor-mounting configurations. Data were acquired at 5 nm nominal spectral resolution in 360 channels from 0.4 to 2.45 μm. Analysis results using standardized hyperspectral methodologies demonstrate rapid extraction of representative mineral spectra and mapping of mineral distributions and abundances in map-plan, with core depth, and on the mine walls. The examples shown highlight the capabilities of these data for mineral mapping. Integration of these approaches promotes improved understanding of relations between geology, alteration and spectral signatures in three dimensions and should lead to improved efficiency of mine development, operations and ultimately effective mine closure. PMID:25937681

  1. Analysis of hydrologic structures within Mauna Kea volcano using diamond wireline core drilling

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Haskins, E.

    2013-12-01

    The Humu'ula Groundwater Research Project was undertaken on the Island of Hawaii in an effort to characterize the hydrologic structures controlling groundwater movement and storage within the dry (~430 mm/year annual rainfall) saddle region between Mauna Loa and Mauna Kea volcanoes. The project drilled a 1764 m, continuously-cored, borehole from an elevation of 1946 m amsl. The shallow stratigraphy consisted of alluvial outwash of clastic debris, of both volcanic and glacial origin, from the upper slopes of Mauna Kea, and was underlain by highly permeable post-shield lavas to depths of a few hundred meters. Below this depth, shield stage lavas were dominated by highly-fractured and permeable pahoehoe lavas and (less common) a'a flows and occasional soil and ash accumulations at flow boundaries. As depths increased below 1000 m, progressive compaction of fragmental material was found at the flow boundaries and, by depths of ~1500 m, much of the void space in the flow boundaries had been collapsed and compacted. Increasing secondary mineralization was observed below about 1000 m depth that was exacerbated by rising temperatures and temperature gradients toward the bottom of the hole. Hydrologic conditions were strikingly different from those predicted by conventional models for ocean islands: the formation was dry down to only ~150 m where the first, thin, perched aquifer was encountered; a second, more substantial, perched aquifer was reached at only ~220 m depth that extended to ~360 m where a sequence of (remarkably thin) perching formations were recovered in the core down to about 420 m where unsaturated rocks were again encountered. Saturated conditions resumed at 550 m depth that continued to the total depth drilled; this latter zone is inferred to be the basal aquifer for Mauna Kea within this region of the island. Our initial analysis of the core suggests that thin, clay-rich, perching formations in the shallow stratigraphic column play a much larger role in

  2. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    SciTech Connect

    Janssen, C.; Wirth, R.; Wenk, H. -R.; Morales, L.; Naumann, R.; Kienast, M.; Song, S. -R.; Dresen, G.

    2014-08-20

    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has been observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.

  3. 2004 NAI-ADP Deep Diamond Drill Cores: Transects Through Archean Time in the Pilbara Craton, Australia

    NASA Astrophysics Data System (ADS)

    Buick, R.; Dunlop, J. S.; Bonser, L. C.

    2004-12-01

    In July-August 2004, the NASA Astrobiology Drilling Program sponsored the coring of 3 deep diamond-drill holes in the Pilbara Craton of northwest Australia. The holes targeted the lowest grade and least deformed sedimentary sections of 4 stratigraphic units: the 2.4-2.6 Ga Hamersley Group, the 2.7 Ga Tumbiana Formation of the Fortescue Group, the 3.4 Ga Warrawoona Group, and the 3.5 Ga Coonterunah Group. ABDP 8 cored the unconformity between the Warrawoona and Coonterunah Groups to a depth of 330 metres, intersecting it at 155 metres. Because of syn-depositional erosion, the Strelley Pool Chert was attenuated and the alteration zone beneath the unconformity was scoured and filled to a depth of 10 metres by quartz arenite. As a result, no definitive lithological determination on its status as a potential paleosol could be made. Secondary oxidative alteration was present in Coonterunah cherts to depths of at least 220 metres down-hole. ABDP 9 cored 984 metres of the lower Hamersley Group, from the Dales Gorge Member of the Brockman Iron Formation into the Paraburdoo Member of the Wittenoom Formation. Though the hole was intended to penetrate the uppermost Fortescue Group, drilling was terminated early because of equipment damage by fractured rock, loss of water circulation clogging the hole with cuttings and unanticipated thickening of the Paraburdoo Member by dilational fracturing, expansive brecciation and cavity formation. 79 samples for organic geochemical analysis of biomarker syngenesis were collected under clean conditions immediately the core surfaced. A horizon of impact spherules was intersected in the Bee Gorge Member of the Wittenoom Formation; unlike surface exposures, it was markedly silicified and chloritized in drill-core. ABDP 10 cored 210 metres of the Tumbiana Formation, intersecting the entire Meentheena Carbonate Member, the upper Mingah Tuff Member and terminating just below 4 scoriaceous basalt flows. Large and complex calcareous stromatolites

  4. Geophysical characterization of the Lollie Levee near Conway, Arkansas, using capacitively coupled resistivity, coring, and direct push logging

    USGS Publications Warehouse

    Gillip, Jonathan A.; Payne, Jason

    2011-01-01

    A geophysical characterization of Lollie Levee near Conway, Arkansas, was conducted in February 2011. A capacitively coupled resistivity survey (using Geometric's OhmMapper) was completed along the top and toe of the 6.7-mile levee. Two-dimensional inversions were conducted on the geophysical data. As a quality-control measure, cores and direct push logs were taken at approximately 1-mile intervals along the levee. The capacitively coupled resistivity survey, the coring, and the direct push logs were used to characterize the geologic materials. Comparison of the cores and the direct push log data, along with published resistivity values, indicates that resistivity values of 200 Ohm-meters or greater represent relatively clean sand, with decreasing resistivity values occurring with increasing silt and clay content. The cores indicated that the levee is composed of a heterogeneous mixture of sand, silt, and clay. The capacitively coupled resistivity sections confirm that the levee is composed of a heterogeneous mixture of high and low resistivity materials and show that the composition of the levee varies spatially. The geologic materials underlying the levee vary spatially as a result of the geologic processes that deposited them. In general, the naturally deposited geologic materials underlying the levee contain a greater amount of low resistivity materials in the southern extent of the levee.

  5. Drilling bit

    SciTech Connect

    Allam, F. M.

    1985-07-09

    A drilling bit comprising a drill body formed from a base portion and a crown portion having a plurality of cutting elements; the base and crown portions are interengaged by a connection portion. An external opening in the crown portion communicates with a core-receiving section in the connecting portion. A core milling assembly, comprising a pair of rotatable, frustum-shaped rotary members, is supported in the connecting section. Each rotary member carries a plurality of cutting elements. During drilling, a core is received in the core-receiving section, where it is milled by the rotation of the rotary members.

  6. Interpretation of core and well log physical property data from drill hole UPH-3, Stephenson County, Illinois

    USGS Publications Warehouse

    Daniels, J.J.; Olhoeft, G.R.; Scott, J.H.

    1984-01-01

    Laboratory and well log physical property measurements show variations in the mineralogy with depth in UPH-3. Gamma ray values generally decrease with depth in the drill hole, corresponding to a decrease in the felsic mineral components of the granite. Correspondingly, an increase with depth in mafic minerals in the granite is indicated by the magnetic susceptibility, and gamma ray measurements. These mineralogic changes indicated by the geophysical well logs support the hypothesis of fractionation during continuous crystallization of the intrusive penetrated by UPH-3. Two fracture zones, and an altered zone within the granite penetrated by drill hole UPH-3 are defined by the physical property measurements. An abnormally low magnetic susceptibility response in the upper portion of the drill hole can be attributed to alteration of the rock adjacent to the sediments overlying the granite. Fracture zones can be identified from the sonic velocity, neutron, and resistivity measurements. A fracture zone, characterized by low resistivity values and low neutron values, is present in the depth interval from 1150 to 1320 m. Low magnetic susceptibility and high gamma ray values indicate the presence of felsic-micaceous pegmatites within this fracture zone. An unfractured region present from a depth of 1380 m to the bottom of the hole is characterized by an absence of physical property variations. The magnetic susceptibility and gamma ray measurements indicate a change in the amount of mafic minerals at the base of this otherwise homogenous region of the drilled interval. Abrupt changes and repeated patterns of physical properties within the drill hole may represent interruptions in the crystallization process of the melt or they may be indicative of critical temperatures for specific mineral assemblages within the intrusive.

  7. Interpretation of core and well log physical property data from drill hole UPH-3, Stephenson County, Illinois

    NASA Astrophysics Data System (ADS)

    Daniels, Jeffrey J.; Olhoeft, Gary R.; Scott, James H.

    1983-09-01

    Laboratory and well log physical property measurements show variations in the mineralogy with depth in UPH-3. Gamma ray values generally decrease with depth in the drill hole, corresponding to a decrease in the felsic mineral components of the granite. Correspondingly, an increase with depth in mafic minerals in the granite is indicated by the magnetic susceptibility and gamma ray measurements. These mineralogic changes indicated by the geophysical well logs support the hypothesis of fractionation during continuous crystalization of the intrusive penetrated by UPH-3. Two fracture zones and an altered zone within the granite penetrated by drill hole UPH-3 are defined by the physical property measurements. An abnormally low magnetic susceptibility response in the upper portion of the drill hole can be attributed to alteration of the rock adjacent to the sediments overlying the granite. Fracture zones can be identified from the sonic velocity, neutron, and resistivity measurements. A fracture zone, characterized by low resistivity values and low neutron values, is present in the depth interval from 1150 to 1320 m. Low magnetic susceptibility and high gamma ray values indicate the presence of felsic-micaceous pegmatites within this fracture zone. An unfractured region present from a depth of 1380 m to the bottom of the hole is characterized by an absence of physical property variations. The magnetic susceptibility and gamma ray measurements indicate a change in the amount of mafic minerals at the base of this otherwise homogenous region of the drilled interval. Abrupt changes and repeated patterns of physical properties within the drill hole may represent interruptions in the crystalization process of the melt or they may be indicative of critical temperatures for specific mineral assemblages within the intrusive.

  8. Magnetic properties of cores from the Wenchuan Earthquake Fault Scientific Drilling Hole-2 (WFSD-2), China

    NASA Astrophysics Data System (ADS)

    Zhang, L., Jr.; Sun, Z.; Li, H.; Cao, Y.; Ye, X.; Wang, L.; Zhao, Y.; Han, S.

    2015-12-01

    During an earthquake, seismic slip and frictional heating may cause the physical and chemical alterations of magnetic minerals within the fault zone. Rock magnetism provides a method for understanding earthquake dynamics. The Wenchuan earthquake Fault Scientific Drilling Project (WFSD) started right after 2008 Mw7.9 Wenchuan earthquake, to investigate the earthquake faulting mechanism. Hole 2 (WFSD-2) is located in the Pengguan Complex in the Bajiaomiao village (Dujiangyan, Sichuan), and reached the Yingxiu-Beichuan fault (YBF). We measured the surface magnetic susceptibility of the cores in WFSD-2 from 500 m to 1530 m with an interval of 1 cm. Rocks at 500-599.31 m-depth and 1211.49-1530 m-depth are from the Neoproterozoic Pengguang Complex while the section from 599.31 m to 1211.49 m is composed of Late Triassic sediments. The magnetic susceptibility values of the first part of the Pengguan Complex range from 1 to 25 × 10-6 SI, while the second part ranges from 10 to 200 × 10-6 SI, which indicate that the two parts are not from the same rock units. The Late Triassic sedimentary rocks have a low magnetic susceptibility values, ranging from -5 to 20 × 10-6 SI. Most fault zones coincide with the high value of magnetic susceptibility in the WFSD-2 cores. Fault rocks, mainly fault breccia, cataclasite, gouge and pseudotachylite within the WFSD-2 cores, and mostly display a significantly higher magnetic susceptibility than host rocks (5:1 to 20:1). In particular, in the YBF zone of the WFSD-2 cores (from 600 to 960 m), dozens of stages with high values of magnetic susceptibility have been observed. The multi-layered fault rocks with high magnetic susceptibility values might indicate that the YBF is a long-term active fault. The magnetic susceptibility values change with different types of fault rocks. The gouge and pseudotachylite have higher values of magnetic susceptibility than other fault rocks. Other primary rock magnetism analyses were then performed to

  9. A new high altitude paleoclimate record from the first ice core drilled in the eastern European Alps: preliminary results

    NASA Astrophysics Data System (ADS)

    Gabrielli, P.; Barbante, C.; Carturan, L.; Davis, M. E.; Dalla Fontana, G.; Dinale, R.; Dragà, G.; Gabrieli, J.; Kehrwald, N. M.; Mair, V.; Mikhalenko, V.; Oeggl, K.; Schotterer, U.; Seppi, R.; Thompson, L. G.; Tonidandel, D.

    2012-12-01

    Low latitude ice cores offer unique and detailed paleoclimate information from high elevations. Multiple proxies synchronized within the same ice medium offer the possibility to precisely link past climate variations to changes in the surrounding ecosystems and human activities, providing a unique paleo-geographic perspective of the Earth system. However, as most of the accessible low latitude drilling sites have already been exploited and as glaciers are melting worldwide, it is difficult to identify ice fields that contain novel and intact ice core records. We drilled the first ice cores to bedrock in the eastern European Alps during autumn 2011. These cores were extracted from the Alto dell'Ortles glacier (3859 m, South Tyrol, Italy) and their length was up to 75 m. The firn-ice transition was found at ~30 m depth. Below the temperate firn portion, cold ice layers sitting on frozen bedrock still exist and represent remnants from the colder climate before ~1980 AD. Analysis of beta emissions and tritium indicate the well-known 1963 peak (originating from radioactive nuclear fallout) to be at 41 m depth. Together with a measured density profile, this allows us to estimate an average accumulation rate of ~ 850 mm of water equivalent per year during the last 50 years. This confirms this drilling site as one with the lowest snow accumulation rate in the Alps, potentially containing older ice than most of the other Alpine glaciers. Preliminary analyses reveal that the deep and cold ice layers of this glacier preserve clearly distinguishable annual variations in stable isotopes, dust and major ions that can be precisely dated. Alto dell'Ortles is the first low-accumulation alpine drilling site where both winter and summer layers can be clearly identified. Application of a conventional flow model and preliminary annual layer counting suggest that the high altitude records contained in these ice cores may span at least several centuries.

  10. Development of a portable x-ray computed tomographic imaging system for drill-site investigation of recovered core

    SciTech Connect

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Pruess, Jacob

    2003-05-01

    A portable x-ray computed tomography (CT) system was constructed for imaging core at drill sites. Performing drill-site-based x-ray scanning and CT analysis permits rapid evaluation of core properties (such as density, lithologic structure, and macroporosity distribution) and allows for real-time decision making for additional core-handling procedures. Because of the speed with which scanning is performed, systematic imaging and electronic cataloging of all retrieved core is feasible. Innovations (such as a novel clamshell shielding arrangement integrated with system interlocks) permit safe operation of the x-ray system in a busy core handling area. The minimization of the volume encapsulated with shielding reduces the overall system weight and facilitates instrument portability. The x-ray system as originally fabricated had a 110 kV x-ray source with a fixed 300-micron focal spot size. A 15 cm image intensifier with a cesium iodide phosphor input screen was coupled to a CCD for image capture. The CT system has since been modified with a 130 kV micro-focal x-ray source. With the x-ray system's variable focal spot size, high-resolution studies (10-micron resolution) can be performed on core plugs and coarser (100-micron resolution) images can be acquired of whole drill cores. The development of an aluminum compensator has significantly improved the dynamic range and accuracy of the system. An x-ray filter has also been incorporated, permitting rapid acquisition of multi-energy scans for more quantitative analysis of sample mineralogy. The x-ray CT system has operated reliably under extreme field conditions, which have varied from shipboard to arctic.

  11. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    SciTech Connect

    Haase, C.S.; King, H.L.

    1986-01-01

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

  12. Results of NanTroSEIZE Expeditions Stages 1 & 2: Deep-sea Coring Operations on-board the Deep-sea Drilling Vessel Chikyu and Development of Coring Equipment for Stage 3

    NASA Astrophysics Data System (ADS)

    Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.

    2010-12-01

    The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed

  13. Lithostratigraphic and petrographic analysis of ICDP drill core LB-07A, Bosumtwi impact structure, Ghana

    NASA Astrophysics Data System (ADS)

    Coney, Louise; Gibson, Roger L.; Reimold, Wolf Uwe; Koeberl, Christian

    Lithostratigraphic and petrographic studies of drill core samples from the 545.08 m deep International Continental Scientific Drilling Program (ICDP) borehole LB-07A in the Bosumtwi impact structure revealed two sequences of impactites below the post-impact crater sediments and above coherent basement rock. The upper impactites (333.38-415.67 m depth) comprise an alternating sequence of suevite and lithic impact breccias. The lower impactite sequence (415.67-470.55 m depth) consists essentially of monomict impact breccia formed from meta-graywacke with minor shale, as well as two narrow injections of suevite, which differ from the suevites of the upper impactites in color and intensity of shock metamorphism of the clasts. The basement rock (470.55-545.08 m depth) is composed of lower greenschist-facies metapelites (shale, schist and minor phyllite), meta-graywacke, and minor meta-sandstone, as well as interlaminated quartzite and calcite layers. The basement also contains a number of suevite dikelets that are interpreted as injection veins, as well as a single occurrence of granophyric-textured rock, tentatively interpreted as a hydrothermally altered granitic intrusion likely related to the regional pre-impact granitoid complexes. Impact melt fragments are not as prevalent in LB-07A suevite as in the fallout suevite facies around the northern crater rim; on average, 3.6 vol% of melt fragments is seen in the upper suevites and up to 18 vol% in the lower suevite occurrences. Shock deformation features observed in the suevites and polymict lithic breccias include planar deformation features in quartz (1 to 3 sets), rare diaplectic quartz glass, and very rare diaplectic feldspar glass. Notably, no ballen quartz, which is abundant in the fallout suevites, has been found in the within-crater impact breccias. An overall slight increase in the degree of shock metamorphism occurs with depth in the impactites, but considerably lower shock degrees are seen in the suevites of

  14. Drill report

    SciTech Connect

    Not Available

    1983-11-01

    The U.S. Fish and Wildlife Service has approved an industry proposal to conduct reflection seismic studies for oil and gas on the Arctic National Wildlife Refuge coastal plain. The plan submitted by Geophysical Services Inc. (GSI) was approved, subject to modifications aimed at safeguarding the environment. A listing of current drilling activities in Alaska is provided.

  15. Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core 1. Description and paragenesis

    NASA Astrophysics Data System (ADS)

    Walton, Anthony W.; Schiffman, Peter

    2003-05-01

    The core from the Hawaii Scientific Drilling Project 2 Phase 1 provides a unique opportunity for studying the low-temperature alteration processes affecting basalt in suboceanic-island environments. In hyaloclastites, which make up about one half of the lower 2 km of this core (the portion that accumulated below sea level), these processes have resulted in zones of incipient, smectitic, and palagonitic alteration. The alteration of sideromelane in these hyaloclastites has four distinct outcomes: dissolution, replacement by two different textural varieties of smectite (i.e., reddened and green grain-replacive), and conversion to palagonite. All samples show evidence of the incipient stage of alteration, suggesting that every sample passed through that zone. However, most samples that show palagonitic alteration do not also show evidence of smectitic alteration and vice versa, suggesting these two outcomes represent divergent paths of alteration. Incipient alteration (1080 to 1335 m depth) includes fracturing and mechanical reduction of porosity from 40-45% to about 20-30%; growth of one form of pore-lining smectite; dissolution of sideromelane; and formation of sideromelane-grain replacements consisting of Fe-hydroxide-strained smectite, titaniferous nodules, and tubules. DNA-specific stains and morphological features indicate that tubules are the result of microbial activity. Smectitic alteration (1405 to 1573 m) includes growth of a second variety of pore-lining smectite, pore-filling and grain-replacing smectite, and cements of phillipsite and Ca-silicate minerals. Palagonitic alteration (1573 m to the deepest samples) includes replacement of margins of shards with palagonite and growth of pore-filling chabazite. The porosity is reduced by cementation to less than 4% at 1573 m. Porosity does not decrease further down hole, nor does the thickness of palagonite rims on shards increase through the zone of palagonitic alteration. In these samples, palagonite is not

  16. The Apollo 17 drill core - Chemistry of size fractions and the nature of the fused soil component

    NASA Technical Reports Server (NTRS)

    Laul, J. C.; Papike, J. J.

    1980-01-01

    It is shown that the Apollo 17 drill core 70009-70001 is heterogeneous with depth, containing five stratigraphic units, and has a bulk soil chemistry governed by the coarse fractions because of their greater weight proportions. The four components (1) KREEP, (2) anorthositic gabbro, (3) mare basalt, and (4) orange glass are used to model the compositions of the coarse and fine fractions of the entire drill core. It is found that the chemistry of the fused soil component in the five stratigraphic units is more similar to the chemistry of the fine, less than 20-micron fractions than the coarse fraction, suggesting that agglutinates may prefferentially meld and replicate the chemistry of the finer size fractions. The sources of Zn are the orange/black glasses, and the Zn profile is anticorrelated with the maturity index of Morris et al (1979), indicating the liberation of Zn during soil maturation.

  17. Combined geophysical surveys and coring data to investigate the pattern of the Watukosek fault system around the Lusi eruption site, Indonesia.

    NASA Astrophysics Data System (ADS)

    Husein, Alwi; Mazzini, Adriano; Lupi, Matteo; Mauri, Guillaume; Kemna, Andreas; Hadi, Soffian; Santosa, Bagus

    2016-04-01

    The Lusi mud eruption is located in the Sidoarjo area, Indonesia and is continuously erupting hot mud since its birth in May 2006. The Watukosek fault system originates from the neighboring Arjuno-Welirang volcanic complex extending towards the NE of Java. After the 27-06-2006 M 6.3 earthquake this fault system was reactivated and hosted numerous hot mud eruptions in the Sidoarjo area. Until now, no targeted investigations have been conducted to understand the geometry of the faults system crossing the Lusi eruption site. A comprehensive combined electrical resistivity and self-potential (SP) survey was performed in the 7 km2 area inside the Lusi embankment that had been built to contain the erupted mud and to prevent flooding of the surrounding roads and settlements. The goal of the geophysical survey is to map the near-surface occurrence of the Watukosek fault system upon which Lusi resides, delineate its spatial pattern, and monitor its development. We completed six lines of resistivity measurements using Wenner configuration and SP measurements using roll-along technique. Three subparallel lines were located to the north and to the south of the main crater. Each line was approximately W-E oriented extending for ~1.26 km. The surveyed regions consist of mud breccia (containing clayey-silty-sandy mixture with clast up to ~10 cm in size). The geophysical data have been complemented with a N-S oriented profile consisting of 6 cores (~30m long) drilled in the dry area inside the Lusi embankment. The resistivity data were inverted into 2-D resistivity images with a maximum penetration depth of almost 200 m. These images consistently reveal a region of about 300 m in width (between 30-90 m depth) characterized by anomalous resistivities, which are lower than the values observed in the surrounding area. The results of the SP data correspond well with the resistivity profiles in the anomalous parts, which suggests that their origin is related to fluid flow paths in the

  18. Thermal property and density measurements of samples taken from drilling cores from potential geologic media

    SciTech Connect

    Lagedrost, J.F.; Capps, W.

    1983-12-01

    Density, steady-state conductivity, enthalpy, specific heat, heat capacity, thermal diffusivity and linear thermal expansion were measured on 59 materials from core drill samples of several geologic media, including rock salt, basalt, and other associated rocks from 7 potential sites for nuclear waste isolation. The measurements were conducted from or near to room temperature up to 500/sup 0/C, or to lower temperatures if limited by specimen cracking or fracturing. Ample documentation establishes the reliability of the property measurement methods and the accuracy of the results. Thermal expansions of salts reached 2.2 to 2.8 percent at 500/sup 0/C. Associated rocks were from 0.6 to 1.6 percent. Basalts were close to 0.3 percent at 500/sup 0/C. Specific heats of salts varied from 0.213 to 0.233 cal g/sup -1/C/sup -1/, and basalts averaged 0.239 cal g/sup -1/C/sup -1/. Thermal conductivities of salts at 50/sup 0/C were from 0.022 to 0.046 wcm/sup -1/C/sup -1/, and at 500/sup 0/C, from 0.012 to 0.027 wcm/sup -1/C/sup -1/. Basalts conductivities ranged from 0.020 to 0.022 wcm/sup -1/C/sup -1/ at 100/sup 0/C and 0.016 to 0.018 at 500/sup 0/C. There were no obvious conductivity trends relative to source location. Room temperature densities of salts were from 2.14 to 2.29 gcm/sup -3/, and basalts, from 2.83 to 2.90 gcm/sup -3/. The extreme friability of some materials made specimen fabrication difficult. 21 references, 17 figures, 28 tables.

  19. Stratigraphy, correlation, depositional setting, and geophysical characteristics of the Oligocene Snowshoe Mountain Tuff and Creede Formation in two cored boreholes

    USGS Publications Warehouse

    Larsen, Daniel; Nelson, Philip H.

    2000-01-01

    Core descriptions and geophysical logs from two boreholes (CCM-1 and CCM-2) in the Oligocene Snowshoe Mountain Tuff and Creede Formation, south-central Colorado, are used to interpret sedimentary and volcanic facies associations and their physical properties. The seven facies association include a mixed sequence of intracaldera ash-flow tuffs and breccias, alluvial and lake margin deposits, and tuffaceous lake beds. These deposits represent volcanic units related to caldera collapse and emplacement of the Snowshoe Mountain Tuff, and sediments and pyroclastic material deposited in the newly formed caldera basin, Early sedimentation is interpreted to have been rapid, and to have occurred in volcaniclastic fan environments at CCM-1 and in a variery of volcaniclastic fan, braided stream shallow lacustrine, and mudflat environments at CCM-2. After an initial period of lake-level rise, suspension settling, turbidite, and debris-flow sedimentation occurred in lacustrine slope and basin environments below wave base. Carbonate sedimentation was initially sporadic, but more continuous in the latter part of the recorded lake history (after the H fallout tuff). Sublacustrine-fan deposition occurred at CCM-1 after a pronounced lake-level fall and subsequent rise that preceded the H tuff. Variations in density, neutron, gamma-ray, sonic, and electrical properties of deposits penetrated oin the two holes reflect variations in lithology, porosity, and alteration. Trends in the geophysical properties of the lacustrine strata are linked to downhole changes in authigenic mineralology and a decrease in porosity interpreted to have resulted primarily from diagenesis. Lithological and geophysical characteristics provide a basis for correlation of the cores; however, mineralogical methods of correlation are hampered by the degree of diagenesis and alteration.

  20. InSAR Time Series Analysis and Geophysical Modeling of City Uplift Associated with Geothermal Drillings in Staufen im Breisgau, Germany

    NASA Astrophysics Data System (ADS)

    Motagh, M.; Lubitz, C.

    2014-12-01

    Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to

  1. Paleomagnetic records of core samples of the plate-boundary thrust drilled during the IODP Japan Trench Fast Drilling Project (JFAST)

    NASA Astrophysics Data System (ADS)

    Mishima, T.; Yang, T.; Ujiie, K.; Kirkpatrick, J. D.; Chester, F. M.; Moore, J. C.; Rowe, C. D.; Regalla, C.; Remitti, F.; Kameda, J.; Wolfson-Schwehr, M.; Bose, S.; Ishikawa, T.; Toy, V. G.

    2013-12-01

    IODP Expedition 343, Japan Trench Fast Drilling Project (JFAST), drilled across the plate-boundary décollement zone near the Japan Trench where large slip occurred during the March 2011 Tohoku-oki earthquake. We conducted paleomagnetic measurements of the core sample retrieved from the highly-deformed sediments comprising the plate-boundary décollement zone. Whole-round samples for structural analyses from five depth intervals of the core (0-12 cm, 12-30 cm, 43-48 cm, 48-58 cm, and 87.5-105 cm), were trimmed into oriented slabs with typical dimensions of 3x3x5 cm that are now being used to make petrographic sections for microstructural and chemical study. The remainder of the core sample was split into working and archive halves. We measured remanent magnetization of 16 trimmed slabs and the archive half of the core sample. The slabs were subjected to natural remanent magnetization (NRM) measurements in 0.5-1 cm intervals and progressive alternating field demagnetization (AFD) up to 80 mT with a 2G755 pass-through superconducting rock magnetometer at Kochi University. The archive half of the core sample was subjected to NRM measurement and AFD up to 20 mT with a 2G760 superconducting rock magnetometer installed on R/V Chikyu. Typically, two or three paleomagnetic components were isolated during the AFD of slab samples up to 80 mT. One ';soft' component was demagnetized below 20-30 mT, and another ';hard' component was not demagnetized even with AFD in 80 mT. A third component may be separated during AFD at the intermediate demagnetizing field, and may overlap the soft and hard components. The multiple slab samples cut from an identical whole-round sample have generally consistent paleomagnetic direction of the hard component. Contrastingly, the direction of the soft component is less consistent between adjacent slabs, and even varies within a single slab. The direction variation of the soft component possibly reflects the cm-scale strain and rotation of the

  2. Strontium Isotopic Variations in the Koolau Volcanic Series, Oahu, Hawaii: Results from KSDP Drill Core

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Depaolo, D. J.

    2005-12-01

    Surface samples of the Koolau tholeiite series, from the eastern side of the island of Oahu, Hawaii, have long been noted for their unusually high 87Sr/86Sr ratios (up to 0.7042) and other extreme geochemical parameters, as compared to both earlier and later Oahu lavas, values from other Hawaiian islands, and lavas from the Waianae volcano on west Oahu. It has been assumed that the geochemistry of the surface samples of Koolau applied to most of the volcano and that the extreme features were a relatively long-lived characteristic of the Hawaiian mantle plume at the time that the Koolau lavas were being erupted about 3 million years ago. The Koolau Scientific Drilling Project, which returned nearly continuous core from depths of 350 to 670 meters below sea level, provided an opportunity to probe deeper into the Koolau edifice (Haskins and Garcia, CMP, 147, 2004). We present new Sr isotope data on thirty whole rock samples from KSDP, which complement other isotopic data that have been reported recently (Salters and Blichert-Toft, submitted). The KSDP samples have variable, but generally significant, amounts of post-eruption weathering and hence the samples were strongly acid-leached before TIMS isotopic analysis in order to remove any seawater-derived strontium. The 87Sr/86Sr values in the core samples vary from values near 0.7040 at the top of the core to 0.7035 near the bottom. There is a general trend of increasing 87Sr/86Sr upsection as well as oscillations with peak-to-peak amplitude of 0.0003. The Sr isotope ratios correlate reasonably well with Nd and Hf isotope ratios. The data show that the Koolau surface samples are not representative of the volcano as a whole, and that the extreme geochemistry of the surface samples may represent only a minor component of the Hawaiian plume. The normal trend of Sr isotope ratios in the waning stages of shield building is from high values to low (as in Mauna Kea, Kohala, East Molokai and Haleakala). A trend toward higher

  3. Development of a seismic borehole sonde for high resolution geophysical exploration ahead and around the drill bit

    NASA Astrophysics Data System (ADS)

    Jaksch, K.; Giese, R.; Kopf, M.

    2012-04-01

    The importance of exploration with high resolution increases more and more because reservoirs especially in geothermal fields are characterized of small-scale geological structures. Today, surface seismic surveys were often combined with borehole seismic measurements like VSP or SWD to improve the velocity model and to image the structures with higher resolution. The accuracy of structure localization depends strongly on the surveying depth. There is the need for resolution of such small-scale structures in the range of meters to explore deeper structures with a high resolution. In the project "Seismic Prediction While Drilling" (SPWD) a new approach for a seismic exploration method in boreholes will be examined. SPWD comprises the seismic sources and receivers in one device. This allows an exploration with a resolution independent from depth and a system development for an exploration ahead and around the drill bit. At first a prototype of a borehole device for dry horizontal boreholes in a mine was developed and tested. The source device consists of four magnetostrictive vibrators emitting sweep signals from 500 Hz to 5000 Hz. To achieve a radiation pattern for focusing the seismic wave energy in predefined directions the signals of each vibrator must be independently controlled in amplitude and phase. The adjustment of amplitudes and phases of each sweep signal resulting in constructive interference with a predefined direction. A control of the emitted signals is retained by 30 three-component receivers mounted along the surrounding galleries in distances of up to 50 m. In measurements several parameters were examined to control the radiation pattern. The enhancement and diminishment of the wave amplitudes in the predefined directions of the radiation pattern is clearly exhibited also a dependency of the frequency. Using a three-component Fresnel-Volume-Migration to image the reflected wave field the results show clearly the effect of the radiation pattern on

  4. Hawaiian Volcano Flank Stability Appraised From Strength Testing the Hawaiian Scientific Drilling Project's (HSDP) 3.1-km Drill Core

    NASA Astrophysics Data System (ADS)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2005-12-01

    Strength results from limited testing of HSDP core samples reveal significant differences in their unconfined compressive and shear strength. The median strength values show a progressive increase from the incipient (2.4 MPa) to smectitic (4.2 MPa) to palagonitic (9.4 MPa) alteration zones. The strength differences include differences among hyaloclastites as a function of their alteration, as well as differences between hyaloclastites and the various forms of lava flows and intrusive bodies. The unconfined compressive strengths of extrusive submarine and subaerial lavas and intrusive rocks from the HSDP core samples are much greater than that of any of the hyaloclastites, and range from 82 to 150 MPa. The cohesive shear strengths of hyaloclastites increase successively with depth and type of alteration (from 0.9 MPa for the incipient zone to 3.2 MPa for the palagonite zone). Conversely, the frictional strengths of the hyaloclastites show a decrease with increasing depth and alteration zone (from 17.6° for hyaloclastites from the incipient zone to 13.7° for the palagonitic zone). The Mohr strength envelope changes from a linear relationship at shallow depth to become curvilinear with increasing depth and consequently shows higher cohesion and lower friction. Comparison of the three groups of the altered hyaloclastites showed that they had p values < 0.05, and that the mean strength results from the incipient, smectitic and palagonitic altered hyaloclastites were significantly different from each other. The greatest difference was calculated between the mean value of the palagonitic alteration and the mean values from the smectitic and incipient alteration though subsequent statistical testing showed that the means of the incipient and smectitic alteration were not significantly different from each other. The palagonitic mean remains significantly different from both the incipient and smectitic means. No statistically significant difference was found in comparing

  5. Spatial and Temporal Variations in the Geomagnetic Field Determined From the Paleomagnetism of Sediment Cores From Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Acton, G.

    2014-12-01

    Quantifying the spatial and temporal variations of the main geomagnetic field at Earth's surface is important for understanding underlying geodynamo processes and conditions near the core-mantle boundary. Much of the geomagnetic variability, known as secular variation, occurs on timescales of tens of years to many thousands of years, requiring the use of paleomagnetic observations to derive continuous records of the ancient field, referred to as paleosecular variation (PSV) records. Marine depositional systems where thick sedimentary sections accumulate at high sedimentation rates provide some of the best locations for obtaining long continuous PSV records that can reveal both the short- and long-term changes in the field. Scientific ocean drilling has been successful at recovering many such sections and the paleomagnetic records from these reveal how the amplitude of PSV differs between sites and through time. In this study, several such records cored during Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (IODP), and other cruises from high, mid, and low latitudes will be used to quantify time intervals of low and high PSV, to examine time-average properties of the field, to map spatial variations in the angular dispersion of the virtual geomagnetic pole (VGP), and to assess whether the spatial variation in angular dispersion changes with time.

  6. Neogene deformation in the West Antarctic Rift in the McMurdo Sound region from studies of the ANDRILL and Cape Roberts drill cores

    NASA Astrophysics Data System (ADS)

    Paulsen, T. S.; Wilson, T. J.; Jarrard, R. D.; Millan, C.; Saddler, D.; Läufer, A.; Pierdominici, S.

    2010-12-01

    Seismic studies indicate that the West Antarctic rift system records at least two distinct periods of Cenozoic rifting (Paleogene and Neogene) within the western Ross Sea. Natural fracture data from ANDRILL and Cape Roberts drill cores are revealing a picture of the geodynamic patterns associated with these rifting episodes. Kinematic indicators along faults recovered in drill cores document dominant normal faulting, although reverse and strike-slip faults are also present. Ongoing studies of mechanically twinned calcite in veins recovered in the drill cores yield predominantly vertical shortening strains with horizontal extension, consistent with a normal fault regime. In the Cape Roberts Project drill core, faults of inferred Oligocene age document a dominant NNE maximum horizontal stress associated with Paleogene rifting within the Victoria Land Basin. The NNE maximum horizontal stress at Cape Roberts is at an oblique angle to Transantarctic Mountain front, and consistent with previous interpretations invoking Cenozoic dextral transtensional shear along the boundary. In the ANDRILL SMS (AND-2A) drill core, faults and veins presumably associated with Neogene rifting document a dominant NNW to NE faulting of an expanded Lower Miocene section, although subsidiary WNW faulting is also present within the upper sections of oriented core. In the ANDRILL MIS (AND-1B) drill core, natural fractures are consistently present through the core below c. 450 mbsf, the estimated depth of the ‘B-clino’ seismic reflector. This is consistent with the presence of seismically-detectable faults below this horizon, which record the major faulting episode associated with Neogene rifting in the Terror Rift. Sedimentary intrusions and steep veins folded by compaction indicate that deformation occurred prior to complete lithification of the strata, suggesting that deformation was at least in part coeval with deposition. Faults and associated veins intersected in the AND-1B drill core

  7. The Last Interglacial in the Levant: Perspective from the ICDP Dead Sea Deep Drill Core

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Torfstein, A.; Stein, M.; Kushnir, Y.; Enzel, Y.; Haug, G. H.

    2014-12-01

    Sediments recovered by the ICDP Dead Sea Deep Drilling Project provide a new perspective on the climate history of the Levant during the last interglacial period MIS5. They record the extreme impacts of an intense interglacial characterized by stronger insolation, warmer mean global temperatures, and higher sea-levels than the Holocene. Results show both extreme hyper-aridity during MIS5e, including an unprecedented drawdown of Dead Sea water levels, and the impacts of a strong precession-driven African monsoon responsible for a major sapropel event (S5) in the eastern Mediterranean. Hyper-arid conditions at the beginning of MIS5e prior to S5 (~132-128 ka) are evidenced by halite deposition, indicating declining Dead Sea lake levels. Surprisingly, the hyper-arid phase is interrupted during the MIS5e peak (~128-120 ka), coinciding with the S5 sapropel, which is characterized by a thick (23 m) section of silty detritus (without any halite) whose provenance indicates southern-sourced wetness in the watershed. Upon weakening of the S5 monsoon (~120-115 ka), the return of extreme aridity resulted in an unprecedented lake level drawdown, reflected by massive salt deposition, and followed by a sediment hiatus (~115-100 ka) indicating prolonged low lake level. The resumption of section follows classic Levant patterns with more wetness during cooler MIS5b and hyper-aridity during warmer MIS5a. The ICDP core provides the first evidence for a direct linkage between an intense precession-driven African monsoon and wetness at the high subtropical latitude (~30N) of the Dead Sea watershed. Combined with coeval deposition of Negev speleothems and travertines, and calcitification of Red Sea corals, the evidence indicates a wet climatic corridor that could facilitate homo sapiens migration out of Africa during the MIS5e peak. In addition, the MIS 5e hyper-arid intervals may provide an important cautionary analogue for the impact of future warming on regional water resources.

  8. Initial results from VC-1, first Continental Scientific Drilling Program core hole in Valles caldera, New Mexico

    SciTech Connect

    Goff, F.; Rowley, J.; Gardner, J.N.; Hawkins, W.; Goff, S.; Charles, R.; Wachs, D.; Maassen, L.; Heiken, G.

    1986-02-10

    Valles Caldera 1 (VC-1) is the first Continental Scientific Drilling Program (CSDP) core hole drilled in the Valles caldera and the first continuously cored well in the caldera region. The objectives of VC-1 were to penetrate a hydrothermal outflow plume near its source, to obtain structural and stratigraphic information near the intersection of the ring fracture zone and the precaldera Jemez fault zone, and to core the youngest volcanic unit inside the caldera (Banco Bonito obsidian). Coring of the 856-m well took only 35 days to finish, during which all objectives were attained and core recovery exceeded 95%. VC-1 penetrates 298 m of moat volcanics and caldera fill ignimbrites, 35 m of precaldera volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales. A previously unknown obsidian flow was encountered at 160 m depth underlying the battleship Rock Tuff in the caldera moat zone. Hydrothermal alteration is concentrated in sheared, brecciated, and fractured zones from the volcaniclastic breccia to total depth with both the intensity and rank of alterations increasing with depth. Alteration assemblages consist primarily of clays, calcite, pyrite, quartz, and chlorite, but chalcopyrite and sphalerite have been identified as high as 450 m and molybdenite has been identified in a fractured zone at 847 m. Carbon 13 and oxygen 18 analyses of core show that the most intense zones of hydrothermal alteration occur in the Madera Limestone above 550 m and in the Madera and Sandia formations below 700 m. This corresponds with zones of most intense calcite and quartz veining. Thermal aquifers were penetrated at the 480-, 540-, and 845-m intervals. Although these intervals are associated with alteration, brecciation, and veining, they are also intervals where clastic layers occur in the Paleozoic sedimentary rocks.

  9. Initial results from VC-1, First Continental Scientific Drilling Program Core Hole in Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Goff, Fraser; Rowley, John; Gardner, Jamie N.; Hawkins, Ward; Goff, Sue; Charles, Robert; Wachs, Daniel; Maassen, Larry; Heiken, Grant

    1986-02-01

    Valles Caldera 1 (VC-1) is the first Continental Scientific Drilling Program (CSDP) core hole drilled in the Valles caldera and the first continuously cored well in the caldera region. The objectives of VC-1 were to penetrate a hydrothermal outflow plume near its source, to obtain structural and stratigraphie information near the intersection of the ring fracture zone and the precaldera Jemez fault zone, arid to core the youngest volcanic unit inside the caldera (Banco Bonito obsidian). Coring of the 856-m well took only 35 days to finish, during which all objectives were attained and core recovery exceeded 95%. VC-1 penetrates 298 m of moat volcanics and caldera fill ignimbrites, 35 m of precaldera volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales. A previously unknown obsidian flow was encountered at 160 m depth underlying the Battleship Rock Tuff in the caldera moat zone. Hydrothermal alteration is concentrated in sheared, brecciated, and fractured zones from the volcaniclastic breccia to total depth with both the intensity and rank of alterations increasing with depth. Alteration assemblages consist primarily of clays, calcite, pyrite, quartz, and chlorite, but chalcopyrite and sphalerite have been identified as high as 450 m and molybdenite has been identified in a fractured zone at 847 m. Carbon 13 and oxygen 18 analyses of core show that the most intense zones of hydrothermal alteration occur in the Madera Limestone above 550 m and in the Madera and Sandia formations below 700 m. This corresponds with zones of most intense calcite and quartz veining. Thermal aquifers were penetrated at the 480-, 540-, and 845-m intervals. Although these intervals are associated with alteration, brecciation, and veining, they are also intervals where clastic layers occur in the Paleozoic sedimentary rocks.

  10. Modelling of Tc migration in an un-oxidized fractured drill core from Äspö, Sweden

    NASA Astrophysics Data System (ADS)

    Huber, F. M.; Totskiy, Y.; Montoya Garcia, V.; Enzmann, F.; Trumm, M.; Wenka, A.; Geckeis, H.; Schaefer, T.

    2015-12-01

    The radionuclide retention of redox sensitive radionuclides (e.g. Pu, Np, U, Tc) in crystalline host rock greatly depends on the rock matrix and the rock redox capacity. Preservation of drill cores concerning oxidation is therefore of paramount importance to reliably predict the near-natural radionuclide retention properties. Here, experimental results of HTO and Tc laboratory migration experiments in a naturally single fractured Äspö un-oxidized drill core are modelled using two different 2D models. Both models employ geometrical information obtained by μ-computed tomography (μCT) scanning of the drill core. The models differ in geometrical complexity meaning the first model (PPM-MD) consists of a simple parallel plate with a porous matrix adjacent to the fracture whereas the second model (MPM) uses the mid-plane of the 3D fracture only (no porous matrix). Simulation results show that for higher flow rates (Peclet number > 1), the MPM satisfactorily describes the HTO breakthrough curves (BTC) whereas the PPM-MD model nicely reproduces the HTO BTC for small Pe numbers (<1). These findings clearly highlight the influence of fracture geometry/flow field complexity on solute transport for Pe numbers > 1 and the dominating effect of matrix diffusion for Peclet numbers < 1. Retention of Tc is modelled using a simple Kd-approach in case of the PPM-MD and including 1st order sorptive reduction/desorption kinetics in case of the MPM. Batch determined sorptive reduction/desorption kinetic rates and Kd values for Tc on non-oxidized Äspö diorite are used in the model and compared to best fit values. By this approach, the transferability of kinetic data concerning sorptive reduction determined in static batch experiments to dynamic transport experiments is examined.

  11. Estimates of the hydrologic impact of drilling water on core samples taken from partially saturated densely welded tuff

    SciTech Connect

    Buscheck, T.A.; Nitao, J.J.

    1987-09-01

    The purpose of this work is to determine the extent to which drill water might be expected to be imbibed by core samples taken from densely welded tuff. In a related experimental study conducted in G-Tunnel, drill water imbibition by the core samples was observed to be minimal. Calculations were carried out with the TOUGH code with the intent of corroborating the imbibition observations. Due to the absence of hydrologic data pertaining directly to G-Tunnel welded tuff, it was necessary to apply data from a similar formation. Because the moisture retention curve was not available for imbibition conditions, the drainage curve was applied to the model. The poor agreement between the observed and calculated imbibition data is attributed primarily to the inappropriateness of the drainage curve. Also significant is the value of absolute permeability (k) assumed in the model. Provided that the semi-log plot of the drainage and imbibition moisture retention curves are parallel within the saturation range of interest, a simple relationship exists between the moisture retention curve, k, and porosity ({phi}) which are assumed in the model and their actual values. If k and {phi} are known, we define the hysteresis factor {lambda} to be the ratio of the imbibition and drainage suction pressures for any saturation within the range of interest. If k and {phi} are unknown, {lambda} also accounts for the uncertainties in their values. Both the experimental and modeling studies show that drill water imbibition by the core has a minimal effect on its saturation state. 22 refs., 6 figs., 2 tabs.

  12. Plio-Pleistocene evolution of the southern Victoria Land climate system as seen in New Harbor drill cores

    NASA Astrophysics Data System (ADS)

    Ohneiser, C.; Wilson, G. S.

    2012-04-01

    The Taylor Valley (DVDP-10, -11) and Ferrar Fiord (CIROS-2) drill cores offer a window into the history of Southern Victoria Land glaciers and the Antarctic climate system during the late- Neogene. Here we present new paleomagnetic studies from these drill cores which date five phases of sedimentation in the Taylor/Ferrar fiords and reveal a climate modulation of magnetic mineralogy in southern Victoria Land during the late Neogene. Magnetostratigraphies were constructed from stepwise AF and/or thermal demagnetisation of discrete specimens from drill cores. Correlation of magnetostratigraphies with the magnetic polarity timescale was guided by biostratigraphic and radiometric constraints. Environmental magnetic studies were conducted to determine changes in concentration, gainsize and magnetic mineralogy through time. A parallel rock magnetic study was also conducted of regional basement rocks to quantify the source of magnetic minerals. The new ages models and environmental magnetic records indicate that during the latest Miocene - early Pliocene, wet based glaciers filled the Taylor and Ferrar fiords and that glaciers retreated during the Pliocene warm period leaving open marine conditions and deep fiords (>300 m). Magnetic minerals in these sediments are variably oxidised indicating terrestrial soil formation and probably warmer and wetter conditions at a time when the Ross Sea was free of ice and sea surface temperatures were 5°C warmer than today. We recognise the first significant cooling in DVDP-11 after 2.6 Ma by a shift to current winnowed sediments sourced from the Ross Sea. After 1.7 Ma sediments are almost exclusively lacustrine and were deposited in ice dammed lakes which formed when West Antarctic ice expanded across the Ross Embayment and abutted the Transantarctic Mountains. Magnetic mineralogy after ~2.6 Ma is dominated by a ubiquitous, paramagnetic component which coincides with the shift from warmer/wetter, sub-polar conditions to dry, polar

  13. Trace-element analyses of core samples from the 1967-1988 drillings of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, Rosalind Tuthill

    2012-01-01

    This report presents previously unpublished analyses of trace elements in drill core samples from Kilauea Iki lava lake and from the 1959 eruption that fed the lava lake. The two types of data presented were obtained by instrumental neutron-activation analysis (INAA) and energy-dispersive X-ray fluorescence analysis (EDXRF). The analyses were performed in U.S. Geological Survey (USGS) laboratories from 1989 to 1994. This report contains 93 INAA analyses on 84 samples and 68 EDXRF analyses on 68 samples. The purpose of the study was to document trace-element variation during chemical differentiation, especially during the closed-system differentiation of Kilauea Iki lava lake.

  14. Stress analysis of jacks, frame and bearing connections, and drill rod for core sampler truck No. 2

    SciTech Connect

    Ziada, H.H.

    1995-02-28

    This analysis evaluates the structural design adequacy of several components and connections for the rotary mode core sampler truck (RMCST) No. 2. This analysis was requested by the Characterization Equipment Group (WHC 1994a). The components addressed in this report are listed below: front jack assembly and connection to the truck chassis; rear jack assembly and connection to the truck chassis; center outrigger jacks and connection to the truck chassis; lower frame assembly and connection to the truck chassis; bolt connections for bearing plate assembly (for path of maximum load); traverse slide brackets and mounting of the traverse jack cylinders; and drill rod (failure loads).

  15. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation

    NASA Technical Reports Server (NTRS)

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

    1999-01-01

    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  16. Unzen Scientific Drilling Project: Challenging drilling operation into the magmatic conduit shortly after eruption

    NASA Astrophysics Data System (ADS)

    Sakuma, S.; Nakada, S.; Uto, K.

    2004-12-01

    Drilling operation was aimed at penetration into the core of the volcano 8 years after eruption of Unzen, including directional drilling in high temperature and with high inclination. The project started with fixing drilling site. Scientists and drilling engineers agreed to settle it at the northern slope of Mt. Unzen at 840 m asl, and the drilling target was set at sea level. Drilling operation was started in Feb. 2003. In the shallow section, frequent lost circulation and accidental side-track occurred due to the unconsolidated zone, and caused_@many troubles. Although the drilling was delayed, we succeeded in drilling down to 396m with the inclination of 25 degree in 17-1/2 inch hole and 13-3/8 inch casing section. 12-1/4 inch hole was drilled using TDS, EM-MWD, and DHM. When the inclination was built up to 75 degree at 795 m, we changed the drilling mode of trajectory control to keep the angle. A large fracture of total loss was encountered at 807m, and serious cuttings bed occurred. The latter made the drilling impossible to continue. Then, we inserted 9-5/8 inch casing down to 796 m. Trajectory correction runs was completed in 8-5/8 inch hole, and 7 inch casing was set down to 1550m. In 6-1/4 inch hole, though EM-MWD and DHM were not used, drilling inclination and azimuth were stable. Spot coring was started at 1582 m, the levels of spot coring depth were chosen based on the data of temperature measurement and cuttings observation. Though the drilling exceeded 1800m, the original target depth, drilling was continued, because we could not encounter the high temperature conduit at that time. Finally, the well reached the 1995 m, and succeeded in taking cores highly probable of magmatic conduit in July 2004. We could carry out geophysical logging mostly throughout the whole sections. Spot coring were done at 16 times; its total length was 75m. Although the highest measured temperature was 155 deg. C, the formation temperature may reach at least 200 deg. C. The

  17. Whole-rock analyses of core samples from the 1988 drilling of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, Rosalind Tuthill; Taggart, Joseph E.

    2010-01-01

    This report presents and evaluates 64 major-element analyses of previously unanalyzed Kilauea Iki drill core, plus three samples from the 1959 and 1960 eruptions of Kilauea, obtained by X-ray fluorescence (XRF) analysis during the period 1992 to 1995. All earlier major-element analyses of Kilauea Iki core, obtained by classical (gravimetric) analysis, were reported and evaluated in Helz and others (1994). In order to assess how well the newer data compare with this earlier suite of analyses, a subset of 24 samples, which had been analyzed by classical analysis, was reanalyzed using the XRF technique; those results are presented and evaluated in this report also. The XRF analyses have not been published previously. This report also provides an overview of how the chemical variations observed in these new data fit in with the chemical zonation patterns and petrologic processes inferred in earlier studies of Kilauea Iki.

  18. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    SciTech Connect

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  19. Extreme Dead Sea drying event during the last interglacial from the ICDP Dead Sea Deep Drill Core

    NASA Astrophysics Data System (ADS)

    Goldstein, S.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G.; Ito, E.; Kitagawa, H.; Torfstein, A.; Yasuda, Y.

    2012-04-01

    The ICDP funded Dead Sea Deep Drilling Project (DSDDP) recovered the longest and most complete paleo-environmental record in the Middle East, drilling holes in a deep and a shallow site extending to ~450 meters. The Dead Sea expands during the glacials and contracts during interglacials, and the sediments are an archive of the evolving climatic conditions. During glacials the sediments comprise intervals of marl (aragonite, gypsum and detritus) and during interglacials they are salts and marls. We estimate that the deep site core spans ~200 kyr (to early MIS 7). A dramatic discovery is a ~40 cm interval of rounded pebbles at ~235 m below the lake floor, the only clean pebbly unit in the entire core. It appears to be a beach layer, near the deepest part of the Dead Sea, lying above ~35 meters of mainly salt. If it is a beach layer, it implies an almost complete dry-down of the paleo-Dead Sea. The pebble layer lies within the last interglacial interval. Our initial attempt to estimate the age of the possible dry down shows an intriguing correlation between the salt-mud stratigraphy of the Dead Sea core and the oxygen isotope record of Soreq Cave, whereby excursions to light oxygen in the speleothems correspond to periods of salt deposition. Through this comparison, we estimate that the dry down occurred during MIS 5e. The occurrence of ~35 meters of mainly salt along with the pebble layer demonstrates a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping as all the countries in the area use the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during a past warm period without human intervention.

  20. Brines and interstitial brackish water in drill cores from the deep gulf of Mexico.

    PubMed

    Manheim, F T; Sayles, F L

    1970-10-02

    Marked increases in interstitial salinity occur in two drill holes located in the Gulf of Mexico at a water depth of more than 3500 meters. The increases probably arose through diffusion of salt from buried evaporites. In one hole, however, brackish water was encountered on penetrating the oil-permeated cap rock of a salt dome. The phenomenon is attributed to production of fresh water during oxidation of petroleum hydrocarbons and decomposition of gypsum to form native sulfur.

  1. Brines and interstitial brackish water in drill cores from the deep gulf of Mexico

    USGS Publications Warehouse

    Manheim, F. T.; Sayles, F.L.

    1970-01-01

    Marked increases in interstitial salinity occur in two drill holes located in the Gulf of Mexico at a water depth of more than 3500 meters. The increases probably arose through diffusion of salt from buried evaporites. In one hole, however, brackish water was encountered on penetrating the oil-permeated cap rock of a salt dome. The phenomenon is attributed to production of fresh water during oxidation of petroleum hydrocarbons and decomposition of gypsum to form native sulfur.

  2. Drill core LB-08A, Bosumtwi impact structure, Ghana: Petrographic and shock metamorphic studies of material from the central uplift

    NASA Astrophysics Data System (ADS)

    Ferrière, Ludovic; Koeberl, Christian; Reimold, Wolf Uwe

    During a recent drilling project sponsored by the International Continental Scientific Drilling Progam (ICDP), two boreholes (LB-07A and LB-08A) were drilled into the crater fill of the Bosumtwi impact structure and the underlying basement, into the deep crater moat and the outer flank of the central uplift, respectively. The Bosumtwi impact structure in Ghana (West Africa), which is 10.5 km in diameter and 1.07 Myr old, is largely filled by Lake Bosumtwi. Here we present the lithostratigraphy of drill core LB-08A (recovered between 235.6 and 451.33 m depth below lake level) as well as the first mineralogical and petrographic observations of samples from this core. This drill core consists of approximately 25 m of polymict, clast-supported lithic breccia intercalated with suevite, which overlies fractured/brecciated metasediment that displays a large variation in lithology and grain size. The lithologies present in the central uplift are metasediments composed dominantly of fine-grained to gritty meta-graywacke, phyllite, and slate, as well as suevite and polymict lithic impact breccia. The suevites, principally present between 235.6 and 240.5 m and between 257.6 and 262.2 m, display a fine-grained fragmental matrix (about 39 to 45 vol%) and a variety of lithic and mineral clasts that include meta-graywacke, phyllite, slate, quartzite, carbon-rich organic shale, and calcite, as well as melt particles, fractured quartz, unshocked quartz, unshocked feldspar, quartz with planar deformation features (PDFs), diaplectic quartz glass, mica, epidote, sphene, and opaque minerals). The crater-fill suevite contains calcite clasts but no granite clasts, in contrast to suevite from outside the northern crater rim. The presence of melt particles in suevite samples from the uppermost 25 meters of the core and in suevite dikelets in the basement is an indicator of shock pressures exceeding 45 GPa. Quartz grains present in suevite and polymict lithic impact breccia abundantly

  3. Development of Oceanic Core Complexes on the Mid-Atlantic Ridge at 13-14N: Deep-Towed Geophysical Measurements and Detailed Seafloor Sampling

    NASA Astrophysics Data System (ADS)

    Searle, R.; MacLeod, C.; Murton, B.; Mallows, C.; Casey, J.; Achenbach, K.; Unsworth, S.; Harris, M.

    2007-12-01

    The first scientific cruise of research vessel James Cook in March-April 2007 targeted the Mid-Atlantic Ridge at 13-14°N, to investigate details of lithospheric generation and development in a low-magmatic setting. Overall objectives were to 1) investigate the 3D pattern of mantle upwelling and melt focusing; 2) study how plate accretion and separation mechanisms differ between magma-rich and magma-poor areas; and 3) test mechanisms of detachment faulting and extensional strain localisation in the lower crust and upper mantle. Smith et al. (Nature 2006) had shown this to be an area of widespread detachment faulting and formation of oceanic core complexes (OCC), and published bathymetry showed an extensive area of blocky rather than lineated topography, which elsewhere has correlated with areas of low effusive magmatism. We conducted a TOBI deep-towed geophysical survey over a 70 km length of ridge extending to magnetic chron C2n (1.9 Ma) on each flank. This included sidescan sonar and high resolution bathymetry and magnetic measurements on 13 E-W tracks spaced 3 - 6 km apart. The area includes 1 active, 1 dying, and 1 defunct OCC and borders well-lineated, apparently magmatically robust seafloor to the north. The geophysical survey was complimented by recovery of 7 oriented and 18 unoriented core and 29 dredge samples, including some from a probable OCC south of the TOBI survey. Deep-towed sidescan, bathymetry and video show the OCCs typically comprise a steeply outward tilted volcanic ridge marking the breakaway (as suggested by Smith et al., 2006); a high, rugged central massif that is complexly deformed as a result of uplift and bending, and may be separated from the breakaway ridge by what we interpret as a late outward dipping normal fault; and a smooth, corrugated surface that generally dips c. 20° towards the ridge axis at the termination but gradually rotates to horizontal or gently outward dipping near its junction with the central massif. Older OCCs

  4. Fossils, lithologies, and geophysical logs of the Mancos Shale from core hole USGS CL-1 in Montrose County, Colorado

    USGS Publications Warehouse

    Ball, Bridget A.; Cobban, W.A.; Merewether, E.A.; Grauch, R.I.; McKinney, K.C.; Livo, K.E.

    2009-01-01

    As part of a multidisciplinary investigation of Mancos Shale landscapes in the Gunnison Gorge National Conservation Area in Delta and Montrose Counties of western Colorado by the U.S. Geological Survey, Bureau of Land Management, and Bureau of Reclamation, a core of the Upper Cretaceous Mancos Shale was obtained from a borehole, USGS CL-1, in NE1/4 sec. 8, T. 50 N., R. 9 W. (approximately lat 38.61717 degree(s) N., long 107.90174 degree(s) W.), near the town of Olathe. Geophysical records of the borehole include resistivity, gamma ray, and density logs. The core extends between depths of 20 and 557 ft and is about 2.5 in. in diameter. It is composed of calcareous silty shale, as well as scattered beds of limestone and bentonite which were deposited mainly in offshore marine environments during the Cenomanian, Turonian, and Coniacian Stages of the Cretaceous Series. The strata were sampled and analyzed to obtain geochemical data and to identify constituent fossils. Stratigraphic units within the Mancos in the core include the following members, in ascending order: Bridge Creek Limestone (part), Fairport, Blue Hill, Juana Lopez, Montezuma Valley, and Niobrara (part). Strata herein assigned to the Bridge Creek Limestone are about 18 ft thick and consist of silty shale that contains ammonites, bivalves, and a coral of Late Cenomanian age. Strata assigned to the Fairport are about 22 ft thick and composed mainly of calcarenite-bearing, calcareous shale. Fossils in this member include ammonites and bivalves of early middle Turonian age. Overlying the Fairport is the Blue Hill Member, which is about 139 ft thick, and consists of glauconitic, shaley siltstone, and less silty shale. The Juana Lopez Member, overlying the Blue Hill, is about 138 ft thick and composed mainly of calcarenitic, silty shale. Beds in this member contain ammonites and bivalves of late middle and early late Turonian ages. Overlying the Juana Lopez is the Montezuma Valley Member, which is about 55 ft

  5. Extreme drying event in the Dead Sea basin during MIS5 from the ICDP Dead Sea Deep Drill Core

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.; Yasuda, Y.; The Icdp-Dsddp Scientific Party

    2011-12-01

    The ICDP funded Dead Sea Deep Drilling Project (DSDDP) recovered the longest and most complete paleo-environmental record in the Middle East, drilling holes of ~450 and ~350 meters in length in deep (~300 m below the lake level) and shallow sites (~3 mbll) respectively. The Dead Sea expands during the glacials and contracts during interglacials, and the sediments comprise a geological archive of the evolving environmental conditions (e.g. rains, floods, dust-storms, droughts). Dead Sea sediments include inorganic aragonite, allowing for dating by U-series (e.g. Haase-Schramm et al. GCA 2004). The deep site cores were opened and described in June 2011. The cores are composed mainly of alternating intervals of marl (aragonite, gypsum and detritus) during glacials, and salts and marls during interglacials. From this stratigraphy we estimate that the deep site core spans ~200 kyr (to the boundary of MIS 6 and 7). A dramatic discovery is a ~40 cm thick interval of partly rounded pebbles at ~235 m below the lake floor. This is the only clean pebbly unit in the entire core. It appears to be a beach layer, near the deepest part of the Dead Sea, lying above ~35 meters of mainly salt. If it is a beach layer, it implies an almost complete dry-down of the paleo-Dead Sea. The pebble layer lies within the last interglacial interval. Our initial attempt to more precisely estimate the age of the possible dry down shows an intriguing correlation between the salt-mud stratigraphy of the Dead Sea core and the oxygen isotope record of Soreq Cave, whereby excursions to light oxygen in the speleothems correspond to periods of salt deposition. Through this comparison, we estimate that the possible dry down occurred during MIS 5e. The occurrence of ~35 meters of mainly salt along with the pebble layer demonstrates a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping as all the countries in the area use the

  6. An ultra-clean firn core from the Devon Island Ice Cap, Nunavut, Canada, retrieved using a titanium drill specially designed for trace element studies.

    PubMed

    Zheng, J; Fisher, D; Blake, E; Hall, G; Vaive, J; Krachler, M; Zdanowicz, C; Lam, J; Lawson, G; Shotyk, W

    2006-03-01

    An electromechanical drill with titanium barrels was used to recover a 63.7 m long firn core from Devon Island Ice Cap, Nunavut, Canada, representing 155 years of precipitation. The core was processed and analysed at the Geological Survey of Canada by following strict clean procedures for measurements of Pb and Cd at concentrations at or below the pg g(-1) level. This paper describes the effectiveness of the titanium drill with respect to contamination during ice core retrieval and evaluates sample-processing procedures in laboratories. The results demonstrate that: (1) ice cores retrieved with this titanium drill are of excellent quality with metal contamination one to four orders of magnitude less than those retrieved with conventional drills; (2) the core cleaning and sampling protocols used were effective, contamination-free, and adequate for analysis of the metals (Pb and Cd) at low pg g(-1) levels; and (3) results from 489 firn core samples analysed in this study are comparable with published data from other sites in the Arctic, Greenland and the Antarctic.

  7. Core hole drilling and the ''rain current'' phenomenon at Newberry Volcano, Oregon

    SciTech Connect

    Swanberg, C.A.; Walkey, W.C.; Combs, J.

    1988-09-10

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core hole Geo N-1 has a heat flow of 180 mW m/sup -2/, reflecting subsurface temperatures, sufficient for commerical exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mW m/sup -2/, is less encouraging. We emphasize the ''rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Cole hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite, basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Caving and sloughing were encountered in both core holes at depths near the regional water table. Both core holes penetrate three distinct thermal regimes. The uppermost regime is isothemal at mean air temperature down to about 900-1000 m (the rain curtain).

  8. Alteration of Basalt and Hyaloclastite in the Project Hotspot MHC-2 Core with Some Comparison to Hyaloclastites of the Hawaii Scientific Drilling Program #2 (HSDP) Core

    NASA Astrophysics Data System (ADS)

    Walton, A. W.; Walker, J. R.

    2015-12-01

    Project Hotspot's 1821m coring operation at Mountain Home Air Force Base, Idaho (MHC), sought to examine interaction of hotspot magmas with continental crust and evaluate geothermal resources. Subsurface temperature increased at a gradient of 76˚/km. Alteration was uniform and not intense over the upper part of the core and at the bottom, but differed markedly in an anomalous zone (AZ) from 1700 to 1800m. The MHC core contains diatomite, basalt lava and minor hyaloclastite. Olivine (Ol) in lavas is more-or-less altered to iddingsite. Plagioclase (Plag) has altered to smectite along cleavage planes and fractures except in the AZ, where it is intensely altered to corrensite. Clinopyroxene (CPX, pinkish in thin section) is little altered, as are apatite and opaque minerals (probably ilmenite with magnetite or pyrite in different samples). Interstitial material is converted to smectite or, in the AZ, to corrensite. Phyllosilicate lines vesicles, and calcite, zeolite and phyllosilicate fill them. Pore-lining phillipsite is common shallow in the core, with vesicle-filling analcime and heulandite at greater depth. A fibrous zeolite, probably stilbite, is also present. Hyaloclasts are altered to concentrically layered masses of smectite. MHC hyaloclastites do not display the microbial traces and palagonite ("gel-palagonite") alteration common in Hawaii Scientific Drilling Project #2 (HSDP) samples. HSDP samples do contain pore-lining phillipsite, but pore fillings are chabazite. Calcite is absent in HSDP hyaloclastites. Neither Ol nor Plag were altered in HSDP hyaloclastites. HSPD glasses are less silicic and Ti-rich than MHC lavas, containing Ol rather than CPX as a dominant mafic. However the differences in alteration of hyaloclastites probably reflect either the fact that the HSDP core was collected at temperatures equivalent to those at the top of the MHC-2 core or HSDP samples were from beds that were in modified marine pore water, rather than continental waters.

  9. The 1997 core drilling through Ordovician and Silurian strata at Röstånga, S. Sweden: preliminary stratigraphic assessment and regional comparison

    USGS Publications Warehouse

    Bergstrom, Stig M.; Huff, W.D.; Koren', T.; Larsson, K.; Ahlberg, P.; Kolata, Dennis R.

    1999-01-01

    A core drilling at Ro??sta??nga, the first such drilling ever undertaken in this classical Lower Paleozoic outcrop area in W-central Scania, penetrated an approximately 96 m thick succession of Lower Silurian-upper Middle Ordovician marine rocks. The drilling was stopped at a depth of 132.59 m in an interval of crushed rocks, probably a prominent fault zone, that proved impossible to drill through. The core contains a stratigraphical sequence from the basal Upper Llandoverian (Telychian Stage) to the upper Middle Ordovician (Harjuan Stage). The following units are recognized in descending stratigraphic order (approximate thickness in parenthesis): Kallholn Formation (35 m), Lindega??rd Mudstone (27 m), Fja??cka Shale (13 m), Mossen Formation (0.75 m), Skagen Formation (2.5 m), and Sularp Shale (19 m+). Except for the Skagen Formation, the drilled sequence consists of shales and mudstones with occasional thin limestone interbeds and is similar to coeval successions elsewhere in Scania. There are 11 K-bentonite beds in the Kallholn Formation, 2(3?) in the Lindega??rd Mudstone, 1 in the Mossen Formation, 7 in the Skagen Formation, and 33 in the Sularp Shale. The core serves as an excellent Lower Silurian-upper Middle Ordovician reference standard not only for the Ro??sta??nga area but also for southernmost Sweden in general because the cored sequence is the stratigraphically most complete one known anywhere in this region.

  10. Online drilling mud gas monitoring and sampling during drilling the Scandinavian Caledonides (COSC)

    NASA Astrophysics Data System (ADS)

    Wiersberg, Thomas; Almqvist, Bjarne; Klonowska, Iwona; Lorenz, Henning

    2015-04-01

    The COSC project (Collisional Orogeny in the Scandinavian Caledonides) drilled a 2496 m deep hole in Åre (Sweden) to deliver insights into mid-Palaeozoic mountain building processes from continent-continent collision, to improve our understanding of the hydrogeological-hydrochemical state and geothermal gradient of the mountain belt and to study the deep biosphere in the metamorphic rocks and crystalline basement. COSC was the first slimhole drilling project where online gasmonitoring of drilling mud was conducted during continuous wireline coring. Gas was continuously extracted at the surface from the circulating drilling mud with a gas-water separator, pumped in a nearby laboratory container and analysed in real-time with a quadrupole mass spectrometer for argon, methane, helium, carbon dioxide, nitrogen, oxygen, hydrogen, and krypton. Gas samples were taken from the gas line for laboratory studies on chemical composition of hydrocarbons, noble gas isotopes and stable isotopes. Every drill core created a gas peak identified in the drilling mud ~20-30 min after core arrival at the surface. With known core depth and surface arrival time, these gas peaks could be attributed to depth. As a result, nearly complete gas depth profiles at three meter intervals were obtained from 662 m (installation of the gas-water separator) to 2490 m depth. Maximum concentrations of non-atmospheric gasses in drilling mud were ~200 ppmv helium, ~300 ppmv methane and ~2 vol-% hydrogen. Helium peaks between ~900 m and 1000 m and correlates with enhanced concentrations of methane. Methane and hydrogen exhibit maximum concentrations below 1630 m depth where helium concentrations remain low. Integration of the drilling mud gas monitoring dataset with data from geophysical downhole logging and core analysis is ongoing to help clarifying provenances and origin of gasses.

  11. Drill core LB-08A, Bosumtwi impact structure, Ghana: Geochemistry of fallback breccia and basement samples from the central uplift

    NASA Astrophysics Data System (ADS)

    Ferrière, Ludovic; Koeberl, Christian; Reimold, Wolf Uwe; Mader, Dieter

    The 1.07 Myr old Bosumtwi impact structure in Ghana (West Africa), which measures 10.5 km in diameter and is largely filled by Lake Bosumtwi, is associated with one of four currently known tektite strewn fields. Two boreholes were drilled to acquire hard-rock samples of the deep crater moat and from the flank of the central uplift (LB-07A and LB-08A, respectively) during a recent ICDP-sponsored drilling project. Here we present results of major and trace element analysis of 112 samples from drill core LB-08A. This core, which was recovered between 235.6 and 451.33 m depth below lake level, contains polymict lithic breccia intercalated with suevite, which overlies fractured/brecciated metasediment. The basement is dominated by meta-graywacke (from fine-grained to gritty), but also includes some phyllite and slate, as well as suevite dikelets and a few units of a distinct light greenish gray, medium-grained meta-graywacke. Most of the variations of the major and trace element abundances in the different lithologies result from the initial compositional variations of the various target rock types, as well as from aqueous alteration processes, which have undeniably affected the different rocks. Suevite from core LB-08A (fallback suevite) and fallout suevite samples (from outside the northern crater rim) display some differences in major (mainly in MgO, CaO, and Na2O contents) and minor (mainly Cr and Ni) element abundances that could be related to the higher degree of alteration of fallback suevites, but also result from differences in the clast populations of the two suevite populations. For example, granite clasts are present in fallout suevite but not in fallback breccia, and calcite clasts are present in fallback breccia and not in fallout suevite. Chondrite-normalized rare earth element abundance patterns for polymict impact breccia and basement samples are very similar to each other. Siderophile element contents in the impact breccias are not significantly

  12. Carbon and nitrogen isotope composition of core catcher samples from the ICDP deep drilling at Laguna Potrok Aike (Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Luecke, Andreas; Wissel, Holger; Mayr*, Christoph; Oehlerich, Markus; Ohlendorf, Christian; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The ICDP project PASADO aims to develop a detailed paleoclimatic record for the southern part of the South American continent from sediments of Laguna Potrok Aike (51°58'S, 70°23'W), situated in the Patagonian steppe east of the Andean cordillera and north of the Street of Magellan. The precursor project SALSA recovered the Holocene and Late Glacial sediment infill of Laguna Potrok Aike and developed the environmental history of the semi-arid Patagonian steppe by a consequent interdisciplinary multi-proxy approach (e.g. Haberzettl et al., 2007). From September to November 2008 the ICDP deep drilling took place and successfully recovered in total 510 m of sediments from two sites resulting in a composite depth of 106 m for the selected main study Site 2. A preliminary age model places the record within the last 50.000 years. During the drilling campaign, the core catcher content of each drilled core run (3 m) was taken as separate sample to be shared and distributed between involved laboratories long before the main sampling party. A total of 70 core catcher samples describe the sediments of Site 2 and will form the base for more detailed investigations on the palaeoclimatic history of Patagonia. We here report on the organic carbon and nitrogen isotope composition of bulk sediment and plant debris of the core catcher samples. Similar investigations were performed for Holocene and Late Glacial sediments of Laguna Potrok Aike revealing insights into the organic matter dynamics of the lake and its catchment as well as into climatically induced hydrological variations with related lake level fluctuations (Mayr et al., 2009). The carbon and nitrogen content of the core catcher fine sediment fraction (<200 µm) is low to very low (around 1 % and 0.1 %, respectively) and requires particular attention in isotope analysis. The carbon isotope composition shows comparably little variation around a value of -26.0 per mil. The positive values of the Holocene and the Late

  13. Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Hurwitz, Shaul; McGeehin, John

    2016-01-01

    To explore the timing of hydrothermal activity at the Upper Geyser Basin (UGB) in Yellowstone National Park, we obtained seven new accelerator mass spectrometry (AMS) radiocarbon 14C ages of carbonaceous material trapped within siliceous sinter. Five samples came from depths of 15–152 cm within the Y-1 well, and two samples were from well Y-7 (depths of 24 cm and 122 cm). These two wells, at Black Sand and Biscuit Basins, respectively, were drilled in 1967 as part of a scientific drilling program by the U.S. Geological Survey (White et al., 1975). Even with samples as small as 15 g, we obtained sufficient carbonaceous material (a mixture of thermophilic mats, pollen, and charcoal) for the 14C analyses. Apparent time of deposition ranged from 3775 ± 25 and 2910 ± 30 14C years BP at the top of the cores to about 8000 years BP at the bottom. The dates are consistent with variable rates of sinter formation at individual sites within the UGB over the Holocene. On a basin-wide scale, though, these and other existing 14C dates hint that hydrothermal activity at the UGB may have been continuous throughout the Holocene.

  14. Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Lowenstern, Jacob B.; Hurwitz, Shaul; McGeehin, John P.

    2016-01-01

    To explore the timing of hydrothermal activity at the Upper Geyser Basin (UGB) in Yellowstone National Park, we obtained seven new accelerator mass spectrometry (AMS) radiocarbon 14C ages of carbonaceous material trapped within siliceous sinter. Five samples came from depths of 15-152 cm within the Y-1 well, and two samples were from well Y-7 (depths of 24 cm and 122 cm). These two wells, at Black Sand and Biscuit Basins, respectively, were drilled in 1967 as part of a scientific drilling program by the U.S. Geological Survey (White et al., 1975). Even with samples as small as 15 g, we obtained sufficient carbonaceous material (a mixture of thermophilic mats, pollen, and charcoal) for the 14C analyses. Apparent time of deposition ranged from 3775 ± 25 and 2910 ± 30 14C years BP at the top of the cores to about 8000 years BP at the bottom. The dates are consistent with variable rates of sinter formation at individual sites within the UGB over the Holocene. On a basin-wide scale, though, these and other existing 14C dates hint that hydrothermal activity at the UGB may have been continuous throughout the Holocene.

  15. Geophysical evidence for the evolution of the California Inner Continental Borderland as a metamorphic core complex

    USGS Publications Warehouse

    ten Brink, Uri S.; Zhang, Jie; Brocher, Thomas M.; Okaya, David A.; Klitgord, Kim D.; Fuis, Gary S.

    2000-01-01

    We use new seismic and gravity data collected during the 1994 Los Angeles Region Seismic Experiment (LARSE) to discuss the origin of the California Inner Continental Borderland (ICB) as an extended terrain possibly in a metamorphic core complex mode. The data provide detailed crustal structure of the Borderland and its transition to mainland southern California. Using tomographic inversion as well as traditional forward ray tracing to model the wide-angle seismic data, we find little or no sediments, low (≤6.6 km/s) P wave velocity extending down to the crust-mantle boundary, and a thin crust (19 to 23 km thick). Coincident multichannel seismic reflection data show a reflective lower crust under Catalina Ridge. Contrary to other parts of coastal California, we do not find evidence for an underplated fossil oceanic layer at the base of the crust. Coincident gravity data suggest an abrupt increase in crustal thickness under the shelf edge, which represents the transition to the western Transverse Ranges. On the shelf the Palos Verdes Fault merges downward into a landward dipping surface which separates "basement" from low-velocity sediments, but interpretation of this surface as a detachment fault is inconclusive. The seismic velocity structure is interpreted to represent Catalina Schist rocks extending from top to bottom of the crust. This interpretation is compatible with a model for the origin of the ICB as an autochthonous formerly hot highly extended region that was filled with the exhumed metamorphic rocks. The basin and ridge topography and the protracted volcanism probably represent continued extension as a wide rift until ∼13 m.y. ago. Subduction of the young and hot Monterey and Arguello microplates under the Continental Borderland, followed by rotation and translation of the western Transverse Ranges, may have provided the necessary thermomechanical conditions for this extension and crustal inflow.

  16. In-situ rock melting applied to lunar base construction and for exploration drilling and coring on the moon

    SciTech Connect

    Rowley, J.C.; Neudecker, J.W.

    1984-01-01

    An excavation technology based upon melting of rock and soil has been extensively developed at the prototype hardware and conceptual design levels for terrestrial conditions. Laboratory and field tests of rock-melting penetration have conclusively indicated that this excavation method is insensitive to rock, soil types, and conditions. Especially significant is the ability to form in-place glass linings or casings on the walls of boreholes, tunnels, and shafts. These factors indicate the unique potential for in situ construction of primary lunar base facilities. Drilling and coring equipment for resource exploration on the moon can also be devised that are largely automated and remotely operated. It is also very likely that lunar melt-glasses will have changed mechanical properties when formed in anhydrous and hard vacuum conditions. Rock melting experiments and prototype hardware designs for lunar rock-melting excavation applications are suggested.

  17. Description and hydrogeologic implications of cored sedimentary material from the 1975 drilling program at the radioactive waste management complex, Idaho

    USGS Publications Warehouse

    Rightmire, C.T.

    1984-01-01

    Samples of sedimentary material from interbeds between basalt flows and from fractures in the flows, taken from two drill cores at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory were analyzed for (1) particle-size dribution, (2) bulk mineralogy, (3) clay mineralogy, (4) cation-exchange capacity, and (5) carbonate content. Thin sections of selected sediment material were made for petrographic examination. Preliminary interpretations indicate that (1) it may be possible to distinguish the various sediment interbeds on the basis of their mineralogy, (2) the presence of carbonate horizons in sedimentary interbeds may be utilized to approximate the time of exposure and the climate while the surface was exposed (which affected the hydrogeologic character of the sediment), and the type and orientation of fracture-filling material may be utilized to determine the mechanism by which fractures were filled. (USGS)

  18. Geochemical studies of the SUBO 18 (Enkingen) drill core and other impact breccias from the Ries crater, Germany

    NASA Astrophysics Data System (ADS)

    Reimold, Wolf Uwe; McDonald, Iain; Schmitt, Ralf-Thomas; Hansen, Birgit; Jacob, Juliane; Koeberl, Christian

    2013-09-01

    Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within-crater and out-of-crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate-impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment-clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic-granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum-group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near-chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1-0.2% chondrite-equivalent.

  19. Minerals in fractures of the saturated zone from drill core USW G-4, Yucca Mountain, Nye County, Nevada

    SciTech Connect

    Carlos, B.A.

    1987-04-01

    The minerals in fractures in drill core USW G-4, from the static water level (SWL) at 1770 ft to the base of the hole at 3000 ft, were studied to determine their identity and depositional sequence and to compare them with those found above the SWL in the same drill hole. There is no change in mineralogy or mineral morphology across the SWL. The significant change in mineralogy and relationship to the host rock occurs at 1381 ft, well above the present water table. Below 1381 ft clinoptilolite appears in the fractures and rock matrix instead of heulandite, and the fracture mineralogy correlates with the host rock mineralogy. Throughout most of the saturated zone (below the SWL) in USW G-4, zeolites occur in fractures only in zeolitic tuff; however, zeolites persist in fracture below the base of the deepest zeolitic tuff interval. Nonzeolitic intervals of tuff have fewer fractures, and many of these have no coatings; a few have quartz and feldspar coatings. One interval in zeolitic tuff (2125-2140 ft) contains abundant crisobalite coatings in the fractures. Calcite occurs in fractures from 2575 to 2660 ft, usually with the manganese mineral hollandite, and from 2750 to 2765 ft, usually alone. Manganese minerals occur in several intervals. The spatial correlation of zeolites in fractures with zeolitic host rock suggests that both may have been zeolitized at the same time, possibly by water moving laterally through more permeable zones in the tuff. The continuation of zeolites in fractures below the lowest zeolitic interval in this hole suggests that vertical fracture flow may have been important in the deposition of these coatings. Core from deeper intervals in another hole will be examined to determine if that relationship continues. 17 refs., 19 figs.

  20. Early Miocene Antarctic glacial history: new insights from heavy mineral analysis from ANDRILL AND-2A drill core sediments

    NASA Astrophysics Data System (ADS)

    Iacoviello, Francesco; Giorgetti, Giovanna; Turbanti Memmi, Isabella; Passchier, Sandra

    2015-04-01

    The present study deals with heavy mineral analysis of late Early Miocene marine sediments recovered in the McMurdo Sound region (Ross Sea, Antarctica) during the ANDRILL—SMS Project in 2007. The main objective is to investigate how heavy mineral assemblages reflect different source rocks and hence different provenance areas. These data contribute to a better understanding of East Antarctica ice dynamics in the Ross Sea sector during the Early Miocene (17.6-20.2 Ma), a time of long-term global warming and sea level rise. The AND-2A drill core recovered several stratigraphic intervals that span from Early Miocene to Pleistocene and it collected a variety of terrigenous lithologies. The heavy mineral assemblages of the lower 650-m-thick sedimentary succession were analyzed through SEM observations and SEM-EDS microanalyses on heavy mineral grains. The heavy mineral analysis shows that the sediments are a mix of detritus dominated by McMurdo Volcanic Group sources most likely located in the present-day Mount Morning area (Proto-Mount Morning) with minor contribution from Transantarctic Mountains source rocks located west of the drill site. The heavy mineral assemblages in Interval 1 indicate that between 20.2 and 20.1 Ma, the grounding line of the ice sheet advanced to a position near the present-day Mount Morning volcanic center. During deposition of Interval 2 (20.1-19.3 Ma), the ice sheet most likely experienced a dynamic behavior with interval of ice advance alternating with periods of ice retreat, while Interval 3 (19.3-18.7 Ma) records further retreat to open water conditions. A dynamic behavior is noted in Interval 4 (18.7-17.6 Ma) with a decreasing contribution of materials derived from the basalts of the Mount Morning volcanic center located to the south of the drill site and a consequent increasing contribution of materials derived from the Transantarctic Mountains to the west of the drill site.

  1. Cretaceous shallow drilling, U.S. Western Interior: Core research. Final technical report

    SciTech Connect

    Arthur, M.A.

    1998-07-08

    The primary objective of the project is to construct a subsurface transect of Cretaceous strata that were deposited in the Kansas-Colorado-Utah corridor, going from marine sequences that contain organic-carbon-rich hydrocarbon source rocks in Kansas and eastern Colorado to nearshore coal-bearing units in western Colorado and Utah. The drilling transect will provide continuous, unweathered samples for inorganic, organic, and isotopic geochemical studies and mineralogical investigations to determine the characteristics of hydrocarbon source rocks. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient. In addition, the eastern Colorado hole will provide characteristics of an important fractured reservoir (the Pierre Shale) in the Florence oil field, the oldest continuously producing field in the United States (>100 years; 600 wells; >14 Mbbls).

  2. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    USGS Publications Warehouse

    Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition

  3. Dynamics of the late Plio-Pleistocene West Antarctic Ice Sheet documented in subglacial diamictites, AND-1B drill core

    NASA Astrophysics Data System (ADS)

    Cowan, Ellen A.; Christoffersen, Poul; Powell, Ross D.; Talarico, Franco M.

    2014-08-01

    Geologic studies of sediment deposited by glaciers can provide crucial insights into the subglacial environment. We studied muddy diamictites in the ANtarctic geological DRILLing (ANDRILL) AND-1B drill core, acquired from beneath the Ross Ice Shelf in McMurdo Sound, with the aim of identifying paleo-ice stream activity in the Plio-Pleistocene. Glacial advances were identified from glacial surfaces of erosion (GSEs) and subglacial diamictites within three complete sequences were investigated using lithofacies associations, micromorphology, and quartz sand grain microtextures. Whereas conditions in the Late Pliocene resemble the modern Greenland Ice Sheet where fast flowing glaciers lubricated by surface meltwater terminate directly in the sea (interval 201-212 mbsl) conditions in the Late Pleistocene are similar to modern West Antarctic Ice Sheet (WAIS) ice streams (38-49 mbsl). We identify the latter from ductile deformation and high pore-water pressure, which resulted in pervasive rotation and formation of till pellets and low relief, rounded sand grains dominated by abrasion. In the transitional period during the Mid-Pleistocene (55-68 mbsf), a slow moving inland ice sheet deposited tills with brittle deformation, producing lineations and bi-masepic and unistrial plasma fabric, along with high relief, conchoidally fractured quartz grains. Changes in the provenance of gravel to cobble-size clasts support a distant source area of Byrd Glacier for fast-flowing paleo-ice streams and a proximal area between Darwin and Skelton Glaciers for the slow-moving inland ice sheet. This difference in till provenance documents a shift in direction of glacial flow at the core site, which indirectly reflects changes in the size and thickness of the WAIS. Hence, we found that fast ice streaming motion is a consequence of a thicker WAIS pushing flow lines to the west and introducing clasts from the Byrd Glacier source area to the drill site. The detailed analysis of diamictites in

  4. Visible-near infrared point spectrometry of drill core samples from Río Tinto, Spain: results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling exercise.

    PubMed

    Sutter, Brad; Brown, Adrian J; Stoker, Carol R

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  5. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  6. Petrography of Archean Spherule Layers from the CT3 Drill Core, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Hoehnel, D.; Reimold, W. U.; Mohr-Westheide, T.; Hofmann, A.; Altenberger, U.

    2016-08-01

    One of the major questions to be addressed in the core CT3 from the northeastern Barberton Greenstone Belt in South Africa is about the actual number of impact events represented by the 17 spherule layers over a stratigraphic interval of 150 m.

  7. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Keith, T. E. C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface ( in situ temperatures ranging from 81 to 199°C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The δ 18O values of the thirty-two analyzed silica samples (quartz, chalcedony, α-cristobalite, and β-cristobalite) range from -7.5 to +2.8‰ . About one third of the silica 7samples have δ 18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7‰) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have δ 18O values higher (by 3.5 to 7.9‰) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with

  8. Petrography of the Suevite-like Depth Interval (1397-1550 m) in Drill Core Eyreville-B, Chesapeake Bay Impact Structure, USA

    NASA Astrophysics Data System (ADS)

    Wittmann, A.; Reimold, W. U.; Hansen, B.; Kenkmann, T.

    2008-03-01

    A sub-division of suevite-like deposits in a drill core through the Chesapeake Bay impact structure based on component-size distribution and petrography suggests a gradation from groundsurge to fallback within the first ~6 minutes after impact.

  9. Interstitial water studies on small core samples, Deep Sea Drilling Project, Leg 3

    USGS Publications Warehouse

    Manheim, F. T.; Chan, K.M.; Kerr, D.; Sunda, W.

    1970-01-01

    Eleven samples of fluids which had been squeezed on board ship, and four, packaged sediment samples were received in our laboratories. As in Leg 2, the volumes of fluid available were scanty and did not permit multiple determinations of constituents in many of the samples; in Hole 21 the fluid available sufficed only for refractometer readings (a few tenths of a milliliter). Therefore, analytical scatter is again responsible for partially obscuring variations (and constancy) in the conservative constituents such as sodium. However, on the whole the results confirm the features which appeared in Legs 1 and 2. Central oceanic sediments display a remarkable constancy in total salinity, chlorinity and sodium concentration to the greatest depths and ages yet penetrated in the project drillings. Variations attributable to postburial reactions do occur in the remaining major ions, but they usually show little systematic trend with depth--with the exception of potassium, which will be discussed later. Methods remain similar to those employed for Leg 2; the detailed techniques are now being prepared for submission, but a brief description may be obtained from the previous Leg reports (Manheim and Sayles, 1969; Chan and Manheim, 1970). Results from four unsqueezed samples are not complete and, therefore, do not appear here.

  10. Magnetic properties of drill core and surface samples from the Calico Hills area, Nye County, Nevada

    USGS Publications Warehouse

    Baldwin, M.J.; Jahren, C.E.

    1982-01-01

    The interpretation of the aeromagnetic survey of the Calico Hills area of the Nevada Test Site, Nye County, Nevada, required the determination of magnetic properties of rocks exposed in the region. Eighty-two samples representing a variety of units found at the surface show that most rocks in the Calico Hills, other than parts of the Eleana Formation, are relatively nonmagnetic. The magnetic vector of the Eleana Formation at the surface was found to point northward and downward. Remanence directions were scattered, but a remanence azimuth of 16? east of north was assigned on the basis of present-day declination. Measurements of 123 samples of the Eleana Formation from the exploratory drill hole UE25a-3 indicate that some facies are strongly magnetic. The average total magnetization of the argillite samples is 3.89 A/m (0.00389 emu). These samples have an average natural remanent inclination of 76?. Results of demagnetization demonstrated that this relatively high inclination is due, at least in part, to a soft vertical component of remanent magnetization. The magnitude of the component could not be determined. Further tests showed that the tendency to pick up a soft component of magnetism may be a function of rock type. Inhomogeneity of the Eleana argillite was probably the cause of some differences in remanence values between large and small samples from the same depth.

  11. Effects of fluids on faulting within active fault zones - evidence from drill core samples recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling project

    NASA Astrophysics Data System (ADS)

    Janssen, C.; Wirth, R.; Kienast, M.; Morales, L. G.; Rybacki, E.; Wenk, H.; Dresen, G. H.

    2011-12-01

    Low temperature microstructures observed in samples from SAFOD drill cores indicate fluid-related deformation and chemical reactions occurring simultaneously and interacting with each other. Transmission Electron Microscopy (TEM) observations, document open pores that formed in-situ during or after deformation. In TEM images, many pores with high aspect ratio appear to be unconnected. They were possibly filled with formation water and/or hydrothermal fluids suggesting that elevated pore fluid pressure exist in the fault gouge, preventing pore collapse. The chemical influence of fluids on mineralogical alteration and geomechanical processes in fault rocks is visible in pronounced dissolution-precipitation processes (stylolites, solution seams) as well as in the formation of new phases. Detrital quartz and feldspar grains are partially dissolved and replaced by authigenic illite-smectite (I-S) mixed-layer clay minerals. TEM imaging of these grains reveals that the alteration processes initiated within pores and small intra-grain fissures. In few samples syntectonic fluid-assisted overgrowth of chlorite-rich films on slickensides partly replaced sedimentary quartz grains. Quartz and feldspar grains are partially dissolved with sutured boundaries. Newly-formed phyllosilicates are illite-smectite phases, Mg-rich smectites and chlorite minerals. They are very fine-grained (down to 20 nm) and nucleate at grain surfaces (interfaces), which in many cases are pore or fracture walls. These relatively straight or curved crystals grow into open pore spaces and fractures. They are arranged in a card-house fabric with open pore spaces between the flakes. Locally, clay flakes are bent, folded or show sigmoidal shapes indicating that they were involved in faulting. The clay particles do not show a preferred shape orientation. The predominantly random orientation distribution of the clay minerals was confirmed by x-ray synchrotron texture analysis. Pole figures show very weak

  12. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  13. Salton Sea Scientific Drilling Program

    USGS Publications Warehouse

    Sass, J.H.

    1988-01-01

    The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths  (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation. 

  14. Preliminary results of coal exploratory drilling in the Book Cliffs coal region, Garfield County, Colorado, and Grand County, Utah

    USGS Publications Warehouse

    Gualtieri, James Louis

    1979-01-01

    Four holes were drilled in the Book Cliffs coal region of Garfield County, Colorado and Grand County, Utah to provide coal core samples suitable for analysis and stratigraphic information about coal-bearing strata. Three of the holes were completed; the fourth remains to be completed; a fifth is planned. A total of 1,693 feet (515 m) of pilot-hole rotary drilling and 843 feet (257 m) of core drilling was done. Mechanical and geophysical logs of the first, third, and fourth pilot holes were made; only the upper part of the second hole, which was almost entirely cored, was logged. Most of the cored rock is from the coal-bearing Neslen Formation and almost all of it is carbonaceous to some degree. Lithologies of the rotaried intervals are shown in the accompanying plate and were interpreted from geophysical logs and cuttings.

  15. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-01-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  16. New drilling of the early Aptian OAE1a: the Cau core (Prebetic Zone, south-eastern Spain)

    NASA Astrophysics Data System (ADS)

    Alejandro Ruiz-Ortiz, Pedro; Castro, José Manuel; de Gea, Ginés Alfonso; Jarvis, Ian; Molina, José Miguel; Nieto, Luis Miguel; Pancost, Richard David; Quijano, María Luisa; Reolid, Matías; Skelton, Peter William; Jürg Weissert, Helmut

    2016-08-01

    The Cretaceous was punctuated by several episodes of accelerated global change, defined as Oceanic Anoxic Events (OAEs), that reflect abrupt changes in global carbon cycling. The Aptian Oceanic Anoxic Event (OAE1a; 120 Ma) represents an excellent example, recorded in all major ocean basins, and associated with massive burial of organic matter in marine sediments. The OAE1a is concomitant with the "nannoconid crisis", which is characterized by a major biotic turnover, and a widespread demise of carbonate platforms. Many studies have been published over the last decades on OAE1a's from different sections in the world, and provide a detailed C-isotope stratigraphy for the event. Nevertheless, new high-resolution studies across the event are essential to shed light on the precise timing and rates of the multiple environmental and biotic changes that occurred during this critical period of Earth history. Here we present a new drill core recovering an Aptian section spanning the OAE1a in southern Spain. The so-called Cau section was drilled in the last quarter of 2015. The Cau section is located in the easternmost part of the Prebetic Zone (Betic Cordillera), which represents platform deposits of the southern Iberian palaeomargin. The lower Aptian deposits of the Cau section belong to a hemipelagic unit (Almadich Formation), deposited in a highly subsident sector of the distal parts of the Prebetic Platform. Previous work on the early Aptian of the Cau succession has focused on stratigraphy, bioevents, C-isotope stratigraphy, and organic and elemental geochemistry. A more recent study based on biomarkers has presented a detailed record of the pCO2 evolution across the OAE1a (Naafs et al., 2016). All these studies reveal that the Cau section represents an excellent site to further investigate the OAE1a, based on its unusually high sedimentation rate and stratigraphic continuity, the quality and preservation of fossils, and the well-expressed geochemical signatures.

  17. Tephrochronology of the East African Baringo-Tugen Hills Cores: Hominin Sites and Paleolakes Drilling Project (HSPDP)

    NASA Astrophysics Data System (ADS)

    Garello, D.; Deino, A. L.; Campisano, C. J.; Kingston, J.; Arrowsmith, R.; Hill, A.

    2015-12-01

    The Baringo/Tugen Hills basin (BTB) in central Kenya is one of five Hominin Sites and Paleolakes Drilling Project (HSPDP) localities targeting lacustrine sediments associated with key fossil hominin sites. The fossiliferous Plio-Pliestocene Chemeron Formation, within the BTB, contains geochemically analyzed outcrop tephras, 8 of which have 40Ar/39Ar dates of 3.2-2.35Ma. Tephras have been crucial in developing chronologies in human evolution, paleontology, archaeology, and rift basin development. The HSPDP paleo-lake cores provide a high resolution and continuous record of sedimentation, as well as additional tephras not found in outcrop. For BTB, approximately 20 vitric tephras have been logged in the cores, including several previously unobserved tephras, providing a more complete record of volcanic activity. Major element geochemical analyses of the BTB tephras collected from the cores are critical for establishing chronostratigraphic links to the outcrop stratigraphy of the Chemeron Formation, as well as correlations outside of BTB. The Chemeron Formation, composed of alternating fluvial and lacustrine sediments, is associated with the onset and intensification of the Cenozoic Northern Hemisphere glaciation and encompasses the period of great hominin diversification of Paranthropus and Homo, as well as the earliest evidence for stone toolmaking. Within the Chemeron stratigraphy, there are sequences of diatomites that record a 23kyr-processional periodicity indicating a dominant climatic forcing. By correlating the BTB tephras, and thereby the BTB climate-forced lacustrine cycles, with other East African rift basins' stratigraphy, we can determine if this climatic wet/dry pattern observed at BTB had occurred in other East African rift basins. This knowledge can help in understanding the influence of climate and tectonics on the evolution of hominins during the Plio-Pleistocene.

  18. Multiple Small Diameter Drillings Increase Femoral Neck Stability Compared with Single Large Diameter Femoral Head Core Decompression Technique for Avascular Necrosis of the Femoral Head.

    PubMed

    Brown, Philip J; Mannava, Sandeep; Seyler, Thorsten M; Plate, Johannes F; Van Sikes, Charles; Stitzel, Joel D; Lang, Jason E

    2016-10-26

    Femoral head core decompression is an efficacious joint-preserving procedure for treatment of early stage avascular necrosis. However, postoperative fractures have been described which may be related to the decompression technique used. Femoral head decompressions were performed on 12 matched human cadaveric femora comparing large 8mm single bore versus multiple 3mm small drilling techniques. Ultimate failure strength of the femora was tested using a servo-hydraulic material testing system. Ultimate load to failure was compared between the different decompression techniques using two paired ANCOVA linear regression models. Prior to biomechanical testing and after the intervention, volumetric bone mineral density was determined using quantitative computed tomography to account for variation between cadaveric samples and to assess the amount of bone disruption by the core decompression. Core decompression, using the small diameter bore and multiple drilling technique, withstood significantly greater load prior to failure compared with the single large bore technique after adjustment for bone mineral density (p< 0.05). The 8mm single bore technique removed a significantly larger volume of bone compared to the 3mm multiple drilling technique (p< 0.001). However, total fracture energy was similar between the two core decompression techniques. When considering core decompression for the treatment of early stage avascular necrosis, the multiple small bore technique removed less bone volume, thereby potentially leading to higher load to failure.

  19. Integrated Geologic, Hydrologic, and Geophysical Investigations of the Chesapeake Bay Impact Structure, Virginia, USA: A Multi-Agency Program

    NASA Technical Reports Server (NTRS)

    Gohn, G. S.; Bruce, T. S.; Catchings, R. D.; Emry, S. R.; Johnson, G. H.; Levine, J. S.; McFarland, E. R.; Poag, C. W.; Powars, D. S.

    2001-01-01

    The Chesapeake Bay impact structure is the focus of an ongoing federal-state-local research program. Recent core drilling and geophysical surveys address the formative processes and hydrogeologic properties of this major "wet-target" impact. Additional information is contained in the original extended abstract.

  20. Interstitial water studies on small core samples, Deep Sea Drilling Project: Leg 10

    USGS Publications Warehouse

    Manheim, Frank T.; Sayles, Fred L.; Waterman, Lee S.

    1973-01-01

    Leg 10 interstitial water analyses provide new indications of the distribution of rock salt beneath the floor of the Gulf of Mexico, both confirming areas previously indicated to be underlain by salt bodies and extending evidence of salt distribution to seismically featureless areas in the Sigsbee Knolls trend and Isthmian Embayment. The criterion for presence of salt at depth is a consistent increase in interstitial salinity and chlorinity with depth. Site 86, on the northern margin of the Yucatan Platform, provided no evidence of salt at depth. Thus, our data tend to rule out the suggestion of Antoine and Bryant (1969) that the Sigsbee Knolls salt was squeezed out from beneath the Yucatan Scarp. Cores from Sites 90 and 91, in the central Sigsbee Deep, were not obtained from a great enough depth to yield definite evidence for the presence of buried salt.

  1. Interstitial water studies on small core samples, Deep Sea Drilling Project, Leg 8

    USGS Publications Warehouse

    Manheim, F. T.; Sayles, F.L.

    1971-01-01

    Leg 8 sites are dominated by siliceous-calcareous biogenic oozes having depositional rates of 0.1 to 1.5 cm/1000 years. Conservative constituents of pore fluids showed, as have cores from other pelagic areas of the Pacific, insignificant or marginally significant changes with depth and location. However, in Sites 70 and 71, calcium, magnesium and strontium showed major shifts in concentration with depth. These changes appear to be related to recrystallization phenomena in skeletal debris of nannoplankton and to the relative accumulation rate of the sediments. The chemical anomalies increase relatively smoothly with depth, demonstrating the effectiveness of vertical diffusional communication, and apparent lack of bulk fluid movement, as noted in Leg 7 and other sites.

  2. Description of drill-hole VIIIV core from the Jabiluka unconformity-type uranium deposit, Northern Territory, Australia

    SciTech Connect

    Nutt, C.J.

    1984-01-01

    The Jabiluka unconformity-type uranium deposit is one of four large unconformity-type deposits in the Alligator Rivers Uranium Field in the eastern part of the Pine Creek geosyncline, Northern Territory, Australia. These unconformity-type uranium deposits occur as veins, disseminations, and breccia matrix in metasedimentary rocks of the Lower Proterozoic Cahill Formation and are near a regional unconformity that separates the Cahill from the sedimentary rocks of the Middle Proterozoic Kombolgie Formation. The study of unconformity-type deposits - a new type of uranium deposit typified by deposits discovered in the past 15 years in Australia and Canada - is part of the US Geological Survey uranium program; funding was also provided by the US Department of Energy National Uranium Resource Evaluation (NURE) program. Pancontinental Mining Limited kindly gave us access to Jabiluka core and made their geological and geophysical data available for inclusion in our reports. Data and interpretations from the mineralogy and stratigraphy of Jabiluka should aid in defining characteristics and setting of these world class deposits and guide exploration for similar deposits in the United States. 3 refs., 6 figs., 1 tab.

  3. Constraints on magma ascent, emplacement, and eruption: geochemical and mineralogical data from drill-core samples at Obsidian dome, Inyo chain, California

    SciTech Connect

    Vogel, T.A.; Younker, L.W.; Schuraytz, B.C.

    1987-05-01

    Systematic chemical and mineralogical variability occurs in samples from drill holes through Obsidian dome, the conduit to the dome, and a nearby associated feeder dike. The drill-hole samples from the margins of the conduit and most of the lower part of the dome are high-Ba, low-silica rhyolites; they contain two populations of phenocrysts and represent commingled magmas, whereas samples from the dike and upper parts of the dome are low-Ba, higher silica rhyolites that do not reflect commingled magmas. Samples from the center of the conduit are low-Ba, higher silica rhyolites that are only slightly mixed. A major part of the variability within the drill-core samples of the dome and conduit reflects the juxtaposition and commingling of two distinct magmas during their passage through the conduit.

  4. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect

    Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

    2002-07-24

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells.

  5. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites.

    PubMed

    Bello, Dhimiter; Wardle, Brian L; Zhang, Jie; Yamamoto, Namiko; Santeufemio, Christopher; Hallock, Marilyn; Virji, M Abbas

    2010-01-01

    This work investigated exposures to nanoparticles and nanofibers during solid core drilling of two types of advanced carbon nanotube (CNT)-hybrid composites: (1) reinforced plastic hybrid laminates (alumina fibers and CNT); and (2) graphite-epoxy composites (carbon fibers and CNT). Multiple real-time instruments were used to characterize the size distribution (5.6 nm to 20 microm), number and mass concentration, particle-bound polyaromatic hydrocarbons (b-PAHs), and surface area of airborne particles at the source and breathing zone. Time-integrated samples included grids for electron microscopy characterization of particle morphology and size resolved (2 nm to 20 microm) samples for the quantification of metals. Several new important findings herein include generation of airborne clusters of CNTs not seen during saw-cutting of similar composites, fewer nanofibers and respirable fibers released, similarly high exposures to nanoparticles with less dependence on the composite thickness, and ultrafine (< 5 nm) aerosol originating from thermal degradation of the composite material.

  6. A shallow ice core re-drilled on the Dunde Ice Cap, western China: recent changes in the Asian high mountains

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu; Miyake, Takayuki; Nakazawa, Fumio; Narita, Hideki; Fujita, Koji; Sakai, Akiko; Nakawo, Masayoshi; Fujii, Yoshiyuki; Duan, Keqin; Yao, Tandong

    2009-10-01

    A 51 m deep ice core was re-drilled on the Dunde Ice Cap of western China in 2002, 15 years after the previous ice core drilling in 1987. Dating by seasonal variations in δ18O and particle concentration showed that this 51 m deep ice core covered approximately the last 150 years. The stratigraphy and density showed that more than 90% of the ice core was refrozen ice layers, which comprised less than 5% of the annual accumulation in the older core. This indicates that the ice cap had experienced a more intense melting since 1987, possibly due to climate warming in this region. Mean net accumulation since the last drilling (2002-1987) was 176 mm a-1, which was considerably smaller than that obtained from the 1987 core (390 mm a-1, 1987-1963), indicating a significant decrease of net accumulation on the ice cap in the more recent period. The δ18O record showed an increasing trend in the late 19th century and the highest in the 1950s, which is consistent with the previous core findings. However, there has been no significant increase in δ18O during the last two decades, in contrast to the warming trends suggested by the melt features and other climate records. This discrepancy may be due to the modification of δ18O records by melt water runoff, percolation, and refreezing on the ice cap. Results strongly suggest recent significant mass loss of glaciers in the Asian high mountains and serious shortage of water supply for local people in this arid region in the near future.

  7. Environmental Health Research Recommendations from the Inter-Environmental Health Sciences Core Center Working Group on Unconventional Natural Gas Drilling Operations

    PubMed Central

    Breysse, Patrick N.; Gray, Kathleen; Howarth, Marilyn; Yan, Beizhan

    2014-01-01

    Background: Unconventional natural gas drilling operations (UNGDO) (which include hydraulic fracturing and horizontal drilling) supply an energy source that is potentially cleaner than liquid or solid fossil fuels and may provide a route to energy independence. However, significant concerns have arisen due to the lack of research on the public health impact of UNGDO. Objectives: Environmental Health Sciences Core Centers (EHSCCs), funded by the National Institute of Environmental Health Sciences (NIEHS), formed a working group to review the literature on the potential public health impact of UNGDO and to make recommendations for needed research. Discussion: The Inter-EHSCC Working Group concluded that a potential for water and air pollution exists that might endanger public health, and that the social fabric of communities could be impacted by the rapid emergence of drilling operations. The working group recommends research to inform how potential risks could be mitigated. Conclusions: Research on exposure and health outcomes related to UNGDO is urgently needed, and community engagement is essential in the design of such studies. Citation: Penning TM, Breysse PN, Gray K, Howarth M, Yan B. 2014. Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on Unconventional Natural Gas Drilling Operations. Environ Health Perspect 122:1155–1159; http://dx.doi.org/10.1289/ehp.1408207 PMID:25036093

  8. A two century record of strontium isotopes from an ice core drilled at Mt Blanc, France

    NASA Astrophysics Data System (ADS)

    Burton, G. R.; Rosman, K. J. R.; Van de Velde, K. P.; Boutron, C. F.

    2006-08-01

    New techniques which allow small amounts of Sr to be reliably analysed [G.R. Burton, V.I. Morgan, C.F. Boutron, K.J.R. Rosman, High-sensitivity measurements of strontium isotopes in polar ice, Anal. Chim. Acta 469 (2002) 225-233] by TIMS (Thermal Ionisation Mass Spectrometry) have been used to measure the isotopic composition of Sr and the concentration of Rb and Sr at sub-nanogram per gram levels in a Mt Blanc snow and ice core. This two century time series of Sr isotopes is the first to be reported in an Alpine glacier. The Sr and Rb concentrations range from 3 ng/g to 20 pg/g and 1 ng/g to 10 pg/g, respectively, with higher concentrations evident in more recent times. This trend is consistent with that reported previously for other metals such as Cd, Cu and Zn [K. Van de Velde, C. Barbante, G. Cozzi, I. Moret, T. Bellomi, C. Ferrari, C. Boutron, Changes in the occurrence of silver, gold, platinum, palladium and rhodium in Mont Blanc ice and snow since the 18th century, Atmos. Environ. 34 (2000) 3117-3127; K. Van de Velde, C. Boutron, C. Ferrari, T. Bellomi, C. Barbante, S. Rudnev, M. Bolshov, Seasonal variations of heavy metals in the 1960s Alpine ice: sources versus meteorological factors, Earth Planet. Sci. Lett. 164 (1998) 521-533; K.J.R. Rosman, C. Ly, K. Van de Velde, C.F. Boutron, A two century record of lead isotopes in high altitude Alpine snow and ice, Earth Planet. Sci. Lett. 176 (2000) 413-424]. The 87Sr/ 86Sr ratios vary between 0.7020 and 0.7176 and display relatively larger variations in recent times which have been attributed to seasonal variations made evident by the increased sampling resolution available at shallower depths. No change with time is evident in this ratio which has a mean value of ˜ 0.712 and is similar to Glacial ice at Summit Greenland, suggesting that aerosols reaching Mt Blanc represent the same mixture of sources. Also, anthropogenic sources would appear to have the same isotopic ratio. The presence of Saharan dust in some

  9. Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs

    NASA Astrophysics Data System (ADS)

    Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists

    2010-12-01

    For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful joidesresolution.org website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after

  10. Drill Core Mineral Analysis by Means of the Hyperspectral Imaging Spectrometer HySpex, XRD and Asd in Proximity of the MÝTINA Maar, Czech Republic

    NASA Astrophysics Data System (ADS)

    Koerting, F.; Rogass, C.; Kaempf, H.; Lubitz, C.; Harms, U.; Schudack, M.; Kokaly, R.; Mielke, C.; Boesche, N.; Altenberger, U.

    2015-12-01

    Imaging spectroscopy is increasingly used for surface mapping. Therefore different expert systems are being utilized to identify surface cover materials. Those expert systems mainly rely on the spectral comparison between unknown and library spectra, but their performances were only limited qualified. This study aims on the comparative analysis of drill core samples from the recently discovered maar system in the Czech Republic. Drill core samples from the surrounding area of the Mýtina maar were analyzed by X-Ray diffraction (XRD) and the hyperspectral spectrometer HySpex. Additionally, soil samples were measured in-situ by the ASD FieldSpec4 and in the laboratory by the HySpex VNIR/SWIR spectrometer system. The data was then analyzed by the MICA-algorithm and the results were compared to the results of the XRD -analysis. The XRD-analysis served here as validation basis. The results of the hyperspectral and the XRD analyses were used to densify a volcanic map that also integrates in-situ soil measurements in the surrounding area of Mýtina. The comparison of the XRD- and solaroptical remote sensing results showed a good correlation of qualified minerals if the soil organic carbon content was significantly low. Contrary to XRD, smectites and muscovites were also straightforward identified that underlines the overall performance of the approach to identify minerals. Basically, in this work an operable approach is proposed that enables the fast, repeatable and detailed analysis of drill cores, drill core samples and soil samples and, hence, provides a higher performance than state-of-the-art XRD-analyses.

  11. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331).

    PubMed

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H; Moyer, Craig L; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu.

  12. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331)

    PubMed Central

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M.; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H.; Moyer, Craig L.; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J.; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628

  13. Drill, Baby, Drill

    ERIC Educational Resources Information Center

    Kerkhoff, Todd

    2009-01-01

    School fire drills are quickly becoming insignificant and inconvenient to school administrators. When the time for the monthly fire drill rolls around, it is often performed with a "let's get this over with" attitude. Although all schools conduct fire drills, seldom do they effectively train students and staff members how to respond in a real…

  14. Summary of micrographic analysis of fracture coating phases on drill cores from Pahute Mesa, Nevada Test Site. Revision 1

    SciTech Connect

    1998-12-01

    The flow path between Pahute Mesa and the groundwater discharge area in Oasis Valley (approximately 18 miles to the southwest) is of concern due to the relatively short travel distance between a recharge area where underground nuclear testing has been conducted and the off-site water users. Groundwater flow and transport modeling by IT Corporation (IT) has shown rapid tritium transport in the volcanic rock aquifers along this flow path. The resultant estimates of rapid transport were based on water level data, limited hydraulic conductivity data, estimates of groundwater discharge rates in Oasis Valley, assumed porosities, and estimated retardation rates. Many of these parameters are poorly constrained and may vary considerably. Sampling and analytical techniques are being applied as an independent means to determine transport rates by providing an understanding of the geochemical processes that control solute movement along the flow path. As part of these geochemical investigations, this report summarizes the analysis of fracture coating mineral phases from drill core samples from the Pahute mesa area of the Nevada Test Site (NTS). Archived samples were collected based on the presence of natural fractures and on the types and abundance of secondary mineral phases present on those fracture surfaces. Mineral phases present along fracture surfaces are significant because, through the process of water-rock interaction, they can either contribute (as a result of dissolution) or remove (as a result of precipitation or adsorption) constituents from solution. Particular attention was paid to secondary calcite occurrences because they represent a potential source of exchangeable carbon and can interact with groundwater resulting in a modified isotopic signature and apparent water age.

  15. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  16. Formative Processes of a Sliding Zone in Pelitic Schist - Implications of Microscopic Analyses on High-quality Drilled Cores

    NASA Astrophysics Data System (ADS)

    Yamasaki, S.; Chigira, M.

    2009-04-01

    Pelitic schist has been known to be easily deformed by gravitational force to form characteristic topographic and geologic features, but little is known about how they develop. This is mainly due to the fact that deformed politic schist is so fragile that it could not be obtained from subsurface without disturbance. We analyzed high-quality undisturbed cores obtained by using a sophisticated drilling technique from two typical pelitic schist landslide sites in Japan. We made analyses on physical, chemical, mineralogical properties and observations from mesoscopic to microscopic rock textures of these cores and found that a special layering of rock-forming minerals determines the locations of shearing by gravity and that there is specific water-rock interaction processes in pelitic schist. Pelitic schist consists of thinly alternating beds of black layers and quartz-rich layers, and a black layer has numerous microscopic layers containing abundant pyrite and graphite grains (pyrite-graphite layers). Many of the black layers were observed to have microfractures connected to open cracks, suggesting that relatively thick, continuous black layers are easily sheared to form an incipient sliding layer. Thus unevenly distributed pyrite-graphite layers likely to determine the potential location of microscopic slip in a rock mass. Shear displacement along black layers occurs unevenly, depending upon the microscopic heterogeneity in mineral composition as well as undulating shape of the layers. Open micro-cracks nearly perpendicular to the schistosity were commonly observed in quartz-rich layers in contact with black layers, suggesting that the shearing occurred with heterogeneous displacements along the black layer and that it occurred under the low confining pressure. This is in the incipient stage of a fracture zone. When shearing occurs along two thick neighboring black layers, the rock in between would be fractured, rotated and pulverized. In some cases, quartz

  17. Evolution of fluid-rock interaction in the Reykjanes geothermal system, Iceland: Evidence from Iceland Deep Drilling Project core RN-17B

    NASA Astrophysics Data System (ADS)

    Fowler, Andrew P. G.; Zierenberg, Robert A.; Schiffman, Peter; Marks, Naomi; Friðleifsson, Guðmundur Ómar

    2015-09-01

    We describe the lithology and present spatially resolved geochemical analyses of samples from the hydrothermally altered Iceland Deep Drilling Project (IDDP) drill core RN-17B. The 9.3 m long RN-17B core was collected from the seawater-dominated Reykjanes geothermal system, located on the Reykjanes Peninsula, Iceland. The nature of fluids and the location of the Reykjanes geothermal system make it a useful analog for seafloor hydrothermal processes, although there are important differences. The recovery of drill core from the Reykjanes geothermal system, as opposed to drill cuttings, has provided the opportunity to investigate evolving geothermal conditions by utilizing in-situ geochemical techniques in the context of observed paragenetic and spatial relationships of alteration minerals. The RN-17B core was returned from a vertical depth of ~ 2560 m and an in-situ temperature of ~ 345 °C. The primary lithologies are basaltic in composition and include hyaloclastite breccia, fine-grained volcanic sandstone, lithic breccia, and crystalline basalt. Primary igneous phases have been entirely pseudomorphed by calcic plagioclase + magnesium hornblende + chlorite + titanite + albitized plagioclase + vein epidote and sulfides. Despite the extensive hydrothermal metasomatism, original textures including hyaloclastite glass shards, lithic clasts, chilled margins, and shell-fragment molds are superbly preserved. Multi-collector LA-ICP-MS strontium isotope ratio (87Sr/86Sr) measurements of vein epidote from the core are consistent with seawater as the dominant recharge fluid. Epidote-hosted fluid inclusion homogenization temperature and freezing point depression measurements suggest that the RN-17B core records cooling through the two-phase boundary for seawater over time to current in-situ measured temperatures. Electron microprobe analyses of hydrothermal hornblende and hydrothermal plagioclase confirm that while alteration is of amphibolite-grade, it is in disequilibrium

  18. Miocene Antarctic ice dynamics in the Ross Embayment (Western Ross Sea, Antarctica): Insights from provenance analyses of sedimentary clasts in the AND-2A drill core

    NASA Astrophysics Data System (ADS)

    Cornamusini, Gianluca; Talarico, Franco M.

    2016-11-01

    A detailed study of gravel-size sedimentary clasts in the ANDRILL-2A (AND-2A) drill core reveals distinct changes in provenance and allows reconstructions to be produced of the paleo ice flow in the McMurdo Sound region (Ross Sea) from the Early Miocene to the Holocene. The sedimentary clasts in AND-2A are divided into seven distinct petrofacies. A comparison of these with potential source rocks from the Transantarctic Mountains and the coastal Southern Victoria Land suggests that the majority of the sedimentary clasts were derived from formations within the Devonian-Triassic Beacon Supergroup. The siliciclastic-carbonate petrofacies are similar to the fossiliferous erratics found in the Quaternary Moraine in the southern McMurdo Sound and were probably sourced from Eocene strata that are currently hidden beneath the Ross Ice Shelf. Intraformational clasts were almost certainly reworked from diamictite and mudstone sequences that were originally deposited proximal to the drill site. The distribution of sedimentary gravel clasts in AND-2A suggests that sedimentary sequences in the drill core were deposited under two main glacial scenarios: 1) a highly dynamic ice sheet that did not extend beyond the coastal margin and produced abundant debris-rich icebergs from outlet glaciers in the central Transantarctic Mountains and South Victoria Land; 2) and an ice sheet that extended well beyond the coastal margin and periodically advanced across the Ross Embayment. Glacial scenario 1 dominated the early to mid-Miocene (between ca. 1000 and 225 mbsf in AND-2A) and scenario 2 the early Miocene (between ca. 1138 and 1000 mbsf) and late Neogene to Holocene (above ca. 225 mbsf). This study augments previous research on the clast provenance and highlights the added value that sedimentary clasts offer in terms of reconstructing past glacial conditions from Antarctic drill core records.

  19. Attitude, movement history, and structure of cataclastic rocks of the Flemington Fault results of core drilling near Oldwick, New Jersey

    USGS Publications Warehouse

    Burton, W.C.; Ratcliffe, N.M.

    1985-01-01

    In the summer of 1983, two holes were drilled through the border fault of the Newark basin near Oldwick, New Jersey, in the Gladstone 7.5minute quadrangle. Figure 1A shows the location of the drill site in relation to regional geology and the major faults. The fault drilled in this study connects to the south with the Flemington fault, which trends southwestward across the Newark basin, as shown. To the north, the fault can be traced along the valley that extends towards Mendham, N. J., beyond the limits of exposed Mesozoic rocks, to connect with the Ramapo fault near Morristown N. J. (fig. 1A; Ratcliffe, 1980). For this reason, we use the name "Flemington" for the border fault in the region of the drill site. A detailed map (fig. 1B) shows the local geology along the border fault from Pottersville, N. J. southward to the axis of the Oldwick syncline.

  20. Paleogene and Cretaceous sediment cores from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1-5

    NASA Astrophysics Data System (ADS)

    Pearson, Paul N.; Nicholas, Christopher J.; Singano, Joyce M.; Bown, Paul R.; Coxall, Helen K.; van Dongen, Bart E.; Huber, Brian T.; Karega, Amina; Lees, Jackie A.; Msaky, Emma; Pancost, Richard D.; Pearson, Marion; Roberts, Andrew P.

    2004-05-01

    Initial results of scientific drilling in southern coastal Tanzania are described. A total of five sites was drilled (mostly using continuous coring) by the Tanzania Drilling Project for paleoclimate studies. The sediments are predominantly clays and claystones deposited in a deep marine shelf environment and often contain excellently preserved microfossils suitable for geochemical analysis. The studies reported here include summaries of the lithostratigraphy, biostratigraphy (planktonic foraminifers, calcareous nannofossils, benthic foraminifers, and palynology), magnetostratigraphy, and organic geochemistry. TDP Site 1 was drilled near Kilwa Masoko airstrip (8°54.516 'S, 39°30.397 'E). It yielded 8.55 m of barren blue-grey clays that may be Miocene in age, followed by 1.2 m of greenish-black to dark greenish-grey clay probably of the same age. The remainder of the hole cored 62.35 m of lower Oligocene sediments (nannofossil Zone NP23), which are predominantly greenish-black to dark greenish-grey clays. Total penetration was 74.10 m. The coring represents the first report of a thick Oligocene clay formation in the area. TDP Site 2 was drilled near Kilwa Masoko prison (8°55.277 'S, 39°30.219 'E). It yielded 92.78 m of predominantly dark greenish-grey clay with occasional allochthonous limestone beds that consist mostly of redeposited larger foraminifers. The site encompasses lower to middle Eocene planktonic foraminifer Zones P8/9 to P11 and nannofossil Subzones NP14b to NP15c. It encompasses a rarely cored interval across the Ypresian-Lutetian transition. TDP Site 3 was drilled near Mpara in the Kilwa area (8°51.585 'S, 39°27.655 'E). It yielded 56.4 m of predominantly dark greenish-grey clays and claystones. The site is assigned to lower Eocene planktonic foraminifer Zone P6 and nannofossil Zone NP11. TDP Site 4 was drilled near Ras Tipuli on the northwest side of Lindi creek (9°56.999 'S, 39°42.985 'E). It yielded 19.8 m of predominantly dark greenish

  1. Archean spherule classification of CT3 drill core, Barberton Greenstone Belt (South Africa) based on petrography and mineral chemistry

    NASA Astrophysics Data System (ADS)

    Ozdemir, Seda; Koeberl, Christian; Mohr-Westheide, Tanja; Reimold, W. Uwe; Hofmann, Axel

    2016-04-01

    The impact history of the Early Archean Earth is not well documented. The oldest known impact structure is about 2 Ga years old; impact-related signatures in Precambrian rocks are scarce. The possible impact signature might be the Archean spherule layers that occur in the Barberton Greenstone Belt (BGB), Kaapvaal Craton, South Africa, and in the Pilbara Craton Western Australia, with ages of 3.2-3.4 and around 2.5 Ga [1]. These spherules were interpreted as impact-generated and ballistically emplaced silicate melt droplets [2]. This study is focused on petrographic and mineralogical characteristics from a set of newly drilled Archean spherule layers in drill core CT3 from the northeastern part of the BGB. The investigation of the three main intervals (A, B, and C, which include 2, 13, and 2 individual spherule layers, respectively) within CT3, contains the classification of spherules based on their shapes, textural features, deformation types, and mineral content. All of the intervals show spherule variation in those features. Therefore, the classification helps to understand if the spherules underwent processes such as tectonic deformation or if multiple impact events occurred in the area, which both might a reason of spherule layer duplications. The aim of the work is to differentiate various spherule types and the groundmasses in which they are embedded. The spherules within 17 identified spherule layers have been examined by optical microscopy (polarized and reflected) and secondary electron microscopy and were classified by shape and textural features. Subsequently, mineral phases and the chemical composition of the spherules and their matrices were investigated by using electron microprobe analysis. Regarding the shapes of the spherules they were divided into two main groups: undeformed and deformed. Undeformed spherules have spherical to ovoid as well as tear-drop shapes; deformed spherules were further subdivided into three main groups; flattened, crushed

  2. Crystallization history of Kilauea Iki lava lake as seen in drill core recovered in 1967-1979

    USGS Publications Warehouse

    Helz, R.T.

    1980-01-01

    Kilauea Iki lava lake formed during the 1959 summit eruption, one of the most picritic eruptions of Kilauea Volcano in the twentieth century. Since 1959 the 110 to 122 m thick lake has cooled slowly, developing steadily thickening upper and lower crusts, with a lens of more molten lava in between. Recent coring dates, with maximum depths reached in the center of the lake, are: 1967 (26.5 m). 1975 (44.2 m), 1976 (46.0 m) and 1979 (52.7 m). These depths define the base of the upper crust at the time of drilling. The bulk of the core consists of a gray, olivine-phyric basalt matrix, which locally contains coarser-grained diabasic segregation veins. The most important megascopic variation in the matrix rock is its variation in olivine content. The upper 15 m of crust is very olivine-rich. Abundance and average size of olivine decrease irregularly downward to 23 m; between 23 and 40 m the rock contains 5-10% of small olivine phenocrysts. Below 40 m. olivine content and average grainsize rise sharply. Olivine contents remain high (20-45%, by volume) throughout the lower crust, except for a narrow (< 6 m) olivine depleted zone near the basalt contact. Petrographically the olivine phenocrysts in Kilauea Iki can be divided into two types. Type 1 phenocrysts are large (1-12 mm long), with irregular blocky outlines, and often contain kink bands. Type 2 crystals are relatively small (0.5-2 mm in length), euhedral and undeformed. The variations in olivine content of the matrix rock are almost entirely variations in the amount of type 1 olivines. Sharp mineral layering of any sort is rare in Kilauea Iki. However, the depth range 41-52 m is marked by the frequent occurrence of steeply dipping (70??-90??) bands or bodies of slightly vuggy olivine-rich rock locally capped with a small cupola of segregation-vein material. In thin section there is clear evidence for relative movement of melt and crystals within these structures. The segregation veins occur only in the upper crust

  3. Ages and stable-isotope compositions of secondary calcite and opal in drill cores from Tertiary volcanic rocks of the Yucca Mountain area, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Kyser, T.K.

    1990-01-01

    Stable-isotope compositions of fracture- and cavity-filling calcite from the unsaturated zone of three drill cores at Yucca Mountain Tertiary volcanic complex indicate that the water from which the minerals precipitated was probably meteoric in origin. A decrease in 18O in the calcite with depth is interpreted as being due to the increase in temperature in drill holes corresponding to an estimated average geothermal gradient of 34?? per kilometer. A few of the calcite samples and all of the opal samples yielded uranium-series ages older than 400 000 yr, although most of the calcite samples yielded ages between 26 000 and 310 000 yr. The stable-isotope and uranium-series dates from precipitated calcite and opal of this reconnaissance study suggest a complex history of fluid movement through the volcanic pile, and episodes of fracture filling predominantly from meteoric water during at least the past 400 000 yr. -Authors

  4. U-Th and ESR dating of drilled cores from a giant hydrothermal mounds in South Mariana

    NASA Astrophysics Data System (ADS)

    Takamasa, A.; Nakai, S.; Sato, F.; Toyoda, S.; Ishibashi, J.

    2012-12-01

    The time scale for hydrothermal activity is an important factor controlling the size of hydrothermal ore deposits and the evolution of chemosynthesis-based communities in a submarine hydrothermal system. We determined the age of hydrothermal deposits samples, both collected samples by submersible and drilled core samples from South Mariana Trough. Samples were collected from four hydrothermal sites, Snail (near the spreading axis), Archean ( 1.5km from the axis), Pika ( 4.9km from the axis) and Urashima ( 4.9km from the axis). 230Th-234U radioactive disequilibrium dating was applied to hydrothermal sufide minerals consisting of pyrite and sphalerite while electron spin resonance (ESR) dating was applied to barite. For 230Th-234U radioactive disequilibrium dating, we carried out magnetic separation for bulk samples, then we digested samples with nitric acid. U and Th were purified by two-step column separations, and isotopic compositions of spiked and unspiked U and Th were measured by a MC-ICP-MS. Analytical methods for ESR age determination were described in a companion abstract by Toyoda et al. We found that the magnetic fractions had significantly higher U/Th ratios, which enabled 230Th-234U age determinations as precise as ±2% (2σ). This probably reflects that pyrite enriched in magnetic fractions has high U/Th ration. In a sulfide crust sample collected from Archean site, the 230Th-234U ages of the sulfide minerals (0.3-2.2 ka) were compared with ESR ages of barites separated from 12 subsamples of the same sulfide crust. ESR ages (0.27 - 1.7 ka) show a spatial pattern broadly resembling that observed in 230Th-234U dating method. While there are some significant offsets, these results illustrate the potential of the two methods for use in provide information on evolution history of a hydrothermal system. Samples from Pika, Archean and Snail sites yield from 0.5 to ~9 ka, from 0.1 to 3 ka and < ~90 a, respectively. The oldest ages from each site are correlated

  5. Comparison between Borehole Geophysical Observations and Sedimentary Facies for Three Long Cores Recovered from the Ulleung Basin, Korea: Insights into the Distribution of Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Lim, H.; Lee, S.; Bahk, J.

    2010-12-01

    In late 2007, a logging-while-drilling (LWD) operation was performed as part of gas hydrate study at five sites in the Ulleung Basin, east of Korea. Of those five sites, long sediment cores were also recovered at three sites (UBGH-4, 9, and 10), allowing us to compare borehole observation results with characteristics of sediment in the cores. In this study, we analyzed the resistivity log and resistivity image recorded using GVR-SONIC-ADN MD200 to see if there exists any meaningful relationship between the borehole data and sedimentary facies described in the cores. The presence of fracture zones and their orientation were also estimated from the resistivity images. Site UBGH-4 shows little evidence of disintegrated mud (DITM), an important source of gas hydrate. No notable changes could be seen in the resistivity log or image at this site. On the other hand, at Site UBGH-9, several peaks in resistivity values and numerous fractures are found at 70-150 mbsf. This depth interval matches with DITM found in the cores. At UBGH-10, DITM facies are found below 175 mbsf, but unfortunately due to error in resistivity and image data, it is unclear as to whether this depth coincides with the location of abundant gas hydrate or not. In summary, the argument that massive gas hydrates generally occur in the mud sections with ample fractures could not be thoroughly tested except for Site UBGH-9 where the two features do correlate.

  6. A new approach to hydrologic testing during drilling of a deep borehole and its application to the Swedish scientific deep drilling COSC project

    NASA Astrophysics Data System (ADS)

    Tsang, C. F.; Rosberg, J. E.; Juhlin, C.; Niemi, A. P.; Doughty, C.; Dobson, P. F.; Birkholzer, J. T.

    2015-12-01

    Drilling of a deep borehole does not normally allow for hydrogeologic testing during the drilling period. The only time hydraulic tests are performed is when drilling encounters a large-transmissivity zone as evidenced by a large loss (or high return) of drilling fluid. The present paper proposes a new approach, that of conducting Flowing Fluid Electric Conductivity (FFEC) logging during the drilling period, with negligible impact on drilling schedule, yet providing important and accurate information on depth locations of both high- and low-transmissivity zones and their in-situ hydraulic conductivities. The information can be used to guide downhole fluid sampling and post-drilling detailed testing of the borehole. The proposed method has been applied to the drilling of a 2500-m borehole at Åre, Northern Sweden, which was initiated on April 28 and completed on August 26, 2014, with 99% core recovery. This borehole, named COSC-1, was drilled as part of the Swedish Scientific Deep Drilling COSC project, where COSC stands for Collisional Orogeny in the Scandinavian Caledonides. The project is a multidisciplinary project with the aim of gaining a deeper understanding of mountain belt dynamics in the Scandinavian Caledonides. Scientific investigations which include a range of topics from studies of ancient orogeny to the present-day hydrological cycle are conducted under six working groups: (1) tectonics, (2) geophysics, (3) geothermics, (4) hydrology, (5) microbiology and (6) drilling management and technology. In this talk, the new approach to hydrologic testing during the drilling period will be described and its application to the drilling of COSC-1 borehole presented. Results show that from 300 m to the borehole bottom at 2500 m, there are eight hydraulically active zones or fractures in COSC-1, with very low transmissivity values ranging over one order of magnitude.

  7. Drilling through the largest magma chamber on Earth: Bushveld Igneous Complex Drilling Project (BICDP)

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Ashwal, L. D.; Webb, S. J.; Veksler, I. V.

    2015-05-01

    A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.

  8. Geophysics in INSPIRE

    NASA Astrophysics Data System (ADS)

    Sőrés, László

    2013-04-01

    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  9. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    NASA Astrophysics Data System (ADS)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  10. Nondestructive spectroscopic and petrochemical investigations of Paleoarchean spherule layers from the ICDP drill core BARB5, Barberton Mountain Land, South Africa

    NASA Astrophysics Data System (ADS)

    Fritz, Jörg; Tagle, Roald; Ashworth, Luisa; Schmitt, Ralf Thomas; Hofmann, Axel; Luais, Béatrice; Harris, Phillip D.; Hoehnel, Desirée; Özdemir, Seda; Mohr-Westheide, Tanja; Koeberl, Christian

    2016-12-01

    A Paleoarchean impact spherule-bearing interval of the 763 m long International Continental Scientific Drilling Program (ICDP) drill core BARB5 from the lower Mapepe Formation of the Fig Tree Group, Barberton Mountain Land (South Africa) was investigated using nondestructive analytical techniques. The results of visual observation, infrared (IR) spectroscopic imaging, and micro-X-ray fluorescence (μXRF) of drill cores are presented. Petrographic and sedimentary features, as well as major and trace element compositions of lithologies from the micrometer to kilometer-scale, assisted in the localization and characterization of eight spherule-bearing intervals between 512.6 and 510.5 m depth. The spherule layers occur in a strongly deformed section between 517 and 503 m, and the rocks in the core above and below are clearly less disturbed. The μXRF element maps show that spherule layers have similar petrographic and geochemical characteristics but differences in (1) sorting of two types of spherules and (2) occurrence of primary minerals (Ni-Cr spinel and zircon). We favor a single impact scenario followed by postimpact reworking, and subsequent alteration. The spherule layers are Al2O3-rich and can be distinguished from the Al2O3-poor marine sediments by distinct Al-OH absorption features in the short wave infrared (SWIR) region of the electromagnetic spectrum. Infrared images can cover tens to hundreds of square meters of lithologies and, thus, may be used to search for Al-OH-rich spherule layers in Al2O3-poor sediments, such as Eoarchean metasediments, where the textural characteristics of the spherule layers are obscured by metamorphism.

  11. Innovative hyperspectral imaging (HSI) based techniques applied to end-of-life concrete drill core characterization for optimal dismantling and materials recovery

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Picone, Nicoletta; Serranti, Silvia

    2015-02-01

    The reduction of EOL concrete disposal in landfills, together with a lower exploitation of primary raw materials, generates a strong interest to develop, set-up and apply innovative technologies to maximize Construction and Demolition Waste (C&DW) conversion into useful secondary raw materials. Such a goal can be reached starting from a punctual in-situ efficient characterization of the objects to dismantle in order to develop demolition actions aimed to set up innovative mechanical-physical processes to recover the different materials and products to recycle. In this paper an innovative recycling-oriented characterization strategy based on HyperSpectral Imaging (HSI) is described in order to identify aggregates and mortar in drill core samples from end-of-life concrete. To reach this goal, concrete drill cores from a demolition site were systematically investigated by HSI in the short wave infrared field (1000-2500 nm). Results obtained by the adoption of the HSI approach showed as this technology can be successfully applied to analyze quality and characteristics of C&DW before dismantling and as final product to reutilise after demolition-milling-classification actions. The proposed technique and the related recognition logics, through the spectral signature detection of finite physical domains (i.e. concrete slice and/or particle) of different nature and composition, allows; i) to develop characterization procedures able to quantitatively assess end-of-life concrete compositional/textural characteristics and ii) to set up innovative sorting strategies to qualify the different materials constituting drill core samples.

  12. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    Harvey, Jill (Editor)

    1989-01-01

    A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.

  13. Polar organic compounds in pore waters of the Chesapeake Bay impact structure, Eyreville core hole: Character of the dissolved organic carbon and comparison with drilling fluids

    USGS Publications Warehouse

    Rostad, C.E.; Sanford, W.E.

    2009-01-01

    Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.

  14. Compositional variation within thick (>10 m) flow units of Mauna Kea Volcano cored by the Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Huang, Shichun; Vollinger, Michael J.; Frey, Frederick A.; Rhodes, J. Michael; Zhang, Qun

    2016-07-01

    Geochemical analyses of stratigraphic sequences of lava flows are necessary to understand how a volcano works. Typically one sample from each lava flow is collected and studied with the assumption that this sample is representative of the flow composition. This assumption may not be valid. The thickness of flows ranges from <1 to >100 m. Geochemical heterogeneity in thin flows may be created by interaction with the surficial environment whereas magmatic processes occurring during emplacement may create geochemical heterogeneities in thick flows. The Hawaii Scientific Drilling Project (HSDP) cored ∼3.3 km of basalt erupted at Mauna Kea Volcano. In order to determine geochemical heterogeneities in a flow, multiple samples from four thick (9.3-98.4 m) HSDP flow units were analyzed for major and trace elements. We found that major element abundances in three submarine flow units are controlled by the varying proportion of olivine, the primary phenocryst phase in these samples. Post-magmatic alteration of a subaerial flow led to loss of SiO2, CaO, Na2O, K2O and P2O5, and as a consequence, contents of immobile elements, such as Fe2O3 and Al2O3, increase. The mobility of SiO2 is important because Mauma Kea shield lavas divide into two groups that differ in SiO2 content. Post-magmatic mobility of SiO2 adds complexity to determining if these groups reflect differences in source or process. The most mobile elements during post-magmatic subaerial and submarine alteration are K and Rb, and Ba, Sr and U were also mobile, but their abundances are not highly correlated with K and Rb. The Ba/Th ratio has been used to document an important role for a plagioclase-rich source component for basalt from the Galapagos, Iceland and Hawaii. Although Ba/Th is anomalously high in Hawaiian basalt, variation in Ba abundance within a single flow shows that it is not a reliable indicator of a deep source component. In contrast, ratios involving elements that are typically immobile, such as La

  15. Whole-rock chemical composition of some samples from two drill hole cores in the Capps coal field, Beluga coal area, south-central Alaska

    USGS Publications Warehouse

    Hinkley, T.K.; Smith, K.S.; Peard, J.L.; Tompkins, M.L.

    1982-01-01

    Whole-rock chemical analysis was done on samples from drill cores of rocks lying atop and between coal beds in the Beluga coal area, south-central Alaska. The samples were classified as sandstone, siltstone or claystone at time of hand specimen description. Chemical data were compared to those from corresponding rocks from other sites in the conterminous United States. The study supports the following conclusions: 1. The sample suites from the two cored Alaska holes, about 1 km apart, contrast sharply in their degree of lithologic differentiation, one having relatively purer sandstones and claystones, the other having more mixed rock types. This suggests that considerable variation occurs in depositional environments and, possibly, in rock chemistry over small distances in the Beluga coal area. 2. Hand specimen inspection is a reasonably reliable way of assigning names denoting the lithologic type of Alaska rocks, and thereby making broad predictions of their whole-rock chemistry.

  16. High resolution petrophysical and geomechanical logging of drill cores as a tool for the evaluation of dimension stone quality and durability

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Lokajíček, Tomáš; Weishauptová, Zuzana; Petružálek, Matěj

    2015-04-01

    Petrophysical and geomechanical properties are significant functional properties of natural stone. In the recent study, an approach employing the entire non-disturb parts of drill cores for determination of the key petrophysical and geomechanical parameters is presented. The drill cores have been obtained during exploration campaign for Carboniferous arkoses and arkosic sandstones to conglomerates in the Bohemian Massif (Czech Republic). The test procedure consists of the sequence of non-destructive methods including determination of index properties, ultrasonic characteristics (speed of longitudinal and transversal waves, recording of the full waveforms). Once non-destructively tested, the specimens are subjected to standard compressive and/or tensile tests encompassing recording of stress-strain behaviour. Broad range of values obtained reflects quite complex petrographical character of rocks investigated. Variable grain size, grain size homogeneity, degree of cementation, overall rock microfabric, and/or presence and distribution of inter- and intraparticle porosity seem to be determinative factors. Once calibrated for a particular petrographical characteristics, high resolution petrophysical and geomechanical logging (HRPGL) can serve as an effective tool for precise evaluation of exploitable natural stone quality.

  17. Hominin Sites and Paleolakes Drilling Project. Chew Bahir, southern Ethiopia: How to get from three tonnes of sediment core to > 500 ka of continuous climate history?

    NASA Astrophysics Data System (ADS)

    Foerster, Verena; Asrat, Asfawossen; Cohen, Andrew S.; Gromig, Raphael; Günter, Christina; Junginger, Annett; Lamb, Henry F.; Schaebitz, Frank; Trauth, Martin H.

    2016-04-01

    In search of the environmental context of the evolution and dispersal of Homo sapiens and our close relatives within and beyond the African continent, the ICDP-funded Hominin Sites and Paleolakes Drilling Project (HSPDP) has recently cored five fluvio-lacustrine archives of climate change in East Africa. The sediment cores collected in Ethiopia and Kenya are expected to provide valuable insights into East African environmental variability during the last ~3.5 Ma. The tectonically-bound Chew Bahir basin in the southern Ethiopian rift is one of the five sites within HSPDP, located in close proximity to the Lower Omo River valley, the site of the oldest known fossils of anatomically modern humans. In late 2014, the two cores (279 and 266 m long respectively, HSPDP-CHB14-2A and 2B) were recovered, summing up to nearly three tonnes of mostly calcareous clays and silts. Deciphering an environmental record from multiple records, from the source region of modern humans could eventually allow us to reconstruct the pronounced variations of moisture availability during the transition into Middle Stone Age, and its implications for the origin and dispersal of Homo sapiens. Here we present the first results of our analysis of the Chew Bahir cores. Following the HSPDP protocols, the two parallel Chew Bahir sediment cores have been merged into one single, 280 m long and nearly continuous (>90%) composite core on the basis of a high resolution MSCL data set (e.g., magnetic susceptibility, gamma ray density, color intensity transects, core photographs). Based on the obvious cyclicities in the MSCL, correlated with orbital cycles, the time interval covered by our sediment archive of climate change is inferred to span the last 500-600 kyrs. Combining our first results from the long cores with the results from the accomplished pre-study of short cores taken in 2009/10 along a NW-SE transect across the basin (Foerster et al., 2012, Trauth et al., 2015), we have developed a hypothesis

  18. Light Absorption Spectroscopy as a Paleoclimate and Correlation Technique for the CRP and CIROS-1 Drill Cores, McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Vanden Berg, M. D.; Jarrard, R. D.

    2001-12-01

    Coring at CIROS-1 and at the three drillsites of the Cape Roberts Project (CRP) provided a record of glacial influence in McMurdo Sound, Antarctica, during the Late Eocene and Oligocene. All four sites have well established sequence stratigraphies. Prior analyses of one CRP site, CRP-2, suggested a correlation between sequence stratigraphy and provenance, attributed to a link between local sea level and climate. However, sampling density was low. We have used light absorption spectroscopy (LAS) for high-resolution (0.5-1.0 m spacing) determination of downcore mineralogic variations at the four sites. LAS is a rapid, nondestructive mineral identification technique that measures the absorption spectrum, in visible and near-infrared bands (350-2500 nm), of light reflected from any surface. At these drillsites, relative abundance of smectite and illite is thought to reflect warm/humid (smectite-rich) versus cold/dry (illite-rich) paleoclimates. The 3300 LAS-based measurements of smectite/illite variations, confirmed by widely spaced XRD determinations, exhibit a pattern of generally higher smectite contents within highstand system tracts, suggesting that warmer climates correspond to higher local sea levels. Conversion of these high-resolution records from core depth to age is hampered by correlation uncertainties between the CIROS-1 and CRP cores. The smectite/illite curves, as well as other spectral characteristics, are very useful in correlating these Antarctic drill cores.

  19. Iron-oxide Magnetic, Morphologic, and Compositional Tracers of Sediment Provenance and Ice Sheet Extent in the ANDRILL AND-1B Drill Core, Ross Sea, Antarctica (Invited)

    NASA Astrophysics Data System (ADS)

    Brachfeld, S. A.; Pinzon, J.; Darley, J. S.; Sagnotti, L.; Kuhn, G.; Florindo, F.; Wilson, G. S.; Ohneiser, C.; Monien, D.; Joseph, L. H.

    2013-12-01

    The first drilling season of the Antarctic Drilling Program (ANDRILL) recovered a 13.57 million year Miocene through Pleistocene record of paleoclimate change (core AND-1B) within the Ross Sea. The magnetic mineral assemblage records the varying contributions of biological productivity, changing sediment sources, the emergence of volcanic centers, and post-depositional diagenesis. Characterization of bedrock samples from the McMurdo Volcanic Group (MVG) and Transantarctic Mountain (TAM) lithologic units allows us to construct fingerprints for the major source rocks bordering the Ross Sea, and identify their signatures within the AND-1B sediment. Key parameters that can be traced from source rock to sediment for the MVG-derived sediment include a 100-200 C order-disorder transition, titanomaghemite grains with homogenous textures but with substantial Al and Mg content, Fe-spinels with substantial Al, Cr, Mg, and Ti content, and titanomagnetite host grains with 1-3 swarms of ilmenite lamellae (both with variable amounts of oxidation). Distinctive signatures in TAM lithologies include low S-ratios in Koettlitz Group gneisses and Fe-sulfides with magnetite intergrowths in Byrd Glacier basement samples. The Cambrian Granite Harbor Intrusive Complex is characterized by coarse, homogeneous Mn-bearing ilmenite and nearly pure magnetite. The Jurassic dolerites and basalts of the Ferrar Group contain pseudo single domain to stable single domain-sized Fe-oxides with low-Ti content and homogeneous textures. Cu-Fe sulfides are also present in the Ferrar Group. Diamictites in the Pliocene-Pleistocene section of the AND-1B drill core contains Fe-oxide assemblages with MVG-type rock magnetic and textural characteristics, while the Miocene diamictites contain TAM-type signatures. These observations can be explained by increased ice flow from the west during the Miocene and/or the absence of MVG volcanic centers, which had not yet reached a significant size. During the Pliocene and

  20. Paleomagnetic chronology and paleoenvironmental records from drill cores from the Hetao Basin and their implications for the formation of the Hobq Desert and the Yellow River

    NASA Astrophysics Data System (ADS)

    Li, Baofeng; Sun, Donghuai; Xu, Weihong; Wang, Fei; Liang, Baiqing; Ma, Zhiwei; Wang, Xin; Li, Zaijun; Chen, Fahu

    2017-01-01

    Reconstructing the Cenozoic environmental history of Hetao Basin, in the northern part of the Ordos Plateau in North China, is important not only for revealing the evolution of the Yellow River, but also for understanding the formation of the Hobq Desert. Here we present the stratigraphic framework of drill core DR01 with length of 2503.18 m, and the results of magnetostratigraphic and ESR dating and multi-proxy analyses of drill core WEDP05 with length of 274.60 m, from the Hetao Basin. The magnetostratigraphic and ESR results indicate that core WEDP05 spans the last ∼1.68 Ma. Stratigraphic sequence of core DR01 indicates that the Hetao area was uplifted and eroded during the early Cenozoic, before subsiding to form a sedimentary basin. Subsequently, the basin was a fluvio-lacustrine environment during the Pliocene and then experienced alternating desert and fluvio-lacustrine conditions during the Quaternary. Sedimentary facies and multi environmental-proxy analyses of core WEDP05 indicate that the basin was occupied by a fluvio-lacustrine system during the following intervals: ∼1.47 - ∼1.30 Ma, ∼1.17 - ∼1.07 Ma, ∼0.68 - ∼0.60 Ma and from ∼0.47 Ma to the last interglacial; and that a desert environment developed during the lake regression phases of ∼1.30 - ∼1.17 Ma, ∼1.07 - ∼0.68 Ma and ∼0.60 - ∼0.47 Ma. The presence of aeolian sand at the base of core WEDP05 suggests that the origin of the Hobq Desert can be traced back to the early Pleistocene, and resulted from the erosion and transportation of exposed fluvio-lacustrine sediments by near-surface winds associated with the Asian winter monsoon. A large river channel in the Hetao Basin may have existed as early as the Pliocene, which was occupied by the Yellow River when its upper reaches formed by at least ∼1.6 Ma. Subsequently, at least since ∼1.2 Ma, the Yellow River formed its drainage system around the Hetao Basin and controlled the paleoenvironment evolution of the basin.

  1. Outreach, Diversity, and Education Supported by NSF Facilities LacCore and the Continental Scientific Drilling Coordination Office (CSDCO), University of Minnesota

    NASA Astrophysics Data System (ADS)

    Myrbo, A.

    2015-12-01

    Climatic and environmental change are a powerful hook to engage students and the public with geoscience. Recent lake sediments often feature visual and compositional evidence of anthropogenic changes, which can pique curiosity and serve as a gateway for interest in more remote past changes. Cores provide an integrative, place-based geoscience education/outreach platform: lake dynamics incorporate principles of chemistry, physics, and biology; lake basin formation and sedimentary signals trace back to numerous geoscience subdisciplines. Lakes reflect local changes, and so are inherently place-based and relevant to both rural and urban populations. The esthetics of lakes in the landscape and sediments under the microscope spark the artistic sensibilities of those who do not consider themselves scientists: lakes are readymade for STEAM education. LacCore has exploited the magic of lake sediment cores in its 15 years as an NSF Facility, and now expands to additional environments as the NSF Continental Scientific Drilling Coordination Office. Part of scaling up is the formalization of major support for the Broader Impacts (BI) activities of Facility users. LacCore/CSDCO now musters its collaborative experiences in site REUs and other undergrad research projects, in-depth training of students, teachers, and faculty, a long list of informal education experiences, and common-good software development, to provide assistance to researchers seeking meaningful broader impacts and educators seeking extra- or co-curricular field and laboratory research experiences for their students. Outreach, diversity, and education support includes dissemination of best practices, as well as coordination, administration, and basic capacity for such activities in collaboration with project PIs and students, through no-cost support, or collaborative proposals or supplements from NSF where necessary for project scale. Community-driven research and broadening participation are central to the

  2. Parallelization of GeoClaw code for modeling geophysical flows with adaptive mesh refinement on many-core systems

    USGS Publications Warehouse

    Zhang, S.; Yuen, D.A.; Zhu, A.; Song, S.; George, D.L.

    2011-01-01

    We parallelized the GeoClaw code on one-level grid using OpenMP in March, 2011 to meet the urgent need of simulating tsunami waves at near-shore from Tohoku 2011 and achieved over 75% of the potential speed-up on an eight core Dell Precision T7500 workstation [1]. After submitting that work to SC11 - the International Conference for High Performance Computing, we obtained an unreleased OpenMP version of GeoClaw from David George, who developed the GeoClaw code as part of his PH.D thesis. In this paper, we will show the complementary characteristics of the two approaches used in parallelizing GeoClaw and the speed-up obtained by combining the advantage of each of the two individual approaches with adaptive mesh refinement (AMR), demonstrating the capabilities of running GeoClaw efficiently on many-core systems. We will also show a novel simulation of the Tohoku 2011 Tsunami waves inundating the Sendai airport and Fukushima Nuclear Power Plants, over which the finest grid distance of 20 meters is achieved through a 4-level AMR. This simulation yields quite good predictions about the wave-heights and travel time of the tsunami waves. ?? 2011 IEEE.

  3. Identification and Characterization of Hydrogeologic Units at the Nevada Test Site Using Geophysical Logs: Examples from the Underground Test Area Project

    SciTech Connect

    Lance Prothro; Drellack, Sigmund; Townsend, Margaret

    2009-03-25

    The diverse and complex geology of the Nevada Test Site region makes for a challenging environment for identifying and characterizing hydrogeologic units penetrated by wells drilled for the U.S. Department of Energy, National Nuclear Security Administration, Underground Test Area (UGTA) Environmental Restoration Sub-Project. Fortunately, UGTA geoscientists have access to large and robust sets of subsurface geologic data, as well as a large historical knowledge base of subsurface geological analyses acquired mainly during the underground nuclear weapons testing program. Of particular importance to the accurate identification and characterization of hydrogeologic units in UGTA boreholes are the data and interpretation principles associated with geophysical well logs. Although most UGTA participants and stakeholders are probably familiar with drill hole data such as drill core and cuttings, they may be less familiar with the use of geophysical logs; this document is meant to serve as a primer on the use of geophysical logs in the UGTA project. Standard geophysical logging tools used in the UGTA project to identify and characterize hydrogeologic units are described, and basic interpretation principles and techniques are explained. Numerous examples of geophysical log data from a variety of hydrogeologic units encountered in UGTA wells are presented to highlight the use and value of geophysical logs in the accurate hydrogeologic characterization of UGTA wells.

  4. Petrology and hydrothermal mineralogy of U. S. Geological Survey Newberry 2 drill core from Newberry caldera, Oregon

    SciTech Connect

    Keith, T.E.C.; Bargar, K.E.

    1988-09-10

    U.S. Geological Survey Newberry 2 was drilled to a depth of 932 m within Newberry caldera. The bottom-hole temperature of 265/sup 0/C is the highest reported temperature of any drill hole in the Cascades region of the United States. The upper part of the stratigraphic section pentrated by Newberry 2 consists of caldera fill below which are increasingly more mafic lavas ranging from rhyodacite at 501 m to basalt at 932 m. Measured temperatures shallower than 300 m are less than 35/sup 0/C, and rock alteration consists of hydration of glass and local palagonitization of basaltic tuffs. Incipient zeolitization and partial smectite replacement of ash and pumice occurred throughout the pumiceous lithic tuffs from 300 to 500 m. Higher-temperature alteration of the tuffs to chlorite and mordenite occurs adjacent to a rhyodacite sill at 460--470 m; alteration minerals within the sill consist of pyrrhotite, pyrite, quartz, calcite, and siderite. Below 697 m the rocks are progressively more altered with depth mainly because of increased temperature along a conductive gradient from 100/sup 0/C at 697 m to 265/sup 0/C at 930 m. Fluid inclusions in quartz and calcite indicate that temperature in the past have been higher than at present, most likely due to local confining pressures between impermeable lava flows.

  5. Geochemistry of core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG{number_sign}3, Yucca Mountain, Nevada

    SciTech Connect

    Peterman, Z.E.; Futa, K.

    1996-07-01

    The Tiva Canyon Tuff of Miocene age is composed of crystal-poor, high-silica rhyolite overlain by a crystal-rich zone that is gradational in composition from high-silica rhyolite to quartz latite. Each of these zones is divided into subzones that have distinctive physical, mineralogical, and geochemical features.Accurate identification of these subzones and their contacts is essential for detailed mapping and correlation both at the surface and in the subsurface in drill holes and in the exploratory studies facility (ESF). This report presents analyses of potassium (K), calcium (Ca), titanium (Ti), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), barium (Ba), lanthanum (La), and cerium (Ce) in core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG {number_sign}3. The concentrations of most of these elements are remarkably constant throughout the high-silica rhyolite, but at its upper contact with the crystal-rich zone, Ti, Zr, Ba, Ca, Sr, La, Ce, and K begin to increase progressively through the crystal-rich zone. In contrast, Rb and Nb decrease, and Y remains essentially constant. Initial {sup 87}Sr/{sup 86}Sr ratios are relatively uniform in the high-silica rhyolite with a mean value of 0.7117, whereas initial {sup 87}Sr/{sup 86}Sr ratios decrease upward in the quartz latite to values as low as 0.7090.

  6. Quantitative discrimination between oil and water in drilled bore cores via Fast-Neutron Resonance Transmission Radiography.

    PubMed

    Vartsky, D; Goldberg, M B; Dangendorf, V; Israelashvili, I; Mor, I; Bar, D; Tittelmeier, K; Weierganz, M; Bromberger, B; Breskin, A

    2016-12-01

    A novel method utilizing the Fast Neutron Resonance Transmission Radiography is proposed for non-destructive, quantitative determination of the weight percentages of oil and water in cores taken from subterranean or underwater geological formations. The ability of the method to distinguish water from oil stems from the unambiguously-specific energy dependence of the neutron cross-sections for the principal elemental constituents. Monte-Carlo simulations and initial results of experimental investigations indicate that the technique may provide a rapid, accurate and non-destructive method for quantitative evaluation of core fluids in thick intact cores, including those of tight shales for which the use of conventional core analytical approaches appears to be questionable.

  7. Drill Presses.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to the drill press for use at the postsecondary level. The first of seven sections lists seven types of drill presses. The second section identifies 14 drill press parts. The third section lists 21 rules for safe use of drilling machines. The fourth section identifies the six procedures for…

  8. 10Be content in clasts from fallout suevitic breccia in drill cores from the Bosumtwi impact crater, Ghana: Clues to preimpact target distribution

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Wild, Eva Maria; Michlmayr, Leonard; Koeberl, Christian

    2014-03-01

    Rocks from drill cores LB-07A (crater fill) and LB-08A (central uplift) into the Bosumtwi impact crater, Ghana, were analyzed for the presence of the cosmogenic radionuclide 10Be. The aim of the study was to determine the extent to which target rocks of various depths were mixed during the formation of the crater-filling breccia, and also to detect meteoric water infiltration within the impactite layer. 10Be abundances above background were found in two (out of 24) samples from the LB-07A core, and in none of five samples from the LB-08A core. After excluding other possible explanations for an elevated 10Be signal, we conclude that it is most probably due to a preimpact origin of those clasts from target rocks close to the surface. Our results suggest that in-crater breccias were well mixed during the impact cratering process. In addition, the lack of a 10Be signal within the rocks located very close to the lake sediment-impactite boundary suggests that infiltration of meteoric water below the postimpact crater floor was limited. This may suggest that the infiltration of the meteoric water within the crater takes place not through the aerial pore-space, but rather through a localized system of fractures.

  9. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  10. Automated Classification and Correlation of Drill Cores using High-Resolution Hyperspectral Images and Supervised Pattern Classification Algorithms. Applications to Paleoseismology

    NASA Astrophysics Data System (ADS)

    Ragona, D. E.; Minster, B.; Rockwell, T.; Jasso, H.

    2006-12-01

    The standard methodology to describe, classify and correlate geologic materials in the field or lab rely on physical inspection of samples, sometimes with the assistance of conventional analytical techniques (e. g. XRD, microscopy, particle size analysis). This is commonly both time-consuming and inherently subjective. Many geological materials share identical visible properties (e.g. fine grained materials, alteration minerals) and therefore cannot be mapped using the human eye alone. Recent investigations have shown that ground- based hyperspectral imaging provides an effective method to study and digitally store stratigraphic and structural data from cores or field exposures. Neural networks and Naive Bayesian classifiers supply a variety of well-established techniques towards pattern recognition, especially for data examples with high- dimensionality input-outputs. In this poster, we present a new methodology for automatic mapping of sedimentary stratigraphy in the lab (drill cores, samples) or the field (outcrops, exposures) using short wave infrared (SWIR) hyperspectral images and these two supervised classification algorithms. High-spatial/spectral resolution data from large sediment samples (drill cores) from a paleoseismic excavation site were collected using a portable hyperspectral scanner with 245 continuous channels measured across the 960 to 2404 nm spectral range. The data were corrected for geometric and radiometric distortions and pre-processed to obtain reflectance at each pixel of the images. We built an example set using hundreds of reflectance spectra collected from the sediment core images. The examples were grouped into eight classes corresponding to materials found in the samples. We constructed two additional example sets by computing the 2-norm normalization, the derivative of the smoothed original reflectance examples. Each example set was divided into four subsets: training, training test, verification and validation. A multi

  11. Deep drilling in the Chesapeake Bay impact structure - An overview

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  12. Study of the organic matter in the DSDP /JOIDES/ cores, legs 10-15. [Deep Sea Drilling Program

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R. T.; Burlingame, A. L.

    1974-01-01

    The composition of the organic matter collected on legs 10 to 15 of the DSDP (Deep Sea Drilling Project) is described. Distributions of various alkanes, carboxylic acids, steroids and terpenoids, isoprenoid ketones and olefins, and aromatic polycyclic compounds are given. Samples analyzed had terrigenous clay components, with variable organic carbon contents and thus diverse solvent soluble matter. The distribution patterns for the various compound series monitored were of marine derivation, with the terrigenous components superimposed. Diagenesis of steroids appeared to proceed via both stanones and stanols to their respective steranes. Degradative processes were observed to be operative: oxidative products, mainly ketones derived from steroids and phytol, were identified, probably due to microbial alteration prior to or during sedimentation. Loss of alkane and fatty acid C preferences and presence of polycyclic aromatics evinced maturation. Results indicate that the accumulation, degradation, diagenesis and maturation of organic matter occurs in various steps in the deep sea environment.

  13. Reaction of Topopah Spring tuff with J-13 water at 150{sup 0}C: samples from drill cores USW G-1, USW GU-3, USW G-4, and UE-25h No. 1

    SciTech Connect

    Oversby, V.M.

    1985-03-03

    Samples of Topopah Spring tuff selected from vertical drill holes USW G-1, GU-3, and G-4, and from the horizontal air-drilled hole at Fran Ridge were reacted with J-13 water at 150{sup 0}C. The primary purpose of these experiments was to compare the resulting solution chemistries to estimate the degree of homogeneity that might be expected in thermally affected ground water in a potential nuclear waste repository at Yucca Mountain. The second purpose was to relate data obtained from welded devitrified Topopah Spring tuff collected from the potential repository depth to that previously obtained using outcrop samples. The results show very similar aqueous phase chemistries for all samples after reaction for times up to 70 days. The largest difference in final solution concentrations was for silica in one of the samples from Fran Ridge. All vertical drill core samples gave results for silica that were in agreement to within +-6 ppM and indicated solubility controlled by cristobalite. The results for reaction at 150{sup 0}C are in agreement with those obtained in previous experiments using surface outcrop samples from Fran Ridge. The major difference between the drill core results and the outcrop samples is found in the data for room-temperature rinse solutions. The outcrop samples show relatively large amounts of soluble salts that can be easily removed at room temperature. The data for room-temperature rinsing of drill core samples show no significant quantities of readily soluble salts. This result is particularly significant for the samples from the air-drilled hole at Fran Ridge, since drilling fluid that might have removed soluble salts was not used in the portion of the hole from which the samples were obtained. This result strongly suggests that the presence of soluble salts is a surface evaporation phenomenon, and that such materials are unlikely to be present at the depth of the repository.

  14. Iron oxide tracers of ice sheet extent and sediment provenance in the ANDRILL AND-1B drill core, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Brachfeld, Stefanie; Pinzon, Juliana; Darley, Jason; Sagnotti, Leonardo; Kuhn, Gerhard; Florindo, Fabio; Wilson, Gary; Ohneiser, Christian; Monien, Donata; Joseph, Leah

    2013-11-01

    The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial-interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.

  15. Geophysical methods

    SciTech Connect

    Robert, E.S.

    1989-01-01

    Geophysical measurements involve no magic or mystery but straightforward applications of physical principles. This book is both a geophysical survey and a reference guide. It explains the physical principles involved in geophysical methods. Over one-third of the text is devoted to seismic methods. Comprehensive topics in the volume include: the measurement of different physical properties and their geological significance; how different kinds of measurements are combined to draw geological conclusions; surface, borehole, airborne, and satellite measurements; computer processing and interactive methods; geodetic, gravity, magnetic, radioactive, heat flow, and electrical methods; interpretation of natural processes such as earthquakes and heat flow; and a summation of present knowledge of the earth.

  16. Contamination Control for Scientific Drilling Operations.

    PubMed

    Kallmeyer, J

    2017-01-01

    Drilling is an integral part of subsurface exploration. Because almost all drilling operations require the use of a drill fluid, contamination by infiltration of drill fluid into the recovered core material cannot be avoided. Because it is impossible to maintain sterile conditions during drilling the drill fluid will contain surface microbes and other contaminants. As contamination cannot be avoided, it has to be tracked to identify those parts of the drill core that were not infiltrated by the drill fluid. This is done by the addition of tracer compounds. A great variety of tracers is available, and the choice depends on many factors. This review will first explain the basic principles of drilling before presenting the most common tracers and discussing their strengths and weaknesses. The final part of this review presents a number of key questions that have to be addressed in order to find the right tracer for a particular drilling operation.

  17. Correction to “Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2”

    USGS Publications Warehouse

    Tembe, Sheryl; Lockner, David; Wong, Teng-Fong

    2010-01-01

    This article corrects: Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2. Vol. 114, Issue B11, Article first published online: 5 NOV 2009.

  18. Drilling gas hydrates with the sea floor drill rig MARUM-MeBo

    NASA Astrophysics Data System (ADS)

    Freudenthal, Tim; Bohrmann, Gerhard; Wefer, Gerold

    2015-04-01

    Large amounts of methane are bound in marine gas hydrate deposits. Local conditions like pressure, temperature, gas and pore water compositions define the boundaries of gas hydrate stability within the ocean sediments. Depending on those conditions gas hydrates can occur within marine sediments at depth down to several hundreds of meters up to sea floor. These oceanic methane deposits are widespread along continental margins. By forming cement in otherwise soft sediments gas hydrates are stabilizing the seafloor on continental slopes. Drilling operations are required for understanding the distribution of gas hydrates as well as for sampling them to study the composition, microstructure and its geomechanical and geophysical properties. The sea floor drill rig MARUM-MeBo200 has the capability to drill down to 200 m below sea floor well within the depth of major gas hydrate occurrences at continental margins. This drill rig is a transportable sea floor drill rig that can be deployed from a variety of multi-purpose research vessels. It is deployed on the sea bed and controlled from the vessel. It is the second generation MeBo (Freudenthal and Wefer, 2013) and was developed from 2011 to 2014 by MARUM in cooperation with BAUER Maschinen GmbH. Long term experiences with the first generation MeBo70 that was operated since 2005 on 15 research expeditions largely contributed to the development of MeBo200. It was first tested in October 2014 from the research vessel RV SONNE in the North Sea. In this presentation the suitability of MARUM-MeBo for drilling marine gas hydrates is discussed. We report on experiences drilling gas hydrates on two research expeditions with MeBo70. A research expedition for sampling gas hydrates in the Danube Paleodelta with MeBo200 as well as technical developments for improving the suitability of MeBo for gas hydrate exploration works are planned within the project SUGAR3 funded by the Federal Government for Economy and Energy (BMWi). Freudenthal

  19. Water Detection Response Team Geophysics Element Case Histories

    DTIC Science & Technology

    1990-09-01

    34 on the surface by conducting one or more types of geophysical tests at that point. In the ideal case, the aquifer thickness and water quality would...The Geophysics Element has been deployed to participate in several major military exercises. Case historics of the Geophysics Element involvement in...ber who will advise the well drillers and reinterpret the geophysical survey results on the basis of drilling results, if necessary. This operating

  20. Core lithology, Valles caldera No. 1, New Mexico

    SciTech Connect

    Gardner, J.N.; Goff, F.; Goff, S.; Maassen, L.; Mathews, K.; Wachs, D.; Wilson, D.

    1987-04-01

    Vallas caldera No. 1 (VC-1) is the first Continental Scientific Drilling Program research core hole in the Vallas caldera and the first continuously cored hole in the region. The hole penetrated 298 m of moat volcanics and caldera-fill ignimbrites, 35 m of volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales with over 95% core recovery. The primary research objectives included coring through the youngest rhyolite flow within the caldera; obtaining structural and stratigraphic information near the intersection of the ring-fracture zone and the pre-caldera Jemez fault zone; and penetrating a high-temperature hydrothermal outflow plume near its source. This report presents a compilation of lithologic and geophysical logs and photographs of core that were collected while drilling VC-1. It is intended to be a reference tool for researchers interested in caldera processes and associated geologic phenomena.

  1. Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  2. Exploration Geophysics

    ERIC Educational Resources Information Center

    Espey, H. R.

    1977-01-01

    Describes geophysical techniques such as seismic, gravity, and magnetic surveys of offshare acreage, and land-data gathering from a three-dimensional representation made from closely spaced seismic lines. (MLH)

  3. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  4. Structure, Frictional Melting and Fault Weakening during the 2008 Mw 7.9 Wenchuan Earthquake Slip: Observation from the WFSD Drilling Core Samples

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, H.; Li, C.; Zhang, J.; Sun, Z.; Si, J.; Liu, D.; Chevalier, M. L.; Han, L.; Yun, K.; Zheng, Y.

    2015-12-01

    The 2008 Mw7.9 Wenchuan earthquake produced two co-seismic surface ruptures along Yingxiu-Beichuan fault (~270 km) and the Guanxian-Anxian fault (~80 km) simultaneously in the Longmen Shan thrust belt. Besides, two surface rupture zones were tracked in the southern segment of the Yingxiu-Beichuan rupture zone, one along the Yingxiu fault, the other along the Shenxigou-Longchi fault, which both converged into one rupture zone at the Bajiaomiao village, Hongkou town, where one distinct fault plane with two striation orientations was exposed. The Wenchuan earthquake Fault Scientific Drilling project (WFSD) was carried out right after the earthquake to investigate its faulting mechanisms and rupture process. Six boreholes were drilled along the rupture zones with depths ranging from 600 to 2400 m. WFSD-1 and WFSD-2 are located at the Bajiaomiao area, the southern segment of the Yingxiu-Beichuan rupture zone, while WFSD-4 and WFSD-4S are in the Nanba town area, in the northern part of the rupture zone. Detailed research showed that ~1 mm thick Principal Slip Zone (PSZ) of the Wenchuan earthquake is located at ~589 m-depth in the WFSD-1 cores. Graphite present in the PSZ indicates a low fault strength. Long-term temperature monitoring shows an extremely low fault friction coefficient during the earthquake. Recently, another possible PSZ was found in WFSD-1 cores at ~732 m-depth, with a ~2 mm thick melt layer in the fault gouge, where feldspar was melted but quartz was not, indicating that the frictional melting temperature was 1230°C < T < 1720°C. These two PSZs at depth may correspond to the two co-seismic surface rupture zones. Besides, the Wenchuan earthquake PSZ was also recognized in the WFSD-4S cores, at ~1084 m-depth. About 200-400 μm thick melt layer (fault vein, mainly feldspar), as well as melt injection veins, were observed in the slip zone, where oblique distinct striations were visible on the slip surface. Therefore, there are two PSZs in the shallow

  5. ‘Building Core Knowledge - Reconstructing Earth History’: Transforming Undergraduate Instruction by Bringing Ocean Drilling Science on Earth History and Global Climate Change into the Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    St. John, K.; Leckie, R. M.; Jones, M. H.; Pound, K. S.; Pyle, E.; Krissek, L. A.

    2009-12-01

    This NSF-funded, Phase 1 CCLI project effectively integrates scientific ocean drilling data and research (DSDP-ODP-IODP-ANDRILL) with education. We have developed, and are currently testing, a suite of data-rich inquiry-based classroom learning materials based on sediment core archives. These materials are suitable for use in introductory geoscience courses that serve general education students, early geoscience majors, and pre-service teachers. 'Science made accessible' is the essence of this goal. Our team consists of research and education specialists from institutions ranging from R1 research to public liberal arts to community college. We address relevant and timely ‘Big Ideas’ with foundational geoscience concepts and climate change case studies, as well transferable skills valued in professional settings. The exercises are divided into separate but inter-related modules including: introduction to cores, seafloor sediments, microfossils and biostratigraphy, paleomagnetism and magnetostratigraphy, climate rhythms, oxygen-isotope changes in the Cenozoic, past Arctic and Antarctic climates, drill site selection, interpreting Arctic and Antarctic sediment cores, onset of Northern Hemisphere glaciation, onset of Antarctic glaciation, and the Paleocene-Eocene Thermal Maximum. Each module has several parts, and each is designed to be used in the classroom, laboratory, or assigned as homework. All exercises utilize authentic data. Students work with scientific uncertainty, practice quantitative and problem-solving skills, and expand their basic geologic and geographic knowledge. Students have the opportunity to work individually and in groups, evaluate real-world problems, and formulate hypotheses. Initial exercises in each module are useful to introduce a topic, gauge prior knowledge, and flag possible areas of student misconception. Comprehensive instructor guides provide essential background information, detailed answer keys, and alternative implementation

  6. Structural geology of cuttings and cores recovered from below the Kumano forearc basin, Nankai accretionary margin of Japan: Expedition 319 of the Integrated Ocean Drilling Program (IODP)

    NASA Astrophysics Data System (ADS)

    Hayman, N. W.; Byrne, T. B.; Huftile, G.; McNeill, L. C.; Kanamatsu, T.; Saffer, D.; Araki, E.; Eguchi, N. O.; Toczko, S.; Takahashi, K.; Scientists, E.

    2009-12-01

    The geologic materials below the Kumano Basin provide critical information for understanding the geologic evolution of Japan’s Nankai margin and its earthquake hazards. Riser-based drilling at IODP Site C0009 recovered these geologic materials in cuttings from 704-1604 mbsf, and in ~70 m of core from 1510-1594 mbsf. The >4-mm size fraction of cuttings from 1332-1482 mbsf contains abundant vein structures in moderately consolidated, coarse-siltstones. Vein structures are <1 mm-wide granular rearrangements, possibly paleoseismites, and are mostly restricted to the late Miocene section below a significant unconformity at ~1300 mbsf. At Site C0002, close to the southeastern edge of the forearc basin, vein structures were also localized to a narrow depth interval in a slightly younger (Pliocene age) section. The cored interval at Site C0009 is from below a prominent unconformity at ~1360 mbsf and comprises finely (~10 cm-scale) interbedded, unmetamorphosed, and moderately cohesive silt- and sandstone. Bedding in the cored interval generally dips NNW in logging data and increases in dip from ~20° to ~ 60° with depth in both the FMI and the core data. A set of dominantly thrust-sense shear zones cuts and locally imbricates bedding, with dips <20° to >40°. The shear zones are 1-2 cm-wide, exhibit granular rather than cataclastic (fracture-dominated) microstructures, and though dark in appearance and bright in tomographic images (and thus likely higher density than the surrounding core), they are mineralogically similar to the surrounding material. The shear zones may have formed during tectonically induced dewatering and consolidation. In many places the shear zones define the center of a gradient in stretched and folded sedimentary structures. Younger faults also appear dark relative to the surrounding core, but are <1-mm wide, with a range of geometries and cross cutting relationships; there are likely at least two generations of these thin faults. The youngest

  7. Geohydrologic and drill-hole data for test well USW H-1, adjacent to Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Rush, F. Eugene; Thordarson, William; Bruckheimer, Laura

    1983-01-01

    This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-1. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted on behalf of the U.S. Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, ground-water chemistry and pumping and injection tests for well USW H-1 are contained in this report.

  8. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    SciTech Connect

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs.

  9. Cascade geothermal drilling/corehole N-3

    SciTech Connect

    Swanberg, C.A.

    1988-07-19

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core holes GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commercial exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table.

  10. Ries Bunte Breccia revisited: Indications for the presence of water in Itzing and Otting drill cores and implications for the emplacement process

    NASA Astrophysics Data System (ADS)

    Pietrek, Alexa; Kenkmann, Thomas

    2016-07-01

    We reassessed two drill cores of the Bunte Breccia deposits of the Ries crater, Germany. The objectives of our study were the documentation of evidence for water in the Bunte Breccia, the evaluation of how that water influenced the emplacement processes, and from which preimpact water reservoir it was derived. The Bunte Breccia in both cores can be structured into a basal layer composed mainly of local substrate material, overlain by texturally and compositionally diverse, crater-derived breccia units. The basal layer is composed of the youngest sediments (Tertiary clays and Upper Jurassic limestone) and has a razor-sharp boundary to the upper breccia units, which are composed of older rocks of Upper Jurassic to Upper Triassic age. Sparse material exchange occurred between the basal layer and the rest of the Bunte Breccia. Fluids predominantly came from the Tertiary and the Upper Triassic sandstone formation. In the basal layer, Tertiary clays were subjected to intense, ductile deformation, indicating saturation with water. This suggests that water was mixed into the matrix, creating a fluidized basal layer with a strong shear localization. In the upper units, Upper Triassic sandstones are intensely deformed by granular flow. The texture requires that the rocks were disaggregated into granular sand. Vaporization of pore water probably aided fragmentation of these rocks. In the Otting core, hot suevite (T > 600 °C) covered the Bunte Breccia shortly after its emplacement. Vertically oriented gas escape pipes in suevite partly emanate directly at the contact to the Bunte Breccia. They indicate that the Bunte Breccia contained a substantial amount of water in the upper part that was vaporized and escaped through these vents.

  11. Initial Results of Gulf of Mexico Gas Hydrate Joint Industry Program Leg II Logging-While-Drilling Operations

    NASA Astrophysics Data System (ADS)

    Boswell, R. M.; Collett, T. S.; Frye, M.; McConnell, D.; Shedd, W.; Shelander, D.; Dai, J.; Mrozewski, S.; Guerin, G.; Cook, A.; Dufrene, R.; Godfriaux, P. D.; Roy, R.; Jones, E.

    2009-12-01

    collection and analyses at AC-21 will be needed to better understand the nature of the pore filling material. JIP Leg II fully met its scientific objectives with the collection of abundant high-quality data from gas hydrate bearing sands in the Gulf of Mexico. Ongoing work within the JIP will enable further validation of the geophysical and geological methods used to predict the occurrence of gas hydrate. Expedition results will also support the selection of locations for future JIP drilling, logging and coring operations.

  12. Tunnel Closure Experiment, 1997 Test Programme: Core Logging and Laboratory Tests on Diamond Drilled Holes at Jerntoppen

    DTIC Science & Technology

    2007-11-02

    clay mineral coatings, I.e., kaolinite or mica. Also chlorite, talc , gypsum, graphite, etc., and small quantitiesof swelling clays. 8-16° 4.0 b...They also have mineral coating; calcite, biotite and rust stains. From core logging observations these joints seem to be short (a few meters) and the...scale features, in that order. c) No rock-wall contact when sheared H Zone containing clay minerals thick enoughto prevent rock-wall contact 1.0 J

  13. Drill report

    SciTech Connect

    Not Available

    1984-12-01

    North Slope drilling activity is described. As of November 14, 1984, four rigs were actively drilling in the Kuparuk River field with another two doing workovers. Only one rig was drilling in the Prudhoe Bay field, with another doing workovers and one on standby.

  14. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    SciTech Connect

    Hutchinson, D.R.; Shelander, D.; Dai, J.; McConnell, D.; Shedd, W.; Frye, M.; Ruppel, C.; Boswell, R.; Jones, E.; Collett, T.S.; Rose, K.; Dugan, B.; Wood, W.; Latham, T.

    2008-07-01

    In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other

  15. Preliminary Results from the AIDP-2 and AIDP-3 Drill Cores Hint at Systematic Mo Enrichments in the ~2.65 Ga Roy Hill Shale

    NASA Astrophysics Data System (ADS)

    Roy, M.; Ostrander, C. M.; Lyons, T. W.; Olson, S. L.; Buick, R.; Anbar, A. D.

    2014-12-01

    In order to better understand the timing of the earliest oxygenation of Earth's surface environment, we are pursuing a multi-proxy investigation of paleoredox conditions in diamond drill cores through sedimentary rocks of the Archean Fortescue & Hamersley Groups. These cores were recovered in 2012 by the Agouron Institute from the Pilbara Craton of Western Australia. The AIDP-2 core samples a stratigraphic succession of carbonate and sulfidic, organic-rich shale in the Carawine Dolomite and Jeerinah Formation representing a shallow near-shore depositional setting. Core AIDP-3 samples a transition from BIF in the Marra Mamba Formation to organic-rich shales in the underlying Jeerinah Formation representing a deeper offshore depositional setting. We have analyzed 322 black shale samples from the Roy Hill Member of the Jeerinah Formation deposited just before the transition from the Fortescue to Hamersley Group. Roy Hill black shale units are mostly pyritic in AIDP-3, but are less so in AIDP-2. The Roy Hill Member of AIDP-3 extends from 2.629 Ga to2.676 Ga and contains the 2.632Ga Jeerinah impact layer, whereas the Roy Hill member of AIDP-2 is slightly older, lying beneath the Jeerinah impact layer, and has been dated to 2.636 Ga to >2.643 Ga [1]. Our initial findings reveal that Mo concentrations range between 0.7 and 7 ppm in the Roy Hill black shale member of AIDP-2 and AIDP-3. Corresponding Mo/Al ratios range between 1-9×10-5 ppm/ppm, indicating slight Mo enrichment relative to average continental crust. These results are consistent with a previous study by Scott et al. [2], which suggested little or no Mo enrichment. However, the higher resolution sampling in this study allows us to clearly resolve the Mo/Al depth profiles in these late Archean cores. These data suggest that the variations we see are not due to analytical scatter or sample variability, but instead represent real variations in Mo scavenged into these sediments. Ongoing work is focused on

  16. Rhyolites in the Kimberly Drill Core, Project Hotspot: First Intracaldera Ignimbrite from the Central Snake River Plain, Idaho?

    NASA Astrophysics Data System (ADS)

    Christiansen, E. H.; McCurry, M. O.; Champion, D. E.; Bolte, T.; Holtz, F.; Knott, T.; Branney, M. J.; Shervais, J. W.

    2013-12-01

    The rhyolites on the track of the Yellowstone hotspot are the classic examples of continental hotspot volcanism and the study of surface outcrops is maturing rapidly. However, in the central part of the track, where silicic volcanism is most voluminous, compositionally distinctive, and isotopically most anomalous, study of these large magma systems has been hindered because eruptive sources are buried. The 2 km Kimberly core helps fill that gap; it penetrates through surficial basalt, deep into the rhyolitic underpinnings on the southern margin of the province. The Kimberly core is dominated by thick sections of rhyolite lava and welded ignimbrite, with basalt-sediment intercalations between 241 m and 424 m depth. We tentatively interpret the core to include a thick intracaldera tuff. Our preliminary studies suggest that there are three major rhyolite units in the core. Rhyolite 3, the uppermost unit, is a nearly 130 m thick, low-silica rhyolite lava. Rhyolite 2 is the most highly evolved with ~75% silica and distinctively resorbed quartz. Rhyolite 1 is at least 1,340 m thick (the base was not cut by the core), has no apparent flow contacts or cooling breaks, and may represent a single, thick intracaldera ignimbrite. Paleomagnetic inclinations form a curious V-shaped profile, shallowing by about 18○ between 700 and 1700 m depth. We interpret this to be the result of slower cooling of the mid-part of the thick intracaldera ignimbrite. The lower unit is a low-silica rhyolite with high concentrations of Fe2O3 and TiO2--among the highest of any known ignimbrite on the SRP. It is chemically distinct from the upper units, very homogeneous, not vertically zoned, and lacks multiple populations of phenocrysts. It somewhat resembles the regionally extensive ~10 Ma outflow tuff of Wooden Shoe Butte. However, this is one of several large, petrologically similar ignimbrites as young as 8.6 Ma exposed in the Cassia Mountains south of the hole, so further work is needed. Like

  17. Properties, classification, and genetic interpretation of the allochthonous impact formations of the ICDP Chicxulub drill core YAX-1

    NASA Astrophysics Data System (ADS)

    Stöffler, D.; Hecht, L.; Kenkmann, T.; Schmitt, R. T.; Wittmann, A.

    2003-04-01

    The ICDP drilling Yaxcopoil-1 exposes 1510 m of impact-related lithologies. We report here and in related abstracts [1-3] on allochthonous impactites representing a complex layered sequence of polymict breccias, extremely rich in impact melt particles and rather poor in fine-grained matrix. This sequence can be subdivided into 6 units. Their whole rock chemistry reflects a mixture of crystalline rocks and Cretaceous carbonate rocks. The completely crystallized silicate "glass" occurs in discrete particles whereas carbonate melt forms exsolved inclusions in silicate melts and larger bodies of polycrystalline Mg-bearing calcite in unit 6. The stratigraphy, classification, and properties of the impactites are as follows: Unit 1 (Upper sorted suevite): 794.63 m, melt-rich, fine grained, clastic matrix; Unit 2 (Lower sorted suevite): 807.75 m, melt-rich, coarse grained, clastic matrix partly recrystallized, Unit 3 (Upper suevite): 823.25 m, melt rich, very coarse grained, recrystallized matrix; Unit 4 (Middle suevite): 846.09 m, melt rich, very coarse grained, recrystallized matrix; Unit 5 (Suevitic breccia with cataclastic melt rock): 861.06 m, suevitic melt agglomerate with monomictly brecciated melt bodies, coarse grained, crystallized matrix (remelted); Unit 6 (Lower suevite): 884.96 m, suevite with silicate and carbonate melt, very coarse grained; recrystallized matrix; Unit 7 (Cretaceous): 894.94-1510.97 m, displaced bedded carbonates and anhydrite, partially brecciated, with impact breccia dikes. The source material of the layered breccias, derived from the deepest excavation zone, was incorporated into the ejecta plume at a late stage when the bulk of the high rising plume had disappeared from the impact site [3] and distributed globally. The upper section (units 1-4) is interpreted as ballistic "fallout" material from the ejecta plume. The Lower Suevite (unit 6) represents ground surged material deposited as the first layer and then covered with laterally

  18. Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 103, 105, 108, 131, 135, NRF-15, and NRF-16, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Orr, Stephanie M.; Potter, Katherine E.; LeMaitre, Tynan

    2012-01-01

    This report, prepared in cooperation with the U.S. Department of Energy, summarizes construction, geophysical, and lithologic data collected from about 4,509 feet of core from seven boreholes deepened or drilled by the U.S. Geological Survey (USGS), Idaho National Laboratory (INL) Project Office, from 2006 to 2009 at the INL. USGS 103, 105, 108, and 131 were deepened and cored from 759 to 1,307 feet, 800 to 1,409 feet, 760 to 1,218 feet, and 808 to 1,239 feet, respectively. Boreholes USGS 135, NRF-15, and NRF-16 were drilled and continuously cored from land surface to 1,198, 759, and 425 feet, respectively. Cores were photographed and digitally logged by using commercially available software. Borehole descriptions summarize location, completion date, and amount and type of core recovered.

  19. Internal deformation in layered Zechstein-III K-Mg salts. Structures formed by complex deformation and high contrasts in viscosity observed in drill cores.

    NASA Astrophysics Data System (ADS)

    Raith, Alexander; Urai, Janos L.

    2016-04-01

    During the evaporation of a massive salt body, alternations of interrupted and full evaporation sequences can form a complex layering of different lithologies. Viscosity contrasts of up to five orders of magnitude between these different lithologies are possible in this environment. During the late stage of an evaporation cycle potassium and magnesium (K-Mg) salts are precipitated. These K-Mg salts are of economic interest but also a known drilling hazard due to their very low viscosity. How up to 200m thick layers of these evaporites affect salt deformation at different scales is not well known. A better understanding of salt tectonics with extreme mechanical stratification is needed for better exploration and production of potassium-magnesium salts and to predict the internal structure of potential nuclear waste repositories in salt. To gain a better understanding of the internal deformation of these layers we analyzed K-Mg salt rich drill cores out of the Zechstein III-1b subunit from the Veendam Pillow 10 km southeast of Groningen, near the city Veendam in the NE Netherlands. The study area has a complex geological history with multiple tectonic phases of extension and compression forming internal deformation in the pillow but also conserving most of the original layering. Beside halite the most common minerals in the ZIII-1b are carnallite, kieserite, anhydrite and bischofite alternating in thin layers of simple composition. Seismic interpretation revealed that the internal structure of the Veendam Pillow shows areas, in which the K-Mg salt rich ZIII 1b layer is much thicker than elsewhere, as a result of salt deformation. The internal structure of the ZIII-1b on the other hand, remains unknown. The core analysis shows a strong strain concentration in the weaker Bischofite (MgCl2*6H20) and Carnallite (KMgCl3*6H20) rich layers producing tectonic breccias and highly strained layers completely overprinting the original layering. Layers formed by alternating beds

  20. AfricaArray International Geophysics Field School: Applications of Near Surface Geophysics to challenges encountered in mine planning

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.

    2012-12-01

    Hard rock exploration and mining presents many opportunities for the effective use of near surface geophysics. For over 10 years the AfricaArray international geophysics field school has been hosted at a variety of mines in South Africa. While the main objective of the field school is practical training for the next generation of geophysicists, being hosted at a mine has allowed us to investigate applications of near surface geophysics in the early stages of mine planning and development as geophysics is often cheaper and faster than drilling. Several applications include: detailed delineation of dykes and stringer dykes, physical property measurements on drill core for modeling and marker horizons, determination of overburden thickness, locations of water and faults. Dolerite dykes are usually magnetic and are associated with loss of ground (i.e. where the dyke replaces the ore and thus reduces the amount of ore available) and safety/stability concerns. Thus the accurate mapping of dykes and narrow stringers that are associated with them are crucial to the safe planning of a mine. We have acquired several case studies where ground magnetic surveys have greatly improved on the resolution and detail of airborne magnetic surveys in regions of complicated dyke swarms. In many cases, thin stringer dykes of less than 5 cm have been detected. Physical property measurements of these dykes can be used to distinguish between different ages of dykes. It is important to accurately determine overburden thickness when planning an open pit mine as this directly affects the cost of development. Depending on the nature of the overburden, both refraction seismic and or DC resistivity can provide continuous profiling in the area of interest that fills in gaps between boreholes. DC resistivity is also effective for determining water associated with dykes and structures that may affect mine planning. The field school mainly addresses the training of a variety of students. The core

  1. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in

  2. Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming

    SciTech Connect

    Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

    1990-09-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

  3. Sample descriptions and geophysical logs for cored well BP-3-USGS, Great Sand Dunes National Park and Preserve, Alamosa County, Colorado

    USGS Publications Warehouse

    Grauch, V.J.S.; Skipp, Gary L.; Thomas, Jonathan V.; Davis, Joshua K.; Benson, Mary Ellen

    2015-01-01

    BP-3-USGS was sited to test hypotheses developed from geophysical studies and to answer questions about the history and evolution of Pliocene and Pleistocene Lake Alamosa, which is represented by lacustrine deposits sampled by the well. The findings reported here represent a basis from which future studies can answer these questions and address other important scientific questions in the San Luis Valley regarding geologic history and climate change, groundwater hydrology, and geophysical interpretation.

  4. Sub-Ocean Drilling

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.

  5. Particle Geophysics

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki K. M.

    2014-05-01

    Geophysics research has long been dominated by classical mechanics, largely disregarding the potential of particle physics to augment existing techniques. The purpose of this article is to review recent progress in probing Earth's interior with muons and neutrinos. Existing results for various volcanological targets are reviewed. Geoneutrinos are also highlighted as examples in which the neutrino probes elucidate the composition of Earth's deep interior. Particle geophysics has the potential to serve as a useful paradigm to transform our understanding of Earth as dramatically as the X-ray transformed our understanding of medicine and the body.

  6. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

  7. Project HOTSPOT: Borehole geophysics log interpretation from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Lee, M. D.; Schmitt, D. R.; Chen, X.; Shervais, J. W.; Liberty, L. M.; Potter, K. E.; Kessler, J. A.

    2013-12-01

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberely, and (3) Mountain Home. The most eastern drill hole is Kimama located along the central volcanic axis of the SRP and documents basaltic volcanism. The Kimberely drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama drill hole and is located near the margin of the plain. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. A suite of ground and borehole geophysical surveys were carried out within the SRP between 2010 and 2012. The borehole geophysics logs included gamma ray (spectral and natural), neutron hydrogen index, electrical resistivity, magnetic susceptibility, ultrasonic borehole televiewer imaging, full waveform sonic, and vertical seismic profile. The borehole geophysics logs were qualitatively assessed through visual interpretation of lithological horizons and quantitatively through physical property specialized software and digital signal processing automated filtering process to identify step functions and high frequency anomalies. Preliminary results were published by Schmitt et al. (2012), Potter et al. (2012), and Shervais et al. (2013). The results are continuously being enhanced as more information is qualitatively and quantitatively delineated from the borehole geophysics logs. Each drill hole encounters three principal units: massive basalt flows, rhyolite, and sediments. Basalt has a low to moderate porosity and is

  8. Postdepositional losses of methane sulfonate, nitrate, and chloride at the European Project for Ice Coring in Antarctica deep-drilling site in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Weller, R.; Traufetter, F.; Fischer, H.; Oerter, H.; Piel, C.; Miller, H.

    2004-04-01

    We quantified postdepositional losses of methane sulfonate (MSA-), nitrate, and chloride at the European Project for Ice Coring in Antarctica (EPICA) drilling site in Dronning Maud Land (DML) (75°S, 0°E). Analyses of four intermediate deep firn cores and 13 snow pits were considered. We found that about 26 ± 13% of the once deposited nitrate and typically 51 ± 20% of MSA- were lost, while for chloride, no significant depletion could be observed in firn older than one year. Assuming a first order exponential decay rate, the characteristic e-folding time for MSA- is 6.4 ± 3 years and 19 ± 6 years for nitrate. It turns out that for nitrate and MSA- the typical mean concentrations representative for the last 100 years were reached after 5.4 and 6.5 years, respectively, indicating that beneath a depth of around 1.2-1.4 m postdepositional losses can be neglected. In the area of investigation, only MSA- concentrations and postdepositional losses showed a distinct dependence on snow accumulation rate. Consequently, MSA- concentrations archived at this site should be significantly dependent on the variability of annual snow accumulation, and we recommend a corresponding correction. With a simple approach, we estimated the partial pressure of the free acids MSA, HNO3, and HCl on the basis of Henry's law assuming that ionic impurities of the bulk ice matrix are localized in a quasi-brine layer (QBL). In contrast to measurements, this approach predicts a nearly complete loss of MSA-, NO3-, and Cl-.

  9. Fluid-rock interactions in seismic faults: Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China

    NASA Astrophysics Data System (ADS)

    Duan, Qingbao; Yang, Xiaosong; Ma, Shengli; Chen, Jianye; Chen, Jinyu

    2016-01-01

    We describe the structural features and mineralogical and geochemical compositions of the fault rocks recovered from boreholes at the Golden River site on the Yingxiu-Beichuan fault, which activated and slipped along a 240 km-long main surface rupture zone during the 2008 Wenchuan earthquake. The fault, which accommodated co-seismic slip, cuts granitic rocks from the Pengguan complex, in which this earthquake most likely nucleated. Fault rocks, including cohesive cataclasite, unconsolidated breccia and three fault gouges with distinct colors, were identified from the drilling cores. On-going uplift and erosion in the area means that the fault rocks, formed at different depth, were exhumed to the shallow surface during the uplift history of the Longmenshan fault zone. A clear change from fracturing and comminution in the cataclasites and breccia to more pervasive shear/formation of fine grained materials in the gouges has been observed. The gouges are distinct and have accommodated significant displacement in multiple increments of shear. Furthermore, fault rocks recovered from the boreholes display numerous features indicative of fluid infiltration and fluid-rock interaction. Toward the fault core, clay minerals have replaced feldspars. The element enrichment/depletion patterns of the fault rocks show general fluid infiltration trends, such as 1) mobile elements are generally depleted in the fault rocks, 2) the microstructural, mineralogical and geochemical results of the fault rocks consistently indicate that pervasive fluid infiltration and fluid-rock interactions altered feldspars and mafic minerals to clay minerals. The fluid was Mg2 +- and Fe2 +-rich, facilitating formation of chlorite. Isocon analyses further reveal that a large rock volume has been lost, which is attributed to the removal of mobile elements associated with fluid infiltration and perhaps enhanced by pressure solution. These results reflect the accumulated effects of cataclasis and fluid

  10. Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data

    NASA Astrophysics Data System (ADS)

    Kaneko, Yoshihiro; Carpenter, Brett M.; Nielsen, Stefan B.

    2017-01-01

    Recent laboratory shear-slip experiments conducted on a nominally flat frictional interface reported the intriguing details of a two-phase nucleation of stick-slip motion that precedes the dynamic rupture propagation. This behavior was subsequently reproduced by a physics-based model incorporating laboratory-derived rate-and-state friction laws. However, applying the laboratory and theoretical results to the nucleation of crustal earthquakes remains challenging due to poorly constrained physical and friction properties of fault zone rocks at seismogenic depths. Here we apply the same physics-based model to simulate the nucleation process of crustal earthquakes using unique data acquired during the San Andreas Fault Observatory at Depth (SAFOD) experiment and new and existing measurements of friction properties of SAFOD drill core samples. Using this well-constrained model, we predict what the nucleation phase will look like for magnitude ˜2 repeating earthquakes on segments of the San Andreas Fault at a 2.8 km depth. We find that despite up to 3 orders of magnitude difference in the physical and friction parameters and stress conditions, the behavior of the modeled nucleation is qualitatively similar to that of laboratory earthquakes, with the nucleation consisting of two distinct phases. Our results further suggest that precursory slow slip associated with the earthquake nucleation phase may be observable in the hours before the occurrence of the magnitude ˜2 earthquakes by strain measurements close (a few hundred meters) to the hypocenter, in a position reached by the existing borehole.

  11. Ocean Drilling Simulation Activity.

    ERIC Educational Resources Information Center

    Telese, James A.; Jordan, Kathy

    The Ocean Drilling Project brings together scientists and governments from 20 countries to explore the earth's structure and history as it is revealed beneath the oceans' basins. Scientific expeditions examine rock and sediment cores obtained from the ocean floor to learn about the earth's basic processes. The series of activities in this…

  12. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  13. Results from exploratory drill hole UE2ce, Northwest Yucca Flat, Nevada Test Site, near the NASH Event

    SciTech Connect

    Pawloski, G.A.

    1982-03-03

    Exploratory drill hole UE2ce was drilled in January 1977 to determine geologic and geophysical characteristics of this site. This report presents geophysical logs, lithology, geologic structure, water table measurements, and physical properties for this drill hole. The data are then extrapolated to the NASH site, an event in U2ce, 55.6 m due north of UE2ce.

  14. Drilling and general petroleum engineering

    SciTech Connect

    Not Available

    1994-01-01

    Forty-nine papers are included in the Drilling and General Petroleum Engineering Volume of the SPE Annual Conference and Exhibition proceedings. The conference was held in New Orleans, Louisiana, September 25-28, 1994. The papers cover such topics as: extended reach well drilling, development of marginal satellite fields, slim hole drilling, pressure loss predictions, models for cuttings transport, ester-based drilling fluid systems, borehole stability, cementing, operations, bit failures, roller core bits, well tracking techniques, nitrogen drilling systems, plug failures, drill bit and drillstring dynamics, slim hole vibrations, reserve estimates, enhanced recovery methods, waste disposal, and engineering salary trends. A separate abstract and indexing was prepared for each paper for inclusion in the Energy Science and Technology Database.

  15. Inferring Earthquake Physics from Deep Drilling Projects of Active Faults

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Smith, S. A. F.; Kuo, L. W.; Mittempergher, S.; Remitti, F.; Spagnuolo, E.; Mitchell, T. M.; Gualtieri, A.; Hadizadeh, J.; Carpenter, B. M.

    2014-12-01

    Deep drilling projects of active faults offer the opportunity to correlate physical and chemical processes identified in core samples with experiments reproducing the seismic cycle in the laboratory and with high-resolution seismological and geophysical data. Here we discuss the constraints about earthquakes source processes at depth gained by fault cores retrieved from the deep drilling projects SAFOD (2.7 km depth, San Andreas Fault), J-FAST (0.9 km depth, following the Mw 9.0 Tohoku 2011 earthquake), TCDP (1.1 km depth, following the Mw 7.6 Chi-Chi 1999 earthquake) and WFSD (1.2 km depth, following the Mw 7.9 Wenchuan 2008 earthquake). Recovered samples were tested at room temperature with the rotary shear apparatus SHIVA installed in Rome (INGV, Italy). All the tested samples were made by clay-rich gouges (usually including smectite/illite), though their bulk mineralogy and modal composition were different (e.g., SAFOD samples included saponite, WFSD carbonaceous materials). The gouges were investigated before and after the experiments with scanning and transmission electron microscopy, X-Ray diffraction, micro-Raman spectroscopy, etc. A common behavior of all the tested gouges was that their friction coefficient was low (often less than 0.1) under room-humidity and wet conditions when sheared at slip rates of ca. 1 m/s (seismic deformation conditions). Moreover, when the natural fault rocks next to the principal slipping zones were sheared from sub-seismic (few micrometers/s) to seismic slip rates, the experimental products had similar microstructures to those found in the principal slipping zones of the drilled faults. This included the formation of mirror-like surfaces, graphite-rich materials, foliated gouges, nanograins, amorphous materials, etc. In most cases the mechanical data were consistent with several seismological (> 50 m of seismic slip for the fault zone drilled by J-FAST) and geophysical observations (absence of a thermal anomaly in the fault

  16. Lockdown Drills

    ERIC Educational Resources Information Center

    North Dakota Department of Public Instruction, 2011

    2011-01-01

    As a result of House Bill 1215, introduced and passed during the 2011 North Dakota legislative session, every school building in North Dakota must conduct a lockdown drill. While no timeframe, tracking or penalty was identified in the state law, the North Dakota Department of Public Instruction (DPI) advocates annual drills, at a minimum, which…

  17. Palaeo-earthquake events during the late Early Palaeozoic in the central Tarim Basin (NW China): evidence from deep drilling cores

    NASA Astrophysics Data System (ADS)

    He, Bizhu; Qiao, Xiufu; Jiao, Cunli; Xu, Zhiqin; Cai, Zhihui; Guo, Xianpu; Zhang, Yinli

    2014-07-01

    Various millimetre-, centimetre- and metre-scale soft-sediment deformation structures (SSDS) have been identified in the Upper Ordovician and Lower-Middle Silurian from deep drilling cores in the Tarim Basin (NW China). These structures include liquefied-sand veins, liquefaction-induced breccias, boudinage-like structures, load and diapir- or flame-like structures, dish and mixed-layer structures, hydroplastic convolutions and seismic unconformities. The deformed layers are intercalated by undeformed layers of varying thicknesses that are petrologically and sedimentologically similar to the deformed layers. The SSDS developed in a shelf environment during the early Late Ordovician and formed initially under shear tensile stress conditions, as indicated by boudinage-like structures; during the latest Ordovician, SSDS formed under a com-pressional regime. The SSDS in the Lower-Middle Silurian consist mainly of mixed layers and sand veins; they formed in shoreline and tidal-flat settings with liquefaction features indicating an origin under a compressional stress regime. By Silurian times, the centre of tectonic activity had shifted to the south-eastern part of the basin. The SSDS occur at different depths in wells that are close to the syn-sedimentary Tazhong 1 Fault (TZ1F) and associated reversed-thrust secondary faults. Based on their characteristics, the inferred formation mechanism and the spatial association with faults, the SSDS are interpreted as seismites. The Tazhong 1 fault was a seismogenic fault during the later Ordovician, whereas the reversed-direction secondary faults became active in the Early-Middle Silurian. Multiple palaeo-earthquake records reflect pulses and cyclicity, which supports secondary tectonic activity within the main tectonic movement. The range of SSDS structures reflects different developments of tectonic activity with time for the various tectonic units of the centralbasin. The effects of the strong palaeo-earthquake activity

  18. Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth)

    USGS Publications Warehouse

    Finster, K.W.; Cockell, C.S.; Voytek, M.A.; Gronstal, A.L.; Kjeldsen, K.U.

    2009-01-01

    A novel actinobacterium, designated CB31T, was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l-1) and MgCl2???6H 2O (3 g l-1). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was ll-diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H4) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45??C, with an optimum between 35 and 40??C. The pH range for growth was 5.7-9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95-96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31T is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31T (=NCIMB 14440T = DSM 21240T). ?? 2009 Springer Science+Business Media B.V.

  19. Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core: 2. Mass balance of the conversion of sideromelane to palagonite and chabazite

    NASA Astrophysics Data System (ADS)

    Walton, Anthony W.; Schiffman, Peter; MacPherson, G. L.

    2005-09-01

    The Hawaii Scientific Drilling Project 2 Phase 1 core permits study of each stage of alteration of basalt glass during burial because stages of the process are separated vertically. Previous work has shown that alteration of hyaloclastite occurs progressively. The latest stage observed in the Phase 1 core involves marginal replacement of sideromelane in shards with palagonite while simultaneously forming chabazite in pores. The basic reaction at this stage is sideromelane + components from pore waters = palagonite + chabazite + components to pore waters. Mass balance calculations show that Fe was virtually immobile in this process, being retained in palagonite. Na, Ca, Ba, P, Al, and Si were lost during palagonitization and not fully consumed in making chabazite. Mg was lost during palagonitization but retained elsewhere in smectite. K, Rb, and Sr were extracted from pore waters and enriched in the sum of the alteration products. The amount of enrichment depended upon the amount of chabazite present, which depended upon the porosity when chabazite formed. Ti, Y, U, Zr, Nb, REE, and Th were enriched in palagonite, compared to sideromelane, but were absent in chabazite. Mass balance of all phases for the entire alteration process (including earlier stages) was not possible because poorly consolidated samples do not yield accurate modal values of phases, trace element analysis of smectite was not possible, and exchange with lavas and intrusions in the succession cannot be evaluated. Calculations indicate that too little of major oxides, except Na2O, was released during palagonitization to account for the amount of smectite observed in hyaloclastites. The results of this study, and several others published in the literature, indicate that under various circumstances palagonitization will consume particular elements from pore fluid or release them to it. Such mobility implies that the hydrology of the particular system and the composition of the dissolved solids in the

  20. Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho

    USGS Publications Warehouse

    Crosthwaite, E. G.

    1976-01-01

    meters) were completed in the area (Crosthwaite, 1974), and the Aerojet Nuclear Company, under the auspices of the U.S. Energy Research and Development Administration, was planning some deep drilling 4,000 to 6,000 feet (1,200 to 1,800 meters) (fig. 1). The purpose of the core drilling was to provide information to test geophysical interpretations of the subsurface structure and lithology and to provide hydrologic and geologic data on the shallow part of the geothermal system. Samples of the core were made available to several divisions and branches of the Geological Survey and to people and agencies outside the Survey. This report presents the basic data from the core holes that had been collected to September 1, 1975, and includes lithologic and geophysical well logs, chemical analyses of water (table 1), and laboratory analyses of cores (table 2) that were completed as of the above date. The data were collected by the Idaho District office, Hydrologic Laboratory, Borehole Geophysics Research Project, and Drilling, Sampling, and Testing Section, all of the Water Resources Division, and the Branch of Central Environmental Geology of the Geologic Divison.

  1. Transport and frictional properties of core samples from Taiwan Chelungpu-fault Drilling Project and its association with the heat generation due to frictional heating

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Mizoguchi, K.; Takahashi, M.; Masuda, K.; Hirono, T.; Lin, W.; Soh, W.; Song, S.

    2006-12-01

    Taiwan Chelungpu-fault Drilling Project (TCDP) was started from 2002 to investigate the faulting mechanism of the 1999 Chi-Chi earthquake. TCDP was succeeded in penetrating the Chelungpu fault and recovered core samples from two holes, Hole A and Hole B. In Hole B, three fault zones, FZB1136 (1134-1137 m), FZB1194 (1194-1197 m), and FZB1243 (1242-1244 m), were recognized in the core samples (Hirono et al., 2006). Micro- textual observation and rock magnetic analyses of fault zones implied the evidence of heat generation, though the temperature did not reach the melting point. Borehole temperature measurement in Hole A observed the very low temperature anomaly around the fault zone (Kano et al., 2006). These results suggest the low degree of the frictional heating due to very low friction during the slip. The possible low friction might be explained by the slip within clay rich fault gouge with low shear strength. The other possible mechanisms are dynamic weakening behaviors of the fault zone, such as thermal pressurization and elast-hydrodynamic lubrication. To demonstrate the assumptions, the transport properties and the strength of the fault rocks are measured using core samples. Core samples of three fault zones in Hole B (FZB1136, FZB1194, and FZB1243) are selected for our laboratory experiments. Permeability and specific storage for fault rocks were measured under high confining pressure up to 100 MPa. Nitrogen gas was used as a pore fluid, and gas permeability was transformed to water permeability from gas permeability dependence on pore pressure of Klinkenberg equation. In FZB1136, permeability for fault breccia showed around 10-16 m2 at 1km depth which is similar value to that for host rock of siltstone and fracture rocks. In FZB1194, permeability of black fault gouge was about 10^{-15} m2, is larger than surrounding rocks. Frictional tests were also conducted using fault gouge samples with less than 100 μm of grain size. Tests are performed under the

  2. Drilling update

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    At its March 31 meeting the governing board of the Joint Oceanographic Institutions, Inc. (JOI), designated Texas A&M University to direct scientific operations for the new phase of scientific ocean drilling. William Merrell, associate dean of geosciences at Texas A&M, is leading an interim planning team in implementing the recommendations of the National Science Foundation's (NSF) Ad Hoc Advisory Group on Crustal Studies (Eos, February 22, 1983, p. 73). The ad hoc group, chaired by Charles Drake, recommended that scientific ocean drilling be pursued not with the Glomar Challenger or the Glomar Explorer, but with one of the roughly half-dozen commercial drilling ships that have become available with the slackening of the commercial drilling market.Foremost of the tasks facing the interim planning team is to write a request for proposals (RFP) for a drill ship and to define performance criteria for a commercial drilling platform. The RFP is expected to be issued by Texas A&M in 6-8 weeks, according to Philip Rabinowitz, acting project director and a professor in the university's oceanography department. Once those tasks are completed and a successful bidder is found, a formal proposal will be made to NSF through JOI. The proposal will be subject to the usual NSF peer review process. If the proposal is approved, Rabinowitz said that Texas A&M would expect actual drilling to begin in October 1984. In addition to Merrell and Rabinowitz, the interim planning team also includes acting chief scientist Stefan Gartner.

  3. Geophysical signature of the Pretoria saltpan impact structure and a possible satellite crater

    NASA Technical Reports Server (NTRS)

    Brandt, D.; Durrheim, R. J.; Reimold, W. U.

    1993-01-01

    The Pretoria Saltpan Crater is located in the southern portion of the Bushveld Igneous Complex, some 40 km NNW of Pretoria, South Africa, at 25 deg 24 min 30 sec S/28 deg 4 min 59 sec E. An origin by impact for this crater structure was recently confirmed. The results of the only gravity reconnaissance carried out over the crater to date failed to support an impact origin. With the aid of recent results obtained from a central drill-core, it was necessary to carry out more geophysical work which would include a gravity profile of higher resolution. A second, smaller, circular depression (about 400 m in diameter) to the SW of the crater is suggestive of a twin crater. This site had never been investigated, and thus various geophysical surveys were conducted.

  4. Geochemical characters of Quaternary tephra beds and their stratighraphic position in the sedimentary core drilled at the site U1343 in the central Bering Sea

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Asahi, H.; Nagatsuma, Y.; Kurihara, K.; Fukuoka, T.; Sakamoto, T.; Iijima, K.

    2012-12-01

    The project IODP exp.323 in the Bering Sea focused on analyzing long-term ocean and climate trends during 5 Ma, and drilled seven sites (sites 1339-1345). Up to now, the studies of long-term tephrochronology in this area are very rare, though a part of histories of several volcanoes and late Pleistocene to Holocene volcanisms and studies for geochemistry of magma were reported in detail. Our objectives are to reveal how many widespread tephras are found in the Bering Sea and which of volcanoes or volcanic zones provided them. First of all, we analyzed forty-eight tephra samples in the sedimentary core collected at site U1343, near the Bering self sloop. Sediments in site U1343 (57°33.4'N, 175°49.0'E, water depth 1956 mbsf, core length 779.18 m) include three paleomagnetic events (the BM boundary;0.788 Ma, Jaramillo; 0.998 Ma, Cobb Mountain;1.173 Ma). The bottom datum event is reported as 2.0-2.2 Ma (diatom) at 716.4 m. All tephra samples were washed by flesh water and decanting, dried up naturally, sieved by the mesh of dia.250, 125 and 63 micrometer. We observed every tephra under the binocular/polarizing microscopes, and analyzed major-element composition of volcanic glass shards by EPMA (10nA, 15kV, probe dia.10 micrometer). All samples include many kinds of volcanic glass shards (color: colorless to dark brown, form: bubble-wall type, pumice type, fiber type). Diameter of grain size is normally less 125 micrometer, and volcanic glass size in some layers is concentrated in the less 63 micrometer. Thickness of tephra samples is approximately 0.5 cm to 4 cm. In the basis of geochemicalc analysis of volcanic glass shards in 48 samples, though every sample includes volcanic glass shards, we can distinguish the two groups roughly; glass-rich samples (31 samples) and contaminated samples (17 samples). Contaminated samples include course sands (lithic fragments, rounded minerals, fossil fragments), besides volcanic glass shards. Number of contaminated samples

  5. GEOPHYSICAL WELL LOG/CORE DESCRIPTIONS, CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  6. Triple-oxygen and sulfur isotopic evidence for diagenetic overprinting of carbonate-associated sulfate in Neoproterozoic samples from a drill core

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Wang, W.; Pratt, L. M.; Zhou, C.; Bao, H.; Hayles, J. A.

    2014-12-01

    Carbonate-associated sulfate (CAS) is used in many studies to reconstruct the isotopic composition of ancient seawater sulfate and to infer stages in the development of Earth's oxygenated atmosphere. CAS is acid extractable and commonly is referred to as structurally substituted sulfate in carbonate minerals. Several recent studies, however, have raised concerns about sulfate overprinting during early or late diagenesis, including contamination by modern secondary atmospheric sulfate (SAS) and by sulfide oxidation during laboratory processing. To test for overprinting and contamination, we studied the isotopic composition of sulfate in a bedded carbonate succession of the Neoproterozoic Lantian Formation, South China. Materials were obtained from a drilling core (635Ma- 551Ma). Water-leachable sulfate (WLS), acid-leachable sulfate (ALS, i. e. extracted CAS), and chromium-reducible sulfur (CRS) were sequentially extracted out and triple oxygen isotopic compositions of WLS and ALS were analyzed as well as sulfur isotope of WLS, ALS, and CRS. We also analyzed the oxygen isotope of sulfate resulting from pyrite oxidation at a condition similar to the extraction of WLS and ALS in the laboratory and the δ18O value is at ~ -1.4‰ (VSMOW). The slightly negative ∆17O values of all WLS and ALS indicates that the ALS was not contaminated by sulfate of modern SAS. The WLS from the first 24 hours with consistently negative values of δ18O (about -11.0‰) and low δ34S values (about +5‰) suggests that the WLS resulted from sulfide oxidation in water with very negative δ18O values, likely glacial melt-water in the distant past, which had likely soaked the whole stratigraphy of Lantian Formation for a long time. The WLS also comprised a significant fraction of ALS because both δ18O and δ34S of ALS have wide ranges, from -6.9 to +15.8‰, and +12.7 to +31.7‰, respectively. More importantly, there is a strong positive correlation between δ18O and δ34S of ALS. Our

  7. Hydrothermal brecciation in the Jemez fault zone, Valles Caldera, New Mexico: Results from continental Scientific Drilling Program core hole VC-1

    NASA Astrophysics Data System (ADS)

    Hulen, Jeffrey B.; Nielson, Dennis L.

    1988-06-01

    An unusual breccia sequence penetrated in the lower 30 m of Continental Scientific Drilling Program core hole VC-1 (total depth 856 m) records a complex hydrothermal history culminating in hydraulic rock rupture and associated alteration at the edge of the Quaternary Valles caldera. The breccias, both tectonic and hydrothermal in origin, were formed in the Jemez fault zone, near the intersection of this major regional structure with the caldera's ring-fracture margin. Tectonic breccias in the sequence are contorted, crushed, and sheared. Coexisting hydrothermal breccias lack such frictional textures but display matrix flow foliation and prominent clast rounding, features characteristic of fluidization. These hydrothermal breccias were intensely altered, during at least five major stages, to quartz-illite-phengite-pyrite aggregates; traces of molybdenite occur locally. This assemblage indicates interaction with hydrothermal fluid at temperatures in excess of 200°C. The extrapolated present maximum temperature of 184°C in the breccia zone therefore represents considerable cooling since these phases were formed. Fluid inclusions in the breccias also preserve evidence of the prior passage of hotter fluids. The inclusions are principally two phase, liquid rich, secondary in origin, and concentrated in hydrothermal quartz. Older, high-salinity inclusions, unrelated to brecciation, homogenize in the temperature range 189°-246°C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize in the temperature range 230°-283°C; locally coexisting liquid- and vapor-rich inclusions document periodic boiling of the dilute fluids. These fluid-inclusion data, along with the probable age of the hydrothermal breccias (<1.5 Ma), the assumed depth at which they developed (about 515 m), and the contemporaneous state of stress (extensional) can be combined to model hydrothermal brecciation at the VC-1 site. The minimum fluid pressure (Pfr) required to

  8. Ultrasonic rotary-hammer drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  9. Physical property data from the ICDP-USGS Eyreville cores A and B, Chesapeake Bay impact structure, Virginia, USA, acquired using a multisensor core logger

    USGS Publications Warehouse

    Pierce, H.A.; Murray, J.B.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.

  10. Stress magnitude and orientation in deep coalbed biosphere off Shimokita ~IODP Expedition337 drilling project

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Lin, W.; Yamada, Y.

    2015-12-01

    One of IODP expedition (Borehole C0020A) is located in the forearc basin formed by the subducting between Pacific plate and Eurasian plate off Shimokita Peninsula. This ~2.5km deep scientific drilling collected the high-resolution wire-line resistivity logging, caliper data, Dipole Sonic waveforms; geophysical properties measurements and core samples. The riser drilling operations produced one good conditions borehole even this drilling operation was applied right after 311 Tohoku earthquake. Based on the high-resolutions Formation Micro Imager (FMI) images, both breakout and tensile fractures along the borehole wall indicating the in-situ stress orientation are detected in the unwrapped resistivity images. In this research, a reasonable geomechanical model based on the breakout width and physical properties is constructed to estimate the stress magnitude profile in this borehole. Besides, the openhole leak-off test revealed the information of Shmin magnitude. In general, stress direction along the borehole is slight rotated to east with drilling to the bottom of the borehole. Geomechanical model constarined the principal stresses in Strike-slip stress regime to satisfy the occurrences of borehole enlargements and tensile fractures. Some blank zones with no borehole wall failure and vertical fractures indicated the stress anomaly might be controlled by local lithological facies. Comparing to the JFAST drilling, this site is out of Japan trench slip zone and shows almost parallel stress direcion to the trench (~90 degree apart of Shmin with Site C0019).

  11. An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project—An overview

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Milkereit, Bernd; Overpeck, Jonathan T.; Scholz, Christopher A.; Amoako, Philip Y. O.; Boamah, Daniel; Danuor, Sylvester; Karp, Tobias; Kueck, Jochem; Hecky, Robert E.; King, John W.; Peck, John A.

    abundant. First chemical results indicate a number of suevite samples that are strongly enriched in siderophile elements and Mg, but the presence of a definite meteoritic component in these samples cannot be confirmed due to high indigenous values. Core LB-08A comprises suevitic breccia in the uppermost part, followed with depth by a thick sequence of graywacke-dominated metasediment with suevite and a few granitoid dike intercalations. It is assumed that the metasediment package represents bedrock intersected in the flank of the central uplift. Both 7A and 8A suevite intersections differ from suevites outside of the northern crater rim. Deep drilling results confirmed the gross structure of the crater as imaged by the pre-drilling seismic surveys. Borehole geophysical studies conducted in the two boreholes confirmed the low seismic velocities for the post-impact sediments (less than 1800 m/s) and the impactites (2600- 3300 m/s). The impactites exhibit very high porosities (up to 30 vol%), which has important implications for mechanical rock stability. The statistical analysis of the velocities and densities reveals a seismically transparent impactite sequence (free of prominent internal reflections). Petrophysical core analyses provide no support for the presence of a homogeneous magnetic unit (= melt breccia) within the center of the structure. Borehole vector magnetic data point to a patchy distribution of highly magnetic rocks within the impactite sequence. The lack of a coherent melt sheet, or indeed of any significant amounts of melt rock in the crater fill, is in contrast to expectations from modeling and pre-drilling geophysics, and presents an interesting problem for comparative studies and requires re-evaluation of existing data from other terrestrial impact craters, as well as modeling parameters.

  12. > Exploring the Scandinavian Mountain Belt by Deep Drilling (COSC)

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.-F.

    2012-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project proposes to drill two fully cored scientific boreholes, both to c. 2.5 km depth, in the Swedish Caledonides, one near the town of Åre (COSC 1) and the other further east (COSC 2). Together they will provide a c. 5 km deep high-resolution mid-crustal section through this major mid-Palaeozoic orogen. Main project objectives include (i) improved understanding of mountain building processes (orogeny), (ii) investigation of the geothermal gradient and its response to palaeoclimatic influences, (iii) the hydrogeological-hydrochemical state of the mountain belt, (iv) the deep biosphere in the metamorphic rocks and crystalline basement, and (v) calibration of surface geophysics and geology. The Caledonide Orogen is comparable in size and many other respects to today's Himalayan mountain belt. Silurian collision with underthrusting of the paleo-continent Baltica below Laurentia resulted in widespread formation of eclogite. Major allochthons were transported many hundreds of kilometers onto the Baltoscandian Platform, including high-grade metamorphic rocks and migmatites which were generated during continental margin subduction and emplaced ductilely at mid-crustal levels. COSC will provide detailed insight into mid-Palaeozoic mountain building processes and further our understanding of past, present and future orogen dynamics. Located in a key-area for Caledonian geology, it is close to a major geophysical transect across the mountain belt which has been complemented recently with high-resolution reflection seismics and aerogeophysics for site-selection. The COSC research program is being developed by five working groups, geology, geophysics, geothermics, hydrogeology and microbiology. It has direct relevance for society by improving our understanding of mountain building processes, hydrological-hydrochemical regimes in mountain areas and Precambrian shields, deep subsurface conditions for underground

  13. Drill cutting and core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    SciTech Connect

    Andrew Fowler

    2015-05-01

    Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  14. The Iceland Deep Drilling Project (IDDP): (I) Drilling for Supercritical Hydrothermal Fluids is Underway

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2008-12-01

    The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power

  15. Microgravity Drill and Anchor System

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  16. DEGAS experiments on volcanic glass samples from AND-1B drill core: implications for primary magmatic versus secondary H2O

    NASA Astrophysics Data System (ADS)

    Heide, K.; Cameron, B. I.; Krans, S. R.

    2012-12-01

    The existence of volcanic glass in the AND-1B drill core erupted subaquesously or even subglacially affords the possibility of constraining water depth by measuring the volatile content of the glass only if primary magmatic H2O contents can be recognized from secondary H2O. The glass samples studied come from Lithostratigraphic Unit (LU) 2 between 92 and 145 m depth. The black and well sorted sands from subunit 2.4 were most likely derived from subaerial Hawaiian/Strombolian type eruptions. The graded bedding exposed in this subunit may result from fallout of tephra through the water column. Glass fragments from six different depths within subunit 2.4 were extracted from AND-1B sediment first by magnetic separation and then approximately 100 mg of the freshest glass fragments were handpicked under a binocular microscope. The six glass separates were heated in a DEGAS-device up to 1450°C in high vacuum and the liberated volatiles were determined by a simultaneous mass spectrometric analysis. This study was focused on the determination of H2O, CO2, H2, HF, H2S, HCl, SO2, and hydrocarbon species. The six degassing experiments were carried out using a special high-vacuum-hot-extraction method combined with aquadrupol mass spectrometer. Measurements were carried out at less than 10-4 to 10-3Pa and a linear heating rate (10K/min) at a temperature range between room temperature to 1450°C. The volatile species were analyzed in multiple ion detection mode. DEGAS experiments occur under highly non-equilibrium conditions so that reverse reactions between volatiles or between volatiles and the melt are largely prevented. For each glass sample, volatile release occurs at different rates and intensities at different temperatures. Based on the gas release profiles obtained, degassing processes take place in three separate temperature ranges. Low temperature degassing occurs at temperatures up to 500°C and likely represents the liberation of surface bounded volatiles such as H2

  17. Geology of the USW SD-7 drill hole Yucca Mountain, Nevada

    SciTech Connect

    Rautman, C.A.; Engstrom, D.A.

    1996-09-01

    The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into the Tram Tuff, which underlies the Prow Pass and Bullfrog Tuffs. These latter three units are all formations of the Crater Flat Group, The drill hole was collared in welded materials assigned to the crystal-poor middle nonlithophysal zone of the Tiva Canyon Tuff; approximately 280 ft (85 m) of this ash-flow sheet was penetrated by the hole. The Yucca Mountain Tuff appears to be missing from the section at the USW SD-7 location, and the Pah Canyon Tuff is only 14.5 ft thick. The Pah Canyon Tuff was not recovered in core because of drilling difficulties, suggesting that the unit is entirely nonwelded. The presence of this unit is inferred through interpretation of down-hole geophysical logs.

  18. Site Report for USGS Test Holes Drilled at Cape Charles, Northampton County, Virginia, in 2004

    USGS Publications Warehouse

    Gohn, Gregory S.; Sanford, Ward E.; Powars, David S.; Horton, J. Wright; Edwards, Lucy E.; Morin, Roger H.; Self-Trail, Jean M.

    2007-01-01

    The U.S. Geological Survey drilled two test holes near Cape Charles, Virginia, during May and June 2004, as part of an investigation of the buried, late Eocene Chesapeake Bay impact structure. The first hole is designated as the USGS-Sustainable Technology Park test hole #1 (USGS-STP1). This test hole was abandoned at a depth of 300 ft; cuttings samples were collected, but no cores or geophysical logs were acquired. The second hole is designated as the USGS-Sustainable Technology Park test hole #2 (USGS-STP2). This test hole was drilled to a depth of 2,699 ft. Cores were collected between depths of 1,401.7 ft and 1,420.7 ft and between 2,440.0 ft and 2,699.0 ft. Cuttings samples were collected from the uncored intervals below 280-ft depth. Interim sets of geophysical logs were acquired during the drilling operation, and one final set was acquired at the end of drilling. Two wells were installed in the USGS-STP2 test hole. The deep well (designated 62G-24) was screened between 2,260 ft and 2,280 ft, and the shallow well (designated 62G-25) was screened between 1,360 ft and 1,380 ft. Ground-water salinities stabilized at 40 parts per thousand for the deep well and 20 parts per thousand for the shallow well. The geologic section encountered in the test holes consists of three main units: (1) Eocene, Oligocene, Miocene, Pliocene, and Pleistocene sands and clays are present between land surface and a depth of 1,163 ft; (2) sediment-clast breccias of the impact structure are present between depths of 1,163 ft and 2,150 ft; and (3) crystalline-clast breccias and cataclastic gneiss of the impact structure are present between depths of 2,150 ft and 2,699 ft.

  19. The Iceland Deep Drilling Project (IDDP):(I) Drilling at Krafla encountered Rhyolitic Magma

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Mortensen, A.; Gudmunsson, A.; Gudmundsson, B.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R. A.

    2009-12-01

    The IDDP aims to produce supercritical hydrothermal fluids from depths of 4-5 km and temperatures of >400°C as modeling suggests that supercritical water could generate an energy output about 10 times that of a typical geothermal well. This could lead to major improvements in developing high-temperature geothermal resources worldwide. The first IDDP well was located in the Krafla caldera in the active central rift zone of NE Iceland, where during 1975-1984, a rifting episode occurred that involved 9 distinct volcanic eruptions. At Krafla there has been extensive production drilling since 1971 to supply steam to a geothermal power plant. Within the caldera a large magma chamber was detected by S-wave attenuation at 3-7 km depth, and a recent MT-survey determined its location. The IDDP-1 was located to reach to 4.5 km to end above the magma chamber. When the drilling had reached 2075 m depth multiple drilling problems ensued, including a failed coring attempt, twist offs, and sidetracks to bypass drill string lost in the hole. An anchor casing was set at 1950 m to case off the trouble zones. However drilling problems continued and another twist off and sidetrack followed. Drilling then penetrated a mixture of fresh basalt and granophyre until 24th June 2009, when at about 2100 m the bit became stuck. However, circulation was maintained and rhyolitic glass was returned to the surface. Rhyolitic magma flowed into the drill hole filling the bottom 10 m. The glass cuttings returned were at first pumiceous then homogeneous, sparsely phyric obsidian. The petrology of this glass is described in accompanying posters. The intrusion responsible was evidently below the resolution of available geophysical surveys. We decided to terminate drilling and test the well and so a 9 5/8 inch sacrificial production casing was cemented inside the anchor casing with a 9 5/8 inch slotted liner below. The well is now heating, and will be flow tested in late November 2009. If the flow tests

  20. ICDP drilling in the Scandinavian Caledonides: Plans for COSC-2

    NASA Astrophysics Data System (ADS)

    Juhlin, Christopher; Lorenz, Henning; Almqvist, Bjarne; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Roberts, Nick; Rosberg, Jan-Erik

    2015-04-01

    Previous drilling in the Caledonian front, along with seismic reflection and magnetotelluric profiling, has shown that the sole thrust of the orogen, defined by the base of the Jämtlandian fold-and-thrust belt, dips gently westwards (1-2 degrees), with organic-rich black alum shales in the footwall underlain by a basal Cambrian unconformity and Paleoproterozoic granites and gneisses (perhaps also Mesoproterozoic sandstones). These basement rocks are remarkable for their pattern of prominent seismic reflections, some of which are almost certainly related to hypabyssal mafic intrusions, as exposed in the autochthon to the east of the Caledonian thrust front. Others may be thrust zones, or a combination of both, with the mafic sheets variously rotated and sheared. A key component of COSC-2 is to penetrate these reflectors and determine their origin and age (either Caledonian or Precambrian, or both), perhaps defining the Sveconorwegian deformation front beneath these central parts of the Scandes. COSC-2 will start in the lower thrust sheets, pass through the basal décollement and investigate the character of the deformation in the underlying basement. Combined seismic and magnetotelluric (MT) data provide control on the basement structure and the depth to the basal décollement, which is believed to host the highly conductive Alum Shale. New seismic data acquired in 2014 combined with previous data help define the depth where distinct basement reflectors can be penetrated. Drilling into the basement and understanding of the deformation pattern and the age of deformation are keys to unraveling the collisional process. COSC-2 will also be fully cored and the drilling program, as well as the on-site science, will build on the experience from drilling of COSC-1. Applications for drilling related costs will be made to ICDP and the Swedish Research Council and, if funded, drilling will be carried out in 2017. Researchers interested in any aspect of the COSC project are

  1. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    SciTech Connect

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  2. Elemental changes and alteration recorded by basaltic drill core samples recovered from in situ temperatures up to 345°C in the active, seawater-recharged Reykjanes geothermal system, Iceland

    NASA Astrophysics Data System (ADS)

    Fowler, Andrew P. G.; Zierenberg, Robert A.

    2016-11-01

    Hydrothermal activity results in element exchanges between seawater and oceanic crust that contribute to many aspects of ocean chemistry; therefore, improving knowledge of the associated chemical processes is of global significance. Hydrothermally altered basaltic drill core samples from the seawater-recharged Reykjanes geothermal system in Iceland record elemental gains and losses similar to those observed in samples of hydrothermally altered oceanic crust. At Reykjanes, rocks originally emplaced on the seafloor were buried by continued volcanism and subsided to the current depths (>2250 m below surface). These rocks integrate temperature-dependent elemental gains and losses from multiple stages of hydrothermal alteration that correspond to chemical exchanges observed in rocks from different crustal levels of submarine hydrothermal systems. Specifically, these lithologies have gained U, Mg, Zn, and Pb and have lost K, Rb, Ba, Cu, and light rare earth elements (La through Eu). Alteration and elemental gains and losses in lithologies emplaced on the seafloor can only be explained by a complex multistage hydrothermal alteration history. Reykjanes dolerite intrusions record alteration similar to that reported for the sheeted dike section of several examples of oceanic crust. Specifically, Reykjanes dolerites have lost K, Rb, Ba, and Pb, and gained Cu. The Reykjanes drill core samples provide a unique analog for seawater-oceanic crust reactions actively occurring at high temperatures (275-345°C) beneath a seafloor hydrothermal system.

  3. Geophysics with applications to subsurface waste disposal: Case history

    SciTech Connect

    Lee, K.H.

    2001-08-09

    Recent development in geophysical methods allows us to accurately map the distribution of seismic velocity, density and electrical conductivity beneath the surface and between boreholes. These physical properties are dependent on porosity, fluid saturation, fluid conductivity, pressure, temperature, clay content, and in some circumstances, permeability. Hydrological parameters may be measured or inferred from drill hole experiments or directly from core samples. The point measurements in a drill hole are then interpolated to the interwell volume using either statistical properties of the local geology or reasonable estimates of the geological structure and lithology. More direct evidence is obtained from well tests, and interference tests between multiple wells, but these are ill posed inverse problems when it comes to defining the properties of the entire interwell volume. Furthermore such tests are impossible in the vadose zone. The interpolation of well data is often inaccurate or misleading and the central problem for all these studies is the lack of these fundamental parameters throughout the subsurface volume of interest.

  4. Element mobility studies of two drill-cores from the Götemar Granite (Kråkemåla test site), southeast Sweden

    USGS Publications Warehouse

    Smellie, John A.T.; Stuckless, John S.

    1985-01-01

    The pervasive alteration and the more recent mobilisation of U are evident to a depth of at least 600 m. The effects are most prevalent along major fracture zones and within the upper 250–300 m of one drill-hole where a high frequency of crush zones has been noted. Higher Fe oxidation ratios, higher Rb contents, lower U contents and correspondingly higher Th/U ratios, all characterise this zone.

  5. Geophysical Sounding

    NASA Astrophysics Data System (ADS)

    Blake, E.

    1998-01-01

    Of the many geophysical remote-sensing techniques available today, a few are suitable for the water ice-rich, layered material expected at the north martian ice cap. Radio echo sounding has been used for several decades to determine ice thickness and internal structure. Selection of operating frequency is a tradeoff between signal attenuation (which typically increases with frequency and ice temperature) and resolution (which is proportional to wavelength). Antenna configuration and size will be additional considerations for a mission to Mars. Several configurations for ice-penetrating radar systems are discussed: these include orbiter-borne sounders, sounding antennas trailed by balloons and penetrators, and lander-borne systems. Lander-borne systems could include short-wave systems capable of resolving fine structure and layering in the upper meters beneath the lander. Spread-spectrum and deconvolution techniques can be used to increase the depth capability of a radar system. If soundings over several locations are available (e.g., with balloons, rovers, or panning short-wave systems), then it will be easier to resolve internal layering, variations in basal reflection coefficient (from which material properties may be inferred), and the geometry of nonhorizontal features. Sonic sounding has a long history in oil and gas exploration. It is, however, unlikely that large explosive charges, or even swept-frequency techniques such as Vibroseis, would be suitable for a Polar lander -- these systems are capable of penetrating several kilometers of material at frequencies of 10-200 Hz, but the energy required to generate the sound waves is large and potentially destructive. The use of audio-frequency and ultrasonic sound generated by piezoelectric crystals is discussed as a possible method to explore layering and fine features in the upper meters of the ice cap. Appropriate choice of transducer(s) will permit operation over a range of fixed or modulated frequencies

  6. ICDP drilling in the Scandinavian Caledonides: Preliminary results from COSC-1

    NASA Astrophysics Data System (ADS)

    Juhlin, Christopher; Lorenz, Henning; Almqvist, Bjarne; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Roberts, Nick; Rosberg, Jan-Erik

    2015-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide new data on deep thermal gradients for paleoclimate modeling and potential geothermal energy resources of the area, contribute new information about the deep biosphere, and improve our understanding of the geophysical response of the sub-surface. Two 2.5 km deep fully cored holes will help achieve these goals with the first one, COSC-1, completed in late August 2014. COSC-1 targeted the high-grade metamorphic complex of the Seve Nappes (SNC) and the contact with the underlying allochthon. Drilling was performed using an Atlas Copco CT20 diamond core-drilling rig, operated by Lund University, that resulted in nearly 100% core recovery to 2.5 km depth. A crew of 6 on-site researchers examined the core as it came up and performed on-site documentation of it; including photography, optical core scanning, physical property measurements and biological sampling. A number of geophysical logging suites were run during and after completion of drilling, including sonic, density, electric, temperature and acoustic televiewer logs. A near four week long seismic acquisition program followed in the Fall of 2014 with combined surface and borehole surveys in the vicinity of COSC-1. On-site core analysis indicates that the SNC is about 2 km thick (the lower boundary is not well defined), consisting mainly of gneisses and amphibolites. A zone of extensive shearing is found in the lowermost 500 m of the borehole. Metamorphosed sandstones intercalated with garnetiferous mylonites in this

  7. Geophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Busse, F. H.

    In the past 8 years, since Pedlosky's book was first published, it has found a well established place in the literature of dynamical meteorology and physical oceanography. Geophysicists less familiar with these fields may need to be reminded that the subject of geophysical fluid dynamics, in the narrow definition used in the title of the book, refers to the theory of the large-scale motions of the atmosphere and the oceans. Topics such as thermal convection in the atmosphere or in Earth's mantle and core are not treated in this book, and the reader will search in vain for a discussion of atmospheric or oceanic tides. The theory of quasi-geostrophic flow is described comprehensively, however, and its major applications to problems of atmospheric and oceanic circulations are considered in detail.

  8. Interpretation of drill cuttings from geothermal wells

    SciTech Connect

    Hulen, J.B.; Sibbett, B.S.

    1981-06-01

    Problems in interpreting drill cuttings, as opposed to drill cores, and methods to solve these problems are outlined. The following are covered: identification of lithology; recognition of faults and fractures; interpretation of hydrothermal alteration; geochemistry; sample collection; sample preparple examination; and sample storage. (MHR)

  9. EDITORIAL: The interface between geophysics and engineering

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Journal of Geophysics and Engineering (JGE) aims to publicize and promote research and developments in geophysics and in related areas of engineering. As stated in the journal scope, JGE is positioned to bridge the gap between earth physics and geo-engineering, where it reflects a growing trend in both industry and academia. JGE covers those aspects of engineering that bear closely on geophysics or on the targets and problems that geophysics addresses. Typically this will be engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design. There is a trend, visible throughout academia, for rapid expansion in cross-disciplinary, multi-disciplinary and inter-disciplinary working. Many of the most important and exciting problems and advances are being made at the boundaries between traditional subject areas and, increasingly, techniques from one discipline are finding applications in others. There is a corresponding increasing requirement for researchers to be aware of developments in adjacent areas and for papers published in one area to be readily accessible, both in terms of location and language, to those in others. One such area that is expanding rapidly is that at the interface between geophysics and engineering. There are three principal developments. Geophysics, and especially applied geophysics, is increasingly constrained by the limits of technology, particularly computing technology. Consequently, major advances in geophysics are often predicated upon major developments in engineering and many research geophysicists are working in multi-disciplinary teams with engineers. Engineering problems relevant to the sub-surface are increasingly looking to advances in geophysics to provide part of the solution. Engineering systems, for example, for tunnel boring or petroleum reservoir management, are using high-resolution geophysical

  10. Geological & Geophysical findings from seismic, well log and core data for marine gas hydrate deposits at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, offshore Japan: An overview

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Noguchi, S.; Takayama, T.; Suzuki, K.; Yamamoto, K.

    2012-12-01

    In order to evaluate productivity of gas from marine gas hydrate by the depressurization method, Japan Oil, Gas and Metals National Corporation is planning to conduct a full-scale production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough, Japan. The test location was determined using the combination of detailed 3D seismic reflection pattern analysis, high-density velocity analysis, and P-impedance inversion analysis, which were calibrated using well log data obtained in 2004. At the AT1 site, one production well (AT1-P) and two monitoring wells (AT1-MC and MT1) were drilled from February to March 2012, followed by 1 coring well (AT1-C) from June to July 2012. An extensive logging program with logging while drilling (LWD) and wireline-logging tools, such as GeoVISION (resistivity image), EcoScope (neutron/density porosity, mineral spectroscopy etc.), SonicScanner (Advanced Sonic tool), CMR/ProVISION (Nuclear Magnetic Resonance Tools), XPT (formation pressure, fluid mobility), and IsolationScanner (ultrasonic cement evaluation tools) was conducted at AT1-MC well to evaluate physical reservoir properties of gas hydrate-bearing sediments, to determine production test interval in 2013, and to evaluate cement bonding. Methane hydrate concentrated zone (MHCZ) confirmed by the well logging at AT1-MC was thin turbidites (tens of centimeters to few meters) with 60 m of gross thickness, which is composed of lobe type sequences in the upper part of it and channel sand sequences in the lower part. The gross thickness of MHCZ in the well is thicker than previous wells in 2004 (A1, 45 m) located around 150 m northeast, indicating that the prediction given by seismic inversion analysis was reasonable. Well-to-well correlation between AT1-MC and MT1 wells within 40 m distance exhibited that lateral continuity of these sand layers (upper part of reservoir) are fairly good, which representing ideal reservoir for the production

  11. Kimberly Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  12. Kimama Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  13. COSC-1 technical operations: drilling and borehole completion

    NASA Astrophysics Data System (ADS)

    Rosberg, Jan-Erik; Bjelm, Leif; Larsson, Stellan; Juhlin, Christopher; Lorenz, Henning; Almqvist, Bjarne

    2015-04-01

    COSC-1, the first out of the two planned fully cored boreholes within the COSC-project, was completed in late August 2014. Drilling was performed using the national scientific drilling infrastructure, the so called Riksriggen, operated by Lund University, and resulted in a 2495.8 m deep borehole with almost 100 % core recovery. The rig is an Atlas Copco CT20C diamond core-drill rig, a rig type commonly used for mineral exploration. A major advantage with this type of drill rig compared to conventional rotary rigs is that it can operate on very small drill sites. Thus, it leaves a small environmental footprint, in this case around 1000 m2. The rig was operated by 3 persons over 12 hour shifts. Before the core drilling started a local drilling company installed a conductor casing down to 103 m, which was required for the installation of a Blow Out Preventer (BOP). The core drilling operation started using H-size and a triple tube core barrel (HQ3), resulting in a hole diameter of 96 mm and a core diameter of 61.1 mm down to 1616 m. In general, the drilling using HQ3 was successful with 100 % core recovery and core was acquired at rate on the order 30-60 m/day when the drilling wasn't interrupted by other activities, such as bit change, servicing or testing. The HRQ-drill string was installed as a temporary casing from surface down to 1616 m. Subsequently, drilling was conducted down to 1709 m with N-size and a triple tube core barrel (NQ3), resulting in a hole diameter of 75.7 mm and a core diameter of 45 mm. At 1709 m the coring assembly was changed to N-size double tube core barrel (NQ), resulting in a hole diameter of 75.7 mm and a core diameter of 47.6 mm and the core barrel extended to 6 m. In this way precious time was saved and the good rock quality ensured high core recovery even with the double tube. In general, the drilling using NQ3 and NQ was successful with 100 % core recovery at around 36 m/day by the end of the drilling operation. The main problem

  14. Analysis of borehole geophysical information across a uranium deposit in the Jackson Group, Karnes County, Texas

    USGS Publications Warehouse

    Daniels, Jeffrey J.; Scott, James Henry; Smith, Bruce D.

    1979-01-01

    Borehole geophysical studies across a uranium deposit in the Jackson Group, South Texas, show the three geochemical environments often associated with uranium roll-type deposits: an altered (oxidized) zone, an ore zone, and an unaltered (reduced) zone. Mineralogic analysis of the total sulfides contained in the drill core shows only slight changes in the total sulfide content among the three geochemical regimes. However, induced polarization measurements on the core samples indicate that samples obtained from the reduced side of the ore zone are more electrically polarizable than those from the oxidized side of the ore zone, and therefore probably contain more pyrite. Analysis of the clay-size fraction in core samples indicates that montmorillonite is the dominant clay mineral. High resistivity values within the ore zone indicate the presence of calcite cement concentrations that are higher than those seen outside of the ore zone. Between-hole resistivity and induced polarization measurements show the presence of an extensive zone of calcite cement within the ore zone, and electrical polarizable material (such as pyrite) within and on the reduced side of the ore zone. A quantitative analysis of the between-hole resistivity data, using a layered-earth model, and a qualitative analysis of the between-hole induced polarization measurements showed that mineralogic variations among the three geochemical environments were more pronounced than were indicated by the geophysical and geologic well logs. Uranium exploration in the South Texas Coastal Plain area has focused chiefly in three geologic units: the Oakville Sandstone, the Catahoula Tuff, and the Jackson Group. The Oakville Sandstone and the Catahoula Tuff are of Miocene age, and the Jackson Group is of Eocene age (Eargle and others, 1971). Most of the uranium mineralization in these formations is low grade (often less than 0.02 percent U3O8) and occurs in shallow deposits that are found by concentrated exploratory

  15. Petrography and phenocryst chemistry of volcanic units at Yucca Mountain, Nevada: A comparison of outcrop and drill hole samples

    SciTech Connect

    Broxton, D.E.; Byers, F.M. Jr.; Warren, R.G.

    1989-04-01

    This report is a compilation of petrographic and mineral chemical data for stratigraphic units at Yucca Mountain. It supports a possible peer review of Yucca Mountain drill core by summarizing the available data in a form that allows comparison of stratigraphic units in drill holes with surface outcrops of the same units. Petrographic and mineral chemical data can be used in conjunction with other geologic and geophysical information to determine if stratigraphic relations in Yucca Mountain drill core are geologically reasonable and compare well with relations known from extensive surface studies. This compilation of petrographic and mineral chemical data is complete enough for most stratigraphic units to be used in a peer review of Yucca Mountain drill core. Additional data must be collected for a few units to complete the characterization. Rock units at Yucca Mountain have unique petrographic and mineral chemical characteristics that can be used to make accurate stratigraphic assignments in drill core samples. Stratigraphic units can be differentiated on the basis of petrographic characteristics such as total phenocryst abundances, relative proportions of phenocryst minerals, and type and abundances of mafic and accessory minerals. The mineral chemistry of phenocrysts is also an important means of differentiating among stratigraphic units, especially when used in conjunction with the petrographic data. Sanidine phenocrysts and plagioclase rims have narrow compositional ranges for most units and often have well-defined dominant compositions. Biotite compositions are useful for identifying groups of related units (e.g., Paintbrush Tuff Members vs Crater Flat Tuff Members) and for providing an important check on the consistency of the data. 21 refs., 12 figs., 2 tabs.

  16. GIS of selected geophysical and core data in the northern Gulf of Mexico continental slope collected by the U.S. Geological Survey

    USGS Publications Warehouse

    Twichell, David C.; Cross, VeeAnn A.; Paskevich, Valerie F.; Hutchinson, Deborah R.; Winters, William J.; Hart, Patrick E.

    2006-01-01

    Since 1982 the U. S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep-water parts of the US EEZ in the northern Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these datasets have already been published, but the growing interest in the occurrence and distribution of gas hydrates in the Gulf of Mexico warrants integrating these existing USGS datasets and associated interpretations into a Geographic Information System (GIS) to provide regional background information for ongoing and future gas hydrate research. This GIS is organized into five different components that contain (1) information needed to develop an assessment of gas hydrates, (2) background information for the Gulf of Mexico, (3) cores collected by the USGS, (4) seismic surveys conducted by the USGS, and (5) sidescan sonar surveys conducted by the USGS. A brief summary of the goals and findings of the USGS field programs in the Gulf of Mexico is given in the Geologic Findings section, and then the contents of each of the five data categories are described in greater detail in the GIS Data Catalog section.

  17. Drilling fluid

    SciTech Connect

    Russell, J.A.; Patel, B.B.

    1987-11-03

    A drilling fluid additive mixture is described consisting essentially of a sulfoalkylated tannin in admixture with a non-sulfoalkylated alkali-solubilized lignite wherein the weight ratio of the sulfoalkylated tannin to the non-sulfoalkylated lignite is in the range from about 2:1 to about 1:1. The sulfoalkylated tannin has been sulfoalkylated with at least one -(C(R-)/sub 2/-SO/sub 3/M side chain, wherein each R is selected from the group consisting of hydrogen and alkyl radicals containing from 1 to about 5 carbon atoms, and M is selected from the group consisting of ammonium and the alkali metals.

  18. Friis Hills Drilling Project - Coring an Early to mid-Miocene terrestrial sequence in the Transantarctic Mountains to examine climate gradients and ice sheet variability along an inland-to-offshore transect

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Levy, R. H.; Naish, T.; Gorman, A. R.; Golledge, N.; Dickinson, W. W.; Kraus, C.; Florindo, F.; Ashworth, A. C.; Pyne, A.; Kingan, T.

    2015-12-01

    The Early to mid-Miocene is a compelling interval to study Antarctic ice sheet (AIS) sensitivity. Circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. Geologic records from locations proximal to the AIS are required to examine ice sheet response to climate variability during this time. Coastal and offshore drill core records recovered by ANDRILL and IODP provide information regarding ice sheet variability along and beyond the coastal margin but they cannot constrain the extent of inland retreat. Additional environmental data from the continental interior is required to constrain the magnitude of ice sheet variability and inform numerical ice sheet models. The only well-dated terrestrial deposits that register early to mid-Miocene interior ice extent and climate are in the Friis Hills, 80 km inland. The deposits record multiple glacial-interglacial cycles and fossiliferous non-glacial beds show that interglacial climate was warm enough for a diverse biota. Drifts are preserved in a shallow valley with the oldest beds exposed along the edges where they terminate at sharp erosional margins. These margins reveal drifts in short stratigraphic sections but none is more than 13 m thick. A 34 m-thick composite stratigraphic sequence has been produced from exposed drift sequences but correlating beds in scattered exposures is problematic. Moreover, much of the sequence is buried and inaccessible in the basin center. New seismic data collected during 2014 reveal a sequence of sediments at least 50 m thick. This stratigraphic package likely preserves a detailed and more complete sedimentary sequence for the Friis Hills that can be used to refine and augment the outcrop-based composite stratigraphy. We aim to drill through this sequence using a helicopter-transportable diamond coring system. These new cores will allow us to obtain

  19. Spatial scale analysis in geophysics - Integrating surface and borehole geophysics in groundwater studies

    USGS Publications Warehouse

    Paillet, Frederick L.; Singhroy V.H.Hansen D.T.Pierce R, R

    2002-01-01

    Integration of geophysical data obtained at various scales can bridge the gap between localized data from boreholes and site-wide data from regional survey profiles. Specific approaches to such analysis include: 1) comparing geophysical measurements in boreholes with the same measurement made from the surface; 2) regressing geophysical data obtained in boreholes with water-sample data from screened intervals; 3) using multiple, physically independent measurements in boreholes to develop multivariate response models for surface geophysical surveys; 4) defining subsurface cell geometry for most effective survey inversion methods; and 5) making geophysical measurements in boreholes to serve as independent verification of geophysical interpretations. Integrated analysis of surface electromagnetic surveys and borehole geophysical logs at a study site in south Florida indicates that salinity of water in the surficial aquifers is controlled by a simple wedge of seawater intrusion along the coast and by a complex pattern of upward brine seepage from deeper aquifers throughout the study area. This interpretation was verified by drilling three additional test boreholes in carefully selected locations.

  20. Analytical results from samples collected during coal-bed methane exploration drilling in Caldwell Parish, Louisiana

    USGS Publications Warehouse

    Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.

    2006-01-01

    In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.

  1. Multiscale geophysical imaging of the critical zone

    NASA Astrophysics Data System (ADS)

    Parsekian, A. D.; Singha, K.; Minsley, B. J.; Holbrook, W. S.; Slater, L.

    2015-03-01

    Details of Earth's shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the environment. Geophysical methods provide a means for remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we present a review highlighting the application of geophysical methods to CZ science research questions. In particular, we consider the application of geophysical methods to map the geometry of structural features such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones. Combined with knowledge of structure, we discuss how geophysical observations are used to understand CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere have been studied using geophysical methods in wetland areas. Indirect geophysical methods are a natural and necessary complement to direct observations obtained by drilling or field mapping. Direct measurements should be used to calibrate geophysical estimates, which can then be used to extrapolate interpretations over larger areas or to monitor changing processes over time. Advances in geophysical instrumentation and computational approaches for integrating different types of data have great potential to fill gaps in our understanding of the shallow subsurface portion of the CZ and should be integrated where possible in future CZ research.

  2. WRITING ORAL DRILLS.

    ERIC Educational Resources Information Center

    NEY, JAMES W.

    ALL ORAL LANGUAGE DRILLS MAY BE SEPARATED INTO TWO TYPES--(1) MIM-MEM OR MIMICRY MEMORIZATION DRILLS OR (2) PATTERN PRACTICE DRILLS. THESE TWO LARGER CATEGORIES CAN BE SUB-DIVIDED INTO A NUMBER OF OTHER TYPES, SUCH AS TRANSFORMATION AND SUBSTITUTION DRILLS. THE USE OF ANY PARTICULAR TYPE DEPENDS ON THE PURPOSE TO WHICH THE DRILL IS PUT. IN ANY…

  3. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  4. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  5. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  6. Strontium and oxygen isotope study of M-1, M-3 and M-4 drill core samples from the Manson impact structure, Iowa: Comparison with Haitian K-T impact glasses

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Chamberlain, C. Page; Hingston, Michael P.; Koeberl, Christian

    1993-01-01

    Strontium and oxygen isotope analyses were performed on 8 samples from the M-1, M-3, and M-4 cores recently drilled at the Manson impact structure. The samples were three elastic sedimentary rocks (of probable Cretaceous age) which occurred as clasts within the sedimentary clast breccia, two samples of crystalline rock breccia matrix, and three samples of dolomite and limestone. The Sr-87/Sr-86 (corrected to 65 Ma) ratios were much higher than those in impact glasses from the Haitian Cretaceous-Tertiary (K-T) boundary. Isotope mixing calculations demonstrate that neither the silicate or carbonate rocks analyzed from the Manson crater, or mixtures of these rocks are appropriate source materials for the Haitian impact glasses. However, the Sr-87/Sr-86 (65Ma) ratio and delta O-18 value of the Ca-rich Haitian glasses are well reproduced by mixtures of Si-rich Haitian glass with platform carbonate of K-T age.

  7. Handbook of Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  8. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar... geological data, including data on heat flow, cores, samples, and sediments. (2) Solar-Terrestrial...

  9. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar... geological data, including data on heat flow, cores, samples, and sediments. (2) Solar-Terrestrial...

  10. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar... geological data, including data on heat flow, cores, samples, and sediments. (2) Solar-Terrestrial...

  11. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar... geological data, including data on heat flow, cores, samples, and sediments. (2) Solar-Terrestrial...

  12. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar... geological data, including data on heat flow, cores, samples, and sediments. (2) Solar-Terrestrial...

  13. Anisotropy of magnetic susceptibility as a tool for recognizing core deformation: reevaluation of the paleomagnetic record of Pleistocene sediments from drill hole OL-92, Owens Lake, California

    USGS Publications Warehouse

    Rosenbaum, Joseph; Reynolds, Richard T.; Smoot, Joseph; Meyer, Robert

    2000-01-01

    At Owens Lake, California, paleomagnetic data document the Matuyama/Brunhes polarity boundary near the bottom of a 323-m core (OL-92) and display numerous directional fluctuations throughout the Brunhes chron. Many of the intervals of high directional dispersion were previously interpreted to record magnetic excursions. For the upper ~120 m, these interpretations were tested using the anisotropy of magnetic susceptibility (AMS), which typically defines a subhorizontal planar fabric for sediments deposited in quiet water. AMS data from intervals of deformed core, determined from detailed analysis of sedimentary structures, were compared to a reference AMS fabric derived from undisturbed sediment. This comparison shows that changes in the AMS fabric provide a means of screening core samples for deformation and the associated paleomagnetic record for the adverse effects of distortion. For that portion of core OL-92 studied here (about the upper 120 m), the combined analyses of sedimentary structures and AMS data demonstrate that most of the paleomagnetic features, previously interpreted as geomagnetic excursions, are likely the result of core deformation.

  14. Geological and geophysical characteristics of massive sulphide deposits: A case study of the Lirhanda massive sulphide deposit of Western Kenya

    NASA Astrophysics Data System (ADS)

    Dindi, E.; Maneno, J. B. J.

    2016-08-01

    An integrated geophysical ground survey was conducted on an airborne electromagnetic (EM) anomaly located in Kakamega forest of Western Kenya. The purpose of the study was to establish the existence of massive sulphides and identify suitable optimal geophysical method(s) for the investigation of similar anomalies. The study was also expected to provide information on the geological and geophysical characteristics of the deposit. Field work involved electromagnetic methods: Vertical Loop (VLEM), Horizontal Loop (HLEM), TURAM EM and potential field methods: gravity and magnetics. Geochemical sampling was carried out concurrently with the geophysical survey. All the geophysical methods used yielded good responses. Several conductors conforming to the strike of the geology were identified. TURAM EM provided a higher resolution of the conductors compared to VLEM and HLEM. The conductors were found to be associated with positive gravity anomalies supporting the presence of bodies of higher density than the horst rock. Only the western section (west of 625W) of the grid is associated with strong magnetic anomalies. East of 625W strong EM and gravity anomalies persist but magnetic anomalies are weak. This may reflect variation in the mineral composition of the conductors from magnetic to non-magnetic. Geochemical data indicates strong copper anomalies (upto 300 ppm) over sections of the grid and relatively strong zinc (upto 200 ppm) and lead (upto 100 ppm) anomalies. There is a positive correlation between the location of the conductors as predicted by TURAM EM and the copper and zinc anomalies. A test drill hole proposed on the basis of the geophysical results of this study struck massive sulphides at a depth of 30m still within the weathered rock zone. Unfortunately, the drilling was stopped before the sulphides could be penetrated. The drill core revealed massive sulphide rich in pyrite and pyrrhotite. An attempt has been made to compare characteristics of the Lirhanda

  15. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  16. Chuck for delicate drills

    NASA Technical Reports Server (NTRS)

    Copeland, C. S.

    1972-01-01

    Development of oil film technique to couple power between drive spindle and drill chuck for delicate drilling operations is discussed. Oil film permits application of sufficient pressure, but stops rotating when drill jams. Illustration of equipment is provided.

  17. Rationale for future Antarctic and Southern Ocean drilling

    NASA Astrophysics Data System (ADS)

    De Santis, Laura; Gohl, Karsten; Larter, Rob; Escutia, Carlota; Ikehara, Minoru; Hong, JongKuk; Naish, Tim; Barrett, Peter; Rack, Frank; Wellner, Julia

    2013-04-01

    Valuable insights into future sensitivity of the Antarctic cryosphere to atmospheric and oceanic warming can be gained from the geologic record of past climatic warm intervals. Continental to deep ocean sediments provide records of contemporaneous changes in ice sheet extent and oceanographic conditions that extend back in time, including periods with atmospheric CO2 levels and temperatures similar to those likely to be reached in the next 100 years. The Circum-Antarctic region is under-sampled respect to scientific ocean drilling. However, recovery from glacially-influenced, continental shelf and rise sediments (expeditions ODP178, 188 and IODP 318), provided excellent records of Cenozoic climate and ice sheet evolution. The ANtarctic DRILLing program achieved >98% recovery on the Ross Sea shelf with a stable platform on fast ice with riser drilling technology. Newer technologies, such as the MeBo shallow drilling rig will further improve Antarctic margin drilling. Drilling around Antarctica in the past decades revealed cooling and regional ice growth during the Cenozoic, coupled with paleogeographic, CO2 atmosphere concentration and global temperature changes. Substantial progress has been made in dating sediments and in the interpretation of paleoclimate/paleoenvironmental proxies in Antarctic margin sediments (e.g. orbital scale variations in Antarctica's cryosphere during the Miocene and Pliocene). Holocene ultra-high resolution shelf sections recently recovered can be correlated to the ice core record, to detect local mechanisms versus inter-hemispheric connections. While the potential for reconstructing past ice sheet history has been demonstrated through a careful integration of geological and geophysical data with numerical ice sheet modelling, uncertainties remain high due to the sparse geographic distribution of the records and the regional variability in the ice sheet's response. Projects developed using a multi-leg, multi-platform approach (e

  18. Drilling equipment to shrink

    SciTech Connect

    Silverman, S.

    2000-01-01

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  19. Drill user's manual. [drilling machine automation

    NASA Technical Reports Server (NTRS)

    Pitts, E. A.

    1976-01-01

    Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

  20. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    SciTech Connect

    Bennecke, William M.

    1996-10-01

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well.

  1. The Archaean-Paleoproterozoic transition: First results of detrital zircon U-Pb-geochronology and provenance from the FAR DEEP drill cores

    NASA Astrophysics Data System (ADS)

    Gärtner, C.; Bahlburg, H.; Melezhik, V. A.; Lepland, A.; Berndt, J.; Kooijman, E.; Far Deep Scientists, The

    2010-05-01

    The Archaean-Paleoproterozoic transition is marked by several events that were important for the evolution of the Earth system. We applied U-Pb-geochronology on detrital zircons by LA-ICP-MS to improve age constraints on the duration of three of these events: 1) the Huronian Glaciation, which is the first known worldwide glaciation, 2) the Lomagundi-Jatuli event, characterized by a large excursion of δ13C in carbonate sediments and 3) the Shunga event, the first deposition of very Corg-rich sediments, so-called 'shungites'. During the Fennoscandian Arctic Russia - Drilling Early Earth Project (FAR DEEP), which is part of the International Continental Scientific Drilling Program (ICDP), volcano-sedimentary successions of early Paleoproterozoic age were drilled in the Pechenga and Imandra-Varzuga Greenstone belts, as well as in the Onega basin in Russian Fennoscandia. The first results of detrital zircon dating provided an age range from 1.85 up to 3.5 Ga having one prominent age-group of 2.5-2.9 Ga for each sample. The youngest ages in individual samples vary due to their stratigraphic position. The youngest zircons from the Seidorechka Sedimentary Formation below Huronian glacial deposits in the Imandra-Varzuga Greenstone Belt yielded ages around 2.42 Ga, which are interpreted as the age close to the onset of the Huronian Glaciation. Zircon ages from the Polisarka Sedimentary Formation above Huronian diamictites in the Imandra-Varzuga Greenstone Belt indicate that the glaciation had ended at 2.22 Ga. The youngest zircon ages from the sequence containing isotopically heavy carbonates of the Kuetsjärvi Sedimentary Formation in the Pechenga Greenstone Belt suggest that the Lomagundi-Jatuli event started around 2.32 Ga and that its end is younger than 2.06 Ga. Age constraints of ca. 2.0-1.9 Ga for the beginning of the Shunga Event were obtained by dating zircons from the Kolasjoki Sedimentary Formation in the Pechenga Greenstone Belt. Considering the error, these

  2. Core-tube data logger

    SciTech Connect

    Henfling, J.A.; Normann, R.A.; Knudsen, S.; Drumheller, D.

    1997-01-01

    Wireline core drilling, increasingly used for geothermal exploration, employs a core-tube to capture a rock core sample during drilling. Three types of core-tube data loggers (CTDL) have been built and tested to date by Sandia national Laboratories. They are: (1) temperature-only logger, (2) temperature/inclinometer logger and (3) heat-shielded temperature/inclinometer logger. All were tested during core drilling operations using standard wireline diamond core drilling equipment. While these tools are designed for core-tube deployment, the tool lends itself to be adapted to other drilling modes and equipment. Topics covered in this paper include: (1) description on how the CTDLs are implemented, (2) the components of the system, (3) the type of data one can expect from this type of tool, (4) lessons learned, (5) comparison to its counterpart and (6) future work.

  3. Petrology, phase equilibria and monazite geochronology of granulite-facies metapelites from deep drill cores in the Ordos Block of the North China Craton

    NASA Astrophysics Data System (ADS)

    He, Xiao-Fang; Santosh, M.; Bockmann, Kiara; Kelsey, David E.; Hand, Martin; Hu, Jianmin; Wan, Yusheng

    2016-10-01

    Among the various Precambrian crustal blocks in the North China Craton (NCC), the geology and evolution of the Ordos Block remain largely enigmatic due to paucity of outcrop. Here we investigate granulite-facies metapelites obtained from deep-penetrating drill holes in the Ordos Block and report petrology, calculated phase equilibria and in-situ monazite LA-ICP-MS geochronology. The rocks we studied are two samples of cordierite-bearing garnet-sillimanite-biotite metapelitic gneisses and one graphite-bearing, two-mica granitic gneiss. The peak metamorphic age from LA-ICP-MS dating of monazite in all three samples is in the range of 1930-1940 Ma. The (U + Pb)-Th chemical ages through EPMA dating reveals that monazite occurring as inclusions in garnet are older than those in the matrix. Calculated metamorphic phase diagrams for the cordierite-bearing metapelite suggest peak P-T conditions ca. 7-9 kbar and 775-825 °C, followed by decompression and evolution along a clockwise P-T path. Our petrologic and age data are consistent with those reported from the Khondalite Belt in the Inner Mongolia Suture Zone in the northern part of the Ordos Block, suggesting that these granulite-facies metasediments represent the largest Paleoproterozoic accretionary belt in the NCC.

  4. Searching for Life Underground: An Analysis of Remote Sensing Observations of a Drill Core from Rio Tinto, Spain for Mineralogical Indications of Biological Activity

    NASA Technical Reports Server (NTRS)

    Battler, M.; Stoker, C.

    2005-01-01

    Water is unstable on the surface of Mars, and therefore the Martian surface is not likely to support life. It is possible, however, that liquid water exists beneath the surface of Mars, and thus life might also be found in the subsurface. Subsurface life would most likely be microbial, anaerobic, and chemoautotrophic; these types of biospheres on Earth are rare, and not well understood. Finding water and life are high priorities for Mars exploration, and therefore it is important that we learn to explore the subsurface robotically, by drilling. The Mars Analog Rio Tinto Experiment (MARTE), has searched successfully for a subsurface biosphere at Rio Tinto, Spain [1,2,3,4]. The Rio Tinto study site was selected to search for a subsurface biosphere because the extremely low pH and high concentrations of elements such as iron and copper in the Tinto River suggest the presence of a chemoautotrophic biosphere in the subsurface beneath the river. The Rio Tinto has been recognized as an important mineralogical analog to the Sinus Meridiani site on Mars [5].

  5. A new scientific drilling infrastructure in Sweden

    NASA Astrophysics Data System (ADS)

    Rosberg, J.-E.; Lorenz, H.

    2012-04-01

    A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer

  6. Ocean drilling program: Recent results and future drilling plans

    SciTech Connect

    Rabinowitz, P.D.; Francis, T.J.G.; Baldauf, J.G.; Allan, J.F.; Heise, E.A.; Seymour, J.C. )

    1993-02-01

    The Ocean Drilling Program (ODP) has completed 48 internationally-staffed expeditions of scientific ocean drilling in search of answers relating to the evolution of passive and active continental margins, evolution of oceanic crust, origin and evolution of marine sedimentary sequences, and paleoceanography. During the past year of drilling operations, ODP expeditions cored Cretaceous reef-bearing guyots of the Western Pacific, with the objective of using them as monitors of relative sea-level changes and thereby of the combined effects of the tectonic subsidence (and uplift) history of the seamounts and of global fluctuations of sea level (Legs 143 and 144); studied high-resolution variations of surface and deep-water circulation and chemistry during the Neogene, the late Cretaceous and Cenozoic history of atmospheric circulation, ocean chemistry, and continental climate, and the age and nature of the seafloor in the North Pacific (Leg 145); studied the relationship between fluid flow and tectonics in the accretionary wedge formed at the Cascadia convergent plate boundary off Vancouver and Oregon (Leg 146); drilled in Hess Deep to understand igneous, tectonic and metamorphic evolution of fast spreading oceanic crust and to understand the processes of rifting in young ocean crust (Leg 147); and continued efforts at Hole 504B at 2,000 mbsf, the deepest hole they have beneath seafloor (Leg 148). After Leg 148 (March 1993), the JOIDES Resolution will commence an Atlantic Ocean drilling campaign.

  7. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  8. Scientific Drilling in the Samail Ophiolite, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Kelemen, P. B.; Teagle, D. A. H.

    2015-12-01

    The Samail ophiolite in Oman, a block of oceanic crust and upper mantle that was thrusted onto the Arabian continent ~100 million years ago and subsequently tilted and eroded, is an excellent field laboratory to explore rock forming processes that occurred near the surface down to 20 km depth in the Earth's interior. The exposure of these rocks to surface conditions provides a large reservoir of chemical potential energy that drives rapid reactions, heat generation, expansion and cracking. The Oman Drilling Project will address long-standing questions regarding mantle melting, melt transport and crystallization of lavas at ocean spreading ridges to form ocean crust, determine the nature and extent of chemical interactions between the oceans and newly formed oceanic crust, improve our understanding of CO2 and H2O uptake via weathering to form hydrated minerals and carbonates including reaction-driven cracking mechanisms as well as explore serpentinite-hosted microbial ecosystem. With funding from the International Continental Scientific Drilling Program (ICDP), U.S. NSF, NASA, IODP, Sloan Foundation and Deutsche Forschungsgesellschaft in place, we will address these objectives via observations on core, geophysical logging, fluid and microbiological sampling, and hydrological measurements in a series of newly drilled boreholes. Preliminary surveys showed that active low-T alteration of upper mantle rocks is an ongoing process. Dissolved hydrogen and methane concentrations in fluid samples collected in existing boreholes are up to 1.3 and 8 mmol/l, respectively [1]. Regarding the physical, chemical and biological processes related to near surface alteration of mantle rocks, a multi-borehole test site will be established in the southern massif of the Samail ophiolite. This test site will facilitate in-situ studies of water-rock-microbe interactions. Technical details and potential opportunities will be discussed. [1] Paukert A. PhD Thesis, Columbia University, New York

  9. Scientific Drilling in the Samail Ophiolite, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Matter, Juerg; Kelemen, Peter; Teagle, Damon; Coggon, Judith

    2016-04-01

    The Samail ophiolite in Oman, a block of oceanic crust and upper mantle that was thrusted onto the Arabian continent ~100 million years ago and subsequently tilted and eroded, is an excellent field laboratory to explore rock forming processes that occurred near the surface down to 20 km depth in the Earth's interior. The exposure of these rocks to surface conditions provides a large reservoir of chemical potential energy that drives rapid reactions, heat generation, expansion and cracking. The Oman Drilling Project will address long-standing questions regarding mantle melting, melt transport and crystallization of lavas at ocean spreading ridges to form ocean crust, determine the nature and extent of chemical interactions between the oceans and newly formed oceanic crust, improve our understanding of CO2 and H2O uptake via weathering to form hydrated minerals and carbonates including reaction-driven cracking mechanisms as well as explore serpentinite-hosted microbial ecosystem. With funding from the International Continental Scientific Drilling Program (ICDP), U.S. NSF, NASA, IODP, Sloan Foundation and Deutsche Forschungsgesellschaft in place, we will address these objectives via observations on core, geophysical logging, fluid and microbiological sampling, and hydrological measurements in a series of newly drilled boreholes. Preliminary surveys showed that active low-T alteration of upper mantle rocks is an ongoing process. Dissolved hydrogen and methane concentrations in fluid samples collected in existing boreholes are up to 1.3 and 8 mmol/l, respectively [1]. Regarding the physical, chemical and biological processes related to near surface alteration of mantle rocks, a multi-borehole test site will be established in the southern massif of the Samail ophiolite. This test site will facilitate in-situ studies of water-rock-microbe interactions. Technical details and potential opportunities will be discussed.

  10. The Auto-Gopher Deep Drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  11. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  12. In situ gas concentrations in the Kumano forearc basin from drilling mud gas monitoring and sonic velocity data (IODP NanTroSEIZE Exp. 319 Site C0009)

    NASA Astrophysics Data System (ADS)

    Wiersberg, T.; Doan, M.-L.; Schleicher, A. M.; Horiguchi, K.; Eguchi, N.; Erzinger, J.

    2012-04-01

    Conventional IODP shipboard methods of gas investigations comprise gas sampling from core voids and headspace gas sampling followed by shipboard gas analysis. These methods possibly underestimate the in situ gas concentration due to core degassing during retrieval and handling on deck. In few cases, a Pressure Core Sampler (PCS) was used in the past to overcome this problem, providing gas concentrations one or two order of magnitude higher than headspace gas analysis from corresponding depths. Here, we describe two new techniques applied during IODP NanTroSEIZE Exp. 319 Site C0009 riser drilling in the Kumano forearc basin to estimate in situ gas concentrations without drill core recovery. During riser drilling of site C0009 between 703 to 1594 mbsf, gas was continuously extracted from returing drilling mud and analysed in real-time (drill mud gas monitoring). This method results in information on the gas composition and gas concentration at depth. The chemical (C1-C3) and isotope (δ13C, H/D) composition of hydrocarbons, the only formation-derived gases identified in drill mud, demonstrate a microbial hydrocarbon gas source mixing with small but increasing amounts of thermogenic gas at greater depth. Methane content in drilling mud semi-quantitatively correlates with visible allochtonous material (wood, lignite) in drilling cuttings. In situ gas concentration determination from drill mud gas monitoring based on the assumption that gas is either liberated from the rock into the drilling mud during drilling and ascent with the mud column or remains in the pore space of the drilling cuttings. Drilling mud gas data were calibrated with a defined amount of C2H2 (175 l [STP]) from a carbide test and result in methane concentrations reaching up to 24 lgas/lsediment, in good agreement with findings from other IODP Legs using the PCS. Hydrocarbon gas concentrations in drilling cuttings from C0009 are significantly lower, indicating cuttings outgassing during ascent of the

  13. Drilling the centre of the Thuringian Basin, Germany, to decipher potential interrelation between shallow and deep fluid systems

    NASA Astrophysics Data System (ADS)

    Kukowski, Nina; Totsche, Kai Uwe; Abratis, Michael; Habisreuther, Annett; Ward, Timothy; Influins Drilling-Team

    2014-05-01

    To shed light on the coupled dynamics of near surface and deep fluids in a sedimentary basin on various scales, ranging from the pore scale to the extent of an entire basin, is of paramount importance to understand the functioning of sedimentary basins fluid systems and therefore e.g. drinking water supply. It is also the fundamental goal of INFLUINS (INtegrated FLuid dynamics IN Sedimentary basins), a research initiative of several groups from Friedrich-Schiller University of Jena and their partners. This research association is focusing on the nearby Thuringian basin, a well confined, small intra-continental sedimentary basin in Germany, as a natural geo laboratory. In a multidisciplinary approach, embracing different fields of geophysics like seismic reflection profiling or airborne geomagnetics, structural geology, sedimentology, hydrogeology, hydrochemistry and hydrology, remote sensing, microbiology and mineralogy, among others, and including both, field-based, laboratory-based and computer-based research, an integral INFLUINS topic is the potential interaction of aquifers within the basin and at its rims. The Thuringian basin, which is composed of sedimentary rocks from the latest Paleozoic and mainly Triassic, is particularly suited to undertake such research as it is of relative small size, about 50 to 100 km, easily accessible, and quite well known from previous studies, and therefore also a perfect candidate for deep drilling. After the acquisition of 76 km seismic reflection data in spring 2011, to get as much relevant data as possible from a deep drilling at the cross point between two seismic profiles with a limited financial budget, an optimated core sampling and measuring strategy including partial coring, borehole geophysics and pump tests as well as a drill hole design, which enables for later continuation of drilling down to the basement, had been developed. Drilling Triassic rocks from Keuper to lower Buntsandstein was successfully realised down

  14. Newberry exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  15. Vale exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1996-06-01

    During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  16. Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada

    SciTech Connect

    Nelson, P.H.; Schimschal, U.

    1993-05-01

    Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone).

  17. Fiscal year 1985 groundwater investigation drilling program at the Y-12 Plant, Oak Ridge, Tennessee: Environmental Sciences Division publication No. 2805

    SciTech Connect

    Haase, C.S.; Gillis, G.A.; King, H.L.

    1987-01-01

    Groundwater investigation drilling operations at ten formerly or currently used waste disposal sites in the Y-12 vicinity have been completed. A total of 4 core holes, 11 soil borings, and 55 groundwater investigation wells were drilled at identified locations. The objective of the drilling program was to characterize the geology and hydrology of the sites investigated so that an effective monitoring well network could be designed and installed. The basic approach followed at each of the sites was to identify the major features of subsurface geology and then install the necessary boreholes to investigate the hydrogeologic significance of such features. Initially, a core hole or relatively deep borehole was drilled at an up section location to determine the general components of the subsurface geology. Study of drill cores, cuttings, and geophysical logs from this initial borehole identified geohydrologically significant targets. Those identified for investigation during the second stage of drilling at a specific site include: (1) the top of the water table, (2) the interface between the base of soil and the top of weathered bedrock, (3) base of weather in the bedrock, (4) cavity zones near the base of weathering in the top of bedrock, (5) zones of high porosity in the unweathered bedrock, and (6) fractures or fractured zones within the unweathered bedrock. After the investigatory phase was completed, groundwater investigation wells were installed to provide additional subsurface geological data and to provide data on hydrostatic heads and water quality for the shallow-flow regime in soils and upper weathered-bedrock zone and for the deep-flow regimes within the bedrock below the zone of significant weathering. 24 refs., 16 figs., 3 tabs.

  18. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  19. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  20. Rotary blasthole drilling update

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  1. International Collaboration in Data Management for Scientific Ocean Drilling: Preserving Legacy Data While Implementing New Requirements.

    NASA Astrophysics Data System (ADS)

    Rack, F. R.

    2005-12-01

    The Integrated Ocean Drilling Program (IODP: 2003-2013 initial phase) is the successor to the Deep Sea Drilling Project (DSDP: 1968-1983) and the Ocean Drilling Program (ODP: 1985-2003). These earlier scientific drilling programs amassed collections of sediment and rock cores (over 300 kilometers stored in four repositories) and data organized in distributed databases and in print or electronic publications. International members of the IODP have established, through memoranda, the right to have access to: (1) all data, samples, scientific and technical results, all engineering plans, data or other information produced under contract to the program; and, (2) all data from geophysical and other site surveys performed in support of the program which are used for drilling planning. The challenge that faces the individual platform operators and management of IODP is to find the right balance and appropriate synergies among the needs, expectations and requirements of stakeholders. The evolving model for IODP database services consists of the management and integration of data collected onboard the various IODP platforms (including downhole logging and syn-cruise site survey information), legacy data from DSDP and ODP, data derived from post-cruise research and publications, and other IODP-relevant information types, to form a common, program-wide IODP information system (e.g., IODP Portal) which will be accessible to both researchers and the public. The JANUS relational database of ODP was introduced in 1997 and the bulk of ODP shipboard data has been migrated into this system, which is comprised of a relational data model consisting of over 450 tables. The JANUS database includes paleontological, lithostratigraphic, chemical, physical, sedimentological, and geophysical data from a global distribution of sites. For ODP Legs 100 through 210, and including IODP Expeditions 301 through 308, JANUS has been used to store data from 233,835 meters of core recovered, which are

  2. COSC-1 - drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia

    NASA Astrophysics Data System (ADS)

    Lorenz, H.; Rosberg, J.-E.; Juhlin, C.; Bjelm, L.; Almqvist, B. S. G.; Berthet, T.; Conze, R.; Gee, D. G.; Klonowska, I.; Pascal, C.; Pedersen, K.; Roberts, N. M. W.; Tsang, C.-F.

    2015-05-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid-Palaeozoic orogen in western Scandinavia and its comparison with modern analogues. The project investigates the subduction-generated Seve Nape Complex. These in part under ultra-high-pressure conditions metamorphosed outer continental margin and continent-ocean transition zone assemblages were emplaced onto the Baltoscandian platform and there influenced the underlying allochthons and the basement. COSC-1 is the first of two ca. 2.5 km deep, fully cored drill holes located in the vicinity of the abandoned Fröå mine, close to the town of Åre in Jämtland, central Sweden. It sampled a thick section of the lower part of the Seve Complex and was planned to penetrate its basal thrust zone into the underlying lower-grade metamorphosed allochthon. The drill hole reached a depth of 2495.8 m and nearly 100 % core recovery was achieved. Although planning was based on existing geological mapping and new high-resolution seismic surveys, the drilling resulted in some surprises: the Lower Seve Nappe proved to be composed of rather homogenous gneisses, with only subordinate mafic bodies, and its basal thrust zone was unexpectedly thick (> 800 m). The drill hole did not penetrate the bottom of the thrust zone. However, lower-grade metasedimentary rocks were encountered in the lowermost part of the drill hole together with garnetiferous mylonites tens of metres thick. The tectonostratigraphic position is still unclear, and geological and geophysical interpretations are under revision. The compact gneisses host only eight fluid conducting zones of limited transmissivity between 300 m and total depth. Downhole measurements suggest an uncorrected average geothermal gradient of ~ 20 °C km-1. This paper summarizes the operations and preliminary results from COSC-1 (ICDP 5054-1-A), drilled from early May to late August 2014, and is

  3. Historical record of European emissions of heavy metals to the atmosphere since the 1650s from alpine snow/ice cores drilled near Monte Rosa.

    PubMed

    Barbante, Carlo; Schwikowski, Margit; Döring, Thomas; Gäggeler, Heinz W; Schotterer, Ulrich; Tobler, Leo; van de Velde, Katja; Ferrari, Christophe; Cozzi, Giulio; Turetta, Andrea; Rosman, Kevin; Bolshov, Michael; Capodaglio, Gabriele; Cescon, Paolo; Boutron, Claude

    2004-08-01

    Cr, Cu, Zn, Co, Ni, Mo, Rh, Pd, Ag, Cd, Sb, Pt, Au, and U have been determined in clean room conditions by inductively coupled plasma sector field mass spectrometry and other analytical techniques, in various sections of two dated snow/ice cores from the high-altitude (4450 m asl) glacier saddle Colle Gnifetti, Monte Rosa massif, located in the Swiss-Italian Alps. These cores cover a 350-year time period, from 1650 to 1994. The results show highly enhanced concentrations for most metals in snow/ice dated from the second half of the 20th century, compared with concentrations in ancient ice dated from the 17th and 18th centuries. The highest increase factors from the pre-1700 period to the post-1970 period are observed for Cd (36), Zn (19), Bi (15), Cu (11), and Ni (9), confirming the importance of atmospheric pollution by heavy metals in Europe. Metal concentrations observed in Colle Gnifetti snow around 1980 appear to be quantitatively related to metal emissions from Italy, Switzerland, Germany, France, Belgium, and Austria at that time, making it possible to reconstruct past changes in metal emission in these countries during the last centuries.

  4. Drilling deeper into the core: an analysis of journal evaluation methodologies used to create the “Basic List of Veterinary Medical Serials,” third edition

    PubMed Central

    Ugaz, Ana G

    2011-01-01

    Objective: The paper analyzes the journal evaluation criteria used to create the third edition of a core list of veterinary serials to determine the impact of each criterion on the final composition of the list in order to assess the value of using multiple criteria in creating a core list. Methods: Three additional lists were generated from criteria that were previously combined to prepare the third edition of the “Basic List of Veterinary Medical Serials”: a list based on journal recommendations from veterinary specialty organizations, another list based on journals selected by veterinary librarians, and a list based on both indexing coverage and scholarly rank. The top fifteen journals in each of the three lists were then compared to reveal potential biases. Subject representation on the full lists generated by each of these methods was also compared. Results: The list based on journal recommendations from veterinary specialty organizations exhibited a focus on clinically relevant titles. The list based on veterinary librarian recommendations resulted in the broadest subject coverage. The list based on indexing and scholarly rank, while emphasizing research titles, produced the largest number of unique titles. Conclusion: A combination approach that includes objective evaluation measures and practical input, whether from librarians or discipline experts, can improve coverage and can result in a list that balances research-based with clinical practice journals. PMID:21464852

  5. Advanced Drilling through Diagnostics-White-Drilling

    SciTech Connect

    FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

    1999-10-07

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  6. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  7. Facies And Bedding Analysis of Deep-Marine, Arc-Related, Sediementary Rocks Cored on International Ocean Drilling Program Expedition 351.

    NASA Astrophysics Data System (ADS)

    Johnson, K. E.; Marsaglia, K. M.

    2015-12-01

    The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading

  8. Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results

    USGS Publications Warehouse

    Goff, S.J.; Goff, F.; Janik, C.J.

    1992-01-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.

  9. Coring Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  10. Hydrogeologic facies characterization of an alluvial fan near Fresno, California, using geophysical techniques

    USGS Publications Warehouse

    Burow, Karen R.; Weissmann, G.S.; Miller, R.D.; Placzek, Gary

    1997-01-01

    DBCP (1,2-dibromo-3-chloropropane) contamination in the sole source aquifer near Fresno, California, has significantly affected drinking-water supplies. Borehole and surface geophysical data were integrated with borehole textural data to characterize the Kings River alluvial fan sediments and to provide a framework for computer modeling of pesticide transport in ground water. Primary hydrogeologic facies units, such as gravel, coarse sand or gravel, fine sand, and silt and clay, were identified in cores collected from three borings located on a 4.6-kilometer transect of multilevel monitoring wells. Borehole geophysical logs collected from seven wells and surface geophysical surveys were used to extrapolate hydrogeologic facies to depths of about 82meters and to correlate the facies units with neighboring drilling sites. Thickness ranged from 0.3to 13 meters for sand and gravel units, and from 0.3 to 17 meters for silt and clay. The lateral extent of distinct silt and clay layers was mapped using shallow seismic reflection and ground-penetrating radar techniques. About 3.6 kilometers of seismic reflection data were collected; at least three distinct fine-grained layers were mapped. The depth of investigation of the seismic survey ranged from 34 to 107 meters below land surface, and vertical resolution was about 3.5 meters. The ground-penetrating radar survey covered 3.6kilometers and imaged a 1.5-meters thick, continuous fine-grained layer located at a depth of about 8 meters. Integrated results from the borehole sediment descriptions and geophysical surveys provided a detailed characterization over a larger areal extent than traditional hydrogeologic methods alone.

  11. National Geological and Geophysical Data Preservation Program: Successes and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Adrian, B. M.

    2014-12-01

    The United States Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of geologic and geophysical materials gathered by its research personnel. Since the USGS was established in 1879, hundreds of thousands of samples have been gathered in collections that range from localized, geographically-based assemblages to ones that are national or international in scope. These materials include, but are not limited to, rock and mineral specimens; fossils; drill cores and cuttings; geochemical standards; and soil, sediment, and geochemical samples. The USGS National Geological and Geophysical Data Preservation Program (NGGDPP) was established with the passage of the Energy Policy Act of 2005. Since its implementation, the USGS NGGDPP has taken an active role in providing opportunities to inventory, archive and preserve geologic and geophysical samples, and to make these samples and ancillary data discoverable on the Internet. Preserving endangered geoscience collections is more cost effective than recollecting this information. Preserving these collections, however, is only one part of the process - there also needs to be a means to facilitate open discovery and access to the physical objects and the ancillary digital records. The NGGDPP has celebrated successes such as the development of the USGS Geologic Collections Management System (GCMS), a master catalog and collections management plan, and the implementation and advancement of the National Digital Catalog, a digital inventory and catalog of geological and geophysical data and collections held by the USGS and State geological surveys. Over this period of time there has been many lessons learned. With the successes and lessons learned, NGGDPP is poised to take on challenges the future may bring.

  12. Hydraulic piston coring of late Neogene and Quaternary sections in the Caribbean and equatorial Pacific: Preliminary results of Deep Sea Drilling Project leg 68.

    USGS Publications Warehouse

    Prell, W.L.; Gardner, James V.; Adelseck, Charles; Blechschmidt, Gretchen; Fleet, Andrew J.; Keigwin, Lloyd D.; Kent, Dennis V.; Ledbetter, Michael T.; Mann, Ulrich; Mayer, Larry; Reidel, William R.; Sancetta, Constance; Spariosu, Dann J.; Zimmerman, Herman B.

    1980-01-01

    The sediment of Site 502 (W.Caribbean) is primarily foram-bearing nanno marl which accumulated at c.3 to 4 cm/thousand yr. The bottom of Site 502 (228.7 m) is about 8 m.y. old. The sediment of Site 503 (Equatorial Pacific) is primarily siliceous calcareous ooze which accumulated at about 2 to 3 cm/thousand yr. The bottom of Site 503 (235.0 m) is about 8 m.y. old. The sediment at both sites shows a distinct cyclicity of CaCO3 content. These relatively high accumulation rate, continuous, undisturbed HPC cores will enable a wide variety of high-resolution biostratigraphic, paleoclimatic, and paleoceanographic studies.- from Authors

  13. New drilling/operating methods boost efficiency

    SciTech Connect

    Not Available

    1994-03-01

    The industry has not had viable alternatives for solving several major operating problems in areas of downhole and surface drilling operations, and facility and equipment maintenance. However, recent introductions and proven application of innovative problem solving techniques have removed these dilemmas for many operators. Four such technology advances are shown here. These include: (1) novel, clear protectors and compound that allow visual pipe thread inspection, (2) foam-core insulation for preserving Arctic ice drill pads, (3) a mobile system for producing multiple stripper wells, (4) a tool to retrieve data from a stuck logging recorder, and (5) a complete surface/downhole slimhole drilling system.

  14. Environmental and Engineering Geophysics

    NASA Astrophysics Data System (ADS)

    Sharma, Prem V.

    1997-12-01

    Geophysical imaging methods provide solutions to a wide variety of environmental and engineering problems: protection of soil and groundwater from contamination; disposal of chemical and nuclear waste; geotechnical site testing; landslide and ground subsidence hazard detection; location of archaeological artifacts. This book comprehensively describes the theory, data acquisition and interpretation of all of the principal techniques of geophysical surveying: gravity, magnetic, seismic, self-potential, resistivity, induced polarization, electromagnetic, ground-probing radar, radioactivity, geothermal, and geophysical borehole logging. Each chapter is supported by a large number of richly illustrated case histories. This book will prove to be a valuable textbook for senior undergraduates and postgraduates in environmental and applied geophysics, a supplementary course book for students of geology, engineering geophysics, civil and mining engineering, and a reference work for professional earth scientists, engineers and town planners.

  15. Tools used in mineral exploration for measuring the conductivity and the resistivity in drillholes and on drill core: observations on their range of sensitivity

    NASA Astrophysics Data System (ADS)

    Parry, Devon; Smith, Richard S.; Mahmoodi, Omid

    2016-07-01

    A study has been undertaken to acquire conductivity data using the EM39 low-induction-number conductivity tool. Measurements were taken in three holes in the Sudbury, Ontario, area: at Victoria in the south-west part of the Sudbury structure; at Levack, in the north range; and at the Lady Violet deposit near Copper Cliff. These data were compared with pre-existing data acquired using four other tools and measurements taken on core extracted from the holes. The four tools are the DGI galvanic downhole resistivity tool, the IFG downhole conductivity tool, and the handheld KT-10 and GDD meters. The comparison shows that each tool has a finite range of sensitivity. The resistivity tool used by DGI Geoscience is sensitive to conductivities primarily in the range 0.01 to 100 mS/m; the EM39 tool is sensitive to conductivities in the range of ~30 mS/m to 3000 mS/m and the IFG tool to conductivities greater than 30 mS/m. In the sub-ranges where the ranges of two instruments overlap, one might expect a good correlation between the measurements derived from the two tools. However, this is not always the case, as the instruments can have a different volume of sensitivity: the EM39 has a coil separation of 50 cm and will see material greater than 20 cm away from the hole; whereas the IFG conductivity tool seems to have a smaller spatial scale of sensitivity due to its 10 cm coil size. The handheld instruments used to log the conductivity of the core are sensitive to more conductive material (greater than ~1 S/m). The scale of the sensors of these handheld instruments is a few cm, so they are focussing on a very local estimate. The spatial characteristics of the handheld instruments are similar to the IFG tool, so there is a reasonable linear correlation between the conductivities derived from these three different instruments. However, the slopes are not unity; for example, the GDD instrument gives values three times greater than the KT-10. When selecting tools for measuring

  16. The 40Ar/39Ar and K/Ar dating of lavas from the Hilo 1-km core hole, Hawaii Scientific Drilling Project

    USGS Publications Warehouse

    Sharp, W.D.; Turrin, B.D.; Renne, P.R.; Lanphere, M.A.

    1996-01-01

    Mauna Kea lava flows cored in the HilIo hole range in age from <200 ka to about 400 ka based on 40Ar/39Ar incremental heating and K-Ar analyses of 16 groundmass samples and one coexisting plagioclase. The lavas, all subaerially deposited, include a lower section consisting only of tholeiitic basalts and an upper section of interbedded alkalic, transitional tholeiitic, and tholeiitic basalts. The lower section has yielded predominantly complex, discordant 40Ar/39Ar age spectra that result from mobility of 40Ar and perhaps K, the presence of excess 40Ar, and redistribution of 39Ar by recoil. Comparison of K-Ar ages with 40Ar/39Ar integrated ages indicates that some of these samples have also lost 39Ar. Nevertheless, two plateau ages of 391 ?? 40 and 400 ?? 26 ka from deep in the hole, combined with data from the upper section, show that the tholeiitic section accumulated at an average rate of about 7 to 8 m/kyr and has an mean recurrence interval of 0.5 kyr/flow unit. Samples from the upper section yield relatively precise 40Ar/39Ar plateau and isotope correlation ages of 326 ?? 23, 241 ?? 5, 232 ?? 4, and 199 ?? 9 ka for depths of -415.7 m to -299.2 m. Within their uncertainty, these ages define a linear relationship with depth, with an average accumulation rate of 0.9 m/kyr and an average recurrence interval of 4.8 kyr/flow unit. The top of the Mauna Kea sequence at -280 m must be older than the plateau age of 132 ?? 32 ka, obtained for the basal Mauna Loa flow in the corehole. The upward decrease in lava accumulation rate is a consequence of the decreasing magma supply available to Mauna Kea as it rode the Pacific plate away from its magma source, the Hawaiian mantle plume. The age-depth relation in the core hole may be used to test and refine models that relate the growth of Mauna Kea to the thermal and compositional structure of the mantle plume.

  17. Surface drilling technologies for Mars

    NASA Technical Reports Server (NTRS)

    Blacic, J. D.; Rowley, J. C.; Cort, G. E.

    1986-01-01

    Rock drilling and coring conceptual designs for the surface activities associated with a manned Mars mission are proposed. Straightforward extensions of equipment and procedures used on Earth are envisioned for the sample coring and shallow high explosive shot holes needed for tunneling and seismic surveying. A novel rocket exhaust jet piercing method is proposed for very rapid drilling of shot holes required for explosive excavation of emergency radiation shelters. Summaries of estimated equipment masses and power requirements are provided, and the indicated rotary coring rigs are scaled from terrestrial equipment and use compressed CO2 from the Martian atmosphere for core bit cooling and cuttings removal. A mass of 120 kg and power of 3 kW(e) are estimated for a 10 m depth capability. A 100 m depth capacity core rig requires about 1150 kg and 32 km(e). The rocket exhaust jet equipment devised for shallow (3m) explosive emplacement shot holes requires no surface power beyond an electrical ignition system, and might have a 15 kg mass.

  18. 30 CFR 551.7 - Test drilling activities under a permit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Test drilling activities under a permit. 551.7 Section 551.7 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 551.7 Test drilling...

  19. 30 CFR 551.7 - Test drilling activities under a permit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Test drilling activities under a permit. 551.7 Section 551.7 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 551.7 Test drilling...

  20. Organic Matter and δ 13C Throughout a Sub-Basement Red Soil Unit in Hole 1206A Cored During Ocean Drilling Program Leg 197 (Koko Seamount): First Results

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.

    2002-12-01

    Although the discovery of deep red-brown paleosols during Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) legs dates back to the 80's [1-3], the potential for preservation of organic matter in these igneous-derived silty-claystone units has been overlooked, and depositional settings have been inferred from only petrologic observations. This work aims to present the first geochemical (TOC, N total) and carbon isotope (δ 13C) data of a metre-thick paleosol Unit (Core 197-1206A-40R-1, 101 cm, to 40R-3, 77 cm; Subunits 18A and 18B, 307.5 to 309.9 mbsf) cored at Site 1206 (Koko Seamount) during ODP Leg 197 (Emperor Seamounts, north Pacific transect)[4-5]. Study of the sources and variation with depth of organic matter in sub-basement Fe-oxide-rich paleosol units from Leg 197 contributes to understanding the palaeoenvironmental history of the Emperor Seamounts prior to, during and after their burial and subsidence (ca. >48 to 56 Ma). Furthermore, preserved organic traces in such an isolated deep Earth system make them a useful test bed for future deep Earth's biosphere-relevant investigations [5-6]. Throughout Core 197-1206A-40R soil unit, Corg (TOC = 0.03-0.07%; 0.049 \\pm 0.011, n=7) and total nitrogen (Ntot = 0.00-0.06 %) are within the range (TOC = 0.05% to 0.12%, n=38) measured for the sub-basement paleosoil/rock units found at Site 1205 [4-5]. The δ 13C (bulk organic matter) values for the paleosol regularly decrease downcore from -25.3 \\permil (Sample 197-1206-40R-1, 103-104, at 307.54 mbsf) to -26.2 \\permil (Sample 197-1206A-40R-2, 130-131; at 308.92 mbsf) in contrast to an exposed Hawaiian oxisol sample (e.g., Ohau-2, 100-105 cm-depth with δ 13C = -23.0 \\permil). Typical uncertainties for these measurements were <\\pm 0.1\\permil to <\\pm 0.3\\permil. It is proposed that δ 13C org values of ca. -25 \\permil to ca. -26 \\permil support a terrestrial, rather than marine source [e.g., 7-8] of organics preserved in the paleosol interbed from

  1. Constraints on magma ascent, emplacement, and eruption: Geochemical and mineralogical data from the drill core at Inyo Craters, Inyo Chain, California: Final report

    SciTech Connect

    Vogel, T.A.

    1988-01-01

    An 861-m-long hole (Inyo-4) has been cored on a slanted trajectory that passed directly beneath South Inyo Crater in the west moat of Long Valley Caldera, California. The purpose of the hole was to investigate the magmatic behavior that led to surface deformation and phreatic activity during the 600-year-old eruption of the Inyo vent chain. The trajectory and stratigraphy encountered by Inyo-4 are shown. The volcanic and sedimentary sequence consists solely of post-Bishop Tuff caldera fill, including 319 m of moat basalt and 342 m of early rhyolite. Breccia zones that intrude the caldera fill were intersected at 12.0-9.3 m and 1.2-0.8 m SW and 8. 5-25.1 m NE of the crater center. The largest breccia unit is symmetrically zoned from margins rich in vesicular rhyolite and locally derived rhyolite wallrock to a center of up to 50 vol.% basalt. Most individual clasts of the rhyolite are less than or equal to0.1m; individual clasts in the basalt breccia are up to 1 m in intersected length. 6 figs., 3 tabs.

  2. Geochemical and stable isotopic data on barren and mineralized drill core in the Devonian Popovich Formation, Screamer sector of the Betze-Post gold deposit, northern Carlin trend, Nevada

    USGS Publications Warehouse

    Christiansen, William D.; Hofstra, Albert H.; Zohar, Pamela B.; Tousignant, Gilles

    2011-01-01

    The Devonian Popovich Formation is the major host for Carlin-type gold deposits in the northern Carlin trend of Nevada. The Popovich is composed of gray to black, thin-bedded, calcareous to dolomitic mudstone and limestone deposited near the carbonate platform margin. Carlin-type gold deposits are Eocene, disseminated, auriferous pyrite deposits characterized by acid leaching, sulfidation, and silicification that are typically hosted in Paleozoic calcareous sedimentary rocks exposed in windows through siliceous sedimentary rocks of the Roberts Mountains allochthon. The Carlin trend currently is the largest gold producer in the United States. The Screamer ore zone is a tabular body on the periphery of the huge Betze-Post gold deposit. Screamer is a good place to study both the original lithogeochemistry of the Popovich Formation and the effects of subsequent alteration and mineralization because it is below the level of supergene oxidation, mostly outside the contact metamorphic aureole of the Jurassic Goldstrike stock, has small, high-grade ore zones along fractures and Jurassic dikes, and has intervening areas with lower grade mineralization and barren rock. In 1997, prior to mining at Screamer, drill core intervals from barren and mineralized Popovich Formation were selected for geochemical and stable isotope analysis. The 332, five-foot core samples analyzed are from five holes separated by as much as 2000 feet (600 meters). The samples extend from the base of the Wispy unit up through the Planar and Soft sediment deformation units into the lower part of the upper Mud unit of the Popovich Formation.

  3. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  4. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  5. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  6. Geophysical investigations at ORNL solid waste storage area 3

    SciTech Connect

    Rothschild, E.R.; Switek, J.; Llopis, J.L.; Farmer, C.D.

    1985-07-01

    Geophysical investigations at ORNL solid waste storage area 3 have been carried out. The investigations included very-low-frequency-electromagnetic resistivity (VLF-EM), electrical resistivity, and seismic refraction surveys. The surveys resulted in the measurement of basic geophysical rock properties, as well as information on the depth of weathering and the configuration of the bedrock surface beneath the study area. Survey results also indicate that a number of geophysical anomalies occur in the shallow subsurface at the site. In particular, a linear feature running across the geologic strike in the western half of the waste disposal facility has been identified. This feature may conduct water in the subsurface. The geophysical investigations are part of an ongoing effort to characterize the site's hydrogeology, and the data presented will be valuable in directing future drilling and investigations at the site. 10 refs., 6 figs.

  7. Spectrum Gamma Ray bore hole logging while tripping with the sea floor drill rig MARUM-MeBo

    NASA Astrophysics Data System (ADS)

    Freudenthal, Tim; Steinke, Stephan; Mohtadi, Mahyar; Hebbeln, Dierk; Wefer, Gerold

    2013-04-01

    The robotic Sea Floor Drill Rig MARUM-MeBo developed at the MARUM Center for Marine Environmental Sciences at the University of Bremen was used to retrieve long sediment cores at two sites in the northern South China Sea. Both sites are located in about 1000 m water depth in southeasterly and southwesterly direction of the Pearl River mouth, respectively. South East Asian Monsoon variability controls terrigenous material transport by rivers into the South China Sea. The Pearl River is one of the largest rivers of the region that discharges into the northern South China Sea. The terrigenous fraction of marine sediments of the northern South China Sea therefore provides an excellent archive for reconstructing past variability of the South East Asian Monsoon system. In analogy to the drilling strategy within the Integrated Ocean Drilling Program IODP multiple holes were drilled in order to generate continuous spliced records at both sites. Overall the MARUM-MeBo drilled 374 m during 5 deployments with a maximum drilling depth of 80.85 m and an average core recovery of 94 %. Here we present first results of bore hole logging conducted during 4 of the 5 deployments with a spectrum gamma ray (SGR) probe adapted for the use with MARUM-MeBo. This probe is an autonomous slim hole probe that is used in the logging while tripping mode. This method is especially favorable for remote controlled drilling and logging operation. The probe is equipped with its own energy source and data storage. The probe is lowered into the drill string after the target wire-line coring depth is reached and after the last inner core barrel has been retrieved. When the probe has landed on the shoulder ring at the bottom of the hole, the drill string is pulled out and disassembled. The probe, while being raised with the drill string, continuously measures the geophysical properties of the in situ sediments and rocks. Since the bore hole is stabilized during the tripping process by the drill string

  8. Planetary Geophysics and Tectonics

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  9. Deep Drilling Into the Chicxulub Impact Crater: Pemex Oil Exploration Boreholes Revisited

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L.

    2007-05-01

    The Chicxulub structure was recognized in the 1940´s from gravity anomalies in oil exploration surveys by Pemex. Geophysical anomalies occur over the carbonate platform in NW Yucatan, where density and magnetic susceptibility contrasts with the carbonates suggested a buried igneous complex or basement uplift. The exploration program developed afterwards included several boreholes, starting with the Chicxulub-1 in 1952 and eventually comprising eight deep boreholes completed through the 1970s. The investigations showing Chicxulub as a large impact crater formed at the K/T boundary have relayed on the Pemex decades-long exploration program. Despite frequent reference to Pemex information, original data have not been openly available for detailed evaluation and incorporation with results from recent efforts. Logging data and core samples remain to be analyzed, reevaluated and integrated in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we discuss the paleontological data, stratigraphic columns and geophysical logs for the Chicxulub-1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m) and Ticul-1 (3575m) boreholes. These boreholes remain the deepest ones drilled in Chicxulub and the only ones providing samples of the melt-rich breccias and melt sheet. Other boreholes include the Y1 (3221m), Y2 (3474m), Y4 (2398m) and Y5A (3003m), which give information on pre-impact stratigraphy and crystalline basement. We concentrate on log and microfossil data, stratigraphic columns, lateral correlation, integration with UNAM and ICDP borehole data, and analyses of sections of melt, impact breccias and basal Paleocene carbonates. Current plans for deep drilling in Chicxulub crater focus in the peak ring zone and central sector, with proposed marine and on-land boreholes to the IODP and ICDP programs. Future ICDP borehole will be located close to Chicxulub-1 and Sacapuc-1, which intersected

  10. New approaches to subglacial bedrock drilling technology

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    ice core drill is designed and tested. The expected average daily production of ice drilling would be not less than 25 m/day. The lower part of the drill is adapted for coring bed-rock using special tooth diamond bit. Deep ice coring requires a drilling fluid in the borehole during operation in order to keep the hole open and to compensate the hydrostatic pressures acting to close it. At present there are no ideal low-temperature drilling fluids as all of them are environmental and health hazardous substances. The new approaches of subglacial bedrock drilling technology are connected with utilization of environmental friendly, low-toxic materials, e.g. low-molecular dimethyl siloxane oils or aliphatic synthetic ester of ESTISOL™ 140 type. They have suitable density-viscosity properties, and can be consider as a viable alternative for drilling in glaciers and subglacial bedrock.

  11. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  12. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  13. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  14. Drilling Fluid Contamination during Riser Drilling Quantified by Chemical and Molecular Tracers

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; Lever, M. A.; Morono, Y.; Hoshino, T.

    2012-12-01

    Stringent contamination controls are essential to any type of microbiological investigation, and are particularly challenging in ocean drilling, where samples are retrieved from hundreds of meters below the seafloor. In summer 2012, Integrated Ocean Drilling Expedition 337 aboard the Japanese vessel Chikyu pioneered the use of chemical tracers in riser drilling while exploring the microbial ecosystem of coalbeds 2 km below the seafloor off Shimokita, Japan. Contamination tests involving a perfluorocarbon tracer that had been successfully used during past riserless drilling expeditions were complemented by DNA-based contamination tests. In the latter, likely microbial contaminants were targeted via quantitative polymerase chain reaction assays using newly designed, group-specific primers. Target groups included potential indicators of (a) drilling mud viscosifiers (Xanthomonas, Halomonas), (b) anthropogenic wastewater (Bifidobacterium, Blautia, Methanobrevibacter), and (c) surface seawater (SAR 11, Marine Group I Archaea). These target groups were selected based on past evidence suggesting viscosifiers, wastewater, and seawater as the main sources of microbial contamination in cores retrieved by ocean drilling. Analyses of chemical and molecular tracers are in good agreement, and indicate microorganisms associated with mud viscosifiers as the main contaminants during riser drilling. These same molecular analyses are then extended to subseafloor samples obtained during riserless drilling operations. General strategies to further reduce the risk of microbial contamination during riser and riserless drilling operations are discussed.

  15. The Salton Sea Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Elders, Wilfred A.; Sass, John H.

    1988-11-01

    In March 1986 a research borehole, called the "State 2-14," reached a depth of 3.22 km in the Salton Sea geothermal system of southern California. This was part of the Salton Sea Scientific Drilling Project (SSSDP), the first major (i.e., multimillion dollar) research drilling project in the U.S. Continental Scientific Drilling Program. The principal goals of the project were to investigate the physical and chemical processes of a high-temperature, high-salinity, magmatically driven hydrothermal system. The borehole encountered temperatures of up to 355°C and produced metal-rich, alkali chloride brines containing 25 wt% of total dissolved solids. The rocks penetrated exhibit metamorphism and ore genesis in action. They show a progressive transition from unconsolidated lacustrine and deltaic sediments to hornfelses, with lower amphibolite facies mineralogy, accompanied by pervasive veins containing iron, copper, lead, and zinc ore minerals. The SSSDP included an intensive program of rock and fluid sampling, flow testing, and downhole logging and scientific measurement. The purpose of this paper is to introduce this special section of the Journal of Geophysical Research on the SSSDP, to describe briefly the background of the project and the drilling and testing of the borehole, to summarize the initial scientific results, and to discuss how the lessons learned are applicable to future scientific drilling projects.

  16. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  17. 75 FR 54912 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... COMMISSION Drill Pipe and Drill Collars From China AGENCY: United States International Trade Commission... retarded, by reason of subsidized and less-than-fair-value imports from China of drill pipe and drill... defined the subject merchandise as steel drill pipe, and steel drill collars, whether or not conforming...

  18. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  19. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  20. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  1. Brief overview of geophysical probing technology

    SciTech Connect

    Ramirez, A.L.; Lytle, R.J.

    1982-02-01

    An evaluation of high-resolution geophysical techniques which can be used to characterize a nulcear waste disposal site is being conducted by the Lawrence Livermore National Laboratory (LLNL) at the request of the US Nuclear Regulatory Commisson (NRC). LLNL is involved in research work aimed at evaluating the current capabilities and limitations of geophysical methods used for site selection. This report provides a brief overview of the capabilities and limitations associated with this technology and explains how our work addresses some of the present limitations. We are examining both seismic and electromagnetic techniques to obtain high-resolution information. We are also assessing the usefulness of geotomography in mapping fracture zones remotely. Finally, we are collecting core samples from a site in an effort to assess the capability of correlating such geophysical data with parameters of interest such as fracture continuity, orientation, and fracture density.

  2. Basic exploration geophysics

    SciTech Connect

    Robinson, E.S.

    1988-01-01

    An introduction to geophysical methods used to explore for natural resources and to survey earth's geology is presented in this volume. It is suitable for second-and third-year undergraduate students majoring in geology or engineering and for professional engineering and for professional engineers and earth scientists without formal instruction in geophysics. The author assumes the reader is familiar with geometry, algebra, and trigonometry. Geophysical exploration includes seismic refraction and reflection surveying, electrical resistivity and electromagnetic field surveying, and geophysical well logging. Surveying operations are described in step-by-step procedures and are illustrated by practical examples. Computer-based methods of processing and interpreting data as well as geographical methods are introduced.

  3. Geophysical Technologies to Image Old Mine Works

    SciTech Connect

    Kanaan Hanna; Jim Pfeiffer

    2007-01-15

    ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned mines are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.

  4. Geoscience Research Drilling Office Operations I: the North INYO Drilling Program, 1984

    SciTech Connect

    Lysne, P.

    1986-05-01

    The North Inyo Drilling Program was part of the Continental Scientific Drilling Program/Thermal Regimes and it was put forth by the Department of Energy/Office of Basic Energy Sciences to explore roots of a 600 year old volcanic system which is found in the north-west corner of Long Valley Caldera, California. The responsibility of the Geoscience Research Drilling Office was to provide logistical support to the scientific drilling team. This support consisted of obtaining the necessary permits, obtaining a drilling contract and providing field services involving logging and core handling/laboratory facilities. The first portion of this program was successful when hole RDO-2b traversed the conduit which fed Obsidian Dome; the second portion succeeded when RDO-3a traversed the dike underlying the Inyo Chain of volcanoes.

  5. Phillips Laboratory Geophysics Scholar Program

    DTIC Science & Technology

    1993-09-30

    research at Phillips Laboratory . Research sponsored by Air Force Geophysics Laboratory ...Geophysics Laboratory (now the Phillips Laboratory , Geophysics Directorate), United States Air Force for its sponsorship of this research through the Air ...September 1993 Approved for public release; distribution unlimited PHILLIPS LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND

  6. Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2

    USGS Publications Warehouse

    Tembe, S.; Lockner, D.; Wong, T.-F.

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (?? 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature-and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (?????0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress. Copyright 2009 by the American Geophysical Union.

  7. New Era of Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.

    2014-12-01

    The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is

  8. Steamboat Hills exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

    1994-10-01

    During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  9. Magnetostratigraphic, biostratigraphic, and stable isotope stratigraphy of an Upper Miocene drill core from the Salé Briqueterie (northwestern Morocco): A high-resolution chronology for the Messinian stage

    NASA Astrophysics Data System (ADS)

    Hodell, David A.; Benson, Richard H.; Kent, Dennis V.; Boersma, Anne; Rakic-El Bied, Kruna

    1994-12-01

    We report a high-resolution stable isotope, carbonate, magnetostratigraphic, and biostratigraphic record from a 175-m drill core from the Salé Briqueterie, which is part of the Bou Regreg section in northwestern Morocco. The Salé drill core spans the interval from paleomagnetic Chron C4n partim to C3r (earliest Gilbert), which represents the time leading up to and including the isolation and desiccation of the Mediterranean (i.e., the Messinian salinity crisis). During Chrons C3An and C3Ar (6.935 to 5.894 Ma) the isotope and carbonate signals display quasi-periodic variations with estimated periods of 40 and 100 kyr, respectively. We interpret the 40-kyr δ18O variations as reflecting changes in global ice volume caused by obliquity-induced changes (41 kyr) in solar insolation in polar regions. The 100-kyr carbonate variations probably represent long-term modulation of the amplitude of the precessional cycle (˜21 kyr), which is not resolved by our sampling frequency. The cyclic nature of the oxygen isotope signal permits us to extend the isotope nomenclature of Shackleton et al. (1994a) from stage TG24 in Chron C3r (earliest Gilbert) to stage C3Ar.δ18O.18 at the base of Chron C3Ar (6.935 Ma). A major change in paleoceanographic conditions is recorded across the Tortonian/Messinian boundary, which we correlate to Chron C3Bn at 7.04 Ma. Benthic foraminiferal δ18O values increased by an average of 0.4‰ in two steps at 7.17 Ma and 6.8 Ma and δ13C values decreased by 0.7-0.8‰ between 7.1 and 6.8 Ma, representing the late Miocene carbon shift. The first step in δ18O values coincides with an inferred reversal in deep water circulation through the Rifian Corridor, and the second correlates with the base of the Tripoli Formation and onset of "crisis conditions" in the Mediterranean. We suggest that the increase in δ18O values represents, at least in part, an increase in global ice volume that lowered sea level and contributed to the establishment of a negative

  10. Managing drilling operations

    SciTech Connect

    Fraser, K.; Peden, J.; Kenworth, A.

    1991-01-01

    Oil and gas well drilling operations requires the management of a great variety of operations, equipment, people, finances, legal aspects and safety procedures. A thorough understanding of the drilling process and the technologies involved is required to complete a project successfully, on time and within budget. This book presents guidance on the whole sequence of this process from field evaluation and well planning to drilling and optimization for both on- and off-shore projects. There are step-by-step guidelines and checklist which the practitioner can use directly, or with their own modifications. The author has refined these guidelines from his nineteen years of experience managing drilling operations around the world. Graduates in petroleum engineering and economic geology, as well as drilling engineers and drilling operations managers will welcome this handbook for its comprehensive and clear treatment of all the management issue and technologies required for a safe, efficient and economic drilling operation.

  11. Influence of drilling operations on drilling mud gas monitoring during IODP Exp. 338 and 348

    NASA Astrophysics Data System (ADS)

    Hammerschmidt, Sebastian; Toczko, Sean; Kubo, Yusuke; Wiersberg, Thomas; Fuchida, Shigeshi; Kopf, Achim; Hirose, Takehiro; Saffer, Demian; Tobin, Harold; Expedition 348 Scientists, the

    2014-05-01

    application, this technique can provide a valuable suite of measurements to complement more traditional IODP shipboard measurements. Here we present unpublished data from IODP Expeditions 338 and 348, penetrating the Nankai Accretionary wedge to 3058.5 meters below seafloor. Increasing mud density decreased degasser efficiency, especially for higher hydrocarbons. Blurring of the relative variations in total gas by depth was observed, and confirmed with comparison to headspace gas concentrations from the cored inte