Sample records for geophysical imaging methods

  1. Delineation of karst terranes in complex environments: Application of modern developments in the wavelet theory and data mining

    NASA Astrophysics Data System (ADS)

    Alperovich, Leonid; Averbuch, Amir; Eppelbaum, Lev; Zheludev, Valery

    2013-04-01

    Karst areas occupy about 14% of the world land. Karst terranes of different origin have caused difficult conditions for building, industrial activity and tourism, and are the source of heightened danger for environment. Mapping of karst (sinkhole) hazards, obviously, will be one of the most significant problems of engineering geophysics in the XXI century. Taking into account the complexity of geological media, some unfavourable environments and known ambiguity of geophysical data analysis, a single geophysical method examination might be insufficient. Wavelet methodology as whole has a significant impact on cardinal problems of geophysical signal processing such as: denoising of signals, enhancement of signals and distinguishing of signals with closely related characteristics and integrated analysis of different geophysical fields (satellite, airborne, earth surface or underground observed data). We developed a three-phase approach to the integrated geophysical localization of subsurface karsts (the same approach could be used for following monitoring of karst dynamics). The first phase consists of modeling devoted to compute various geophysical effects characterizing karst phenomena. The second phase determines development of the signal processing approaches to analyzing of profile or areal geophysical observations. Finally, at the third phase provides integration of these methods in order to create a new method of the combined interpretation of different geophysical data. In the base of our combine geophysical analysis we put modern developments in the wavelet technique of the signal and image processing. The development of the integrated methodology of geophysical field examination will enable to recognizing the karst terranes even by a small ratio of "useful signal - noise" in complex geological environments. For analyzing the geophysical data, we used a technique based on the algorithm to characterize a geophysical image by a limited number of parameters. This set of parameters serves as a signature of the image and is to be utilized for discrimination of images containing karst cavity (K) from the images non-containing karst (N). The constructed algorithm consists of the following main phases: (a) collection of the database, (b) characterization of geophysical images, (c) and dimensionality reduction. Then, each image is characterized by the histogram of the coherency directions. As a result of the previous steps we obtain two sets K and N of the signatures vectors for images from sections containing karst cavity and non-karst subsurface, respectively.

  2. Electrical Resistivity Imaging

    EPA Science Inventory

    Electrical resistivity imaging (ERI) is a geophysical method originally developed within the mining industry where it has been used for decades to explore for and characterize subsurface mineral deposits. It is one of the oldest geophysical methods with the first documented usag...

  3. Geophysical Technologies to Image Old Mine Works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanaan Hanna; Jim Pfeiffer

    2007-01-15

    ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned minesmore » are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.« less

  4. Fusion of Geophysical Images in the Study of Archaeological Sites

    NASA Astrophysics Data System (ADS)

    Karamitrou, A. A.; Petrou, M.; Tsokas, G. N.

    2011-12-01

    This paper presents results from different fusion techniques between geophysical images from different modalities in order to combine them into one image with higher information content than the two original images independently. The resultant image will be useful for the detection and mapping of buried archaeological relics. The examined archaeological area is situated in Kampana site (NE Greece) near the ancient theater of Maronia city. Archaeological excavations revealed an ancient theater, an aristocratic house and the temple of the ancient Greek God Dionysus. Numerous ceramic objects found in the broader area indicated the probability of the existence of buried urban structure. In order to accurately locate and map the latter, geophysical measurements performed with the use of the magnetic method (vertical gradient of the magnetic field) and of the electrical method (apparent resistivity). We performed a semi-stochastic pixel based registration method between the geophysical images in order to fine register them by correcting their local spatial offsets produced by the use of hand held devices. After this procedure we applied to the registered images three different fusion approaches. Image fusion is a relatively new technique that not only allows integration of different information sources, but also takes advantage of the spatial and spectral resolution as well as the orientation characteristics of each image. We have used three different fusion techniques, fusion with mean values, with wavelets by enhancing selected frequency bands and curvelets giving emphasis at specific bands and angles (according the expecting orientation of the relics). In all three cases the fused images gave significantly better results than each of the original geophysical images separately. The comparison of the results of the three different approaches showed that the fusion with the use of curvelets, giving emphasis at the features' orientation, seems to give the best fused image. In the resultant image appear clear linear and ellipsoid features corresponding to potential archaeological relics.

  5. Density Imaging of Puy de Dôme Volcano with Atmospheric Muons in French Massif Central as a Case Study for Volcano Muography

    NASA Astrophysics Data System (ADS)

    Carloganu, Cristina; Le Ménédeu, Eve

    2016-04-01

    High energy atmospheric muons have high penetration power that renders them appropriate for geophysical studies. Provided the topography is known, the measurement of the muon flux transmittance leads in an univoque way to 2D density mapping (so called radiographic images) revealing spatial and possibly also temporal variations. Obviously, several radiographic images could be combined into 3D tomographies, though the inverse 3D problem is generally ill-posed. The muography has a high potential for imaging remotely (from kilometers away) and with high resolution (better than 100 mrad2) volcanoes. The experimental and methodological task is however not straightforward since atmospheric muons have non trivial spectra that fall rapidly with muon energy. As shown in [Ambrosino 2015] successfully imaging km-scale volcanoes remotely requires state-of-the art, high-resolution and large-scale muon detectors. This contribution presents the geophysical motivation for muon imaging as well as the first quantitative density radiographies of Puy de Dôme volcano obtained by the TOMUVOL collaboration using a highly segmented muon telescope based on Glass Resistive Plate Chambers. In parallel with the muographic studies, the volcano was imaged through standard geophysical methods (gravimetry, electrical resistivity) [Portal 2013] allowing in depth comparisons of the different methods. Ambrosino, F., et al. (2015), Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB011969 A. Portal et al (2013) , "Inner structure of the Puy de Dme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging)", Geosci. Instrum. Method. Data Syst., 2, 47-54, 2013

  6. Innovative computational tools for reducing exploration risk through integration of water-rock interactions and magnetotelluric surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Joseph

    2017-04-20

    Mapping permeability distributions in geothermal reservoirs is essential for reducing the cost of geothermal development. To avoid the cost and sampling bias of measuring permeability directly through drilling, we require remote methods of imaging permeability such as geophysics. Electrical resistivity (or its inverse, conductivity) is one of the most sensitive geophysical properties known to reflect long range fluid interconnection and thus the likelihood of permeability. Perhaps the most widely applied geophysical methods for imaging subsurface resistivity is magnetotellurics (MT) due to its relatively great penetration depths. A primary goal of this project is to confirm through ground truthing at existingmore » geothermal systems that MT resistivity structure interpreted integratively is capable of revealing permeable fluid pathways into geothermal systems.« less

  7. Joint interpretation of geophysical data using Image Fusion techniques

    NASA Astrophysics Data System (ADS)

    Karamitrou, A.; Tsokas, G.; Petrou, M.

    2013-12-01

    Joint interpretation of geophysical data produced from different methods is a challenging area of research in a wide range of applications. In this work we apply several image fusion approaches to combine maps of electrical resistivity, electromagnetic conductivity, vertical gradient of the magnetic field, magnetic susceptibility, and ground penetrating radar reflections, in order to detect archaeological relics. We utilize data gathered from Arkansas University, with the support of the U.S. Department of Defense, through the Strategic Environmental Research and Development Program (SERDP-CS1263). The area of investigation is the Army City, situated in Riley Country of Kansas, USA. The depth of the relics is estimated about 30 cm from the surface, yet the surface indications of its existence are limited. We initially register the images from the different methods to correct from random offsets due to the use of hand-held devices during the measurement procedure. Next, we apply four different image fusion approaches to create combined images, using fusion with mean values, wavelet decomposition, curvelet transform, and curvelet transform enhancing the images along specific angles. We create seven combinations of pairs between the available geophysical datasets. The combinations are such that for every pair at least one high-resolution method (resistivity or magnetic gradiometry) is included. Our results indicate that in almost every case the method of mean values produces satisfactory fused images that corporate the majority of the features of the initial images. However, the contrast of the final image is reduced, and in some cases the averaging process nearly eliminated features that are fade in the original images. Wavelet based fusion outputs also good results, providing additional control in selecting the feature wavelength. Curvelet based fusion is proved the most effective method in most of the cases. The ability of curvelet domain to unfold the image in terms of space, wavenumber, and orientation, provides important advantages compared with the rest of the methods by allowing the incorporation of a-priori information about the orientation of the potential targets.

  8. Integrated geophysical study to understand the architecture of the deep critical zone in the Luquillo Critical Zone Observatory (Puerto Rico

    NASA Astrophysics Data System (ADS)

    Comas, X.; Wright, W. J.; Hynek, S. A.; Ntarlagiannis, D.; Terry, N.; Whiting, F.; Job, M. J.; Brantley, S. L.; Fletcher, R. C.

    2016-12-01

    The Luquillo Critical Zone Observatory (CZO) in Puerto Rico is characterized by a complex system of heterogeneous fractures that participate in the formation of corestones, and influence the development of a regolith by the alteration of the bedrock at very rapid weathering rates. The spatial distribution of fractures, and its influence on regolith thickness is, however, currently not well understood. In this study, we used an array of near-surface geophysical methods, including ground penetrating radar, terrain conductivity, electrical resistivity imaging and induced polarization, OhmMapper, and shallow seismic, constrained with direct methods from previous studies. These methods were combined with stress modeling to better understand: 1) changes in regolith thickness; and 2) variation of the spatial distribution and density of fractures with topography and proximity to the knickpoint. Our observations show the potential of geophysical methods for imaging variability in regolith thickness, and agree with the result of a stress model showing increased dilation of fractures with proximity to the knickpoint.

  9. Multiscale geophysical imaging of the critical zone

    USGS Publications Warehouse

    Parsekian, Andy; Singha, Kamini; Minsley, Burke J.; Holbrook, W. Steven; Slater, Lee

    2015-01-01

    Details of Earth's shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the environment. Geophysical methods provide a means for remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we present a review highlighting the application of geophysical methods to CZ science research questions. In particular, we consider the application of geophysical methods to map the geometry of structural features such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones. Combined with knowledge of structure, we discuss how geophysical observations are used to understand CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere have been studied using geophysical methods in wetland areas. Indirect geophysical methods are a natural and necessary complement to direct observations obtained by drilling or field mapping. Direct measurements should be used to calibrate geophysical estimates, which can then be used to extrapolate interpretations over larger areas or to monitor changing processes over time. Advances in geophysical instrumentation and computational approaches for integrating different types of data have great potential to fill gaps in our understanding of the shallow subsurface portion of the CZ and should be integrated where possible in future CZ research.

  10. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer

    NASA Astrophysics Data System (ADS)

    Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean

    2014-07-01

    The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.

  11. Integrated Approaches On Archaeo-Geophysical Data

    NASA Astrophysics Data System (ADS)

    Kucukdemirci, M.; Piro, S.; Zamuner, D.; Ozer, E.

    2015-12-01

    Key words: Ground Penetrating Radar (GPR), Magnetometry, Geophysical Data Integration, Principal Component Analyse (PCA), Aizanoi Archaeological Site An application of geophysical integration methods which often appealed are divided into two classes as qualitative and quantitative approaches. This work focused on the application of quantitative integration approaches, which involve the mathematical and statistical integration techniques, on the archaeo-geophysical data obtained in Aizanoi Archaeological Site,Turkey. Two geophysical methods were applied as Ground Penetrating Radar (GPR) and Magnetometry for archaeological prospection on the selected archaeological site. After basic data processing of each geophysical method, the mathematical approaches of Sums and Products and the statistical approach of Principal Component Analysis (PCA) have been applied for the integration. These integration approches were first tested on synthetic digital images before application to field data. Then the same approaches were applied to 2D magnetic maps and 2D GPR time slices which were obtained on the same unit grids in the archaeological site. Initially, the geophysical data were examined individually by referencing with archeological maps and informations obtained from archaeologists and some important structures as possible walls, roads and relics were determined. The results of all integration approaches provided very important and different details about the anomalies related to archaeological features. By using all those applications, integrated images can provide complementary informations as well about the archaeological relics under the ground. Acknowledgements The authors would like to thanks to Scientific and Technological Research Council of Turkey (TUBITAK), Fellowship for Visiting Scientists Programme for their support, Istanbul University Scientific Research Project Fund, (Project.No:12302) and archaeologist team of Aizanoi Archaeological site for their support during the field work.

  12. Sub Surface Geoelectrical Imaging for Potential Geohazard in Infrastructure Construction in Sidoarjo, East Java

    NASA Astrophysics Data System (ADS)

    Sumintadireja, Prihadi; Irawan, Diky

    2017-06-01

    Mud volcano remnants are identified in Surabaya and adjacent areas. The people in East Java based on historical report are custom and able to adjust with the natural phenomena within their areas. Sidoarjo mud volcano phenomena which coincident with drilling activity in 29 May 2006 is making people and government anxious for development a new infrastructure such as high rise building, toll road etc. An understanding of a geological hazard which can be single, sequential or combined events in their origin is the main key importance in subsurface imaging. Geological hazard can be identified by geophysical, geological, geotechnical method. The prompt selection of geophysical method to reveal subsurface condition is very important factor instead of survey design and field data acquisition. Revealing subsurface condition is very important information for site investigation consists of geological, geophysical and geotechnical data, whereas data analysis will help civil engineer design and calculate the construction safety.

  13. Refraction statics and seismic imaging: 2-D versus 3-D solutions in the Western Desert of Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Emam, A.; Nessim, M.

    1994-12-31

    Careful review of old geophysical and geological data from the Western Desert of Egypt led to the decision of shooting a 3-D seismic survey targeted to solve some of the encountered geophysical problems such as difficulty of tracing the very thin pay zone, identifying the stratigraphic plays and the main two problems of the seismic method in the Western Desert which are statics and poor imaging. In a case history form illustrated by examples, the result of the 3-D solutions will be shown. Furthermore, an analytical approach will be undertaken to clarify and highlight the sources of those geophysical problemsmore » and how the 3-D solution helped in resolving them.« less

  14. Boise Hydrogeophysical Research Site: Control Volume/Test Cell and Community Research Asset

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Bradford, J.; Malama, B.

    2008-12-01

    The Boise Hydrogeophysical Research Site (BHRS) is a research wellfield or field-scale test facility developed in a shallow, coarse, fluvial aquifer with the objectives of supporting: (a) development of cost- effective, non- or minimally-invasive quantitative characterization and imaging methods in heterogeneous aquifers using hydrologic and geophysical techniques; (b) examination of fundamental relationships and processes at multiple scales; (c) testing theories and models for groundwater flow and solute transport; and (d) educating and training of students in multidisciplinary subsurface science and engineering. The design of the wells and the wellfield support modular use and reoccupation of wells for a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrologic-geophysical experiments. Efforts to date by Boise State researchers and collaborators have been largely focused on: (a) establishing the 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for jointly inverting hard and soft data to return the 3D K distribution and (b) developing subsurface measurement and imaging methods including tomographic characterization and imaging methods. At this point the hydrostratigraphic framework of the BHRS is known to be a hierarchical multi-scale system which includes layers and lenses that are recognized with geologic, hydrologic, radar, seismic, and EM methods; details are now emerging which may allow 3D deterministic characterization of zones and/or material variations at the meter scale in the central wellfield. Also the site design and subsurface framework have supported a variety of testing configurations for joint hydrologic and geophysical experiments. Going forward we recognize the opportunity to increase the R&D returns from use of the BHRS with additional infrastructure (especially for monitoring the vadose zone and surface water-groundwater interactions), more collaborative activity, and greater access to site data. Our broader goal of becoming more available as a research asset for the scientific community also supports the long-term business plan of increasing funding opportunities to maintain and operate the site.

  15. IDIMS/GEOPAK: Users manual for a geophysical data display and analysis system

    NASA Technical Reports Server (NTRS)

    Libert, J. M.

    1982-01-01

    The application of an existing image analysis system to the display and analysis of geophysical data is described, the potential for expanding the capabilities of such a system toward more advanced computer analytic and modeling functions is investigated. The major features of the IDIMS (Interactive Display and Image Manipulation System) and its applicability for image type analysis of geophysical data are described. Development of a basic geophysical data processing system to permit the image representation, coloring, interdisplay and comparison of geophysical data sets using existing IDIMS functions and to provide for the production of hard copies of processed images was described. An instruction manual and documentation for the GEOPAK subsystem was produced. A training course for personnel in the use of the IDIMS/GEOPAK was conducted. The effectiveness of the current IDIMS/GEOPAK system for geophysical data analysis was evaluated.

  16. Leachate recirculation: moisture content assessment by means of a geophysical technique.

    PubMed

    Guérin, Roger; Munoz, Marie Laure; Aran, Christophe; Laperrelle, Claire; Hidra, Mustapha; Drouart, Eric; Grellier, Solenne

    2004-01-01

    Bioreactor technology is a waste treatment concept consisting in speeding up the biodegradation of landfilled waste by optimizing its moisture content through leachate recirculation. The measurement of variations in waste moisture content is critical in the design and control of bioreactors. Conventional methods such as direct physical sampling of waste reach their limits due to the interference with the waste matrix. This paper reviews geophysical measurements such as electrical direct current and electromagnetic slingram methods for measuring the electrical conductivity. Electrical conductivity is a property, which is linked to both moisture and temperature and can provide useful indications on the biodegradation environment in the waste mass. The study reviews three site experiments: a first experimentation shows the advantages (correlation between conductive anomaly and water seepage) but also the limits of geophysical interpretation; the two other sites allow the leachate recirculation to be tracked by studying the relative resistivity variation versus time from electrical 2D imaging. Even if some improvements are necessary to consider geophysical measurements as a real bioreactor monitoring tool, results are promising and could lead to the use of electrical 2D imaging in bioreactor designing.

  17. Detecting Buried Archaeological Remains by the Use of Geophysical Data Processing with 'Diffusion Maps' Methodology

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2015-04-01

    Geophysical methods are prompt, non-invasive and low-cost tool for quantitative delineation of buried archaeological targets. However, taking into account the complexity of geological-archaeological media, some unfavourable environments and known ambiguity of geophysical data analysis, a single geophysical method examination might be insufficient (Khesin and Eppelbaum, 1997). Besides this, it is well-known that the majority of inverse-problem solutions in geophysics are ill-posed (e.g., Zhdanov, 2002), which means, according to Hadamard (1902), that the solution does not exist, or is not unique, or is not a continuous function of observed geophysical data (when small perturbations in the observations will cause arbitrary mistakes in the solution). This fact has a wide application for informational, probabilistic and wavelet methodologies in archaeological geophysics (Eppelbaum, 2014a). The goal of the modern geophysical data examination is to detect the geophysical signatures of buried targets at noisy areas via the analysis of some physical parameters with a minimal number of false alarms and miss-detections (Eppelbaum et al., 2011; Eppelbaum, 2014b). The proposed wavelet approach to recognition of archaeological targets (AT) by the examination of geophysical method integration consists of advanced processing of each geophysical method and nonconventional integration of different geophysical methods between themselves. The recently developed technique of diffusion clustering combined with the abovementioned wavelet methods was utilized to integrate the geophysical data and detect existing irregularities. The approach is based on the wavelet packet techniques applied as to the geophysical images (or graphs) versus coordinates. For such an analysis may be utilized practically all geophysical methods (magnetic, gravity, seismic, GPR, ERT, self-potential, etc.). On the first stage of the proposed investigation a few tens of typical physical-archaeological models (PAM) (e.g., Eppelbaum et al., 2010; Eppelbaum, 2011) of the targets under study for the concrete area (region) are developed. These PAM are composed on the basis of the known archaeological and geological data, results of previous archaeogeophysical investigations and 3D modeling of geophysical data. It should be underlined that the PAMs must differ (by depth, size, shape and physical properties of AT as well as peculiarities of the host archaeological-geological media). The PAMs must include also noise components of different orders (corresponding to the archaeogeophysical conditions of the area under study). The same models are computed and without the AT. Introducing complex PAMs (for example, situated in the vicinity of electric power lines, some objects of infrastructure, etc. (Eppelbaum et al., 2001)) will reflect some real class of AT occurring in such unfavorable for geophysical searching conditions. Anomalous effects from such complex PAMs will significantly disturb the geophysical anomalies from AT and impede the wavelet methodology employment. At the same time, the 'self-learning' procedure laid in this methodology will help further to recognize the AT even in the cases of unfavorable S/N ratio. Modern developments in the wavelet theory and data mining are utilized for the analysis of the integrated data. Wavelet approach is applied for derivation of enhanced (e.g., coherence portraits) and combined images of geophysical fields. The modern methodologies based on the matching pursuit with wavelet packet dictionaries enables to extract desired signals even from strongly noised data (Averbuch et al., 2014). Researchers usually met the problem of extraction of essential features from available data contaminated by a random noise and by a non-relevant background (Averbuch et al., 2014). If the essential structure of a signal consists of several sine waves then we may represent it via trigonometric basis (Fourier analysis). In this case one can compare the signal with a set of sinusoids and extract consistent ones. An indicator of presence a wave in a signal f(t) is the Fourier coefficient ∫ f(t) sinwt dt. Wavelet analysis provides a rich library of waveforms available and fast, computationally efficient procedures of representation of signals and of selection of relevant waveforms. The basic assumption justifying an application of wavelet analysis is that the essential structure of a signal analyzed consists of not a large number of various waveforms. The best way to reveal this structure is representation of the signal by a set of basic elements containing waveforms coherent to the signal. For structures of the signal coherent to the basis, large coefficients are attributed to a few basic waveforms, whereas we expect small coefficients for the noise and structures incoherent to all basic waveforms. Wavelets are a family of functions ranging from functions of arbitrary smoothness to fractal ones. Wavelet procedure involves two aspects. The first one is a decomposition, i.e. breaking up a signal to obtain the wavelet coefficients and the 2nd one is a reconstruction, which consists of a reassembling the signal from coefficients There are many modifications of the WA. Note, first of all, so-called Continuous WA in whichsignal f(t) is tested for presence of waveforms ψ(t-b) a. Here, a is scaling parameter (dilation), bdetermines location of the wavelet ψ(t-b) a in a signal f(t). The integral ( ) ∫ t-b (W ψf) (b,a) = f (t) ψ a dt is the Continuous Wavelet Transform.When parameters a,b in ψ( ) t-ab take some discrete values, we have the Discrete Wavelet Transform. A general scheme of the Wavelet Decomposition Tree is shown, for instance, in (Averbuch et al., 2014; Eppelbaum et al., 2014). The signal is compared with the testing signal on each scale. It is estimated wavelet coefficients which enable to reconstruct the 1st approximation of the signal and details. On the next level, wavelet transform is applied to the approximation. Then, we can present A1 as A2 + D2, etc. So, if S - Signal, A - Approximation, D - Details, then S = A1 + D1 = A2 + D2 + D1 = A3 + D3 + D2 + D1. Wavelet packet transform is applied to both low pass results (approximations) and high pass results (Details). For analyzing the geophysical data, we used a technique based on the algorithm to characterize a geophysical image by a limited number of parameters (Eppelbaum et al., 2012). This set of parameters serves as a signature of the image and is utilized for discrimination of images (a) containing AT from the images (b) non-containing AT (let will designate these images as N). The constructed algorithm consists of the following main phases: (a) collection of the database, (b) characterization of geophysical images, (c) and dimensionality reduction. Then, each image is characterized by the histogram of the coherency directions (Alperovich et al., 2013). As a result of the previous steps we obtain two sets: containing AT and N of the signatures vectors for geophysical images. The obtained 3D set of the data representatives can be used as a reference set for the classification of newly arriving geophysical data. The obtained data sets are reduced by embedding features vectors into the 3D Euclidean space using the so-called diffusion map. This map enables to reveal the internal structure of the datasets AT and N and to distinctly separate them. For this, a matrix of the diffusion distances for the combined feature matrix F = FN ∴ FC of size 60 x C is constructed (Coifman and Lafon, 2006; Averbuch et al., 2010). Then, each row of the matrices FN and FC is projected onto three first eigenvectors of the matrix D(F ). As a result, each data curve is represented by a 3D point in the Euclidean space formed by eigenvectors of D(F ). The Euclidean distances between these 3D points reflect the similarity of the data curves. The scattered projections of the data curves onto the diffusion eigenvectors will be composed. Finally we observe that as a result of the above operations we embedded the original data into 3-dimensional space where data related to the AT subsurface are well separated from the N data. This 3D set of the data representatives can be used as a reference set for the classification of newly arriving data. Geophysically it means a reliable division of the studied areas for the AT-containing and not containing (N) these objects. Testing this methodology for delineation of archaeological cavities by magnetic and gravity data analysis displayed an effectiveness of this approach. References Alperovich, L., Eppelbaum, L., Zheludev, V., Dumoulin, J., Soldovieri, F., Proto, M., Bavusi, M. and Loperte, A., 2013. A new combined wavelet methodology applied to GPR and ERT data in the Montagnole experiment (French Alps). Journal of Geophysics and Engineering, 10, No. 2, 025017, 1-17. Averbuch, A., Hochman, K., Rabin, N., Schclar, A. and Zheludev, V., 2010. A diffusion frame-work for detection of moving vehicles. Digital Signal Processing, 20, No.1, 111-122. Averbuch A.Z., Neittaanmäki, P., and Zheludev, V.A., 2014. Spline and Spline Wavelet Methods with Applications to Signal and Image Processing. Volume I: Periodic Splines. Springer. Coifman, R.R. and Lafon, S., 2006. Diffusion maps, Applied and Computational Harmonic Analysis. Special issue on Diffusion Maps and Wavelets, 21, No. 7, 5-30. Eppelbaum, L.V., 2011. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, 36, No. 16, 1318-1330. Eppelbaum, L.V., 2014a. Geophysical observations at archaeological sites: Estimating informational content. Archaeological Prospection, 21, No. 2, 25-38. Eppelbaum, L.V. 2014b. Four Color Theorem and Applied Geophysics. Applied Mathematics, 5, 358-366. Eppelbaum, L.V., Alperovich, L., Zheludev, V. and Pechersky, A., 2011. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed. of the 2011 SAGEEP Conference, Charleston, South Carolina, USA, 24, 24-60. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2001. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, 8, No.3, 163-185. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2010. Archaeological geophysics in arid environments: Examples from Israel. Journal of Arid Environments, 74, No. 7, 849-860. Eppelbaum, L.V., Zheludev, V. and Averbuch, A., 2014. Diffusion maps as a powerful tool for integrated geophysical field analysis to detecting hidden karst terranes. Izv. Acad. Sci. Azerb. Rep., Ser.: Earth Sciences, No. 1-2, 36-46. Hadamard, J., 1902. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, 13, 49-52. Khesin, B.E. and Eppelbaum, L.V., 1997. The number of geophysical methods required for target classification: quantitative estimation. Geoinformatics, 8, No.1, 31-39. Zhdanov, M.S., 2002. Geophysical Inverse Theory and Regularization Problems. Methods in Geochemistry and Geophysics, Vol. 36. Elsevier, Amsterdam.

  18. Pitfalls and Limitations in the Interpretation of Geophysical Images for Hydrologic Properties and Processes

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.

    2014-12-01

    Geophysical imaging (e.g., electrical, radar, seismic) can provide valuable information for the characterization of hydrologic properties and monitoring of hydrologic processes, as evidenced in the rapid growth of literature on the subject. Geophysical imaging has been used for monitoring tracer migration and infiltration, mapping zones of focused groundwater/surface-water exchange, and verifying emplacement of amendments for bioremediation. Despite the enormous potential for extraction of hydrologic information from geophysical images, there also is potential for misinterpretation and over-interpretation. These concerns are particularly relevant when geophysical results are used within quantitative frameworks, e.g., conversion to hydrologic properties through petrophysical relations, geostatistical estimation and simulation conditioned to geophysical inversions, and joint inversion. We review pitfalls to interpretation associated with limited image resolution, spatially variable image resolution, incorrect data weighting, errors in the timing of measurements, temporal smearing resulting from changes during data acquisition, support-volume/scale effects, and incorrect assumptions or approximations involved in modeling geophysical or other jointly inverted data. A series of numerical and field-based examples illustrate these potential problems. Our goal in this talk is to raise awareness of common pitfalls and present strategies for recognizing and avoiding them.

  19. Geological modeling and infiltration pattern of a karstic system based upon crossed geophysical methods and image-guided inversion

    NASA Astrophysics Data System (ADS)

    Duran, Lea; Jardani, Abderrahim; Fournier, Matthieu; Massei, Nicolas

    2015-04-01

    Karstic aquifers represent an important part of the water resources worldwide. Though they have been widely studied on many aspects, their geological and hydrogeological modeling is still complex. Geophysical methods can provide useful subsurface information for the characterization and mapping of karstic systems, especially when not accessible by speleology. The site investigated in this study is a sinkhole-spring system, with small diameter conduits that run within a chalk aquifer (Norville, in Upper Normandy, France). This site was investigated using several geophysical methods: electrical tomography, self-potential, mise-à-la-masse methods, and electromagnetic method (EM34). Coupling those results with boreholes data, a 3D geological model of the hydrogeological basin was established, including tectonic features as well as infiltration structures (sinkhole, covered dolines). The direction of the karstic conduits near the main sinkhole could be established, and the major fault was shown to be a hydraulic barrier. Also the average concentration of dolines on the basin could be estimated, as well as their depth. At last, several hypotheses could be made concerning the location of the main conduit network between the sinkhole and the spring, using previous hydrodynamic study of the site along with geophysical data. In order to validate the 3D geological model, an image-guided inversion of the apparent resistivity data was used. With this approach it is possible to use geological cross sections to constrain the inversion of apparent resistivity data, preserving both discontinuities and coherences in the inversion of the resistivity data. This method was used on the major fault, enabling to choose one geological interpretation over another (fault block structure near the fault, rather than important folding). The constrained inversion was also applied on covered dolines, to validate the interpretation of their shape and depth. Key words: Magnetic and electrical methods, karstic system modeling; image-guided inversion

  20. Inner structure of the Puy de Dôme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging)

    NASA Astrophysics Data System (ADS)

    Portal, A.; Labazuy, P.; Lénat, J.-F.; Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F.; Gay, P.; Laktineh, I.; Miallier, D.; Mirabito, L.; Niess, V.; Vulpescu, B.

    2013-01-01

    Muon imaging of volcanoes and of geological structures in general is actively being developed by several groups in the world. It has the potential to provide 3-D density distributions with an accuracy of a few percent. At this stage of development, comparisons with established geophysical methods are useful to validate the method. An experiment has been carried out in 2011 and 2012 on a large trachytic dome, the Puy de Dôme volcano, to perform such a comparison of muon imaging with gravimetric tomography and 2-D electrical resistivity tomography. Here, we present the preliminary results for the last two methods. North-south and east-west resistivity profiles allow us to model the resistivity distribution down to the base of the dome. The modelling of the Bouguer anomaly provides models for the density distribution within the dome that are directly comparable with the results from the muon imaging. Our ultimate goal is to derive a model of the dome using the joint interpretation of all sets of data.

  1. LIME: 3D visualisation and interpretation of virtual geoscience models

    NASA Astrophysics Data System (ADS)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel methods developed.

  2. Solfatara volcano subsurface imaging: two different approaches to process and interpret multi-variate data sets

    NASA Astrophysics Data System (ADS)

    Bernardinetti, Stefano; Bruno, Pier Paolo; Lavoué, François; Gresse, Marceau; Vandemeulebrouck, Jean; Revil, André

    2017-04-01

    The need to reduce model uncertainty and produce a more reliable geophysical imaging and interpretations is nowadays a fundamental task required to geophysics techniques applied in complex environments such as Solfatara Volcano. The use of independent geophysical methods allows to obtain many information on the subsurface due to the different sensitivities of the data towards parameters such as compressional and shearing wave velocities, bulk electrical conductivity, or density. The joint processing of these multiple physical properties can lead to a very detailed characterization of the subsurface and therefore enhance our imaging and our interpretation. In this work, we develop two different processing approaches based on reflection seismology and seismic P-wave tomography on one hand, and electrical data acquired over the same line, on the other hand. From these data, we obtain an image-guided electrical resistivity tomography and a post processing integration of tomographic results. The image-guided electrical resistivity tomography is obtained by regularizing the inversion of the electrical data with structural constraints extracted from a migrated seismic section using image processing tools. This approach enables to focus the reconstruction of electrical resistivity anomalies along the features visible in the seismic section, and acts as a guide for interpretation in terms of subsurface structures and processes. To integrate co-registrated P-wave velocity and electrical resistivity values, we apply a data mining tool, the k-means algorithm, to individuate relationships between the two set of variables. This algorithm permits to individuate different clusters with the objective to minimize the sum of squared Euclidean distances within each cluster and maximize it between clusters for the multivariate data set. We obtain a partitioning of the multivariate data set in a finite number of well-correlated clusters, representative of the optimum clustering of our geophysical variables (P-wave velocities and electrical resistivities). The result is an integrated tomography that shows a finite number of homogeneous geophysical facies, and therefore permits to highlight the main geological features of the subsurface.

  3. Non-invasive Geophysical Surveys in Search of the Roman Temple of Augustus Under the Cathedral of Tarragona (Catalonia, Spain): A Case Study

    NASA Astrophysics Data System (ADS)

    Casas, Albert; Cosentino, Pietro L.; Fiandaca, Gianluca; Himi, Mahjoub; Macias, Josep M.; Martorana, Raffaele; Muñoz, Andreu; Rivero, Lluís; Sala, Roger; Teixell, Imma

    2018-04-01

    An integrated geophysical survey has been conducted at the Tarragona's Cathedral (Catalonia, NE Spain) with the aim to confirm the potential occurrence of archaeological remains of the Roman Temple dedicated to the Emperor Augustus. Many hypotheses have been proposed about its possible location, the last ones regarding the inner part of the Cathedral, which is one of the most renowned temples of Spain (twelfth century) evolving from Romanesque to Gothic styles. A geophysical project including electrical resistivity tomography (ERT) and ground probing radar (GPR) was planned over 1 year considering the administrative and logistic difficulties of such a project inside a cathedral of religious veneration. Finally, both ERT and GPR have been conducted during a week of intensive overnight surveys that provided detailed information on subsurface existing structures. The ERT method has been applied using different techniques and arrays, ranging from standard Wenner-Schlumberger 2D sections to full 3D electrical imaging with the advanced Maximum Yield Grid array. Electrical resistivity data were recorded extensively, making available many thousands of apparent resistivity data to obtain a complete 3D image after a full inversion. In conclusion, some significant buried structures have been revealed providing conclusive information for archaeologists. GPR results provided additional information about shallowest structures. The geophysical results were clear enough to persuade religious authorities and archaeologists to conduct selected excavations in the most promising areas that confirmed the interpretation of geophysical data. In conclusion, the significant buried structures revealed by geophysical methods under the cathedral were confirmed by archaeological digging as the basement of the impressive Roman Temple that headed the Provincial Forum of Tarraco, seat of the Concilium of Hispania Citerior Province.

  4. Process for guidance, containment, treatment, and imaging in a subsurface environment utilizing ferro-fluids

    DOEpatents

    Moridis, George J.; Oldenburg, Curtis M.

    2001-01-01

    Disclosed are processes for monitoring and control of underground contamination, which involve the application of ferrofluids. Two broad uses of ferrofluids are described: (1) to control liquid movement by the application of strong external magnetic fields; and (2) to image liquids by standard geophysical methods.

  5. Geophysical, stratigraphic, and flow-zone logs of selected test, monitor, and water-supply wells in Cayuga County, New York

    USGS Publications Warehouse

    Anderson, J. Alton; Williams, John H.; Eckhardt, David A.V.; Miller, Todd S.

    2003-01-01

    Volatile-organic compounds have been detected in water sampled from more than 50 supply wells between the City of Auburn and Village of Union Springs in Cayuga County, New York, and the area was declared a Superfund site in 2002. In 2001-04, geophysical logs were collected from 37 test, monitor, and water-supply wells as a preliminary part of the investigation of volatile-organic compound contamination in the carbonate-bedrock aquifer system. The geophysical logs included gamma, induction, caliper, wellbore image, deviation, fluid resistivity and temperature, and flowmeter. The geophysical logs were analyzed along with core samples and outcrops of the bedrock to define the stratigraphic units and flow zones penetrated by the wells. This report describes the logging methods used in the study and presents the geophysical, stratigraphic, and flow-zone logs.

  6. Market applications of Resistivity, Induced Polarisation, Magnetic Resonance and Electromagnetic methods for Groundwater Investigations, Mining Exploration, Environmental and Engineering Surveys

    NASA Astrophysics Data System (ADS)

    Bernard, J.

    2012-12-01

    The Manufacturers of geophysical instruments have been facing these past decades the fast evolution of the electronics and of the computer sciences. More automatisms have been introduced into the equipment and into the processing and interpretation software which may let believe that conducting geophysical surveys requires less understanding of the method and less experience than in the past. Hence some misunderstandings in the skills that are needed to make the geophysical results well integrated among the global information which the applied geologist needs to acquire to be successful in his applications. Globally, the demand in geophysical investigation goes towards more penetration depth, requiring more powerful transmitters, and towards a better resolution, requiring more data such as in 3D analysis. Budgets aspects strongly suggest a high efficiency in the field associated to high speed data processing. The innovation is required in all aspects of geophysics to fit with the market needs, including new technological (instruments, software) and methodological (methods, procedures, arrays) developments. The structures in charge of the geophysical work can be public organisations (institutes, ministries, geological surveys,…) or can come from the private sector (large companies, sub-contractors, consultants, …), each one of them getting their own constraints in the field work and in the processing and interpretation phases. In the applications concerning Groundwater investigations, Mining Exploration, Environmental and Engineering surveys, examples of data and their interpretation presently carried out all around the world will be presented for DC Resistivity (Vertical Electrical Sounding, 2D, 3D Resistivity Imaging, Resistivity Monitoring), Induced Polarisation (Time Domain 2D, 3D arrays for mining and environmental), Magnetic Resonance Sounding (direct detection and characterisation of groundwater) and Electromagnetic (multi-component and multi-spacing Frequency Domain Sounding and Profiling technique). The place that Geophysics takes in the market among the other investigation techniques is, and will remain, dependant on the quality of the results obtained, despite the uncertainties linked to the field (noise aspects) and to the interpretation (equivalence aspects), under the control of budget decisions.Resistivity Imaging measurements for groundwater investigations

  7. Terahertz reflection imaging using Kirchhoff migration.

    PubMed

    Dorney, T D; Johnson, J L; Van Rudd, J; Baraniuk, R G; Symes, W W; Mittleman, D M

    2001-10-01

    We describe a new imaging method that uses single-cycle pulses of terahertz (THz) radiation. This technique emulates data-collection and image-processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a simple migration procedure to solve the inverse problem; this permits us to reconstruct the location and shape of targets. These results demonstrate the feasibility of the THz system as a test-bed for the exploration of new seismic processing methods involving complex model systems.

  8. Geophysical imaging of root-zone, trunk, and moisture heterogeneity.

    PubMed

    Attia Al Hagrey, Said

    2007-01-01

    The most significant biotic and abiotic stress agents of water extremity, salinity, and infection lead to wood decay and modifications of moisture and ion content, and density. This strongly influences the (di-)electrical and mechanical properties and justifies the application of geophysical imaging techniques. These are less invasive and have high resolution in contrast to classical methods of destructive, single-point measurements for inspecting stresses in trees and soils. This review presents some in situ and in vivo applications of electric, radar, and seismic methods for studying water status and movement in soils, roots, and tree trunks. The electrical properties of a root-zone are a consequence of their moisture content. Electrical imaging discriminates resistive, woody roots from conductive, soft roots. Both types are recognized by low radar velocities and high attenuation. Single roots can generate diffraction hyperbolas in radargrams. Pedophysical relationships of water content to electrical resistivity and radar velocity are established by diverse infiltration experiments in the field, laboratory, and in the full-scale 'GeoModel' at Kiel University. Subsurface moisture distributions are derived from geophysical attribute models. The ring electrode technique around trunks images the growth ring structure of concentric resistivity, which is inversely proportional to the fluid content. Healthy trees show a central high resistivity within the dry heartwood that strongly decreases towards the peripheral wet sapwood. Observed structural deviations are caused by infection, decay, shooting, or predominant light and/or wind directions. Seismic trunk tomography also differentiates between decayed and healthy woods.

  9. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  10. Detecting Underground Mine Voids Using Complex Geophysical Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, V. F.; Harbert, W. P.; Hammack, R. W.

    2006-12-01

    In July 2006, the National Energy Technology Laboratory in collaboration with Department of Geology and Planetary Science, University of Pittsburgh conducted complex ground geophysical surveys of an area known to be underlain by shallow coal mines. Geophysical methods including electromagnetic induction, DC resistivity and seismic reflection were conducted. The purpose of these surveys was to: 1) verify underground mine voids based on a century-old mine map that showed subsurface mine workings georeferenced to match with present location of geophysical test-site located on the territory of Bruceton research center in Pittsburgh, PA, 2) deliniate mine workings that may be potentially filledmore » with electrically conductive water filtrate emerging from adjacent groundwater collectors and 3) establish an equipment calibration site for geophysical instruments. Data from electromagnetic and resistivity surveys were further processed and inverted using EM1DFM, EMIGMA or Earthimager 2D capablilities in order to generate conductivity/depth images. Anomaly maps were generated, that revealed the locations of potential mine openings.« less

  11. Archaeological Feedback as a Research Methodology in Near-Surface Geophysics

    NASA Astrophysics Data System (ADS)

    Maillol, J.; Ortega-Ramírez, J.; Berard, B.

    2005-05-01

    A unique characteristic of archaeological geophysics is to present the researchers in applied geophysics with the opportunity to verify their interpretation of geophysical data through the direct observation of often extremely detailed excavations. This is usually known as archaeological feedback. Archaeological materials have been slowly buried over periods ranging from several hundreds to several thousands of years, undergoing natural sedimentary and soil-forming processes. Once excavated, archaeological features therefore constitute more realistic test subjects than the targets artifically buried in common geophysical test sites. We are presenting the outcome of several such verification tests aimed at clarifying issues in geometry and spatial resolution of ground penetrating radar (GPR) images. On the site of a Roman villa in SE Portugal 500 Mhz GPR images are shown to depict very accurately the position and geometry of partially excavated remains. In the Maya city of Palenque, Mexico, 900 Mhz data allows the depth of tombs and natural cavities to be determined with cm accuracy. The predicted lateral extent of the cavities is more difficult to match with the reality due to the cluttering caused by high frequency. In the rainforest of Western Africa, 500 MHz GPR was used to prospect for stone tool sites. When very careful positioning and high density data sampling is achieved, stones can be accurately located and retrieved at depths exceeding 1 m with maximum positioning errors of 12cm horizontally and 2 cm vertically. In more difficult data collection conditions however, errors in positioning are shown to actually largely exceed the predictions based on quantitative theoretical resolution considerations. Geophysics has long been recognized as a powerful tool for prospecting and characterizing archaeological sites. Reciprocally, these results show that archaeology is an unparalleled test environment for the assesment and development of high resolution geophysical methods.

  12. Combination of Geophysical Methods to Support Urban Geological Mapping

    NASA Astrophysics Data System (ADS)

    Gabàs, A.; Macau, A.; Benjumea, B.; Bellmunt, F.; Figueras, S.; Vilà, M.

    2014-07-01

    Urban geological mapping is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards. Geophysics can have a pivotal role to yield subsurface information in urban areas provided that geophysical methods are capable of dealing with challenges related to these scenarios (e.g., low signal-to-noise ratio or special logistical arrangements). With this principal aim, a specific methodology is developed to characterize lithological changes, to image fault zones and to delineate basin geometry in the urban areas. The process uses the combination of passive and active techniques as complementary data: controlled source audio-magnetotelluric method (CSAMT), magnetotelluric method (MT), microtremor H/V analysis and ambient noise array measurements to overcome the limitations of traditional geophysical methodology. This study is focused in Girona and Salt surrounding areas (NE of Spain) where some uncertainties in subsurface knowledge (maps of bedrock depth and the isopach maps of thickness of quaternary sediments) need to be resolved to carry out the 1:5000 urban geological mapping. These parameters can be estimated using this proposed methodology. (1) Acoustic impedance contrast between Neogene sediments and Paleogene or Paleozoic bedrock is detected with microtremor H/V analysis that provides the soil resonance frequency. The minimum value obtained is 0.4 Hz in Salt city, and the maximum value is the 9.5 Hz in Girona city. The result of this first method is a fast scanner of the geometry of basement. (2) Ambient noise array constrains the bedrock depth using the measurements of shear-wave velocity of soft soil. (3) Finally, the electrical resistivity models contribute with a good description of lithological changes and fault imaging. The conductive materials (1-100 Ωm) are associated with Neogene Basin composed by unconsolidated detrital sediments; medium resistive materials (100-400 Ωm) correspond to Paleogene, and resistive materials (600-1,000 Ωm) are related with complex basement, granite of Paleozoic. The Neogene basin-basement boundary is constrained between surface and 500 m depth, approximately. The new geophysical methodology presented is an optimized and fast tool to refine geological mapping by adding 2D information to traditional geological data and improving the knowledge of subsoil.

  13. The Structure of the Onega Downthrown Block and Adjacent Geological Objects According to the Microseismic Sounding Method

    NASA Astrophysics Data System (ADS)

    Danilov, Konstantin B.

    2017-07-01

    The geological structure of the major part of the Arkhangelsk region in the North-West Russia has been poorly studied. In the present work, the microseismic sounding method was, for the first time, used to carry out a detailed geological-geophysical survey in the region. The particles motion study confirmed the results of mathematical modeling of the smallest imaged heterogeneity and resolution of the method. The microseism stability study allowed to determine the amount of error of the microseismic sounding method which is 1-2 dB. Two geophysical cross sections of the north-eastern and south-western boundaries of the Onega downthrown block were studied. The method was shown to allow obtaining seismic images with a high precision in the horizontal direction at relatively low costs in terms of time and finances. The obtained data provided additional information about the structure of the crust, which was consistent with the known geological and geophysical information for the surveyed area. Based on the data, it was concluded that the main reasons of the dissonance of geological information were most likely the division of the downthrown block into the northern and southern blocks and horizontal displacement of the layer to the North at a depth ranging from 3 to 5 km. It was suggested that the most active tectonic processes, including eruptions of ancient volcanoes, occurred in the northern block. Two benches at the studied downthrown block were allocated at the depths of 5 and 10 km.

  14. Record of the Solar Activity and of Other Geophysical Phenomenons in Tree Ring

    NASA Astrophysics Data System (ADS)

    Rigozo, Nivaor Rodolfo

    1999-01-01

    Tree ring studies are usually used to determine or verify climatic factors which prevail in a given place or region and may cause tree ring width variations. Few studies are dedicated to the geophysical phenomena which may underlie these tree ring width variations. In order to look for periodicities which may be associated to the solar activity and/or to other geophysical phenomena which may influence tree ring growth, a new interactive image analysis method to measure tree ring width was developed and is presented here. This method makes use of a computer and a high resolution flatbed scanner; a program was also developed in Interactive Data Language (IDL 5.0) to study ring digitized images and transform them into time series. The main advantage of this method is the tree ring image interactive analysis without needing complex and high cost instrumentation. Thirty-nine samples were collected: 12 from Concordia - S. C., 9 from Canela - R. S., 14 from Sao Francisco de Paula - R. S., one from Nova Petropolis - R. S., 2 from Sao Martinho da Serra - R. S. e one from Chile. Fit functions are applied to ring width time series to obtain the best long time range trend (growth rate of every tree) curves and are eliminated through a standardization process that gives the tree ring index time series from which is performed spectral analysis by maximum entropy method and iterative regression. The results obtained show periodicities close to 11 yr, 22 yr Hale solar cycles and 5.5 yr for all sampling locations 52 yr and Gleissberg cycles for Concordia - S. C. and Chile samples. El Nino events were also observed with periods around 4 e 7 yr.

  15. Massive Sulphide Exploration at the Mid-Atlantic Ridge 26oN: an interdisciplinary geophysical study

    NASA Astrophysics Data System (ADS)

    Gehrmann, R. A. S.; Hölz, S.; Jegen, M. D.; Graber, S.; Szitkar, F.; Petersen, S.; Yeo, I. A.; North, L. J.; Gil, A.; Vardy, M. E.; Haroon, A.; Schroeder, H.; Bialas, J.; Tan, Y. Y.; Attias, E.; Sommer, M.; Minshull, T. A.; Murton, B. J.

    2017-12-01

    During the summer 2016 two cruises (M127 and JC138) conducted an interdisciplinary survey as part of the EU FP7 project `Blue Mining' in the Trans-Atlantic Geotraverse (TAG) hydrothermal field, at the Mid-Atlantic Ridge (26° N), to study the geophysical and geochemical signature of extinct seafloor massive sulphide (eSMS) deposits. The survey comprised AUV-based high-resolution bathymetric mapping, magnetic and self-potential data acquisition, reflection and refraction seismic imaging and three types of controlled source electromagnetic (CSEM) experiments (Geomar, UoS). Additionally seafloor coring, drilling and video imaging (NOC, University of Lisbon, BGS) were realized. Laboratory measurements of physical and chemical properties were taken on and post-cruise from rock samples and sediment cores. Here, we present results from the geophysical data analysis with emphasis on the electromagnetic studies in respect to eSMS detection. Six multi-kilometre-long profiles were acquired with the towed CSEM experiment (UoS) and preliminary results indicate the sensitivity to the conductive eSMS deposits and the resistive background to a depth of about 200 m. The system is also sensitive to the rough topography and interpretation of eSMS deposits requires validation from other methods such as measurements with the MARTEMIS system, a seafloor source-receiver coil (Geomar), which were conducted in two collocated work areas for high-resolution imaging with a depth penetration of up to 50 m. Each geophysical method is sensitive to different SMS characteristics, for example, bathymetric and seismic data are sensitive to the shape and structure of the whole deposit, magnetic data are susceptive to the hydrothermal alteration of magnetic minerals, and self-potential and electromagnetic data respond to the electrically conductive sulphide bodies. Each method has different resolution, penetration depths and challenges with the rough-topographic terrain and navigation. Only implementing them together leads to a more robust identification of the eSMS deposits. We will show results for known and previously unknown deposits, case studies where methods support and complement, or contradict each other, and the overall distribution of eSMS deposits in the TAG hydrothermal field.

  16. A strategy for compression and analysis of massive geophysical data sets

    NASA Technical Reports Server (NTRS)

    Braverman, A.

    2001-01-01

    This paper describes a method for summaraizing data in a way that approximately preserves high-resolution data structure while reducing data volume and maintaining global integrity of very large, remote sensing data sets. The method is under development for one of Terra's instruments, the Multi-angle Imaging SpectroRadiometer (MISR).

  17. Merging information in geophysics: the triumvirat of geology, geophysics, and petrophysics

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2016-12-01

    We know that geophysical inversion is non-unique and that many classical regularization techniques are unphysical. Despite this, we like to use them because of their simplicity and because geophysicists are often afraid to bias the inverse problem by introducing too much prior information (in a broad sense). It is also clear that geophysics is done on geological objects that are not random structures. Spending some time with a geologist in the field, before organizing a field geophysical campaign, is always an instructive experience. Finally, the measured properties are connected to physicochemical and textural parameters of the porous media and the interfaces between the various phases of a porous body. .Some fundamental parameters may control the geophysical observtions or their time variations. If we want to improve our geophysical tomograms, we need to be risk-takers and acknowledge, or rather embrqce, the cross-fertilization arising by coupling geology, geophysics, and ptrophysics. In this presentation, I will discuss various techniques to do so. They will include non-stationary geostatistical descriptors, facies deformation, cross-coupled petrophysical properties using petrophysical clustering, and image-guided inversion. I will show various applications to a number of relevant cases in hydrogeophysics. From these applications, it may become clear that there are many ways to address inverse or time-lapse inverse problems and geophysicists have to be pragmatic regarding the methods used depending on the degree of available prior information.

  18. The Expanding Marketplace for Applied Geophysics

    NASA Astrophysics Data System (ADS)

    Carlson, N.; Sirles, P.

    2012-12-01

    While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing a better image of the subsurface to locate areas that are not being properly decomposed due to poor fluid flow or inefficient air circulation.Raw IP data in traditional pseudosection format, prior to modeling, showing the change in IP effects after four years of accelerated biodegradation of an old, buried, municipal solid waste landfill. Posted values are chargeability in milliseconds.

  19. Terahertz multistatic reflection imaging.

    PubMed

    Dorney, Timothy D; Symes, William W; Baraniuk, Richard G; Mittleman, Daniel M

    2002-07-01

    We describe a new imaging method using single-cycle pulses of terahertz (THz) radiation. This technique emulates the data collection and image processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a migration procedure to solve the inverse problem; this permits us to reconstruct the location, the shape, and the refractive index of targets. We show examples for both metallic and dielectric model targets, and we perform velocity analysis on dielectric targets to estimate the refractive indices of imaged components. These results broaden the capabilities of THz imaging systems and also demonstrate the viability of the THz system as a test bed for the exploration of new seismic processing methods.

  20. Determination of Sinkholes with Different Geophysical Techniques; A Case Study in Yarımburgaz, Küçükçekmece Lake NW Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Karabulut, Savas; Cengiz Cinku, Mualla; Tezel, Okan; Dedecan, Hasan; Oygo, Azat

    2016-04-01

    The Yarımburgaz cave which is located in the city of Istanbul, NW Turkey plays an important host to the first human culture and preserve significant archaeological and paleontological resources. The cave was formed as a result of a subterranean stream erosion on the limestones of the Eocene Kırklareli formation. It has been reported that a double cave with upper and lower entrance chambers exist, although no geophysical research was conducted to detect the cave's trunk passages and the extend of the sediment fill inside the cave. The aim of this study was to test the preferred order for detection the response to different geophysical methods applied on the cave. We therefore carried out an a series of geophysical study to determine the size, position, and depth of sinkholes inside the caves. Integrated methodological approaches including multichannel analysis of surface wave (MASW) 2- microtremor array method, 3-single station microtremor measurements, 4- electrical tomography (ET) measuruments and 5-microgravity imaging showed that the geophysical response was succesfully applied. Based upon the flow-chart we concluded that the microgravity survey should be applied as a first step to detect the air-filled void and the geometry of the cave. The electric tomography method was well applied showing high resistivity values across the voids. The surface wave method showed that the low-velocity zones are detected in various locations of the cave. In addition we the results of MASW and ReMi methods showed clearly the density variation in the lateral direction. Fundamental frequency value above void decraese according the properties of geological units in lateral directional, especially when they are engineering rock like limestone.

  1. A connectionist-geostatistical approach for classification of deformation types in ice surfaces

    NASA Astrophysics Data System (ADS)

    Goetz-Weiss, L. R.; Herzfeld, U. C.; Hale, R. G.; Hunke, E. C.; Bobeck, J.

    2014-12-01

    Deformation is a class of highly non-linear geophysical processes from which one can infer other geophysical variables in a dynamical system. For example, in an ice-dynamic model, deformation is related to velocity, basal sliding, surface elevation changes, and the stress field at the surface as well as internal to a glacier. While many of these variables cannot be observed, deformation state can be an observable variable, because deformation in glaciers (once a viscosity threshold is exceeded) manifests itself in crevasses.Given the amount of information that can be inferred from observing surface deformation, an automated method for classifying surface imagery becomes increasingly desirable. In this paper a Neural Network is used to recognize classes of crevasse types over the Bering Bagley Glacier System (BBGS) during a surge (2011-2013-?). A surge is a spatially and temporally highly variable and rapid acceleration of the glacier. Therefore, many different crevasse types occur in a short time frame and in close proximity, and these crevasse fields hold information on the geophysical processes of the surge.The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network can recognize. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we have developed a semi-automated pre-training software to adapt the Neural Net to chaining conditions.The method is applied to airborne and satellite imagery to classify surge crevasses from the BBGS surge. This method works well for classifying spatially repetitive images such as the crevasses over Bering Glacier. We expand the network for less repetitive images in order to analyze imagery collected over the Arctic sea ice, to assess the percentage of deformed ice for model calibration.

  2. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics

    NASA Astrophysics Data System (ADS)

    Siegfried, M. R.; Key, K.

    2017-12-01

    Subglacial hydrologic systems in Antarctica and Greenland play a fundamental role in ice-sheet dynamics, yet critical aspects of these systems remain poorly understood due to a lack of observations. Ground-based electromagnetic (EM) geophysical methods are established for mapping groundwater in many environments, but have never been applied to imaging lakes beneath ice sheets. Here we study the feasibility of passive and active source EM imaging for quantifying the nature of subglacial water systems beneath ice streams, with an emphasis on the interfaces between ice and basal meltwater, as well as deeper groundwater in the underlying sediments. Specifically, we look at the passive magnetotelluric method and active-source EM methods that use a large loop transmitter and receivers that measure either frequency-domain or transient soundings. We describe a suite of model studies that exam the data sensitivity as a function of ice thickness, water conductivity and hydrologic system geometry for models representative of a subglacial lake and a grounding zone estuary. We show that EM data are directly sensitive to groundwater and can image its lateral and depth extent. By combining the conductivity obtained from EM data with ice thickness and geological structure from conventional geophysical techniques such as ground-penetrating radar and active seismic techniques, EM data have the potential to provide new insights on the interaction between ice, rock, and water at critical ice-sheet boundaries.

  3. A stochastic approach for model reduction and memory function design in hydrogeophysical inversion

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Kellogg, A.; Terry, N.

    2009-12-01

    Geophysical (e.g., seismic, electromagnetic, radar) techniques and statistical methods are essential for research related to subsurface characterization, including monitoring subsurface flow and transport processes, oil/gas reservoir identification, etc. For deep subsurface characterization such as reservoir petroleum exploration, seismic methods have been widely used. Recently, electromagnetic (EM) methods have drawn great attention in the area of reservoir characterization. However, considering the enormous computational demand corresponding to seismic and EM forward modeling, it is usually a big problem to have too many unknown parameters in the modeling domain. For shallow subsurface applications, the characterization can be very complicated considering the complexity and nonlinearity of flow and transport processes in the unsaturated zone. It is warranted to reduce the dimension of parameter space to a reasonable level. Another common concern is how to make the best use of time-lapse data with spatial-temporal correlations. This is even more critical when we try to monitor subsurface processes using geophysical data collected at different times. The normal practice is to get the inverse images individually. These images are not necessarily continuous or even reasonably related, because of the non-uniqueness of hydrogeophysical inversion. We propose to use a stochastic framework by integrating minimum-relative-entropy concept, quasi Monto Carlo sampling techniques, and statistical tests. The approach allows efficient and sufficient exploration of all possibilities of model parameters and evaluation of their significances to geophysical responses. The analyses enable us to reduce the parameter space significantly. The approach can be combined with Bayesian updating, allowing us to treat the updated ‘posterior’ pdf as a memory function, which stores all the information up to date about the distributions of soil/field attributes/properties, then consider the memory function as a new prior and generate samples from it for further updating when more geophysical data is available. We applied this approach for deep oil reservoir characterization and for shallow subsurface flow monitoring. The model reduction approach reliably helps reduce the joint seismic/EM/radar inversion computational time to reasonable levels. Continuous inversion images are obtained using time-lapse data with the “memory function” applied in the Bayesian inversion.

  4. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization

    Treesearch

    X. Comas; N. Terry; M. Warren; R. Kolka; A. Kristiyono; N. Sudiana; D. Nurjaman; T. Darusman

    2015-01-01

    Current estimates of carbon (C) storage in peatland systems worldwide indicate that tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness, volume and C content. We combined a set of indirect geophysical methods (ground-penetrating radar, GPR, and electrical resistivity...

  5. Using geophysical images of a watershed subsurface to predict soil textural properties

    USDA-ARS?s Scientific Manuscript database

    Subsurface architecture, in particular changes in soil type across the landscape, is an important control on the hydrological and ecological function of a watershed. Traditional methods of mapping soils involving subjective assignment of soil boundaries are inadequate for studies requiring a quantit...

  6. Geophysical methods in Geology. Second edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, P.V.

    This book presents an introduction to the methods of geophysics and their application to geological problems. The text emphasizes the broader aspects of geophysics, including the way in which geophysical methods help solve structural, correlational, and geochromological problems. Stress is laid on the principles and applications of methods rather than on instrumental techniques. This edition includes coverage of recent developments in geophysics and geology. New topics are introduced, including paleomagnetic methods, electromagnetic methods, microplate tectronics, and the use of multiple geophysical techniques.

  7. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging

    DOE PAGES

    Wainwright, Haruko M.; Flores Orozco, Adrian; Bucker, Matthias; ...

    2016-01-29

    In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common biogeochemical hot spot, having distinct microbial and geochemical characteristics. Although important for understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distribution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typically spatially limited and the distribution of NRZs is heterogeneous. In this work, we present an innovative methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist of surface geophysical surveys andmore » drilling-recovered sediments at the U.S. Department of Energy field site near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to estimate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parameterize a hydrobiogeochemical model of the floodplain.« less

  8. New Electrical Resistivity Tomography approach for karst cave characterization: Castello di Lepre karst cave (Marsico Nuovo, Southern Italy).

    NASA Astrophysics Data System (ADS)

    Guerriero, Merilisa; Capozzoli, Luigi; De Martino, Gregory; Perciante, Felice; Gueguen, Erwan; Rizzo, Enzo

    2017-04-01

    Geophysical methods are commonly applied to characterize karst cave. Several geophysical method are used such as electrical resistivity tomography (ERT), gravimetric prospecting (G), ground penetrating radar (GPR) and seismic methods (S), in order to provide information on cave geometry and subsurface geological structure. In detail, in some complex karst systems, each geophysical method can only give partial information if used in normal way due to a low resolution for deep target. In order to reduce uncertainty and avoid misinterpretations based on a normal use of the electrical resistivity tomography method, a new ERT approach has been applied in karst cave Castello di Lepre (Marsico Nuovo, Basilicata region, Italy) located in the Mezo-Cenozoic carbonate substratum of the Monti della Maddalena ridge (Southern Appenines). In detail, a cross-ERT acquisition system was applied in order to improve the resolution on the electrical resistivity distribution on the surrounding geological structure of a karst cave. The cross-ERT system provides a more uniform model resolution vertically, increasing the resolution of the surface resistivity imaging. The usual cross-ERT is made by electrode setting in two or more borehole in order to acquire the resistivity data distribution. In this work the cross-ERT was made between the electrodes located on surface and along a karst cave, in order to obtain an high resolution of the electrical resistivity distributed between the cave and the surface topography. Finally, the acquired cross-ERT is potentially well-suited for imaging fracture zones since electrical current flow in fractured rock is primarily electrolytic via the secondary porosity associated with the fractures.

  9. Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils

    NASA Astrophysics Data System (ADS)

    Rodríguez-Robles, Ulises; Arredondo, Tulio; Huber-Sannwald, Elisabeth; Alfredo Ramos-Leal, José; Yépez, Enrico A.

    2017-11-01

    While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), two geophysical methods advocated by Jayawickreme et al. (2014) to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5 cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil-bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.

  10. Environmental Geophysics

    EPA Pesticide Factsheets

    The Environmental Geophysics website features geophysical methods, terms and references; forward and inverse geophysical models for download; and a decision support tool to guide geophysical method selection for a variety of environmental applications.

  11. Multi-scale geophysical study to model the distribution and development of fractures in relation to the knickpoint in the Luquillo Critical Zone Observatory (Puerto Rico)

    NASA Astrophysics Data System (ADS)

    Comas, X.; Wright, W. J.; Hynek, S. A.; Ntarlagiannis, D.; Terry, N.; Job, M. J.; Fletcher, R. C.; Brantley, S.

    2017-12-01

    Previous studies in the Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) have shown that regolith materials are rapidly developed from the alteration of quartz diorite bedrock, and create a blanket on top of the bedrock with a thickness that decreases with proximity to the knickpoint. The watershed is also characterized by a system of heterogeneous fractures that likely drive bedrock weathering and the formation of corestones and associated spheroidal fracturing and rindlets. Previous efforts to characterize the spatial distribution of fractures were based on aerial images that did not account for the architecture of the critical zone below the subsurface. In this study we use an array of near-surface geophysical methods at multiple scales to better understand how the spatial distribution and density of fractures varies with topography and proximity to the knickpoint. Large km-scale surveys using ground penetrating radar (GPR), terrain conductivity, and capacitively coupled resistivity, were combined with smaller scale surveys (10-100 m) using electrical resistivity imaging (ERI), and shallow seismics, and were directly constrained with boreholes from previous studies. Geophysical results were compared to theoretical models of compressive stress as due to gravity and regional compression, and showed consistency at describing increased dilation of fractures with proximity to the knickpoint. This study shows the potential of multidisciplinary approaches to model critical zone processes at multiple scales of measurement and high spatial resolution. The approach can be particularly efficient at large km-scales when applying geophysical methods that allow for rapid data acquisition (i.e. walking pace) at high spatial resolution (i.e. cm scales).

  12. Object-oriented recognition of high-resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan

    2016-01-01

    With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .

  13. Geostatistical noise filtering of geophysical images : application to unexploded ordnance (UXO) sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Hirotaka; McKenna, Sean Andrew; Coburn, Timothy C.

    2004-07-01

    Geostatistical and non-geostatistical noise filtering methodologies, factorial kriging and a low-pass filter, and a region growing method are applied to analytic signal magnetometer images at two UXO contaminated sites to delineate UXO target areas. Overall delineation performance is improved by removing background noise. Factorial kriging slightly outperforms the low-pass filter but there is no distinct difference between them in terms of finding anomalies of interest.

  14. Research for Key Techniques of Geophysical Recognition System of Hydrocarbon-induced Magnetic Anomalies Based on Hydrocarbon Seepage Theory

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Hao, T.; Zhao, B.

    2009-12-01

    Hydrocarbon seepage effects can cause magnetic alteration zones in near surface, and the magnetic anomalies induced by the alteration zones can thus be used to locate oil-gas potential regions. In order to reduce the inaccuracy and multi-resolution of the hydrocarbon anomalies recognized only by magnetic data, and to meet the requirement of integrated management and sythetic analysis of multi-source geoscientfic data, it is necessary to construct a recognition system that integrates the functions of data management, real-time processing, synthetic evaluation, and geologic mapping. In this paper research for the key techniques of the system is discussed. Image processing methods can be applied to potential field images so as to make it easier for visual interpretation and geological understanding. For gravity or magnetic images, the anomalies with identical frequency-domain characteristics but different spatial distribution will reflect differently in texture and relevant textural statistics. Texture is a description of structural arrangements and spatial variation of a dataset or an image, and has been applied in many research fields. Textural analysis is a procedure that extracts textural features by image processing methods and thus obtains a quantitative or qualitative description of texture. When the two kinds of anomalies have no distinct difference in amplitude or overlap in frequency spectrum, they may be distinguishable due to their texture, which can be considered as textural contrast. Therefore, for the recognition system we propose a new “magnetic spots” recognition method based on image processing techniques. The method can be divided into 3 major steps: firstly, separate local anomalies caused by shallow, relatively small sources from the total magnetic field, and then pre-process the local magnetic anomaly data by image processing methods such that magnetic anomalies can be expressed as points, lines and polygons with spatial correlation, which includes histogram-equalization based image display, object recognition and extraction; then, mine the spatial characteristics and correlations of the magnetic anomalies using textural statistics and analysis, and study the features of known anomalous objects (closures, hydrocarbon-bearing structures, igneous rocks, etc.) in the same research area; finally, classify the anomalies, cluster them according to their similarity, and predict hydrocarbon induced “magnetic spots” combined with geologic, drilling and rock core data. The system uses the ArcGIS as the secondary development platform, inherits the basic functions of the ArcGIS, and develops two main sepecial functional modules, the module for conventional potential-field data processing methods and the module for feature extraction and enhancement based on image processing and analysis techniques. The system can be applied to realize the geophysical detection and recognition of near-surface hydrocarbon seepage anomalies, provide technical support for locating oil-gas potential regions, and promote geophysical data processing and interpretation to advance more efficiently.

  15. Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Jeff

    2012-11-30

    Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have beenmore » the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.« less

  16. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    USGS Publications Warehouse

    Singha, Kaminit; Day-Lewis, Frederick D.; Johnson, Tim B.; Slater, Lee D.

    2015-01-01

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  17. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singha, Kamini; Day-Lewis, Frederick D.; Johnson, Timothy C.

    2015-03-15

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  18. Introduction to the JEEG Agricultural Geophysics Special Issue

    USGS Publications Warehouse

    Allred, Barry J.; Smith, Bruce D.

    2010-01-01

    Near-surface geophysical methods have become increasingly important tools in applied agricultural practices and studies. The great advantage of geophysical methods is their potential rapidity, low cost, and spatial continuity when compared to more traditional methods of assessing agricultural land, such as sample collection and laboratory analysis. Agricultural geophysics investigations commonly focus on obtaining information within the soil profile, which generally does not extend much beyond 2 meters beneath the ground surface. Although the depth of interest oftentimes is rather shallow, the area covered by an agricultural geophysics survey can vary widely in scale, from experimental plots (10 s to 100 s of square meters), to farm fields (10 s to 100 s of hectares), up to the size of watersheds (10 s to 100 s of square kilometers). To date, three predominant methods—resistivity, electromagnetic induction (EMI), and ground-penetrating radar (GPR)—have been used to obtain surface-based geophysical measurements within agricultural settings. However, a recent conference on agricultural geophysics (Bouyoucos Conference on Agricultural Geophysics, September 8–10, 2009, Albuquerque, New Mexico; www.ag-geophysics.org) illustrated that other geophysical methods are being applied or developed. These include airborne electromagnetic induction, magnetometry, seismic, and self-potential methods. Agricultural geophysical studies are also being linked to ground water studies that utilize deeper penetrating geophysical methods than normally used.

  19. Delineation of voided and hydrocarbon contaminated regions with REDEM and STI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteley, B.

    1997-10-01

    Undetected voids and cavernous regions at shallow depth are a significant geotechnical and environmental hazard if they are filled or act as conduits for pollutants, particularly for LNAPL and DNAPL contaminants. Such features are often difficult to locate with drilling and conventional geophysical methods including resistivity, electromagnetics, microgravity, seismic and ground penetrating radar when they occur in industrial or urban areas where electrical and vibrational interference can combine with subsurface complexity due to human action to severely degrade geophysical data quality. A new geophysical method called Radiowave Diffraction Electromagnetics (RDEM) has proved successful for rapid screening of difficult sites andmore » for the delineation of buried sinkholes, cavities and hydrocarbon plumes. RDEM operates with a null coupled coil configuration at about 1.6 MHZ and is relatively insensitive to electrical interference and surrounding metal objects. It responds to subsurface variations in both conductivity and dielectric constant. Voided and contaminated regions can be more fully detailed when RDEM is combined with Seismic Tomographic Imaging (STI) from follow-up boreholes. Case studies from sites in Australia and South East Asia demonstrate the application of RDEM and STI and the value in combining both methods.« less

  20. Advanced geophysical underground coal gasification monitoring

    DOE PAGES

    Mellors, Robert; Yang, X.; White, J. A.; ...

    2014-07-01

    Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Activemore » and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.« less

  1. Muon tomography of the Soufrière of Guadeloupe (Lesser Antilles): Comparison with other geophysical imaging methods and assessment of volcanic risks

    NASA Astrophysics Data System (ADS)

    Gibert, D.; Lesparre, N.; Marteau, J.; Taisne, B.; Nicollin, F.; Coutant, O.

    2011-12-01

    Density tomography of rock with muons of cosmic origin measures the attenuation of the flux of particles crossing the object of interest to derive its opacity, i.e. the quantity of matter encountered by the particles along their trajectories. Recent progress in micro-electronics and particle detectors make field measurement possible and muon density tomography is gaining a growing interest (e.g. Tanaka et al., 2010; Gibert et al., 2010). We have constructed field telescopes based on the detectors of the OPERA experiment devoted to study neutrino oscillation (Lesparre et al., 2011a). Each telescope may be equipped with a variable number of detection matrices with 256 pixels. The spatial resolution is adaptable and is typically of about 20 meters (Lesparre et al., 2010). The telescopes are portable autonomous devices able to operate in harsh field conditions encountered on tropical volcanoes. The total power consumption is less than 40W, and an Ethernet link allows data downloading and remote control of the electronic devices and on-board computers. Larger high-resolution telescopes are under construction. The instruments have been successfully tested on the Etna and Soufrière of Guadeloupe volcanoes were a telescope is operating continuously since Summer 2010. Muon radiographies of the Soufrière lava dome reveal its very heterogeneous density structure produced by an intense hydrothermal circulation of acid fluids which alters its mechanical integrity leading to a high risk level of destabilisation. Small-size features are visible on the images and provide precious informations on the structure of the upper hydrothermal systems. Joined interpretation with other geophysical data available on the Soufrière - seismic tomography, electrical resistivity tomography, gravity data - is presented and discussed. Density muon tomography of the internal structure of volcanoes like the Soufrière brings important informations for the hazard evaluation an is particularly adapted to brought constraints on flank destabilization and hydrothermal circulation models. Tanaka et al., Three dimensional computational axial tomography scan of a volcano with cosmic ray muon radiography, J. Geophys. Res., 115, B12332, doi:10.1029/2010JB007677, 2010. Gibert et al., Muon Tomography: Plans for Observations in the Lesser Antilles, Earth Planets and Space, Vol. 52, 153-165, doi: 10.5047/eps.2009.07.003, 2010. Lesparre et al., Geophysical muon imaging: feasibility and limits, Geophysical Journal International, Vol. 183, 1348-1361, doi: 10.1111/j.1365-246X.2010.04790.x, 2010. Lesparre et al., Design and Operation of a Field Telescope for Cosmic Ray Geophysical Tomography, Nuclear Instruments and Methods in Physics Research A, to appear, 2011a. Lesparre et al., Bayesian Dual Inversion of Experimental Telescope Acceptance and Integrated Flux for Geophysical Muon Tomography, Geophysical Journal International, to appear, 2011b.

  2. Integration of Geophysical Methods By A Generalised Probability Tomography Approach

    NASA Astrophysics Data System (ADS)

    Mauriello, P.; Patella, D.

    In modern science, the propensity interpretative approach stands on the assumption that any physical system consists of two kinds of reality: actual and potential. Also geophysical data systems have potentialities that extend far beyond the few actual models normally attributed to them. Indeed, any geophysical data set is in itself quite inherently ambiguous. Classical deterministic inversion, including tomography, usu- ally forces a measured data set to collapse into a few rather subjective models based on some available a priori information. Classical interpretation is thus an intrinsically limited approach requiring a very deep logical extension. We think that a way to high- light a system full potentiality is to introduce probability as the leading paradigm in dealing with field data systems. Probability tomography has been recently introduced as a completely new approach to data interpretation. Probability tomography has been originally formulated for the self-potential method. It has been then extended to geo- electric, natural source electromagnetic induction, gravity and magnetic methods. Fol- lowing the same rationale, in this paper we generalize the probability tomography the- ory to a generic geophysical anomaly vector field, including the treatment for scalar fields as a particular case. This generalization makes then possible to address for the first time the problem of the integration of different methods by a conjoint probabil- ity tomography imaging procedure. The aim is to infer the existence of an unknown buried object through the analysis of an ad hoc occurrence probability function, blend- ing the physical messages brought forth by a set of singularly observed anomalies.

  3. Analysis and interpretation of geophysical surveys in archaeological sites employing different integrated approach.

    NASA Astrophysics Data System (ADS)

    Piro, Salvatore; Papale, Enrico; Kucukdemirci, Melda; Zamuner, Daniela

    2017-04-01

    Non-destructive ground surface geophysical prospecting methods are frequently used for the investigation of archaeological sites, where a detailed physical and geometrical reconstructions of hidden volumes is required prior to any excavation work. All methods measure the variations of single physical parameters, therefore if these are used singularly, they could not permit a complete location and characterization of anomalous bodies. The probability of a successful result rapidly increases if a multhimethodological approach is adopted, according to the logic of objective complementarity of information and of global convergence toward a high quality multiparametric imaging of the buried structures. The representation of the static configuration of the bodies in the subsoil and of the space-time evolution of the interaction processes between targets and hosting materials have to be actually considered fundamental elements of primary knowledge in archaeological prospecting. The main effort in geophysical prospecting for archaeology is therefore the integration of different, absolutely non-invasive techniques, especially if managed in view of a ultra-high resolution three-dimensional (3D) tomographic representation mode. Following the above outlined approach, we have integrated geophysical methods which measure the variations of potential field (gradiometric methods) with active methods which measure the variations of physical properties due to the body's geometry and volume (GPR and ERT). In this work, the results obtained during the surveys of three archaeological sites, employing Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Fluxgate Differential Magnetic (FDM) to obtain precise and detailed maps of subsurface bodies, are presented and discussed. The first site, situated in a suburban area between Itri and Fondi, in the Aurunci Natural Regional Park (Central Italy), is characterized by the presence of remains of past human activity dating from the third century B.C. The second site is always in suburban area and is part of the ancient acropolis Etruscan town of Cerveteri (central Italy). The third site is part of Aizanoi archaeological park (Cavdarhisar, Kutahya, Turkey). To have a better understanding of the subsurface, we performed a different integrated approaches of these data, which consists in fusing the data from all the employed methods, to have a complete visualization of the investigated area. For the processing we have used the following techniques: graphical integration (overlay and RGB colour composite), discrete data analysis (binary data analysis and cluster analysis) and continuous data analysis (data sum, product, max, min and PCA). Ernenwein, E.G. 2009. Integration of multidimensional archaeogeophysical data using supervised and unsupervised classification. Near surface geophysics. Vol 7: 147-158. DOI:10.3997/1873-0604.2009004 Kucukdemirci,M., Piro.S.,Baydemir,N.,Ozer.,E. Zamuner.,D. 2015. Mathematical and Statistical Integration approach on archaeological prospection data,case studies from Aizanoi-Turkey. 43rd Computer Applications and Quantitative Methods in Archaeology, Siena. Kvamme,K.,2007. Integrating Multiple Geophysical Datasets, Remote Sensing in archaeology, Springer,Boston. Piro,S.,Mauriello.,P. and Cammarano.,F.2000. Quantitative Integration of Geophysical methods for Archaeological Prospection. Archaeological prospection 7(4): 203-213. Piro S., Papale E., Zamuner D., 2016. Different integrated geophysical approaches to investigate archaeological sites in urban and suburban area. Geophysical Research Abstracts Vol. 18, EGU2016.

  4. A fractured rock geophysical toolbox method selection tool

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  5. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    DOE PAGES

    Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; ...

    2014-12-31

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less

  6. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less

  7. Integration of potential and quasipotential geophysical fields and GPR data for delineation of buried karst terranes in complex environments

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.; Alperovich, L. S.; Zheludev, V.; Ezersky, M.; Al-Zoubi, A.; Levi, E.

    2012-04-01

    Karst is found on particularly soluble rocks, especially limestone, marble, and dolomite (carbonate rocks), but is also developed on gypsum and rock salt. Subsurface carbonate rocks involved in karst groundwater circulation considerably extend the active karst realm, to perhaps 14% of the world's land area (Price, 2009). The phenomenon of the solution weathering of limestone is the most widely known in the world. Active sinkholes growth appears under different industrial constructions, roads, railways, bridges, airports, buildings, etc. Regions with arid and semi-arid climate occupy about 30% of the Earth's land. Subsurface in arid regions is characterized by high variability of physical properties both on lateral and vertical that complicates geophysical survey analysis. Therefore for localization and monitoring of karst terranes effective and reliable geophysical methodologies should be applied. Such advanced methods were developed in microgravity (Eppelbaum et al., 2008; Eppelbaum, 2011b), magnetic (Khesin et al., 1996; Eppelbaum et al., 2000, 2004; Eppelbaum, 2011a), induced polarization (Khesin et al., 1997; Eppelbaum and Khesin, 2002), VLF (Eppelbaum and Khesin, 1992; Eppelbaum and Mishne, 2012), near-surface temperature (Eppelbaum, 2009), self-potential (Khesin et al., 1996; Eppelbaum and Khesin, 2002), and resistivity (Eppelbaum, 1999, 2007a) surveys. Application of some of these methodologies in the western and eastern shores of the Dead Sea area (e.g., Eppelbaum et al., 2008; Ezersky et al., 2010; Al-Zoubi et al., 2011) and in other regions of the world (Eppelbaum, 2007a) has shown their effectiveness. The common procedures for ring structure identification against the noise background and probabilistic-deterministic methods for recognizing the desired targets in complex media are presented in Khesin and Eppelbaum (1997), Eppelbaum et al. (2003), and Eppelbaum (2007b). For integrated analysis of different geophysical fields (including GPR images) intended for delineation of karst terranes at a depth was proposed to use informational and wavelet methodologies (Eppelbaum et al., 2011). Informational approach based on the classic Shannon approach is propose to recognize weak geophysical effects observed against the strong noise background. Unfortunately, this approach sometimes does not permit to reveal the desired effects when the noise effects have a strong dispersion. At the same time, the wavelet methodologies are highly powerful and thriving mathematical tool. Wavelet approach is applied for derivation of enhanced (e.g., coherence portraits) and combined images of geophysical indicators oriented to identification of karst signatures. The methodology based on the matching pursuit with wavelet packet dictionaries is used to extract desired signals even from strongly noised data developed (e.g., Averbuch et al., 2010). The recently developed technique of diffusion clustering combined with the abovementioned wavelet methods is utilized to integrate geophysical data and detect existing signals caused by karst terranes developing a depth. The main goal of this approach is to detect the geophysical signatures of karst developing at a noisy area with minimal number of false alarms and miss-detections. It is achieved via analysis of some physical parameters (these parameters may vary for different regions). For this aim various robust algorithms might be employed. The geophysical signals are characterized by the distribution of their energies among blocks of wavelet packet coefficients.

  8. Three dimensional images of geothermal systems: local earthquake P-wave velocity tomography at the Hengill and Krafla geothermal areas, Iceland, and The Geysers, California

    USGS Publications Warehouse

    Julian, B.R.; Prisk, A.; Foulger, G.R.; Evans, J.R.; ,

    1993-01-01

    Local earthquake tomography - the use of earthquake signals to form a 3-dimensional structural image - is now a mature geophysical analysis method, particularly suited to the study of geothermal reservoirs, which are often seismically active and severely laterally inhomogeneous. Studies have been conducted of the Hengill (Iceland), Krafla (Iceland) and The Geysers (California) geothermal areas. All three systems are exploited for electricity and/or heat production, and all are highly seismically active. Tomographic studies of volumes a few km in dimension were conducted for each area using the method of Thurber (1983).

  9. Surface geophysical methods for characterising frozen ground in transitional permafrost landscapes

    USGS Publications Warehouse

    Briggs, Martin A.; Campbell, Seth; Nolan, Jay; Walvoord, Michelle Ann; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Lane, John W.

    2017-01-01

    The distribution of shallow frozen ground is paramount to research in cold regions, and is subject to temporal and spatial changes influenced by climate, landscape disturbance and ecosystem succession. Remote sensing from airborne and satellite platforms is increasing our understanding of landscape-scale permafrost distribution, but typically lacks the resolution to characterise finer-scale processes and phenomena, which are better captured by integrated surface geophysical methods. Here, we demonstrate the use of electrical resistivity imaging (ERI), electromagnetic induction (EMI), ground penetrating radar (GPR) and infrared imaging over multiple summer field seasons around the highly dynamic Twelvemile Lake, Yukon Flats, central Alaska, USA. Twelvemile Lake has generally receded in the past 30 yr, allowing permafrost aggradation in the receded margins, resulting in a mosaic of transient frozen ground adjacent to thick, older permafrost outside the original lakebed. ERI and EMI best evaluated the thickness of shallow, thin permafrost aggradation, which was not clear from frost probing or GPR surveys. GPR most precisely estimated the depth of the active layer, which forward electrical resistivity modelling indicated to be a difficult target for electrical methods, but could be more tractable in time-lapse mode. Infrared imaging of freshly dug soil pit walls captured active-layer thermal gradients at unprecedented resolution, which may be useful in calibrating emerging numerical models. GPR and EMI were able to cover landscape scales (several kilometres) efficiently, and new analysis software showcased here yields calibrated EMI data that reveal the complicated distribution of shallow permafrost in a transitional landscape.

  10. Agricultural geophysics: Past/present accomplishments and future advancements

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods have become an increasingly valuable tool for application within a variety of agroecosystems. Agricultural geophysics measurements are obtained at a wide range of scales and often exhibit significant variability both temporally and spatially. The three geophysical methods predomi...

  11. Study of iron deposit using seismic refraction and resistivity in Carajás Mineral Province, Brazil

    NASA Astrophysics Data System (ADS)

    Nogueira, Pedro Vencovsky; Rocha, Marcelo Peres; Borges, Welitom Rodrigues; Silva, Adalene Moreira; Assis, Luciano Mozer de

    2016-10-01

    This work comprises the acquisition, processing and interpretation of 2D seismic shallow refraction (P-wave) and resistivity profiles located in the iron ore deposit of N4WS, Carajás Mineral Province (CMP), northern Brazil. The geophysical methods were used to identify the boundaries of the iron ore deposit. Another objective was to evaluate the potentiality of these geophysical methods in that geological context. In order to validate the results, the geophysical lines were located to match a geological borehole line. For the seismic refraction, we used 120 channels, spaced by 10 m, in a line of 1190 m, with seven shot points. The resistivity method used in the acquisition was the electrical resistivity imaging, with pole-pole array, in order to reach greater depths. The resistivity line had a length of 1430 m, with 10 m spacing between electrodes. The seismic results produced a model with two distinct layers. Based on the velocities values, the first layer was interpreted as altered rocks, and the second layer as more preserved rocks. It was not possible to discriminate different lithologies with the seismic method inside each layer. From the resistivity results, a zone of higher resistivity (> 3937 Ω·m) was interpreted as iron ore, and a region of intermediate resistivity (from 816 to 2330 Ω·m) as altered rocks. These two regions represent the first seismic layer. On the second seismic layer, an area with intermediated resistivity values (from 483 to 2330 Ω·m) was interpreted as mafic rocks, and the area with lower resistivity (< 483 Ω·m) as jaspilite. Our results were compared with geological boreholes and show reasonable correlation, suggesting that the geophysical anomalies correspond to the main variations in composition and physical properties of rocks.

  12. 3D geophysical imaging for site-specific characterization plan of an old landfill.

    PubMed

    Di Maio, R; Fais, S; Ligas, P; Piegari, E; Raga, R; Cossu, R

    2018-06-01

    As it is well-known, the characterization plan of an old landfill site is the first stage of the project for the treatment and reclamation of contaminated lands. It is a preliminary in-situ study, with collection of data related to pollution phenomena, and is aimed at defining the physical properties and the geometry of fill materials as well as the possible migration paths of pollutants to the surrounding environmental targets (subsoil and groundwater). To properly evaluate the extent and potential for subsoil contamination, waste volume and possible leachate emissions from the landfill have to be assessed. In such perspective, the integrated use of geophysical methods is an important tool as it allows a detailed 3D representation of the whole system, i.e. waste body and hosting environment (surrounding rocks). This paper presents a very accurate physical and structural characterization of an old landfill and encasing rocks obtained by an integrated analysis of data coming from a multi-methodological geophysical exploration. Moreover, drillings were carried out for waste sampling and characterization of the landfill body, as well as for calibration of the geophysical modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Using 3D Simulation of Elastic Wave Propagation in Laplace Domain for Electromagnetic-Seismic Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Newman, G. A.

    2010-12-01

    Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.

  14. High resolution seismics methods in application to fault zone detection

    NASA Astrophysics Data System (ADS)

    Matula, Rafal; Czaja, Klaudia; Mahmod, Adam Ahmed

    2014-05-01

    Surveys were carried out along border line between Outer Carpathians, Inner Carpathians and Pieniny Klippen Belt. Main point of interest was imaging transition zone structured by para-conglomerates, sandstone and clays lenses, crossing in near neighbourhood of Stare Bystre, village in the southern part of Poland. Actually geological works states existence of two hypothetical faults, first at the direction NE-SW and second NNW-SSE. Main aim of geological and geophysical investigation was to prove that mentioned fault has a system of smaller discontinuities connected with previous main fault activity. Para-conglomerate exposures, which is localized close to discussed fault is cut by visible system of cracks. That fact provide geological evidences that this system could be the effect of previous fault activity so in other words, it has a continuation up to main discontinuities. What is more part of the same formation para-conglomerates is covered by Neogen river sediments, so non-direct detection methods of cracks azimuth must be applied. Geophysical investigation was located near mentioned exposure and conducted in 3-D variant. Measurements were extremely focused on determining any changes of elevation buried para-conglomerates and velocity variation inside studied sediments. Seismic methods such as refraction and refraction tomography were used to imaging bedrock. Surveys were carried out in non typical acquisition, azimuthal schema. During field works 24- channels seismograph and 4 Hz, 10 Hz and 100 Hz geophones were used. Hypothetical discontinuities were estimated after analysing seismic records and expressed by velocity variation in bedding rocks and additionally evaluated changes in its elevation. Furthermore, in this study attempt of use refraction wave attributes related to loosing rock - para-conglomerates continuity were exposed. The presentation of geophysical data had a volumetric character what was easier to interpret and better related to assumptions about geological structure of mentioned zone. Correlation between geophysical and geological results seems to be very effective in reconstruction the forming processes of fault zones. Better understanding phenomena, which rules of young fault activities, reduce incorporated hazards and simultaneously bring information about presence geodynamics processes.

  15. Developing integrated methods to address complex resource and environmental issues

    USGS Publications Warehouse

    Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.

    2016-02-08

    IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some applications of project products and research findings are included in this circular. The work helped support the USGS mission to “provide reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.” Activities within the project include the following:Spanned scales from microscopic to planetary;Demonstrated broad applications across disciplines;Included life-cycle studies of mineral resources;Incorporated specialized areas of expertise in applied geochemistry including mineralogy, hydrogeology, analytical chemistry, aqueous geochemistry, biogeochemistry, microbiology, aquatic toxicology, and public health; andIncorporated specialized areas of expertise in geophysics including magnetics, gravity, radiometrics, electromagnetics, seismic, ground-penetrating radar, borehole radar, and imaging spectroscopy.This circular consists of eight sections that contain summaries of various activities under the project. The eight sections are listed below:Laboratory Facilities and Capabilities, which includes brief descriptions of the various types of laboratories and capabilities used for the project;Method and Software Development, which includes summaries of remote-sensing, geophysical, and mineralogical methods developed or enhanced by the project;Instrument Development, which includes descriptions of geophysical instruments developed under the project;Minerals, Energy, and Climate, which includes summaries of research that applies to mineral or energy resources, environmental processes and monitoring, and carbon sequestration by earth materials;Element Cycling, Toxicity, and Health, which includes summaries of several process-oriented geochemical and biogeochemical studies and health-related research activities;Hydrogeology and Water Quality, which includes descriptions of innovative geophysical, remote-sensing, and geochemical research pertaining to hydrogeology and water-quality applications;Hazards and Disaster Assessment, which includes summaries of research and method development that were applied to natural hazards, human-caused hazards, and disaster assessments; andDatabases and Framework Studies, which includes descriptions of fundamental applications of geophysical studies and of the importance of archived data.

  16. Geophysical logging and thermal imaging near the Hemphill Road TCE National Priorities List Superfund site near Gastonia, North Carolina

    USGS Publications Warehouse

    Antolino, Dominick J.; Chapman, Melinda J.

    2017-03-27

    Borehole geophysical logs and thermal imaging data were collected by the U.S. Geological Survey near the Hemphill Road TCE (trichloroethylene) National Priorities List Superfund site near Gastonia, North Carolina, during August 2014 through February 2015. In an effort to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants, surface geological mapping and borehole geophysical log and thermal imaging data collection, which included the delineation of more than 600 subsurface features (primarily fracture orientations), was completed in five open borehole wells and two private supply bedrock wells. In addition, areas of possible groundwater discharge within a nearby creek downgradient of the study site were determined based on temperature differences between the stream and bank seepage using thermal imagery.

  17. Application of surface geophysics to ground-water investigations

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Eaton, Gordon P.; Mabey, Don R.

    1974-01-01

    This manual reviews the standard methods of surface geophysics applicable to ground-water investigations. It covers electrical methods, seismic and gravity methods, and magnetic methods. The general physical principles underlying each method and its capabilities and limitations are described. Possibilities for non-uniqueness of interpretation of geophysical results are noted. Examples of actual use of the methods are given to illustrate applications and interpretation in selected geohydrologic environments. The objective of the manual is to provide the hydrogeologist with a sufficient understanding of the capabilities, imitations, and relative cost of geophysical methods to make sound decisions as to when to use of these methods is desirable. The manual also provides enough information for the hydrogeologist to work with a geophysicist in designing geophysical surveys that differentiate significant hydrogeologic changes.

  18. Application of Laser Imaging for Bio/geophysical Studies

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.; Goltz, S. M.; Depiero, N. L.; Degloria, D. P.; Pagliughi, F. M.

    1992-01-01

    SPARTA, Inc. has developed a low-cost, portable laser imager that, among other applications, can be used in bio/geophysical applications. In the application to be discussed here, the system was utilized as an imaging system for background features in a forested locale. The SPARTA mini-ladar system was used at the International Paper Northern Experimental Forest near Howland, Maine to assist in a project designed to study the thermal and radiometric phenomenology at forest edges. The imager was used to obtain data from three complex sites, a 'seed' orchard, a forest edge, and a building. The goal of the study was to demonstrate the usefulness of the laser imager as a tool to obtain geometric and internal structure data about complex 3-D objects in a natural background. The data from these images have been analyzed to obtain information about the distributions of the objects in a scene. A range detection algorithm has been used to identify individual objects in a laser image and an edge detection algorithm then applied to highlight the outlines of discrete objects. An example of an image processed in such a manner is shown. Described here are the results from the study. In addition, results are presented outlining how the laser imaging system could be used to obtain other important information about bio/geophysical systems, such as the distribution of woody material in forests.

  19. Geophysics, Remote Sensing, and the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Macleod, G.; Labak, P.; Malich, G.; Rowlands, A. P.; Craven, J.; Sweeney, J. J.; Chiappini, M.; Tuckwell, G.; Sankey, P.

    2015-12-01

    The Integrated Field Exercise of 2014 (IFE14) was an event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of an on-site inspection (OSI) within the CTBT verification regime. During an OSI, up to 40 international inspectors will search an area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of a real OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams (which executed the scenario in which the exercise was played) and those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test and integrate Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, suites of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, in addition to other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection using other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials, and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of the goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  20. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  1. Electrical and Magnetic Imaging of Proppants in Shallow Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Denison, J. L. S.; Murdoch, L. C.; LaBrecque, D. J.; Slack, W. W.

    2015-12-01

    Hydraulic fracturing is an important tool to increase the productivity of wells used for oil and gas production, water resources, and environmental remediation. Currently there are relatively few tools available to monitor the distribution of proppants within a hydraulic fracture, or the propagation of the fracture itself. We have been developing techniques for monitoring hydraulic fractures by injecting electrically conductive, dielectric, or magnetically permeable proppants. We then use the resulting contrast with the enveloping rock to image the proppants using geophysical methods. Based on coupled laboratory and numerical modeling studies, three types of proppants were selected for field evaluation. Eight hydraulic fractures were created near Clemson, SC in May of 2015 by injecting specialized proppants at a depth of 1.5 m. The injections created shallow sub-horizontal fractures extending several meters from the injection point.Each cell had a dense array of electrodes and magnetic sensors on the surface and four shallow vertical electrode arrays that were used to obtain data before and after hydraulic fracturing. Net vertical displacement and transient tilts were also measured. Cores from 130 boreholes were used to characterize the general geometries, and trenching was used to characterize the forms of two of the fractures in detail. Hydraulic fracture geometries were estimated by inverting pre- and post-injection geophysical data. Data from cores and trenching show that the hydraulic fractures were saucer-shaped with a preferred propagation direction. The geophysical inversions generated images that were remarkably similar in form, size, and location to the ground truth from direct observation. Displacement and tilt data appear promising as a constraint on fracture geometry.

  2. 3D Electrical Resistivity Tomography and Mise-à-la-Masse Method as Tools for the Characterization of Vine Roots

    NASA Astrophysics Data System (ADS)

    Boaga, J.; Mary, B.; Peruzzo, L.; Schmutz, M.; Wu, Y.; Hubbard, S. S.; Cassiani, G.

    2017-12-01

    The interest on non-invasive geophysical monitoring of soil properties and root architecture is rapidly growing. Despite this, few case studies exist concerning vineyards, which are economically one of the leading sectors of agriculture. In this study, we integrate different geophysical methods in order to gain a better imaging of the vine root system, with the aim of quantifying root development, a key factor to understand roots-soil interaction and water balance. Our test site is a vineyard located in Bordeaux (France), where we adopted the Mise-a-la-Masse method (MALM) and micro-scale electrical resistivity tomography (ERT) on the same 3D electrode configuration. While ERT is a well-established technique to image changes in soil moisture content by root activity, MALM is a relatively new approach in this field of research. The idea is to inject current directly in the plant trunk and verify the resulting voltage distribution in the soil, as an effect of current distribution through the root system. In order to distinguish the root effect from other phenomena linked to the soil heterogeneities, we conducted and compared MALM measurements acquired through injecting current into the stem and into the soil near the stem. Moreover, the MALM data measured in the field were compared with numerical simulations to improve the confidence in the interpretation. Differences obtained between the stem and soil injection clearly validated the assumption that the whole root system is acting as a current pathway, thus highlighting the locations at depth where current is entering the soil from the fine roots. The simulation results indicated that the best fit is obtained through considering distributed sources with depth, reflecting a probable root zone area. The root location and volume estimated using this procedure are in agreement with vineyard experimental evidence. This work suggests the promising application of electrical methods to locate and monitor root systems. Further work is necessary to effectively integrate the geophysical and plant physiology information.

  3. Temporal GPR Imaging of an Ethanol Release Within a Laboratory-Scaled Sand Tank

    EPA Science Inventory

    Within the last decade efforts in geophysical detection and monitoring of fossil fuel releases into the subsurface have shown increasing success, including the ability to geophysically detect and delineate enhanced and natural biodegradation and remediation activities. The subst...

  4. An array processing system for lunar geochemical and geophysical data

    NASA Technical Reports Server (NTRS)

    Eliason, E. M.; Soderblom, L. A.

    1977-01-01

    A computerized array processing system has been developed to reduce, analyze, display, and correlate a large number of orbital and earth-based geochemical, geophysical, and geological measurements of the moon on a global scale. The system supports the activities of a consortium of about 30 lunar scientists involved in data synthesis studies. The system was modeled after standard digital image-processing techniques but differs in that processing is performed with floating point precision rather than integer precision. Because of flexibility in floating-point image processing, a series of techniques that are impossible or cumbersome in conventional integer processing were developed to perform optimum interpolation and smoothing of data. Recently color maps of about 25 lunar geophysical and geochemical variables have been generated.

  5. Seismic zonation of Port-Au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    USGS Publications Warehouse

    Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.

  6. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data in the Wavelet Domain Constrained by Sparsity Regularization

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.

    2014-12-01

    Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint inversion code at the SAFOD site to compare its performance over the previous code. We will also select another fault zone such as the San Jacinto Fault Zone to better image its structure.

  7. Electromagnetic geophysical observation with controlled source

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg

    2016-04-01

    In the paper the new theoretical and methodical approaches are examined for detailed investigations of the structure and state of the geological medium, and its behavior as a dynamic system in reaction to external man-made influences. To solve this problem it is necessary to use geophysical methods that have sufficient resolution and that are built on more complicated models than layered or layered-block models. One of these methods is the electromagnetic induction frequency-geometrical method with controlled sources. Here we consider new approaches using this method for monitoring rock shock media by means of natural experiments and interpretation of the practical results. That method can be used by oil production in mines, where the same events of non stability can occur. The key ideas of twenty first century geophysics from the point of view of geologist academician A.N. Dmitrievskiy [Dmitrievskiy, 2009] are as follows. "The geophysics of the twenty first century is an understanding that the Earth is a self-developing, self-supporting geo-cybernetic system, in which the role of the driving mechanism is played by the field gradients; the evolution of geological processes is a continuous chain of transformations and the interaction of geophysical fields in the litho- hydro- and atmosphere. The use of geophysical principles of a hierarchical quantum of geophysical space, non-linear effects, and the effects of reradiating geophysical fields will allow the creation of a new geophysics. The research, in which earlier only pure geophysical processes and technologies were considered, nowadays tends to include into consideration geophysical-chemical processes and technologies. This transformation will allow us to solve the problems of forecasting geo-objects and geo-processes in previously unavailable geological-technological conditions." The results obtained allow us to make the following conclusions, according to the key ideas of academician A.N. Dmitrievskiy: the rock massif is a multi-ranked hierarchical structure. Research of the massif state dynamics, its structure and the effects of self-organization in it can be provided by geophysical methods, which are built upon the model of such medium. The use of the planshet multi-level induction electromagnetic method with a controlled source of excitation and a corresponding method of processing and interpretation has allowed us to reveal the disintegration zones which are indicators of massif stability and understand the causes of low productivity of oil recovery from boreholes.

  8. Coupled geophysical-hydrological modeling of controlled NAPL spill

    NASA Astrophysics Data System (ADS)

    Kowalsky, M. B.; Majer, E.; Peterson, J. E.; Finsterle, S.; Mazzella, A.

    2006-12-01

    Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data interpretation. Combining multiple geophysical data types and incorporating constraints from hydrological models will potentially decrease the non-uniqueness in data interpretation and aid in site characterization. Large-scale laboratory experiments have been conducted over several years to evaluate the use of various geophysical methods, including ground-penetrating radar (GPR), seismic, and electrical methods, for monitoring controlled spills of tetrachloroethylene (PCE), a hazardous industrial solvent that is pervasive in the subsurface. In the current study, we consider an experiment in which PCE was introduced into a large tank containing a heterogeneous distribution of sand and clay mixtures, and allowed to migrate while time-lapse geophysical data were collected. We consider two approaches for interpreting the surface GPR and crosswell seismic data. The first approach involves (a) waveform inversion of the surface GPR data using a non-gradient based optimization algorithm to estimate the dielectric constant distributions and (b) conversion of crosswell seismic travel times to acoustic velocity distributions; the dielectric constant and acoustic velocity distributions are then related to NAPL saturation using appropriate petrophysical models. The second approach takes advantage of a recently developed framework for coupled hydrological-geophysical modeling, providing a hydrological constraint on interpretation of the geophysical data and additionally resulting in quantitative estimates of the most relevant hydrological parameters that determine NAPL behavior in the system. Specifically, we simulate NAPL migration using the multiphase multicomponent flow simulator TOUGH2 with a 2-D radial model that takes advantage of radial symmetry in the experimental setup. The flow model is coupled to forward models for simulating the GPR and seismic measurements, and joint inversion of the multiple data types results in images of time-varying NAPL saturation distributions. Comparison of the two approaches with results of the post-experiment excavation indicate that combining geophysical data types and incorporating hydrological constraints improves estimates of NAPL saturation relative to the conventional interpretation of the geophysical data sets. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect the official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use. This work was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02- 05CH11231.

  9. In-situ Planetary Subsurface Imaging System

    NASA Astrophysics Data System (ADS)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments spaced up to 100 meters apart, which in essence forms a small aperture seismic network. A pattern recognition technique based on Hidden Markov Models was able to characterize this dataset, and we are exploring how the RISI technology can be adapted for this dataset.

  10. Neural network analysis for geological interpretation of tomographic images beneath the Japan Islands

    NASA Astrophysics Data System (ADS)

    Kuwatani, T.; Toriumi, M.

    2009-12-01

    Recent advances in methodologies of geophysical observations, such as seismic tomography, seismic reflection method and geomagnetic method, provide us a large amount and a wide variety of data for physical properties of a crust and upper mantle (e.g. Matsubara et al. (2008)). However, it has still been difficult to specify a rock type and its physical conditions, mainly because (1) available data usually have a lot of error and uncertainty, and (2) physical properties of rocks are greatly affected by fluid and microstructures. The objective interpretation and quantitative evaluation for lithology and fluid-related structure require the statistical analyses of integrated geophysical and geological data. Self-Organizing Maps (SOMs) are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data (Kohonen 2001). SOMs are powerful neural network techniques to classify and interpret multiattribute data sets. Results of SOM classifications can be represented as 2D images, called feature maps which illustrate the complexity and interrelationships among input data sets. Recently, some works have used SOM in order to interpret multidimensional, non-linear, and highly noised geophysical data for purposes of geological prediction (e.g. Klose 2006; Tselentis et al. 2007; Bauer et al. 2008). This paper describes the application of SOM to the 3D velocity structure beneath the whole Japan islands (e.g. Matsubara et al. 2008). From the obtained feature maps, we can specify the lithology and qualitatively evaluate the effect of fluid-related structures. Moreover, re-projection of feature maps onto the 3D velocity structures resulted in detailed images of the structures within the plates. The Pacific plate and the Philippine Sea plate subducting beneath the Eurasian plate can be imaged more clearly than the original P- and S-wave velocity structures. In order to understand more precise prediction of lithology and its structure, we will use the additional input data sets, such as tomographic images of random velocity fluctuation (Takahashi et al. 2009) and b-value mapping data. Additionally, different kinds of data sets, including the experimental and petrological results (e.g. Christensen 1991; Hacker et al. 2003) can be applied to our analyses.

  11. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less

  12. New Hydrologic Insights to Advance Geophysical Investigation of the Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Perkins, K. S.

    2015-12-01

    Advances in hydrology require information from the unsaturated zone, especially for problems related to groundwater contamination, water-supply sustainability, and ecohydrology. Unsaturated-zone processes are notoriously difficult to quantify; soils and rocks are visually opaque, spatially variable in the extreme, and easily disturbed by instrument installation. Thus there is great value in noninvasive techniques that produce water-related data of high density in space and time. Methods based on resistivity and electromagnetic waves have already produced significant new understanding of percolation processes, root-zone water retention, influences of evapotranspiration on soil-water, and effects of preferential flow. Further developments are underway for such purposes as noninvasive application to greater depths, increased resolution, adaptation for lab-scale experiments, and calibration in heterogeneous media. Beyond these, however, there is need for a stronger marriage of hydrologic and geophysical knowledge and perspective. Possible means to greater and faster progress include: Apply the latest hydrologic understanding, both pore-scale and macroscopic, to the detection of preferential flow paths and their degree of activation. In the continuing advancement of hardware and techniques, draw creatively from developments in such fields as high-energy physics, medical imaging, astrogeology, high-tech semiconductors, and bioinstrumentation. Sidestep the imaging process where possible to measure essential properties and fluxes more directly. Pose questions that have a strong end-use character, like "how does storm intensity relate to aquifer recharge rate" rather than "what is the shape of the wetting front". The greatest advances in geophysical investigation of the unsaturated zone will come from methods informed by the latest understanding of unsaturated systems and processes, and aimed as directly as possible at the answers to important hydrologic questions.

  13. Subsurface multidisciplinary research results at ICTJA-CSIC downhole lab and test site

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Crespo, Jose; Salvany, Josep Maria; Teixidó, Teresa

    2017-04-01

    Two scientific boreholes, Almera-1 and Almera-2 were drilled in the Barcelona University campus area in 2011. The main purpose for this drilling was to create a new geophysical logging and downhole monitoring research facility and infrastructure. We present results obtained in the frame of multidisciplinary studies and experiments carried out since 2011 at the ICTJA "Borehole Geophysical Logging Lab - Scientific Boreholes Almera" downhole lab facilities. First results obtained from the scientific drilling, coring and logging allowed us to characterize the urban subsurface geology and hydrology adjacent to the Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) in Barcelona. The subsurface geology and structural picture has been completed with recent geophysical studies and monitoring results. The upper section of Almera-1 214m deep hole was cased with PVC after drilling and after the logging operations. An open hole interval was left from 112m to TD (Paleozoic section). Almera-2 drilling reached 46m and was cased also with PVC to 44m. Since completion of the drilling in 2011, both Almera-1 and Almera-2 have been extensively used for research purposes, tests, training, hydrological and geophysical monitoring. A complete set of geophysical logging measurements and borehole oriented images were acquired in open hole mode of the entire Almera-1 section. Open hole measurements included acoustic and optical imaging, spectral natural gamma ray, full wave acoustic logging, magnetic susceptibility, hydrochemical-temperature logs and fluid sampling. Through casing (PVC casing) measurements included spectral gamma ray logging, full wave sonic and acoustic televiewer. A Quaternary to Paleozoic section was characterized based on the geophysical logging and borehole images interpretation and also on the complete set of (wireline) cores of the entire section. Sample availability was intended for geological macro and micro-facies detailed characterization, mineralogical and petrophysical tests and analyses. The interpretation of the geophysical logging data and borehole oriented images, and core data allowed us to define the stratigraphy, structures and petrophysical properties in the subsurface. Quaternary sediments overlie unconformably weathered, deformed and partially metamorphosed Paleozoic rocks. A gap of the Tertiary rocks at the drillsite was detected. Structures at intensely fractured and faulted sections were measured and have yielded valuable data to understand the subsurface geology, hydrology and geological evolution in that area. Logging, borehole imaging and monitoring carried out in the scientific boreholes Almera-1 and Almera-2 has allowed also to identify three preferential groundwater flow paths in the subsurface. Geophysical logging data combined with groundwater monitoring allowed us to identify three zones of high permeability in the subsurface. Logging data combined with core analysis were used to characterize the aquifers lithology and their respective petrophysical properties. We also analyzed the aquifer dynamics and potential relationships between the variations in groundwater levels and the rainfalls by comparing the groundwater monitoring results and the rainfall. A seismic survey was carried out to outline the geological structures beyond Almera-1 borehole, a vertical reverse pseudo-3D (2.5D) seismic tomography experiment. The results allowed us to define the geological structure beyond the borehole wall and also a correlation between the different geological units in the borehole and their geometry and spatial geophysical and seismic image.

  14. Assesment on the performance of electrode arrays using image processing technique

    NASA Astrophysics Data System (ADS)

    Usman, N.; Khiruddin, A.; Nawawi, Mohd

    2017-08-01

    Interpreting inverted resistivity section is time consuming, tedious and requires other sources of information to be relevant geologically. Image processing technique was used in order to perform post inversion processing which make geophysical data interpretation easier. The inverted data sets were imported into the PCI Geomatica 9.0.1 for further processing. The data sets were clipped and merged together in order to match the coordinates of the three layers and permit pixel to pixel analysis. Dipole-dipole array is more sensitive to resistivity variation with depth in comparison with Werner-Schlumberger and pole-dipole. Image processing serves as good post-inversion tool in geophysical data processing.

  15. Virtual and super - virtual refraction method: Application to synthetic data and 2012 of Karangsambung survey data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugraha, Andri Dian; Adisatrio, Philipus Ronnie

    2013-09-09

    Seismic refraction survey is one of geophysical method useful for imaging earth interior, definitely for imaging near surface. One of the common problems in seismic refraction survey is weak amplitude due to attenuations at far offset. This phenomenon will make it difficult to pick first refraction arrival, hence make it challenging to produce the near surface image. Seismic interferometry is a new technique to manipulate seismic trace for obtaining Green's function from a pair of receiver. One of its uses is for improving first refraction arrival quality at far offset. This research shows that we could estimate physical properties suchmore » as seismic velocity and thickness from virtual refraction processing. Also, virtual refraction could enhance the far offset signal amplitude since there is stacking procedure involved in it. Our results show super - virtual refraction processing produces seismic image which has higher signal-to-noise ratio than its raw seismic image. In the end, the numbers of reliable first arrival picks are also increased.« less

  16. Dissolution-Enlarged Fractures Imaging Using Electrical Resistivity Tomography (ERT)

    NASA Astrophysics Data System (ADS)

    Siami-Irdemoosa, Elnaz

    In recent years the electrical imaging techniques have been largely applied to geotechnical and environmental investigations. These techniques have proven to be the best geophysical methods for site investigations in karst terrain, particularly when the overburden soil is clay-dominated. Karst is terrain with a special landscape and distinctive hydrological system developed by dissolution of rocks, particularly carbonate rocks such as limestone and dolomite, made by enlarging fractures into underground conduits that can enlarge into caverns, and in some cases collapse to form sinkholes. Bedding planes, joints, and faults are the principal structural guides for underground flow and dissolution in almost all karstified rocks. Despite the important role of fractures in karst development, the geometry of dissolution-enlarged fractures remain poorly unknown. These features are characterized by an strong contrast with the surrounding formations in terms of physical properties, such as electrical resistivity. Electrical resistivity tomography (ERT) was used as the primary geophysical tool to image the subsurface in a karst terrain in Greene County, Missouri. Pattern, orientation and density of the joint sets were interpreted from ERT data in the investigation site. The Multi-channel Analysis of Surface Wave (MASW) method and coring were employed to validate the interpretation results. Two sets of orthogonal visually prominent joints have been identified in the investigation site: north-south trending joint sets and west-east trending joint sets. However, most of the visually prominent joint sets are associated with either cultural features that concentrate runoff, natural surface drainage features or natural surface drainage.

  17. Multisource geological data mining and its utilization of uranium resources exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-lin

    2009-10-01

    Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.

  18. Mapping small elevation changes over large areas - Differential radar interferometry

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K.; Goldstein, Richard M.; Zebker, Howard A.

    1989-01-01

    A technique is described, based on synthetic aperture radar (SAR) interferometry, which uses SAR images for measuring very small (1 cm or less) surface motions with good resolution (10 m) over swaths of up to 50 km. The method was applied to a Seasat data set of an imaging site in Imperial Valley, California, where motion effects were observed that were identified with movements due to the expansion of water-absorbing clays. The technique can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual displacements from seismic events, and prevolcanic swelling.

  19. Geophysical Exploration Technologies for the Deep Lithosphere Research: An Education Materials for High School Students

    NASA Astrophysics Data System (ADS)

    Xu, H.; Xu, C.; Luo, S.; Chen, H.; Qin, R.

    2012-12-01

    The science of Geophysics applies the principles of physics to study of the earth. Geophysical exploration technologies include the earthquake seismology, the seismic reflection and refraction methods, the gravity method, the magnetic method and the magnetotelluric method, which are used to measure the interior material distribution, their structure and the tectonics in the lithosphere of the earth. Part of the research project in SinoProbe-02-06 is to develop suitable education materials for carton movies targeting the high school students and public. The carton movies include five parts. The first part includes the structures of the earth's interior and variation in their physical properties that include density, p-wave, s-wave and so on, which are the fundamentals of the geophysical exploration technologies. The second part includes the seismology that uses the propagation of elastic waves through the earth to study the structure and the material distribution of the earth interior. It can be divided into earthquake seismology and artifice seismics commonly using reflection and refraction. The third part includes the magnetic method. Earth's magnetic field (also known as the geomagnetic field)extends from the Earth's inner core to where it meets the solar wind, a stream of energetic particles emanating from the Sun. The aim of magnetic survey is to investigate subsurface geology on the basis of anomalies in the Earth's magnetic field resulting from the magnetic properties of the underlying rocks. The magnetic method in the lithosphere attempts to use magnetic disturbance to analyse the regional geological structure and the magnetic boundaries of the crust. The fourth part includes the gravity method. A gravity anomaly results from the inhomogeneous distribution of density of the Earth. Usually gravity anomalies contain superposed anomalies from several sources. The long wave length anomalies due to deep density contrasts are called regional anomalies. They are important for understanding the large-scale structure of the earth's crust under major geographic features, such as mountain ranges, oceanic ridges and subduction zones. Short wave length residual anomalies are due to shallow anomalous masses that may be of interest for commercial exploitation. The last part is the magnetotellurics (MT), which is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. The long-period MT technique is used to exploration deep crustal. MT has been used to investigate the distribution of silicate melts in the Earth's mantle and crust and to better understand the plate-tectonic processes.

  20. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.

    2005-01-01

    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  1. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    PubMed Central

    2011-01-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface. PMID:21943229

  2. Application of geophysical methods to agriculture: An overview

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...

  3. Geophysical methods

    USDA-ARS?s Scientific Manuscript database

    Near-surface geophysical methods have become have become important tools for agriculture. Geophysics employed for agriculture tends to be heavily focused on a 2 m zone directly beneath the ground surface, which includes the crop root zone and all, or at least most, of the soil profile. Resistivity...

  4. Basic exploration geophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, E.S.

    1988-01-01

    An introduction to geophysical methods used to explore for natural resources and to survey earth's geology is presented in this volume. It is suitable for second-and third-year undergraduate students majoring in geology or engineering and for professional engineering and for professional engineers and earth scientists without formal instruction in geophysics. The author assumes the reader is familiar with geometry, algebra, and trigonometry. Geophysical exploration includes seismic refraction and reflection surveying, electrical resistivity and electromagnetic field surveying, and geophysical well logging. Surveying operations are described in step-by-step procedures and are illustrated by practical examples. Computer-based methods of processing and interpreting datamore » as well as geographical methods are introduced.« less

  5. Multistatic synthetic aperture radar image formation.

    PubMed

    Krishnan, V; Swoboda, J; Yarman, C E; Yazici, B

    2010-05-01

    In this paper, we consider a multistatic synthetic aperture radar (SAR) imaging scenario where a swarm of airborne antennas, some of which are transmitting, receiving or both, are traversing arbitrary flight trajectories and transmitting arbitrary waveforms without any form of multiplexing. The received signal at each receiving antenna may be interfered by the scattered signal due to multiple transmitters and additive thermal noise at the receiver. In this scenario, standard bistatic SAR image reconstruction algorithms result in artifacts in reconstructed images due to these interferences. In this paper, we use microlocal analysis in a statistical setting to develop a filtered-backprojection (FBP) type analytic image formation method that suppresses artifacts due to interference while preserving the location and orientation of edges of the scene in the reconstructed image. Our FBP-type algorithm exploits the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square sense. We present numerical simulations to demonstrate the performance of our multistatic SAR image formation algorithm with the FBP-type bistatic SAR image reconstruction algorithm. While we mainly focus on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging.

  6. Integration of Remote Sensing and Geophysical Applications for Delineation of Geological Structures: Implication for Water Resources in Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, L.; Farag, A. Z. A.

    2017-12-01

    North African countries struggle with insufficient, polluted, oversubscribed, and increasingly expensive water. This natural water shortage, in addition to the lack of a comprehensive scheme for the identification of new water resources challenge the political settings in north Africa. Groundwater is one of the main water resources and its occurrence is controlled by the structural elements which are still poorly understood. Integration of remote sensing images and geophysical tools enable us to delineate the surface and subsurface structures (i.e. faults, joints and shear zones), identify the role of these structures on groundwater flow and then to define the proper locations for groundwater wells. This approach were applied to three different areas in Egypt; southern Sinai, north eastern Sinai and the Eastern Desert using remote sensing, geophysical and hydrogeological datasets as follows: (1) identification of the spatial and temporal rainfall events using meteorological station data and Tropical Rainfall Measuring Mission data; (2) delineation of major faults and shear zones using ALOS Palsar, Landsat 8 and ASTER images, geological maps and field investigation; (3) generation of a normalized difference ratio image using Envisat radar images before and after the rain events to identify preferential water-channeling discontinuities in the crystalline terrain; (4) analysis of well data and derivations of hydrological parameters; (5) validation of the water-channeling discontinuities using Very Low Frequency, testing the structural elements (pre-delineated by remote sensing data) and their depth using gravity, magnetic and Vertical Electrical Sounding methods; (6) generation of regional groundwater flow and isotopic (18O and 2H) distribution maps for the sedimentary aquifer and an approximation flow map for the crystalline aquifer. The outputs include: (1) a conceptual/physical model for the groundwater flow in fractured crystalline and sedimentary aquifers; (2) locations of suggested new wells in light of the findings.

  7. A new 3-D thin-skinned rock glacier model based on helicopter GPR results from the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Merz, Kaspar; Green, Alan G.; Buchli, Thomas; Springman, Sarah M.; Maurer, Hansruedi

    2015-06-01

    Mountainous locations and steep rugged surfaces covered by boulders and other loose debris are the main reasons why rock glaciers are among the most challenging geological features to investigate using ground-based geophysical methods. Consequently, geophysical surveys of rock glaciers have only ever involved recording data along sparse lines. To address this issue, we acquired quasi-3-D ground-penetrating radar (GPR) data across a rock glacier in the Swiss Alps using a helicopter-mounted system. Our interpretation of the derived GPR images constrained by borehole information results in a novel "thin-skinned" rock glacier model that explains a concentration of deformation across a principal shear zone (décollement) and faults across which rock glacier lobes are juxtaposed. The new model may be applicable to many rock glaciers worldwide. We suggest that the helicopter GPR method may be useful for 3-D surveying numerous other difficult-to-access mountainous terrains.

  8. EAST93: Geophysical traverse from the Transantarctic Mountains to the Wilkes Basin, East Antarctica

    USGS Publications Warehouse

    ten Brink, Uri S.; Bannister, Stephen

    1995-01-01

    The East Antarctic Seismic Traverse (EAST93) was a geophysical traverse designed to image the bedrock under the East Antarctic ice cap. The traverse started 10 km west of the Taylor Dome drill site and 25 km west of the exposed bedrock of the Transantarctic Mountains at Lashly Mt. and ended 323 km west of the drill site over the Wilkes subglacial basin (Fig. 1). The traverse was located subparallel to latitude 78° S starting 30-50 km north of the Victoria Land Traverse (1958-1959). It was carried out jointly by the U.S. Geological Survey and Stanford University, U.S.A., together with the Institute of Geological and Nuclear Sciences, and Victoria University, New Zealand, during December 1993 and January 1994. The geophysical traverse included 236 km of multichannel seismic reflection data at 150 m shot intervals, 312.5 km of gravity data collected at intervals of 2.1 km, 312.5 km of magnetic data (total field intensity) collected at average intervals of 0.5 km, and 205 km of ground penetrating radar at intervals of 77 m. Relative locations and elevations of the entire traverse were measured at intervals of 150 m by traditional surveying methods, and tied to three absolute locations measured by the Global Positioning System (GPS). EAST93 is the first large-scale geophysical traverse on the polar plateau to our knowledge since the early 1960s. As such, the experiment presented several logistical challenges: (1) how to collect regional seismic profiles during the short Antarctic summer; (2) how to keep the scientific instruments running with minimal protection in harsh conditions; and (3) how to combine daily moves of camp with full days of work. The scientific and logistical aspects of the project proceeded, in general, according to plan despite the harsh conditions and our lack of previous experience on the polar plateau. Two unanticipated problems affected the progress of the work: the strong wind which slowed seismic acquisition, and the break-down of one of the large traverse vehicles. The major operational lessons of this project are. (1) Primacord laid close to the surface is not an adequate seismic source for imaging under the thick East Antarctic ice sheet, despite positive prior tests on the Ross Ice Shelf. (2) It is necessary to reduce the 6-7 hours spent daily on camp move and other chores by integrating the living quarters into the working teams, and by improving vehicle warming methods and generator housing. The following report details the operational and logistical aspects of the work, the weather and ground conditions, the technical aspects of acquisition of geophysical data, and lessons and recommendations for future geophysical traverses.

  9. Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.

    2011-12-01

    A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.

  10. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and determine variations in source depth and distribution in the conduit and larger geyser field over many eruption cycles.

  11. Handbook of Agricultural Geophysics

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  12. Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Romanowicz, Barbara

    2017-04-01

    The accurate imaging of localized geological structures inside the deep Earth is key to understand our planet and its history. Since the introduction of the Preliminary Reference Earth Model, many generations of global tomographic models have been developed and give us access to the 3D structure of the Earth's interior. The latest generation of global tomographic models has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits [1] extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features requires further efforts to obtain higher resolution images. In recent years, we developed a theoretical framework [2][3] for the tomographic imaging of localised geological structures buried inside the Earth, where no seismic sources nor receivers are necessarily present. We call this "box tomography" [4]. The essential difference between box-tomography and standard tomographic methods is that the numerical modeling (i.e. the raytracing in travel time tomography and the wave propagation in waveform tomography or full waveform inversion) is completely confined within the small box-region imaged. Thus, box tomography is a lot more efficient than global tomography (i.e. where we invert for the velocity in the larger volume that encompasses all the sources and receivers), for imaging localised objects. We present 2D and 3D examples showing that box tomography can be employed for imaging structures present within the D'' region at the base of the mantle. Further, we show that box-tomography performs well even in the difficult situation where the velocity distribution in the mantle above the target structure is not known a-priori. REFERENCES [1] French, S. W. and B. Romanowicz (2015) Broad Plumes at the base of the mantle beneath major hotspots, Nature, 525, 95-99 [2] Masson, Y., Cupillard, P., Capdeville, Y., & Romanowicz, B. (2013). On the numerical implementation of time-reversal mirrors for tomographic imaging. Geophysical Journal International, ggt459. [3] Masson, Y., & Romanowicz, B. (2017). Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem. Geophysical Journal International, 208(2), 674-692. [4] Masson, Y., & Romanowicz, B. (2017). Box Tomography: Localised imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth. Geophysical Journal International, (under review).

  13. Geophysical Investigation of Buried Slag at the Parrot Tailings Site, Butte, Montana

    NASA Astrophysics Data System (ADS)

    Ha, C. D. M.; Shepherd, K.; Mack, A.; Rutherford, B. S.; Speece, M. A.

    2016-12-01

    Butte, Montana, has served as an important mining district for more than 120 years. This area contains historic mine waste from decades of unregulated mining practices. In July 1881, the Parrot smelter in Butte started operations and was soon processing ore and producing copper. The Parrot smelter also had a concentrating plant that treated the ore prior to smelting. The Parrot smelter wastes (slag and tailings) were later covered with Berkeley Pit crushed quartz monzonite overburden. The slag is bricked because it was deposited hot and, as a consequence forms a laterally extensive, cohesive, hard body that is difficult to remove without blasting. With the mine waste being covered by unknown quantities of overburden and soil throughout the area, and core data being limited and expensive to retrieve, the only economical method of discovery is geophysics. Several geophysical techniques were used to determine the lateral boundaries and depth of the buried slag body. The geophysical methods used were seismic, gravity, electromagnetic induction, and magnetics. Not all of these geophysical surveys produced useful results due to the nature of the slag. For instance, electromagnetic induction could not distinguish between the slag and adjacent tailings; and, the microgravity profiles showed only a small gravitational field variation caused by the density contrast between slag and the surrounding tailings, sediment and granitic cover. On the other hand, the seismic surveys resulted in unexpected first arrival times that distinctly showed velocity variations due to the slag. In addition, the slag body produced a large magnetic response. Unpublished, proprietary well data allowed us to model the slag body from our magnetic data. This model was confirmed by projecting velocity tomograms, that we created using seismic diving waves, onto our magnetic models. Model results were combined to form a three-dimensional image of the slag body. These results will be used to help construct a remediation plan to remove the slag along with the associated tailings.

  14. Electrical Resistivity Tomography and Ground Penetrating Radar for locating buried petrified wood sites: a case study in the natural monument of the Petrified Forest of Evros, Greece

    NASA Astrophysics Data System (ADS)

    Vargemezis, George; Diamanti, Nectaria; Tsourlos, Panagiotis; Fikos, Ilias

    2014-05-01

    A geophysical survey was carried out in the Petrified Forest of Evros, the northernmost regional unit of Greece. This collection of petrified wood has an age of approximately 35 million years and it is the oldest in Greece (i.e., older than the well-known Petrified Forest of Lesvos island located in the North Aegean Sea and which is possibly the largest of the petrified forests worldwide). Protection, development and maintenance projects still need to be carried out at the area despite all fears regarding the forest's fate since many petrified logs remain exposed both in weather conditions - leading to erosion - and to the public. This survey was conducted as part of a more extensive framework regarding the development and protection of this natural monument. Geophysical surveying has been chosen as a non-destructive investigation method since the area of application is both a natural ecosystem and part of cultural heritage. Along with electrical resistivity tomography (ERT), ground penetrating radar (GPR) surveys have been carried out for investigating possible locations of buried fossilized tree trunks. The geoelectrical sections derived from ERT data in combination with the GPR profiles provided a broad view of the subsurface. Two and three dimensional subsurface geophysical images of the surveyed area have been constructed, pointing out probable locations of petrified logs. Regarding ERT, petrified trunks have been detected as high resistive bodies, while lower resistivity values were more related to the surrounding geological materials. GPR surveying has also indicated buried petrified log locations. As these two geophysical methods are affected in different ways by the subsurface conditions, the combined use of both techniques enhanced our ability to produce more reliable interpretations of the subsurface. After the completion of the geophysical investigations of this first stage, petrified trunks were revealed after a subsequent excavation at indicated locations. Moreover, we identified possible buried petrified targets at locations yet to be excavated.

  15. Research and career opportunities in the geophysical sciences for physics students

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew

    2008-10-01

    The field of geophysics involves using most branches of physics to investigate the physical structure and process that characterize the solid and fluid parts of our planet. Major advances in geophysics have come about from physicists crossing disciplinary boundaries and using their skills and knowledge to address first-order problems about the nature and structure of our planet and how the planet has changed over time. Indeed, some of the largest scientific breakthroughs in geophysics have come from physicists. As a way to introduce students to the field of geophysics and to provide them with information about research and career opportunities in geophysics, this talk will focus on one area of geophysics, seismology. This is an area of geophysics that has not only been instrumental in advancing our understanding of solid Earth structure and processes, but one that also has an applied side used for oil, gas and mineral exploration, as well as for environmental work. Examples of research projects involving seismic wave propagation and tomographic imaging will be presented, along the short descriptions of career opportunities in industry, government and academic institutions. In collaboration with Solomon Bililign, North Carolina A&T State University.

  16. The Krafla International Testbed (KMT): Ground Truth for the New Magma Geophysics

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Kim, D.; Malin, P. E.; Eichelberger, J. C.

    2017-12-01

    Recent developments in geophysics such as large N seismic arrays , 4D (time lapse) subsurface imaging and joint inversion algorithms represent fresh approaches to delineating and monitoring magma in the subsurface. Drilling at Krafla, both past and proposed, are unique opportunities to quantitatively corroborate and calibrate these new technologies. For example, dense seismic arrays are capable of passive imaging of magma systems with resolutions comparable to that achieved by more expensive (and often logistically impractical) controlled source surveys such as those used in oil exploration. Fine details of the geometry of magma lenses, feeders and associated fluid bearing fracture systems on the scale of meters to tens of meters are now realistic targets for surface seismic surveys using ambient energy sources, as are detection of their temporal variations. Joint inversions, for example of seismic and MT measurements, offer the promise of tighter quantitative constraints on the physical properties of the various components of magma and related geothermal systems imaged by geophysics. However, the accuracy of such techniques will remain captive to academic debate without testing against real world targets that have been directly sampled. Thus application of these new techniques to both guide future drilling at Krafla and to be calibrated against the resulting borehole observations of magma are an important step forward in validating geophysics for magma studies in general.

  17. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    The purpose of the work was to determine the capability of various geophysical methods to detect PCE in the subsurface. Measurements were made with ten different geophysical techniques before, during, and after the PCE injection. This approach provided a clear identification of a...

  18. Seismic-zonation of Port-au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    USGS Publications Warehouse

    Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.

  19. Field Geophysics at SAGE: Strategies for Effective Education

    NASA Astrophysics Data System (ADS)

    Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.

    2011-12-01

    SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider issues - safety, constraints, data quality/quantity, research objective, educational experience, survey parameters, why multidisciplinary?, etc.; 6. knowledge of multiple geophysical field methods (each student works with all methods); 7. information on geophysics careers and networking provided by industry visitors; 8. measures of success of the program include high rate of continuation to graduate school and careers in geophysics, support and feedback from industry participants and visitors, student evaluations at end of program, presentations at professional meetings, publications, and faculty evaluation of student work.

  20. Multi-method characterization of a landslide in Champagne vineyards: the case study of the Jacotines landslide (Marne, France)

    NASA Astrophysics Data System (ADS)

    Nicolas, Bollot; Guillaume, Pierre; Gilles, Grandjean

    2014-05-01

    Key words : landslide, Champagne vineyards , geomorphology, geophysical data, superficial structure The Champagne region is strongly impacted by landslides. Usually inactive, these landslides suffer from partial reactivations leading to important damages, especially when they occur in the vineyards. In the Marne valley, and particularly in the center of Champagne vineyards area (Reuil), the Jacotines site is representative of such landslides since it presents typical surface characteristics widely observed in the region. However, its size, and especially its internal structure, can't be deduced from the surface analysis only. The aim of this work is to combine surface patterns analysis, geophysical data and borehole data to produce an interpretative model of the landslide. Preliminary geomorphological cartography was used for determining the influence of the landslide. From this information, geophysical investigations were carried out to image the internal structure of the landslide. Geophysical data fusion (combination of seismic and geoelectrical tomograms) was used to estimate the mechanical behavior and the fissuring pattern of the slope. Three transverse and longitudinal tomograms were used to define an heterogeneous area between 20 and 50 meters depth and a weathered zone from 0 to 10-20 meters depth. A 60 meters depth borehole on the main transverse tomogram found the shear plane and clarified the structure of the heterogeneous area as well as the uppermost weathered layer composed by debris flows resulting from partial reactivations processes.

  1. Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, Ind., June 29-July 1, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers are presented on the applicability of Landsat data to water management and control needs, IBIS, a geographic information system based on digital image processing and image raster datatype, and the Image Data Access Method (IDAM) for the Earth Resources Interactive Processing System. Attention is also given to the Prototype Classification and Mensuration System (PROCAMS) applied to agricultural data, the use of Landsat for water quality monitoring in North Carolina, and the analysis of geophysical remote sensing data using multivariate pattern recognition. The Illinois crop-acreage estimation experiment, the Pacific Northwest Resources Inventory Demonstration, and the effects of spatial misregistration on multispectral recognition are also considered. Individual items are announced in this issue.

  2. Geophysical Investigations in the Caucasus (1925 - 2012): Initial, Basic and Modern Stages

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.

    2012-04-01

    The Caucasian Mountains occupy an area of about 440,000 km2. A number of important mineral resources are concentrated there. Geophysical data on the geological structure of Caucasus can shed light on the basic principles of evolution of the Earth, the distribution of minerals and seismic activity. However, geophysical surveys under complex conditions are generally riddled by poor accessibility to certain mountainous regions, the unevenness of observation surfaces, as well as by a great variety and frequent changes of tectonic structures and geological bodies with variable physical properties. These factors either restrict geophysical surveys in difficult environments or confine the scope of useful information drawn from the results obtained. This has led to the development of special techniques in geophysical surveys, data processing and interpretation that draws heavily on the experience accumulated in the specific conditions of these mountainous regions. First applied geophysical observations in the Caucasus region - thermal measurements in boreholes - were carried out by Bazevich (1881) in the Absheron Peninsula. At the same time, start of the initial stage is usually referred to as the mid 20-s of the XX century, when the rare, but systematic geophysical observations (mainly gravity and magnetic) were begun in some Caucasian areas. Somewhat later began to apply the resistivity method. Mid 30-s is characterized by the beginning of application of borehole geophysics and seismic prospecting. The marine seismics firstly in the former Soviet Union was tested in the Caspian Sea. In general, the initial stage is characterized by slow, but steady rise (except during World War II) lasted until 1960. A basic stage (1960-1991) is characterized by very intensive employment of geophysical methods (apparently, any possible geophysical methods were tested in this region). At this time the Caucasus region is considered in the former Soviet Union as a geophysical polygon for testing different geophysical methods and methodologies in complicated environments. Airborne magnetic and gravity surveys covered all the Caucasus, regional seismic and magnetotelluric studies were used as reference profiles for deep structure investigation. Numerous effective applications of geophysical methods for searching ore, oil&gas deposits, building raw, fresh water localization, solving engineering, etc. was demonstrated. Seismological investigations (including different methods) were widely applied throughout the entire Caucasian region. Satellite geophysical examinations were successfully combined with other methods. Finally, destruction of the former Soviet Union in 1991 (beginning of the modern stage) caused a sharp common decreasing of the geophysical activity in this region. Only foreign oil-&gas companies (mainly American and England) demonstrated some industrial geophysical activity basically in the Caspian Sea. In the last few years the situation began to straighten out, especially in the field of seismology. This presentation is based of the author's experience (e.g., Eppelbaum, 1989, 1991, 2009; Eppelbaum et al., 1987; Eppelbaum and Finkelstein, 1998; Eppelbaum and Khesin, 1988, 1992, 2002, 2004, 2011, 2012; Eppelbaum and Mishne, 2011; Eppelbaum et al., 2003, 2004; Khesin et al., 1988, 1993a, 1993b, 1996, 1997; Khesin and Eppelbaum, 1986, 1994, 1997, 2007; Pilchin and Eppelbaum, 1997, 2011) and corresponding publications and reviews of other authors.

  3. HICO and RAIDS Experiment Payload - Hyperspectral Imager for the Coastal Ocean

    NASA Technical Reports Server (NTRS)

    Corson, Mike

    2009-01-01

    HICO and RAIDS Experiment Payload - Hyperspectral Imager For The Coastal Ocean (HREP-HICO) will operate a visible and near-infrared (VNIR) Maritime Hyperspectral Imaging (MHSI) system, to detect, identify and quantify coastal geophysical features from the International Space Station.

  4. Payload-Directed Control of Geophysical Magnetic Surveys

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Yeh, Yoo-Hsiu; Ippolito, Corey; Spritzer, John; Phelps, Geoffrey

    2010-01-01

    Using non-navigational (e.g. imagers, scientific) sensor information in control loops is a difficult problem to which no general solution exists. Whether the task can be successfully achieved in a particular case depends highly on problem specifics, such as application domain and sensors of interest. In this study, we investigate the feasibility of using magnetometer data for control feedback in the context of geophysical magnetic surveys. An experimental system was created and deployed to (a) assess sensor integration with autonomous vehicles, (b) investigate how magnetometer data can be used for feedback control, and (c) evaluate the feasibility of using such a system for geophysical magnetic surveys. Finally, we report the results of our experiments and show that payload-directed control of geophysical magnetic surveys is indeed feasible.

  5. Integrating ambient noise with GIS for a new perspective on volcano imaging and monitoring: The case study of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Guardo, R.; De Siena, L.

    2017-11-01

    The timely estimation of short- and long-term volcanic hazard relies on the availability of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centres and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The study recovers a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows that anomalies are generally related to volcano-tectonic structures active during the last 17 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource to monitor volcanoes in unrest, reducing the risk of loss of human lives and instrumentation.

  6. Non-overlapped P- and S-wave Poynting vectors and their solution by the grid method

    NASA Astrophysics Data System (ADS)

    Lu, Yongming; Liu, Qiancheng

    2018-06-01

    The Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common-image gathers. However, the P- and S-waves are mixed together during wavefield propagation so that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic-wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S Poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh-based modeling method named the grid method. Finally, we verify our method using two numerical examples.

  7. An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.

    2006-01-01

    This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning aerial extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.

  8. An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.

    2007-01-01

    This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning areal extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.

  9. Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale

    NASA Astrophysics Data System (ADS)

    Surasani, V.; Commer, M.; Ajo Franklin, J. B.; Li, L.; Hubbard, S. S.

    2012-12-01

    In Microbial-Enhanced-Hydrocarbon-Recovery (MEHR), preferential bioclogging targets the growth of the biofilms (def. immobilized biopolymers with active cells embodied in it) in highly permeable thief zones to enhance sweep efficiency in oil reservoirs. During MEHR, understanding and controlling bioclogging is hindered by the lack of advanced modeling and monitoring tools; these deficiencies contribute to suboptimal performance. Our focus in this study was on developing a systematic approach to understand and monitor bioclogging at the reservoir scale using a combination of reactive transport modeling and geophysical imaging tools (EM & seismic). In this study, we created a realistic reservoir model from a heterogeneous gas reservoir in the Southern Sacramento basin, California; the model well (Citizen Green #1) was characterized using sonic, electrical, nuclear, and NMR logs for hydrologic and geophysical properties. From the simplified 2D log data model, a strip of size 150m x75m with several high permeability streaks is identified for bioclogging simulation experiments. From the NMR log data it is observed that a good linear correlation exist between logarithmic permeability (0.55- 3.34 log (mD)) versus porosity (0.041-0.28). L. mesenteroides was chosen as the model bacteria. In the presence of sucrose, it enzymatically catalyzes the production of dextran, a useful bioclogging agent. Using microbial kinetics from our laboratory experiment and reservoir heterogeneity, a reactive transport model (RTM) is established for two kinds of bioclogging treatments based on whether microbes are present in situ or are supplied externally. In both cases, sucrose media (1.5 M) is injected at the rate of 1 liter/s for 20 days into the center of high permeable strip to stimulate microbes. Simulations show that the high dextran production was deep into the formation from the injection well. This phenomenon can be explained precisely with bacterial kinetics and injection rate. In the in situ treatment, dextran contributes to a maximum porosity reduction of 9.2%, while in the exogenous microbes treatment, the dextran contributes to a maximum of 10.9% porosity reduction. After RTM, the potential geophysical signature of the treatment was evaluated using previously developed experimental rock physics models and realistic forward modeling approaches. Seismic experiments during dextran production performed by Kwan & Ajo-Franklin (2011) were combined with full waveform viscoelastic modeling to yield a predicted attenuation response from the dextran distributions modeled using RTM. The response suggests that crosswell attenuation tomography may be a viable approach for in situ monitoring of the bioclogging process. Modeling the EM response involved the induced polarization (IP) method, where the simulated resistance amplitude and phase changes can be attributed to porosity reduction. Our studies suggest that the IP signals provide a valuable additional indicator. Both geophysical data methods in a joint imaging approach potentially increase the resolution of each geophysical attribute change. Likewise, reactive transport modeling and geophysical monitoring can provide a powerful tool for predicting different bioclogging scenarios in subsurface. The combination may enhance our capabilities of controlling and monitoring the MEHR bioclogging process at reservoir scale.

  10. Marine Magnetic Data Holdings of World Data Center-a for Marine Geology and Geophysics

    NASA Technical Reports Server (NTRS)

    Sharman, George F.; Metzger, Dan

    1992-01-01

    The World Data Center-A for Marine Geology and Geophysics is co-located with the Marine Geology & Geophysical Data Center, Boulder, CO. Fifteen million digital marine magnetic trackline measurements are managed within the GEOphysical DAta System (GEODAS). The bulk of these data were collected with proton precision magnetometers under Transit Satellite navigational control. Along-track sampling averages about 1 sample per kilometer, while spatial density, a function of ship's track and survey pattern, range from 4 to 0.02 data points/sq. km. In the near future, the entire geophysical data set will be available on CD-ROM. The Marine Geology and Geophysics Division (World Data Center-A for MGG), of the National Geophysical Data Center, handles a broad spectrum of marine geophysical data, including measurements of bathymetry, magnetics, gravity, seismic reflection subbottom profiles, and side-scan images acquired by ships throughout the world's oceans. Digital data encompass the first three, while the latter two are in analog form, recorded on 35mm microfilm. The marine geophysical digital trackline data are contained in the GEODAS data base which includes 11.6 million nautical miles of cruise trackline coverage contributed by more than 70 organizations worldwide. The inventory includes data from 3206 cruises with 33 million digital records and indexing to 5.3 million track miles of analog data on microfilm.

  11. MoisturEC: a new R program for moisture content estimation from electrical conductivity data

    USGS Publications Warehouse

    Terry, Neil; Day-Lewis, Frederick D.; Werkema, Dale D.; Lane, John W.

    2018-01-01

    Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data‐analysis tools are needed to “translate” geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user‐friendly tools are required to fully capitalize on the potential of geophysical information for soil‐moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two‐ and three‐dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach.

  12. Significant wave heights from Sentinel-1 SAR: Validation and applications

    NASA Astrophysics Data System (ADS)

    Stopa, J. E.; Mouche, A.

    2017-03-01

    Two empirical algorithms are developed for wave mode images measured from the synthetic aperture radar aboard Sentinel-1 A. The first method, called CWAVE_S1A, is an extension of previous efforts developed for ERS2 and the second method, called Fnn, uses the azimuth cutoff among other parameters to estimate significant wave heights (Hs) and average wave periods without using a modulation transfer function. Neural networks are trained using colocated data generated from WAVEWATCH III and independently verified with data from altimeters and in situ buoys. We use neural networks to relate the nonlinear relationships between the input SAR image parameters and output geophysical wave parameters. CWAVE_S1A performs well and has reduced precision compared to Fnn with Hs root mean square errors within 0.5 and 0.6 m, respectively. The developed neural networks extend the SAR's ability to retrieve useful wave information under a large range of environmental conditions including extratropical and tropical cyclones in which Hs estimation is traditionally challenging.Plain Language SummaryTwo empirical algorithms are developed to estimate integral wave parameters from high resolution synthetic aperture radar (SAR) ocean images measured from recently launched the Sentinel 1 satellite. These methods avoid the use of the complicated image to wave mapping typically used to estimate sea state parameters. In addition, we are able to estimate wave parameters that are not able to be measured using existing techniques for the Sentinel 1 satellite. We use a machine learning technique to create a model that relates the ocean image properties to geophysical wave parameters. The models are developed using data from a numerical model because of the sufficiently large sample of global ocean conditions. We then verify that our developed models perform well with respect to independently measured wave observations from other satellite sensors and buoys. We successfully created models that estimate integrated wave parameters, like the commonly used significant wave height, accurately in a large range of sea states (up to 13 m). This allows the data from the SAR technology to be applied under a large range of environmental conditions including extra-tropical and tropical cyclones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17532610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17532610"><span>Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Valdés, Julio J; Barton, Alan J</p> <p>2007-05-01</p> <p>A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/965372','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/965372"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Newman, G.A.; Commer, M.</p> <p></p> <p>Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/Lmore » supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28607347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28607347"><span>Living microorganisms change the information (Shannon) content of a geophysical system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Fiona H M; Maggi, Federico</p> <p>2017-06-12</p> <p>The detection of microbial colonization in geophysical systems is becoming of interest in various disciplines of Earth and planetary sciences, including microbial ecology, biogeochemistry, geomicrobiology, and astrobiology. Microorganisms are often observed to colonize mineral surfaces, modify the reactivity of minerals either through the attachment of their own biomass or the glueing of mineral particles with their mucilaginous metabolites, and alter both the physical and chemical components of a geophysical system. Here, we hypothesise that microorganisms engineer their habitat, causing a substantial change to the information content embedded in geophysical measures (e.g., particle size and space-filling capacity). After proving this hypothesis, we introduce and test a systematic method that exploits this change in information content to detect microbial colonization in geophysical systems. Effectiveness and robustness of this method are tested using a mineral sediment suspension as a model geophysical system; tests are carried out against 105 experiments conducted with different suspension types (i.e., pure mineral and microbially-colonized) subject to different abiotic conditions, including various nutrient and mineral concentrations, and different background entropy production rates. Results reveal that this method can systematically detect microbial colonization with less than 10% error in geophysical systems with low-entropy background production rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..155a2025B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..155a2025B"><span>Mobile geophysics for searching and exploration of Domanic hydrocarbon deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borovsky, M. Ya; Uspensky, B. V.; Valeeva, S. E.; Borisov, A. S.</p> <p>2018-05-01</p> <p>There are noted features of shale hydrocarbons occurrence. It is shown the role of geophysical prospecting in the geological prospecting process for non-traditional sources of hydrocarbon. There are considered the possibilities of non-seismic methods for forecasting, prospecting, exploration and preparation of Domanikovian hydrocarbons accumulations for exploration. It is emphasized the need for geophysical studies of tectonic disturbances. Modern aerogeophysical instrumentation and methodological support allows to combine high-precision magneto-prospecting with gravimetric and gamma spectrometry. This combination of geophysical methods contributes to the diagnosis of active and latent faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2008/5192/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2008/5192/"><span>Geophysical Log Database for the Mississippi Embayment Regional Aquifer Study (MERAS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hart, Rheannon M.; Clark, Brian R.</p> <p>2008-01-01</p> <p>The Mississippi Embayment Regional Aquifer Study (MERAS) is an investigation of ground-water availability and sustainability within the Mississippi embayment as part of the U.S. Geological Survey Ground-Water Resources Program. The MERAS area consists of approximately 70,000 square miles and encompasses parts of eight states including Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. More than 2,600 geophysical logs of test holes and wells within the MERAS area were compiled into a database and were used to develop a digital hydrogeologic framework from land surface to the top of the Midway Group of upper Paleocene age. The purpose of this report is to document, present, and summarize the geophysical log database, as well as to preserve the geophysical logs in a digital image format for online access.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900039613&hterms=japanese+architecture&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Djapanese%2Barchitecture','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900039613&hterms=japanese+architecture&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Djapanese%2Barchitecture"><span>An ice-motion tracking system at the Alaska SAR facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross</p> <p>1990-01-01</p> <p>An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5458K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5458K"><span>Contribution of geophysical methods in the study of the floodplain structure (the Litavka River, the Czech Republic)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kotková, Kristýna; Matys Grygar, Tomáš; Tůmová, Štěpánka; Elznicová, Jitka</p> <p>2017-04-01</p> <p>Mining and processing of polymetallic ores near the city of Příbram (the Czech Republic) have strongly impacted the fluvial system of the Litavka River. Beside of polymetallic mining during several hundred years with a peak between 1850 and 1950, the Litavka River was also influenced by uranium ore mining between 1948 and 1989. Severe contamination of the Litavka River system is known, but the alluvial architecture and specific distribution of contamination has not yet been satisfactorily described. However, such pieces of information are necessary for the predictions of the future behaviour of contaminants in the river system. We used geophysical methods for visualisation of subsurface layers of sediments and we have proved them very useful for the survey of the floodplain structure. It is especially advantageous when the surface topography of the floodplain does not reveal its internal structure, e.g. due to floodplain levelling by aggradation. Specifically, dipole electromagnetic profiling, also denoted electromagnetic induction sensing (DEMP) was used for quick detection of major heterogeneities in the floodplain structure. In addition, electrical resistivity tomography (ERT) was used for the exploration of lines across the heterogeneities shown by DEMP. This approach allows to choose the appropriate plan for the subsequent sampling in the floodplain to include all its structural (lithogenetic) units. Such rational strategy allows for reducing total amount of sampled sites without the risk of losing important information and production of false images. Both used geophysical tools and manual drill coring and the elemental analysis by handheld X-ray fluorescence spectrometry produced clear images of floodplain architecture and pollutant distribution. The internal structure of the Litavka River floodplain shows that lateral deposition and reworking of sediments played the main roles in the floodplain building. In the next centuries the lateral channel movement will rework contamination which is maximal in the current channel belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNS23A1634U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNS23A1634U"><span>Resistivity and Induced Polarization Imaging at a Hydrocarbon Contaminated Site in Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ustra, A.; Elis, V.; Hiodo, F.; Bondioli, A.; Miura, G.</p> <p>2012-12-01</p> <p>An area contaminated by accidental BTEX spills was investigated with resistivity and induced polarization methods. The main objective in this study was to relate the geophysical signature of the area with zones that were possibly undergoing microbial degradation of the contaminants. The spills took place over a decade ago; however, the exact location of these spills is unknown, as well as the amount of contaminant that was released into the subsurface. DC-resistivity identified a high contrast between the background (rho up to 2000 ohm.m) and a relatively conductive zone (rho < 100 ohm.m), where high chargeabilities were also measured (m > 30 mV/V). Normalized chargeability is enhanced in this anomaly zone (mn > 0.1). Soil samples collected in the area were submitted to direct bacterial count, clay content estimation, X-ray diffraction and SEM analysis. The electrical properties of each samples was also measured. The samples collected from the "background" (high resistivity zone) presented total bacterial amounts much smaller (dozens of colony forming units) than the samples from the conductive zone (millions of colony forming units). This observation could lead us to interpret that the zone of higher bacteria amount is undergoing biodegradation that would explain the increased conductivity at that portion of the subsurface. However, the geophysical properties observed at this zone could also be related to the clay content distribution throughout the surveyed area (concentrations up to 30%). Moreover, despite the fact that more microbes were found in the area, SEM images did not find any biodegradation typical feature of the grains, which are for example, mineral corrosion and dissolution or even biomineralization. This study is still undergoing and we are searching for more evidence of biodegradation in the samples. This study shows the limitation of the use of geophysical methods to access contaminant presence and/or biodegradation zones when the exact location of the contamination is unknown.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/27555','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/27555"><span>Geophysical methods for determining the geotechnical engineering properties of earth materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2010-03-01</p> <p>Surface and borehole geophysical methods exist to measure in-situ properties and structural : characteristics of earth materials. Application of such methods has demonstrated cost savings through : reduced design uncertainty and lower investigation c...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGE.....7...64B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGE.....7...64B"><span>Geophysical experiments for the pre-reclamation assessment of industrial and municipal waste landfills</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balia, R.; Littarru, B.</p> <p>2010-03-01</p> <p>Two examples of combined application of geophysical techniques for the pre-reclamation study of old waste landfills in Sardinia, Italy, are illustrated. The first one concerned a mine tailings basin and the second one a municipal solid waste landfill; both disposal sites date back to the 1970-80s. The gravity, shallow reflection, resistivity and induced polarization methods were employed in different combinations at the two sites, and in both cases useful information on the landfill's geometry has been obtained. The gravity method proved effective for locating the boundaries of the landfill and the shallow reflection seismic technique proved effective for the precise imaging of the landfill's bottom; conversely the electrical techniques, though widely employed for studying waste landfills, provided mainly qualitative and debatable results. The overall effectiveness of the surveys has been highly improved through the combined use of different techniques, whose individual responses, being strongly dependent on their specific basic physical characteristic and the complexity of the situation to be studied, did not show the same effectiveness at the two places.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2128P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2128P"><span>Different integrated geophysical approaches to investigate archaeological sites in urban and suburban area.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piro, Salvatore; Papale, Enrico; Zamuner, Daniela</p> <p>2016-04-01</p> <p>Geophysical methods are frequently used in archaeological prospection in order to provide detailed information about the presence of structures in the subsurface as well as their position and their geometrical reconstruction, by measuring variations of some physical properties. Often, due to the limited size and depth of an archaeological structure, it may be rather difficult to single out its position and extent because of the generally low signal-to-noise ratio. This problem can be overcome by improving data acquisition, processing techniques and by integrating different geophysical methods. In this work, two sites of archaeological interest, were investigated employing several methods (Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT), Fluxgate Differential Magnetic) to obtain precise and detailed maps of subsurface bodies. The first site, situated in a suburban area between Itri and Fondi, in the Aurunci Natural Regional Park (Central Italy), is characterized by the presence of remains of past human activity dating from the third century B.C. The second site, is instead situated in an urban area in the city of Rome (Basilica di Santa Balbina), where historical evidence is also present. The methods employed, allowed to determine the position and the geometry of some structures in the subsurface related to this past human activity. To have a better understanding of the subsurface, we then performed a qualitative and quantitative integration of this data, which consists in fusing the data from all the methods used, to have a complete visualization of the investigated area. Qualitative integration consists in graphically overlaying the maps obtained by the single methods; this method yields only images, not new data that may be subsequently analyzed. Quantitative integration is instead performed by mathematical and statistical solutions, which allows to have a more accurate reconstruction of the subsurface and generates new data with high information content.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021847','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021847"><span>Deformation and Quaternary Faulting in Southeast Missouri across the Commerce Geophysical Lineament</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stephenson, W.J.; Odum, J.K.; Williams, R.A.; Pratt, T.L.; Harrison, R.W.; Hoffman, D.</p> <p>1999-01-01</p> <p>High-resolution seismic-reflection data acquired at three sites along the surface projection of the Commerce geophysical lineament in southeast Missouri reveal a complex history of post-Cretaceous faulting that has continued into the Quaternary. Near Qulin, Missouri, approximately 20 m of apparent vertical fault displacement has occurred in the Quaternary. Reflection data collected at Idalia Hill, about 45 km to the northeast, reveal a series of reverse and possibly right-lateral strike-slip faults with Quaternary displacement. In the Benton Hills, 45 km northeast of Idalia Hill, seismic data image a complicated series of anticlinal and synclinal fault-bounded blocks immediately north of the Commerce fault. We infer that most of the deformation imaged in the upper 400 m of these three data sets occurred since post-Cretaceous time, and a significant portion of it occurred during Quaternary time. Collectively, these seismic data along with geomorphic and surface-geologic evidence suggest (1) the existence of at least one potential seismogenic structure in southeastern Missouri outside the main zones of New Madrid seismicity, and (2) these structures have been active during the Quaternary. The geographic location of the imaged deformation suggests it is related to structures along with the Commerce geophysical lineament.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/pp1703/app2/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/pp1703/app2/"><span>Geophysical Methods for Investigating Ground-Water Recharge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.</p> <p>2007-01-01</p> <p>While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods that are currently available or under development for recharge monitoring. The material is written primarily for hydrogeologists. Uses of geophysical methods for improving recharge monitoring are explored through brief discussions and case studies. The intent is to indicate how geophysical methods can be used effectively in studying recharge processes and quantifying recharge. As such, the material constructs a framework for matching the strengths of individual geophysical methods with the manners in which they can be applied for hydrologic analyses. The appendix is organized in three sections. First, the key hydrologic parameters necessary to determine the rate, timing, and patterns of recharge are identified. Second, the basic operating principals of the relevant geophysical methods are discussed. Methods are grouped by the physical property that they measure directly. Each measured property is related to one or more of the key hydrologic properties for recharge monitoring. Third, the emerging conceptual framework for applying geophysics to recharge monitoring is presented. Examples of the application of selected geophysical methods to recharge monitoring are presented in nine case studies. These studies illustrate hydrogeophysical applications under a wide range of conditions and measurement scales, which vary from tenths of a meter to hundreds of meters. The case studies include practice-proven as well as emerging applications of geophysical methods to recharge monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGE....14..675O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGE....14..675O"><span>Foundation integrity assessment using integrated geophysical and geotechnical techniques: case study in crystalline basement complex, southwestern Nigeria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olayanju, G. M.; Mogaji, K. A.; Lim, H. S.; Ojo, T. S.</p> <p>2017-06-01</p> <p>The determination of parameters comprising exact depth to bedrock and its lithological type, lateral changes in lithology, and detection of fractures, cracks, or faults are essential to designing formidable foundations and assessing the integrity of civil engineering structures. In this study, soil and site characterization in a typical hard rock geologic terrain in southwestern Nigeria were carried out employing integrated geophysical and geotechnical techniques to address tragedies in civil engineering infrastructural development. The deployed geophysical measurements involved running both very low frequency electromagnetic (VLF-EM) and electrical resistivity methods (dipole-dipole imaging and vertical electrical sounding (VES) techniques) along the established traverses, while the latter technique entailed conducting geological laboratory sieve analysis and Atterberg limit-index tests upon the collected soil samples in the area. The results of the geophysical measurement, based on the interpreted VLF-EM and dipole-dipole data, revealed conductive zones and linear features interpreted as fractures/faults which endanger the foundations of public infrastructures. The delineation of four distinct geoelectric layers in the area—comprised of topsoil, lateritic/clayey substratum, weathered layer, and bedrock—were based on the VES results. Strong evidence, including high degree of decomposition and fracturing of underlying bedrock revealed by the VES results, confirmed the VLF-EM and dipole-dipole results. Furthermore, values in the range of 74.2%-77.8%, 55%-62.5%, 23.4%-24.5%, 7.7%-8.2%, 19.5%-22.4%, and 31.65%-38.25% were obtained for these geotechnical parameters viz soil percentage passing 0.075 mm sieve size, liquid limit, plasticity index, linear shrinkage, natural moisture content, and plastic limit, respectively, resulting from the geotechnical analysis of the soil samples. The comparatively analyzed geophysical and geotechnical results revealed a high weathering of charnockitic rocks resulting in plastic clay material mapped with a mean resistivity value of 73 Ohm-m, in conformity with the obtained geotechnical parameters, which failed to agree with the standard specification of subsoil foundation materials and which, in turn, can impact negatively on the foundational integrity of infrastructures. Based on these results, the area subsoils’ competence for foundation has been rated poor to low. This study has more widely demonstrated the effective application of integrative geophysical and geotechnical methods in the assessment of subsoil competence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JAG....41..205K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JAG....41..205K"><span>Some case studies of geophysical exploration of archaeological sites in Yugoslavia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Komatina, Snezana; Timotijevic, Zoran</p> <p>1999-03-01</p> <p>One of the youngest branches of environmental geophysics application is the preservation of national heritage. Numerous digital techniques developed for exploration directed to urban planning can also be applied to investigations of historic buildings. In identifying near-surface layers containing objects of previous civilizations, various sophisticated geophysical methods are used. In the paper, application of geophysics in quantification of possible problems necessary to be carried out in order to get an archaeological map of some locality is discussed [Komatina, S., 1996]. Sophisticated geophysical methods in the preservation of national heritage. Proc. of Int. Conf. Architecture and Urbanism at the turn of the Millenium, Beograd, pp. 39-44. Finally, several examples of archaeogeophysical exploration at Divostin, Bedem and Kalenic monastery localities (Serbia, Yugoslavia) are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11261352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11261352"><span>Images of the invisible-prospection methods for the documentation of threatened archaeological sites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Neubauer, W</p> <p>2001-01-01</p> <p>To understand the development of prehistoric cultural and economic activities, archaeologists try to obtain as much relevant information as possible. For this purpose, large numbers of similar sites must be identified, usually by non-destructive prospection methods such as aerial photography and geophysical prospection. Aerial archaeology is most effective in locating sites and the use of digital photogrammetry provides maps with high accuracy. For geophysical prospection mainly geomagnetic and geoelectrical methods or the ground-penetrating radar method are used. Near-surface measurements of the respective contrasts within physical properties of the archaeological structures and the surrounding material allows detailed mapping of the inner structures of the sites investigated. Applying specially developed wheeled instrumentation, high-resolution magnetic surveys can be carried out in a standard raster of 0.125 x 0.5 m covering up to 5 ha per day. Measurements of ground resistivity or radar surveys in a raster of 0.5 or 0.5 x 0.05 m, respectively, are used to gain information on archaeological structures and on the main stratigraphic sequence of sites covering up to 0.5 ha per day. Data on intensities of the Earth's magnetic field, apparent resistivities of the ground or amplitudinal information of radar reflections are processed using a digital image processing technique to visualize the otherwise invisible archaeological structures or monuments buried in the ground. Archaeological interpretation, in the sense of detecting, mapping and describing the archaeological structures, is done using GIS technology by combining all relevant prospection data. As most of the Middle European archaeological heritage is under a massive threat of destruction, dramatically accelerated by intensive agriculture or industrial transformation of the landscape, the prospection techniques presented here represent an approach towards an efficient documentation of the disappearing remains of our ancestors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA348900','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA348900"><span>Acoustic Characterization of Soil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1996-03-28</p> <p>modified SAR imaging algorithm. Page 26 Final Report In the acoustic subsurface imaging scenario, the "object" to be imaged (i.e., cultural artifacts... subsurface imaging scenario. To combat this potential difficulty we can utilize a new SAR imaging algorithm (Lee et al., 1996) derived from a geophysics...essentially a transmit plane wave. This is a cost-effective means to evaluate the feasibility of subsurface imaging . A more complete (and costly</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940030007&hterms=System+automated&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSystem%2Bautomated','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940030007&hterms=System+automated&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSystem%2Bautomated"><span>The geophysical processor system: Automated analysis of ERS-1 SAR imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stern, Harry L.; Rothrock, D. Andrew; Kwok, Ronald; Holt, Benjamin</p> <p>1994-01-01</p> <p>The Geophysical Processor System (GPS) at the Alaska (U.S.) SAR (Synthetic Aperture Radar) Facility (ASF) uses ERS-1 SAR images as input to generate three types of products: sea ice motion, sea ice type, and ocean wave spectra. The GPS, operating automatically with minimal human intervention, delivers its output to the Archive and Catalog System (ACS) where scientists can search and order the products on line. The GPS has generated more than 10,000 products since it became operational in Feb. 1992, and continues to deliver 500 new products per month to the ACS. These products cover the Beaufort and Chukchi Seas and the western portion of the central Arctic Ocean. More geophysical processing systems are needed to handle the large volumes of data from current and future satellites. Images must be routinely and consistently analyzed to yield useful information for scientists. The current GPS is a good, working prototype on the way to more sophisticated systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..249G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..249G"><span>Integrating passive seismicity with Web-Based GIS for a new perspective on volcano imaging and monitoring: the case study of Mt. Etna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guardo, Roberto; De Siena, Luca</p> <p>2017-04-01</p> <p>The timely estimation of short- and long-term volcanic hazard relies on the existence of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centers and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The main novelty with respect to previous model is the presence of a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows clear connections between the anomaly and dynamic active during the last 15 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource when monitoring volcanic media and eruptions, reducing the risk of loss of human lives and instrumentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=230839','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=230839"><span>Agricultural Geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5226/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5226/"><span>Field Demonstrations of Five Geophysical Methods that Could Be Used to Characterize Deposits of Alluvial Aggregate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ellefsen, K.J.; Burton, B.L.; Lucius, J.E.; Haines, S.S.; Fitterman, D.V.; Witty, J.A.; Carlson, D.; Milburn, B.; Langer, W.H.</p> <p>2007-01-01</p> <p>Personnel from the U.S. Geological Survey and Martin Marietta Aggregates, Inc., conducted field demonstrations of five different geophysical methods to show how these methods could be used to characterize deposits of alluvial aggregate. The methods were time-domain electromagnetic sounding, electrical resistivity profiling, S-wave reflection profiling, S-wave refraction profiling, and P-wave refraction profiling. All demonstrations were conducted at one site within a river valley in central Indiana, where the stratigraphy consisted of 1 to 2 meters of clay-rich soil, 20 to 35 meters of alluvial sand and gravel, 1 to 6 meters of clay, and multiple layers of limestone and dolomite bedrock. All geophysical methods, except time-domain electromagnetic sounding, provided information about the alluvial aggregate that was consistent with the known geology. Although time-domain electromagnetic sounding did not work well at this site, it has worked well at other sites with different geology. All of these geophysical methods complement traditional methods of geologic characterization such as drilling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAG...123..218M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAG...123..218M"><span>Electrical resistivity imaging (ERI) and ground-penetrating radar (GPR) survey at the Giribaile site (upper Guadalquivir valley; southern Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martínez, J.; Rey, J.; Gutiérrez, L. M.; Novo, A.; Ortiz, A. J.; Alejo, M.; Galdón, J. M.</p> <p>2015-12-01</p> <p>The Giribaile archaeological site is one of the most important Iberian enclaves of the Alto Guadalquivir (Southern Spain). However, to date, only minimal excavation work has been performed at the site. Evaluation requires a preliminary, non-destructive general analysis to determine high-interest areas. This stage required a geophysical survey. Specifically, a 100 m2 grid was selected, where an initial campaign of nine electrical resistivity imaging (ERI) profiles was performed, where each profile was 111 m in length; these profiles were previously located using a detailed topographical survey. A total of 112 electrodes were used for each profile, spaced at 1 m apart with a Wenner-Schlumberger configuration. Secondly, 201 GPR profiles were created using a 500 MHz antenna. The 100 m long profiles were spaced 0.5 m apart and parallel to one another. The present research analyses the efficiency of each of these geophysical tools in supporting archaeological research. Using these methodologies, the position, morphology, and depth of different buried structures can be determined. 3D interpretation of the geophysical survey in 100 × 100 m grid allowed to differentiate structures square and rectangular, interesting buildings in a semicircle (interpreted as ovens) plus delineate different streets. From the geophysical survey follows the Carthaginian presence inside this ancient Iberian enclave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29508387','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29508387"><span>MoisturEC: A New R Program for Moisture Content Estimation from Electrical Conductivity Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Terry, Neil; Day-Lewis, Frederick D; Werkema, Dale; Lane, John W</p> <p>2018-03-06</p> <p>Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data-analysis tools are needed to "translate" geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user-friendly tools are required to fully capitalize on the potential of geophysical information for soil-moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two- and three-dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060028820&hterms=data+sets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddata%2Bsets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060028820&hterms=data+sets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddata%2Bsets"><span>A method of hidden Markov model optimization for use with geophysical data sets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Granat, R. A.</p> <p>2003-01-01</p> <p>Geophysics research has been faced with a growing need for automated techniques with which to process large quantities of data. A successful tool must meet a number of requirements: it should be consistent, require minimal parameter tuning, and produce scientifically meaningful results in reasonable time. We introduce a hidden Markov model (HMM)-based method for analysis of geophysical data sets that attempts to address these issues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4603B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4603B"><span>Full Waveform Inversion of Diving & Reflected Waves based on Scale Separation for Velocity and Impedance Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean</p> <p>2015-04-01</p> <p>Full Waveform Inversion (FWI) is an appealing method for quantitative high-resolution subsurface imaging (Virieux et al., 2009). For crustal-scales exploration from surface seismic, FWI generally succeeds in recovering a broadband of wavenumbers in the shallow part of the targeted medium taking advantage of the broad scattering-angle provided by both reflected and diving waves. In contrast, deeper targets are often only illuminated by short-spread reflections, which favor the reconstruction of the short wavelengths at the expense of the longer ones, leading to a possible notch in the intermediate part of the wavenumber spectrum. To update the velocity macromodel from reflection data, image-domain strategies (e.g., Symes & Carazzone, 1991) aim to maximize a semblance criterion in the migrated domain. Alternatively, recent data-domain strategies (e.g., Xu et al., 2012, Ma & Hale, 2013, Brossier et al., 2014), called Reflection FWI (RFWI), inspired by Chavent et al. (1994), rely on a scale separation between the velocity macromodel and prior knowledge of the reflectivity to emphasize the transmission regime in the sensitivity kernel of the inversion. However, all these strategies focus on reflected waves only, discarding the low-wavenumber information carried out by diving waves. With the current development of very long-offset and wide-azimuth acquisitions, a significant part of the recorded energy is provided by diving waves and subcritical reflections, and high-resolution tomographic methods should take advantage of all types of waves. In this presentation, we will first review the issues of classical FWI when applied to reflected waves and how RFWI is able to retrieve the long wavelength of the model. We then propose a unified formulation of FWI (Zhou et al., 2014) to update the low wavenumbers of the velocity model by the joint inversion of diving and reflected arrivals, while the impedance model is updated thanks to reflected wave only. An alternate inversion of high wavenumber impedance model and low wavenumber velocity model is performed to iteratively improve subsurface models. References : Brossier, R., Operto, S. & Virieux, J., 2014. Velocity model building from seismic reflection data by full waveform inversion, Geophysical Prospecting, doi:10.1111/1365-2478.12190 Chavent, G., Clément, F. & Gomez, S., 1994.Automatic determination of velocities via migration-based traveltime waveform inversion: A synthetic data example, SEG Technical Program Expanded Abstracts 1994, pp. 1179--1182. Ma, Y. & Hale, D., 2013. Wave-equation reflection traveltime inversion with dynamic warping and full waveform inversion, Geophysics, 78(6), R223--R233. Symes, W.W. & Carazzone, J.J., 1991. Velocity inversion by differential semblance optimization, Geophysics, 56, 654--663. Virieux, J. & Operto, S., 2009. An overview of full waveform inversion in exploration geophysics, Geophysics, 74(6), WCC1--WCC26. Xu, S., Wang, D., Chen, F., Lambaré, G. & Zhang, Y., 2012. Inversion on reflected seismic wave, SEG Technical Program Expanded Abstracts 2012, pp. 1--7. Zhou, W., Brossier, R., Operto, S., & Virieux, J., 2014. Acoustic multiparameter full-waveform inversion through a hierachical scheme, in SEG Technical Program Expanded Abstracts 2014, pp. 1249--1253</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=251526','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=251526"><span>Agricultural Geophysics: Past, present, and future</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.995a2104I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.995a2104I"><span>Systemic Approach to Elevation Data Acquisition for Geophysical Survey Alignments in Hilly Terrains Using UAVs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.</p> <p>2018-04-01</p> <p>This study is about systematic approach to photogrammetric survey that is applicable in the extraction of elevation data for geophysical surveys in hilly terrains using Unmanned Aerial Vehicles (UAVs). The outcome will be to acquire high-quality geophysical data from areas where elevations vary by locating the best survey lines. The study area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. Seismic refraction surveys were carried out for the modelling of the subsurface for detailed site investigations. Study were carried out to identify the accuracy of the digital elevation model (DEM) produced from an UAV. At 100 m altitude (flying height), over 135 overlapping images were acquired using a DJI Phantom 3 quadcopter. All acquired images were processed for automatic 3D photo-reconstruction using Agisoft PhotoScan digital photogrammetric software, which was applied to all photogrammetric stages. The products generated included a 3D model, dense point cloud, mesh surface, digital orthophoto, and DEM. In validating the accuracy of the produced DEM, the coordinates of the selected ground control point (GCP) of the survey line in the imaging area were extracted from the generated DEM with the aid of Global Mapper software. These coordinates were compared with the GCPs obtained using a real-time kinematic global positioning system. The maximum percentage of difference between GCP’s and photogrammetry survey is 13.3 %. UAVs are suitable for acquiring elevation data for geophysical surveys which can save time and cost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V41A2737S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V41A2737S"><span>The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sauer, U.; Schuetze, C.; Dietrich, P.</p> <p>2013-12-01</p> <p>The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The application of FTIR spectroscopy in combination with soil gas surveys and geophysical investigations results in a comprehensive site characterization, including atmospheric and near-surface CO2 distribution, as well as subsurface structural features. We observed a correlation of higher CO2 concentration and flux rates at the meso-scale that coincides with distinct geophysical anomalies. Here, we found prominent SP anomalies and zones of lower resistivity in the geoelectrical images compared to undisturbed regions nearby. This presentation will discuss the results we obtained and illustrate the influence of CO2 on electrical parameters measured under field conditions in relation to environmental parameters.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.usgs.gov/wri/2000/4276/wri20004276.pdf','USGSPUBS'); return false;" href="http://pubs.usgs.gov/wri/2000/4276/wri20004276.pdf"><span>Use of advanced borehole geophysical techniques to delineate fractured-rock ground-water flow and fractures along water-tunnel facilities in northern Queens County, New York</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stumm, Frederick; Chu, Anthony; Lange, Andrew D.; Paillet, Frederick L.; Williams, John H.; Lane, John W.</p> <p>2001-01-01</p> <p>Advanced borehole geophysical methods were used to assess the geohydrology of crystalline bedrock along the course of a new water tunnel for New York City. The logging methods include natural gamma, spontaneous potential, single-point resistance, mechanical and acoustic caliper, focused electromagnetic induction, electromagnetic resistivity, magnetic susceptibility, borehole-fluid temperature and conductance, differential temperature, heat-pulse flowmeter, acoustic televiewer, borehole deviation, optical televiewer, and borehole radar. Integrated interpretation of the geophysical logs from an 825-foot borehole (1) provided information on the extent, orientation, and structure (foliation and fractures) within the entire borehole, including intensely fractured intervals from which core recovery may be poor; (2) delineated transmissive fracture zones intersected by the borehole and provided estimates of their transmissivity and hydraulic head; and (3) enabled mapping of the location and orientation of structures at distances as much as 100 ft from the borehole.Analyses of the borehole-wall image and the geophysical logs from the borehole on Crescent Street, in northern Queens County, are presented here to illustrate the application of the methods. The borehole penetrates gneiss and other crystalline bedrock that has predominantly southeastward dipping foliation and nearly horizontal and southeastward-dipping fractures. The heat-pulse flowmeter logs obtained under pumping and nonpumping conditions, together with the other geophysical logs, indicate five transmissive fracture zones. More than 90 percent of the open-hole transmissivity is associated with a fracture zone 272 feet BLS (below land surface). A transmissive zone at 787 feet BLS that consists of nearly parallel fractures lies within the projected tunnel path; here the hydraulic head is 12 to 15 feet lower than that of transmissive zones above the 315-foot depth. The 60-megahertz directional borehole radar logs indicate the location and orientation of two closely spaced radar reflectors that would intersect the projection of the borehole below its drilled depth.Subsequent excavation of the tunnel past the borehole allowed comparison of the log analysis with conditions observed in the tunnel. The tunnel was found to intersect gneiss with southeastward dipping foliation; many nearly horizontal fractures; and a southeastward dipping fracture zone whose location, character, and orientation was consistent with that of the mapped radar reflectors. The fracture zone produced inflow to the tunnel at a rate of 50 to 100 gallons per minute. All conditions indicated by the logging methods were consistent with those observed within the tunnel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JPhCS.180a2063N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JPhCS.180a2063N"><span>Massively parallel electrical conductivity imaging of the subsurface: Applications to hydrocarbon exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newman, Gregory A.; Commer, Michael</p> <p>2009-07-01</p> <p>Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=312908','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=312908"><span>Tools for proximal soil sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Proximal soil sensing (i.e. near-surface geophysical methods) are used to study soil phenomena across spatial scales. Geophysical methods exploit contrasts in physical properties (dielectric permittivity, apparent electrical conductivity or resistivity, magnetic susceptibility) to indirectly measur...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/21681','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/21681"><span>Evaluation of geophysical methods and geophysical contractors on four projects in Kentucky.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2007-03-01</p> <p>his report details four geophysical testing projects that were conducted in Kentucky for the Kentucky Transportation Cabinet. The four projects were as follows: KY 101, Edmonson and Warren Counties, US 31-W, Elizabethtown Bypass, Hardin County, KY 61...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W3..631T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W3..631T"><span>Documenting Bronze Age Akrotiri on Thera Using Laser Scanning, Image-Based Modelling and Geophysical Prospection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trinks, I.; Wallner, M.; Kucera, M.; Verhoeven, G.; Torrejón Valdelomar, J.; Löcker, K.; Nau, E.; Sevara, C.; Aldrian, L.; Neubauer, E.; Klein, M.</p> <p>2017-02-01</p> <p>The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri's architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JAG....96...38J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JAG....96...38J"><span>A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>JafarGandomi, Arash; Binley, Andrew</p> <p>2013-09-01</p> <p>We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70093206','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70093206"><span>Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: Seaside Groundwater Basin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nenna, Vanessa; Herckenrather, Daan; Knight, Rosemary; Odlum, Nick; McPhee, Darcy</p> <p>2013-01-01</p> <p>Developing effective resource management strategies to limit or prevent saltwater intrusion as a result of increasing demands on coastal groundwater resources requires reliable information about the geologic structure and hydrologic state of an aquifer system. A common strategy for acquiring such information is to drill sentinel wells near the coast to monitor changes in water salinity with time. However, installation and operation of sentinel wells is costly and provides limited spatial coverage. We studied the use of noninvasive electromagnetic (EM) geophysical methods as an alternative to installation of monitoring wells for characterizing coastal aquifers. We tested the feasibility of using EM methods at a field site in northern California to identify the potential for and/or presence of hydraulic communication between an unconfined saline aquifer and a confined freshwater aquifer. One-dimensional soundings were acquired using the time-domain electromagnetic (TDEM) and audiomagnetotelluric (AMT) methods. We compared inverted resistivity models of TDEM and AMT data obtained from several inversion algorithms. We found that multiple interpretations of inverted models can be supported by the same data set, but that there were consistencies between all data sets and inversion algorithms. Results from all collected data sets suggested that EM methods are capable of reliably identifying a saltwater-saturated zone in the unconfined aquifer. Geophysical data indicated that the impermeable clay between aquifers may be more continuous than is supported by current models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981SvPhU..24..949D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981SvPhU..24..949D"><span>REVIEWS OF TOPICAL PROBLEMS: Global phase-stable radiointerferometric systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dravskikh, A. F.; Korol'kov, Dimitrii V.; Pariĭskiĭ, Yu N.; Stotskiĭ, A. A.; Finkel'steĭn, A. M.; Fridman, P. A.</p> <p>1981-12-01</p> <p>We discuss from a unitary standpoint the possibility of building a phase-stable interferometric system with very long baselines that operate around the clock with real-time data processing. The various problems involved in the realization of this idea are discussed: the methods of suppression of instrumental and tropospheric phase fluctuations, the methods for constructing two-dimensional images and determining the coordinates of radio sources with high angular resolution, and the problem of the optimal structure of the interferometric system. We review in detail the scientific problems from the various branches of natural science (astrophysics, cosmology, geophysics, geodynamics, astrometry, etc.) whose solution requires superhigh angular resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAfES.140...42O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAfES.140...42O"><span>Integrated electromagnetic (EM) and Electrical Resistivity Tomography (ERT) geophysical studies of environmental impact of Awotan dumpsite in Ibadan, southwestern Nigeria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osinowo, Olawale Olakunle; Falufosi, Michael Oluseyi; Omiyale, Eniola Oluwatosin</p> <p>2018-04-01</p> <p>This study attempts to establish the level of contamination caused by the decomposition of wastes by defining the lateral distribution and the vertical limit of leachate induced zone of anomalous conductivity distribution within the subsurface through the analyses of Electromagnetic (EM) and Electrical Resistivity Tomography (ERT) data, generated from the integrated geophysical survey over Awotan landfill dumpsite, in Ibadan, southwest Nigeria. Nine (9) EM and ERT profiles each were established within and around the Awotan landfill site. EM data were acquire at 5 m station interval using 10 m, 20 m and 40 m inter-coil spacings, while ERT stations were occupied at 2 m electrode spacing using dipole-dipole electrode configuration. The near perfect agreement between the two sets of data generated from the EM and ERT surveys over the Awotan landfill site as well as the subsurface imaging ability of these geophysical methods to delineate the region of elevated contamination presented in the form of anomalously high apparent ground conductivity and low subsurface resistivity distribution, suggest the importance of integrating electromagnetic and electrical resistivity investigation techniques for environmental studies and more importantly for selecting appropriate landfill dump site location such with ability to retain the generated contaminants and thus prevent environmental pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CG....109..106R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CG....109..106R"><span>pyGIMLi: An open-source library for modelling and inversion in geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rücker, Carsten; Günther, Thomas; Wagner, Florian M.</p> <p>2017-12-01</p> <p>Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various geophysical and hydrological data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S23D..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S23D..02H"><span>Mapping and Imaging Methodologies within the Comprehensive Test Ban Treaty's On-Site Inspection Framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hawkins, W.; Sussman, A. J.; Kelley, R. E.; Wohletz, K. H.; Schultz-Fellenz, E. S.</p> <p>2013-12-01</p> <p>On-site inspection (OSI) is the final verification measure of the Comprehensive Nuclear Test Ban Treaty (CTBT). OSIs rely heavily on geologic and geophysical investigations. The objective is to apply methods that are effective, efficient and minimally intrusive. We present a general overview of the OSI as provisioned in the CTBT, specifying the allowed techniques and the timeline for their application. A CTBT OSI relies on many geological, geophysical and radiological methods. The search area for an OSI is mostly defined by uncertainty in the location of a suspect event detected by the International Monitoring System (IMS) and reported through the International Data Center and can be as large as 1000 km2. Thus OSI methods are fundamentally divided into general survey methods that narrow the search area and more focused, detailed survey methods to look for evidence of a potential underground explosion and try to find its location within an area of several km2. The purpose and goal of a CTBT OSI, as specified in the Article IV of the Treaty, is 'to clarify whether a nuclear explosion has been carried out in violation of the Treaty' and to 'gather any facts which might assist in identifying any possible violator.' Through the use of visual, geophysical, and radiological techniques, OSIs can detect and characterize anomalies and artifacts related to the event that triggered the inspection. In the context of an OSI, an 'observable' is a physical property that is important to recognize and document because of its relevance to the purpose of the inspection. Potential observables include: (1) visual observables such as ground/environmental disturbances and manmade features, (2) geophysical techniques that provide measurements of altered and damaged ground and buried artifacts, and (3) radiological measurements on samples. Information provided in this presentation comes from observations associated with historical testing activities that were not intended to go undetected. Every CTBT OSI will be different, and the observables present and detectable within an Inspection Area (IA) will depend on many factors, such as location, geology, emplacement configuration, climate, and the time elapsed after the event before the deployment of the Inspection Team (IT). A successful OSI is contingent on familiarity with potential observables, the suitability of the equipment to detect and characterize relevant observables, and the team's ability to document and integrate all the information into comprehensive, logical, and factual reports. In preparation for an OSI, a variety of types, scales, and generations of open-source digital imagery can be compared using geographic information systems (GIS) to focus on areas of interest. Simple image comparison from various open sources within GIS afford the opportunity to view anthropogenic and natural changes to locations of interest over time, thus remotely elucidating information about a site's use and level of activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=256731','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=256731"><span>Introduction to the JEEG Agricultural Geophysics special issue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Recent advancements such as the availability of personal computers, technologies to store/process large amounts of data, the GPS, and GIS have now made geophysical methods practical for agricultural use. Consequently, there has been a rapid expansion of agricultural geophysics research just over the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HydJ...26..651A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HydJ...26..651A"><span>Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.</p> <p>2018-03-01</p> <p>Basement aquifers, which occur within the weathered and fractured zones of crystalline bedrocks, are important groundwater resources in tropical and subtropical regions. The development of basement aquifers is complex owing to their high spatial variability. Geophysical techniques are used to obtain information about the hydrologic characteristics of the weathered and fractured zones of the crystalline basement rocks, which relates to the occurrence of groundwater in the zones. The spatial distributions of these hydrologic characteristics are then used to map the spatial variability of the basement aquifers. Thus, knowledge of the spatial variability of basement aquifers is useful in siting wells and boreholes for optimal and perennial yield. Geoelectrical resistivity is one of the most widely used geophysical methods for assessing the spatial variability of the weathered and fractured zones in groundwater exploration efforts in basement complex terrains. The presented study focuses on combining vertical electrical sounding with two-dimensional (2D) geoelectrical resistivity imaging to characterise the weathered and fractured zones in a crystalline basement complex terrain in southwestern Nigeria. The basement aquifer was delineated, and the nature, extent and spatial variability of the delineated basement aquifer were assessed based on the spatial variability of the weathered and fractured zones. The study shows that a multiple-gradient array for 2D resistivity imaging is sensitive to vertical and near-surface stratigraphic features, which have hydrological implications. The integration of resistivity sounding with 2D geoelectrical resistivity imaging is efficient and enhances near-surface characterisation in basement complex terrain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HydJ...22.1433R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HydJ...22.1433R"><span>Hydrogeological modeling constraints provided by geophysical and geochemical mapping of a chlorinated ethenes plume in northern France</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Razafindratsima, Stephen; Guérin, Roger; Bendjoudi, Hocine; de Marsily, Ghislain</p> <p>2014-09-01</p> <p>A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants' migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent-daughter chain reaction and the RT3D aerobic-anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830009694&hterms=level+processing+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dlevel%2Bprocessing%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830009694&hterms=level+processing+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dlevel%2Bprocessing%2Btheory"><span>Methods of training the graduate level and professional geologist in remote sensing technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kolm, K. E.</p> <p>1981-01-01</p> <p>Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SolE....7..685B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SolE....7..685B"><span>Characterization of a complex near-surface structure using well logging and passive seismic measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara</p> <p>2016-04-01</p> <p>We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMED31D0925S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMED31D0925S"><span>Hands-on Marine Geology and Geophysics Field Instruction at the University of Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saustrup, S.; Gulick, S. P. S.; Goff, J. A.; Fernandez, R.; Davis, M. B.; Duncan, D.</p> <p>2015-12-01</p> <p>The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in its ninth year, the course provides instruction in survey design, data acquisition, processing, interpretation, and visualization. Methods covered include seismic reflection, multibeam bathymetry, sidescan sonar, and sediment sampling. The emphasis of the course is team-oriented, hands-on, field training in real-world situations. The course begins with classroom instruction covering the field area and field methods, followed by a week of at-sea field work in 4-student teams. The students then return to the classroom where they integrate, interpret, and visualize data using industry-standard software. The teams present results in a series of professional-level final presentations before academic and industry supporters. Our rotating field areas provide ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf . In the field, student teams rotate between two research vessels: the smaller vessel, the Jackson School's newly-commissioned R/V Scott Petty (26 feet LOA), is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta (82 feet LOA) is used for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibracoring. Teams also rotate through a field laboratory performing processing of geophysical data and sediment samples. This past year's course in Freeport, Texas proceeded unabated despite concurrent record-breaking rainfall and flooding, which offered students a unique opportunity to observe and image, in real time, flood-related bedform migration on a time scale of hours. The data also allowed an in-class opportunity to examine natural and anthropogenic processes recorded in the river and coastal morphology and stratigraphy. http://www.ig.utexas.edu/research/mgg/courses/geof348K/</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP33A1920S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP33A1920S"><span>New Insights Into Valley Formation and Preservation: Geophysical Imaging of the Offshore Trinity River Paleovalley</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Speed, C. M.; Swartz, J. M.; Gulick, S. P. S.; Goff, J.</p> <p>2017-12-01</p> <p>The Trinity River paleovalley is an offshore stratigraphic structure located on the inner continental shelf of the Gulf of Mexico offshore Galveston, Texas. Its formation is linked to the paleo-Trinity system as it existed across the continental shelf during the last glacial period. Newly acquired high-resolution geophysical data have imaged more complexity to the valley morphology and shelf stratigraphy than was previously captured. Significantly, the paleo-Trinity River valley appears to change in the degree of confinement and relief relative to the surrounding strata. Proximal to the modern shoreline, the interpreted time-transgressive erosive surface formed by the paleo-river system is broad and rugose with no single valley, but just 5 km farther offshore the system appears to become confined to a 10 km wide valley structure before again becoming unconfined once again 30 km offshore. Fluvial stratigraphy in this region has a similar degree of complexity in morphology and preservation. A dense geophysical survey of several hundred km is planned for Fall 2017, which will provide unprecedented imaging of the paleovalley morphology and associated stratigraphy. Our analysis leverages robust chirp processing techniques that allow for imaging of strata on the decimeter scale. We will integrate our geophysical results with a wide array of both newly collected and previously published sediment cores. This approach will allow us to address several key questions regarding incised valley formation and preservation on glacial-interglacial timescales including: to what extent do paleo-rivers remain confined within a single broad valley structure, what is the fluvial systems response to transgression, and what stratigraphy is created and preserved at the transition from fluvial to estuarine environments? Our work illustrates that traditional models of incised valley formation and subsequent infilling potentially fail to capture the full breadth of dynamics of past river systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43P..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43P..06D"><span>Critical Zone Co-dynamics: Quantifying Interactions between Subsurface, Land Surface, and Vegetation Properties Using UAV and Geophysical Approaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dafflon, B.; Leger, E.; Peterson, J.; Falco, N.; Wainwright, H. M.; Wu, Y.; Tran, A. P.; Brodie, E.; Williams, K. H.; Versteeg, R.; Hubbard, S. S.</p> <p>2017-12-01</p> <p>Improving understanding and modelling of terrestrial systems requires advances in measuring and quantifying interactions among subsurface, land surface and vegetation processes over relevant spatiotemporal scales. Such advances are important to quantify natural and managed ecosystem behaviors, as well as to predict how watershed systems respond to increasingly frequent hydrological perturbations, such as droughts, floods and early snowmelt. Our study focuses on the joint use of UAV-based multi-spectral aerial imaging, ground-based geophysical tomographic monitoring (incl., electrical and electromagnetic imaging) and point-scale sensing (soil moisture sensors and soil sampling) to quantify interactions between above and below ground compartments of the East River Watershed in the Upper Colorado River Basin. We evaluate linkages between physical properties (incl. soil composition, soil electrical conductivity, soil water content), metrics extracted from digital surface and terrain elevation models (incl., slope, wetness index) and vegetation properties (incl., greenness, plant type) in a 500 x 500 m hillslope-floodplain subsystem of the watershed. Data integration and analysis is supported by numerical approaches that simulate the control of soil and geomorphic characteristic on hydrological processes. Results provide an unprecedented window into critical zone interactions, revealing significant below- and above-ground co-dynamics. Baseline geophysical datasets provide lithological structure along the hillslope, which includes a surface soil horizon, underlain by a saprolite layer and the fractured Mancos shale. Time-lapse geophysical data show very different moisture dynamics in various compartments and locations during the winter and growing season. Integration with aerial imaging reveals a significant linkage between plant growth and the subsurface wetness, soil characteristics and the topographic gradient. The obtained information about the organization and connectivity of the landscape is being transferred to larger regions using aerial imaging and will be used to constrain multi-scale, multi-physics hydro-biogeochemical simulations of the East River watershed response to hydrological perturbations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980008121','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980008121"><span>Alaskan Auroral All-Sky Images on the World Wide Web</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stenbaek-Nielsen, H. C.</p> <p>1997-01-01</p> <p>In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAG...136..114D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAG...136..114D"><span>Integrated geophysical investigations in a fault zone located on southwestern part of İzmir city, Western Anatolia, Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drahor, Mahmut G.; Berge, Meriç A.</p> <p>2017-01-01</p> <p>Integrated geophysical investigations consisting of joint application of various geophysical techniques have become a major tool of active tectonic investigations. The choice of integrated techniques depends on geological features, tectonic and fault characteristics of the study area, required resolution and penetration depth of used techniques and also financial supports. Therefore, fault geometry and offsets, sediment thickness and properties, features of folded strata and tectonic characteristics of near-surface sections of the subsurface could be thoroughly determined using integrated geophysical approaches. Although Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) methods are commonly used in active tectonic investigations, other geophysical techniques will also contribute in obtaining of different properties in the complex geological environments of tectonically active sites. In this study, six different geophysical methods used to define faulting locations and characterizations around the study area. These are GPR, ERT, SRT, Very Low Frequency electromagnetic (VLF), magnetics and self-potential (SP). Overall integrated geophysical approaches used in this study gave us commonly important results about the near surface geological properties and faulting characteristics in the investigation area. After integrated interpretations of geophysical surveys, we determined an optimal trench location for paleoseismological studies. The main geological properties associated with faulting process obtained after trenching studies. In addition, geophysical results pointed out some indications concerning the active faulting mechanism in the area investigated. Consequently, the trenching studies indicate that the integrated approach of geophysical techniques applied on the fault problem reveals very useful and interpretative results in description of various properties of faulting zone in the investigation site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1439188','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1439188"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wainwright, Haruko M.; Flores Orozco, Adrian; Bucker, Matthias</p> <p></p> <p>In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common biogeochemical hot spot, having distinct microbial and geochemical characteristics. Although important for understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distribution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typically spatially limited and the distribution of NRZs is heterogeneous. In this work, we present an innovative methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist of surface geophysical surveys andmore » drilling-recovered sediments at the U.S. Department of Energy field site near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to estimate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parameterize a hydrobiogeochemical model of the floodplain.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA605512','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA605512"><span>Geophysical Surveys for Locating Buried Utilities, Lake Pontchartrain Levees, New Orleans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-06-01</p> <p>4 Figure 3. GPR concepts...this study. Electromagnetic (EM) induction, magnetic, and ground penetrating radar ( GPR ) geophysical methods were evaluated to determine which...surveys GPR is a ground-based geophysical instrument that transmits high- frequency EM pulses into the subsurface. The GPR system consists of a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031697','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031697"><span>Moment inference from tomograms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Day-Lewis, F. D.; Chen, Y.; Singha, K.</p> <p>2007-01-01</p> <p>Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70156639','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70156639"><span>Integrated geophysical surveys for mapping lati-andesite intrusive bodies, Chino Valley, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>El-Kaliouby, Hesham; Sternberg, Ben K.; Hoffmann, John P.; Langenheim, V.E.</p> <p>2012-01-01</p> <p>Three different geophysical methods (magnetic, transient electromagnetic (TEM) and gravity) were used near Chino Valley, Arizona, USA in order to map a suspected lati-andesite intrusive body (plug) previously located by interpretation of aeromagnetic data. The magnetic and TEM surveys provided the best indication of the location and depth of the plug. The north-south spatial extent of this plug was estimated to be approximately 600 meters. The depth to the top of the plug was found from the TEM survey to be approximately 350 meters near the center of the survey. The location of the plug defined by the ground magnetic data is consistent with that from the TEM data. Gravity data mostly image the basin-basement interface with a small contribution from the plug of about 0.5 mGal. Results from this investigation can be used to help define the irregular subsurface topography caused by several intrusive lati-andesite plugs that could influence groundwater flow in the area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1011a2027A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1011a2027A"><span>Subsurface Structure Mapping Using Geophysical Data in Candi Umbul-Telomoyo, Magelang, Central Java, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Affanti, A. P.; Prastyani, E.; Maghfira, P. D.; Niasari, S. W.</p> <p>2018-04-01</p> <p>Candi Umbul warm spring is one of the manifestations in the Telomoyo geothermal prospect area. A geophysical survey had been conducted using VLF (Very Low Frequency) EM, VLF R and magnetic methods in the Candi Umbul-Telomoyo. VLF EM, VLF R and magnetic data were aimed to image the conductivity and magnetic anomalies distribution of the subsurface beneath the Candi Umbul-Telomoyo. VLF EM data had been mapped with Karous-Hjelt filter and analysed by tipper analysis, VLF R data had been modelled using 2layinv and analysed using impedance analysis. On the other hand, magnetic data processing was done with upward continuation. The Karous-Hjelt filter and 2layinv models show the highest conductivity distribution that located at 4800-5000 m were correlated with tipper and impedance analyses. In addition, the high-low magnetic contrast from the quantitative magnetic data interpretation indicates a fault (which could be a fluid pathway) which is closed to the Candi Umbul warm spring manifestation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.B51F..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.B51F..01W"><span>Remote Sensing of Subsurface Microbial Transformations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, K. H.; Ntarlagiannis, D.; Slater, L.; Long, P.; Dohnalkova, A.; Hubbard, S. S.; Banfield, J. F.</p> <p>2004-12-01</p> <p>Understanding how microorganisms influence the physical and chemical properties of the subsurface is hindered by our inability to detect microbial dynamics in real time with high spatial resolution. Here we have used non-invasive geophysical methods to monitor biomineralization and related processes during biostimulation at both laboratory and field scales. Alterations in saturated sediment characteristics resulting from microbe-mediated transformations were concomitant with changes in complex resistivity, spontaneous potential, and acoustic wave signatures. Variability in complex resistivity and acoustic wave amplitudes appears tied to the nucleation, growth, and development of nanoparticulate precipitates along grain surfaces and within the pore space. In contrast, time-varying spontaneous potentials appear primarily sensitive to the electrochemical gradients resulting from metabolic pathways, such as iron- and sulfate-reduction. Furthermore, they enable us to track mobile fronts of active respiration that arise due to microbial chemotaxis. In this way, geophysical data may be used to image the distribution of mineral precipitates, biomass, and biogeochemical fronts evolving over time and suggest the ability to remotely monitor contaminated aquifers undergoing bioremediation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMED21C..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMED21C..05M"><span>Boom, Doom and Rocks - The Intersection of Physics, Video Games and Geology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McBride, J. H.; Keach, R. W.</p> <p>2008-12-01</p> <p>Geophysics is a field that incorporates the rigor of physics with the field methods of geology. The onset and rapid development of the computer games that students play bring new hardware and software technologies that significantly improve our understanding and research capabilities. Together they provide unique insights to the subsurface of the earth in ways only imagined just a few short years ago. 3D geological visualization has become an integral part of many petroleum industry exploration efforts. This technology is now being extended to increasing numbers of universities through grants from software vendors. This talk will explore 3D visualization techniques and how they can be used for both teaching and research. Come see examples of 3D geophysical techniques used to: image the geology of ancient river systems off the coast of Brazil and in the Uinta Basin of Utah, guide archaeological excavations on the side of Mt. Vesuvius, Italy, and to study how volcanoes were formed off the coast of New Zealand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3045413','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3045413"><span>Modification of Kirchhoff migration with variable sound speed and attenuation for acoustic imaging of media and application to tomographic imaging of the breast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schmidt, Steven; Duric, Nebojsa; Li, Cuiping; Roy, Olivier; Huang, Zhi-Feng</p> <p>2011-01-01</p> <p>Purpose: To explore the feasibility of improving cross-sectional reflection imaging of the breast using refractive and attenuation corrections derived from ultrasound tomography data. Methods: The authors have adapted the planar Kirchhoff migration method, commonly used in geophysics to reconstruct reflection images, for use in ultrasound tomography imaging of the breast. Furthermore, the authors extended this method to allow for refractive and attenuative corrections. Using clinical data obtained with a breast imaging prototype, the authors applied this method to generate cross-sectional reflection images of the breast that were corrected using known distributions of sound speed and attenuation obtained from the same data. Results: A comparison of images reconstructed with and without the corrections showed varying degrees of improvement. The sound speed correction resulted in sharpening of detail, while the attenuation correction reduced the central darkening caused by path length dependent losses. The improvements appeared to be greatest when dense tissue was involved and the least for fatty tissue. These results are consistent with the expectation that denser tissues lead to both greater refractive effects and greater attenuation. Conclusions: Although conventional ultrasound techniques use time-gain control to correct for attenuation gradients, these corrections lead to artifacts because the true attenuation distribution is not known. The use of constant sound speed leads to additional artifacts that arise from not knowing the sound speed distribution. The authors show that in the context of ultrasound tomography, it is possible to construct reflection images of the breast that correct for inhomogeneous distributions of both sound speed and attenuation. PMID:21452737</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213..770M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213..770M"><span>Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maurya, P. K.; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, A. V.; Bjerg, P. L.; Auken, E.; Fiandaca, G.</p> <p>2018-05-01</p> <p>At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: (1) spectral inversion of the induced polarization data through a reparametrization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; (2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data set from the Grindsted stream (Denmark), where contaminated groundwater from a factory site discharges to the stream. Two overlapping areas were covered with seven parallel 2-D profiles each, one large area of 410 m × 90 m (5 m electrode spacing) and one detailed area of 126 m × 42 m (2 m electrode spacing). The geophysical results were complemented and validated by an extensive set of hydrologic and geologic information, including 94 estimates of hydraulic permeability obtained from slug tests and grain size analyses, 89 measurements of water electrical conductivity in groundwater, and four geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging. An average formation factor was estimated from the correlation between the imaged bulk conductivity values and the water conductivity values measured in groundwater, in order to convert the imaging results from bulk conductivity to water conductivity. The geophysical models were actively used for supporting the geological modelling and the imaging of hydraulic permeability and water conductivity allowed for a better discrimination of the clay/lignite lithology from the pore water conductivity. Furthermore, high water electrical conductivity values were found in a deep confined aquifer, which is separated by a low-permeability clay layer from a shallow aquifer. No contamination was expected in this part of the confined aquifer, and confirmation wells were drilled in the zone of increased water electrical conductivity derived from the geophysical results. Water samples from the new wells showed elevated concentrations of inorganic compounds responsible for the increased water electrical conductivity in the confined aquifer and high concentrations of xenobiotic organic contaminants such as chlorinated ethenes, sulfonamides and barbiturates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/983702','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/983702"><span>Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Zhdanov,; Michael, S [Salt Lake City, UT</p> <p>2008-01-29</p> <p>Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H13G..02V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H13G..02V"><span>Near real-time imaging of molasses injections using time-lapse electrical geophysics at the Brandywine DRMO, Brandywine, Maryland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Versteeg, R. J.; Johnson, T.; Major, B.; Day-Lewis, F. D.; Lane, J. W.</p> <p>2010-12-01</p> <p>Enhanced bioremediation, which involves introduction of amendments to promote biodegradation, increasingly is used to accelerate cleanup of recalcitrant compounds and has been identified as the preferred remedial treatment at many contaminated sites. Although blind introduction of amendments can lead to sub-optimal or ineffective remediation, the distribution of amendment throughout the treatment zone is difficult to measure using conventional sampling. Because amendments and their degradation products commonly have electrical properties that differ from those of ambient soil, time-lapse electrical geophysical monitoring has the potential to verify amendment emplacement and distribution. In order for geophysical monitoring to be useful, however, results of the injection ideally should be accessible in near real time. In August 2010, we demonstrated the feasibility of near real-time, autonomous electrical geophysical monitoring of amendment injections at the former Defense Reutilization and Marketing Office (DRMO) in Brandywine, Maryland. Two injections of about 1000 gallons each of molasses, a widely used amendment for enhanced bioremediation, were monitored using measurements taken with borehole and surface electrodes. During the injections, multi-channel resistance data were recorded; data were transmitted to a server and processed using a parallel resistivity inversion code; and results in the form of time-lapse imagery subsequently were posted to a website. This process occurred automatically without human intervention. The resulting time-lapse imagery clearly showed the evolution of the molasses plume. The delay between measurements and online delivery of images was between 45 and 60 minutes, thus providing actionable information that could support decisions about field procedures and a check on whether amendment reached target zones. This experiment demonstrates the feasibility of using electrical imaging as a monitoring tool both during amendment emplacement and post-injection to track amendment distribution, geochemical breakdown, and other remedial effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.nco.ncep.noaa.gov/pmb/products/hur','SCIGOVWS'); return false;" href="http://www.nco.ncep.noaa.gov/pmb/products/hur"><span>Hurricane Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>HOME PAGE <em>Image</em> of NCEP Logo WHERE AMERICA'S CLIMATE AND WEATHER SERVICES BEGIN NCEP <em>Products</em> Inventory <em>Image</em> of horizontal rule Hurricane <em>Products</em> Updated: 6/09/2015 Geophysical fluid dynamics laboratory Hurricane Model (GHM) Hurricane Weather Research and Forecast System (HWRF) * <em>Products</em> Information</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023989','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023989"><span>Spatial scale analysis in geophysics - Integrating surface and borehole geophysics in groundwater studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Paillet, Frederick L.; Singhroy, V.H.; Hansen, D.T.; Pierce, R.R.; Johnson, A.I.</p> <p>2002-01-01</p> <p>Integration of geophysical data obtained at various scales can bridge the gap between localized data from boreholes and site-wide data from regional survey profiles. Specific approaches to such analysis include: 1) comparing geophysical measurements in boreholes with the same measurement made from the surface; 2) regressing geophysical data obtained in boreholes with water-sample data from screened intervals; 3) using multiple, physically independent measurements in boreholes to develop multivariate response models for surface geophysical surveys; 4) defining subsurface cell geometry for most effective survey inversion methods; and 5) making geophysical measurements in boreholes to serve as independent verification of geophysical interpretations. Integrated analysis of surface electromagnetic surveys and borehole geophysical logs at a study site in south Florida indicates that salinity of water in the surficial aquifers is controlled by a simple wedge of seawater intrusion along the coast and by a complex pattern of upward brine seepage from deeper aquifers throughout the study area. This interpretation was verified by drilling three additional test boreholes in carefully selected locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6031D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6031D"><span>Time-lapse integrated geophysical imaging of magmatic injections and fluid-induced fracturing causing Campi Flegrei 1983-84 Unrest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Siena, Luca; Crescentini, Luca; Amoruso, Antonella; Del Pezzo, Edoardo; Castellano, Mario</p> <p>2016-04-01</p> <p>Geophysical precursors measured during Unrest episodes are a primary source of geophysical information to forecast eruptions at the largest and most potentially destructive volcanic calderas. Despite their importance and uniqueness, these precursors are also considered difficult to interpret and unrepresentative of larger eruptive events. Here, we show how novel geophysical imaging and monitoring techniques are instead able to represent the dynamic evolution of magmatic- and fluid-induced fracturing during the largest period of Unrest at Campi Flegrei caldera, Italy (1983-1984). The time-dependent patterns drawn by microseismic locations and deformation, once integrated by 3D attenuation tomography and absorption/scattering mapping, model injections of magma- and fluid-related materials in the form of spatially punctual microseismic bursts at a depth of 3.5 km, west and offshore the city of Pozzuoli. The shallowest four kilometres of the crust work as a deformation-based dipolar system before and after each microseismic shock. Seismicity and deformation contemporaneously focus on the point of injection; patterns then progressively crack the medium directed towards the second focus, a region at depths 1-1.5 km south of Solfatara. A single high-absorption and high-scattering aseismic anomaly marks zones of fluid storage overlying the first dipolar centre. These results provide the first direct geophysical signature of the processes of aseismic fluid release at the top of the basaltic basement, producing pozzolanic activity and recently observed via rock-physics and well-rock experiments. The microseismicity caused by fluids and gasses rises to surface via high-absorption north-east rising paths connecting the two dipolar centres, finally beingq being generally expelled from the maar diatreme Solfatara structure. Geophysical precursors during Unrest depict how volcanic stress was released at the Campi Flegrei caldera during its period of highest recorded seismicity and deformation; they may work as a template for modelling future events in the case the volcano was approaching eruption conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710603R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710603R"><span>Geophysical methods for road construction and maintenance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasul, Hedi; Karlson, Caroline; Jamali, Imran; Earon, Robert; Olofsson, Bo</p> <p>2015-04-01</p> <p>Infrastructure, such as road transportation, is a vital in civilized societies; which need to be constructed and maintained regularly. A large part of the project cost is attributed to subsurface conditions, where unsatisfactory conditions could increase either the geotechnical stabilization measures needed or the design cost itself. A way to collect information of the subsurface and existing installations which can lead to measures reducing the project cost and damage is to use geophysical methods during planning, construction and maintenance phases. The moisture in road layers is an important factor, which will affect the bearing capacity of the construction as well as the maintenances. Moisture in the road is a key factor for a well-functioning road. On the other hand the excessive moisture is the main reason of road failure and problems. From a hydrological point of view geophysical methods could help road planners identify the water table, geological strata, pollution arising from the road and the movement of the pollution before, during and after construction. Geophysical methods also allow road planners to collect valuable data for a large area without intrusive investigations such as with boreholes, i.e. minimizing the environmental stresses and costs. However, it is important to specify the investigation site and to choose the most appropriate geophysical method based on the site chosen and the objective of the investigation. Currently, numerous construction and rehabilitation projects are taking places around the world. Many of these projects are focused on infrastructural development, comprising both new projects and expansion of the existing infrastructural network. Geophysical methods can benefit these projects greatly during all phases. During the construction phase Ground Penetrating radar (GPR) is very useful in combination with Electrical Resistivity (ER) for detecting soil water content and base course compaction. However, ER and Electromagnetic (EM) methods can also be used for monitoring changes in water content and pollutant spreading during the maintenance phase. The objective of this study was to describe various geophysical methods which could benefit the road planning, construction and maintenance phases focusing on hydrological impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31J..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31J..02P"><span>A Multi-physics Approach to Understanding Low Porosity Soils and Reservoir Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prasad, M.; Mapeli, C.; Livo, K.; Hasanov, A.; Schindler, M.; Ou, L.</p> <p>2017-12-01</p> <p>We present recent results on our multiphysics approach to rock physics. Thus, we evaluate geophysical measurements by simultaneously measuring petrophysical properties or imaging strains. In this paper, we present simultaneously measured acoustic and electrical anisotropy data as functions of pressure. Similarly, we present strains and strain localization images simultaneously acquired with acoustic measurements as well as NMR T2 relaxations on pressurized fluids as well as rocks saturated with these pressurized fluids. Such multiphysics experiments allow us to constrain and assign appropriate causative mechanisms to development rock physics models. They also allow us to decouple various effects, for example, fluid versus pressure, on geophysical measurements. We show applications towards reservoir characterization as well as CO2 sequestration applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6799M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6799M"><span>Geophysical investigation of subrosion processes - an integrated approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miensopust, Marion; Hupfer, Sarah; Kobe, Martin; Schneider-Löbens, Christiane; Wadas, Sonja; Krawczyk, Charlotte</p> <p>2016-04-01</p> <p>Subrosion, i.e., leaching of readily soluble rocks mostly due to groundwater, is usually of natural origin but can be enhanced by anthropogenic interferences. In recent years, public awareness of subrosion processes in terms of the in parts catastrophic implications and incidences increased. Especially the sinkholes in Schmalkalden and Tiefenort (Germany) are - based on unforeseen collapse events and associated damage in 2010 - two dramatic examples. They illustrate that to date the knowledge of those processes and therefore the predictability of such events is insufficient. The complexity of the processes requires an integrated geophysical approach which investigates the interlinking of structure, hydraulics, solution processes, and mechanics. This finally contributes to a better understanding of the processes by reliable imaging and characterisation of subrosion structures. At LIAG an inter-sectional group is engaged in geophysical investigation of subrosion processes. The focus is application, enhancement and combination of various geophysical methods both at surface and in boreholes. This includes monitoring of (surface) deformation and variation of gravity as well as seismic, geoelectric and electromagnetic methods. Petrophysical investigations (with focus on spectral induced polarisation - SIP) are conducted to characterise the processes on pore scale. Numerical studies are applied to advance the understanding of void forming processes and the mechanical consequences in the dynamic interaction. Since March 2014, quarterly campaigns are conducted to monitor time-lapse gravity changes at 12 stations in the urban area of Bad Frankenhausen. The standard deviations of the gravity differences between the survey points are low and the accompanying levelling locally shows continuous subsidence in the mm/year-range. Eight shear-wave reflection seismic profiles were surveyed in Bad Frankenhausen using a landstreamer and an electro-dynamic vibrator. This method is suitable for high-resolution imaging of near-surface subrosion structures. The analysis revealed a heterogeneous underground with fractures, faults and depression-structures and variations of traveltime, absorption and scattering of seismic waves. Electric and electromagnetic methods have been used to investigate the geological structure of a karst system (e.g. banking and dipping of limestone) based on the different bulk resistivities of the various geological units and reflections of electromagnetic waves at interfaces. The borehole georadar has successfully been used to detect a cavity and areas of disruption. First results of laboratory SIP measurements on different carbonates show clearly polarization effects and a strong relationship between real and imaginary part of electrical conductivity. All samples of Edwards Brown carbonates show a significant phase peak and the same chemism. Therefore, they are ideal for a more systematic study to derive robust empirical relations between IP and petrophysical parameters. Numerical modelling is applied to simulate the collapse mechanism and rock failure to specify the conditions in which sinkholes form. Important parameters for failure are thickness of overburden, lateral dimension and shape of the cavity, existing fracture network and layer boundaries, which partly can be provided by the other methods. This diversity of methods allows a characterisation of karst systems and subrosion structures based on various complementary properties and on many scales from pore size to the big picture of the karst system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=338193&Lab=NERL&keyword=management+AND+projects&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=338193&Lab=NERL&keyword=management+AND+projects&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effect...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS23A0023S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS23A0023S"><span>Stochastic Seismic Inversion and Migration for Offshore Site Investigation in the Northern Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Son, J.; Medina-Cetina, Z.</p> <p>2017-12-01</p> <p>We discuss the comparison between deterministic and stochastic optimization approaches to the nonlinear geophysical full-waveform inverse problem, based on the seismic survey data from Mississippi Canyon in the Northern Gulf of Mexico. Since the subsea engineering and offshore construction projects actively require reliable ground models from various site investigations, the primary goal of this study is to reconstruct the accurate subsurface information of the soil and rock material profiles under the seafloor. The shallow sediment layers have naturally formed heterogeneous formations which may cause unwanted marine landslides or foundation failures of underwater infrastructure. We chose the quasi-Newton and simulated annealing as deterministic and stochastic optimization algorithms respectively. Seismic forward modeling based on finite difference method with absorbing boundary condition implements the iterative simulations in the inverse modeling. We briefly report on numerical experiments using a synthetic data as an offshore ground model which contains shallow artificial target profiles of geomaterials under the seafloor. We apply the seismic migration processing and generate Voronoi tessellation on two-dimensional space-domain to improve the computational efficiency of the imaging stratigraphical velocity model reconstruction. We then report on the detail of a field data implementation, which shows the complex geologic structures in the Northern Gulf of Mexico. Lastly, we compare the new inverted image of subsurface site profiles in the space-domain with the previously processed seismic image in the time-domain at the same location. Overall, stochastic optimization for seismic inversion with migration and Voronoi tessellation show significant promise to improve the subsurface imaging of ground models and improve the computational efficiency required for the full waveform inversion. We anticipate that by improving the inversion process of shallow layers from geophysical data will better support the offshore site investigation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS33A0020X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS33A0020X"><span>Multi-channel Analysis of Passive Surface Waves (MAPS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.</p> <p>2017-12-01</p> <p>Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be used for accurate and fast imaging of high-frequency surface wave energy, and some examples also show that high quality imaging similar to those with active sources can be generated only by the use of a few minutes of noise. The use of cultural noise in town, MAPS can image S-wave velocity structure from the ground surface to hundreds of meters depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMNS42A..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMNS42A..01A"><span>Imaging Buried Culverts Using Ground Penetrating Radar: Comparing 100 MHZ Through 1 GHZ Antennae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdul Aziz, A.; Stewart, R. R.; Green, S. L.</p> <p>2013-12-01</p> <p>*Aziz, A A aabdulaziz@uh.edu Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA Stewart, R R rrstewart@uh.edu Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA *Green, S L slgreen@yahoo.com Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA A 3D ground penetrating radar (GPR) survey, using three different frequency antennae, was undertaken to image buried steel culverts at the University of Houston's La Marque Geophysical Observatory 30 miles south of Houston, Texas. The four culverts, under study, support a road crossing one of the area's bayous. A 32 m by 4.5 m survey grid was designed on the road above the culverts and data were collected with 100 MHz, 250 MHz, and 1 GHz antennae. We used an orthogonal acquisition geometry for the three surveys. Inline sampling was from 1.0 cm to 10 cm (from 1 GHz to 100 MHz antenna) with inline and crossline spacings ranging from 0.2 m to 0.5 m. We used an initial velocity of 0.1 m/ns (from previous CMP work at the site) for the display purposes. The main objective of the study was to analyze the effect of different frequency antennae on the resultant GPR images. We are also interested in the accuracy and resolution of the various images, in addition to developing an optimal processing flow.The data were initially processed with standard steps that included gain enhancement, dewow and temporal-filtering, background suppression, and 2D migration. Various radar velocities were used in the 2D migration and ultimately 0.12 m/ns was used. The data are complicated by multipathing from the surface and between culverts (from modeling). Some of this is ameliorated via deconvolution. The top of each of the four culverts was evident in the GPR images acquired with the 250 MHz and 100 MHz antennas. For 1 GHz, the top of the culvert was not clear due to the signal's attenuation. The 250 MHz shielded antenna provides a vertical resolution of about 0.1 m and is the choice to image the culverts. The 100 MHz antenna provided an increment in depth of penetration, but at the expense of a substantially diminished resolution (0.25 m).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA621946','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA621946"><span>Imaging of Ground Ice with Surface-Based Geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-10-01</p> <p>terrains. Electrical Resistivity Tomography (ERT), in particular, has been effective for imaging ground ice. ERT measures the ability of materials to...13 2.2.1 Electrical resistivity tomography (ERT...Engineer Research and Development Center ERT Electrical Resistivity Tomography GPS Global Positioning System LiDAR Light Detection and Ranging SIPRE</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H21A1428C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H21A1428C"><span>Spatial heterogeneities and variability of karst hydro-system : insights from geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Champollion, C.; Fores, B.; Lesparre, N.; Frederic, N.</p> <p>2017-12-01</p> <p>Heterogeneous systems such as karsts or fractured hydro-systems are challenging for both scientist and groundwater resources management. Karsts heterogeneities prevent the comparison and moreover the combination of data representative of different scales: borehole water level can generally not be used directly to interpret spring flow dynamic for example. The spatial heterogeneity has also an impact on the temporal variability of groundwater transfer and storage. Karst hydro-systems have characteristic non linear relation between precipitation amount and discharge at the outlets with threshold effects and a large variability of groundwater transit times In the presentation, geophysical field experiments conducted in karst hydro-system in the south of France are used to investigate groundwater transfer and storage variability at a scale of a few hundred meters. We focus on the added value of both geophysical time-lapse gravity experiments and 2D ERT imaging of the subsurface heterogeneities. Both gravity and ERT results can only be interpreted with large ambiguity or some strong a priori: the relation between resistivity and water content is not unique; almost no information about the processes can be inferred from the groundwater stock variations. The present study demonstrate how the ERT and gravity field experiments can be interpreted together in a coherent scheme with less ambiguity. First the geological and hydro-meteorological context is presented. Then the ERT field experiment including the processing and the results are detailed in the section about geophysical imaging of the heterogeneities. The gravity double difference (S2D) time-lapse experiment is described in the section about geophysical monitoring of the temporal variability. The following discussion demonstrate the impact of both experiments on the interpretation in terms of processes and heterogeneities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2239E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2239E"><span>About well-posed definition of geophysical fields'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ermokhine, Konstantin; Zhdanova, Ludmila; Litvinova, Tamara</p> <p>2013-04-01</p> <p>We introduce a new approach to the downward continuation of geophysical fields based on approximation of observed data by continued fractions. Key Words: downward continuation, continued fraction, Viskovatov's algorithm. Many papers in geophysics are devoted to the downward continuation of geophysical fields from the earth surface to the lower halfspace. Known obstacle for the method practical use is a field's breaking-down phenomenon near the pole closest to the earth surface. It is explained by the discrepancy of the studied fields' mathematical description: linear presentation of the field in the polynomial form, Taylor or Fourier series, leads to essential and unremovable instability of the inverse problem since the field with specific features in the form of poles in the lower halfspace principally can't be adequately described by the linear construction. Field description by the rational fractions is closer to reality. In this case the presence of function's poles in the lower halfspace corresponds adequately to the denominator zeros. Method proposed below is based on the continued fractions. Let's consider the function measured along the profile and represented it in the form of the Tchebishev series (preliminary reducing the argument to the interval [-1, 1]): There are many variants of power series' presentation by continued fractions. The areas of series and corresponding continued fraction's convergence may differ essentially. As investigations have shown, the most suitable mathematical construction for geophysical fields' continuation is so called general C-fraction: where ( , z designates the depth) For construction of C-fraction corresponding to power series exists a rather effective and stable Viskovatov's algorithm (Viskovatov B. "De la methode generale pour reduire toutes sortes des quantitees en fraction continues". Memoires de l' Academie Imperiale des Sciences de St. Petersburg, 1, 1805). A fundamentally new algorithm for Downward Continuation (in an underground half-space) a field measured at the surface, allows you to make the interpretation of geophysical data, to build a cross-section, determine the depth, the approximate shape and size of the sources measured at the surface of the geophysical fields. Appliance of the method are any geophysical surveys: magnetic, gravimetric, electrical exploration, seismic, geochemical surveying, etc. Method was tested on model examples, and practical data. The results are confirmed by drilling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915963W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915963W"><span>Geothermal exploration in the German Molasse Basin - Supplementary exploration using integrated 3-component data and shear wave measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wawerzinek, Britta; Buness, Hermann; Lüschen, Ewald; Thomas, Rüdiger</p> <p>2017-04-01</p> <p>To establish a dense area-wide network of geothermal facilities, the Stadtwerke München initiated the joint research project GRAME together with the Leibniz Institute for Applied Geophysics (GeoParaMoL*). As a database for the project, a 3D seismic survey was acquired from November 1015 to March 2016 and covers 170 km2 of the southern part of Munich. 3D seismic exploration is a well-established method to explore geothermal reservoirs, and its value for reservoir characterization of the Malm has been proven by several projects. A particular challenge often is the determination of geophysical parameters for facies interpretation without any borehole information, which is needed for calibration. A new approach to facilitate a reliable interpretation is to include shear waves in the interpretation workflow, which helps to tie down the range of lithological and petrophysical parameters. Shear wave measurements were conducted during the regular 3D seismic survey in Munich. In a passive experiment, the survey was additionally recorded on 467 single, 3-component (3C), digital receivers that were deployed along one main line (15 km length) and two crosslines (4 km length). In this way another 3D P-wave as well as a 3D shear wave dataset were acquired. In the active shear wave experiment the SHOVER technique (Edelmann, 1981) was applied to directly excite shear waves using standard vertical vibrators. The 3C recordings of both datasets show, in addition to the P-wave reflections on the vertical component, clear shear-wave signals on the horizontal components. The structural image of the P-waves recorded on the vertical component of the 3C receivers displays clear reflectors within the Molasse Basin down to the Malm and correlates well with the structural image of the regular survey. Taking into account a travel time ratio of 1.6 the reflection patterns of horizontal and vertical components approximately coincide. This indicates that Molasse sediments and the Malm can also be imaged by shear waves. Further processing steps will derive geophysical parameters (e.g. vp/vs) and clarify the amount of converted waves. GeoParaMoL (FKZ 0325787B) is funded by the Federal Ministry for Economic Affairs and Energy (BMWi). Edelmann, H.A.K. (1981): SHOVER shear-wave generation by vibration orthogonal to the polarization. Geophysical Prospecting 29, 541-549. * http://www.liag-hannover.de/en/fsp/ge/geoparamol.html</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1353343-muon-tomography-deep-reservoirs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1353343-muon-tomography-deep-reservoirs"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bonneville, Alain H.; Kouzes, Richard T.</p> <p></p> <p>Imaging subsurface geological formations, oil and gas reservoirs, mineral deposits, cavities or magma chambers under active volcanoes has been for many years a major quest of geophysicists and geologists. Since these objects cannot be observed directly, different indirect geophysical methods have been developed. They are all based on variations of certain physical properties of the subsurface that can be detected from the ground surface or from boreholes. Electrical resistivity, seismic wave’s velocities and density are certainly the most used properties. If we look at density, indirect estimates of density distributions are performed currently by seismic reflection methods - since themore » velocity of seismic waves depend also on density - but they are expensive and discontinuous in time. Direct estimates of density are performed using gravimetric data looking at variations of the gravity field induced by the density variations at depth but this is not sufficiently accurate. A new imaging technique using cosmic-ray muon detectors has emerged during the last decade and muon tomography - or muography - promises to provide, for the first time, a complete and precise image of the density distribution in the subsurface. Further, this novel approach has the potential to become a direct, real-time, and low-cost method for monitoring fluid displacement in subsurface reservoirs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1247/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1247/"><span>Aeromagnetic Survey in Afghanistan: A Website for Distribution of Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Abraham, Jared D.; Anderson, Eric D.; Drenth, Benjamin J.; Finn, Carol A.; Kucks, Robert P.; Lindsay, Charles R.; Phillips, Jeffrey D.; Sweeney, Ronald E.</p> <p>2007-01-01</p> <p>Afghanistan's geologic setting indicates significant natural resource potential While important mineral deposits and petroleum resources have been identified, much of the country's potential remains unknown. Airborne geophysical surveys are a well accepted and cost effective method for obtaining information of the geological setting of an area without the need to be physically located on the ground. Due to the security situation and the large areas of the country of Afghanistan that has not been covered with geophysical exploration methods a regional airborne geophysical survey was proposed. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918854G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918854G"><span>Coupled charge migration and fluid mixing in reactive fronts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghosh, Uddipta; Bandopadhyay, Aditya; Jougnot, Damien; Le Borgne, Tanguy; Meheust, Yves</p> <p>2017-04-01</p> <p>Quantifying fluid mixing in subsurface environments and its consequence on biogeochemical reactions is of paramount importance owing to its role in processes such as contaminant migration, aquifer remediation, CO2 sequestration or clogging processes, to name a few (Dentz et al. 2011). The presence of strong velocity gradients in porous media is expected to lead to enhanced diffusive mixing and augmented reaction rates (Le Borgne et al. 2014). Accurate in situ imaging of subsurface reactive solute transport and mixing remains to date a challenging proposition: the opacity of the medium prevents optical imaging and field methods based on tracer tests do not provide spatial information. Recently developed geophysical methods based on the temporal monitoring of electrical conductivity and polarization have shown promises for mapping and monitoring biogeochemical reactions in the subsurface although it remains challenging to decipher the multiple sources of electrical signals (e.g. Knight et al. 2010). In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of mapping reaction rates from electrical measurements. To this end, we develop a new theoretical framework based on a lamellar mixing model (Le Borgne et al. 2013) to quantify changes in electrical mobility induced by chemical reactions across mixing fronts. Electrical conductivity and induced polarization are strongly dependent on the concentration of ionic species, which in turn depend on the local reaction rates. Hence, our results suggest that variation in real and complex electrical conductivity may be quantitatively related to the mixing and reaction dynamics. Thus, the presented theory provides a novel upscaling framework for quantifying the coupling between mixing, reaction and charge migration in heterogeneous porous media flows. References: Dentz. et al., Mixing, spreading and reaction in heterogeneous media: A brief review J. Contam. Hydrol. 120-121, 1 (2011). Le Borgne et al. Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in heterogeneous Flows, Geophys. Res. Lett. 41, 7898 (2014). Knight, et al., Geophysics at the interface: Response of geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces. Rev. Geophys. 48, (2010). Le Borgne et al. (2013) Stretching, coalescence and mixing in porous media, Phys. Rev. Lett., 110, 204501</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033576','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033576"><span>Geophysical evaluation of the Success Dam foundation, Porterville, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hunter, L.E.; Powers, M.H.; Haines, S.; Asch, T.; Burton, B.L.; Serafini, D.C.</p> <p>2006-01-01</p> <p>Success Dam is a zonedearth fill embankment located near Porterville, CA. Studies of Success Dam by the recent Dam Safety Assurance Program (DSAP) have demonstrated the potential for seismic instability and large deformation of the dam due to relatively low levels of earthquake shaking. The U.S. Army Corps of Engineers conducted several phases of investigations to determine the properties of the dam and its underlying foundation. Detailed engineering studies have been applied using a large number of analytical techniques to estimate the response of the dam and foundation system when subjected to earthquake loading. Although a large amount of data have been acquired, most are 'point' data from borings and results have to be extrapolated between the borings. Geophysical techniques were applied to image the subsurface to provide a better understanding of the spatial distribution of key units that potentially impact the stability. Geophysical investigations employing seismic refraction tomography, direct current (DC) resistivity, audio magnetotellurics (AMT) and self-potential (SP) were conducted across the location of the foundation of a new dam proposed to replace the existing one. Depth to bedrock and the occurrence of beds potentially susceptible to liquefaction were the focus of the investigations. Seismic refraction tomography offers a deep investigation of the foundation region and looks at compressional and shear properties of the material. Whereas resistivity surveys determines conductivity relationships in the shallow subsurface and can produce a relatively high-resolution image of geological units with different electrical properties. AMT was applied because it has the potential to look considerably deeper than the other methods, is useful for confirming depth to bedrock, and can be useful in identifying deep seated faults. SP is a passive electrical method that measures the electrical streaming potential in the subsurface that responds to the movement of ground water. SP surveys were conducted at low pool and high pool conditions in order to look for evidence of seepage below the existing dam. In this paper, we summarize these techniques, present their results at Success Dam, and discuss general application of these techniques for investigating dams and their foundations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770024627','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770024627"><span>The French Atlantic littoral and the Massif Armoricain, part 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Verger, F. (Principal Investigator); Scanvic, J. Y.; Monget, J. M.</p> <p>1977-01-01</p> <p>The author has identified the following significant results: (1) An original map of lineaments of the Armorican Massif and the Vendean platform was prepared. (2) Validity of spatial information through comparison with maps of various kinds, such as geological, geophysical, morphological, etc., was verified. (3) It was confirmed that LANDSAT images, in many cases, reflect data on deep phenomena which were only accessible geophysically and by means of borings. Tectonic domains were outlined, and known lineaments were extended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V51C0372C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V51C0372C"><span>Insights into Near-Surface Structural Control of Hydrothermal Fluid Movement at Rabbit Creek Thermal Area, Yellowstone National Park</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carr, B.; Elliot, M.; Sims, K. W. W.</p> <p>2017-12-01</p> <p>Recent geophysical imaging efforts at Yellowstone National Park have generated questions about the geologic controls of hydrothermal fluid movement within the parks thermal areas. Currently, faults and lava flow contacts are assumed to be the primary permeability pathways for deeper fluid migration to the surface. Although intuition dictates that these structures are responsible, few studies have definitively shown that this is true. Earlier geophysical imaging efforts of phase separation in Norris Geyser Basin have shown strong evidence for fractures and faulting conducting hydrothermal waters. However, no geologically mapped faults are at the surface to confirm these interpretations. Therefore, during the summer of 2017, UW surface geophysical data acquisition focused on understanding the geologic controls for a thermal area within the well-mapped Rabbit Creek Fault Zone (RCFZ). The RCFZ strikes N-S along the eastern edge of Midway Geyser Basin (i.e. the western edge of the Mallard Lake Dome) about 2.8 Km SE of Grand Prismatic spring. The section of the fault zone within the Rabbit Creek thermal area is exposed on the eastern valley wall and dips steeply to the west. Regardless at our site, this puts the two of the plateau rhyolites (i.e. the Biscuit Basin Flow and Mallard Lake flow) next to each other ( 100 m apart) with a small amount of overlying alluvial, glacial and hydrothermal deposits covering the actual fault trace. Interestingly, at least two mapped reverse faults from the Mallard Lake Dome trend NW-SE into the site and are interpreted to intersect to the RCFZ. At RCFZ, DC resistivity and seismic refraction profiling combined with Self-Potential, Magnetics, and Transient Electromagnetic soundings were acquired to provide images and in situ geophysical properties. These data highlight the variable fracturing and surface expressions of the hydrothermal fluids associated with the RCFZ and the NW trending fault zone associated with the Mallard Lake Dome. Therefore, the shallow geophysics at this one study area indicates faulting is the dominant control for hydrothermal waters reaching the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037694','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037694"><span>Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.</p> <p>2010-01-01</p> <p>Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S31D..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S31D..06C"><span>Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, T.; Snelson, C. M.; Mellors, R. J.</p> <p>2017-12-01</p> <p>The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22086.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22086.html"><span>Samhain Catenae on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-11-09</p> <p>This image made with data from NASA's Dawn spacecraft shows pit chains on dwarf planet Ceres called Samhain Catenae. Scientists created this image by draping the grayscale mosaic of Ceres' surface onto the shape model of the dwarf planet. The arrows in the image point to a few of the pit chains investigated in a 2017 study in the journal Geophysical Research Letters. https://photojournal.jpl.nasa.gov/catalog/PIA22086</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.osti.gov/sciencecinema/biblio/1131970','SCIGOVIMAGE-SCICINEMA'); return false;" href="http://www.osti.gov/sciencecinema/biblio/1131970"><span>NETL CT Imaging Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/sciencecinema/">ScienceCinema</a></p> <p>None</p> <p>2018-02-13</p> <p>NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2641S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2641S"><span>Combination of GPR with other NDT techniques in different fields of application - COST Action TU1208</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solla, Mercedes; Pérez-Gracia, Vega; Fontul, Simona; Santos-Assunçao, Sonia; Kucukdemirci, Melda</p> <p>2017-04-01</p> <p>During the last decades, there has been a continuous increase in the use of non-destructive testing (NDT) applied to many aspects related to civil engineering and other fields such as geology or sedimentology, archaeology and either monument or cultural heritage. This is principally due to the fact that most NDT methods work remotely, that is, without direct contact, while adding information of non-visible areas. Particularly, geophysics has significantly benefited the procedures for inspection and also, successfully solved some of the limitations of traditional methods such as a lack of objectiveness, destructive testing, loss of safety during infrastructure inspection, and also, low rates of production. The different geophysical methodologies are based on the measurement of physical properties of media. However, all geophysical methods are sensitive to different physical parameters and the success of these methods is related to the nature of the buried features themselves, in terms of their physical and geometric properties, soil conditions, operational factors such as the sensitivity of equipment and etc. Consequently, taking into account all of these factors, to obtain reliable and complementary results, multiple geophysical methods rather than single method and moreover data integration approaches are recommended to provide accurate interpretations. This work presents some examples of combination of Ground-Penetrating Radar (GPR) with other NDT techniques in different fields of application (pavements/railways, archaeological sites, monuments, and stratigraphy in beaches and bathymetries). An example of combination of GPR and Falling Weight Deflectometer (FWD) to assess the bearing capacity of flexible pavement is described as the most efficient structural evaluation of pavements and one of the most commonly applications of the methods on civil engineering inspections. Results of archaeogeophysical field surveys in Turkey are also included by combining the most common geophysical methods used for archaeological prospection (GPR and magnetometry). Regarding cultural heritage, an example in Barcelona (Spain) of the assessment of masonry structural elements, with embedded metallic targets, is included. Seismic tomography and 3D GPR imaging are applied, both supported with endoscopy. The results highlight the most affected areas of the structure and the existence of corroded metallic elements as consequence of humidity. Finally, two case studies support the importance of combining data in geological applications. Firstly, GPR and Electrical Resistivity Tomography (ERT) were combined for the analysis of the littoral drift and the tidal range affecting the transport of sediments in costal environments, and more particularly in O Adro Beach, in Vigo (Spain) that had been subjected to extension activities during the last decades. Secondly, the combination Multibeam Sonar and GPR data is presented for the study of a lake, which is an abandoned kaolin mine. Thus, it was possible to analyze the column of water in all the extension of the lake, while differentiating layers of lacustrine deposits and kaolin rock formations in subsurface. This work represents a contribution to the COST (European Cooperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The authors thank COST for funding the Action TU1208.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512286J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512286J"><span>Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos</p> <p>2013-04-01</p> <p>In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission response and the reflection response for a 1D multilayer structure, and next 3D approach (Wapenaar 2004). As a result of this seismic interferometry experiment the 3D reflectivity model (frequencies and resolution ranges) was obtained. We proved also that the seismic interferometry approach can be applied in asynchronous seismic auscultation. The reflections detected in the virtual seismic sections are in agreement with the geological features encountered during the excavation of the tunnel and also with the petrophysical properties and parameters measured in previous geophysical borehole logging. References Claerbout J.F., 1968. Synthesis of a layered medium from its acoustic transmision response. Geophysics, 33, 264-269 Flavio Poletto, Piero Corubolo and Paolo Comeli.2010. Drill-bit seismic interferometry whith and whitout pilot signals. Geophysical Prospecting, 2010, 58, 257-265. Wapenaar, K., J. Thorbecke, and D. Draganov, 2004, Relations between reflection and transmission responses of three-dimensional inhomogeneous media: Geophysical Journal International, 156, 179-194.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B51G0503M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B51G0503M"><span>Geophysical evidence for non-uniform permafrost degradation after fire across boreal landscapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minsley, B. J.; Pastick, N. J.; Wylie, B. K.; Brown, D. N.; Kass, A.</p> <p>2015-12-01</p> <p>Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. We present a combination of multi-scale remote sensing, geophysical, and field observations that reveal details of both near-surface (<1 m) and deeper impacts of fire on permafrost. Along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska, subsurface imaging indicates locations where permafrost appears to be resilient to disturbance from fire, areas where warm permafrost conditions exist that may be most vulnerable to future change, and also where permafrost has thawed. High-resolution geophysical data corroborate remote sensing interpretations of near-surface permafrost, and also add new high-fidelity details of spatial heterogeneity that extend from the shallow subsurface to depths of about 10 m. Data collected along each transect include observations of active layer thickness (ALT), organic layer thickness (OLT), plant species cover, electrical resistivity tomography (ERT), and downhole Nuclear Magnetic Resonance (NMR) measurements. Results show that post-fire impacts on permafrost can be variable, and depend on multiple factors such as fire severity, soil texture, and soil moisture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....2111R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....2111R"><span>Integration of magnetometric, gpr and geoelectric measurements applied to the study of the new Viggiano archaeological site (Southern Italy).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rizzo, E.; Chianese, D.; Lapenna, V.; Piscitelli, S.</p> <p>2003-04-01</p> <p>In the frame of a collaboration with the Archaeological Superintendence of the Basilicata Region (Southern Italy), the Geophysical Lab of IMAA-CNR planned a multidisciplinary investigation in the archaeological site of Viggiano, integrating magnetic mapping, Ground Penetrating Radar profiling and 3D electrical resistivity imaging. The archaeological site, located in Agri Valley (Southern Italy, Basilicata), is an ancient structure developed in successive phases between IV and III century B.C. In this area during some shovel tests archaeological remnants have been identified in the western part. Successively the archaeologists hypothesized the presence of buried structures in the eastern part too, where we performed a geophysical survey. In particular, a magnetic map by means of a caesium vapour magnetometer G-858 GEOMETRICS has been carried to find the external perimeter; more than 50 Georadar profiles using SIR 2000 instrument have been performed to delineate the internal buried structures and the electrical resistivity method has been applied to estimate the depth of buried structures. According to the archaeological hypothesis significant wall structures have been identified in the eastern part. In conclusion, the integration of different geophysical techniques allows us to obtain very intriguing information about the shape, the dimension and the depth of the oriental buried wall structures giving a contribute to better develop a new hypothesis about the history of the archaeological site of Viggiano.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMNS32A..03E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMNS32A..03E"><span>Geophysical investigation of the June 6, 1944 D-Day invasion site at Pointe du Hoc, Normandy, France</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Everett, M. E.; Pierce, C. J.; Warden, R. R.; Burt, R. A.</p> <p>2005-05-01</p> <p>A near-surface geophysical survey at the D-Day invasion site atop the cliffs at Pointe du Hoc, Normandy, France was carried out using ground-penetrating radar, electromagnetic induction, and magnetic gradiometry equipment. The subsurface targets of investigation are predominantly buried concrete and steel structures and earthworks associated with the German coastal fortifications at this stronpoint of Hitler's Atlantic Wall. The targets are readily detectable embedded within the vadose zone of a weakly magnetic, electrically resistive loess soil cover. The radar and electromagnetic induction responses lend themselves to plan-view imaging of the subsurface, while the magnetics data reveal the presence of buried magnetic bodies in a more subtle fashion. Several intriguing geophysical signatures were discovered, including what may be the buried remains of a railway turntable, ordnance fragments in the bomb craters, a buried steel-reinforced concrete trench, and a linear chain of machine gun firing positins. Geophysical prospecting is shown to be a very powerful tool for historical battlefield characterization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAG...123..123K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAG...123..123K"><span>The Unicorn Cave, Southern Harz Mountains, Germany: From known passages to unknown extensions with the help of geophysical surveys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaufmann, Georg; Nielbock, Ralf; Romanov, Douchko</p> <p>2015-12-01</p> <p>In soluble rocks (limestone, dolomite, anhydrite, gypsum, …), fissures and bedding partings can be enlarged with time by both physical and chemical dissolution of the host rock. With time, larger cavities evolve, and a network of cave passages can evolve. If the enlarged cave voids are not too deep under the surface, geophysical measurements can be used to detect, identify and trace these karst structures, e.g.: (i) gravity revealing air- and sediment-filled cave voids through negative Bouguer anomalies, (ii) electrical resistivity imaging (ERI) mapping different infillings of cavities either as high resistivities from air-filled voids or dry soft sediments, or low resistivities from saturated sediments, and (iii) groundwater flow through electrical potential differences (SP) arising from dislocated ionic charges from the walls of the underground flow paths. We have used gravity, ERI, and SP methods both in and above the Unicorn Cave located in the southern Harz Mountains in Germany. The Unicorn Cave is a show cave developed in the Werra dolomite formation of the Permian Zechstein sequence, characterised by large trunk passages interrupted by larger rooms. The overburden of the cave is only around 15 m, and passages are filled with sediments reaching infill thicknesses up to 40 m. We present results from our geophysical surveys above the known cave and its northern and southern extension, and from the cave interior. We identify the cave geometry and its infill from gravity and ERI measurements, predict previously unknown parts of the cave, and subsequently confirm the existence of these new passages through drilling. From the wealth of geophysical data acquired we derive a three-dimensional structural model of the Unicorn Cave and its surrounding, especially the cave infill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9241E..1BM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9241E..1BM"><span>Concepts for a geostationary-like polar mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macdonald, Malcolm; Anderson, Pamela; Carrea, Laura; Dobke, Benjamin; Embury, Owen; Merchant, Chris; Bensi, Paolo</p> <p>2014-10-01</p> <p>An evidence-led scientific case for development of a space-based polar remote sensing platform at geostationary-like (GEO-like) altitudes is developed through methods including a data user survey. Whilst a GEO platform provides a nearstatic perspective, multiple platforms are required to provide circumferential coverage. Systems for achieving GEO-like polar observation likewise require multiple platforms however the perspective is non-stationery. A key choice is between designs that provide complete polar view from a single platform at any given instant, and designs where this is obtained by compositing partial views from multiple sensors. Users foresee an increased challenge in extracting geophysical information from composite images and consider the use of non-composited images advantageous. Users also find the placement of apogee over the pole to be preferable to the alternative scenarios. Thus, a clear majority of data users find the "Taranis" orbit concept to be better than a critical inclination orbit, due to the improved perspective offered. The geophysical products that would benefit from a GEO-like polar platform are mainly estimated from radiances in the visible/near infrared and thermal parts of the electromagnetic spectrum, which is consistent with currently proven technologies from GEO. Based on the survey results, needs analysis, and current technology proven from GEO, scientific and observation requirements are developed along with two instrument concepts with eight and four channels, based on Flexible Combined Imager heritage. It is found that an operational system could, mostly likely, be deployed from an Ariane 5 ES to a 16-hour orbit, while a proof-of-concept system could be deployed from a Soyuz launch to the same orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916929M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916929M"><span>Investigation of subrosion processes using an integrated geophysical approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miensopust, Marion; Hupfer, Sarah; Kobe, Martin; Schneider-Löbens, Christiane; Wadas, Sonja</p> <p>2017-04-01</p> <p>Subrosion, i.e., leaching of readily soluble rocks, is usually of natural origin but can be enhanced by anthropogenic interferences. In recent years, public awareness of subrosion processes in terms of the in parts catastrophic implications and incidences increased. Especially the sinkholes in Schmalkalden, Tiefenort and Nordhausen (Germany) are three dramatic examples. They show that the knowledge of those processes and therefore, the predictability of such events is insufficient. The complexity of subrosion processes requires an integrated geophysical approach, which investigates the interlinking of structure, hydraulics, leaching, and mechanics. This contributes to a better understanding of the processes by reliable imaging and characterisation of subrosion structures. At LIAG an inter-sectional group is engaged in geophysical investigation of subrosion processes. The focus is application, enhancement and combination of various geophysical methods both at surface and in boreholes. This includes the monitoring of surface deformation and the application of time-lapse gravity as well as seismic, geoelectric and electromagnetic methods. Petrophysical investigations (with focus on Spectral Induced Polarisation - SIP) are conducted to characterise the processes on pore scale. Numerical studies are applied to advance the understanding of void forming processes and the mechanical consequences in the dynamic interaction. Since March 2014, quarterly campaigns are conducted to monitor changes in gravity acceleration at 15 stations in the urban area of Bad Frankenhausen. The standard deviations of the adjusted gravity differences are in the single-digit µGal range. The gravity acceleration changes in the range of 0 to 15 µGal over a timespan of three years and the accompanying levelling locally shows continuous subsidence in the mm/year-range. Sixteen SH-wave and four P-wave reflection seismic profiles together with three VSṔs were surveyed in the city of Bad Frankenhausen. Additionally, five SH-wave profiles and one VSP were carried out around the sinkhole of Schmalkalden. The underground in the local subrosion areas is heterogeneous with many fractures and faults. Subrosion structures were imaged in high-resolution and by defining the shear-modulus. Vp/Vs-ratio unstable areas have been identified. Electric and electromagnetic methods have been used to investigate the geological structure of a karst system based on the different bulk resistivities of the various geological units and reflections of electromagnetic waves at interfaces. The borehole georadar has been used to detect a cavity and areas of disruption. Different types of carbonates were analysed with laboratory SIP-measurements. First results show polarisation effects for all carbonate types. Four different phase behaviours were observed in the phase spectra. Further experiments will be conducted to get more insight into the phase behaviour of carbonates. Numerical modelling is applied to simulate the collapse mechanism and rock failure to specify the conditions in which sinkholes form. Important parameters for failure are thickness of overburden, lateral dimension and shape of the cavity, existing fracture network and layer boundaries, which partly can be provided by the other methods. This diversity of methods allows a characterisation of karst systems and subrosion structures based on various complementary properties and on many scales from pore size to the big picture of the karst system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031049&hterms=data+mining&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Bmining','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031049&hterms=data+mining&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Bmining"><span>Comparison of Landsat Thematic Mapper and Geophysical and Environmental Research Imaging Spectrometer data for the Cuprite mining district, Esmeralda, and Nye counties, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kierein-Young, Kathryn S.; Kruse, Fred A.</p> <p>1989-01-01</p> <p>Landsat TM images and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data were analyzed for the Cuprite mining district and compared to available geologic and alteration maps of the area. The TM data, with 30 m resolution and 6 broadbands, allowed discrimination of general mineral groups. Clay minerals, playa deposits, and unaltered rocks were mapped as discrete spectral units using the TM data, but specific minerals were not determined, and definition of the individual alteration zones was not possible. The GERIS, with 15 m spatial resolution and 63 spectral bands, permitted construction of complete spectra and identification of specific minerals. Detailed spectra extracted from the images provided the ability to identify the minerals alunite, kaolinite, hematite, and buddingtonite by their spectral characteristics. The GERIS data show a roughly concentrically zoned hydrothermal system. The mineralogy mapped with the aircraft system conforms to previous field and multispectral image mapping. However, identification of individual minerals and spatial display of the dominant mineralogy add information that can be used to help determine the morphology and genetic origin of the hydrothermal system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2011/1055/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2011/1055/"><span>Aeromagnetic surveys in Afghanistan: An updated website for distribution of data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shenwary, Ghulam Sakhi; Kohistany, Abdul Hakim; Hussain, Sardar; Ashan, Said; Mutty, Abdul Salam; Daud, Mohammad Ahmad; Wussow, Michael D.; Sweeney, Ronald E.; Phillips, Jeffrey D.; Lindsay, Charles R.; Kucks, Robert P.; Finn, Carol A.; Drenth, Benjamin J.; Anderson, Eric D.; Abraham, Jared D.; Liang, Robert T.; Jarvis, James L.; Gardner, Joan M.; Childers, Vicki A.; Ball, David C.; Brozena, John M.</p> <p>2011-01-01</p> <p>Because of its geologic setting, Afghanistan has the potential to contain substantial natural resources. Although valuable mineral deposits and petroleum resources have been identified, much of the country's potential remains unknown. Airborne geophysical surveys are a well accepted and cost effective method for obtaining information about the geological setting of an area without the need to be physically located on the ground. Owing to the current security situation and the large areas of the country that have not been evaluated by geophysical exploration methods, a regional airborne geophysical survey was proposed. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1014513','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1014513"><span>Well casing-based geophysical sensor apparatus, system and method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Daily, William D.</p> <p>2010-03-09</p> <p>A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/17553','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/17553"><span>Integrated geophysical methods for geotechnical subsurface investigations : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2006-01-01</p> <p>This report summarizes the New Hampshire Department of Transportations (NHDOTs) investigation of : geophysical techniques to supplement conventional test borings and other explorations on transportation projects. : The Departments geotechnic...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1363947','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1363947"><span>What Lies Beneath Can Be Imaged</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, Tim</p> <p></p> <p>The Hanford Site was quickly established to help end World War II, making history for producing the plutonium used in the world’s first nuclear weapons. Throughout the Cold War years, Hanford employees produced plutonium for most of the more than 60,000 weapons in the U.S. nuclear arsenal stockpile. Today, the once highly active nuclear reactors are shut down. And the mission at Hanford turned full-circle as scientists, engineers and specialists work to clean up our nation’s most contaminated nuclear site. PNNL Computational Geophysicist Tim Johnson is helping decision-makers understand the complexity and breadth of the contamination in soils at Hanford.more » Tim and others are applying remote, high-resolution geophysical imaging to determine the extent of contamination in the soil below the surface and understand the processes controlling its movement. They also provide real-time imaging of remediation processes that are working to limit the movement of contaminants below the surface and toward water resources. Geophysical imaging simply means that PNNL scientists are combining the techniques of geology, physics, mathematics and chemistry with supercomputer modeling to create three-dimensional images of the waste and its movement. These real-time, remote images are essential in reducing the uncertainty associated with cleanup costs and remediation technologies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940014132','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940014132"><span>Physical retrieval of precipitation water contents from Special Sensor Microwave/Imager (SSM/I) data. Part 2: Retrieval method and applications (report version)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Olson, William S.</p> <p>1990-01-01</p> <p>A physical retrieval method for estimating precipitating water distributions and other geophysical parameters based upon measurements from the DMSP-F8 SSM/I is developed. Three unique features of the retrieval method are (1) sensor antenna patterns are explicitly included to accommodate varying channel resolution; (2) precipitation-brightness temperature relationships are quantified using the cloud ensemble/radiative parameterization; and (3) spatial constraints are imposed for certain background parameters, such as humidity, which vary more slowly in the horizontal than the cloud and precipitation water contents. The general framework of the method will facilitate the incorporation of measurements from the SSMJT, SSM/T-2 and geostationary infrared measurements, as well as information from conventional sources (e.g., radiosondes) or numerical forecast model fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H21A1439L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H21A1439L"><span>Critical Zone structure inferred from multiscale near surface geophysical and hydrological data across hillslopes at the Eel River CZO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, S. S.; Rempe, D. M.; Holbrook, W. S.; Schmidt, L.; Hahm, W. J.; Dietrich, W. E.</p> <p>2017-12-01</p> <p>Except for boreholes and road cut, landslide, and quarry exposures, the subsurface structure of the critical zone (CZ) of weathered bedrock is relatively invisible and unmapped, yet this structure controls the short and long term fluxes of water and solutes. Non-invasive geophysical methods such as seismic refraction are widely applied to image the structure of the CZ at the hillslope scale. However, interpretations of such data are often limited due to heterogeneity and anisotropy contributed from fracturing, moisture content, and mineralogy on the seismic signal. We develop a quantitative framework for using seismic refraction tomography from intersecting geophysical surveys and hydrologic data obtained at the Eel River Critical Zone Observatory (ERCZO) in Northern California to help quantify the nature of subsurface structure across multiple hillslopes of varying topography in the area. To enhance our understanding of modeled velocity gradients and boundaries in relation to lithological properties, we compare refraction tomography results with borehole logs of nuclear magnetic resonance (NMR), gamma and neutron density, standard penetration testing, and observation drilling logs. We also incorporate laboratory scale rock characterization including mineralogical and elemental analyses as well as porosity and density measurements made via pycnometry, helium and mercury porosimetry, and laboratory scale NMR. We evaluate the sensitivity of seismically inferred saprolite-weathered bedrock and weathered-unweathered bedrock boundaries to various velocity and inversion parameters in relation with other macro scale processes such as gravitational and tectonic forces in influencing weathered bedrock velocities. Together, our sensitivity analyses and multi-method data comparison provide insight into the interpretation of seismic refraction tomography for the quantification of CZ structure and hydrologic dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....13409P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....13409P"><span>Geoelectrical Tomographies for the study of some landslide areas in the Lucanian Apennine Chain (Southern Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perrone, A.; Lapenna, V.; Piscitelli, S.; Rizzo, E.; Sdao, F.</p> <p>2003-04-01</p> <p>In the frame of the two projects supported by the Italian Ministry of Research: "Design of geophysical monitoring network in areas of the Basilicata Region characterized by a high hydrogeological hazard" and "Geomorphological study and landslides control in some areas of the Basilicata region characterized by historical-cultural heritage", we developed a research activity focussed on a 2D electromagnetic monitoring and modelling of landslide bodies. Basilicata region (Southern Italy), being dissected by numerous and often significant rivers and characterized by the outcrop of terrains with bad mechanical properties, is one of the more exposed regions of the southern Apennine chain to hydrogeologic hazard and shows a complete panorama of mass movements. In order to study some landslide areas located in the Basilicata region, such as Varco Izzo, Latronico, Campomaggiore and Maratea, we carried out 2D electrical resistivity imaging (ERI), 2D-3D self-potential tomographies and maps, combining advanced technologies for data acquisition and new methods for data inversion (Loke and Barker, 1996; McCann and Forster, 1990; Patella, 1997). The geophysical results allowed us: to outline the discontinuity between landslide material and bedrock, to identify the possible reactivation surfaces, to obtain useful information about the thickness of the mobilised material and the main patterns of the underground fluid flow. Geophysical results were compared with the data coming from geological and hydrogeological surveys and from the analysis of aerial photo and boreholes. The good correlation between the main anomalous geoelectrical zones, the main structural lineaments and hydrogeological characteristics of the investigated areas, allowed us to consider the used geoelectrical methods as a possible powerful tool to investigate landslide areas characterised by very complex geology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/421087-applied-geointegration-hydrocarbon-exploration-san-pedro-machango-area-maracaibo-basin-venezuela','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/421087-applied-geointegration-hydrocarbon-exploration-san-pedro-machango-area-maracaibo-basin-venezuela"><span>Applied geointegration to hydrocarbon exploration in the San Pedro-Machango Area, Maracaibo Basin, Venezuela</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fonseca, A.; Navarro, A.; Osorio, R.</p> <p>1996-08-01</p> <p>Hydrocarbon exploration has nowadays a diversity of technological resources to capture, merge and interpret information from diverse sources. To accomplish this, the integration of geodata for modeling was done through the use of new technologies like Remote Sensing and Geographical Systems of Information and applied to the San Pedro-Machango area, located in the Serrania de Trujillo, west of Costa Bolivar (onshore), eastern Maracaibo Basin, Venezuela. The main purpose of this work was to optimize the design of an exploration program in harmony with environmental conservation procedures. Starting with satellital and radar images that incorporated geophysical, geological and environmental information, theymore » then were analyzed and merged to improve the lithological, structural and tectonic interpretation, generating an integrated model that allowed better project design. The use of a system that combines information of geographical, geodetical, geophysical and geological origins with satellital and radar images produced up to date cartography and refined results of image interpretation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMNS13A1136V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMNS13A1136V"><span>LAND STREAMER SEISMIC DATA FROM NORTHERN DELAWARE: A VIABLE ALTERNATIVE FOR IMAGING AQUIFERS IN SUBURBAN AREAS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velez, C. C.; McLaughlin, P. P.; McGeary, S. E.; Sargent, S. L.</p> <p>2009-12-01</p> <p>The Potomac Formation includes the most important confined aquifers in the Coastal Plain of northern Delaware. Development and a growing suburban population are increasing demand for groundwater in the area, making accurate assessment of groundwater water supply increasingly important. Previous studies of subsurface geology indicate that the Potomac Formation is characterized by laterally discontinuous fluvial sand bodies, making it difficult to precisely delineate the distribution and geometry of the aquifer facies based on well correlations alone. A 20-km high-resolution seismic reflection dataset was collected using a land-streamer system in 2008 to constrain subsurface stratigraphy between disparate well locations. The data were collected along roadways in an area of mixed development that includes suburban housing tracts, farmlands, and large industry. A 152-m-deep continuous-cored test hole was drilled in the summer of 2009 adjacent to one of the lines and a full suite of borehole geophysical logs obtained. The land-streamer data are compared to a 3-km dataset collected also in 2008 using conventional methods on farmland in the northern part of the study area. The land streamer system proved to be more effective than conventional seismic reflection methods in this area. Several advantages are evident for the land streamer: 1) overall, the conventional dataset has a higher S/N, 2) on average, collecting data with the land streamer system is four times faster, and 3) the land streamer lines can be longer and therefore more continuous than the conventional lines in a developed area. The land-streamer system has minor disadvantages: traffic control, traffic noise, and in some cases a need for larger crews. Regardless, the land streamer dataset is easier to process, of higher quality, and more cost effective. The final depth images from the land streamer data indicate that the minimum and maximum depths imaged are ~18 m and ~ 268m, with a resolution of ~4 m. This is more than sufficient to resolve aquifer sands in the Potomac Formation ranging from 10 to 20 m thick. The depths of individual reflections are in good agreement with the depths of main lithologic changes seen in cores and geophysical logs at the test hole. The core, geophysical log, and seismic data are being integrated to make a facies classification and facies maps which will contribute to better understand the geometry and distribution of fluid flow pathways, barriers, and ground water resources in northern Delaware.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT........29L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT........29L"><span>Electrical resistivity imaging study of near-surface infiltration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lampousis, Angelos</p> <p></p> <p>High resolution electrical resistivity images (ERI method) were obtained during vadose zone infiltration experiments on agricultural soils in cooperation with Cornell University's Agricultural Stewardship Program, Cooperative Extension of Suffolk County, Extension Education Center, Riverhead, New York [ as well as Cornell University's Long Island Horticultural Research & Extension Center (LIHREC) in Riverhead, New York]. One natural soil was also studied. Infiltration was monitored by means of image analysis of two-dimensional array resistivity generated by a Syscal Kid Switch resistivity system (Griffiths et al., 1990). The data was inverted with the computer program RES2DINV (Loke, 2004). The agricultural soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silt loam (BgA). The natural site was located in the Catskill Mountains of New York State. The soils there are classified as Schoharie silty clay loam. The electrical images of the three sites were compared against established soil properties, including particle size distribution, available water capacity, and soluble salts (from the literature), as well as against site-specific soil samples and penetrometer data, which were collected along with the geophysical measurements. This research evaluates the potential of acquiring high resolution, non-destructive measurements of infiltration in the uppermost 1.5 meter of the vadose zone. The results demonstrate that resistivity differences can detect infiltration in soils typical of the north-eastern United States. Temporal and spatial variations of soil water content in the upper 1.5 meters (relevant to agriculture) of the subsurface can be monitored successfully and non-destructively with ERI. The sensitivity of the method is higher in subsurface environments that demonstrate high overall apparent resistivity values (e.g. high sand content). Under conditions of increased soil heterogeneity, instead of the formation of a continuous water plume as occurred in the homogeneous agricultural soils, the location of the infiltrated water seems to be highly influenced by the soil heterogeneity, and the water front is scattered into discontinuous layers and travels in additional directions. The geophysical results during infiltration correlate well with soil compaction data. It follows that the ERI method can be used as a proxy for soil compaction and water content variations in agricultural applications. In a natural environment, ERI successfully maps the tree root zone of mature trees. Applications include continuous water content monitoring in high value cash crops, such as viticulture (precision agriculture).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGE.....5..186S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGE.....5..186S"><span>Reconstructing former urban environments by combining geophysical electrical methods and geotechnical investigations—an example from Chania, Greece</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soupios, P. M.; Loupasakis, C.; Vallianatos, F.</p> <p>2008-06-01</p> <p>Nowadays, geophysical prospecting is implemented in order to resolve a diversity of geological, hydrogeological, environmental and geotechnical problems. Although plenty of applications and a lot of research have been conducted in the countryside, only a few cases have been reported in the literature concerning urban areas, mainly due to high levels of noise present that aggravate most of the geophysical methods or due to spatial limitations that hinder normal method implementation. Among all geophysical methods, electrical resistivity tomography has proven to be a rapid technique and the most robust with regard to urban noise. This work presents a case study in the urban area of Chania (Crete Island, Greece), where electrical resistivity tomography (ERT) has been applied for the detection and identification of possible buried ancient ruins or other man-made structures, prior to the construction of a building. The results of the detailed geophysical survey indicated eight areas of interest providing resistivity anomalies. Those anomalies were analysed and interpreted combining the resistivity readings with the geotechnical borehole data and the historical bibliographic reports—referring to the 1940s (Xalkiadakis 1997 Industrial Archaeology in Chania Territory pp 51-62). The collected ERT-data were processed by applying advanced algorithms in order to obtain a 3D-model of the study area that depicts the interesting subsurface structures more clearly and accurately.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GGG....16.3767A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GGG....16.3767A"><span>An efficient and general approach for implementing thermodynamic phase equilibria information in geophysical and geodynamic studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afonso, Juan Carlos; Zlotnik, Sergio; Díez, Pedro</p> <p>2015-10-01</p> <p>We present a flexible, general, and efficient approach for implementing thermodynamic phase equilibria information (in the form of sets of physical parameters) into geophysical and geodynamic studies. The approach is based on Tensor Rank Decomposition methods, which transform the original multidimensional discrete information into a separated representation that contains significantly fewer terms, thus drastically reducing the amount of information to be stored in memory during a numerical simulation or geophysical inversion. Accordingly, the amount and resolution of the thermodynamic information that can be used in a simulation or inversion increases substantially. In addition, the method is independent of the actual software used to obtain the primary thermodynamic information, and therefore, it can be used in conjunction with any thermodynamic modeling program and/or database. Also, the errors associated with the decomposition procedure are readily controlled by the user, depending on her/his actual needs (e.g., preliminary runs versus full resolution runs). We illustrate the benefits, generality, and applicability of our approach with several examples of practical interest for both geodynamic modeling and geophysical inversion/modeling. Our results demonstrate that the proposed method is a competitive and attractive candidate for implementing thermodynamic constraints into a broad range of geophysical and geodynamic studies. MATLAB implementations of the method and examples are provided as supporting information and can be downloaded from the journal's website.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1861c0024N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1861c0024N"><span>Innovation of floating time domain electromagnetic method in the case of environmental geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nurjanah, Siti; Widodo</p> <p>2017-07-01</p> <p>Geophysics has some methods that can be used to reveal the subsurface structure of the earth. The physical features obtained from the acquisition then analyzed and interpreted, so that it can be a great lead to interpret the physical contents, determine its position and its distribution. Geophysical methods also can be used to help the environment contamination survey which is referred to environmental geophysics. There are many sources of pollution that can harm the nature, for example, the source in the form of solid waste, liquid waste containing heavy metals, or radioactive, and etc. As time passes, these sources might settle in any sedimentary area and become sediments. Time Domain Electromagnetic (TDEM) is a trustworthy method to detect the presence of conductive anomaly due to sediment accumulation. Innovation of floating TDEM created to maximize the potential of the method, so that it can be used in aquatic environments. The configuration of TDEM modified using pipes and tires during the process of measurements. We conducted numerical simulation using Marquardt and Occam Algorithms towards synthetic model to ensure the capability of the proposed design. The development of this innovation is expected to be very useful to repair the natural conditions, especially in the water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMED52A0005S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMED52A0005S"><span>A German Geophysics School Project First steps to bring geophysical topics to schoolclasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, S.</p> <p>2002-12-01</p> <p>In Germany Geophysics is a science with almost none or a bad reputation. People do not know to distinguish between Geophysics, Geography and Geology. In order to change the public view on Geosciences, a,School Project Geophysics' is going to be created at the Institute of Meteorology and Geophysics, Johann Wolfgang Goethe University, Frankfurt, which will offer geophysical ideas, methodes and scientific results to schoolclasses. After researches like PISA or TIMSS (third international Math and Nature-Science test) new concepts in education will be required. Interdisciplinary tasks are demanded by national and international commissions.\\The,School Project Geophysics' will be created to bring geophysical themes and results of scientific research into schools. One Day- or one Week-Workshops will help to publish geophysical contents in close cooperation with Physics - and Geography - teachers.\\Hands-on experiments (for advanced pupils) like refraction-Seismics or Magnetic measurements will lead students closer to scientific work and will help to establish personal interests in Earthsciences. Working with personally produced datasets will show the basics of inversion theory and point out the difficulties in creating models. Boundaries of data interpretation (the plurality of variables needed) will teach the school children to see scientific and statistic predictions and declarations more criticaly. Animations and Videos will present global examples (for example of volcanoes or Earthquakes) and lead over to regional sites. Excursions to these sites will help to show fieldwork methods and its problems and will convince to take a different look on topography and landscapes.\\All necessary utilities (Animations, Videos, Pictures and foils) will be offered to teachers in an online-data base which will be installed and managed by the project. Teachers and pupils might get easily into contact with Scientists to discuss geoscientific items. Further on extensions to geographic and geologic topics could be additional targets to this project. A poster will show the structure of one examplary workshop. This poster might stimulate to discuss experiences and further ideas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P11A1572L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P11A1572L"><span>Algorithms for Autonomous Plume Detection on Outer Planet Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Y.; Bunte, M. K.; Saripalli, S.; Greeley, R.</p> <p>2011-12-01</p> <p>We investigate techniques for automated detection of geophysical events (i.e., volcanic plumes) from spacecraft images. The algorithms presented here have not been previously applied to detection of transient events on outer planet satellites. We apply Scale Invariant Feature Transform (SIFT) to raw images of Io and Enceladus from the Voyager, Galileo, Cassini, and New Horizons missions. SIFT produces distinct interest points in every image; feature descriptors are reasonably invariant to changes in illumination, image noise, rotation, scaling, and small changes in viewpoint. We classified these descriptors as plumes using the k-nearest neighbor (KNN) algorithm. In KNN, an object is classified by its similarity to examples in a training set of images based on user defined thresholds. Using the complete database of Io images and a selection of Enceladus images where 1-3 plumes were manually detected in each image, we successfully detected 74% of plumes in Galileo and New Horizons images, 95% in Voyager images, and 93% in Cassini images. Preliminary tests yielded some false positive detections; further iterations will improve performance. In images where detections fail, plumes are less than 9 pixels in size or are lost in image glare. We compared the appearance of plumes and illuminated mountain slopes to determine the potential for feature classification. We successfully differentiated features. An advantage over other methods is the ability to detect plumes in non-limb views where they appear in the shadowed part of the surface; improvements will enable detection against the illuminated background surface where gradient changes would otherwise preclude detection. This detection method has potential applications to future outer planet missions for sustained plume monitoring campaigns and onboard automated prioritization of all spacecraft data. The complementary nature of this method is such that it could be used in conjunction with edge detection algorithms to increase effectiveness. We have demonstrated an ability to detect transient events above the planetary limb and on the surface and to distinguish feature classes in spacecraft images.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS13B1527G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS13B1527G"><span>Hydrocarbon Seeps Formations: a Study Using 3-D Seismic Attributes in Combination with Satellite Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia-Pineda, O. G.; MacDonald, I. R.; Shedd, W.</p> <p>2011-12-01</p> <p>Analyzing the magnitude of oil discharges from natural hydrocarbon seeps is important in improving our understanding of carbon contribution as oil migrates from deeper sediments to the water column, and then eventually to the atmosphere. Liquid hydrocarbon seepage in the deep water of the Gulf of Mexico (GOM) is associated with deep cutting faults, associated with vertical salt movement, that provide conduits for the upward migration of oil and gas. Seeps transform surface geology and generate prominent geophysical targets that can be identified on 3-D seismic data as seafloor amplitude anomalies maps that correlate with the underlying deep fault systems. Using 3D seismic data, detailed mapping of the northern GOM has identified more than 21,000 geophysical anomalies across the basin. In addition to seismic data, Synthetic Aperture Radar (SAR) images have proven to be a reliable tool for localizing natural seepage of oil. We used a Texture Classifier Neural Network Algorithm (TCNNA) to process more than 1200 SAR images collected over the GOM. We quantified more than 900 individual seep formations distributed along the continental shelf and in deep water. Comparison of the geophysical anomalies with the SAR oil slick targets shows good general agreement between the distributions of the two indicators. However, there are far fewer active oil slicks than geophysical anomalies, most of which are probably associated with gas seepage. By examining several sites where the location of active venting can be determined by submersibles observations, we found that the active oily vents are often spatially offset from the most intense geophysical targets (i.e. GC600, GC767, GC204, etc). In addition to the displacement of the oil by deep sea currents, we propose that during the 100K years of activity, the location of the vents on the seafloor probably migrate as carbonate cementation reduces the permeability of the upper sediment. Many of the geophysical targets may represent inactive relict sites rather than present day natural seeps of liquid or gaseous hydrocarbon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611395G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611395G"><span>COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart</p> <p>2014-05-01</p> <p>In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving three components: (1) A literature study to find relevant, existing theoretical models, (2) laboratory determinations to confirm their validity for Icelandic rocks of interest and (3) a field campaign to obtain in-situ, shallow rock properties from seismic and resistivity tomography surveys over a fossilized and exhumed geothermal system. Theoretical models describing physical behavior for rocks with strong inhomogeneities, complex pore structure and complicated fluid-rock interaction mechanisms are often poorly constrained and require the knowledge about a wide range of parameters that are difficult to quantify. Therefore we calibrate the theoretical models by laboratory measurements on samples of rocks, forming magmatic geothermal reservoirs. Since the samples used in the laboratory are limited in size, and laboratory equipment operates at much higher frequency than the instruments used in the field, the results need to be up-scaled from the laboratory scale to field scale. This is not a simple process and entails many uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OGeo....9...51N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OGeo....9...51N"><span>Imaging and locating paleo-channels using geophysical data from meandering system of the Mun River, Khorat Plateau, Northeastern Thailand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nimnate, P.; Thitimakorn, T.; Choowong, M.; Hisada, K.</p> <p>2017-12-01</p> <p>The Khorat Plateau from northeast Thailand, the upstream part of the Mun River flows through clastic sedimentary rocks. A massive amount of sand was transported. We aimed to understand the evolution of fluvial system and to discuss the advantages of two shallow geophysical methods for describing subsurface morphology of modern and paleo-channels. We applied Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) to characterize the lateral, vertical morphological and sedimentary structures of paleo-channels, floodplain and recent point bars. Both methods were interpreted together with on-sites boreholes to describe the physical properties of subsurface sediments. As a result, we concluded that four radar reflection patterns including reflection free, shingled, inclined and hummocky reflections were appropriated to apply as criteria to characterize lateral accretion, the meandering rivers with channel-filled sequence and floodplain were detected from ERT profiles. The changes in resistivity correspond well with differences in particle size and show relationship with ERT lithological classes. Clay, silt, sand, loam and bedrock were classified by the resistivity data. Geometry of paleo-channel embayment and lithological differences can be detected by ERT, whereas GPR provides detail subsurface facies for describing point bar sand deposit better than ERT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS11A..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS11A..01K"><span>Non-invasive water-table imaging with joint DC-resistivity/microgravity/hydrologic-model inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kennedy, J.; Macy, J. P.</p> <p>2017-12-01</p> <p>The depth of the water table, and fluctuations thereof, is a primary concern in hydrology. In riparian areas, the water table controls when and where vegetation grows. Fluctuations in the water table depth indicate changes in aquifer storage and variation in ET, and may also be responsible for the transport and degradation of contaminants. In the latter case, installation of monitoring wells is problematic because of the potential to create preferential flow pathways. We present a novel method for non-invasive water table monitoring using combined DC resistivity and repeat microgravity data. Resistivity profiles provide spatial resolution, but a quantifiable relation between resistivity changes and aquifer-storage changes depends on a petrophysical relation (typically, Archie's Law), with additional parameters and therefore uncertainty. Conversely, repeat microgravity data provide a direct, quantifiable measurement of aquifer-storage change but lack depth resolution. We show how these two geophysical measurements, together with an unsaturated-zone flow model (Hydrogeosphere), effectively constrain the water table position and help identify groundwater-flow model parameters. A demonstration of the method is made using field data collected during the historic 2014 pulse flow in the Colorado River Delta, which shows that geophysical data can effectively constrain a coupled surface-water/groundwater model used to simulate the potential for riparian vegetation germination and recruitment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000lie..book.....M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000lie..book.....M"><span>Looking into the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mussett, Alan E.; Aftab Khan, M.; Button, Illustrated By Sue</p> <p>2000-12-01</p> <p>Looking Into the Earth comprehensively describes the principles and applications of both `global' and `exploration' geophysics on all scales. It forms an introduction to geophysics suitable for those who do not necessarily intend to become professional geophysicists, including geologists, civil engineers, environmental scientists, and field archaeologists. The book is organised into two parts: Part 1 describes the geophysical methods, while Part 2 illustrates their use in a number of extended case histories. Mathematical and physical principles are introduced at an elementary level, and then developed as necessary. Student questions and exercises are included at the end of each chapter. The book is aimed primarily at introductory and intermediate university students taking courses in geology, earth science, environmental science, and engineering. It will also form an excellent introductory textbook in geophysics departments, and will help practising geologists, archaeologists and engineers understand what geophysics can offer their work. Accessible to students with little background in maths and physics Covers both global and applied geophysics Well illustrated and contains many student exercises and case studies Written by experienced teachers of geophysics</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21901310','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21901310"><span>Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel</p> <p>2012-08-01</p> <p>The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1261784','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1261784"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kitanidis, Peter</p> <p></p> <p>As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15014032','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15014032"><span>Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martini, B; Silver, E; Pickles, W</p> <p>2004-03-25</p> <p>Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as theymore » are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15013899','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15013899"><span>Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pickles, W L; Martini, B A; Silver, E A</p> <p>2004-03-03</p> <p>Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as theymore » are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H23C0885S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H23C0885S"><span>Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.</p> <p>2014-12-01</p> <p>Application of airborne geophysical surveys ranges in scale from detailed site scale such as locating abandoned well casing and saline water plumes to landscape scale for mapping hydrogeologic frameworks pertinent to ground water and tectonic settings relevant to studies of induced seismicity. These topics are important in understanding possible effects of hydrocarbon development on the environment. In addition airborne geophysical surveys can be used in establishing baseline "snapshots", to provide information in beneficial uses of produced waters, and in mapping ground water resources for use in well development. The U.S. Geological Survey (USGS) has conducted airborne geophysical surveys over more than 20 years for applications in energy resource environmental studies. A majority of these surveys are airborne electromagnetic (AEM) surveys to map subsurface electrical conductivity related to plumes of saline waters and more recently to map hydrogeologic frameworks for ground water and plume migration. AEM surveys have been used in the Powder River Basin of Wyoming to characterize the near surface geologic framework for siting produced water disposal ponds and for beneficial utilization in subsurface drip irrigation. A recent AEM survey at the Fort Peck Reservation, Montana, was used to map both shallow plumes from brine pits and surface infrastructure sources and a deeper concealed saline water plume from a failed injection well. Other reported applications have been to map areas geologically favorable for shallow gas that could influence drilling location and design. Airborne magnetic methods have been used to image the location of undocumented abandoned well casings which can serve as conduits to the near surface for coproduced waters. They have also been used in conjunction with geologic framework studies to understand the possible relationships between tectonic features and induced earthquakes in the Raton Basin. Airborne gravity as well as developing deeper mapping AEM surveys could also be effectively used in mapping tectonic features. Airborne radiometric methods have not been routinely used in hydrocarbon environmental studies but might be useful in understanding the surficial distribution of deposits related to naturally occurring radioactive materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43E1695Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43E1695Z"><span>Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.</p> <p>2017-12-01</p> <p>The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.C21A0972S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.C21A0972S"><span>GAMBIT--Gamburtsev Aerogeophysical Mapping of Bedrock and Ice Targets During IPY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Studinger, M.; Finn, C. A.; Bell, R. E.; Gogineni, S.; Hayden, L.; Braaten, D.</p> <p>2004-12-01</p> <p>Antarctica is a key element in Earth's climatic and geodynamic systems, yet on the eve of the 50th anniversary of the International Geophysical Year, we lack fundamental geologic and geophysical data from the deep interior of this vast continent. Despite the central role that Antarctica has played in shaping the present global environment, fundamental, first-order parameters such as ice volume and stratigraphy, bedrock elevation, lithology, structure, age, and tectonic history remain poorly known over large portions of the continent, including the Gamburtsev Subglacial Mountains. Given the extensive ice cover, airborne geophysical data is the best and most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of Antarctica. Under a program entitled, GAMBIT--Gamburtsev Aerogeophysical Mapping of Bedrock and Ice Targets, we propose to conduct airborne gravity, magnetic and radar surveys over the Gamburtsev Subglacial Mountains, a priority for geophysical and drilling studies by the solid Earth and glaciology communities for many years. This proposal will help develop long-range aerogeophysical capabilities and provide data to the Antarctic community within a year after collection to help answer fundamental science questions of global significance. By integrating these with international efforts during the IPY, we can maximize and broaden the use of all data sets. Specifically, we propose to image the East Antarctic ice sheet and bedrock with airborne geophysical surveys through the GAMBIT project in order to: 1) determine ice volume for mass balance calculations and identify internal layers reflecting the accumulation history of the East Antarctic ice sheet in the Gamburtsev Subglacial Mountains region; 2) characterize the gravity, magnetic, and elevation signatures of the East Antarctic crustal basement of the Gamburtsev Subglacial Mountains; 3) integrate these data with existing and new data collected during IPY over adjacent areas; 4) help coordinate IPY activities, including survey design, development of policies related to open access to data, and input to existing data bases; and 5) develop online resources for K-12 students and teachers; internships for journalism students; and involve undergraduate students and faculty in important project aspects such as mapping and display of geophysical data sets in order to cultivate under-represented student interest in science and engineering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5199/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5199/"><span>Borehole geophysical monitoring of amendment emplacement and geochemical changes during vegetable oil biostimulation, Anoka County Riverfront Park, Fridley, Minnesota</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Joesten, Peter K.; Kochiss, Christopher S.</p> <p>2007-01-01</p> <p>Based on the geophysical data, conceptual models of the distributions of emulsified vegetable oil and ground water with altered chemistry were developed. The field data indicate that, in several cases, the plume of ground water with altered chemistry would not be detected by direct chemical sampling given the construction of monitoring wells; hence the geophysical data provide valuable site-specific insights for the interpretation of water samples and monitoring of biostimulation projects. Application of geophysical methods to data from the ACP demonstrated the utility of radar for monitoring biostimulation injections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApGeo..13..267J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApGeo..13..267J"><span>Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li</p> <p>2016-06-01</p> <p>Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5859E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5859E"><span>Methodology of Detailed Geophysical Examination of the Areas of World Recognized Religious and Cultural Artifacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eppelbaum, Lev</p> <p>2010-05-01</p> <p>It is obvious that noninvasive geophysical methods are the main interpreting tools at the areas of world recognized religious and cultural artifacts. Usually in these areas any excavations, drilling and infrastructure activity are forbidden or very strongly limited. According to field experience and results of numerous modeling (Eppelbaum, 1999, 2000, 2009a, 2009b; Eppelbaum and Itkis, 2001, 2003; Eppelbaum et al., 2000, 2001a, 2001b, 2003a, 2006a, 2006b, 2007, 2010, Itkis et al., 2003; Neishtadt et al., 2006), a set of applied geophysical methods may include the following types of surveys: (1) magnetic, (3) GPR (ground penetration radar), (3) gravity, (4) electromagnetic VLF (very low frequency), (5) ER (electric resistivity), (6) SP (self-potential), (7) IP (induced polarization), (8) SE (seismoelectric), and (9) NST (near-surface temperature). As it was shown in (Eppelbaum, 2005), interpretation ambiguity may be sufficiently reduced not only by integrated analysis of several geophysical methods, but also by the way of multilevel observations of geophysical fields. Magnetic, gravity and VLF measurements may be performed at different levels over the earth's surface (0.1 - 3 m), ER, SP and SE observations may be obtained with different depth of electrodes grounding (0.1 - 1 m), and NST sensor may be located at a depth of 0.8 - 2.5 m. GPR method usually allows measuring electromagnetic fields at various frequencies (with corresponding changing of the investigation depth and other parameters). Influence of some typical noise factors to geophysical investigations at archaeological sites was investigated in (Eppelbaum and Khesin, 2001). In many cases various constructions and walls are in the nearest vicinity of the examined artifacts. These constructions can be also utilized for carrying out geophysical measurements (magnetic, gravity and VLF) at different levels. Application of the modern ROV (remote operated vehicles) with registration of magnetic and VLF fields at the low altitudes (3-5 meters) will help geophysical cover all the studied area with a regular observation step (Eppelbaum, 2008). At the final step all these measurements (including results of the previous works) could be compiled to 4D models of different geophysical parameters (Eppelbaum and Ben-Avraham, 2002; Eppelbaum et al., 2010). Analysis of temperature field in the boreholes drilled in the vicinity of the studied site will permit to estimate the temperature (e.g., Eppelbaum et al., 2006c) in the historical period when this artifact was constructed and, correspondingly, utilize this characteristic for investigation of mechanical and other properties of the ancient building material. Studying of temporal variations of magnetic (e.g., Finkelstein and Eppelbaum) and VLF fields can be also used for determination of nature of some buried ancient remains. The geophysical investigations must be combined with geochemical, paleostructural, paleobiogeographical, paleomorphological and other methods (Eppelbaum et al., 2010). Application of informational parameters (Khesin et al., 1996; Eppelbaum et al., 2003b) will permit to present all available data by the use of integral convolution units. REFERENCES Eppelbaum, L.V., 1999. Quantitative interpretation of resistivity anomalies using advanced methods developed in magnetic prospecting. Trans. of the XXIV General Assembly of the Europ. Geoph. Soc., Strasburg 1 (1), p.166. Eppelbaum, L.V., 2000. Applicability of geophysical methods for localization of archaeological targets: An introduction. Geoinformatics, 11, No.1, 19-28. Eppelbaum, L.V., 2005. Multilevel observations of magnetic field at archaeological sites as additional interpreting tool. Proceed. of the 6th Conference of Archaeological Prospection, Roma, Italy, 4 pp. Eppelbaum, L.V., 2008. Remote operated vehicle geophysical survey using magnetic and VLF methods: proposed schemes for data processing and interpretation. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Philadelphia, USA, 938-963. Eppelbaum, L.V., 2009a. Near-surface temperature survey: An independent tool for buried archaeological targets delineation. Journal of Cultural Heritage, 12, Suppl.1, e93-e103. Eppelbaum, L.V., 2009b. Application of microgravity at archaeological sites in Israel: some estimation derived from 3D modeling and quantitative analysis of gravity field. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Denver, USA, 22, No. 1, 434-446. Eppelbaum, L. and Ben-Avraham, Z., 2002. On the development of 4D geophysical Data Base of archaeological sites in Israel. Trans. of the Conf. of the Israel Geol. Soc. Ann. Meet., MaHagan - Lake Kinneret, Israel, p.21. Eppelbaum, L., Eppelbaum,V. and Ben-Avraham, Z., 2003. Formalization and estimation of integrated geological investigations: Informational Approach. Geoinformatics, 14, No.3, 233-240. Eppelbaum, L., Ben-Avraham, Z. and Itkis, S., 2003a. Ancient Roman Remains in Israel provide a challenge for physical-archaeological modeling techniques. First Break, 21 (2), 51-61. Eppelbaum, L., Ben-Avraham, Z., Itkis, S., and Kouznetsov, S., 2001a. First results of self-potential method application at archaeological sites in Israel. Trans. of the EUG XI Intern. Symp., Strasbourg, France, p. 657. Eppelbaum, L.V. and Itkis, S.E., 2001. Detailed magnetic investigations at the ancient Roman site Banias II (northern Israel). Proceed. of the 1st Intern Symp. on Soil and Archaeology, Szazhalombatta, Hungary, 13-16. Eppelbaum, L.V. and Itkis, S.E., 2003. Geophysical examination of the archaeological site Emmaus-Nicopolis (central Israel). Collection of Papers of the XIXth International UNESCO Symposium 'New Perspectives to Save the Cultural Heritage', Antalya, Turkey, 395-400. Eppelbaum, L.V., Itkis, S.E., Fleckenstein, K.-H., and Fleckenstein, L., 2007. Latest results of geophysical-archaeological investigations at the Christian archaeological site Emmaus-Nicopolis (central Israel). Proceed. of the 69th EAGE Conference, P118, London, Great Britain, 5 pp. Eppelbaum, L.V., Itkis, S.E., and Khesin, B.E., 2000. Optimization of magnetic investigations in the archaeological sites in Israel. In: Special Issue of Prospezioni Archeologiche 'Filtering, Modeling and Interpretation of Geophysical Fields at Archaeological Objects', 65-92. Eppelbaum, L., Itkis, S., and Khesin, B., 2006a. Detailed magnetic survey unmasks Prehistoric archaeological sites in Israel. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Calgary, Canada, 1366-1373. Eppelbaum, L.V. and Khesin, B.E., 2001. Disturbing factors in geophysical investigations at archaeological sites and ways of their elimination. Trans. of the IV Conf. on Archaeological Prospection, Vienna, Austria, 99-101. Eppelbaum, L.V., Khesin, B.E., and Itkis, S.E., 2001b. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, 8 (3), 163-185. Eppelbaum, L.V., Khesin, B.E., and Itkis, S.E., 2006b. Some peculiarities of geophysical investigations at archaeological sites in Israel. Russian Archaeology, No. 1, 59-70. Eppelbaum, L.V., Khesin, B.E., and Itkis, S.E., 2010. Archaeological geophysics in arid environments: Examples from Israel. Journal of Arid Environments, 74, No. 5. Eppelbaum, L.V., Kutasov, I.M. and Barak, G., 2006c. Ground surface temperature histories inferred from 15 boreholes temperature profiles: Comparison of two approaches. Earth Sciences Research Journal, 10, No. 1, 25-34. Finkelstein, M.I. and Eppelbaum, L.V., 1997. Classification of the disturbing objects using interpretation of low-intensive temporary magnetic variations. Trans. of the Conference of Geological Society of America. Salt Lake City, 29, No.6, p. 326. Itkis, S., Khesin, B., Eppelbaum, L., and Khalaily, H., 2003. The Natufian site of Eynan (Hula valley, northern Israel): Magnetic prospecting reveals new features. Israel Journal of Earth Sciences, 52 (3-4), 209-219. Khesin, B.E., Alexeyev, V.V. and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publishers, Ser.: Modern Approaches in Geophysics, Boston - Dordrecht - London, 368 pp. Neishtadt, N., Eppelbaum, L. and Levitski, A., 2006. Application of seismo-electric phenomena in exploration geophysics: Review of Russian and Israeli experience. Geophysics, 71, No.2, B41-B53.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAG...146..138S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAG...146..138S"><span>Post flooding damage assessment of earth dams and historical reservoirs using non-invasive geophysical techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sentenac, Philippe; Benes, Vojtech; Budinsky, Vladimir; Keenan, Helen; Baron, Ron</p> <p>2017-11-01</p> <p>This paper describes the use of four geophysical techniques to map the structural integrity of historical earth reservoir embankments which are susceptible to natural decay with time. The four techniques that were used to assess the post flood damage were 1. A fast scanning technique using a dipole electromagnetic profile apparatus (GEM2), 2. Electrical Resistivity Tomography (ERT) in order to obtain a high resolution image of the shape of the damaged/seepage zone, 3. Self-Potential surveys were carried out to relate the detected seepage evolution and change of the water displacement inside the embankment, 4. The washed zone in the areas with piping was characterised with microgravimetry. The four geophysical techniques used were evaluated against the case studies of two reservoirs in South Bohemia, Czech Republic. A risk approach based on the Geophysical results was undertaken for the reservoir embankments. The four techniques together enabled a comprehensive non-invasive assessment whereby remedial action could be recommended where required. Conclusions were also drawn on the efficiency of the techniques to be applied for embankments with wood structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/2001/4183/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/2001/4183/report.pdf"><span>Geophysical investigations of well fields to characterize fractured-bedrock aquifers in southern New Hampshire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Degnan, James R.; Moore, Richard Bridge; Mack, Thomas J.</p> <p>2001-01-01</p> <p>Bedrock-fracture zones near high-yield bedrock wells in southern New Hampshire well fields were located and characterized using seven surface and six borehole geophysical survey methods. Detailed surveys of six sites with various methods provide an opportunity to integrate and compare survey results. Borehole geophysical surveys were conducted at three of the sites to confirm subsurface features. Hydrogeologic settings, including a variety of bedrock and surface geologic materials, were sought to gain an insight into the usefulness of the methods in varied terrains. Results from 15 survey lines, 8 arrays, and 3 boreholes were processed and interpreted from the 6 sites. The surface geophysical methods used provided physical properties of fractured bedrock. Seismic refraction and ground-penetrating radar (GPR) primarily were used to characterize the overburden materials, but in a few cases indicated bedrock-fracture zones. Magnetometer surveys were used to obtain background information about the bedrock to compare with other results, and to search for magnetic lows, which may result from weathered fractured rock. Electromagnetic terrain conductivity surveys (EM) and very-low-frequency electromagnetic surveys (VLF) were used as rapid reconnaissance techniques with the primary purpose of identifying electrical anomalies, indicating potential fracture zones in bedrock. Direct-current (dc) resistivity methods were used to gather detailed subsurface information about fracture depth and orientation. Two-dimensional (2-D) dc-resistivity surveys using dipole-dipole and Schlumberger arrays located and characterized the overburden, bedrock, and bedrock-fracture zones through analysis of data inversions. Azimuthal square array dc-resistivity survey results indicated orientations of conductive steep-dipping bedrock-fracture zones that were located and characterized by previously applied geophysical methods. Various available data sets were used for site selection, characterizations, and interpretations. Lineament data, developed as a part of a statewide and regional scale investigation of the bedrock aquifer, were available to identify potential near-vertical fracture zones. Geophysical surveys indicated fracture zones coincident with lineaments at 4 of the sites. Geologic data collected as a part of the regional scale investigation provided outcrop fracture measurements, ductile fabric, and contact information. Dominant fracture trends correspond to the trends of geophysical anomalies at 4 of the sites. Water-well drillers? logs from water supply and environmental data sets also were used where available to characterize sites. Regional overburden information was compiled from stratified-drift aquifer maps and surficial-geological maps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/remedytech/innovations-site-characterization-geophysical-investigation-hazardous-waste-sites','PESTICIDES'); return false;" href="https://www.epa.gov/remedytech/innovations-site-characterization-geophysical-investigation-hazardous-waste-sites"><span>Innovations In Site Characterization: Geophysical Investigation at Hazardous Waste Sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>This compendium describes a number of geophysical technologies and methods that were used at 11 sites with significantly different geological settings and types of subsurface contamination, ranging from relatively homogeneous stratigraphy to the highly ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800020345','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800020345"><span>Plans for phase coherent long baseline interferometry for geophysical applications using the Anik-B communications satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cannon, W. H.; Petrachenko, W. T.; Yen, J. L.; Galt, J. A.; Waltman, W. B.; Knoweles, S. H.; Popelar, J.</p> <p>1980-01-01</p> <p>A pilot project to establish an operational phase stable very long baseline interferometer (VLBI) for geophysical studies is described. Methods for implementation as well as practical applications are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.3219M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.3219M"><span>Tailings dams stability analysis using numerical modelling of geotechnical and geophysical data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mihai, S.; Zlagnean, M.; Oancea, I.; Petrescu, A.</p> <p>2009-04-01</p> <p>Methods for monitoring seepage and detecting internal erosion are essential for the safety evaluation of embankment dams. Internal erosion is one of the major reasons for embankment dam failures, and there are thousands of large tailings dams and waste-rock dumps in the world that may pe considered as hotspots for environmental impact. In this research the geophysical survey works were performed on Cetatuia 2 tailings dam. Electrical resistivity imaging (ERI) method was able to detect spatially anomalous zones inside the embankment dam. These anomalies are the results of internal erosion phenomena which may progressing inside the dam and is difficult to detect by conventional methods. Data aquired by geophysical survey together with their interpretations were used in the numerical model for slope stability assessment. The final results show us the structural weakness induced by the presence of internal erosion elements especially for seismic loading case. This research methodology may be also available for tailings dam monitoring purposes. Electrical Rezistivity Imaging (ERI) was performed on Cetatuia 2 dam at the Uranium Milling Plant Feldioara, in order to map areas with lateral and vertical changes in resistivity. The electrodes are connected to an automated computer operated switch box that selects the 4 electrodes to be used. A computer controls the switch box and the measuring device, and runs a program that selects the electrodes, makes the measurement, and stores the measurement. For inversion processing procedures was used Res2Din software. The measured resistivity were plotted by the pseudo section contouring method. There are five resistivity pseudosections obtained from the Cetatuia 2 tailings dam during the october 2007 measurements. Four transversal profiles trans1 to trans4 are perpendicular to the berms and the longitudinal one long1 is placed along dam's crest. The high resistivities near the berms surfaces corresponds to unsaturated fill materials and the low resistivities near the crest correspond to water saturated material. The resistivities values greater then 80 ohm.m may be explained by some error obtained for that inversion model. Profiles trans3 and trans4 were measured on perpendicular directions to berm alignment and show two distinct zones. The upward low resistivities zone correspond to water saturated materials especially from the compacted clay dam's core and the downward high resistivities zone belongs to unsaturated fill materials. The boundary between high and low resistivity at the depth of about 5 to 7 meters shows the groundwater level. The continuation of the high resistivity zones towards the end of the profile trans3, which is different from other profiles is probably due to the presence of dry coarse materials in shallow depth correspondingly to sandy clay. The sand fractions from the clay matrix may be affected by internal erosional phenomena, due to seepage currents that overpassed the material critical gradient. In this case the relative high resistivities values were considered as a presumptive erosional pattern. This profile was considered for the slope stability finite element modelling. The profile long1 which is placed along dam's crest is the longest profiles and extends up to nearly 420 m. The boundary between high and low resistivity at the depth of about 4 to 8 meters shows the groundwater across the dam core. The central part of the profile (about meter 200) shows the same relative high resistivities that occurred on transversal profile trans3. Resistivity data was used for building the 3D electrical resistivity model. The water saturated materials have locations very close to dam's crest (resistivity values usually lower then 10 ohm.m) and on both dam's arms. The groundwater levels were confirmed by the piezometric measurements. Electrical Rezistivity Imaging method had the possibility to show the most important disturbant elements that in certain conditions may weak the dam's state of safety. This study considered the SSR (Shear Strength Reduction) technique for slope stability numerical modelling. In the SSR finite element technique, elasto-plastic strength is assumed for dam's materials and shear strengths are progressively reduced until collapse occurs. Numerical modelling was performed on the most critical profile choosed through analysis of geophysical and geotechnical informational volume achieved by insitu or in laboratory tests. Finite element analysis were considered in two situations: first, before geophysical investigations and second considering the whole informational of data achieved. Both situations were analysed in static and pseudo-static conditions. The factor of safety before geophysical investigations is high enough to describe a stable state of stability even for the seismic load. The total displacement distributions were modified by the presence of internal erosional element giving a high state of instability, especially for the pseudo-static case. These analysis using the finite element method prove the importance of structural disturbance elements that may occure inside the dam body produced by internal erosional processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CG.....91....1R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CG.....91....1R"><span>Electrofacies analysis for coal lithotype profiling based on high-resolution wireline log data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roslin, A.; Esterle, J. S.</p> <p>2016-06-01</p> <p>The traditional approach to coal lithotype analysis is based on a visual characterisation of coal in core, mine or outcrop exposures. As not all wells are fully cored, the petroleum and coal mining industries increasingly use geophysical wireline logs for lithology interpretation.This study demonstrates a method for interpreting coal lithotypes from geophysical wireline logs, and in particular discriminating between bright or banded, and dull coal at similar densities to a decimetre level. The study explores the optimum combination of geophysical log suites for training the coal electrofacies interpretation, using neural network conception, and then propagating the results to wells with fewer wireline data. This approach is objective and has a recordable reproducibility and rule set.In addition to conventional gamma ray and density logs, laterolog resistivity, microresistivity and PEF data were used in the study. Array resistivity data from a compact micro imager (CMI tool) were processed into a single microresistivity curve and integrated with the conventional resistivity data in the cluster analysis. Microresistivity data were tested in the analysis to test the hypothesis that the improved vertical resolution of microresistivity curve can enhance the accuracy of the clustering analysis. The addition of PEF log allowed discrimination between low density bright to banded coal electrofacies and low density inertinite-rich dull electrofacies.The results of clustering analysis were validated statistically and the results of the electrofacies results were compared to manually derived coal lithotype logs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113627J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113627J"><span>Geothermal exploration in the Virunga Prospect, Northern Rwanda</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jolie, E.</p> <p>2009-04-01</p> <p>German technical cooperation has taken the initiative to support partner countries in geothermal energy use. Therefore the Federal Institute for Geosciences and Natural Resources (BGR) on behalf of the Federal Ministry for Economic Cooperation and Development (BMZ) is carrying out the technical cooperation programme GEOTHERM. As an example of the ongoing project activities, preliminary results of studies carried out in the Virunga geothermal prospect in Northern Rwanda will be presented. The study area is located along the Western branch of the East African Rift System. Weak geothermal surface manifestations, e.g. hot springs and bubbling pools, indicate an existing hydrothermal system. Previous studies did not determine location, distribution, quality and quantity of the heat source. Consequently the aim of this study is to detect and assess the heat source with a multi method approach. Remote sensing techniques, geochemical analyses and geophysical measurements have been applied to make a first serious attempt. More detailed geophysical investigations and gas measurements are planned to start in spring 2009. Aerial photographs and satellite images were used for a high-resolution structural analysis to determine major fault zones, which are dominating the flow paths of hydrothermal fluids. In the frame of a regional geophysical survey (Magnetotellurics and Transient Electromagnetics) a zone of low resistivity values could be detected SW of the Karisimbi stratovolcano, which is corresponding with the results of the geochemical analyses. Assumptions are made that a magmatic body may exist in a depth of 5 km below surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMNS13A1087V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMNS13A1087V"><span>Use of a Land Streamer System to Image the Potomac Formation in Northern Delaware</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velez, C. C.; McLaughlin, P. P.; McGeary, S.; Sargent, S. L.</p> <p>2008-12-01</p> <p>A land streamer system, an alternative to conventional seismic acquisition equipment for collecting large amounts of seismic reflection data in urbanized and semi-urbanized areas, was used to collect a network of high-resolution seismic reflection data in northern Delaware. The principal objective of this work is to image the distribution and geometry of sand bodies in the Cretaceous (Aptian to Cenomanian) non-marine deposits of the Potomac Formation. The Potomac Formation includes the most important confined aquifers in the Coastal Plain of northern Delaware. Previous studies indicate these deposits onlap Paleozoic basement at depths from 115 m to 400 m in the study area and are truncated by an unconformity. Previous descriptions of sedimentary facies from nearby cores and geophysical logs indicate that the Potomac Formation is a predominantly fine-grained alluvial unit with laterally discontinuous fluvial sand bodies, resulting in a "labyrinth style heterogeneity" for aquifer facies. The 20-km seismic dataset collected for this study indicates that land-streamer seismic methods can be used in this area to image the subsurface geology as shallow as 18 m and as deep as the basement at 315 m. The theoretical quarter wavelength of the seismic dataset suggests a resolution of 2 to 4 m, which is sufficient to resolve aquifer sands in the Potomac Formation ranging from 10 to 20 m thick. Final processed seismic sections will be integrated with geophysical logs and core data to provide a robust 2-D dataset that will allow assessment of current concepts for facies and correlations in the Potomac Formation, thus benefiting understanding of critical ground-water resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S51D0620V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S51D0620V"><span>First results from a full-waveform inversion of the African continent using Salvus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Herwaarden, D. P.; Afanasiev, M.; Krischer, L.; Trampert, J.; Fichtner, A.</p> <p>2017-12-01</p> <p>We present the initial results from an elastic full-waveform inversion (FWI) of the African continent which is melded together within the framework of the Collaborative Seismic Earth Model (CSEM) project. The continent of Africa is one of the most geophysically interesting regions on the planet. More specifically, Africa contains the Afar Depression, which is the only place on Earth where incipient seafloor spreading is sub-aerially exposed, along with other anomalous features such as the topography in the south, and several smaller surface expressions such as the Cameroon Volcanic Line and Congo Basin. Despite its significance, relatively few tomographic images exist of Africa, and, as a result, the debate on the geophysical origins of Africa's anomalies is rich and ongoing. Tomographic images of Africa present unique challenges due to uneven station coverage: while tectonically active areas such as the Afar rift are well sampled, much of the continent exhibits a severe lack of seismic stations. And, while Africa is mostly surrounded by tectonically active spreading plate boundaries, the interior of the continent is seismically quiet. To mitigate such issues, our simulation domain is extended to include earthquakes occurring in the South Atlantic and along the western edge of South America. Waveform modelling and inversion is performed using Salvus, a flexible and high-performance software suite based on the spectral-element method. Recently acquired recordings from the AfricaArray and NARS seismic networks are used to complement data obtained from global networks. We hope that this new model presents a fresh high-resolution image of African geodynamic structure, and helps advance the debate regarding the causative mechanisms of its surface anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP23A1914N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP23A1914N"><span>Geophysical Imaging of Sea-level Proxies in Beach-Ridge Deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nielsen, L.; Emerich Souza, P.; Meldgaard, A.; Bendixen, M.; Kroon, A.; Clemmensen, L. B.</p> <p>2017-12-01</p> <p>We show ground-penetrating radar (GPR) reflection data collected over modern and fossil beach deposits from different localities along coastlines in meso-tidal regimes of Greenland and micro-tidal regimes of Denmark. The acquired reflection GPR sections show several similar characteristics but also some differences. A similar characteristic is the presence of downlapping reflections, where the downlap point is interpreted to mark the transition from upper shoreface to beachface deposits and, thus, be a marker of a level close to or at sea-level at the time of deposition. Differences in grain size of the investigated beach ridge system result in different scattering characteristics of the acquired GPR data. These differences call for tailored, careful processing of the GPR data for optimal imaging of internal beach ridge architecture. We outline elements of the GPR data processing of particular importance for optimal imaging. Moreover, we discuss advantages and challenges related to using GPR-based proxies of sea-level as compared to other methods traditionally used for establishment of curves of past sea-level variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS23A0004R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS23A0004R"><span>Near-Surface Geophysical Imaging of Deformation Associated with the Daytona Beach Sand Blow Deposits, Lee County, Arkansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rohrer, M.; Harris, J. B.; Cearley, C.; Teague, M.</p> <p>2017-12-01</p> <p>Within the past decade or so, paleoseismologic and geophysical studies at the Daytona Beach (DB) site in east-central Arkansas have reported earthquake-induced liquefaction (sand blows) along a prominent NW-trending lineament dated to approximately 5.5 ka. A recent compressional-wave (P-wave) seismic reflection survey acquired by the U. S. Geological Survey (USGS) along Highway 243 in Lee County, Arkansas, across the DB sand blow cluster, identified a previously unknown fault zone that is likely associated with the liquefaction. However, the USGS data were not able to image the Quaternary section (<60 m deep) and show a direct connection between the deeper faulting and the sand blows. In order to investigate the near-surface structure of the fault zone, we acquired an integrated geophysical data set consisting of 430-m-long shear-wave (S-wave) seismic reflection and ground penetrating radar (GPR) profiles above the deformation imaged on the USGS profile. The S-wave reflection data were collected using a 24-channel, towable landstreamer and the seismic energy was generated by a sledgehammer/I-beam source. The GPR data were collected with a cart-mounted 250-MHz system, using a 0.5-m antenna spacing and a 0.10-m step size. The processed seismic profile exhibits coherent reflection energy throughout the Quaternary section. Changes in reflection amplitude and coherency, offset reflections, and abundant diffractions suggest the presence of a complex zone of high-angle faults in the shallow subsurface coincident with the mapped lineament. Folded shallow reflections show that the deformation extends upward to within 10 m of the surface. Furthermore, the GPR profile images a distinct zone of deformation in the very near surface (<1.5 m deep) that is coincident with the upward projection of the deformation imaged on the S-wave seismic reflection profile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036377','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036377"><span>Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 2. Application to hyperspectral image data from the Platte River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.</p> <p>2011-01-01</p> <p>This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes. ?? 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23890654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23890654"><span>Detecting submerged objects: the application of side scan sonar to forensic contexts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schultz, John J; Healy, Carrie A; Parker, Kenneth; Lowers, Bim</p> <p>2013-09-10</p> <p>Forensic personnel must deal with numerous challenges when searching for submerged objects. While traditional water search methods have generally involved using dive teams, remotely operated vehicles (ROVs), and water scent dogs for cases involving submerged objects and bodies, law enforcement is increasingly integrating multiple methods that include geophysical technologies. There are numerous advantages for integrating geophysical technologies, such as side scan sonar and ground penetrating radar (GPR), with more traditional search methods. Overall, these methods decrease the time involved searching, in addition to increasing area searched. However, as with other search methods, there are advantages and disadvantages when using each method. For example, in instances with excessive aquatic vegetation or irregular bottom terrain, it may not be possible to discern a submersed body with side scan sonar. As a result, forensic personnel will have the highest rate of success during searches for submerged objects when integrating multiple search methods, including deploying multiple geophysical technologies. The goal of this paper is to discuss the methodology of various search methods that are employed for submerged objects and how these various methods can be integrated as part of a comprehensive protocol for water searches depending upon the type of underwater terrain. In addition, two successful case studies involving the search and recovery of a submerged human body using side scan sonar are presented to illustrate the successful application of integrating a geophysical technology with divers when searching for a submerged object. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29518959','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29518959"><span>A Quality Assessment Method Based on Common Distributed Targets for GF-3 Polarimetric SAR Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Sha; Qiu, Xiaolan; Han, Bing; Hu, Wenlong</p> <p>2018-03-07</p> <p>The GaoFen-3 (GF-3) satellite, launched on 10 August 2016, is the first C-band polarimetric synthetic aperture radar (PolSAR) satellite in China. The PolSAR system of GF-3 can collect a significant wealth of information for geophysical research and applications. Being used for related applications, GF-3 PolSAR images must be of good quality. It is necessary to evaluate the quality of polarimetric data and achieve the normalized quality monitoring during 8-year designed life of GF-3. In this study, a new quality assessment method of PolSAR data based on common distributed targets is proposed, and the performance of the method is analyzed by simulations and GF-3 experiments. We evaluate the quality of GF-3 PolSAR data by this method. Results suggest that GF-3 antenna is highly isolated, and the quality of calibrated data satisfies the requests of quantitative applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021779','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021779"><span>Imager for Mars Pathfinder (IMP) image calibration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reid, R.J.; Smith, P.H.; Lemmon, M.; Tanner, R.; Burkland, M.; Wegryn, E.; Weinberg, J.; Marcialis, R.; Britt, D.T.; Thomas, N.; Kramm, R.; Dummel, A.; Crowe, D.; Bos, B.J.; Bell, J.F.; Rueffer, P.; Gliem, F.; Johnson, J. R.; Maki, J.N.; Herkenhoff, K. E.; Singer, Robert B.</p> <p>1999-01-01</p> <p>The Imager for Mars Pathfinder returned over 16,000 high-quality images from the surface of Mars. The camera was well-calibrated in the laboratory, with <5% radiometric uncertainty. The photometric properties of two radiometric targets were also measured with 3% uncertainty. Several data sets acquired during the cruise and on Mars confirm that the system operated nominally throughout the course of the mission. Image calibration algorithms were developed for landed operations to correct instrumental sources of noise and to calibrate images relative to observations of the radiometric targets. The uncertainties associated with these algorithms as well as current improvements to image calibration are discussed. Copyright 1999 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/15712','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/15712"><span>Application of innovative nondestructive methods to geotechnical and environmental investigations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2003-04-01</p> <p>Geophysical surveys were conducted for the Missouri Department of Transportation (MoDOT) by the Department of Geology and Geophysics at the University of Missouri-Rolla. This report contains the results of several projects that utilized nondestructiv...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S23C..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S23C..02T"><span>Time-reversal in geophysics: the key for imaging a seismic source, generating a virtual source or imaging with no source (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tourin, A.; Fink, M.</p> <p>2010-12-01</p> <p>The concept of time-reversal (TR) focusing was introduced in acoustics by Mathias Fink in the early nineties: a pulsed wave is sent from a source, propagates in an unknown media and is captured at a transducer array termed a “Time Reversal Mirror (TRM)”. Then the waveforms received at each transducer are flipped in time and sent back resulting in a wave converging at the original source regardless of the complexity of the propagation medium. TRMs have now been implemented in a variety of physical scenarios from GHz microwaves to MHz ultrasonics and to hundreds of Hz in ocean acoustics. Common to this broad range of scales is a remarkable robustness exemplified by observations that the more complex the medium (random or chaotic), the sharper the focus. A TRM acts as an antenna that uses complex environments to appear wider than it is, resulting for a broadband pulse, in a refocusing quality that does not depend on the TRM aperture. We show that the time-reversal concept is also at the heart of very active research fields in seismology and applied geophysics: imaging of seismic sources, passive imaging based on noise correlations, seismic interferometry, monitoring of CO2 storage using the virtual source method. All these methods can indeed be viewed in a unified framework as an application of the so-called time-reversal cavity approach. That approach uses the fact that a wave field can be predicted at any location inside a volume (without source) from the knowledge of both the field and its normal derivative on the surrounding surface S, which for acoustic scalar waves is mathematically expressed in the Helmholtz Kirchhoff (HK) integral. Thus in the first step of an ideal TR process, the field coming from a point-like source as well as its normal derivative should be measured on S. In a second step, the initial source is removed and monopole and dipole sources reemit the time reversal of the components measured in the first step. Instead of directly computing the resulting HK integral along S, physical arguments can be used to straightforwardly predict that the time-reversed field in the cavity writes as the difference of advanced and retarded Green’s functions centred on the initial source position. This result is in some way disappointing because it means that reversing a field using a closed TRM is not enough to realize a perfect time-reversal experiment. In practical applications, the converging wave is always followed by a diverging one (see figure). However we will show that this result is of great importance since it furnishes the basis for imaging methods in media with no active source. We will focus more especially on the virtual source method showing that it can be used for implementing the DORT method (Decomposition of the time reversal operator) in a passive way. The passive DORT method could be interesting for monitoring changes in a complex scattering medium, for example in the context of CO2 storage. Time-reversal imaging applied to the giant Sumatra earthquake</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSF41A0755L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSF41A0755L"><span>Digital Image Support in the ROADNet Real-time Monitoring Platform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lindquist, K. G.; Hansen, T. S.; Newman, R. L.; Vernon, F. L.; Nayak, A.; Foley, S.; Fricke, T.; Orcutt, J.; Rajasekar, A.</p> <p>2004-12-01</p> <p>The ROADNet real-time monitoring infrastructure has allowed researchers to integrate geophysical monitoring data from a wide variety of signal domains. Antelope-based data transport, relational-database buffering and archiving, backup/replication/archiving through the Storage Resource Broker, and a variety of web-based distribution tools create a powerful monitoring platform. In this work we discuss our use of the ROADNet system for the collection and processing of digital image data. Remote cameras have been deployed at approximately 32 locations as of September 2004, including the SDSU Santa Margarita Ecological Reserve, the Imperial Beach pier, and the Pinon Flats geophysical observatory. Fire monitoring imagery has been obtained through a connection to the HPWREN project. Near-real-time images obtained from the R/V Roger Revelle include records of seafloor operations by the JASON submersible, as part of a maintenance mission for the H2O underwater seismic observatory. We discuss acquisition mechanisms and the packet architecture for image transport via Antelope orbservers, including multi-packet support for arbitrarily large images. Relational database storage supports archiving of timestamped images, image-processing operations, grouping of related images and cameras, support for motion-detect triggers, thumbnail images, pre-computed video frames, support for time-lapse movie generation and storage of time-lapse movies. Available ROADNet monitoring tools include both orbserver-based display of incoming real-time images and web-accessible searching and distribution of images and movies driven by the relational database (http://mercali.ucsd.edu/rtapps/rtimbank.php). An extension to the Kepler Scientific Workflow System also allows real-time image display via the Ptolemy project. Custom time-lapse movies may be made from the ROADNet web pages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhDT.......192B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhDT.......192B"><span>An integrated geophysical study of the lithospheric structure beneath Libya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Wesley A.</p> <p></p> <p>This doctoral dissertation constitutes an integrated geophysical investigation of the lithospheric structure in the region of Libya. It is separated into three sections, each of which will be submitted to different scientific journals for publication. In the first part of the study, I utilized a seamless mosaicking approach based on the commercial Environment for Visualizing Images (ENVI) software package to create mosaics of two geologically interesting portions of Libya. In this study I present a step by step method of mosaicking Landsat 4 satellite images. Firstly, I performed histogram matching to give images the same color scale, then I used a cutline feathering technique to blend suture areas and finally I overlaid the images to form the two mosaics. The resulting mosaics were then combined with structural features and the seismicity map of the area. The resulting mosaics were proven to be useful in identifying recently active faults and shows great potential for verification of other faults and in natural hazard assessment. For the second portion of my research, I made use of over 6,000 free air corrected gravity data in conjunction with other geological and geophysical data to develop a 3D density model for northern Libya. I used a gravity modeling program (SURFGRAV) to develop the 3D density model by manipulating it to accurately predict large areas of Free Air anomaly shown in the data. The residual gravity anomaly values were calculated by subtracting predicted Free Air anomaly from the observed Free Air anomaly. The results were satisfactory for uplifted areas of Libya while there were significant mismatches in basin areas. The density model was iterated and used as a starting model for the final portion of the study. In the last part of this research, I used the Nafe-Drake relationship along with other geological data to convert the 3D density model to a 3D velocity model (LIBYA3D) for the region. Two earthquakes having source receiver paths sampling much of the modeled area were used to perform 1D and 1.5D validation tests, and the results were compared to those from previous studies. The results showed that the new 3D velocity model is valid and superior to the global model. However, until there is sufficient earthquake data acquired, and we are able to perform 2D and 3D modeling we may not be able to see the true improvement of LIBYA3D as compared to the other regional models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.8471P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.8471P"><span>Case studies: Soil mapping using multiple methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petersen, Hauke; Wunderlich, Tina; Hagrey, Said A. Al; Rabbel, Wolfgang; Stümpel, Harald</p> <p>2010-05-01</p> <p>Soil is a non-renewable resource with fundamental functions like filtering (e.g. water), storing (e.g. carbon), transforming (e.g. nutrients) and buffering (e.g. contamination). Degradation of soils is meanwhile not only to scientists a well known fact, also decision makers in politics have accepted this as a serious problem for several environmental aspects. National and international authorities have already worked out preservation and restoration strategies for soil degradation, though it is still work of active research how to put these strategies into real practice. But common to all strategies the description of soil state and dynamics is required as a base step. This includes collecting information from soils with methods ranging from direct soil sampling to remote applications. In an intermediate scale mobile geophysical methods are applied with the advantage of fast working progress but disadvantage of site specific calibration and interpretation issues. In the framework of the iSOIL project we present here some case studies for soil mapping performed using multiple geophysical methods. We will present examples of combined field measurements with EMI-, GPR-, magnetic and gammaspectrometric techniques carried out with the mobile multi-sensor-system of Kiel University (GER). Depending on soil type and actual environmental conditions, different methods show a different quality of information. With application of diverse methods we want to figure out, which methods or combination of methods will give the most reliable information concerning soil state and properties. To investigate the influence of varying material we performed mapping campaigns on field sites with sandy, loamy and loessy soils. Classification of measured or derived attributes show not only the lateral variability but also gives hints to a variation in the vertical distribution of soil material. For all soils of course soil water content can be a critical factor concerning a succesful application of geophysical methods, e.g. GPR on wet loessy soils will result in a high attenuation of signals. Furthermore, with this knowledge we support the development of geophysical pedo-transfer-functions, i.e. the link between geophysical to soil parameters, which is active researched in another work package of the iSOIL project. Acknowledgement: iSOIL-Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9817C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9817C"><span>GPR survey, as one of the best geophysical methods for social and industrial needs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chernov, Anatolii</p> <p>2016-04-01</p> <p>This paper is about ways and methods of applying non-invasive geophysical method - Ground penetrating radar (GPR) survey in different spheres of science, industry, social life and culture. Author would like to show that geological methods could be widely used for solving great variety of industrial, human safety and other problems. In that article, we take GPR survey as an example of such useful geophysical methods. It is a fact that investigation of near surface underground medium is important process, which influence on development of different spheres of science and social life: investigation of near surface geology (layering, spreading of rock types, identification of voids, etc.), hydrogeology (depth to water horizons, their thickness), preparation step for construction of roads and buildings (civil geology, engineering geology), investigation of cultural heritage (burial places, building remains,...), ecological investigations (land slides, variation in underground water level, etc.), glaciology. These tasks can be solved by geological methods, but as usual, geophysical survey takes a lot of time and energy (especially electric current and resistivity methods, seismic survey). Author claims that GPR survey can be performed faster than other geophysical surveys and results of GPR survey are informative enough to make proper conclusions. Some problems even cannot be solved without GPR. For example, identification of burial place (one of author's research objects): results of magnetic and electric resistivity tomography survey do not contain enough information to identify burial place, but according to anomalies on GPR survey radarograms, presence of burial place can be proven. Identification of voids and non-magnetic objects also hardly can be done by another non-invasive geophysics surveys and GPR is applicable for that purpose. GPR can be applied for monitoring of dangerous processes in geological medium under roads, buildings, parks and other places of human activity. Monitoring of such hazards as landslides, underground erosion, variation in ground water level can help prevent dangerous processes with destructive consequences, which can result in peoples' injuries and even death. Moreover, GPR can be used in other spheres of life, where investigation of hidden (under or behind conductive for electromagnetic wave material) objects is needed: rescue operations (finding of people after natural and human-made disasters under snow, under debris of building material); military purpose (security systems, identification of people presence through walls, doors, ground etc.). Author work on algorithms (first of all for VIY GPRs (http://viy.ua/)), which will help more precisely find objects of interest on radarograms and even solve inverse problem of geophysics. According to information in that article, geophysical methods can be widely used to solve great variety of tasks and help to investigate humans' past (researches of cultural heritage) and provide information to create safe and comfortable future (preventing of natural hazards and better planning of construction).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030771','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030771"><span>Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.</p> <p>2006-01-01</p> <p>An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983EOSTr..64S.387.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983EOSTr..64S.387."><span>Fulbright update</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p></p> <p>Opportunities to teach or perform postdoctoral research in the earth and atmospheric sciences under the Senior Scholar Fulbright awards program for 1984-1985 (Eos, March 1, 1983, p. 81) are available in 14 countries, according to the Council for International Exchange of Scholars.The countries and the specialization opportunities are Algeria, any specialization; Australia, mineral processing research; India, any specialization in geology or geophysics; Israel, environmental studies; Korea, any specialization; Lebanon, geophysics, geotectonics, and structural geology; Morocco, research methods in science education; Pakistan, geology, marine biology, and mineralogy; Poland, mining technology; Sudan, geology and remote sensing; Thailand, planning and environmental change; USSR, any specialization; Yugoslavia, any research specialization; and Zimbabwe, exploration geophysics and solid earth geophysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840015906','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840015906"><span>Activities at the Lunar and Planetary Institute</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burke, K.</p> <p>1984-01-01</p> <p>The scientific and administrative activities of the Lunar and Planetary Institute are summarized. Recent research relating to geophysics, planetary geology, the origin of the Earth and Moon, the lunar surface, Mars, meteorites, and image processing techniques is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26651668','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26651668"><span>Pond fractals in a tidal flat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cael, B B; Lambert, Bennett; Bisson, Kelsey</p> <p>2015-11-01</p> <p>Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050161952','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050161952"><span>Workshop on Radar Investigations of Planetary and Terrestrial Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvE..92e2128C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvE..92e2128C"><span>Pond fractals in a tidal flat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cael, B. B.; Lambert, Bennett; Bisson, Kelsey</p> <p>2015-11-01</p> <p>Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC34A1157L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC34A1157L"><span>Reconstruction of Missing Pixels in Satellite Images Using the Data Interpolating Empirical Orthogonal Function (DINEOF)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, X.; Wang, M.</p> <p>2016-02-01</p> <p>For coastal and inland waters, complete (in spatial) and frequent satellite measurements are important in order to monitor and understand coastal biological and ecological processes and phenomena, such as diurnal variations. High-frequency images of the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)) derived from the Korean Geostationary Ocean Color Imager (GOCI) provide a unique opportunity to study diurnal variation of the water turbidity in coastal regions of the Bohai Sea, Yellow Sea, and East China Sea. However, there are lots of missing pixels in the original GOCI-derived Kd(490) images due to clouds and various other reasons. Data Interpolating Empirical Orthogonal Function (DINEOF) is a method to reconstruct missing data in geophysical datasets based on Empirical Orthogonal Function (EOF). In this study, the DINEOF is applied to GOCI-derived Kd(490) data in the Yangtze River mouth and the Yellow River mouth regions, the DINEOF reconstructed Kd(490) data are used to fill in the missing pixels, and the spatial patterns and temporal functions of the first three EOF modes are also used to investigate the sub-diurnal variation due to the tidal forcing. In addition, DINEOF method is also applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite to reconstruct missing pixels in the daily Kd(490) and chlorophyll-a concentration images, and some application examples in the Chesapeake Bay and the Gulf of Mexico will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PApGe.174.2295P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PApGe.174.2295P"><span>Radar Determination of Fault Slip and Location in Partially Decorrelated Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Stough, Timothy; Pierce, Marlon; Wang, Jun</p> <p>2017-06-01</p> <p>Faced with the challenge of thousands of frames of radar interferometric images, automated feature extraction promises to spur data understanding and highlight geophysically active land regions for further study. We have developed techniques for automatically determining surface fault slip and location using deformation images from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), which is similar to satellite-based SAR but has more mission flexibility and higher resolution (pixels are approximately 7 m). This radar interferometry provides a highly sensitive method, clearly indicating faults slipping at levels of 10 mm or less. But interferometric images are subject to decorrelation between revisit times, creating spots of bad data in the image. Our method begins with freely available data products from the UAVSAR mission, chiefly unwrapped interferograms, coherence images, and flight metadata. The computer vision techniques we use assume no data gaps or holes; so a preliminary step detects and removes spots of bad data and fills these holes by interpolation and blurring. Detected and partially validated surface fractures from earthquake main shocks, aftershocks, and aseismic-induced slip are shown for faults in California, including El Mayor-Cucapah (M7.2, 2010), the Ocotillo aftershock (M5.7, 2010), and South Napa (M6.0, 2014). Aseismic slip is detected on the San Andreas Fault from the El Mayor-Cucapah earthquake, in regions of highly patterned partial decorrelation. Validation is performed by comparing slip estimates from two interferograms with published ground truth measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2011/1229/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2011/1229/"><span>Identification of mineral resources in Afghanistan-Detecting and mapping resource anomalies in prioritized areas using geophysical and remote sensing (ASTER and HyMap) data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>King, Trude V.V.; Johnson, Michaela R.; Hubbard, Bernard E.; Drenth, Benjamin J.</p> <p>2011-01-01</p> <p>During the independent analysis of the geophysical, ASTER, and imaging spectrometer (HyMap) data by USGS scientists, previously unrecognized targets of potential mineralization were identified using evaluation criteria most suitable to the individual dataset. These anomalous zones offer targets of opportunity that warrant additional field verification. This report describes the standards used to define the anomalies, summarizes the results of the evaluations for each type of data, and discusses the importance and implications of regions of anomaly overlap between two or three of the datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17769271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17769271"><span>Fundamental issues in the geology and geophysics of venus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Solomon, S C; Head, J W</p> <p>1991-04-12</p> <p>A number of important and currently unresolved issues in the global geology and geophysics of Venus will be addressable with the radar imaging, altimetry, and gravity measurements now forthcoming from the Magellan mission. Among these are the global volcanic flux and the rate of formation of new crust; the global heat flux and its regional variations; the relative importance of localized hot spots and linear centers of crustal spreading to crustal formation and tectonics; and the planform of mantle convection on Venus and the nature of the interactions among interior convective flow, near-surface deformation and magmatism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/13565','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/13565"><span>Subsurface high resolution definition of subsurface heterogeneity for understanding the biodynamics of natural field systems: Advancing the ability for scaling to field conditions. 1998 annual progress report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Majer, E.L.; Brockman, F.J.</p> <p>1998-06-01</p> <p>'This research is an integrated physical (geophysical and hydrologic) and microbial study using innovative geophysical imaging and microbial characterization methods to identify key scales of physical heterogeneities that affect the biodynamics of natural subsurface environments. Data from controlled laboratory and in-situ experiments at the INEEL Test Area North (TAN) site are being used to determine the dominant physical characteristics (lithologic, structural, and hydrologic) that can be imaged in-situ and correlated with microbial properties. The overall goal of this research is to contribute to the understanding of the interrelationships between transport properties and spatially varying physical, chemical, and microbiological heterogeneity. Themore » outcome will be an improved understanding of the relationship between physical and microbial heterogeneity, thus facilitating the design of bioremediation strategies in similar environments. This report summarizes work as of May 1998, the second year of the project. This work is an extension of basic research on natural heterogeneity first initiated within the DOE/OHER Subsurface Science Program (SSP) and is intended to be one of the building blocks of an integrated and collaborative approach with an INEEL/PNNL effort aimed at understanding the effect of physical heterogeneity on transport properties and biodynamics in natural systems. The work is closely integrated with other EMSP projects at INEEL (Rick Colwell et al.) and PNNL (Fred Brockman and Jim Fredrickson).'« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SGeo...37..897G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SGeo...37..897G"><span>Joint Audio-Magnetotelluric and Passive Seismic Imaging of the Cerdanya Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gabàs, A.; Macau, A.; Benjumea, B.; Queralt, P.; Ledo, J.; Figueras, S.; Marcuello, A.</p> <p>2016-09-01</p> <p>The structure of Cerdanya Basin (north-east of Iberian Peninsula) is partly known from geological cross sections, geological maps and vintage geophysical data. However, these data do not have the necessary resolution to characterize some parts of Cerdanya Basin such as the thickness of soft soil, geometry of bedrock or geometry of geological units and associated faults. For all these reasons, the main objective of this work is to improve this deficiency carrying out a detailed study in this Neogene basin applying jointly the combination of passive seismic methods ( H/V spectral ratio and seismic array) and electromagnetic methods (audio-magnetotelluric and magnetotelluric method). The passive seismic techniques provide valuable information of geometry of basement along the profile. The maximum depth is located near Alp village with a bedrock depth of 500 m. The bedrock is located in surface at both sites of profile. The Neogene sediments present a shear-wave velocity between 400 and 1000 m/s, and the bedrock basement presents a shear-wave velocity values between 1700 and 2200 m/s. These results are used as a priori information to create a 2D resistivity initial model which constraints the inversion process of electromagnetic data. We have obtained a 2D resistivity model which is characterized by (1) a heterogeneous conductivity zone (<40 Ohm m) that corresponds to shallow part of the model up to 500 m depth in the centre of the profile. These values have been associated with Quaternary and Neogene sediments formed by silts, clays, conglomerates, sandstones and gravels, and (2) a deeper resistive zone (1000-3000 Ohm m) interpreted as Palaeozoic basement (sandstones, limestones and slates at NW and conglomerates and microconglomerates at SE). The resistive zone is truncated by a discontinuity at the south-east of the profile which is interpreted as the Alp-La Tet Fault. This discontinuity is represented by a more conductive zone (600 Ohm m approx.) and is explained as a combination of fractured rock and a fluid network. The result highlights that the support between different geophysical methods is essential in producing geophysical meaningful models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJAEO..46...31A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJAEO..46...31A"><span>A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abedi, Maysam; Norouzi, Gholam-Hossain</p> <p>2016-04-01</p> <p>This work presents the promising application of three variants of TOPSIS method (namely the conventional, adjusted and modified versions) as a straightforward knowledge-driven technique in multi criteria decision making processes for data fusion of a broad exploratory geo-dataset in mineral potential/prospectivity mapping. The method is implemented to airborne geophysical data (e.g. potassium radiometry, aeromagnetic and frequency domain electromagnetic data), surface geological layers (fault and host rock zones), extracted alteration layers from remote sensing satellite imagery data, and five evidential attributes from stream sediment geochemical data. The central Iranian volcanic-sedimentary belt in Kerman province at the SE of Iran that is embedded in the Urumieh-Dokhtar Magmatic Assemblage arc (UDMA) is chosen to integrate broad evidential layers in the region of prospect. The studied area has high potential of ore mineral occurrences especially porphyry copper/molybdenum and the generated mineral potential maps aim to outline new prospect zones for further investigation in future. Two evidential layers of the downward continued aeromagnetic data and its analytic signal filter are prepared to be incorporated in fusion process as geophysical plausible footprints of the porphyry type mineralization. The low values of the apparent resistivity layer calculated from the airborne frequency domain electromagnetic data are also used as an electrical criterion in this investigation. Four remote sensing evidential layers of argillic, phyllic, propylitic and hydroxyl alterations were extracted from ASTER images in order to map the altered areas associated with porphyry type deposits, whilst the ETM+ satellite imagery data were used as well to map iron oxide layer. Since potassium alteration is generally the mainstay of porphyry ore mineralization, the airborne potassium radiometry data was used. The geochemical layers of Cu/B/Pb/Zn elements and the first component of PCA analysis were considered as powerful traces to prepare final maps. The conventional, adjusted and modified variants of the TOPSIS method produced three mineral potential maps, in which the outputs indicate adequately matching of high potential zones with previous working and active mines in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3705001Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3705001Z"><span>Application of electrical geophysics to the release of water resources, case of Ain Leuh (Morocco)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zitouni, A.; Boukdir, A.; El Fjiji, H.; Baite, W.; Ekouele Mbaki, V. R.; Ben Said, H.; Echakraoui, Z.; Elissami, A.; El Maslouhi, M. R.</p> <p>2018-05-01</p> <p>Being seen needs in increasing waters in our contry for fine domestics, manufactures and agricultural, the prospecting of subterranean waters by geologic and hydrogeologic classic method remains inaplicable in the cases of the regions where one does not arrange drillings or polls (soundings) of gratitude (recongnition) in very sufficient (self-important) number. In that case of figure, the method of prospecting geophysics such as the method of nuclear magnetic resonance (NMR) and the method of the geophysics radar are usually used most usually because they showed, worldwide, results very desive in the projects of prospecting and evaluation of the resources in subterranean waters. In the present work, which concerns only the methodology of the electric resistivity, we treat the adopted methodological approach and the study of the case of application in the tray of Ajdir Ain Leuh.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2011/5158/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2011/5158/"><span>Geophysical bed sediment characterization of the Androscoggin River from the former Chlor-Alkali Facility Superfund Site, Berlin, New Hampshire, to the state border with Maine, August 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Degnan, James R.; Teeple, Andrew; Johnston, Craig M.; Marvin-DiPasquale, Mark C.; Luce, Darryl</p> <p>2011-01-01</p> <p>The former Chlor-Alkali Facility in Berlin, New Hampshire, was listed on the U.S. Environmental Protection Agency National Priorities List in 2005 as a Superfund site. The Chlor-Alkali Facility lies on the east bank of the Androscoggin River. Elemental mercury currently discharges from that bank into the Androscoggin River. The nature, extent, and the speciation of mercury and the production of methyl mercury contamination in the adjacent Androscoggin River is the subject of continuing investigations. The U.S. Geological Survey, in cooperation with Region I of the U.S. Environmental Protection Agency, used geophysical methods to determine the distribution, thickness, and physical properties of sediments in the Androscoggin River channel at a small area of an upstream reference reach and downstream from the site to the New Hampshire–Maine State border. Separate reaches of the Androscoggin River in the study area were surveyed with surface geophysical methods including ground-penetrating radar and step-frequency electromagnetics. Results were processed to assess sediment characteristics including grain size, electrical conductivity, and pore-water specific conductance. Specific conductance measured during surface- and pore-water sampling was used to help interpret the results of the geophysical surveys. The electrical resistivity of sediment samples was measured in the laboratory with intact pore water for comparison with survey results. In some instances, anthropogenic features and land uses, such as roads and power lines affected the detection of riverbed properties using geophysical methods; when this occurred, the data were removed. Through combining results, detailed riverbed sediment characterizations were made. Results from ground-penetrating radar surveys were used to image and measure the depth to the riverbed, depth to buried riverbeds, riverbed thickness and to interpret material-type variations in terms of relative grain size. Fifty two percent of the riverbed in the study area was covered with gravel and finer sediments. The electrically resistive river water and sediment in this study area were conducive to the penetration of the ground-penetrating radar and step-frequency electromagnetic signals and allowed for effective sediment characterization by geophysical methods. The reach between the former Chlor-Alkali Facility and the Riverside Dam, had small areas of fine sediment (estimated 11 percent of riverbed area), found on the upstream left bank and the downstream right bank, with an electromagnetic conductivity (31.4 millisiemens per meter (mS/m) maximum) that was higher than the upstream reference reach. The greatest electromagnetic conductivity (195 mS/m), pore-water specific conductance (324 mS/m) and lab measured sediment conductivity of (76.8 mS/m, measured with a direct-current resistivity test box) in the study were measured approximately 1 mile (mi) downstream of the site from a sandbar on the left bank. Reaches adjacent to and within 2 mi downstream from the site had elevated electromagnetic conductivity despite having lower estimated percentages of riverbed area covered in sediment (11, 25, and 61 percent, respectively) than the reference reach (97). Typically finer grained sediment with similar mineralogy will be more conductive. The Shelburne Reservoir is approximately 8 mi downstream from the site had the second greatest pore-water specific conductance measured, 45.8 mS/m. Many of the locations with the largest step-frequency electromagnetic values have not been sampled for pore water and sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5203/pdf/sir2007-5203.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5203/pdf/sir2007-5203.pdf"><span>Application of Surface Geophysical Methods, With Emphasis on Magnetic Resonance Soundings, to Characterize the Hydrostratigraphy of the Brazos River Alluvium Aquifer, College Station, Texas, July 2006 - A Pilot Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shah, Sachin D.; Kress, Wade H.; Legchenko, Anatoly</p> <p>2007-01-01</p> <p>The U.S. Geological Survey, in cooperation with the Texas Water Development Board, used surface geophysical methods at the Texas A&M University Brazos River Hydrologic Field Research Site near College Station, Texas, in a pilot study, to characterize the hydrostratigraphic properties of the Brazos River alluvium aquifer and determine the effectiveness of the methods to aid in generating an improved ground-water availability model. Three non-invasive surface geophysical methods were used to characterize the electrical stratigraphy and hydraulic properties and to interpret the hydrostratigraphy of the Brazos River alluvium aquifer. Two methods, time-domain electromagnetic (TDEM) soundings and two-dimensional direct-current (2D-DC) resistivity imaging, were used to define the lateral and vertical extent of the Ships clay, the alluvium of the Brazos River alluvium aquifer, and the underlying Yegua Formation. Magnetic resonance sounding (MRS), a recently developed geophysical method, was used to derive estimates of the hydrologic properties including percentage water content and hydraulic conductivity. Results from the geophysics study demonstrated the usefulness of combined TDEM, 2D-DC resistivity, and MRS methods to reduce the need for additional boreholes in areas with data gaps and to provide more accurate information for ground-water availability models. Stratigraphically, the principal finding of this study is the relation between electrical resistivity and the depth and thickness of the subsurface hydrostratigraphic units at the site. TDEM data defined a three-layer electrical stratigraphy corresponding to a conductor-resistor-conductor that represents the hydrostratigraphic units - the Ships clay, the alluvium of the Brazos River alluvium aquifer, and the Yegua Formation. Sharp electrical boundaries occur at about 4 to 6 and 20 to 22 meters below land surface based on the TDEM data and define the geometry of the more resistive Brazos River alluvium aquifer. Variations in resistivity in the alluvium aquifer range from 10 to more than 175 ohm-meters possibly are caused by lateral changes in grain size. Resistivity increases from east to west along a profile away from the Brazos River, which signifies an increase in grain size within the alluvium aquifer and therefore a more productive zone with more abundant water in the aquifer. MRS data can help delineate the subsurface hydrostratigraphy and identify the geometric boundaries of the hydrostratigraphic units by identifying changes in the free water content, transmissivity, and hydraulic conductivity. MRS data indicate that most productive zones of the alluvium aquifer occur between 12 and 25 meters below land surface in the western part of the study area where the hydraulic conductivity can be as high as 250 meters per day. Hydrostratigraphically, individual hydraulic conductivity values derived from MRS were consistent with those from aquifer tests conducted in 1996 in the study area. Average hydraulic conductivity values from the aquifer tests range from about 61 to 80 meters per day, whereas the MRS-derived hydraulic conductivity values range from about 27 to 97 meters per day. Interpreting an interpolated profile of the hydraulic conductivity values and individual values derived from MRS can help describe the hydrostratigraphic framework of an area and constrain ground-water models for better accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4032S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4032S"><span>Geophysics in INSPIRE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sőrés, László</p> <p>2013-04-01</p> <p>INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface model (2D), and solid model (3D). Both measurements and models are derived from O&M sampling features that may be linked to sampling procedures and observation results. Geophysical products are output of complex procedures and can precisely be described as chains of consecutive O&M observations. For describing geophysical processes and results the data model both supports the use of OGC standard XML encoding (SensorML, SWE, GML) and traditional industry standards (SPS, UKOOA, SEG formats). To control the scope of the model and to harmonize terminology an initial set of extendable code lists was developed. The attempt to create a hierarchical SKOS vocabulary of terms for geophysical methods, resource types, processes, properties and technical parameters was partly based on the work done in the eContentPlus GEOMIND project. The result is far from being complete, and the work must be continued in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/1022/ds1022.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/1022/ds1022.pdf"><span>Continued geophysical logging near the GMH Electronics National Priorities List Superfund site near Roxboro, North Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Antolino, Dominick J.; Chapman, Melinda J.</p> <p>2017-01-06</p> <p>The U.S. Geological Survey South Atlantic Water Science Center collected borehole geophysical logs and images and continuous water-level data near the GMH Electronics National Priorities List Superfund site near Roxboro, North Carolina, during December 2012 through July 2015. Previous work by the U.S. Geological Survey South Atlantic Water Science Center at the site involved the collection of borehole geophysical log data in 15 wells, in addition to surface geologic mapping and passive diffusion bag sampling. In a continued effort to assist the U.S. Environmental Protection Agency in developing a conceptual groundwater model to assess current contaminant distribution and future migration of contaminants, more than 900 subsurface features (primarily fracture orientations) in 10 open borehole wells were delineated and continuous water-level data information from 14 monitoring wells within close proximity of the initially drilled boreholes was collected to observe any induced water-level fluctuations during drilling operations</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27981466','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27981466"><span>Multiple geophysical surveys for old landfill monitoring in Singapore.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yin, Ke; Tong, Huanhuan; Giannis, Apostolos; Wang, Jing-Yuan; Chang, Victor W-C</p> <p>2017-01-01</p> <p>One-dimensional boring presents limitations on mapping the refuse profile in old landfills owning to waste heterogeneity. Electrical imaging (EI) and multiple-analysis of surface wave (MASW) were hereby deployed at an old dumping ground in Singapore to explore the subsurface in relation to geotechnical analysis. MASW estimated the refuse boundary with a higher precision as compared to EI, due to its endurance for moisture variation. EI and MASW transection profiles suggested spots of interest, e.g., refuse pockets and leachate mounds. 3D inversion of EI and MASW data further illustrated the transformation dynamics derived by natural attenuation, for instance the preferential infiltration pathway. Comparison of geophysical surveys at different years uncovered the subterranean landfill conditions, indicating strong impacts induced by aging, precipitation, and settlement. This study may shed light on a characterization framework of old landfills via combined geophysical models, thriving landfill knowledge with a higher creditability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/500/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/500/"><span>Geophysical Logs of Selected Wells at the Diaz Chemical Superfund Site in the Village of Holley, New York, 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eckhardt, David A.V.; Anderson, J. Alton</p> <p>2010-01-01</p> <p>Geophysical logs were collected and analyzed to define the bedrock fracture patterns and flow zones penetrated by three wells at the Diaz Chemical Superfund Site in the Village of Holley in Orleans County, New York. The work was conducted in December 2009 as part of the investigation of contamination by organic compounds in the shale, mudstone, and sandstone bedrock at the Site. The geophysical logs include natural-gamma, caliper, borehole image, fluid properties, and flowmeter data. The orientation of fractures in the boreholes was inferred from the log data and summarized in stereo and tadpole plots; when possible, the transmissivity and hydraulic head was also determined for fracture zones that were observed to be hydraulically active through the flowmeter logs. The data are intended, in part, for use in the remediation of the site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1081/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1081/"><span>Geophysical Logs of Selected Test Wells at the Diaz Chemical Superfund Site in Holley, New York</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eckhardt, David A.V.; Anderson, J. Alton</p> <p>2007-01-01</p> <p>In June and July 2006, geophysical logs were collected and analyzed along with rock-core samples to define the bedrock stratigraphy and flow zones penetrated by four test wells at the Diaz Chemical Superfund site at Holley in eastern Orleans County, New York. The work was completed as a preliminary part of the investigation of contamination by organic compounds in the shale, mudstone, and sandstone bedrock. The geophysical logs included natural-gamma, caliper, borehole image, fluid properties, and flowmeter data. The orientation of fractures in the boreholes was inferred from the log data and summarized in stereo and tadpole plots; the transmissivity and hydraulic head was also determined for fracture zones that were observed to be hydraulically active through the flowmeter logs. The data are intended in part for use in the remediation of the site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930047931&hterms=environment+attitudes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Denvironment%2Battitudes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930047931&hterms=environment+attitudes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Denvironment%2Battitudes"><span>A study of the impact of the Space Shuttle environment on faint far-UV geophysical and astronomical phenomena</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lampton, Michael; Sasseen, Timothy P.; Wu, Xiaoyi; Bowyer, Stuart</p> <p>1993-01-01</p> <p>FAUST is a far ultraviolet (1400-1800 A) photon-counting imaging telescope featuring a wide field of view (7.6 deg) and a high sensitivity to extended emission features. During its flight as part of the ATLAS-1 payload aboard the STS-45 mission in March 1992, 19 deep-space nighttime viewing opportunities were utilized by FAUST. Here we report the observed fluxes and their time and space variations, and identify the signatures of postsunset airglow phenomena and Orbiter Vernier attitude control thruster firing events. We find that the Space Shuttle nighttime environment at 296 km altitude is often sufficiently dark to permit geophysical and astronomical UV observations down to levels on the order of 1000 photons/sq cm sr A sec, or 0.01 Rayleighs/A. We also find evidence for occasional geophysical fluxes of some tens or hundreds of Rayleighs in the upward-looking direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/941122','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/941122"><span>Geophysics-based method of locating a stationary earth object</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM</p> <p>2008-05-20</p> <p>A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SGeo...38..935M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SGeo...38..935M"><span>Integrating Electromagnetic Data with Other Geophysical Observations for Enhanced Imaging of the Earth: A Tutorial and Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moorkamp, Max</p> <p>2017-09-01</p> <p>In this review, I discuss the basic principles of joint inversion and constrained inversion approaches and show a few instructive examples of applications of these approaches in the literature. Starting with some basic definitions of the terms joint inversion and constrained inversion, I use a simple three-layered model as a tutorial example that demonstrates the general properties of joint inversion with different coupling methods. In particular, I investigate to which extent combining different geophysical methods can restrict the set of acceptable models and under which circumstances the results can be biased. Some ideas on how to identify such biased results and how negative results can be interpreted conclude the tutorial part. The case studies in the second part have been selected to highlight specific issues such as choosing an appropriate parameter relationship to couple seismic and electromagnetic data and demonstrate the most commonly used approaches, e.g., the cross-gradient constraint and direct parameter coupling. Throughout the discussion, I try to identify topics for future work. Overall, it appears that integrating electromagnetic data with other observations has reached a level of maturity and is starting to move away from fundamental proof-of-concept studies to answering questions about the structure of the subsurface. With a wide selection of coupling methods suited to different geological scenarios, integrated approaches can be applied on all scales and have the potential to deliver new answers to important geological questions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SolE....8.1241T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SolE....8.1241T"><span>Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thiele, Samuel T.; Grose, Lachlan; Samsu, Anindita; Micklethwaite, Steven; Vollgger, Stefan A.; Cruden, Alexander R.</p> <p>2017-12-01</p> <p>The advent of large digital datasets from unmanned aerial vehicle (UAV) and satellite platforms now challenges our ability to extract information across multiple scales in a timely manner, often meaning that the full value of the data is not realised. Here we adapt a least-cost-path solver and specially tailored cost functions to rapidly interpolate structural features between manually defined control points in point cloud and raster datasets. We implement the method in the geographic information system QGIS and the point cloud and mesh processing software CloudCompare. Using these implementations, the method can be applied to a variety of three-dimensional (3-D) and two-dimensional (2-D) datasets, including high-resolution aerial imagery, digital outcrop models, digital elevation models (DEMs) and geophysical grids. We demonstrate the algorithm with four diverse applications in which we extract (1) joint and contact patterns in high-resolution orthophotographs, (2) fracture patterns in a dense 3-D point cloud, (3) earthquake surface ruptures of the Greendale Fault associated with the Mw7.1 Darfield earthquake (New Zealand) from high-resolution light detection and ranging (lidar) data, and (4) oceanic fracture zones from bathymetric data of the North Atlantic. The approach improves the consistency of the interpretation process while retaining expert guidance and achieves significant improvements (35-65 %) in digitisation time compared to traditional methods. Furthermore, it opens up new possibilities for data synthesis and can quantify the agreement between datasets and an interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMED41D..02V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMED41D..02V"><span>An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.</p> <p>2007-05-01</p> <p>The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JVGR..251...65D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JVGR..251...65D"><span>Multivariate time series clustering on geophysical data recorded at Mt. Etna from 1996 to 2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Salvo, Roberto; Montalto, Placido; Nunnari, Giuseppe; Neri, Marco; Puglisi, Giuseppe</p> <p>2013-02-01</p> <p>Time series clustering is an important task in data analysis issues in order to extract implicit, previously unknown, and potentially useful information from a large collection of data. Finding useful similar trends in multivariate time series represents a challenge in several areas including geophysics environment research. While traditional time series analysis methods deal only with univariate time series, multivariate time series analysis is a more suitable approach in the field of research where different kinds of data are available. Moreover, the conventional time series clustering techniques do not provide desired results for geophysical datasets due to the huge amount of data whose sampling rate is different according to the nature of signal. In this paper, a novel approach concerning geophysical multivariate time series clustering is proposed using dynamic time series segmentation and Self Organizing Maps techniques. This method allows finding coupling among trends of different geophysical data recorded from monitoring networks at Mt. Etna spanning from 1996 to 2003, when the transition from summit eruptions to flank eruptions occurred. This information can be used to carry out a more careful evaluation of the state of volcano and to define potential hazard assessment at Mt. Etna.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1111647','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1111647"><span>Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Frary, R.; Louie, J.; Pullammanappallil, S.</p> <p></p> <p>Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980227535&hterms=datasets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddatasets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980227535&hterms=datasets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddatasets"><span>Critical Analyses of Data Differences Between FNMOC and AFGWC Spawned SSM/I Datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ritchie, Adrian A., Jr.; Smith, Matthew R.; Goodman, H. Michael; Schudalla, Ronald L.; Conway, Dawn K.; LaFontaine, Frank J.; Moss, Don; Motta, Brian</p> <p>1998-01-01</p> <p>Antenna temperatures and the corresponding geolocation data from the five sources of the Special Sensor Microwave/Imager data from the Defense Meteorological Satellite Program F11 satellite have been characterized. Data from the Fleet Numerical Meteorology and Oceanography Center (FNMOC) have been compared with data from other sources to define and document the differences resulting from different processing systems. While all sources used similar methods to calculate antenna temperatures, different calibration averaging techniques and other processing methods yielded temperature differences. Analyses of the geolocation data identified perturbations in the FNMOC and National Environmental Satellite, Data and Information Service data. The effects of the temperature differences were examined by generating rain rates using the Goddard Scattering Algorithm. Differences in the geophysical precipitation products are directly attributable to antenna temperature differences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.292...72M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.292...72M"><span>Quaternary sediment architecture in the Orkhon Valley (central Mongolia) inferred from capacitive coupled resistivity and Georadar measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mackens, Sonja; Klitzsch, Norbert; Grützner, Christoph; Klinger, Riccardo</p> <p>2017-09-01</p> <p>Detailed information on shallow sediment distribution in basins is required to achieve solutions for problems in Quaternary geology, geomorphology, neotectonics, (geo)archaeology, and climatology. Usually, detailed information is obtained by studying outcrops and shallow drillings. Unfortunately, such data are often sparsely distributed and thus cannot characterise entire basins in detail. Therefore, they are frequently combined with remote sensing methods to overcome this limitation. Remote sensing can cover entire basins but provides information of the land surface only. Geophysical methods can close the gap between detailed sequences of the shallow sediment inventory from drillings at a few spots and continuous surface information from remote sensing. However, their interpretation in terms of sediment types is often challenging, especially if permafrost conditions complicate their interpretation. Here we present an approach for the joint interpretation of the geophysical methods ground penetrating radar (GPR) and capacitive coupled resistivity (CCR), drill core, and remote sensing data. The methods GPR and CCR were chosen because they allow relatively fast surveying and provide complementary information. We apply the approach to the middle Orkhon Valley in central Mongolia where fluvial, alluvial, and aeolian processes led to complex sediment architecture. The GPR and CCR data, measured on profiles with a total length of about 60 km, indicate the presence of two distinct layers over the complete surveying area: (i) a thawed layer at the surface, and (ii) a frozen layer below. In a first interpretation step, we establish a geophysical classification by considering the geophysical signatures of both layers. We use sedimentological information from core logs to relate the geophysical classes to sediment types. This analysis reveals internal structures of Orkhon River sediments, such as channels and floodplain sediments. We also distinguish alluvial fan deposits and aeolian sediments by their distinct geophysical signature. With this procedure we map aeolian sediments, debris flow sediments, floodplains, and channel sediments along the measured profiles in the entire basin. We show that the joint interpretation of drillings and geophysical profile measurements matches the information from remote sensing data, i.e., the sediment architecture of vast areas can be characterised by combining these techniques. The method presented here proves powerful for characterising large areas with minimal effort and can be applied to similar settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16140021','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16140021"><span>Automated lithology prediction from PGNAA and other geophysical logs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Borsaru, M; Zhou, B; Aizawa, T; Karashima, H; Hashimoto, T</p> <p>2006-02-01</p> <p>Different methods of lithology predictions from geophysical data have been developed in the last 15 years. The geophysical logs used for predicting lithology are the conventional logs: sonic, neutron-neutron, gamma (total natural-gamma) and density (backscattered gamma-gamma). The prompt gamma neutron activation analysis (PGNAA) is another established geophysical logging technique for in situ element analysis of rocks in boreholes. The work described in this paper was carried out to investigate the application of PGNAA to the lithology interpretation. The data interpretation was conducted using the automatic interpretation program LogTrans based on statistical analysis. Limited test suggests that PGNAA logging data can be used to predict the lithology. A success rate of 73% for lithology prediction was achieved from PGNAA logging data only. It can also be used in conjunction with the conventional geophysical logs to enhance the lithology prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2011/1258/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2011/1258/"><span>Notes on interpretation of geophysical data over areas of mineralization in Afghanistan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Drenth, Benjamin J.</p> <p>2011-01-01</p> <p>Afghanistan has the potential to contain substantial metallic mineral resources. Although valuable mineral deposits have been identified, much of the country's potential remains unknown. Geophysical surveys, particularly those conducted from airborne platforms, are a well-accepted and cost-effective method for obtaining information on the geological setting of a given area. This report summarizes interpretive findings from various geophysical surveys over selected mineral targets in Afghanistan, highlighting what existing data tell us. These interpretations are mainly qualitative in nature, because of the low resolution of available geophysical data. Geophysical data and simple interpretations are included for these six areas and deposit types: (1) Aynak: Sedimentary-hosted copper; (2) Zarkashan: Porphyry copper; (3) Kundalan: Porphyry copper; (4) Dusar Shaida: Volcanic-hosted massive sulphide; (5) Khanneshin: Carbonatite-hosted rare earth element; and (6) Chagai Hills: Porphyry copper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512577P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512577P"><span>Satellite and aerial data as a tool for digs localisation and their verification using geophysical methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pavelka, Karel; Faltynova, Martina; Bila, Zdenka</p> <p>2013-04-01</p> <p>The Middle Europe such as next world cultural centres are inhabited by humans tens of thousands years. In the last ten years, new methods are implemented in archaeology. It means new sensitive geophysical methods, very high resolution remote sensing and Airborne Laser Scanning (ALS). This contribution will refer about new technological possibilities for archaeology in the Czech Republic to two project examples. VHR satellite data or aerial image data can be used for searching of potential archaeological sites. In some cases, orthophoto mosaic is very useful; nowadays, different aerial orthophotomosaic layers are available in the Czech Republic (2002-3, 2006 and 2009) with pixel resolution 25cm. The archaeological findings are best visible in the Czech Republic by their vegetation indices. For this reason, the best time for data acquiring is mid of spring, in rapid vegetation process. Another option is the soil indices - the best time is early spring or autumn, after crop. A new progressive method is ALS, which can be used for spatial indices. Since autumn 2009 the entire area of the Czech Republic is mapped by technology of ALS. The aim of mapping is to get authentic and detailed digital terrain model (DTM) of the Czech Republic. About 80% (autumn 2012) of the Czech territory is currently covered by the DTM based on ALS. The standard deviation of model points in altitude is better than 20cm. The DTM displayed in appropriate form (as shaded surface) can be used as a data source for searching and description of archaeological sites - mainly in forested areas. By using of above mentioned methods a lot of interesting historical sites were discovered. The logical next step is a verification of these findings by using terrestrial methods - in this case by using of geophysical instruments. At the CTU Prague, the walking gradiometer GSM-19 and georadar SIR-3000 are at disposal. In first example the former fortification from Prussia - Austrian was localized on orthophoto mosaic and QuickBird satellite data. Normally is not visible from the surface. Secondary was fortification localized on shaded relief by spatial indices. Last verification has been made by walking magnetometer. Second example is joining of both magnetometers and GPR data. These technology and 3D modelling was used for localisation and verification of unknown tomb in the neighbourhood of church ruins in Panensky Tynec.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/4878','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/4878"><span>Profiles of gamma-ray and magnetic data from aerial surveys over the conterminous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Duval, Joseph S.; Riggle, Frederic E.</p> <p>1999-01-01</p> <p>This publication contains images for the conterminous U.S. generated from geophysical data, software for displaying and analyzing the images, and software for displaying and examining the profile data from the aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22930423','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22930423"><span>Bioimpedance imaging: an overview of potential clinical applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bayford, Richard; Tizzard, Andrew</p> <p>2012-10-21</p> <p>Electrical Impedance Tomography (EIT) is an imaging technique based on multiple bio impedance measurements to produce a map (image) of impedance or changes in impedance across a region. Its origins lay in geophysics where it is still used to today. This review highlights potential clinical applications of EIT. Beginning with a brief overview of the underlying principles behind the modality, it describes the background research leading towards the development of the application of EIT for monitoring pulmonary function, detecting and localising tumours and monitoring brain function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840008322','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840008322"><span>Spaceborne Imaging Radar Symposium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elachi, C.</p> <p>1983-01-01</p> <p>An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/17420','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/17420"><span>Application of innovative nondestructive methods to geotechnical and environmental investigations : final report, April 2003.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2003-03-01</p> <p>Geophysical surveys were conducted for the Missouri Department of Transportation (MoDOT) by the Department of Geology and Geophysics at the University of Missouri-Rolla. This report contains the results of several projects that utilized nondestructiv...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020046011&hterms=datasets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddatasets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020046011&hterms=datasets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddatasets"><span>Correlation of Geophysical and Geological Datasets for Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martin, P.; Stofan, E. R.; Smrekar, S. E.; Raymond, C. A.</p> <p>2002-01-01</p> <p>Magnetic and gravity data for Mars have been compared to images of the martian surface, with the aim of determining the sources of the observed pattern of magnetic anomalies. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028275','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028275"><span>Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maercklin, N.; Bedrosian, P.A.; Haberland, C.; Ritter, O.; Ryberg, T.; Weber, M.; Weckmann, U.</p> <p>2005-01-01</p> <p>Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a ???10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1-4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others. Copyright 2005 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10997203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10997203"><span>An overview of remote sensing and geodesy for epidemiology and public health application.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hay, S I</p> <p>2000-01-01</p> <p>The techniques of remote sensing (RS) and geodesy have the potential to revolutionize the discipline of epidemiology and its application in human health. As a new departure from conventional epidemiological methods, these techniques require some detailed explanation. This review provides the theoretical background to RS including (i) its physical basis, (ii) an explanation of the orbital characteristics and specifications of common satellite sensor systems, (iii) details of image acquisition and procedures adopted to overcome inherent sources of data degradation, and (iv) a background to geophysical data preparation. This information allows RS applications in epidemiology to be readily interpreted. Some of the techniques used in geodesy, to locate features precisely on Earth so that they can be registered to satellite sensor-derived images, are also included. While the basic principles relevant to public health are presented here, inevitably many of the details must be left to specialist texts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.6743R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.6743R"><span>Three-dimensional density structure of La Soufrière de Guadeloupe lava dome from simultaneous muon radiographies and gravity data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosas-Carbajal, M.; Jourde, Kevin; Marteau, Jacques; Deroussi, Sébastien; Komorowski, Jean-Christophe; Gibert, Dominique</p> <p>2017-07-01</p> <p>Muon imaging has recently emerged as a powerful method to complement standard geophysical tools in the understanding of the Earth's subsurface. Muon measurements yield a "radiography" of the average density along the muon path, allowing to image large volumes of a geological body from a single observation point. Here we jointly invert muon data from three simultaneous telescope acquisitions together with gravity data to estimate the three-dimensional density structure of the La Soufrière de Guadeloupe lava dome. Our unique data set allows us to achieve an unprecedented spatial resolution with this novel technique. The retrieved density model reveals an extensive, low-density anomaly where the most active part of the volcanic hydrothermal system is located, supporting previous studies that indicate this region as the most likely to be involved in a partial edifice collapse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3164799','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3164799"><span>An Overview of Remote Sensing and Geodesy for Epidemiology and Public Health Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hay, S.I.</p> <p>2011-01-01</p> <p>The techniques of remote sensing (RS) and geodesy have the potential to revolutionize the discipline of epidemiology and its application in human health. As a new departure from conventional epidemiological methods, these techniques require some detailed explanation. This review provides the theoretical background to RS including (i) its physical basis, (ii) an explanation of the orbital characteristics and specifications of common satellite sensor systems, (iii) details of image acquisition and procedures adopted to overcome inherent sources of data degradation, and (iv) a background to geophysical data preparation. This information allows RS applications in epidemiology to be readily interpreted. Some of the techniques used in geodesy, to locate features precisely on Earth so that they can be registered to satellite sensor-derived images, are also included. While the basic principles relevant to public health are presented here, inevitably many of the details must be left to specialist texts. PMID:10997203</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMED23B0642M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMED23B0642M"><span>Geophysical and Geologic Training of the Afghan Geological Survey, May, 2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mooney, W. D.; Bohannon, R.; Abraham, J.; Medlin, J.</p> <p>2008-12-01</p> <p>Afghanistan lies within the Alpine-Himalayan orogeny, and consists of four primary tectonic units: (1) the North Afghan Platform, part of the greater Kazakhstan craton that includes Turkmenistan and Uzbekistan; (2) the mountainous Hindu Kush-Pamirs in the northeast; (3) the transpressional plate boundary at the Chaman fault near the border with Pakistan; and (4) the southern accreted terranes located south of the east-west oriented Herat fault. The diverse geology of Afghanistan affords the country abundant natural resources, as well as many natural hazards. In order to assist in the identification of these resources and to map hazardous faults, a multi-agency consortium including the Afghan Ministry of Mines and Industry, the USGS and the US Navel Research Lab conducted a detailed airborne geophysical survey of the western half of Afghanistan during 2007. Over 110,000 km of data were collected, including aeromagnetic, gravity, hyperspectral imagery, synthetic aperture radar and photogrammetric data. These data provide remarkable images of the surficial and sub-surface structure of the country. Armed with these new, high quality data, USGS trainers conducted an in-depth training course at the offices of the Afghan Geological Survey (AGS) during May, 2008. Eighty staff members of the AGS attended the four-day course which covered the following topics: (1) the geology and tectonics of Afghanistan; (2) a synthesis of modern plate tectonic processes; (3) use of geophysical and geological data to identify natural resources and hazardous faults. Particular emphasis was placed on oil and gas, mineral, coal and water resources. Earthquake and landslide hazards in Afghanistan were also discussed in detail. The building of scientific and technical capabilities at the AGS is a high priority because the development of their natural resources will have a positive impact on economic growth in Afghanistan. Future courses will benefit from hands-on training in methods of geophysical data interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913435C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913435C"><span>A multidisciplinary approach for the characterisation of fault zones in geothermal areas in central Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Vinciguerra, Sergio</p> <p>2017-04-01</p> <p>There are more than 500 geothermal areas in the Trans-Mexican Volcanic Belt of central Mexico. Of these, two are presently object of a transnational project between EU and Mexico (GEMex): Acoculco, where there is already a commercial exploitation, and Los Humeros, at present not developed yet. The GEMex project aims to improve the resource assessment and the reservoir characterization using novel geophysical and geological methods and interpretations. One of the main issues controlling the geothermal system is the presence of pervasive fracture systems affecting the carbonatic basements underlying the volcanic complex (basalts and andesites). We propose the characterization of rock masses (rock and fractures) using a multiscale analysis, from the field to the outcrop up to the micro scale integrating a number of techniques. In detail, the University of Torino unit will take care of: 1) Technical field studies aimed to the characterization of the mechanical transitions throughout brittle deformation zones, from the intact rock, to the damage zone to the shear/slip zone; moreover, key geophysical parameters (seismic and electrical properties) will be measured; 2) Petrophysical and minero-petrographic detailed studies on representative samples will be performed at room temperature; verification of the mechanical properties of the samples subjected to cycles of heating up to the temperatures of the reservoir (> 400 °C) will be done; measurements of the geophysical properties of the samples will be done in comparison with the measures in place. 3) Numerical modeling to estimate the petrophysical, geophysical and geomechanical properties of the rock mass under the P and T conditions of the reservoir (i.e., using Comsol, VGeST, UDEC, 3DEC, ...). Detailed geological field studies and photogrammetry/laser scanner imaging of studied outcrops are supposed to be available soon: multiscale analysis will benefis from these new data. Results will be shared between EU and Mexican partners to improve the general model of these two geothermal field.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989SPIE..954..634G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989SPIE..954..634G"><span>Fiber Optic Geophysics Sensor Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grochowski, Lucjan</p> <p>1989-01-01</p> <p>The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1260/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1260/"><span>Tools and data acquisition of borehole geophysical logging for the Florida Power and Light Company Turkey Point Power Plant in support of a groundwater, surface-water, and ecological monitoring plan, Miami-Dade County, Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wacker, Michael A.</p> <p>2010-01-01</p> <p>Borehole geophysical logs were obtained from selected exploratory coreholes in the vicinity of the Florida Power and Light Company Turkey Point Power Plant. The geophysical logging tools used and logging sequences performed during this project are summarized herein to include borehole logging methods, descriptions of the properties measured, types of data obtained, and calibration information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9609T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9609T"><span>Experimental Measurement of In Situ Stress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul</p> <p>2016-04-01</p> <p>The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable of hydrostatic stress (σ1 = σ2 = σ3), differential stress (σ1 > σ2 = σ3), and the unique true triaxial stress (σ1 > σ2 > σ3). Velocity surveys can be acquired along all three axes, and therefore the effects of σ1,σ2,σ3 on the velocity-stress curve can be obtained. These geophysical cells are being used to reproduce the borehole P- and S-wave velocities by altering the differential stress, allowing for the unique position of determining the stress tensor. Currently, results have been obtained for differential stress (σ1 > σ2 = σ3), and true triaxial experiments will determine if σ3 is the missing factor to reproducing the borehole velocities. This project is the first to combine time - lapse borehole logging data and experimental laboratory data to infer a complete stress tensor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H31G1274H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H31G1274H"><span>Densitometric tomography using the measurement of muon flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.</p> <p>2013-12-01</p> <p>The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040015165&hterms=datasets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddatasets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040015165&hterms=datasets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddatasets"><span>Application of Huang-Hilbert Transforms to Geophysical Datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duffy, Dean G.</p> <p>2003-01-01</p> <p>The Huang-Hilbert transform is a promising new method for analyzing nonstationary and nonlinear datasets. In this talk I will apply this technique to several important geophysical datasets. To understand the strengths and weaknesses of this method, multi- year, hourly datasets of the sea level heights and solar radiation will be analyzed. Then we will apply this transform to the analysis of gravity waves observed in a mesoscale observational net.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E3SWC..2401005K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E3SWC..2401005K"><span>An application of the geophysical methods and ALS DTM for the identification of the geological structure in the Kraśnik region - Lublin Upland, Poland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamiński, Mirosław</p> <p>2017-11-01</p> <p>The purpose of the study was the assessment of the viability of selected geophysical methods and the Airborne Laser Scanning (ALS) for the identification and interpretation of the geological structure. The studied area is covered with a dense forest. For this reason, the ALS numerical terrain model was applied for the analysis of the topography. Three geophysical methods were used: gravimetric, in the form of a semi-detailed gravimetric photograph, Vertical Electrical Sounding (VES), and Electrical Resistivity Tomography (ERT). The numerical terrain model enabled the identification of Jurassic limestone outcrops and interpretation of the directions of the faults network. The geological interpretation of the digitally processed gravimetric data enabled the determination of the spatial orientation of the synclines and anticlines axes and of the course directions of main faults. Vertical Electrical Sounding carried along the section line perpendicular to the Gościeradów anticline axis enabled the interpretation of the lithology of this structure and identification of its complex tectonic structure. The shallow geophysical surveys using the ERT method enabled the estimation of the thickness of Quaternary formations deposited unconformably on the highly eroded Jurassic limestone outcrop. The lithology of Quaternary, Cretaceous and Jurassic rocks was also interpreted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.usgs.gov/wri/2000/4083/wri20004083.pdf','USGSPUBS'); return false;" href="http://pubs.usgs.gov/wri/2000/4083/wri20004083.pdf"><span>Application of advanced geophysical logging methods in the characterization of a fractured-sedimentary bedrock aquifer, Ventura County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Williams, John H.; Lane, John W.; Singha, Kamini; Haeni, F. Peter</p> <p>2002-01-01</p> <p>An integrated suite of advanced geophysical logging methods was used to characterize the geology and hydrology of three boreholes completed in fractured-sedimentary bedrock in Ventura County, California. The geophysical methods included caliper, gamma, electromagnetic induction, borehole deviation, optical and acoustic televiewer, borehole radar, fluid resistivity, temperature, and electromagnetic flowmeter. The geophysical logging 1) provided insights useful for the overall geohydrologic characterization of the bedrock and 2) enhanced the value of information collected by other methods from the boreholes including core-sample analysis, multiple-level monitoring, and packer testing.The logged boreholes, which have open intervals of 100 to 200 feet, penetrate a sequence of interbedded sandstone and mudstone with bedding striking 220 to 250 degrees and dipping 15 to 40 degrees to the northwest. Fractures intersected by the boreholes include fractures parallel to bedding and fractures with variable strike that dip moderately to steeply. Two to three flow zones were detected in each borehole. The flow zones consist of bedding-parallel or steeply dipping fractures or a combination of bedding-parallel fractures and moderately to steeply dipping fractures. About 75 to more than 90 percent of the measured flow under pumped conditions was produced by only one of the flow zones in each borehole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AcGeo..63..125D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AcGeo..63..125D"><span>Study of Shallow Low-Enthalpy Geothermal Resources Using Integrated Geophysical Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Giorgi, Lara; Leucci, Giovanni</p> <p>2015-02-01</p> <p>The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.5001H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.5001H"><span>Lobe-cleft instability in the buoyant gravity current generated by estuarine outflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horner-Devine, Alexander R.; Chickadel, C. Chris</p> <p>2017-05-01</p> <p>Gravity currents represent a broad class of geophysical flows including turbidity currents, powder avalanches, pyroclastic flows, sea breeze fronts, haboobs, and river plumes. A defining feature in many gravity currents is the formation of three-dimensional lobes and clefts along the front and researchers have sought to understand these ubiquitous geophysical structures for decades. The prevailing explanation is based largely on early laboratory and numerical model experiments at much smaller scales, which concluded that lobes and clefts are generated due to hydrostatic instability exclusively in currents propagating over a nonslip boundary. Recent studies suggest that frontal dynamics change as the flow scale increases, but no measurements have been made that sufficiently resolve the flow structure in full-scale geophysical flows. Here we use thermal infrared and acoustic imaging of a river plume to reveal the three-dimensional structure of lobes and clefts formed in a geophysical gravity current front. The observed lobes and clefts are generated at the front in the absence of a nonslip boundary, contradicting the prevailing explanation. The observed flow structure is consistent with an alternative formation mechanism, which predicts that the lobe scale is inherited from subsurface vortex structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970011954&hterms=coverage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcoverage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970011954&hterms=coverage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcoverage"><span>The Area Coverage of Geophysical Fields as a Function of Sensor Field-of View</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Key, Jeffrey R.</p> <p>1994-01-01</p> <p>In many remote sensing studies of geophysical fields such as clouds, land cover, or sea ice characteristics, the fractional area coverage of the field in an image is estimated as the proportion of pixels that have the characteristic of interest (i.e., are part of the field) as determined by some thresholding operation. The effect of sensor field-of-view on this estimate is examined by modeling the unknown distribution of subpixel area fraction with the beta distribution, whose two parameters depend upon the true fractional area coverage, the pixel size, and the spatial structure of the geophysical field. Since it is often not possible to relate digital number, reflectance, or temperature to subpixel area fraction, the statistical models described are used to determine the effect of pixel size and thresholding operations on the estimate of area fraction for hypothetical geophysical fields. Examples are given for simulated cumuliform clouds and linear openings in sea ice, whose spatial structures are described by an exponential autocovariance function. It is shown that the rate and direction of change in total area fraction with changing pixel size depends on the true area fraction, the spatial structure, and the thresholding operation used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H23D0902K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H23D0902K"><span>Electrical Resistivity Imaging of Saltwater and Freshwater Along the Coast of Monterey Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knight, R. J.; Pidlisecky, A.; Moran, T.; Goebel, M.</p> <p>2014-12-01</p> <p>A coastal region represents a dynamic interface where the processes of saltwater intrusion and freshwater flow create complex spatial and temporal changes in water chemistry. These changes in water chemistry affect both human use of coastal groundwater aquifers and the functioning of coastal ecosystems. Mapping out the subsurface distribution of saltwater and freshwater is a critical step in predicting, and managing, changes in water chemistry in coastal regions. Our research is focused on California's Monterey Bay region where agriculturally-intensive land meets the sensitive marine environment of the Monterey Bay National Marine Sanctuary. Along the coast of Monterey Bay extensive groundwater extraction (groundwater provides more than 80% of the area's water supply) has led to saltwater intrusion into aquifers at various locations. To date, the mapping of saltwater intrusion has relied on measurements of changing water chemistry in monitoring wells. But it is challenging with wells to capture the spatially complex hydrostratigraphy resulting from changing depositional environments and numerous faulting events. We suggest that geophysical methods be used to map and monitor the distribution of saltwater and freshwater by acquiring non-invasive, high-resolution continuous images of the subsurface. In a pilot study conducted over the past four years, we used electrical resistivity imaging to successfully identify regions of saltwater and freshwater 150 m below sea level along a 7 km stretch of the southern Monterey Bay coast. We employed large-offset electrical resistance tomography using a 96-electrode system with an overall array length of 860 m. The results showed excellent agreement with measurements in nearby monitoring wells. The large-scale image provided by the geophysical measurements revealed the hydrostratigraphic controls on the spatial distribution of the saltwater/freshwater interface. In October 2014 we will expand this study, using large-offset electrical resistance tomography to image to a depth of 300 m along a 40 km stretch of the Monterey Bay coast. The acquisition of this continuous dataset will provide an improved understanding of the biophysical and human factors controlling the processes of saltwater intrusion and freshwater flow in this coastal region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.lanl.gov/projects//national-security-education-center/index.php','SCIGOVWS'); return false;" href="http://www.lanl.gov/projects//national-security-education-center/index.php"><span>Education and Strategic Research Collaborations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Los Alamos National Laboratory National Security <em>Education</em> Center Image Search Site submit LaboratoryNational Security <em>Education</em> Center Menu Program Offices Energy Security Council New Mexico Consortium Geophysics, Planetary Physics, Signatures Events Collaborations for <em>education</em> and strategic research, student</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAG...145...74G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAG...145...74G"><span>Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen</p> <p>2017-10-01</p> <p>In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP33A0957B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP33A0957B"><span>Joint Inversion of 3d Mt/gravity/magnetic at Pisagua Fault.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bascur, J.; Saez, P.; Tapia, R.; Humpire, M.</p> <p>2017-12-01</p> <p>This work shows the results of a joint inversion at Pisagua Fault using 3D Magnetotellurics (MT), gravity and regional magnetic data. The MT survey has a poor coverage of study area with only 21 stations; however, it allows to detect a low resistivity zone aligned with the Pisagua Fault trace that it is interpreted as a damage zone. The integration of gravity and magnetic data, which have more dense sampling and coverage, adds more detail and resolution to the detected low resistivity structure and helps to improve the structure interpretation using the resulted models (density, magnetic-susceptibility and electrical resistivity). The joint inversion process minimizes a multiple target function which includes the data misfit, model roughness and coupling norms (crossgradient and direct relations) for all geophysical methods considered (MT, gravity and magnetic). This process is solved iteratively using the Gauss-Newton method which updates the model of each geophysical method improving its individual data misfit, model roughness and the coupling with the other geophysical models. For solving the model updates of magnetic and gravity methods were developed dedicated 3D inversion software codes which include the coupling norms with additionals geophysical parameters. The model update of the 3D MT is calculated using an iterative method which sequentially filters the priority model and the output model of a single 3D MT inversion process for obtaining the resistivity model coupled solution with the gravity and magnetic methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNS41A1895K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNS41A1895K"><span>2D Unstructured Grid Based Constrained Inversion of Magnetic Data Using Fuzzy C Means Clustering and Lithology Classification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, V.; Singh, A.; Sharma, S. P.</p> <p>2016-12-01</p> <p>Regular grid discretization is often utilized to define complex geological models. However, this subdivision strategy performs at lower precision to represent the topographical observation surface. We have developed a new 2D unstructured grid based inversion for magnetic data for models including topography. It will consolidate prior parametric information into a deterministic inversion system to enhance the boundary between the different lithology based on recovered magnetic susceptibility distribution from the inversion. The presented susceptibility model will satisfy both the observed magnetic data and parametric information and therefore can represent the earth better than geophysical inversion models that only honor the observed magnetic data. Geophysical inversion and lithology classification are generally treated as two autonomous methodologies and connected in a serial way. The presented inversion strategy integrates these two parts into a unified scheme. To reduce the storage space and computation time, the conjugate gradient method is used. It results in feasible and practical imaging inversion of magnetic data to deal with large number of triangular grids. The efficacy of the presented inversion is demonstrated using two synthetic examples and one field data example.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036177','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036177"><span>Thermal removal from near-infrared imaging spectroscopy data of the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clark, R.N.; Pieters, C.M.; Green, R.O.; Boardman, J.W.; Petro, N.E.</p> <p>2011-01-01</p> <p>In the near-infrared from about 2 ??m to beyond 3 ??m, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 ??m pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon. Copyright ?? 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/20512','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/20512"><span>Guidelines for geophysical investigations of mines under highways : mine research project - GUE 70 - 14.10 - PID No. 18459 : [report].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2003-06-01</p> <p>This document discusses the results of geophysical investigation methods conducted along : Interstate Route 70 (IR-70) under a contract with the Ohio Department of Transportation : (ODOT). The specific site conditions, as determined by the investigat...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED51A0783B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED51A0783B"><span>Archaeological Geophysics in Field Courses and Flipped-Classrooms: Lessons Learned from the Marine and Geological Science Programs at North Carolina State University</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bohnenstiehl, D. R.; Wall, J.; Sprinkle, D. P., II</p> <p>2016-12-01</p> <p>The Department of Marine, Earth and Atmospheric Sciences at North Carolina State University routinely uses archaeological geophysics as an inquiry based teaching tool in our capstone Coastal Processes and Geologic Field Camps. Examples of past projects include a search for civil war artifacts within the moat surrounding historic Fort Macon, near Beaufort North Carolina, and investigations of ancient adobe pueblos in northern New Mexico. These types of studies, being of modest spatial scale, provide students with an opportunity to image the subsurface using multiple techniques and integrate the results into a geographic information system for analysis and interpretation. In the spring of 2016, our semester-long Applied Geophysics course was built around a project to identify unmarked graves at the Oberlin African-American cemetery Raleigh, North Carolina. The classroom experience was flipped with required readings, video lectures and weekly graded quizzes accessible online. Class meeting time was entirely spent collecting or processing data. To facilitate hands on learning, the class was taught with two sections having only ten students each. The methods used included GPR, EMI, Magnetics, and DC Resistivity. Students responded positively to the opportunity to tackle a real-world problem as part of the class; however, many where frustrated by the expectation that they master theoretical aspects of the course using the online content. Compared to a class taught with a traditional lecture format, students clearly gained more knowledge regarding field procedures; however, their performance on a comprehensive final suggests a poorer understand of many fundamental concepts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP43B3572W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP43B3572W"><span>A seismic search for the paleoshorelines of Lake Otero beneath White Sands Dune Field, New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, P. F.; Reece, R.; Ewing, R. C.</p> <p>2014-12-01</p> <p>The Tularosa Basin, which now houses White Sands Dune Field, was once occupied by Pleistocene Lake Otero. Several paleoshorelines of Lake Otero have been identified throughout the basin by field surveys and remote sensing using digital elevation models. Up to four shorelines may be buried beneath White Sands Dune Field and it has been posited that the current upwind margin of White Sands coincides with a one of these shorelines. Here we employ a novel geophysical instrument and method to image the subsurface: the seismic land streamer. The land streamer utilizes weighted base plates and one-component vertical geophones in a towed array. With a seisgun acoustic source, we imaged in the Alkali Flats area near the upwind margin, one potential location of paleoshorelines, as well as the Film Lot closer to the center of the dune field. Surfaces in both locations are indurated gypsum playa, which made seismic imaging possible and successful. We collected one SW-NE trending seismic line at each location, which matches the dominant wind and dune migration directions. Based on initial data analysis we find some subsurface structure that may coincide with the paleo lake bed of Lake Otero. The successful demonstration of this new method provides the foundation for an expanded regional subsurface study to image the strata and structure of the Tularosa Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26552083','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26552083"><span>Allan Variance Computed in Space Domain: Definition and Application to InSAR Data to Characterize Noise and Geophysical Signal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cavalié, Olivier; Vernotte, François</p> <p>2016-04-01</p> <p>The Allan variance was introduced 50 years ago for analyzing the stability of frequency standards. In addition to its metrological interest, it may be also considered as an estimator of the large trends of the power spectral density (PSD) of frequency deviation. For instance, the Allan variance is able to discriminate different types of noise characterized by different power laws in the PSD. The Allan variance was also used in other fields than time and frequency metrology: for more than 20 years, it has been used in accelerometry, geophysics, geodesy, astrophysics, and even finances. However, it seems that up to now, it has been exclusively applied for time series analysis. We propose here to use the Allan variance on spatial data. Interferometric synthetic aperture radar (InSAR) is used in geophysics to image ground displacements in space [over the synthetic aperture radar (SAR) image spatial coverage] and in time thanks to the regular SAR image acquisitions by dedicated satellites. The main limitation of the technique is the atmospheric disturbances that affect the radar signal while traveling from the sensor to the ground and back. In this paper, we propose to use the Allan variance for analyzing spatial data from InSAR measurements. The Allan variance was computed in XY mode as well as in radial mode for detecting different types of behavior for different space-scales, in the same way as the different types of noise versus the integration time in the classical time and frequency application. We found that radial Allan variance is the more appropriate way to have an estimator insensitive to the spatial axis and we applied it on SAR data acquired over eastern Turkey for the period 2003-2011. Spatial Allan variance allowed us to well characterize noise features, classically found in InSAR such as phase decorrelation producing white noise or atmospheric delays, behaving like a random walk signal. We finally applied the spatial Allan variance to an InSAR time series to detect when the geophysical signal, here the ground motion, emerges from the noise.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27586490','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27586490"><span>Real-time simulation of ultrasound refraction phenomena using ray-trace based wavefront construction method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Szostek, Kamil; Piórkowski, Adam</p> <p>2016-10-01</p> <p>Ultrasound (US) imaging is one of the most popular techniques used in clinical diagnosis, mainly due to lack of adverse effects on patients and the simplicity of US equipment. However, the characteristics of the medium cause US imaging to imprecisely reconstruct examined tissues. The artifacts are the results of wave phenomena, i.e. diffraction or refraction, and should be recognized during examination to avoid misinterpretation of an US image. Currently, US training is based on teaching materials and simulators and ultrasound simulation has become an active research area in medical computer science. Many US simulators are limited by the complexity of the wave phenomena, leading to intensive sophisticated computation that makes it difficult for systems to operate in real time. To achieve the required frame rate, the vast majority of simulators reduce the problem of wave diffraction and refraction. The following paper proposes a solution for an ultrasound simulator based on methods known in geophysics. To improve simulation quality, a wavefront construction method was adapted which takes into account the refraction phenomena. This technique uses ray tracing and velocity averaging to construct wavefronts in the simulation. Instead of a geological medium, real CT scans are applied. This approach can produce more realistic projections of pathological findings and is also capable of providing real-time simulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAfES.139..307C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAfES.139..307C"><span>Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cherkose, Biruk Abera; Mizunaga, Hideki</p> <p>2018-03-01</p> <p>Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S23D2762A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S23D2762A"><span>A reduced basis approach for implementing thermodynamic phase-equilibria information in geophysical and geodynamic studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afonso, J. C.; Zlotnik, S.; Diez, P.</p> <p>2015-12-01</p> <p>We present a flexible, general and efficient approach for implementing thermodynamic phase equilibria information (in the form of sets of physical parameters) into geophysical and geodynamic studies. The approach is based on multi-dimensional decomposition methods, which transform the original multi-dimensional discrete information into a dimensional-separated representation. This representation has the property of increasing the number of coefficients to be stored linearly with the number of dimensions (opposite to a full multi-dimensional cube requiring exponential storage depending on the number of dimensions). Thus, the amount of information to be stored in memory during a numerical simulation or geophysical inversion is drastically reduced. Accordingly, the amount and resolution of the thermodynamic information that can be used in a simulation or inversion increases substantially. In addition, the method is independent of the actual software used to obtain the primary thermodynamic information, and therefore it can be used in conjunction with any thermodynamic modeling program and/or database. Also, the errors associated with the decomposition procedure are readily controlled by the user, depending on her/his actual needs (e.g. preliminary runs vs full resolution runs). We illustrate the benefits, generality and applicability of our approach with several examples of practical interest for both geodynamic modeling and geophysical inversion/modeling. Our results demonstrate that the proposed method is a competitive and attractive candidate for implementing thermodynamic constraints into a broad range of geophysical and geodynamic studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMED41A..04J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMED41A..04J"><span>SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.</p> <p>2005-12-01</p> <p>SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including geophysics, geology, engineering, physics, and mathematics. SAGE is sponsored by the Los Alamos National Laboratory Branch of the University of California's Institute of Geophysics and Planetary Physics. More information is available on the SAGE web site at http://www.sage.lanl.gov/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Geomo..93...55S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Geomo..93...55S"><span>Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schrott, Lothar; Sass, Oliver</p> <p>2008-01-01</p> <p>During the last decade, the use of geophysical techniques has become popular in many geomorphological studies. However, the correct handling of geophysical instruments and the subsequent processing of the data they yield are difficult tasks. Furthermore, the description and interpretation of geomorphological settings to which they apply can significantly influence the data gathering and subsequent modelling procedure ( e.g. achieving a maximum depth of 30 m requires a certain profile length and geophone spacing or a particular frequency of antenna). For more than three decades geophysical techniques have been successfully applied, for example, in permafrost studies. However, in many cases complex or more heterogeneous subsurface structures could not be adequately interpreted due to limited computer facilities and time consuming calculations. As a result of recent technical improvements, geophysical techniques have been applied to a wider spectrum of geomorphological and geological settings. This paper aims to present some examples of geomorphological studies that demonstrate the powerful integration of geophysical techniques and highlight some of the limitations of these techniques. A focus has been given to the three most frequently used techniques in geomorphology to date, namely ground-penetrating radar, seismic refraction and DC resistivity. Promising applications are reported for a broad range of landforms and environments, such as talus slopes, block fields, landslides, complex valley fill deposits, karst and loess covered landforms. A qualitative assessment highlights suitable landforms and environments. The techniques can help to answer yet unsolved questions in geomorphological research regarding for example sediment thickness and internal structures. However, based on case studies it can be shown that the use of a single geophysical technique or a single interpretation tool is not recommended for many geomorphological surface and subsurface conditions as this may lead to significant errors in interpretation. Because of changing physical properties of the subsurface material ( e.g. sediment, water content) in many cases only a combination of two or sometimes even three geophysical methods gives sufficient insight to avoid serious misinterpretation. A "good practice guide" has been framed that provides recommendations to enable the successful application of three important geophysical methods in geomorphology and to help users avoid making serious mistakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JVGR..295...55K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JVGR..295...55K"><span>Assessment of geothermal energy potential by geophysical methods: Nevşehir Region, Central Anatolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kıyak, Alper; Karavul, Can; Gülen, Levent; Pekşen, Ertan; Kılıç, A. Rıza</p> <p>2015-03-01</p> <p>In this study, geothermal potential of the Nevşehir region (Central Anatolia) was assessed by using vertical electrical sounding (VES), self-potential (SP), magnetotelluric (MT), gravity and gravity 3D Euler deconvolution structure analysis methods. Extensive volcanic activity occurred in this region from Upper Miocene to Holocene time. Due to the young volcanic activity Nevşehir region can be viewed as a potential geothermal area. We collected data from 54 VES points along 5 profiles, from 28 MT measurement points along 2 profiles (at frequency range between 320 and 0.0001 Hz), and from 4 SP profiles (total 19 km long). The obtained results based on different geophysical methods are consistent with each other. Joint interpretation of all geological and geophysical data suggests that this region has geothermal potential and an exploration well validated this assessment beyond doubt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760022597','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760022597"><span>Combined magnetic and gravity analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hinze, W. J.; Braile, L. W.; Chandler, V. W.; Mazella, F. E.</p> <p>1975-01-01</p> <p>Efforts are made to identify methods of decreasing magnetic interpretation ambiguity by combined gravity and magnetic analysis, to evaluate these techniques in a preliminary manner, to consider the geologic and geophysical implications of correlation, and to recommend a course of action to evaluate methods of correlating gravity and magnetic anomalies. The major thrust of the study was a search and review of the literature. The literature of geophysics, geology, geography, and statistics was searched for articles dealing with spatial correlation of independent variables. An annotated bibliography referencing the Germane articles and books is presented. The methods of combined gravity and magnetic analysis techniques are identified and reviewed. A more comprehensive evaluation of two types of techniques is presented. Internal correspondence of anomaly amplitudes is examined and a combined analysis is done utilizing Poisson's theorem. The geologic and geophysical implications of gravity and magnetic correlation based on both theoretical and empirical relationships are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004LNES..104..565C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004LNES..104..565C"><span>Location of Buried Mineshafts and Adits Using Reconnaissance Geophysical Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Culshaw, Martin; Donnelly, Laurance; McCann, David</p> <p></p> <p>Britain has a long history of mining activity, which stretches back some 3000 years to the excavation of flint in East Anglia. The legacy of this long period of activity is the presence of many buried mineshafts and adits, whose location is often unknown precisely and in many cases not even recorded in historical mining records. As has been shown by Donnelly et al (2003) the discovery of a mineshaft in an area of housing development can have a profound effect on property values in its vicinity. Hence, urgent action must be taken to establish at the site investigation stage of a development to determine whether any mineshafts are present at the site so that remedial action can be taken before construction commences. A study of historical information and the drilling may well enable the developer to locate any suspected mineshafts and adits on his site. However, the use of geophysical reconnaissance methods across the whole site may well provide sufficient information to simplify the drilling programme and reduce its cost to a minimum. In this paper a number of rapid reconnaissance geophysical methods are described and evaluated in terms of their success in the location of buried mineshafts and adits. It has shown that a combination of ground conductivity and magnetic surveys provides a most effective approach on open sites in greenfield and brownfield areas. Ground penetrating radar and micro-gravity surveys have proved to be a valuable approach in urban areas where the use of many geophysical methods is prevented by the presence of various types of cultural noise. On a regional scale the infrared thermography method is being increasingly used but care must be taken to overcome certain environmental difficulties. The practical use of all these geophysical methods in the field is illustrated by a number of appropriate case histories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED51A0788L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED51A0788L"><span>Inquiry-based learning transitions to interdisciplinary research at a small primarily undergraduate institution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehto, H.; Ward, J. W.</p> <p>2016-12-01</p> <p>Inquiry-based learning has been shown by many to be a useful way of engaging students and fostering a deeper learning of the subject matter. In traditional geophysics courses we use our equipment in a quad on campus or to a nearby site to have our students run surveys that countless students have run before. While this approach is active and does promote a deeper learning than a lecture only course, it can still be stale and unauthentic. By using new and unexplored sites for inquiry-based learning projects within our courses, we provide opportunities for students to be part of an authentic research experience. Inquiry-based learning started in my geophysics course when I needed a site for my students to run a resistivity survey on. My colleague, James Ward, recommended a site that was contaminated with salts believed to be from either an unlined (or improperly lined) brine pit or a leaking casing from old oil field operations. The goal of the project was to use a resistivity survey to determine the shape and therefore cause of the salt source. The students in my geophysics class were introduced to the `client' (James Ward) who told them about the site and the two different hypotheses for the source of the salt contamination. The students studied site images, looked at soil data, and then each proposed a plan for the resistivity survey. We then met in the field and the students were given a quick explanation of how the system worked and what they needed to do that day. The students were told to take thorough notes, lots of photographs, and ask as many questions as they needed to understand what was going on. On the following Monday I broke the students up into groups and taught them how to use the EarthImager 2D software to analyze the data. The students were then required to interpret their data and write-up a technical report for our `client' individually. The final graded technical reports suggested that authentic, inquiry-based learning facilitated a deeper understanding of the process of science and of the geophysical method used. In addition, the students who worked on this study have seen it turn into real research at the institution. Six undergraduate, independent, faculty-mentored research projects and one external, private grant for faculty in geology and agriculture have come from this project so far.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RPPh...80b6301H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RPPh...80b6301H"><span>Applications of nuclear physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayes, A. C.</p> <p>2017-02-01</p> <p>Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1342864-applications-nuclear-physics','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1342864-applications-nuclear-physics"><span>Applications of nuclear physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hayes-Sterbenz, Anna Catherine</p> <p>2017-01-10</p> <p>Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28071601','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28071601"><span>Applications of nuclear physics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hayes, A C</p> <p>2017-02-01</p> <p>Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1342864','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1342864"><span>Applications of nuclear physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hayes-Sterbenz, Anna Catherine</p> <p></p> <p>Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031871','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031871"><span>Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wu, H.-Y.; Ma, K.-F.; Zoback, M.; Boness, N.; Ito, H.; Hung, J.-H.; Hickman, S.</p> <p>2007-01-01</p> <p>The Taiwan Chelungpu-fault Drilling Project (TCDP) drilled a 2-km-deep research borehole to investigate the structure and mechanics of the Chelungpu Fault that ruptured in the 1999 Mw 7.6 Chi-Chi earthquake. Geophysical logs of the TCDP were carried out over depths of 500-1900 in, including Dipole Sonic Imager (DSI) logs and Formation Micro Imager (FMI) logs in order to identify bedding planes, fractures and shear zones. From the continuous core obtained from the borehole, a shear zone at a depth of 1110 meters is interpreted to be the Chelungpu fault, located within the Chinshui Shale, which extends from 1013 to 1300 meters depth. Stress-induced borehole breakouts were observed over nearly the entire length of the wellbore. These data show an overall stress direction (???N115??E) that is essentially parallel to the regional stress field and parallel to the convergence direction of the Philippine Sea plate with respect to the Eurasian plate. Variability in the average stress direction is seen at various depths. In particular there is a major stress orientation anomaly in the vicinity of the Chelungpu fault. Abrupt stress rotations at depths of 1000 in and 1310 in are close to the Chinshui Shale's upper and lower boundaries, suggesting the possibility that bedding plane slip occurred during the Chi-Chi earthquake. Copyright 2007 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26921813','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26921813"><span>Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Evans, Gethin T</p> <p>2016-04-01</p> <p>In most Latin American countries there are significant numbers of both missing people and forced disappearances, ∼71,000 Colombia alone. Successful detection of buried human remains by forensic search teams can be difficult in varying terrain and climates. Three clandestine burials were simulated at two different depths commonly encountered in Latin America. In order to gain critical knowledge of optimum geophysical detection techniques, burials were monitored using: ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity up to twenty-two months post-burial. Radar survey results showed good detection of modern 1/2 clothed pig cadavers throughout the survey period on 2D profiles, with the 250MHz antennae judged optimal. Both skeletonised and decapitated and burnt human remains were poorly imaged on 2D profiles with loss in signal continuity observed throughout the survey period. Horizontal radar time slices showed good anomalies observed over targets, but these decreased in amplitude over the post-burial time. These were judged due to detecting disturbed grave soil rather than just the buried targets. Magnetic susceptibility and electrical resistivity were successful at target detection in contrast to bulk ground conductivity surveys which were unsuccessful. Deeper burials were all harder to image than shallower ones. Forensic geophysical surveys should be undertaken at suspected burial sites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhyA..410..609M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhyA..410..609M"><span>Local regression type methods applied to the study of geophysics and high frequency financial data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mariani, M. C.; Basu, K.</p> <p>2014-09-01</p> <p>In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=338815&Lab=NERL&keyword=survey&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=338815&Lab=NERL&keyword=survey&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Scenario Evaluator for Electrical Resistivity Survey Pre-modeling Tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, su...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT.......172H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT.......172H"><span>Numerical studies in geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hier Majumder, Catherine Anne</p> <p>2003-10-01</p> <p>This thesis focuses on the use of modern numerical techniques in the geo- and environmental sciences. Four topics are discussed in this thesis: finite Prandtl number convection, wavelet analysis, inverse methods and data assimilation, and nuclear waste tank mixing. The finite Prandtl number convection studies examine how convection behavior changes as Prandtl numbers are increased to as high as 2 x 104, on the order of Prandtl numbers expected in very hot magmas or mushy ice diapirs. I found that there are significant differences in the convection style between finite Prandtl number convection and the infinite Prandtl number approximation even for Prandtl numbers on the order of 104. This indicates that the infinite Prandtl convection approximation might not accurately model behavior in fluids with large, but finite Prandtl numbers. The section on inverse methods and data assimilation used the technique of four dimensional variational data assimilation (4D-VAR) developed by meteorologists to integrate observations into forecasts. It was useful in studying the predictability and dependence on initial conditions of finite Prandtl simulations. This technique promises to be useful in a wide range of geological and geophysical fields, including mantle convection, hydrogeology, and sedimentology. Wavelet analysis was used to help image and scrutinize at small-scales both temperature and vorticity fields from convection simulations and the geoid. It was found to be extremely helpful in both cases. It allowed us to separate the information in the data into various spatial scales without losing the locations of the signals in space. This proved to be essential in understanding the processes producing the total signal in the datasets. The nuclear waste study showed that techniques developed in geology and geophysics can be used to solve scientific problems in other fields. I applied state-of-the-art techniques currently employed in geochemistry, sedimentology, and mantle mixing to simulate dynamical processes occurring in the course of mixing nuclear waste tanks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H11K..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H11K..01R"><span>Stochastic joint inversion of geoelectrical cross-well data for salt tracer test monitoring to image the hydraulic conductivity field of heterogenous aquifers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Revil, A.; Jardani, A.; Dupont, J.</p> <p>2012-12-01</p> <p>The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution associated with a low density of available piezometers. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity. We use a stochastic joint inversion of Direct Current (DC) resistivity and Self-Potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field of an heterogeneous aquifer. The pilot point parameterization is used to avoid over-parameterization of the inverse problem. Bounds on the model parameters are used to promote a consistent Markov chain Monte Carlo sampling of the hydrogeological parameters of the model. To evaluate the effectiveness of the inversion process, we compare several scenarios where the geophysical data are coupled or not to the hydrogeological data to map the hydraulic conductivity. We first test the effectiveness of the inversion of each type of data alone, and then we combine the methods two by two. We finally combine all the information together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. The results of the inversion reveal that the self-potential data improve the estimate of hydraulic conductivity especially when the self-potential data are combined to the salt concentration measurement in the second well or to the time-lapse electrical resistivity data. Various tests are also performed to quantify the uncertainty in the inversion when for instance the semi-variogram is not known and its parameters should be inverted as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=geophysic&pg=2&id=EJ629877','ERIC'); return false;" href="https://eric.ed.gov/?q=geophysic&pg=2&id=EJ629877"><span>Analysis of Publications and Citations from a Geophysics Research Institute.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Frohlich, Cliff; Resler, Lynn</p> <p>2001-01-01</p> <p>Performs an analysis of all 1128 publications produced by scientists during their employment at the University of Texas Institute for Geophysics, thus assessing research performance using as bibliometric indicators such statistics as publications per year, citations per paper, and cited half-lives. Evaluates five different methods for determining…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoJI.198..609E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoJI.198..609E"><span>3-D GPR data analysis for high-resolution imaging of shallow subsurface faults: the Mt Vettore case study (Central Apennines, Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ercoli, Maurizio; Pauselli, Cristina; Frigeri, Alessandro; Forte, Emanuele; Federico, Costanzo</p> <p>2014-07-01</p> <p>The activation of Late Quaternary faults in the Central Apennines (Italy) could generate earthquakes with magnitude of about 6.5, and the Monte Vettore fault system probably belongs to the same category of seismogenetic faults. Such structure has been defined `silent', because of its geological and geomorphological evidences of past activation, but the absence of historical records in the seismic catalogues to be associated with its activation. The `Piano di Castelluccio' intramountain basin, resulting from the Quaternary activity of normal faults, is characterized by a secondary fault strand highlighted by a NW-SE fault scarp: it has been already studied through palaeoseismological trenches, which highlighted evidences of Quaternary shallow faulting due to strong earthquakes, and through a 2-D ground penetrating radar (GPR) survey, showing the first geophysical signature of faulting for this site. Within the same place, a 3-D GPR volume over a 20 × 20 m area has been collected. The collection of radar echoes in three dimensions allows to map both the vertical and lateral continuity of shallow geometries of the fault zone (Fz), imaging features with high resolution, ranging from few metres to centimetres and therefore imaging also local variations at the microscale. Several geophysical markers of faulting, already highlighted on this site, have been taken as reference to plan the 3-D survey. In this paper, we provide the first 3-D subsurface imaging of an active shallow fault belonging to the Umbria-Marche Apennine highlighting the subsurface fault geometry and the stratigraphic sequence up to a depth of about 5 m. From our data, geophysical faulting signatures are clearly visible in three dimensions: diffraction hyperbolas, truncations of layers, local attenuated zones and varying dip of the layers have been detected within the Fz. The interpretation of the 3-D data set provided qualitative and quantitative geological information in addition to the fault location, like its geometry, boundaries and an estimation of the fault throw.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714881M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714881M"><span>Novel 3D imaging techniques for improved understanding of planetary surface geomorphology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muller, Jan-Peter</p> <p>2015-04-01</p> <p>Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the past decade for Mars and the Moon, especially in 3D imaging of surface shape (down to resolutions of 75cm) and subsequent correction for terrain relief of imagery from orbiting and co-registration of lander and rover robotic images. We present some of the recent highlights including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m DTMs from MRO stereo-HiRISE [3]. This has opened our eyes to the formation mechanisms of megaflooding events, such as the formation of Iani Vallis and the upstream blocky terrain, to crater lakes and receding valley cuts [4]. A comparable set of products is now available for the Moon from LROC-WA at 100m [5] and LROC-NA at 1m [6]. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [7]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ˜400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n° 312377. Partial support is also provided from the STFC 'MSSL Consolidated Grant' ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., F. et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first Quadrangle (MC-11E). Geophysical Research Abstracts, Vol. 17, EGU2015-13832; [3] Kim, J., & Muller, J. (2009). Multi-resolution topographic data extraction from Martian stereo imagery. Planetary and Space Science, 57, 2095-2112. doi:10.1016/j.pss.2009.09.024; [4] Warner, N. H., Gupta, S., Kim, J.-R., Muller, J.-P., Le Corre, L., Morley, J., et al. (2011). Constraints on the origin and evolution of Iani Chaos, Mars. Journal of Geophysical Research, 116(E6), E06003. doi:10.1029/2010JE003787; [5] Fok, H. S., Shum, C. K., Yi, Y., Araki, H., Ping, J., Williams, J. G., et al. (2011). Accuracy assessment of lunar topography models. Earth Planets Space, 63, 15-23. doi:10.5047/eps.2010.08.005; [6] Haase, I., Oberst, J., Scholten, F., Wählisch, M., Gläser, P., Karachevtseva, I., & Robinson, M. S. (2012). Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography - Haase - 2012 - Journal of Geophysical Research: Planets (1991-2012). Journal of Geophysical Research, 117, E00H20. doi:10.1029/2011JE003908; [7] Tao, Y., Muller, J.-P. (2015) Supporting lander and rover operation: a novel super-resolution restoration technique. Geophysical Research Abstracts, Vol. 17, EGU2015-6925</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMNS51C..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMNS51C..01M"><span>Combined Geophysical Prospecting in Andalusia (Spain): Geomagnetics, GPR and IP Geoelectrics in Munigua, Montes de San Benito and Alcorrín.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, C.; Ullrich, B.</p> <p>2007-05-01</p> <p>According to the special tasks of archaeologists of the German Archaeological Institute (Madrid department) geophysical investigation campaigns were realized at several sites in Andalusia during the last five years. In Munigua (Province of Seville) - a Roman municipium and centre of metal production - building structures like the city wall and production sites extra muro were investigated by means of GPR measurements. A new method permitting virtual or physical reconstructions of archaeological features in the ground is presented using the original geophysical data and avoiding the speculative aspect of previous reconstruction techniques. In addition the Roman archaeo-metallurgical remains were surveyed in order to investigate the economic base of the Roman town and its environs. Geoelectrical measurements were realized recording the complex resistivity. The extension and depth of slag heaps are estimated using 2D and 3D images of resistivity ρ and phase angle φ. The slag heaps are well-defined by IP effects from the bedrock. The results allow estimating the amount of processed metal in Munigua for the first time. The main focus of the survey in Montes de San Benito (Province of Huelva) was the investigation of the structure of a Celtiberic settlement closely connected to iron production as well. Geomagnetic mapping and GPR measurements were applied in order to detect the buried building structures and the street system. Several single buildings, the main axes and remains of furnaces were localized. A similar procedure was chosen prospecting the fortified hill of Alcorrìn (Province of Malaga), a Phoenician settlement nearby the Mediterranean coast. The both spectacular and rarely researched site is surrounded by an up to 5 m thick wall. Main goal of the two survey campaigns was the internal structure of the hill fort. Using geomagnetic mapping and GPR a second fortification system could be identified. Inside the second ring wall building structures made of mud-brick and lime stone were investigated and proved by excavations. The three examples convincingly demonstrate the close cooperation between archaeologists and geophysicist in order to find effective ways to solve archaeological questions by means of geophysical prospecting methods even under challenging conditions. Matter of particular interest has been the search for visualization techniques meeting both scientific standards and ensuring best possible clearness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035994','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035994"><span>Infrasonic ambient noise interferometry from correlations of microbaroms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haney, M.M.</p> <p>2009-01-01</p> <p>We show that microbaroms, continuous infrasound fluctuations resulting from the interaction of the ocean with the atmosphere, have long-range correlation properties that make it possible to estimate the impulse response between two microphones from passive recordings. The processing is analogous to methods employed in the emerging field of ambient noise seismology, where the random noise source is the ocean coupling with the solid Earth (microseisms) instead of the atmosphere (microbaroms). We find that time-dependent temperature fields and temperature inversions determine the character of infrasonic impulse responses at Fourpeaked Volcano in Alaska. Applications include imaging and monitoring the gross structure of the Earth's atmospheric boundary layer. Copyright 2009 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916603M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916603M"><span>Archaeogeophysical investigations in Tiwanaku: preliminary results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Masini, Nicola; Sileo, Maria; Lasaponara, Rosa; Leucci, Giovanni; Orefici, Giuseppe; Rizzo, Enzo</p> <p>2017-04-01</p> <p>The study of the human past needs the effort of different disciplines including history, archaeology and non invasive imaging techniques such geophysics whose application for cultural heritage has been dramatically increasing in the last two decades. The capability of geophysical techniques in identifying subsurface features of cultural interest depends on: 1) the nature of the physical interaction between the archaeological residues and its surrounding; 2) the performance of geophysical sensors, including Ground Penetrating radar (GPR), magnetometry, electrical resistivity along with other earth observation imaging systems (SAR, LiDAR, multispectral remote sensing); 3) the knowledge of the expected features of cultural interest to be detected. A correct approach must necessarily take into account these three factors on which depends the success of any preventive archaeological investigation based on geophysical prospecting techniques and remote sensing [1]. Such approach characterized the scientific researches performed by ITACA Mission of CNR in Southern America, since 2008, aimed at discovering unknown prehispanic sites, mapping historical settlements and monitoring archaeological heritage affected by man-made and natural risks [2-5]. One of the sites recently investigated by ITACA Mission is Tiwanaku, which is located on a valley at 3880 m above sea level, near the southern shoreline of the Titicaca Lake, in Bolivia. Tiwanaku was center of a prehispanic civilization which influenced large territories of south-central Andes from 500 to 1150 AD [6-7]. The available archaeological records attest a long human frequentation divided in three phases. In the first one (100 BC-AD 500), Tiwanaku emerged as major regional center. In the second one (AD 500-1150), it became a densely inhabited center with a political and economic leading role in the southern-central Andean region which ended around 1000 AD due to a long-term drought. Finally, in the third phase (AD 1150-1450) Tiwanaku was characterized by the resurgence of regional identities and polities In spite of the rich archaeological record numerous issues, related to the function and the extension of Tiwanaku, need to be investigated especially in the monumental core which includes the pyramid of Akapana, and other ceremonial places such Kalasasaya, Putuni and Kantatallita. To this aims some geophysical investigations were performed in 2009 and 2014 in the context of multidisciplinary research including the use of satellite remote sensing [8]. This paper deals with the discussion of preliminary results of geomagnetic and GPR investigations, some of which have been verified by trial archaeological excavations which have unearthed some buried structures, improving the knowledge of the ceremonial areas of Tiwanaku. References [1] Lasaponara R., Leucci G., Masini N., Persico R., Scardozzi G., Towards an operative use of remote sensing for exploring the past using satellite data: The case study of Hierapolis (Turkey), Remote sensing of Environment, 174 (2016) : 148-164, doi:10.1016/j.rse.2015.12.016 [2] Masini N., Lasaponara R., Rizzo E., Orefici G. 2012. Integrated Remote Sensing Approach in Cahuachi (Peru): Studies and Results of the ITACA Mission (2007-2010), In: Lasaponara R., Masini N. (Eds) 2012, Satellite Remote Sensing: a new tool for Archaeology, Springer, Verlag Berlin Heidelberg, ISBN 978-90-481-8800-0, doi: 10.1007/978-90-481-8801-7_14; pp. 307-344 [3] Rizzo E., Masini N., Lasaponara R., Orefici G. 2010, ArchaeoGeophysical methods in the Templo del Escalonado (Cahuachi, Nasca, Perù), Near Surface Geophysics 8 (5), 433-439, doi:10.3997/1873-0604.2010030 [4] Masini N., Rizzo E., Lasaponara R., and Orefici G. 2008, Integrated remote sensing techniques for the detection of buried archaeological adobe structures: preliminary results in Cahuachi (Peru), Advances in Geosciences, 19, 75-82 [5] Lasaponara R., Leucci G., Masini N., Persico R. 2014. Investigating archaeological looting using satellite images and GEORADAR: the experience in Lambayeque in North Peru. Journal of Archaeological Science, 42, 216-230, http://dx.doi.org/10.1016/j.jas.2013.10.032 [6] Kolata, A.L., 1993. Tiwanaku: Portrait of an Andean Civilization. Blackwell, Cambridge. [7] Janusek, J. W., 2004. Identity and Power in the ancient Andes. Tiwanaku cities though time. Routledge, New York-London [8] Lasaponara R., Masini N. 2014. Beyond modern landscape features: New insights in the archaeological area of Tiwanaku in Bolivia from satellite data. International Journal of Applied Earth Observation and Geoinformation, 26, 464-471, http://dx.doi.org/10.1016/j.jag.2013.09.00</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC51B0971G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC51B0971G"><span>Geophysical Characterization for Potential Carbon Dioxide Sequestration in the Black Warrior Basin of Alabama</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodliffe, A. M.; Harris, W.; Rutter, R. S.; Clark, P.; Pashin, J. C.; Esposito, R. A.</p> <p>2011-12-01</p> <p>The southeastern US is a leading producer of carbon dioxide emissions in large part due to the high number of coal-fired power plants in the region. As part of a Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded geological characterization project we have collected a number of geophysical data sets that characterize the Black Warrior Basin in the vicinity of the Alabama Power Gorgas Steam Plant in Walker County, Alabama. These geophysical data sets are important for extending the results from our 8000-foot characterization hole throughout the basin. Two 5-mile seismic reflection profiles processed through pre-stack time migration image the Cambrian through Pennsylvanian stratigraphy in the basin. The major injection targets in the saline reservoirs of the Hartselle Sandstone, Tuscumbia Limestone, Stones River Group and Knox Group. Initial examination of the data show that it is well suited for techniques such as Amplitude Versus Offset (AVO) analysis and inversion with the downhole data. Multiple offset vertical seismic profiles (VSP) image the formations close to and at multiple azimuths away from the drill hole. These VSPs also provide an important link to the seismic reflection profiles, which pass a little less than a mile to the north of the drill hole. Three shallow microseismic wells in the vicinity of the main drill hole have 3-component geophones cemented at depths of 50, 150, and 250 foot. These wells, designed to record small magnitude seismic events resulting from low-volume water injection, are important for characterizing the local fracture pathways and stress fields. Downhole gravity data complements the usual suite of downhole tools by imaging density variations deeper into the formations and ensuring that the identified saline reservoirs are not locally discontinuous.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189027','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189027"><span>Identification of the Polaris Fault using lidar and shallow geophysical methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hunter, Lewis E.; Powers, Michael H.; Burton, Bethany L.</p> <p>2017-01-01</p> <p>As part of the U.S. Army Corps of Engineers' (USACE) Dam Safety Assurance Program, Martis Creek Dam near Truckee, CA, is under evaluation for earthquake and seepage hazards. The investigations to date have included LiDAR (Light Detection and Ranging) and a wide range of geophysical surveys. The LiDAR data led to the discovery of an important and previously unknown fault tracing very near and possibly under Martis Creek Dam. The geophysical surveys of the dam foundation area confirm evidence of the fault in the area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMIN11A1142Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMIN11A1142Y"><span>Integration of Geophysical and Geochemical Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamagishi, Y.; Suzuki, K.; Tamura, H.; Nagao, H.; Yanaka, H.; Tsuboi, S.</p> <p>2006-12-01</p> <p>Integration of geochemical and geophysical data would give us a new insight to the nature of the Earth. It should advance our understanding for the dynamics of the Earth's interior and surface processes. Today various geochemical and geophysical data are available on Internet. These data are stored in various database systems. Each system is isolated and provides own format data. The goal of this study is to display both the geochemical and geophysical data obtained from such databases together visually. We adopt Google Earth as the presentation tool. Google Earth is virtual globe software and is provided free of charge by Google, Inc. Google Earth displays the Earth's surface using satellite images with mean resolution of ~15m. We display any graphical features on Google Earth by KML format file. We have developed softwares to convert geochemical and geophysical data to KML file. First of all, we tried to overlay data from Georoc and PetDB and seismic tomography data on Google Earth. Georoc and PetDB are both online database systems for geochemical data. The data format of Georoc is CSV and that of PetDB is Microsoft Excel. The format of tomography data we used is plain text. The conversion software can process these different file formats. The geochemical data (e. g. compositional abundance) is displayed as a three-dimensional column on the Earth's surface. The shape and color of the column mean the element type. The size and color tone vary according to the abundance of the element. The tomography data can be converted into a KML file for each depth. This overlay plot of geochemical data and tomography data should help us to correlate internal temperature anomalies to geochemical anomalies, which are observed at the surface of the Earth. Our tool can convert any geophysical and geochemical data to a KML as long as the data is associated with longitude and latitude. We are going to support more geophysical data formats. In addition, we are currently trying to obtain scientific insights for the Earth's interior based on the view of both geophysical and geochemical data on Google Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2011/5228/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2011/5228/"><span>Evaluation of geophysical techniques for the detection of paleochannels in the Oakland area of eastern Nebraska as part of the Eastern Nebraska Water Resource Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Abraham, Jared D.; Bedrosian, Paul A.; Asch, Theodore H.; Ball, Lyndsay B.; Cannia, James C.; Phillips, Jeffery D.; Lackey, Susan</p> <p>2012-01-01</p> <p>Surface audio-magnetotelluric and time-domain electromagnetic methods achieved sufficient depth of penetration and indicated that the paleochannel was much more complex than the original geological model. Simulated and observed gravity anomalies indicate that imaging sand and gravel aquifers near Oakland, Nebraska, would be difficult due to the complex basement density contrasts. Interpretation of the magnetic data indicates no magnetic sources from geologic units above the bedrock surface. Based upon the analysis and interpretation of the four methods evaluated, we suggest a large-scale survey using a high-powered time-domain airborne system. This is the most efficient and cost-effective path forward for the Eastern Nebraska Water Assessment group to map paleochannels that lie beneath thick clay-rich glacial tills.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........58Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........58Z"><span>Parts-based geophysical inversion with application to water flooding interface detection and geological facies detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Junwei</p> <p></p> <p>I built parts-based and manifold based mathematical learning model for the geophysical inverse problem and I applied this approach to two problems. One is related to the detection of the oil-water encroachment front during the water flooding of an oil reservoir. In this application, I propose a new 4D inversion approach based on the Gauss-Newton approach to invert time-lapse cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be also used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods. A paper has been published in Geophysical Journal International on this topic and I am the first author of this paper. The second application is related to the detection of geological facies boundaries and their deforation to satisfy to geophysica data and prior distributions. We pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case study, performing a joint inversion of gravity and galvanometric resistivity data with the stations all located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to deform the facies boundaries preserving prior topological properties of the facies throughout the inversion. With the additional help of prior facies petrophysical relationships, topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The result of the inversion technique is encouraging when applied to a second synthetic case study, showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries. A paper has been submitted to Geophysics on this topic and I am the first author of this paper. During this thesis, I also worked on the time lapse inversion problem of gravity data in collaboration with Marios Karaoulis and a paper was published in Geophysical Journal international on this topic. I also worked on the time-lapse inversion of cross-well geophysical data (seismic and resistivity) using both a structural approach named the cross-gradient approach and a petrophysical approach. A paper was published in Geophysics on this topic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S53C..01Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S53C..01Y"><span>Instantaneous Frequency Attribute Comparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yedlin, M. J.; Margrave, G. F.; Ben Horin, Y.</p> <p>2013-12-01</p> <p>The instantaneous seismic data attribute provides a different means of seismic interpretation, for all types of seismic data. It first came to the fore in exploration seismology in the classic paper of Taner et al (1979), entitled " Complex seismic trace analysis". Subsequently a vast literature has been accumulated on the subject, which has been given an excellent review by Barnes (1992). In this research we will compare two different methods of computation of the instantaneous frequency. The first method is based on the original idea of Taner et al (1979) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method is based on the computation of the power centroid of the time-frequency spectrum, obtained using either the Gabor Transform as computed by Margrave et al (2011) or the Stockwell Transform as described by Stockwell et al (1996). We will apply both methods to exploration seismic data and the DPRK events recorded in 2006 and 2013. In applying the classical analytic signal technique, which is known to be unstable, due to the division of the square of the envelope, we will incorporate the stabilization and smoothing method proposed in the two paper of Fomel (2007). This method employs linear inverse theory regularization coupled with the application of an appropriate data smoother. The centroid method application is straightforward and is based on the very complete theoretical analysis provided in elegant fashion by Cohen (1995). While the results of the two methods are very similar, noticeable differences are seen at the data edges. This is most likely due to the edge effects of the smoothing operator in the Fomel method, which is more computationally intensive, when an optimal search of the regularization parameter is done. An advantage of the centroid method is the intrinsic smoothing of the data, which is inherent in the sliding window application used in all Short-Time Fourier Transform methods. The Fomel technique has a larger CPU run-time, resulting from the necessary matrix inversion. Barnes, Arthur E. "The calculation of instantaneous frequency and instantaneous bandwidth.", Geophysics, 57.11 (1992): 1520-1524. Fomel, Sergey. "Local seismic attributes.", Geophysics, 72.3 (2007): A29-A33. Fomel, Sergey. "Shaping regularization in geophysical-estimation problems." , Geophysics, 72.2 (2007): R29-R36. Stockwell, Robert Glenn, Lalu Mansinha, and R. P. Lowe. "Localization of the complex spectrum: the S transform."Signal Processing, IEEE Transactions on, 44.4 (1996): 998-1001. Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. "Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063. Cohen, Leon. "Time frequency analysis theory and applications."USA: Prentice Hall, (1995). Margrave, Gary F., Michael P. Lamoureux, and David C. Henley. "Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data." Geophysics, 76.3 (2011): W15-W30.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CTGeo...6...70B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CTGeo...6...70B"><span>Estimation of geotechnical parameters on the basis of geophysical methods and geostatistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brom, Aleksander; Natonik, Adrianna</p> <p>2017-12-01</p> <p>The paper presents possible implementation of ordinary cokriging and geophysical investigation on humidity data acquired in geotechnical studies. The Author describes concept of geostatistics, terminology of geostatistical modelling, spatial correlation functions, principles of solving cokriging systems, advantages of (co-)kriging in comparison with other interpolation methods, obstacles in this type of attempt. Cross validation and discussion of results was performed with an indication of prospect of applying similar procedures in various researches..</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SGeo...35...85N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SGeo...35...85N"><span>A Review of High-Performance Computational Strategies for Modeling and Imaging of Electromagnetic Induction Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newman, Gregory A.</p> <p>2014-01-01</p> <p>Many geoscientific applications exploit electrostatic and electromagnetic fields to interrogate and map subsurface electrical resistivity—an important geophysical attribute for characterizing mineral, energy, and water resources. In complex three-dimensional geologies, where many of these resources remain to be found, resistivity mapping requires large-scale modeling and imaging capabilities, as well as the ability to treat significant data volumes, which can easily overwhelm single-core and modest multicore computing hardware. To treat such problems requires large-scale parallel computational resources, necessary for reducing the time to solution to a time frame acceptable to the exploration process. The recognition that significant parallel computing processes must be brought to bear on these problems gives rise to choices that must be made in parallel computing hardware and software. In this review, some of these choices are presented, along with the resulting trade-offs. We also discuss future trends in high-performance computing and the anticipated impact on electromagnetic (EM) geophysics. Topics discussed in this review article include a survey of parallel computing platforms, graphics processing units to multicore CPUs with a fast interconnect, along with effective parallel solvers and associated solver libraries effective for inductive EM modeling and imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA628572','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA628572"><span>Wave Propagation and Inversion in Shallow Water and Poro-elastic Sediment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1997-09-30</p> <p>water and high freq. acoustics LONG-TERM GOALS To create codes accurately model wave propagation and scattering in shallow water, and to quantify...is undergoing testing for the acoustic stratified Green’s function. We have adapted code generated by J. Schuster in Geophysics for the FDTD model ...inversions and modelling , and have repercussions in environmental imaging [5], acoustic imaging [1,4,5,6,7] and early breast cancer diagnosis</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1000198','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1000198"><span>Demonstration of a Fractured Rock Geophysical Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in Fractured Rock Aquifers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-29</p> <p>initial amendment emplacement rather than longterm monitoring of bioremediation . A number of specific developments of cross- borehole ERT imaging...These substrates are commonly used for enhanced bioremediation and are readily available. For time-lapse ERT imaging, it is important that there is a...to remediation professionals and regulators. This includes the following LinkedIn groups: Bioremediation ; Contaminant Transport in Fractured Bedrock</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..155a2023U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..155a2023U"><span>Geological criteria and geophysical methods of natural bitumen deposits preparation to the development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uspensky, B. V.; Borovsky, M. Ya; Vafin, R. F.; Valeeva, S. E.; Mudarisova, R. A.</p> <p>2018-05-01</p> <p>The article considers the provisions of the ontogenesis of the following factors in the formation of natural bitumen clusters in the Permian deposits of the Melekesskiy region: genetic, geodynamic, structural and hydrogeological. It is shown that tectonically weakened zones and zones of Neogene incisions development are fixed by high-precision gravimetry in the form of intense local minima of gravity. A favorable factor contributing to the "strengthening" of anomalous geophysical effects is the coincidence of the locations of these geological section heterogeneities in the plan. It is recommended at the stage of experimental-industrial operation a complex of geophysical methods for monitoring the processes of natural bitumen deposits development by means of secondary impact on the formation. High-precision magnetic, thermal and electrical prospecting in various modifications are used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS13A0011D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS13A0011D"><span>Multiscale Geophysical Characterization of Weathering Fronts Along a Climate and Vegetation Gradient in Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dal Bo, I.; Klotzsche, A.; Schaller, M.; Ehlers, T. A.; Vereecken, H.; Van Der Kruk, J.</p> <p>2017-12-01</p> <p>Understanding how weathering processes act is non-trivial. Direct methods are spatially restricted, time consuming, and expensive. Here, we show how to upscale and extend the point-scale layering information from dug pits deploying a multi-scale geophysical approach. Many studies have recently shown the potential of geophysics in bridging the gap between scales, although limited to specific environments. We applied Electromagnetic Induction (EMI), Ground Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT) in four study areas separated by 1600 km in the Chilean Coastal Cordillera, and ranging from the arid Atacama Desert in the north and temperate forests in the south. The main goals were to understand how the soil profile and the weathering front vary: 1) from north to south along these gradients, 2) in north- and south-facing hillslopes, and 3) within a single hillslope. We measured at the large-scale (EMI), at the profile scale (EMI, ERT, and GPR), and at the point-scale (GPR). The total length of the EMI, GPR and ERT measurements was 28.95 km, 3.67 km, and 0.27 km. GPR wide angle reflection and refraction measurements were the link between ground-truth data and geophysics. The low electrical conductivity (EC) regime limited the applicability of the EMI and ERT. However, still relative patterns of apparent electrical conductivity (ECa) from EMI could be used. Generally, ECa increased moving uphill and from north to south. Due to the low EC values in the study areas, GPR could image several reflections up to 8 m depth partially confirmed by the pit layering. Thicker layers on GPR profiles were present going from north to south and in the bottom-mid part of the hillslopes, as confirmed by ground-truth data. The main recognizable feature in the GPR profiles was the transition between B and C horizon. Here, hyperbolic-shape signatures were observed that probably were related to the presence of heterogeneities. The soil pits showed deeper layers in more vegetated south-facing hillslopes, which could be correlated with increased signal penetration and reflection depths in the GPR profiles. Soil depths and their interaction with biota in soil-mantled landscapes will be better characterized by combining geophysics with more environmental parameters within the interdisciplinary EarthShape project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016282&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DATLA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016282&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DATLA"><span>Volcanic rises on Venus: Geology, formation, and sequence of evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Senske, D. A.; Stofan, E. R.; Bindschadler, D. L.; Smrekar, S. E.</p> <p>1993-01-01</p> <p>Large centers of volcanism on Venus are concentrated primarily in the equatorial region of the planet and are associated with regional topographic rises. Analysis of both radar images and geophysical data suggest that these uplands are sites of mantle upwelling. Magellan radar imaging provides a globally contiguous data set from which the geology of these regions is evaluated and compared. In addition, high resolution gravity data currently being collected provide a basis to assess the relationship between these uplands and processes in the planet's interior. Studies of the geology of the three largest volcanic highlands (Beta Regio, Atla Regio, Western Eistla Regio) show them to be distinct, having a range of volcanic and tectonic characteristics. In addition to these large areas, a number of smaller uplands are identified and are being analyzed (Bell Regio, Imdr Regio, Dione Regio (Ushas, Innini, and Hathor Montes), and Themis Regio). To understand better the mechanisms by which these volcanic rises form and evolve, we assess their geologic and geophysical characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032405','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032405"><span>Quantifying riverine surface currents from time sequences of thermal infrared imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Puleo, J.A.; McKenna, T.E.; Holland, K.T.; Calantoni, J.</p> <p>2012-01-01</p> <p>River surface currents are quantified from thermal and visible band imagery using two methods. One method utilizes time stacks of pixel intensity to estimate the streamwise velocity at multiple locations. The other method uses particle image velocimetry to solve for optimal two-dimensional pixel displacements between successive frames. Field validation was carried out on the Wolf River, a small coastal plain river near Landon, Mississippi, United States, on 26-27 May 2010 by collecting imagery in association with in situ velocities sampled using electromagnetic current meters deployed 0.1 m below the river surface. Comparisons are made between mean in situ velocities and image-derived velocities from 23 thermal and 6 visible-band image sequences (5 min length) during daylight and darkness conditions. The thermal signal was a small apparent temperature contrast induced by turbulent mixing of a thin layer of cooler water near the river surface with underlying warmer water. The visible-band signal was foam on the water surface. For thermal imagery, streamwise velocities derived from the pixel time stack and particle image velocimetry technique were generally highly correlated to mean streamwise current meter velocities during darkness (r 2 typically greater than 0.9) and early morning daylight (r 2 typically greater than 0.83). Streamwise velocities from the pixel time stack technique had high correlation for visible-band imagery during early morning daylight hours with respect to mean current meter velocities (r 2 > 0.86). Streamwise velocities for the particle image velocimetry technique for visible-band imagery had weaker correlations with only three out of six correlations performed having an r 2 exceeding 0.6. Copyright 2012 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029976','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029976"><span>MT+, integrating magnetotellurics to determine earth structure, physical state, and processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bedrosian, P.A.</p> <p>2007-01-01</p> <p>As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNS33B1973B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNS33B1973B"><span>Feasibility of geophysical methods as a tool to detect urban subsurface cavity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bang, E.; Kim, C.; Rim, H.; Ryu, D.; Lee, H.; Jeong, S. W.; Jung, B.; Yum, B. W.</p> <p>2016-12-01</p> <p>Urban road collapse problem become a social issue in Korea these days. Underground cavity cannot be cured by itself, we need to detect existing underground cavity before road collapse. We should consider cost, reliability, availability, skill requirement for field work and interpretation procedure in selecting detecting method because it's huge area and very long length to complete. We constructed a real-scale ground model for this purpose. Its size is about 15m*8m*3m (L*W*D) and sewer pipes are buried at the depth of 1.2m. We modeled upward moving or enlargement of underground cavity by digging the ground through the hole of sewer pipe inside. There are two or three steps having different cavity size and depth. We performed all five methods on the ground model to monitor ground collapse and detect underground cavity at each step. The first one is GPR method, which is very popular for this kind of project. GPR provided very good images showing underground cavity well at each step. DC resistivity survey is also selected because it is a common tool to locate underground anomaly. It provided the images showing underground cavity, but field setup is not favorable for the project. The third method is micro gravity method which can differentiate cavity zone from gravity distribution. Micro Gravity gave smaller g values around the cavity compared to normal condition, but it takes very long time to perform. The fourth method is thermal image. The temperature of the ground surface on the cavity will be different from the other area. We used multi-copter for rapid thermal imaging and we could pick the area of underground cavity from the aerial thermal image of ground surface. The last method we applied is RFID/magnetic survey. When the ground is collapsed around the buried RFID/magnetic tag in depth, tag will be moved downward. We can know the ground collapse through checking tag detecting condition. We could pick the area of ground collapse easily. When we compared each method from a variety of views, we could check GPR method, aerial thermal imaging method and RFID/magnetic survey show better performance as a tool to detect subsurface cavity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAG...148..163G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAG...148..163G"><span>On the optimization of electromagnetic geophysical data: Application of the PSO algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Godio, A.; Santilano, A.</p> <p>2018-01-01</p> <p>Particle Swarm optimization (PSO) algorithm resolves constrained multi-parameter problems and is suitable for simultaneous optimization of linear and nonlinear problems, with the assumption that forward modeling is based on good understanding of ill-posed problem for geophysical inversion. We apply PSO for solving the geophysical inverse problem to infer an Earth model, i.e. the electrical resistivity at depth, consistent with the observed geophysical data. The method doesn't require an initial model and can be easily constrained, according to external information for each single sounding. The optimization process to estimate the model parameters from the electromagnetic soundings focuses on the discussion of the objective function to be minimized. We discuss the possibility to introduce in the objective function vertical and lateral constraints, with an Occam-like regularization. A sensitivity analysis allowed us to check the performance of the algorithm. The reliability of the approach is tested on synthetic, real Audio-Magnetotelluric (AMT) and Long Period MT data. The method appears able to solve complex problems and allows us to estimate the a posteriori distribution of the model parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAG...134..125R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAG...134..125R"><span>Geophysical prospection of the Roman city of Pollentia, Alcúdia (Mallorca, Balearic Islands, Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ranieri, G.; Godio, A.; Loddo, F.; Stocco, S.; Casas, A.; Capizzi, P.; Messina, P.; Orfila, M.; Cau, M. A.; Chávez, Mª. E.</p> <p>2016-11-01</p> <p>We present the results of the geophysical investigation carried out in the Roman city of Pollentia, in the island of Mallorca. The ancient city was identified in the 19th century. Old and new archaeological excavations have helped to uncover a residential area, a theatre, the forum, several necropolises and other remains of the city, but a large unexplored area has still to be investigated. For instance, the limits of the ancient town and the presence of harbour structures are still unknown. The geophysical survey has covered an area of more than 20.000 m2 by integrating magnetic, electromagnetic, electrical and ground penetrating radar (GPR) methods. Many unseen archaeological features were clearly revealed by the interpretation of the resistivity maps and GPR time slices. A new method for the visualisation of the geophysical evidence based on VRML (Virtual Reality Markup Language) 3D data representation provides promising results to drive future excavations. The VRML shows a great potentiality for the digital visualization of the site aimed at its exploitation and usability even without the archaeological excavation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAnIII5..145M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAnIII5..145M"><span>a Comparison of Uav and Tls Data for Soil Roughness Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milenković, M.; Karel, W.; Ressl, C.; Pfeifer, N.</p> <p>2016-06-01</p> <p>Soil roughness represents fine-scale surface geometry which figures in many geophysical models. While static photogrammetric techniques (terrestrial images and laser scanning) have been recently proposed as a new source for deriving roughness heights, there is still need to overcome acquisition scale and viewing geometry issues. By contrast to the static techniques, images taken from unmanned aerial vehicles (UAV) can maintain near-nadir looking geometry over scales of several agricultural fields. This paper presents a pilot study on high-resolution, soil roughness reconstruction and assessment from UAV images over an agricultural plot. As a reference method, terrestrial laser scanning (TLS) was applied on a 10 m x 1.5 m subplot. The UAV images were self-calibrated and oriented within a bundle adjustment, and processed further up to a dense-matched digital surface model (DSM). The analysis of the UAV- and TLS-DSMs were performed in the spatial domain based on the surface autocorrelation function and the correlation length, and in the frequency domain based on the roughness spectrum and the surface fractal dimension (spectral slope). The TLS- and UAV-DSM differences were found to be under ±1 cm, while the UAV DSM showed a systematic pattern below this scale, which was explained by weakly tied sub-blocks of the bundle block. The results also confirmed that the existing TLS methods leads to roughness assessment up to 5 mm resolution. However, for our UAV data, this was not possible to achieve, though it was shown that for spatial scales of 12 cm and larger, both methods appear to be usable. Additionally, this paper suggests a method to propagate measurement errors to the correlation length.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1861c0021H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1861c0021H"><span>Plug identification in drainage system using electromagnetic wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hijriani, Arifa; Utama, Aji Surya; Boas, Andrianus; Mukti, M. Ridho; Widodo</p> <p>2017-07-01</p> <p>The evaluation of drainage system's performance is an important thing to do to prevent flooding. Conventionally the Government evaluates the drainage system by opening one by one the lid of drainage and detects the plug manually. This method is not effective and efficient because this method need many people, much time and relatively expensive. The purpose of this paper is to identify plugs in drainage system in G St. at Bandung Institute of Technology by using electromagnetic wave. Ground Penetrating Radar (GPR) is one of geophysics method that using electromagnetic wave with high frequency. GPR is a non-destructive method with high resolution imaging for shallow depth (˜100m) and relatively cheap. We could identify the plug without opening the lid manually so that we could save much time. GPR's sensitivity is depends on resistivity, magnetic permeability, and permittivity of an object. The result of this research is we could identify the plug on the radargram that observed by a build-up amplitude anomaly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6028M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6028M"><span>A hybrid method for the computation of quasi-3D seismograms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Masson, Yder; Romanowicz, Barbara</p> <p>2013-04-01</p> <p>The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these Green's functions are computed using 2D SEM simulation in a 1D Earth model. Such seismograms account for the 3D structure inside the region of interest in a quasi-exact manner. Later we plan to extrapolate the misfit function computed from such seismograms at the stations back into the SEM region in order to compute local adjoint kernels. This opens a new path toward regional adjoint tomography into the deep Earth. Capdeville, Y., et al. (2002). "Coupling the spectral element method with a modal solution for elastic wave propagation in global Earth models." Geophysical Journal International 152(1): 34-67. Lekic, V. and B. Romanowicz (2011). "Inferring upper-mantle structure by full waveform tomography with the spectral element method." Geophysical Journal International 185(2): 799-831. Nissen-Meyer, T., et al. (2007). "A two-dimensional spectral-element method for computing spherical-earth seismograms-I. Moment-tensor source." Geophysical Journal International 168(3): 1067-1092. Robertsson, J. O. A. and C. H. Chapman (2000). "An efficient method for calculating finite-difference seismograms after model alterations." Geophysics 65(3): 907-918. Tape, C., et al. (2009). "Adjoint tomography of the southern California crust." Science 325(5943): 988-992.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035300','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035300"><span>Electrical characterization of non‐Fickian transport in groundwater and hyporheic systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Singha, Kamini; Pidlisecky, Adam; Day-Lewis, Frederick D.; Gooseff, Michael N.</p> <p>2008-01-01</p> <p>Recent work indicates that processes controlling solute mass transfer between mobile and less mobile domains in porous media may be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods are sensitive to changes in bulk electrical conductivity (bulk EC) and therefore sample EC in both the mobile and immobile domains. Consequently, the conductivity difference between direct geochemical samples and remotely sensed electrical geophysical measurements may provide an indication of mass transfer rates and mobile and immobile porosities in situ. Here we present (1) an overview of a theoretical framework for determining parameters controlling mass transfer with electrical resistivity in situ; (2) a review of a case study estimating mass transfer processes in a pilot‐scale aquifer storage recovery test; and (3) an example application of this method for estimating mass transfer in watershed settings between streams and the hyporheic corridor. We demonstrate that numerical simulations of electrical resistivity studies of the stream/hyporheic boundary can help constrain volumes and rates of mobile‐immobile mass transfer. We conclude with directions for future research applying electrical geophysics to understand field‐scale transport in aquifer and fluvial systems subject to rate‐limited mass transfer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNS31A1950A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNS31A1950A"><span>Geophysical Signitures From Hydrocarbon Contaminated Aquifers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbas, M.; Jardani, A.</p> <p>2015-12-01</p> <p>The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole and 3D geophysical measurements coupled to biological and chemical surface phase experiments in order to monitor the bioremediation processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H31A1345S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H31A1345S"><span>Rapid estimation of aquifer salinity structure from oil and gas geophysical logs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shimabukuro, D.; Stephens, M.; Ducart, A.; Skinner, S. M.</p> <p>2016-12-01</p> <p>We describe a workflow for creating aquifer salinity maps using Archie's equation for areas that have geophysical data from oil and gas wells. We apply this method in California, where geophysical logs are available in raster format from the Division of Oil, Gas, and Geothermal Resource (DOGGR) online archive. This method should be applicable to any region where geophysical logs are readily available. Much of the work is controlled by computer code, allowing salinity estimates for new areas to be rapidly generated. For a region of interest, the DOGGR online database is scraped for wells that were logged with multi-tool suites, such as the Platform Express or Triple Combination Logging Tools. Then, well construction metadata, such as measured depth, spud date, and well orientation, is attached. The resultant local database allows a weighted criteria selection of wells that are most likely to have the shallow resistivity, deep resistivity, and density porosity measurements necessary to calculate salinity over the longest depth interval. The algorithm can be adjusted for geophysical log availability for older well fields and density of sampling. Once priority wells are identified, a student researcher team uses Neuralog software to digitize the raster geophysical logs. Total dissolved solid (TDS) concentration is then calculated in clean, wet sand intervals using the resistivity-porosity method, a modified form of Archie's equation. These sand intervals are automatically selected using a combination of spontaneous potential and the difference in shallow resistivity and deep resistivity measurements. Gamma ray logs are not used because arkosic sands common in California make it difficult to distinguish sand and shale. Computer calculation allows easy adjustment of Archie's parameters. The result is a semi-continuous TDS profile for the wells of interest. These profiles are combined and contoured using standard 3-d visualization software to yield preliminary salinity maps for the region of interest. We present results for select well fields in the Southern San Joaquin Valley, California.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdWR..109..302M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdWR..109..302M"><span>Geophysical characterisation of the groundwater-surface water interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.</p> <p>2017-11-01</p> <p>Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70121022','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70121022"><span>Integrating hydrologic and geophysical data to constrain coastal surficial aquifer processes at multiple spatial and temporal scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schultz, Gregory M.; Ruppel, Carolyn; Fulton, Patrick; Hyndman, David W.; Day-Lewis, Frederick D.; Singha, Kamini</p> <p>2007-01-01</p> <p>Since 1997, repeated, coincident geophysical surveys and extensive hydrologic studies in shallow monitoring wells have been used to study static and dynamic processes associated with surface water-groundwater interaction at a range of spatial scales at the estuarine and ocean boundaries of an undeveloped, permeable barrier island in the Georgia part of the U.S. South Atlantic Bight. Because geophysical and hydrologic data measure different parameters, at different resolution and precision, and over vastly different spatial scales, reconciling the coincident data or even combining complementary inversion, hydrogeochemcial analyses and well-based groundwater monitoring, and, in some cases, limited vegetation mapping to demonstrate the utility of an integrative, multidisciplinary approach for elucidating groundwater processes at spatial scales (tens to thousands of meters) that are often difficult to capture with traditional hydrologic approaches. The case studies highlight regional aquifer characteristics, varying degrees of lateral saltwater intrusion at estuarine boundaries, complex subsurface salinity gradients at the ocean boundary, and imaging of submarsh groundwater discharge and possible free convection in the pore waters of a clastic marsh. This study also documents the use of geophysical techniques for detecting temporal changes in groundwater salinity regimes under natural (not forced) gradients at intratidal to interannual (1998-200 Southeastern U.S.A. drought) time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri014033/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri014033/"><span>Borehole-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnson, Carole D.; Haeni, F.P.; Lane, John W.; White, Eric A.</p> <p>2002-01-01</p> <p>A borehole-geophysical investigation was conducted to help characterize the hydrogeology of the fractured-rock aquifer and the distribution of unconsolidated glacial deposits near the former landfill and chemical waste-disposal pits at the University of Connecticut in Storrs, Connecticut. Eight bedrock boreholes near the landfill and three abandoned domestic wells located nearby were logged using conventional and advanced borehole-geophysical methods from June to October 1999. The conventional geophysical-logging methods included caliper, gamma, fluid temperature, fluid resistivity, and electromagnetic induction. The advanced methods included deviation, optical and acoustic imaging of the borehole wall, heat-pulse flowmeter, and directional radar reflection. Twenty-one shallow piezometers (less than 50-feet deep) were logged with gamma and electromagnetic induction tools to delineate unconsolidated glacial deposits. Five additional shallow bedrock wells were logged with conventional video camera, caliper, electromagnetic induction, and fluid resistivity and temperature tools. The rock type, foliation, and fracturing of the site were characterized from high-resolution optical-televiewer (OTV) images of rocks penetrated by the boreholes. The rocks are interpreted as fine- to medium-grained quartz-feldspar-biotite-garnet gneiss and schist with local intrusions of quartz diorite and pegmatite and minor concentrations of sulfide mineralization similar to rocks described as the Bigelow Brook Formation on regional geologic maps. Layers containing high concentrations of sulfide minerals appear as high electrical conductivity zones on electromagnetic-induction and borehole-radar logs. Foliation in the rocks generally strikes to the northeast-southwest and dips to the west, consistent with local outcrop observations. The orientation of foliation and small-scale gneissic layering in the rocks, however, varies locally and with depth in some of the boreholes. In two of the boreholes, the foliation strikes predominantly to the northwest and dips to the northeast. Although small-scale faults and lithologic discontinuities were observed in the OTV data, no large-scale faults were observed that appear on regional geologic maps. Fractures were located and characterized through the use of conventional geophysical, OTV, acoustic-televiewer (ATV), and borehole-radar logs. The orientation of fractures varies considerably across the site; some fractures are parallel to the foliation, whereas others cross-cut the foliation. Many of the transmissive fractures in the bedrock boreholes strike about N170?E and N320?E with dips of less than 45?. Other transmissive fractures strike about N60?E with dips of more than 60?. Most of the transmissive fractures in the domestic wells strike about N60?E and N22?E with dips of more than 45?. The strike of N60?E is parallel to the trend of a thrust fault that appears on regional geologic maps. Vertical flow in the boreholes was measured with the heat-pulse flowmeter under ambient and (or) pumping conditions. Results of ATV, OTV, and conventional logs were used to locate specific zones for flowmeter testing. Ambient downflow was measured in three boreholes, ambient upflow was measured in two other boreholes, and both ambient downflow and upflow were measured in a sixth borehole. The other five bedrock boreholes and domestic wells did not have measurable vertical flow. The highest rate of ambient flow was measured in the background borehole in which upflow and downflow converged and exited the borehole at a fracture zone near a depth of 62 feet. Ambient flow of about 340 gallons per day was measured. In the other five wells, ambient flow of about 20 to 35 gallons per day was measured. Under low-rate pumping (0.25 to 1 gallon per minute), one to six inflow zones were identified in each well. Usually the fractures that are active under ambient conditions contribute to the well under pumping conditions. To prevent</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800038222&hterms=Types+Integration+Their+Measurement&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTypes%2BIntegration%2BTheir%2BMeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800038222&hterms=Types+Integration+Their+Measurement&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTypes%2BIntegration%2BTheir%2BMeasurement"><span>Integration of Landsat, Seasat, and other geo-data sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zobrist, A. L.; Blackwell, R. J.; Stromberg, W. D.</p> <p>1979-01-01</p> <p>The paper discusses integration of Landsat, Seasat, and other geographic information sources. Mosaicking of radar data and registration of radar to Landsat digital imagery are described, and six types of geophysical data, including gravity and magnetic measurements, are integrated and analyzed using image processing techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PApGe.160..509W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PApGe.160..509W"><span>Wave Propagation, Scattering and Imaging Using Dual-domain One-way and One-return Propagators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, R.-S.</p> <p></p> <p>- Dual-domain one-way propagators implement wave propagation in heterogeneous media in mixed domains (space-wavenumber domains). One-way propagators neglect wave reverberations between heterogeneities but correctly handle the forward multiple-scattering including focusing/defocusing, diffraction, refraction and interference of waves. The algorithm shuttles between space-domain and wavenumber-domain using FFT, and the operations in the two domains are self-adaptive to the complexity of the media. The method makes the best use of the operations in each domain, resulting in efficient and accurate propagators. Due to recent progress, new versions of dual-domain methods overcame some limitations of the classical dual-domain methods (phase-screen or split-step Fourier methods) and can propagate large-angle waves quite accurately in media with strong velocity contrasts. These methods can deliver superior image quality (high resolution/high fidelity) for complex subsurface structures. One-way and one-return (De Wolf approximation) propagators can be also applied to wave-field modeling and simulations for some geophysical problems. In the article, a historical review and theoretical analysis of the Born, Rytov, and De Wolf approximations are given. A review on classical phase-screen or split-step Fourier methods is also given, followed by a summary and analysis of the new dual-domain propagators. The applications of the new propagators to seismic imaging and modeling are reviewed with several examples. For seismic imaging, the advantages and limitations of the traditional Kirchhoff migration and time-space domain finite-difference migration, when applied to 3-D complicated structures, are first analyzed. Then the special features, and applications of the new dual-domain methods are presented. Three versions of GSP (generalized screen propagators), the hybrid pseudo-screen, the wide-angle Padé-screen, and the higher-order generalized screen propagators are discussed. Recent progress also makes it possible to use the dual-domain propagators for modeling elastic reflections for complex structures and long-range propagations of crustal guided waves. Examples of 2-D and 3-D imaging and modeling using GSP methods are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CG.....77..118S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CG.....77..118S"><span>Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silversides, Katherine; Melkumyan, Arman; Wyman, Derek; Hatherly, Peter</p> <p>2015-04-01</p> <p>The mining of stratiform ore deposits requires a means of determining the location of stratigraphic boundaries. A variety of geophysical logs may provide the required data but, in the case of banded iron formation hosted iron ore deposits in the Hamersley Ranges of Western Australia, only one geophysical log type (natural gamma) is collected for this purpose. The information from these logs is currently processed by slow manual interpretation. In this paper we present an alternative method of automatically identifying recurring stratigraphic markers in natural gamma logs from multiple drill holes. Our approach is demonstrated using natural gamma geophysical logs that contain features corresponding to the presence of stratigraphically important marker shales. The host stratigraphic sequence is highly consistent throughout the Hamersley and the marker shales can therefore be used to identify the stratigraphic location of the banded iron formation (BIF) or BIF hosted ore. The marker shales are identified using Gaussian Processes (GP) trained by either manual or active learning methods and the results are compared to the existing geological interpretation. The manual method involves the user selecting the signatures for improving the library, whereas the active learning method uses the measure of uncertainty provided by the GP to select specific examples for the user to consider for addition. The results demonstrate that both GP methods can identify a feature, but the active learning approach has several benefits over the manual method. These benefits include greater accuracy in the identified signatures, faster library building, and an objective approach for selecting signatures that includes the full range of signatures across a deposit in the library. When using the active learning method, it was found that the current manual interpretation could be replaced in 78.4% of the holes with an accuracy of 95.7%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1089/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1089/"><span>Airborne Gravity Survey and Ground Gravity in Afghanistan: A Website for Distribution of Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Abraham, Jared D.; Anderson, Eric D.; Drenth, Benjamin J.; Finn, Carol A.; Kucks, Robert P.; Lindsay, Charles R.; Phillips, Jeffrey D.; Sweeney, Ronald E.</p> <p>2008-01-01</p> <p>Afghanistan?s geologic setting suggests significant natural resource potential. Although important mineral deposits and petroleum resources have been identified, much of the country?s potential remains unknown. Airborne geophysical surveys are a well- accepted and cost-effective method for remotely obtaining information of the geological setting of an area. A regional airborne geophysical survey was proposed due to the security situation and the large areas of Afghanistan that have not been covered using geophysical exploration methods. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the U.S. Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan. Data collected during this survey will provide basic information for mineral and petroleum exploration studies that are important for the economic development of Afghanistan. Additionally, use of these data is broadly applicable in the assessment of water resources and natural hazards, the inventory and planning of civil infrastructure and agricultural resources, and the construction of detailed maps. The U.S. Geological Survey is currently working in cooperation with the U.S. Agency of International Development to conduct resource assessments of the country of Afghanistan for mineral, energy, coal, and water resources, and to assess geologic hazards. These geophysical and remote sensing data will be used directly in the resource and hazard assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982aewe.reptS....B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982aewe.reptS....B"><span>Cavity detection and delineation research. Part 1: Microgravimetric and magnetic surveys: Medford Cave Site, Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butler, D. K.</p> <p>1982-03-01</p> <p>This report reviews the scope of a research effort initiated in 1974 at the U.S. Army Engineer Waterways Experiment Station with the objectives of (a) assessing the state of the art in geophysical cavity detection and delineation methodology and (b) developing new methods and improving or adapting old methods for application to cavity detection and delineation. Two field test sites were selected: (a) the Medford Cave site with a relatively shallow (10- to 50-ft-deep) air-filled cavity system and (b) the Manatee Springs site with a deeper (approximately 100-ft-deep) water-filled cavity system. Results of field studies at the Medford Cave site are presented in this report: (a) the site geology, (b) the site topographic survey, (c) the site drilling program (boreholes for geophysical tests, for determination of a detailed geological cross section, and for verification of geophysical anomalies), (d) details of magnetic and microgravimetric surveys, and (e) correlation of geophysical results with known site geology. Qualitative interpretation guidelines using complementary geophysical techniques for site investigations in karst regions are presented. Including the results of electrical resistivity surveys conducted at the Medford Cave site, the qualitative guidelines are applied to four profile lines, and drilling locations are indicated on the profile plots of gravity, magnetic, and electrical resistivity data. Borehole logs are then presented for comparison with the predictions of the qualitative interpretation guidelines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H24E..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H24E..04B"><span>Integrated Site Investigation Methods and Modeling: Recent Developments at the BHRS (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrash, W.; Bradford, J. H.; Cardiff, M. A.; Dafflon, B.; Johnson, B. A.; Malama, B.; Thoma, M. J.</p> <p>2010-12-01</p> <p>The Boise Hydrogeophysical Research Site (BHRS) is a field-scale test facility in an unconfined aquifer with the goals of: developing cost-effective, non-invasive methods for quantitative characterization of heterogeneous aquifers using hydrologic and geophysical techniques; understanding fundamental relations and processes at multiple scales; and testing theories and models for groundwater flow and solute transport. The design of the BHRS supports a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrogeophysical experiments. New installations support direct and geophysical monitoring of hydrologic fluxes and states from the aquifer through the vadose zone to the atmosphere, including ET and river boundary behavior. Efforts to date have largely focused on establishing the 1D, 2D, and 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for testing methods to integrate direct and indirect data and invert for “known” parameter distributions, material boundaries, and tracer test or other system state behavior. Aquifer structure at the BHRS is hierarchical and includes layers and lenses that are recognized with geologic, hydrologic, radar, electrical, and seismic methods. Recent advances extend findings and method developments, but also highlight the need to examine assumptions and understand secular influences when designing and modeling field tests. Examples of advances and caveats include: New high-resolution 1D K profiles obtained from multi-level slug tests (inversion improves with priors for aquifer K, wellbore skin, and local presence of roots) show variable correlation with porosity and bring into question a Kozeny-Carman-type relation for much of the system. Modeling of 2D conservative tracer transport through a synthetic BHRS-like heterogeneous system shows the importance of including porosity heterogeneity (rather than assuming constant porosity for an aquifer) in addition to K heterogeneity. Similarly, 3D transient modeling of a conservative tracer test at the BHRS improves significantly with the use of prior geophysical information for layering and parameter structure and with use of both variable porosity and K. Joint inversion of multiple intersecting 2D radar tomograms gives well-resolved and consistent 3D distributions of porosity and unit boundaries that are largely correlated with neutron-porosity log and other site data, but the classic porosity-dielectric relation does not hold for one stratigraphic unit that also is recognized as anomalous with capacitive resistivity logs (i.e., cannot assume one petrophysical relation holds through a given aquifer system). Advances are being made in the new method of hydraulic tomography (2D with coincident electrical geophysics; 3D will be supplemented with priors); caveats here include the importance of boundary conditions and even ET effects. Also integrated data collection and modeling with multiple geophysical and hydrologic methods show promise for high-resolution quantification of vadose zone moisture and parameter distributions to improve variably saturated process models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001566&hterms=international+space+station+images&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dinternational%2Bspace%2Bstation%2Bimages','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001566&hterms=international+space+station+images&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dinternational%2Bspace%2Bstation%2Bimages"><span>Aswan High Dam in 6-meter Resolution from the International Space Station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>Astronaut photography of the Earth from the International Space Station has achieved resolutions close to those available from commercial remote sensing satellites-with many photographs having spatial resolutions of less than six meters. Astronauts take the photographs by hand and physically compensate for the motion of the spacecraft relative to the Earth while the images are being acquired. The achievement was highlighted in an article entitled 'Space Station Allows Remote Sensing of Earth to within Six Meters' published in this week's edition of Eos, Transactions of the American Geophysical Union. Lines painted on airport runways at the Aswan Airport served to independently validate the spatial resolution of the camera sensor. For press information, read: International Space Station Astronauts Set New Standard for Earth Photography For details, see Robinson, J. A. and Evans, C. A. 2002. Space Station Allows Remote Sensing of Earth to within Six Meters. Eos, Transactions, American Geophysical Union 83(17):185, 188. See some of the other detailed photographs posted to Earth Observatory: Pyramids at Giza Bermuda Downtown Houston The image above represents a detailed portion of a digitized NASA photograph STS102-303-17, and was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1326J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1326J"><span>Space weather monitoring by ground-based means carried out in Polar Geophysical Center at Arctic and Antarctic Research Institute</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janzhura, Alexander</p> <p></p> <p>A real-time information on geophysical processes in polar regions is very important for goals of Space Weather monitoring by the ground-based means. The modern communication systems and computer technology makes it possible to collect and process the data from remote sites without significant delays. A new acquisition equipment based on microprocessor modules and reliable in hush climatic conditions was deployed at the Roshydromet networks of geophysical observations in Arctic and is deployed at observatories in Antarctic. A contemporary system for on-line collecting and transmitting the geophysical data from the Arctic and Antarctic stations to AARI has been realized and the Polar Geophysical Center (PGC) arranged at AARI ensures the near-real time processing and analyzing the geophysical information from 11 stations in Arctic and 5 stations in Antarctic. The space weather monitoring by the ground based means is one of the main tasks standing before the Polar Geophysical Center. As studies by Troshichev and Janzhura, [2012] showed, the PC index characterizing the polar cap magnetic activity appeared to be an adequate indicator of the solar wind energy that entered into the magnetosphere and the energy that is accumulating in the magnetosphere. A great advantage of the PC index application over other methods based on satellite data is a permanent on-line availability of information about magnetic activity in both northern and southern polar caps. A special procedure agreed between Arctic and Antarctic Research Institute (AARI) and Space Institute of the Danish Technical University (DTUSpace) ensures calculation of the unified PC index in quasi-real time by magnetic data from the Thule and Vostok stations (see public site: http://pc-index.org). The method for estimation of AL and Dst indices (as indicators of state of the disturbed magnetosphere) based on data on foregoing PC indices has been elaborated and testified in the Polar Geophysical Center. It is demonstrated that the PC index can be successfully used to monitor the state of the magnetosphere (space weather monitoring) and the readiness of the magnetosphere to producing substorm or storm (space weather nowcasting).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMIN43A0895W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMIN43A0895W"><span>Visualizing Earth's Erupting Volcanoes and Wildfires: Seven Years of Data From the Earth Observing Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wright, R.; Pilger, E.; Flynn, L. P.; Harris, A. J.</p> <p>2006-12-01</p> <p>Volcanic eruptions and wildfires are natural hazards that are truly global in their geographic scope, as well as being temporally very dynamic. As such, satellite remote sensing lends itself to their effective detection and monitoring. The results of such mapping can be communicated in the form of traditional static maps. However, most hazards have strong time-dependent forcing mechanisms (in the case of biomass burning, climate) and the dynamism of these geophysical phenomena requires a suitable method for their presentation. Here, we present visualizations of the amount of thermal energy radiated by all of Earth's sub-aerially erupting volcanoes, wildfires and industrial heat sources over a seven year period. These visualizations condense the results obtained from the near-real-time analysis of over 1.2 million MODIS (Moderate Resolution Imaging Spectro-radiometer) images, acquired from NASA's Terra and Aqua platforms. In the accompanying poster we will describe a) the raw data, b) how these data can be used to derive higher-order geophysical parameters, and c) how the visualization of these derived products adds scientific value to the raw data. The visualizations reveal spatio-temporal trends in fire radiated energy (and by proxy, biomass combustion rates and carbon emissions into the atmosphere), which are indiscernible in the static data set. Most notable are differences in biomass combustion between the North American and Eurasian Boreal forests. We also give examples relating to the development of lava flow-fields at Mount Etna (Italy) and Kilauea (USA), as well as variations in heat output from Iraqi oil fields, that span the onset of the 2003 Persian Gulf War. The raw data used to generate these visualizations are routinely made available via the Internet, as portable ASCII files. They can therefore be easily integrated with image datasets, by other researchers, to create their own visualizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H31D1399A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H31D1399A"><span>Hydrologic Process Parameterization of Electrical Resistivity Imaging of Solute Plumes Using POD McMC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Awatey, M. T.; Irving, J.; Oware, E. K.</p> <p>2016-12-01</p> <p>Markov chain Monte Carlo (McMC) inversion frameworks are becoming increasingly popular in geophysics due to their ability to recover multiple equally plausible geologic features that honor the limited noisy measurements. Standard McMC methods, however, become computationally intractable with increasing dimensionality of the problem, for example, when working with spatially distributed geophysical parameter fields. We present a McMC approach based on a sparse proper orthogonal decomposition (POD) model parameterization that implicitly incorporates the physics of the underlying process. First, we generate training images (TIs) via Monte Carlo simulations of the target process constrained to a conceptual model. We then apply POD to construct basis vectors from the TIs. A small number of basis vectors can represent most of the variability in the TIs, leading to dimensionality reduction. A projection of the starting model into the reduced basis space generates the starting POD coefficients. At each iteration, only coefficients within a specified sampling window are resimulated assuming a Gaussian prior. The sampling window grows at a specified rate as the number of iteration progresses starting from the coefficients corresponding to the highest ranked basis to those of the least informative basis. We found this gradual increment in the sampling window to be more stable compared to resampling all the coefficients right from the first iteration. We demonstrate the performance of the algorithm with both synthetic and lab-scale electrical resistivity imaging of saline tracer experiments, employing the same set of basis vectors for all inversions. We consider two scenarios of unimodal and bimodal plumes. The unimodal plume is consistent with the hypothesis underlying the generation of the TIs whereas bimodality in plume morphology was not theorized. We show that uncertainty quantification using McMC can proceed in the reduced dimensionality space while accounting for the physics of the underlying process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T24B..05R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T24B..05R"><span>Refined images of the crust around the SAFOD drill site derived from combined active and passive seismic experiment data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roecker, S.; Thurber, C.; Shuler, A.; Liu, Y.; Zhang, H.; Powell, L.</p> <p>2005-12-01</p> <p>Five years of effort collecting and analyzing earthquake and explosion data in the vicinity of the SAFOD drill site culminated in the determination of the final trajectory for summer 2005's Phase 2 drilling. The trajectory was defined to optimize the chance of reaching one of two adjacent M2 "target earthquake" fault patches, whose centroids are separated horizontally by about 50 meters, with one or more satellite coreholes planned for Phase 3 drilling in summer 2007. Some of the most critical data for the final targeting were explosion data recorded on a Paulsson Geophysical Services, Inc., 80-element 3-component borehole string and earthquake data recorded on a pair of 3-component Duke University geophones in the SAFOD borehole. We are now utilizing the full 5-year dataset to refine our knowledge of three-dimensional (3D) crustal structure, wave propagation characteristics, and earthquake locations around SAFOD. These efforts are proceeding in parallel in several directions. Improved picks from a careful reanalysis of shear waves observed on the PASO array will be used in deriving an improved tomographic 3D wavespeed model. We are using finite-difference waveform modeling to investigate waveform complexity for earthquakes in and near the target region, including fault-zone head waves and strong secondary S-wave arrivals. A variety of waveform imaging methods are being applied to image fine-scale 3D structure and subsurface scatterers, including fault zones. In the process, we aim to integrate geophysical logging and geologic observations with our models to try to associate the target region earthquake activity, which is occurring on two fault strands about 280 meters apart, with shear zones encountered in the SAFOD Phase-2 borehole. These observations will be agumented and the target earthquake locations further refined over the next 2 years through downhole and surface recording of natural earthquakes and surface shots conducted at PASO station locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..555..407G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..555..407G"><span>Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gottschalk, Ian P.; Hermans, Thomas; Knight, Rosemary; Caers, Jef; Cameron, David A.; Regnery, Julia; McCray, John E.</p> <p>2017-12-01</p> <p>Geophysical data have proven to be very useful for lithological characterization. However, quantitatively integrating the information gained from acquiring geophysical data generally requires colocated lithological and geophysical data for constructing a rock-physics relationship. In this contribution, the issue of integrating noncolocated geophysical and lithological data is addressed, and the results are applied to simulate groundwater flow in a heterogeneous aquifer in the Prairie Waters Project North Campus aquifer recharge site, Colorado. Two methods of constructing a rock-physics transform between electrical resistivity tomography (ERT) data and lithology measurements are assessed. In the first approach, a maximum likelihood estimation (MLE) is used to fit a bimodal lognormal distribution to horizontal crosssections of the ERT resistivity histogram. In the second approach, a spatial bootstrap is applied to approximate the rock-physics relationship. The rock-physics transforms provide soft data for multiple point statistics (MPS) simulations. Subsurface models are used to run groundwater flow and tracer test simulations. Each model's uncalibrated, predicted breakthrough time is evaluated based on its agreement with measured subsurface travel time values from infiltration basins to selected groundwater recovery wells. We find that incorporating geophysical information into uncalibrated flow models reduces the difference with observed values, as compared to flow models without geophysical information incorporated. The integration of geophysical data also narrows the variance of predicted tracer breakthrough times substantially. Accuracy is highest and variance is lowest in breakthrough predictions generated by the MLE-based rock-physics transform. Calibrating the ensemble of geophysically constrained models would help produce a suite of realistic flow models for predictive purposes at the site. We find that the success of breakthrough predictions is highly sensitive to the definition of the rock-physics transform; it is therefore important to model this transfer function accurately.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/303945','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/303945"><span>Audio-magnetotelluric data collected in the area of Beatty, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Williams, J.M.</p> <p>1998-11-01</p> <p>In the summer of 1997, electrical geophysical data was collected north of Beatty, Nevada. Audio-magnetotellurics (AMT) was the geophysical method used to collect 16 stations along two profiles. The purpose of this data collection was to determine the depth to the alluvial basement, based upon the needs of the geologists requesting the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1406A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1406A"><span>The Use of Ground Penetrating Radar to Exploring Sedimentary Ore In North-Central Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Almutairi, Yasir; Almutair, Muteb</p> <p>2015-04-01</p> <p>Ground Penetrating Radar (GPR) is a non-destructive geophysical method that provides a continuous subsurface profile, without drilling. This geophysical technique has great potential in delineating the extension of bauxites ore in north-central Saudi Arabia. Bauxite is from types sedimentary ores. This study aim to evaluate the effectiveness of Ground Penetrating Radar (GPR) to illustrate the subsurface feature of the Bauxite deposits at some selected mining areas north-central Saudi Arabia. Bauxite is a heterogeneous material that consists of complex metals such as alumina and aluminum. An efficient and cost-effect exploration method for bauxite mine in Saudi Arabia is required. Ground penetrating radar (GPR) measurements have been carrying out along outcrop in order to assess the potential of GPR data for imaging and characterising different lithological facies. To do so, we have tested different antenna frequencies to acquire the electromagnetic signals along a 90 m profile using the IDS system. This system equipped with a 25 MHz antenna that allows investigating the Bauxite layer at shallow depths where the clay layers may existed. Therefore, the 25 MHz frequency antenna has been used in this study insure better resolution of the subsurface and to get more penetration to image the Bauxite layer. After the GPR data acquisition, this data must be processed in order to be more easily visualized and interpreted. Data processing was done using Reflex 6.0 software. A series of tests were carried out in frequency filtering on a sample of radar sections, which was considered to better represent the entire set of data. Our results indicated that the GPR profiling has a very good agreement for mapping the bauxite layer depth at range of 7 m to 11 m. This study has emphasized that the high-resolution GPR method is the robust and cost-effect technique to map the Bauxite layer. The exploration of Bauxite resource using the GPR technique could reduce the number of holes to be strategically placed in the most promising zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C41C0419C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C41C0419C"><span>High permafrost ice contents in Holocene slope deposits as observed from shallow geophysics and a coring program in Pangnirtung, Nunavut, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carbonneau, A.; Allard, M.; L'Hérault, E.; LeBlanc, A.</p> <p>2011-12-01</p> <p>A study of permafrost conditions was undertaken in the Hamlet of Pangnirtung, Nunavut, by the Geological Survey of Canada (GSC) and Université Laval's Centre d'études nordiques (CEN) to support decision makers in their community planning work. The methods used for this project were based on geophysical and geomorphological approaches, including permafrost cores drilled in surficial deposits and ground penetrating radar surveys using a GPR Pulse EKKO 100 extending to the complete community area and to its projected expansion sector. Laboratory analysis allowed a detailed characterization of permafrost in terms of water contents, salinity and grain size. Cryostratigraphic analysis was done via CT-Scan imagery of frozen cores using medical imaging softwares such as Osiris. This non destructive method allows a 3D imaging of the entire core in order to locate the amount of the excess ice, determine the volumetric ice content and also interpret the ice-formation processes that took place during freezing of the permafrost. Our new map of the permafrost conditions in Pangnirtung illustrates that the dominant mapping unit consist of ice-rich colluvial deposits. Aggradationnal ice formed syngenitically with slope sedimentation. Buried soils were found imbedded in this colluvial layer and demonstrates that colluviation associated with overland-flow during snowmelt occurred almost continuously since 7080 cal. BP. In the eastern sector of town, the 1 to 4 meters thick colluviums cover till and a network of ice wedges that were revealed as spaced hyperbolic reflectors on GPR profiles. The colluviums also cover ice-rich marine silt and bedrock in the western sector of the hamlet; marine shells found in a permafrost core yielded a radiocarbon date of 9553 cal. BP which provides a revised age for the local deglaciation and also a revised marine submergence limit. Among the applied methods, shallow drilling in coarse grained permafrost, core recovery and CT-Scan allowed the discovery of the importance of Holocene slope processes on shaping the surface of the terrain and leading to the observed cryostructures and ice contents in the near surface permafrost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B22C..06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B22C..06F"><span>Hillslope characterization: Identifying key controls on local-scale plant communities' distribution using remote sensing and subsurface data fusion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.</p> <p>2017-12-01</p> <p>Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future climate conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29402051','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29402051"><span>Predicting minimum uncertainties in the inversion of ocean color geophysical parameters based on Cramer-Rao bounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jay, Sylvain; Guillaume, Mireille; Chami, Malik; Minghelli, Audrey; Deville, Yannick; Lafrance, Bruno; Serfaty, Véronique</p> <p>2018-01-22</p> <p>We present an analytical approach based on Cramer-Rao Bounds (CRBs) to investigate the uncertainties in estimated ocean color parameters resulting from the propagation of uncertainties in the bio-optical reflectance modeling through the inversion process. Based on given bio-optical and noise probabilistic models, CRBs can be computed efficiently for any set of ocean color parameters and any sensor configuration, directly providing the minimum estimation variance that can be possibly attained by any unbiased estimator of any targeted parameter. Here, CRBs are explicitly developed using (1) two water reflectance models corresponding to deep and shallow waters, resp., and (2) four probabilistic models describing the environmental noises observed within four Sentinel-2 MSI, HICO, Sentinel-3 OLCI and MODIS images, resp. For both deep and shallow waters, CRBs are shown to be consistent with the experimental estimation variances obtained using two published remote-sensing methods, while not requiring one to perform any inversion. CRBs are also used to investigate to what extent perfect a priori knowledge on one or several geophysical parameters can improve the estimation of remaining unknown parameters. For example, using pre-existing knowledge of bathymetry (e.g., derived from LiDAR) within the inversion is shown to greatly improve the retrieval of bottom cover for shallow waters. Finally, CRBs are shown to provide valuable information on the best estimation performances that may be achieved with the MSI, HICO, OLCI and MODIS configurations for a variety of oceanic, coastal and inland waters. CRBs are thus demonstrated to be an informative and efficient tool to characterize minimum uncertainties in inverted ocean color geophysical parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMED43A0928O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMED43A0928O"><span>Measuring Magnetic Declination With Compass, GPS and Virtual Globes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Brien, W. P.</p> <p>2006-12-01</p> <p>Using virtual globe (VG) imagery to determine geographic bearing and a compass to determine magnetic bearing yielded acceptable experimental magnetic declination values for large linear physical features at 13 sites in the western continental United States. The geographic bearing of each feature was determined from measurements involving the latitude/longitude coordinate system associated with the VG image (from World Wind or Google Earth). The corresponding magnetic bearing was measured on the ground at the feature with a hand-bearing compass calibrated in 1-degree subdivisions. A sequence of GPS trackpoints, recorded while traveling along the feature either in an automobile or on foot, unambiguously identified the pertinent portion of the feature (a straight segment of a road, for example) when plotted on the VG image. For each physical feature located on a VG image, its geographic bearing was determined directly using on-screen measurement tools available with the VG program or by hand using ruler/protractor methods with printed copies of the VG image. An independent (no use of VG) geographic bearing was also extracted from the slope of a straight-line fit to a latitude/longitude plot of each feature's GPS coordinates, a value that was the same (to within the inherent uncertainty of the data) as the VG-determined bearing, thus validating this procedure for finding geographic bearings. Differences between the VG bearings and the magnetic bearings yielded experimental magnetic declination values within one degree (8 within 0.5 degree) of expected values. From the point of view of physics and geophysics pedagogy, this project affords students a simple magnetism/geodesy field experiment requiring only a good compass and a GPS receiver with memory and a data port. The novel and straightforward data analysis with VG software yields reliable experimental values for an important abstract geophysical quantity, magnetic declination. Just as the compass has long provided easy access to Magnetic North, the coordinate systems inherent in recently-developed VG and GPS satellite technologies now provide easy access (i.e., no astronomical measurements involving Polaris or the Sun) to Geographic North for this and future applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011WRR....4712508C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011WRR....4712508C"><span>Assessment of local hydraulic properties from electrical resistivity tomography monitoring of a three-dimensional synthetic tracer test experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.</p> <p>2011-12-01</p> <p>In recent years geophysical methods have become increasingly popular for hydrological applications. Time-lapse electrical resistivity tomography (ERT) represents a potentially powerful tool for subsurface solute transport characterization since a full picture of the spatiotemporal evolution of the process can be obtained. However, the quantitative interpretation of tracer tests is difficult because of the uncertainty related to the geoelectrical inversion, the constitutive models linking geophysical and hydrological quantities, and the a priori unknown heterogeneous properties of natural formations. Here an approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique is applied to assess the spatial distribution of hydraulic conductivity K by incorporating time-lapse cross-hole ERT data. Electrical data consist of three-dimensional cross-hole ERT images generated for a synthetic tracer test in a heterogeneous aquifer. Under the assumption that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating of the hydrological state as well as the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the local aquifer heterogeneity can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of (i) the uncertainty inherently affecting ERT inversions in terms of tracer concentration and (ii) the choice of the prior statistics of K. Our findings show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework. The reconstruction of the hydraulic conductivity spatial distribution is satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024896','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024896"><span>Imaging the Ferron Member of the Mancos Shale formation using reprocessed high-resolution 2-D seismic reflection data: Emery County, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Taylor, D.J.</p> <p>2003-01-01</p> <p>Late in 1982 and early in 1983, Arco Exploration contracted with Rocky Mountain Geophysical to acquired four high-resolution 2-D multichannel seismic reflection lines in Emery County, Utah. The primary goal in acquiring this data was an attempt to image the Ferron Member of the Upper Cretaceous Mancos Shale. Design of the high-resolution 2-D seismic reflection data acquisition used both a short geophone group interval and a short sample interval. An explosive energy source was used which provided an input pulse with broad frequency content and higher frequencies than typical non-explosive Vibroseis?? sources. Reflections produced by using this high-frequency energy source when sampled at a short interval are usually able to resolve shallow horizons that are relatively thin compared to those that can be resolved using more typical oil and gas exploration seismic reflection methods.The U.S. Geological Survey-Energy Resources Program, Geophysical Processing Group used the processing sequence originally applied by Arco in 1984 as a guide and experimented with processing steps applied in a different order using slightly different parameters in an effort to improve imaging the Ferron Member horizon. As with the Arco processed data there are sections along all four seismic lines where the data quality cannot be improved upon, and in fact the data quality is so poor that the Ferron horizon cannot be imaged at all.Interpretation of the seismic and core hole data indicates that the Ferron Member in the study area represent a deltaic sequence including delta front, lower delta plain, and upper delta plain environments. Correlating the depositional environments for the Ferron Member as indicated in the core holes with the thickness of Ferron Member suggests the presence of a delta lobe running from the northwest to the southeast through the study area. The presence of a deltaic channel system within the delta lobe complex might prove to be an interesting conventional exploration target along with the coal-bed methane production already proven in the area. ?? 2003 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.photolib.noaa.gov/cgs/index.html','SCIGOVWS'); return false;" href="http://www.photolib.noaa.gov/cgs/index.html"><span>NOAA Photo Library - Historical Coast & Geodetic Survey Collection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>;gs photos The Historic Coast and Geodetic <em>Survey</em> Collection is composed of over 3,000 images of many aspects of Coast and Geodetic <em>Survey</em> operations including geodesy, nautical and aeronautical charting geophysics and oceanography. The Historic Coast and Geodetic <em>Survey</em> Collection chronicles this rich heritage</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=242019','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=242019"><span>Eco-geophysical imaging of watershed-scale soil patterns links with plant community spatial patterns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The extent to which soil resource availability, nutrients or 1 moisture, control the structure, function and diversity of plant communities has aroused considerable interest in the past decade, and remains topical in light of global change. Numerous plant communities are controlled either by water o...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02803&hterms=Molas&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMolas','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02803&hterms=Molas&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMolas"><span>Major Martian Volcanoes from MOLA - Alba Patera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p><p/>Two views of Alba Patera with topography draped over a Viking image mosaic. MOLA data have clarified the relationship between fault location and topography on and surrounding the Alba construct, providing insight into the volcanological and geophysical processes that shaped the edifice. The vertical exaggeration is 10:1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=250575&Lab=NERL&keyword=inversion&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=250575&Lab=NERL&keyword=inversion&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Time-Lapse Joint Inversion of Cross-Well DC Resistivity and Seismic Data: A Numerical Investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Time-lapse joint inversion of geophysical data is required to image the evolution of oil reservoirs during production and enhanced oil recovery, CO2 sequestration, geothermal fields during production, and to monitor the evolution of contaminant plumes. Joint inversion schemes red...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNS23A1901G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNS23A1901G"><span>Delineating Potential Karst Water-Bearing Structures based on Resistivity Anomalies and Microtremor Analyses-A Case Study in Yunnan Province, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gan, F.; Su, C.; Liu, W.; Zhao, W.</p> <p>2016-12-01</p> <p>Heterogeneity, anisotropy and rugged landforms become challenges for geophysicists to locate drilling site by water-bearing structure profiling in Karst region. If only one geophysical method is used to achieve this objective, low resistivity anomalies deduced to be water-rich zones could actually be zones rich in marl and shale. In this study, integrated geophysical methods were used to locate a favorable drilling position for the provision of karst water to Juede village, which had been experiencing severe water shortages over a prolonged period. According to site conditions and hydrogeological data, appropriate geophysical profiles were conducted, approximately perpendicular to the direction of groundwater flow. In general, significant changes in resistivity occur between water-filled caves/ fractures and competent rocks. Thus, electrical and electromagnetic methods have been widely applied to search for karst groundwater indirectly. First, electrical resistivity tomography was carried out to discern shallow resistivity distributions within the profile where the low resistivity anomalies were of most interest. Second, one short profile of audio-frequency magnetotelluric survey was used to ascertain the vertical and horizontal extent of these low resistivity anomalies. Third, the microtremor H/V spectral ratio method was applied to identify potential water-bearing structures from low resistivity anomalies and to differentiate these from the interference of marl and shale with low resistivity. Finally, anomalous depths were estimated by interpreting Schlumberger sounding data to determine an optimal drilling site. The study shows that karst hydrogeology and geophysical methods can be effectively integrated for the purposes of karst groundwater exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoJI.204...59V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoJI.204...59V"><span>The impact of approximations and arbitrary choices on geophysical images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valentine, Andrew P.; Trampert, Jeannot</p> <p>2016-01-01</p> <p>Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the density structure of a vibrating string.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.2957M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.2957M"><span>Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mewes, Benjamin; Hilbich, Christin; Delaloye, Reynald; Hauck, Christian</p> <p>2017-12-01</p> <p>Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CG.....52..269A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CG.....52..269A"><span>A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abedi, Maysam; Gholami, Ali; Norouzi, Gholam-Hossain</p> <p>2013-03-01</p> <p>Previous studies have shown that a well-known multi-criteria decision making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits can prioritize the ground-based exploratory evidential layers effectively. In this paper, the PROMETHEE II method is applied to airborne geophysical (potassium radiometry and magnetometry) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic-sedimentary belt is chosen for this study. A stable downward continuation method as an inverse problem in the Fourier domain using Tikhonov and edge-preserving regularizations is proposed to enhance magnetic data. Numerical analysis of synthetic models show that the reconstructed magnetic data at the ground surface exhibits significant enhancement compared to the airborne data. The reduced-to-pole (RTP) and the analytic signal filters are applied to the magnetic data to show better maps of the magnetic anomalies. Four remote sensing evidential layers including argillic, phyllic, propylitic and hydroxyl alterations are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in order to map the altered areas associated with porphyry copper deposits. Principal component analysis (PCA) based on six Enhanced Thematic Mapper Plus (ETM+) images is implemented to map iron oxide layer. The final mineral prospectivity map based on desired geo-data set indicates adequately matching of high potential zones with previous working mines and copper deposits.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V43G2950M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V43G2950M"><span>Oman Drilling Project Phase I Borehole Geophysical Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.</p> <p>2017-12-01</p> <p>The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for holes BT1, GT3 and BA2 due to hole obstruction (e.g. collapsed borehole wall). Results from the geophysical survey including preliminary log analysis will be presented for each OmanDP Phase I borehole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1013/pdf/ofr2014-1013.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1013/pdf/ofr2014-1013.pdf"><span>Investigations into near-real-time surveying for geophysical data collection using an autonomous ground vehicle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Phelps, Geoffrey A.; Ippolito, C.; Lee, R.; Spritzer, R.; Yeh, Y.</p> <p>2014-01-01</p> <p>The U.S. Geological Survey and the National Aeronautics and Space Administration are cooperatively investigating the utility of unmanned vehicles for near-real-time autonomous surveys of geophysical data collection. Initially focused on unmanned ground vehicle collection of magnetic data, this cooperative effort has brought unmanned surveying, precision guidance, near-real-time communication, on-the-fly data processing, and near-real-time data interpretation into the realm of ground geophysical surveying, all of which offer advantages over current methods of manned collection of ground magnetic data. An unmanned ground vehicle mission has demonstrated that these vehicles can successfully complete missions to collect geophysical data, and add advantages in data collection, processing, and interpretation. We view the current experiment as an initial phase in further unmanned vehicle data-collection missions, including aerial surveying.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920039957&hterms=water+conservation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwater%2Bconservation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920039957&hterms=water+conservation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwater%2Bconservation"><span>Global analyses of water vapor, cloud and precipitation derived from a diagnostic assimilation of SSM/I geophysical retrievals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robertson, Franklin R.; Cohen, Charles</p> <p>1990-01-01</p> <p>An analytical approach is described for diagnostically assimilating moisture data from Special Sensor Microwave Imager (SSM/I) into a global analysis of water vapor, cloud content, and precipitation. In this method, 3D fields of wind and temperature values taken from ECMWF gridded analysis are used to drive moisture conservation equations with parameterized microphysical treatment of vapor, liquid, and ice; the evolving field of water vapor is periodically updated or constrained by SSM/I retrievals of precipitable water. Initial results indicate that this diagnostic model can produce realistic large-scale fields of cloud and precipitation. The resulting water vapor analyses agree well with SSM/I and have an additional advantage of being synoptic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037072','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037072"><span>Experimental study of near-field air entrainment by subsonic volcanic jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Solovitz, Stephen A.; Mastin, Larry G.</p> <p>2009-01-01</p> <p>The flow structure in the developing region of a turbulent jet has been examined using particle image velocimetry methods, considering the flow at steady state conditions. The velocity fields were integrated to determine the ratio of the entrained air speed to the jet speed, which was approximately 0.03 for a range of Mach numbers up to 0.89 and Reynolds numbers up to 217,000. This range of experimental Mach and Reynolds numbers is higher than previously considered for high-accuracy entrainment measures, particularly in the near-vent region. The entrainment values are below those commonly used for geophysical analyses of volcanic plumes, suggesting that existing 1-D models are likely to understate the tendency for column collapse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730019636','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730019636"><span>A preliminary evaluation of ERTS-1 images on the volcanic areas of Southern Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cassinis, R.; Lechi, G. M.</p> <p>1973-01-01</p> <p>The test site selected for the investigation covers nearly all the regions of active and quiescent volcanism in southern Italy, i.e. the eastern part of the island of Sicily, the Aeolian Islands and the area of Naples. The three active European volcanoes (Etna, Stromboli and Vesuvius) are included. The investigation is in the frame of a program for the surveillance of active volcanoes by geophysical (including remote sensing thermal methods) and geochemical methods. By the multispectral analysis of ERTS-1 data it is intended to study the spectral behavior of the volcanic materials as well as the major geological lineaments with special reference to those associated with the volcanic region. Secondary objectives are also the determination of the hydrographic network seasonal behavior and the relationship between the vegetation cover and the different type of soils and rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......153B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......153B"><span>Use of laboratory geophysical and geotechnical investigation methods to characterize gypsum rich soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhamidipati, Raghava A.</p> <p></p> <p>Gypsum rich soils are found in many parts of the world, particularly in arid and semi-arid regions. Most gypsum occurs in the form of evaporites, which are minerals that precipitate out of water due to a high rate of evaporation and a high mineral concentration. Gypsum rich soils make good foundation material under dry conditions but pose major engineering hazards when exposed to water. Gypsum acts as a weak cementing material and has a moderate solubility of about 2.5 g/liter. The dissolution of gypsum causes the soils to undergo unpredictable collapse settlement leading to severe structural damages. The damages incur heavy financial losses every year. The objective of this research was to use geophysical methods such as free-free resonant column testing and electrical resistivity testing to characterize gypsum rich soils based on the shear wave velocity and electrical resistivity values. The geophysical testing methods could provide quick, non-intrusive and cost-effective methodologies to screen sites known to contain gypsum deposits. Reconstituted specimens of ground gypsum and quartz sand were prepared in the laboratory with varying amounts of gypsum and tested. Additionally geotechnical tests such as direct shear strength tests and consolidation tests were conducted to estimate the shear strength parameters (drained friction angle and cohesion) and the collapse potential of the soils. The effect of gypsum content on the geophysical and geotechnical parameters of soil was of particular interest. It was found that gypsum content had an influence on the shear wave velocity but had minimal effect on electrical resistivity. The collapsibility and friction angle of the soil increased with increase in gypsum. The information derived from the geophysical and geotechnical tests was used to develop statistical design equations and correlations to estimate gypsum content and soil collapse potential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H34E..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H34E..02B"><span>Emerging Methods in Sub Core-Scale Imaging and Characterization of the Influence of Heterogeneity on Flow in Rocks (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benson, S. M.; Hingerl, F.; Pini, R.</p> <p>2013-12-01</p> <p>New imaging techniques and approaches are providing unparalleled insight into the influence of sub-core scale heterogeneities on single and multiphase flows. Quantification of sub core-scale porosity, permeability, and even capillary pressure curves at a spatial scale of about 1-10 cubic millimeters is now possible. This scale provides a critical link in the continuum of spatial scales needed to link pore-scale processes to core-scale and field scale flow and transport. Data from such studies can be used to directly test the veracity of models for flow and transport in heterogeneous rocks, provide data for multi-stage upscaling, and reveal insights about physical/chemical processes heretofore neglected. Here we present data from three emerging techniques capable of imaging and quantifying transport properties and phenomena at the sub-core scale: magnetic resonance imaging (MRI); positron emission tomography (PET); and X-Ray CT scanning. Direct imaging of spatially resolved fluid velocities and porosity is possible with MRI (Romanenko et al., 2012). These data can be inverted to provide permeability and porosity maps at a spatial scale of ~10 cubic millimeter. PET imaging can be used to track movement of a radioactive tracer through a rock and simultaneously measure effluent tracer concentrations at a similar resolution (Boutchko et al., 2012). X-ray CT scanning of multiphase flow experiments can be used to measure capillary pressure curves and through scaling relationships, to calculate permeability at a scale of about 1 cubic millimeters(Krause et al., 2011; Pini et al., 2013). Strengths and shortcomings of these techniques are discussed--along with the benefits of combining them. Together these techniques provide a new platform from which to probe more deeply the ubiquitous influence of heterogeneity on subsurface flow and transport processes, and ultimately improve predictions of subsurface transport. Boutchk et al., 2012. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics. Journal of Applied geophysics, 76, 74-81. Krause, M.H., J.C. Perrin, and S.M. Benson, 2011. Modeling permeability distributions in a sandstone core for history matching core flood experiments, SPE Journal, 16, 768-777. Pini R. and Benson S., Characterization and scaling of meso-scale heterogeneities in sandstones. Geophysical Research Letters, 2013, 40. Romanenko, K., and Balscom, Permeability mapping in naturally heterogeneous sandstone cores with magnetization prepared SPRITE, 2012, 58, 3916-3926.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ExG....48..523L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ExG....48..523L"><span>The research on the buried public monumental complexes of Lupiae (Lecce) by geophysical prospecting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leucci, Giovanni; De Giorgi, Lara; Di Giacomo, Giacomo; Ditaranto, Imma; Miccoli, Ilaria; Scardozzi, Giuseppe</p> <p>2017-10-01</p> <p>Ongoing and extensive urbanisation may threaten important archaeological structures that are still buried in urban areas. The ground penetrating radar (GPR) method is the most promising alternative for resolving buried archaeological structures in urban territories. This paper presents a case study that involves a geophysical survey employing the surface three-dimensional (3D) GPR techniques, in order to archaeologically characterise the investigated areas. The site is located in the south-western sector of the historical centre of Lecce (Apulia, Italy), where the modern city overlaps the main public monuments of the Roman municipium of Lupiae, only partially preserved or excavated: the amphitheatre, the theatre, the baths and maybe also the Forum. GPR measurements, integrated with the results of archaeological excavations and the topographical surveys of the preserved remains, were carried out in several areas regarding sectors of the ancient roman city. The GPR data were collected along a dense network of parallel profiles. The GPR sections were processed applying specific filters to the data in order to enhance their information content. The GPR images significantly contributed in reconstructing the complex subsurface properties in these modern urban areas. Strong GPR reflections features were correlated with possible ancient structures and they were integrated in the digital archaeological map of the city.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1861c0053A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1861c0053A"><span>Waste disposal mapping with electrical resistivity tomography case: Leuwigajah landfill</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aryanti, Erisha; Ardi, Ahmad Puji; Almunziri, Muaz; Xanggam, Zael Yahd; Eleazar, Adino; Widodo</p> <p>2017-07-01</p> <p>Leuwigajah landfill as administrative is located between district of Bandung and Cimahi citythat has an environmental and social problem that caused aquifer contamination due to the big amount of waste from Bandung city, Cimahi and Bandung regency. It is occupied in abandoned andesite mine site with an area of about 25 hectare. The aim of this research is to map the geology structure and to study the leachate towards aquifer layer below Leuwigajah landfill. Here, we present the study of Leuwigajah landfill subsurface using Electrical Resistivity Tomography (ERT). ERT is one of the most promising prospecting techniques mainly concerning its effective contribution to resolve several environmental problems, was applied for the geophysical modeling. ERT is a robust imaging method the theory and implementation of which are well documented in geophysical research literature. The geological setting comprises clayed weathered layer, fractured andesitic dike. Due to the above-mentioned geological singularity and in the light of the requirement for an environmentally safe construction of the landfill, an ERT survey was carried out with dipole-dipole array, 78 m of acquisition line and 6 m of electrode spacing. The model consists of 4 layers below the Leuwigajah landfill and andesitic fracture until depth of 18.7 m below the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........88Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........88Z"><span>Optimization schemes for the inversion of Bouguer gravity anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zamora, Azucena</p> <p></p> <p>Data sets obtained from measurable physical properties of the Earth structure have helped advance the understanding of its tectonic and structural processes and constitute key elements for resource prospecting. 2-Dimensional (2-D) and 3-D models obtained from the inversion of geophysical data sets are widely used to represent the structural composition of the Earth based on physical properties such as density, seismic wave velocities, magnetic susceptibility, conductivity, and resistivity. The inversion of each one of these data sets provides structural models whose consistency depends on the data collection process, methodology, and overall assumptions made in their individual mathematical processes. Although sampling the same medium, seismic and non-seismic methods often provide inconsistent final structural models of the Earth with varying accuracy, sensitivity, and resolution. Taking two or more geophysical data sets with complementary characteristics (e.g. having higher resolution at different depths) and combining their individual strengths to create a new improved structural model can help achieve higher accuracy and resolution power with respect to its original components while reducing their ambiguity and uncertainty effects. Gravity surveying constitutes a cheap, non-invasive, and non-destructive passive remote sensing method that helps to delineate variations in the gravity field. These variations can originate from regional anomalies due to deep density variations or from residual anomalies related to shallow density variations [41]. Since gravity anomaly inversions suffer from significant non-uniqueness (allowing two or more distinct density structures to have the same gravity signature) and small changes in parameters can highly impact the resulting model, the inversion of gravity data represents an ill-posed mathematical problem. However, gravity studies have demonstrated the effectiveness of this method to trace shallow subsurface density variations associated with structural changes [16]; therefore, it complements those geophysical methods with the same depth resolution that sample a different physical property (e.g. electromagnetic surveys sampling electric conductivity) or even those with different depth resolution sampling an alternative physical property (e.g. large scale seismic reflection surveys imaging the crust and top upper mantle using seismic velocity fields). In order to improve the resolution of Bouguer gravity anomalies, and reduce their ambiguity and uncertainty for the modeling of the shallow crust, we propose the implementation of primal-dual interior point methods for the optimization of density structure models through the introduction of physical constraints for transitional areas obtained from previously acquired geophysical data sets. This dissertation presents in Chapter 2 an initial forward model implementation for the calculation of Bouguer gravity anomalies in the Porphyry Copper-Molybdenum (Cu-Mo) Copper Flat Mine region located in Sierra County, New Mexico. In Chapter 3, we present a constrained optimization framework (using interior-point methods) for the inversion of 2-D models of Earth structures delineating density contrasts of anomalous bodies in uniform regions and/or boundaries between layers in layered environments. We implement the proposed algorithm using three different synthetic gravitational data sets with varying complexity. Specifically, we improve the 2-dimensional density structure models by getting rid of unacceptable solutions (geologically unfeasible models or those not satisfying the required constraints) given the reduction of the solution space. Chapter 4 shows the results from the implementation of our algorithm for the inversion of gravitational data obtained from the area surrounding the Porphyry Cu-Mo Cooper Flat Mine in Sierra County, NM. Information obtained from previous induced polarization surveys and core samples served as physical constraints for the inversion parameters. Finally, in order to achieve higher resolution, Chapter 5 introduces a 3-D theoretical framework for the joint inversion of Bouguer gravity anomalies and surface wave dispersion using interior-point methods. Through this work, we expect to contribute to the creation of additional tools for the development of 2- and 3-D models depicting the Earth's geological processes and to the widespread use of constrained optimization techniques for the inversion of geophysical data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H51G0935K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H51G0935K"><span>Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, C.; Ko, K.; Son, J.; Kim, J.</p> <p>2008-12-01</p> <p>One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the aged LNAPL- impacted sites, and (3) high electrical resistivity anomalies at the fresh or aged sites contaminated with residual products of crude oils (lubricating oils). The study results also show that the geophysical methods, as a non-invasive sounding technique, can be effectively applied to mapping hydrocarbon-contaminated zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2004/1229/A/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2004/1229/A/"><span>Digital Aeromagnetic Data and Derivative Products from a Helicopter Survey over the Town of Taos and Surrounding Areas, Taos County, New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bankey, Viki; Grauch, V.J.S.; ,</p> <p>2004-01-01</p> <p>This report contains digital data, image files, and text files describing data formats and survey procedures for aeromagnetic data collected during a helicopter geophysical survey in northern New Mexico during October 2003. The survey covers the Town of Taos, Taos Pueblo, and surrounding communities in Taos County. Several derivative products from these data are also presented, including reduced-to-pole, horizontal gradient magnitude, and downward continued grids and images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2004/1229/B/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2004/1229/B/"><span>Digital aeromagnetic data and derivative products from a helicopter survey over the town of Blanca and surrounding areas, Alamosa and Costilla counties, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bankey, Viki; Grauch, V.J.S.; ,</p> <p>2004-01-01</p> <p>This CD-ROM contains digital data, image files, and text files describing data formats and survey procedures for aeromagnetic data collected during a helicopter geophysical survey in southern Colorado during October 2003. The survey covers the town of Blanca and surrounding communities in Alamosa and Costilla Counties. Several derivative products from these data are also presented, including reduced-to-pole, horizontal gradient magnitude, and downward continued grids and images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6391474-fundamentals-digital-filtering-applications-geophysical-prospecting-oil','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6391474-fundamentals-digital-filtering-applications-geophysical-prospecting-oil"><span>Fundamentals of digital filtering with applications in geophysical prospecting for oil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mesko, A.</p> <p></p> <p>This book is a comprehensive work bringing together the important mathematical foundations and computing techniques for numerical filtering methods. The first two parts of the book introduce the techniques, fundamental theory and applications, while the third part treats specific applications in geophysical prospecting. Discussion is limited to linear filters, but takes in related fields such as correlational and spectral analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1982/0597/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1982/0597/report.pdf"><span>Phase 3 geophysical studies in the Wadi Bidah District, Kingdom of Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Flanigan, V.J.; Sadek, Hamdy; Smith, C.W.</p> <p>1982-01-01</p> <p>Detailed geophysical measurements have been made in the Rabathan area, Wadi Bidah district, Kingdom of Saudi Arabia, at the site of diamond drill holes RAB-1, -2, and -3; these measurements suggest that the causative source for the anomalous EM (electromagnetic) and SP (self-potential) responses is probably highly conductive zones of Precambrian siliceous-carbonaceous rocks. Although many of the zones are no more than a few meters wide, they commonly contain 50 to 80 percent carbonaceous material and locally abundant pyrite. In places, several thin layers of highly concentrated carbonaceous material interlayered with chert form a multiple conductive zone that is seen in the geophysical data as complex anomaly patterns. In the geologic environment of Wadi Bidah, massive sulfide-bearing zones cannot be distinguished from siliceous-carbonaceous zones on the basis of the EM-SP responses. In North America in similar environments, complex resistivity methods used in experimental research have successfully discriminated between sulfide and carbonaceous conductors. Tests of such methods in the Wadi Bidah district are recommended. Geologic, geochemical, and geophysical data at the Jabal Mohr prospect suggest the possibility of mineralized rocks at depth over a possible strike length of 400 m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMED11B0112K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMED11B0112K"><span>Student Research Projects in Geophysics Through a Consortium of Undergraduate Geology Departments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kroeger, G. C.</p> <p>2003-12-01</p> <p>Beginning in 1987, and continuing to the present, the Keck Geology Consortium, a group of 12 undergraduate institutions, has sponsored a series of summer research projects. These projects typically involve from 9 to 12 students and 3 to 4 faculty members and consist of a 4 to 5 week summer research program followed by continuation of the research at the students' home institutions, often as a senior thesis. Many of these projects have included extensive field and laboratory geophysical components. In order for students to carry out successful research projects in geophysics, several hurdles have to be cleared. Frequently these students have not had a formal course in geophysics, so although they may have strong geologic and quantitative skills, there is usually the need for a concentrated classroom immersion in the geophysical theory and methods related to the project. Field geophysics projects are labor intensive, so it is common for a group of three or more students to produce only one or two complete data sets in the course of the summer program. Generating individualized projects so that students feel ownership of their thesis research can be challenging. Most of the departments do not have a geophysicist on the faculty, so follow-up support for the student research involves continued long-distance collaboration between project directors, students and sponsoring faculty. The impact of the internet on this collaboration cannot be overstated. Finally, diverse computing environments at the participating institutions were a significant problem in the early years. Migration of geophysical software to Windows from Unix, and the widespread availability of Linux has mitigated these problems in recent years. The geophysical components of these projects have been largely successful. A series of vignettes is presented showing the range and nature of geophysical projects that have been carried out. In addition to anecdotal evidence of student satisfaction, there is quantitative evidence of success. A substantial number of students have gone on to graduate work in geophysics. Of those students who did not pursue geophysics, a substantial fraction has pursued graduate work or careers in other areas of quantitative geosciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3752B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3752B"><span>An analysis of the lithology to resistivity relationships using airborne EM and boreholes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barfod, Adrian A. S.; Christiansen, Anders V.; Møller, Ingelise</p> <p>2014-05-01</p> <p>We present a study of the relationship between dense airborne SkyTEM resistivity data and sparse lithological borehole data. Understanding the geological structures of the subsurface is of great importance to hydrogeological surveys. Large scale geological information can be gathered directly from boreholes or indirectly from large geophysical surveys. Borehole data provides detailed lithological information only at the position of the borehole and, due to the sparse nature of boreholes, they rarely provide sufficient information needed for high-accuracy groundwater models. Airborne geophysical data, on the other hand, provide dense spatial coverage, but are only indirectly bearing information on lithology through the resistivity models. Hitherherto, the integration of the geophysical data into geological and hydrogeological models has been often subjective, largely un-documented and painstakingly manual. This project presents a detailed study of the relationships between resistivity data and lithological borehole data. The purpose is to objectively describe the relationships between lithology and geophysical parameters and to document these relationships. This project has focused on utilizing preexisting datasets from the Danish national borehole database (JUPITER) and national geophysical database (GERDA). The study presented here is from the Norsminde catchment area (208 sq. km), situated in the municipality of Odder, Denmark. The Norsminde area contains a total of 758 boreholes and 106,770 SkyTEM soundings. The large amounts of data make the Norsminde area ideal for studying the relationship between geophysical data and lithological data. The subsurface is discretized into 20 cm horizontal sampling intervals from the highest elevation point to the depth of the deepest borehole. For each of these intervals a resistivity value is calculated at the position of the boreholes using a kriging formulation. The lithology data from the boreholes are then used to categorize the interpolated resistivity values according to lithology. The end result of this comparison is resistivity distributions for different lithology categories. The distributions provide detailed objective information of the resistivity properties of the subsurface and are a documentation of the resistivity imaging of the geological lithologies. We show that different lithologies are mapped at distinctively different resistivities but also that the geophysical inversion strategies influences the resulting distributions significantly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.2589W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.2589W"><span>Towards Crustal Structure of Java Island (Sunda Arc) from Ambient Seismic Noise Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Widiyantoro, Sri; Zulhan, Zulfakriza; Martha, Agustya; Saygin, Erdinc; Cummins, Phil</p> <p>2015-04-01</p> <p>In our previous studies, P- and S-wave velocity structures beneath the Sunda Arc were successfully imaged using a global data set and a nested regional-global tomographic method was employed. To obtain more detailed P- and S-wave velocity structures beneath Java, in the central part of the Sunda Arc, we then used local data sets, i.e. newline from the MErapi AMphibious EXperiment (MERAMEX) and the Meteorological, Climatological and Geophysical Agency (MCGA), as well as employed a double-difference technique for tomographic imaging. The results of the imaging show e.g. that P- and S-wave velocities are significantly reduced in the uppermost mantle beneath central Java. In order to obtain detailed crustal structure information beneath Java, the Ambient Noise Tomography (ANT) method was used. The application of this method to the MERAMEX data has produced a good crustal model beneath central Java. We continue our experiment to image crustal structure of eastern Java. We have used seismic waveform data recorded by 22 MCGA stationary seismographic stations and 25 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms of cross-correlated noise between pairs of seismographic stations. Our preliminary results presented here indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly (as shown by our tomographic images). In future work we will install more seismographic stations in eastern Java as well as in western Java to conduct ANT imaging for the whole of Java Island. The expected result combined with the mantle velocity models resulting from our body wave tomography will allow for accurate location of earthquake hypocenters and determination of regional tectonic structures. Both of these are valuable for understanding seismic hazard in Java, the most densely populated island in the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1113/of2013-1113.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1113/of2013-1113.pdf"><span>Methods and spatial extent of geophysical Investigations, Mono Lake, California, 2009 to 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jayko, A.S.; Hart, P.E.; Childs, J. R.; Cormier, M.-H.; Ponce, D.A.; Athens, N.D.; McClain, J.S.</p> <p>2013-01-01</p> <p>This report summarizes the methods and spatial extent of geophysical surveys conducted on Mono Lake and Paoha Island by U.S. Geological Survey during 2009 and 2011. The surveys include acquisition of new high resolution seismic reflection data, shipborne high resolution magnetic data, and ground magnetic and gravity data on Paoha Island. Several trials to acquire swath bathymetry and side scan sonar were conducted, but were largely unsuccessful likely due to physical properties of the water column and (or) physical properites of the highly organic bottom sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014834','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014834"><span>Role of geophysics in identifying and characterizing sites for high-level nuclear waste repositories.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wynn, J.C.; Roseboom, E.H.</p> <p>1987-01-01</p> <p>Evaluation of potential high-level nuclear waste repository sites is an area where geophysical capabilities and limitations may significantly impact a major governmental program. Since there is concern that extensive exploratory drilling might degrade most potential disposal sites, geophysical methods become crucial as the only nondestructive means to examine large volumes of rock in three dimensions. Characterization of potential sites requires geophysicists to alter their usual mode of thinking: no longer are anomalies being sought, as in mineral exploration, but rather their absence. Thus the size of features that might go undetected by a particular method take on new significance. Legal and regulatory considerations that stem from this different outlook, most notably the requirements of quality assurance (necessary for any data used in support of a repository license application), are forcing changes in the manner in which geophysicists collect and document their data. -Authors</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/381521-demonstration-geophysical-methods-burial-ground-geophysical-characterization-study-doe-savannah-river-site','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/381521-demonstration-geophysical-methods-burial-ground-geophysical-characterization-study-doe-savannah-river-site"><span>Demonstration of geophysical methods for burial ground geophysical characterization study at the DOE Savannah River site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hasbrouck, J.C.; MacLean, H.D.; Geotech, R.</p> <p>1996-11-01</p> <p>Rust Geotech, operating contractor at the U.S. Department of Energy Grand Junction Projects Office (DOE-GJPO), conducted a demonstration of the trench boundary and large-object location capabilities of five nonintrusive geophysical methods in the Low-Level Radioactive Waste Disposal Facility (LLRWDF) at the DOE Savannah River Site (SRS). The plan for Resource Conservation and Recovery Act (RCRA) closure of the SRS LLRWDF specifies inplace compaction of {open_quotes}B-25{close_quotes} metal boxes containing low-level radioactive wastes. The boxes are buried in Engineered Low-Level Trenches (ELLTs) at the facility. To properly guide and control the compaction operation, the coordinates of the trench boundaries must be determinedmore » to an accuracy within 5 feet and the outer edges of the metal boxes in the trenches must be determined to within 2 feet.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5127497-correlation-optique-en-lumiere-coherente','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5127497-correlation-optique-en-lumiere-coherente"><span>Correlation optique en lumiere coherente (in French)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fontanel, A.; Grau, G.</p> <p>1971-03-01</p> <p>This paper describes a general bidimensional two-step method of correlation (or convolution) making use of the theory of holography. In the first step the light diffracted by one of the two plane transparent objects to be correlated interferes with the light diffracted by the other one. The hologram thus generated is photographed in the focal image plane of a convergent lens. Owing to the quadratic detection property of the photographic emulsion, the square of the modulus of the product of the spectra of the two objects considered is recorded on the photographic plate. In the second step the convolution productmore » of the two objects appears when the hologram is illuminated with a beam of coherent light. In its geophysical application this optical method of convolution makes it easy for us to obtain the autocorrelogram of a seismic cross-section. This method also makes it possible to correlate each of the seismic traces by special precalculated optically-recorded filters.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H51F1253K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H51F1253K"><span>A coupled hydrogeophysical modeling approach to estimate soil moisture redistribution in the face of land use changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuhl, A.; Hyndman, D. W.; Van Dam, R. L.</p> <p>2013-12-01</p> <p>Predicting the impacts of land use changes on local water balances requires knowledge of the detailed water uptake dynamics associated with different plants. Mapping the extent of roots and quantifying their relationships to the movement of water through the vadose zone is critical to better understand this aspect of plant physiology. Electrical resistivity (ER) methods offer the ability to non-invasively capture this crucial hydrologic information at relevant scales, bridging the spatial gap between remote sensing and in-situ point measurements. Our research uses a coupled hydrogeophysical model to image the boundary of root zones and the control roots have on hydrologic fluxes. Advantages of this approach include: incorporating basic hydrologic parameters to constrain the model physics and using a forward geophysical model to avoid errors related to non-unique solutions and imaging. The model optimizes root distributions to correlate with soil moisture variability characterized by ER surveys, maximizing the value of the geophysics and yielding information that can answer questions related to water budgets in the face of land use and climate changes. To validate this approach, preliminary ER data was collected from two sites in south-east Michigan instrumented with permanent lines of electrodes, enabling consistent surveys through time. One site traverses a progression of vegetation types over a relatively short distance, reflecting the type of natural plant succession associated with passive land use changes in the area. Early interpretations of the ER results indicate that apparent resistivity is controlled by the varying plant regimes. The other is part of the Great Lakes Bioenergy Research Center, spanning a stand of maize, which is ideal for initial models because root zone development has been extensively researched for this crop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/bul/1048d/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/bul/1048d/report.pdf"><span>Geophysical abstracts 167, October-December 1956</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,</p> <p>1956-01-01</p> <p>Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/bul/1048a/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/bul/1048a/report.pdf"><span>Geophysical abstracts 164, January-March 1956</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,</p> <p>1956-01-01</p> <p>Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. A new table of contents, alphabetically arranged, has been adapted to show more clearly the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/bul/1048c/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/bul/1048c/report.pdf"><span>Geophysical abstracts 166, July-September 1956</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,</p> <p>1956-01-01</p> <p>Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/bul/1048b/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/bul/1048b/report.pdf"><span>Geophysical abstracts 165, April-June 1956</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,</p> <p>1956-01-01</p> <p>Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013238','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013238"><span>AIRS Maps from Space Processing Software</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, Charles K.; Licata, Stephen J.</p> <p>2012-01-01</p> <p>This software package processes Atmospheric Infrared Sounder (AIRS) Level 2 swath standard product geophysical parameters, and generates global, colorized, annotated maps. It automatically generates daily and multi-day averaged colorized and annotated maps of various AIRS Level 2 swath geophysical parameters. It also generates AIRS input data sets for Eyes on Earth, Puffer-sphere, and Magic Planet. This program is tailored to AIRS Level 2 data products. It re-projects data into 1/4-degree grids that can be combined and averaged for any number of days. The software scales and colorizes global grids utilizing AIRS-specific color tables, and annotates images with title and color bar. This software can be tailored for use with other swath data products for the purposes of visualization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..540..240T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..540..240T"><span>Surface flow measurements from drones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore</p> <p>2016-09-01</p> <p>Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.H23G..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.H23G..03C"><span>The Contribution of Hydrogeophysics to Hydrogeological Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christensen, N. B.; Auken, E.; Sorensen, K.</p> <p>2005-12-01</p> <p>Electrical and electromagnetic (E&EM) methods are some of the most commonly used geophysical techniques for hydrogeophysical investigations. In this presentation, the use of E&EM methods for watershed-scale hydrogeological investigations are reviewed. Over the past two decades a tremendous development has taken place with regard to E&EM instrumentation, field procedures and interpretation algorithms; a process that to a large extent has been focussed on hydrogeological investigations. The primary parameter mapped by E&EM methods is the electrical resistivity (or the inverse: conductivity). High and low values of the resistivity of geological materials enable the discernment between sand and clay, unsaturated and saturated, fresh and salt water, unaffected and polluted, bedrock and sediment, respectively - all fundamental to hydrogeological modeling. Time-consuming, single-site, individual electrical sounding acquisition geometries have now been replaced by multi-electrode, profile oriented measurements that have the capability to image the variation in resistivity with both depth and along profiles to a depth of 70-100m and a productivity of 1-1.5 km/day/field person. Pulled-array methods, which acquire measurements using multiple electrode configurations while moving, can traverse 10-15 km per day with a depth penetration of approximately 20 m. Transient electromagnetic soundings are carried out as both single-site and pulled-array methods, and recently by helicopter. Very cost-efficient transient methods are now commercially available. E&EM data are complicated, nonlinear functions of the resistivity distribution and the full potential of the data can only be realized by inverting the data to obtain a physical model describing the subsurface resistivity distribution. Model calibration and inverse hydraulic modeling is most often carried out based on very sparse data sets and geological information from a few boreholes. Geophysical models covering an extended area support interpolation between the sparse data and can often be decisive in building a hydrogeological model. E&EM models contribute mainly within three areas: defining the geometrical extent of aquifers by locating impermeable boundaries (clay and bedrock), estimating the vulnerability of aquifers to infiltration of unwanted substances from the surface, and in defining the internal structure (permeability and saturation) of an aquifer. We present several different examples of the use of E&EM methods for assisting in hydrogeological investigations at the regional scale in Denmark. These investigations have primarily been used to define the boundaries between permeable (sand) and impermeable (clay), thus pointing to the presence of possible aquifers and reducing the volume of flow modeling. Important aquifers must be protected by public authorities and geophysical models with good surface resolution can be used to support the necessary physical planning by pointing to areas where aquifers are vulnerable, i.e. areas with little or no capping clay. The use of geophysical models to constrain the internal structure of aquifers is the most complicated of the three and is the subject of recent efforts. Even though there is no general functional relationship between hydraulic conductivity and electrical resistivity, there is sometimes a locally valid correlation that can be utilized in a variety of statistical techniques that will correlate higher resistivities with higher hydraulic conductivities, often in the formulation of an inverse hydraulic modeling. Our efforts suggest that E&EM methods have great potential to assist in watershed characterization studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/270771','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/270771"><span>Geophysical background and as-built target characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Allen, J.W.</p> <p>1994-09-01</p> <p>The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas inmore » Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ``very easy to detect`` to ``challenging to the most advanced systems.`` Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C22B..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C22B..08M"><span>A multi-scale permafrost investigation along the Alaska Highway Corridor based on airborne electromagnetic and auxiliary geophysical data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minsley, B. J.; Kass, M. A.; Bloss, B.; Pastick, N.; Panda, S. K.; Smith, B. D.; Abraham, J. D.; Burns, L. E.</p> <p>2012-12-01</p> <p>More than 8000 square kilometers of airborne electromagnetic (AEM) data were acquired along the Alaska Highway Corridor in 2005-2006 by the Alaska Department of Natural Resources Division of Geological and Geophysical Surveys. Because this large AEM dataset covers diverse geologic and permafrost settings, it is an excellent testbed for studying the electrical geophysical response from a wide range of subsurface conditions. These data have been used in several recent investigations of geology, permafrost, and infrastructure along the highway corridor. In this study, we build on existing interpretations of permafrost features by re-inverting the AEM data using traditional least squares inversion techniques as well as recently developed stochastic methods aimed at quantifying uncertainty in geophysical data. Ground-based geophysical measurements, including time-domain electromagnetic soundings, surface nuclear magnetic resonance soundings, and shallow frequency-domain electromagnetic profiles, have also been acquired to help validate and extend the AEM interpretations. Here, we focus on the integration of different types of data to yield an improved characterization of permafrost, including: methods to discriminate between geologic and thermal controls on resistivity; identifying relationships between shallow resistivity and active layer thickness by incorporating auxiliary remote sensing data and ground-based measurements; quantifying apparent slope-aspect-resistivity relationships, where south-facing slopes appear less resistive than north-facing slopes within similar geologic settings; and investigating an observed decrease in resistivity beneath several areas associated with recent fires.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985EOSTr..66..467M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985EOSTr..66..467M"><span>Geophysics of Geothermal Areas: State of the Art and Future Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mabey, Don R.</p> <p></p> <p>In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/444039','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/444039"><span>An electromagnetic induction method for underground target detection and characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bartel, L.C.; Cress, D.H.</p> <p>1997-01-01</p> <p>An improved capability for subsurface structure detection is needed to support military and nonproliferation requirements for inspection and for surveillance of activities of threatening nations. As part of the DOE/NN-20 program to apply geophysical methods to detect and characterize underground facilities, Sandia National Laboratories (SNL) initiated an electromagnetic induction (EMI) project to evaluate low frequency electromagnetic (EM) techniques for subsurface structure detection. Low frequency, in this case, extended from kilohertz to hundreds of kilohertz. An EMI survey procedure had already been developed for borehole imaging of coal seams and had successfully been applied in a surface mode to detect amore » drug smuggling tunnel. The SNL project has focused on building upon the success of that procedure and applying it to surface and low altitude airborne platforms. Part of SNL`s work has focused on improving that technology through improved hardware and data processing. The improved hardware development has been performed utilizing Laboratory Directed Research and Development (LDRD) funding. In addition, SNL`s effort focused on: (1) improvements in modeling of the basic geophysics of the illuminating electromagnetic field and its coupling to the underground target (partially funded using LDRD funds) and (2) development of techniques for phase-based and multi-frequency processing and spatial processing to support subsurface target detection and characterization. The products of this project are: (1) an evaluation of an improved EM gradiometer, (2) an improved gradiometer concept for possible future development, (3) an improved modeling capability, (4) demonstration of an EM wave migration method for target recognition, and a demonstration that the technology is capable of detecting targets to depths exceeding 25 meters.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U13B..10B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U13B..10B"><span>Quantifying Uncertainty in Near Surface Electromagnetic Imaging Using Bayesian Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blatter, D. B.; Ray, A.; Key, K.</p> <p>2017-12-01</p> <p>Geoscientists commonly use electromagnetic methods to image the Earth's near surface. Field measurements of EM fields are made (often with the aid an artificial EM source) and then used to infer near surface electrical conductivity via a process known as inversion. In geophysics, the standard inversion tool kit is robust and can provide an estimate of the Earth's near surface conductivity that is both geologically reasonable and compatible with the measured field data. However, standard inverse methods struggle to provide a sense of the uncertainty in the estimate they provide. This is because the task of finding an Earth model that explains the data to within measurement error is non-unique - that is, there are many, many such models; but the standard methods provide only one "answer." An alternative method, known as Bayesian inversion, seeks to explore the full range of Earth model parameters that can adequately explain the measured data, rather than attempting to find a single, "ideal" model. Bayesian inverse methods can therefore provide a quantitative assessment of the uncertainty inherent in trying to infer near surface conductivity from noisy, measured field data. This study applies a Bayesian inverse method (called trans-dimensional Markov chain Monte Carlo) to transient airborne EM data previously collected over Taylor Valley - one of the McMurdo Dry Valleys in Antarctica. Our results confirm the reasonableness of previous estimates (made using standard methods) of near surface conductivity beneath Taylor Valley. In addition, we demonstrate quantitatively the uncertainty associated with those estimates. We demonstrate that Bayesian inverse methods can provide quantitative uncertainty to estimates of near surface conductivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T43F2459C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T43F2459C"><span>A Moho ramp imaged beneath the High Himalaya in Garhwal, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caldwell, W. B.; Klemperer, S. L.; Lawrence, J.; Rai, S. S.; Ashish, A.</p> <p>2011-12-01</p> <p>In this study we image the Moho beneath the Himalaya of Garhwal, India (at approximately 79°E) using common conversion point (CCP) stacking of receiver functions (RFs). We calculate RFs using iterative time-domain deconvolution on a catalog of 450 events recorded on a linear array of 21 broadband seismometers operated for 21 months in 2005-2006 by India's National Geophysical Research Institute (NGRI). Our images show a horizontal Moho beneath the Lesser Himalaya and an abrupt increase of ≥ 5 km in Moho depth beneath the High Himalaya, implying a local dip of 20±5°. A steeply-dipping Moho beneath the High Himalaya has been proposed by some workers on the basis of gravity modeling, and is observed in some seismic images elsewhere in the range, but is not a widely-recognized feature of the Himalaya. Geophysical profiles across the Himalaya are not numerous enough to say whether the steep Moho is a local feature only, or is widespread but has not yet been consistently observed. A steeply-dipping Moho implies a flexure in the downgoing India plate, which we propose may play a role in the formation of the topographic front of the Himalaya. Recent studies have proposed that a ramp in the Main Himalayan Thrust-the basal décollement into which the Himalayan thrust faults root-may focus rock uplift, leading to an abrupt steepening of topography and the observed physiographic transition between the Lesser and Higher Himalaya. The mechanism of rock uplift may be out-of-sequence thrusting on the MCT-I, or stacking of imbricate thrust sheets which form as a result of underplating at the ramp. A flexure of the India plate, implied by the steep Moho dip that we observe, is a likely mechanism for controlling the formation and location of this décollement ramp, and thereby the initiation of high topography. Geophysical profiles across the Himalaya are not yet numerous enough to constrain along-strike variations in this steeply-dipping Moho, so its relationship to the formation of the topographic front of the Himalaya throughout the rest of the range remains a topic for further study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1170616','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1170616"><span>Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris</p> <p>2015-02-24</p> <p>This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR)more » and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements were collected on columns of Rifle sediments during acetate amendment. The laboratory experiments were designed to simulate the field experiments; changes in geophysical signals were expected to correlate with changes in redox conditions and iron speciation. Field MS logging measurements revealed vertically stratified magnetic mineralization, likely the result of detrital magnetic fraction within the bulk alluvium. Little to no change was observed in the MS data suggesting negligible production of magnetic phases (e.g. magnetite, pyrrhotite) as a result of sulfidogenesis. Borehole NMR measurements contained high levels of noise contamination requiring significant signal processing, and analysis suggests that any changes may be difficult to differentiate from simultaneous changes in water content. Laboratory MS and NMR measurements remained relatively stable throughout the course of the acetate amendment experiment, consistent with field measurements. However, SIP measurements changed during the acetate amendment associated with the formation of iron-sulfide mineral phases; a finding that is consistent with chemical analysis of the solid phase materials in the columns.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAG...148..234S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAG...148..234S"><span>Geophysical methods for monitoring soil stabilization processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa</p> <p>2018-01-01</p> <p>Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27354534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27354534"><span>Large-scale climatic and geophysical controls on the leaf economics spectrum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Asner, Gregory P; Knapp, David E; Anderson, Christopher B; Martin, Roberta E; Vaughn, Nicholas</p> <p>2016-07-12</p> <p>Leaf economics spectrum (LES) theory suggests a universal trade-off between resource acquisition and storage strategies in plants, expressed in relationships between foliar nitrogen (N) and phosphorus (P), leaf mass per area (LMA), and photosynthesis. However, how environmental conditions mediate LES trait interrelationships, particularly at large biospheric scales, remains unknown because of a lack of spatially explicit data, which ultimately limits our understanding of ecosystem processes, such as primary productivity and biogeochemical cycles. We used airborne imaging spectroscopy and geospatial modeling to generate, to our knowledge, the first biospheric maps of LES traits, here centered on 76 million ha of Andean and Amazonian forest, to assess climatic and geophysical determinants of LES traits and their interrelationships. Elevation and substrate were codominant drivers of leaf trait distributions. Multiple additional climatic and geophysical factors were secondary determinants of plant traits. Anticorrelations between N and LMA followed general LES theory, but topo-edaphic conditions strongly mediated and, at times, eliminated this classic relationship. We found no evidence for simple P-LMA or N-P trade-offs in forest canopies; rather, we mapped a continuum of N-P-LMA interactions that are sensitive to elevation and temperature. Our results reveal nested climatic and geophysical filtering of LES traits and their interrelationships, with important implications for predictions of forest productivity and acclimation to rapid climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=244194','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=244194"><span>Geophysical imaging of watershed subsurface patterns and prediction of soil texture and water holding capacity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The extent to which soil resource availability, nutrients or moisture, contro1 the structure, function and diversity of plant communities has aroused considerableinterest in the past decade, and remains topical in light of global change. Numerous plant communities are controlled either by water or s...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1124/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1124/"><span>Spatial Databases of Geological, Geophysical, and Mineral Resource Data Relevant to Sandstone-Hosted Copper Deposits in Central Kazakhstan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Syusyura, Boris; Box, Stephen E.; Wallis, John C.</p> <p>2010-01-01</p> <p>Central Kazakhstan is host to one of the world's giant sandstone-hosted copper deposits, the Dzhezkazgan deposit, and several similar, smaller deposits. The United Stated Geological Survey (USGS) is assessing the potential for other, undiscovered deposits of this type in the surrounding region of central Kazakhstan. As part of this effort, Syusyura compiled and partially translated an array of mostly unpublished geologic, geophysical, and mineral resource data for this region in digital format from the archives of the former Union of Soviet Socialists Republics (of which Kazakhstan was one of the member republics until its dissolution in 1991), as well as from later archives of the Republic of Kazakhstan or of the Kazakhstan consulting firm Mining Economic Consulting (MEC). These digital data are primarily map-based displays of information that were transmitted either in ESRI ArcGIS, georeferenced format, or non-georeferenced map image files. Box and Wallis reviewed all the data, translated Cyrillic text where necessary, inspected the maps for consistency, georeferenced the unprojected map images, and reorganized the data into the filename and folder structure of this publication.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900006996','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900006996"><span>Science plan for the Alaska SAR facility program. Phase 1: Data from the first European sensing satellite, ERS-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carsey, Frank D.</p> <p>1989-01-01</p> <p>Science objectives, opportunities and requirements are discussed for the utilization of data from the Synthetic Aperture Radar (SAR) on the European First Remote Sensing Satellite, to be flown by the European Space Agency in the early 1990s. The principal applications of the imaging data are in studies of geophysical processes taking place within the direct-reception area of the Alaska SAR Facility in Fairbanks, Alaska, essentially the area within 2000 km of the receiver. The primary research that will be supported by these data include studies of the oceanography and sea ice phenomena of Alaskan and adjacent polar waters and the geology, glaciology, hydrology, and ecology of the region. These studies focus on the area within the reception mask of ASF, and numerous connections are made to global processes and thus to the observation and understanding of global change. Processes within the station reception area both affect and are affected by global phenomena, in some cases quite critically. Requirements for data processing and archiving systems, prelaunch research, and image processing for geophysical product generation are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T53C..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T53C..01H"><span>Probing dynamic hydrologic system of slowly-creeping landslides with passive seismic imaging: A comprehensive landslide monitoring site at Lantai, Ilan area in Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, H. H.; Hsu, Y. J.; Kuo, C. Y.; Chen, C. C.; Kuo, L. W.; Chen, R. F.; Lin, C. R.; Lin, P. P.; Lin, C. W.; Lin, M. L.; Wang, K. L.</p> <p>2017-12-01</p> <p>A unique landslide monitoring project integrating multidisciplinary geophysics experiments such as GPS, inclinometer, piezometer, and spontaneous potential log has been established at Lantai, Ilan area to investigating the possible detachment depth range and the physical mechanism of a slowly creeping landslide. In parallel with this, a lately deployed local seismic network also lends an opportunity to employ the passive seismic imaging technique to detect the time-lapse changes of seismic velocity in and around the landslide area. Such technique that retrieves Green's functions by cross-correlation of continuous ambient noise has opened new opportunities to seismologically monitoring the environmental and tectonic events such as ground water variation, magma intrusion under volcanos, and co-seismic medium damage in recent years. Integrating these geophysical observations, we explore the primary controls of derived seismic velocity changes and especially the hydrological response of the landslide to the passage of Megi typhoon in the last September 2016, which could potentially further our understanding of the dynamic system of landslides and in turn help the hazard mitigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR33D0499Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR33D0499Z"><span>The Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin, NE China: Organic-rich source rock evaluation with geophysical logs from Borehole SK-2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, X.; Zou, C.</p> <p>2017-12-01</p> <p>The Cretaceous strata have been recognized as an important target of oil or gas exploration in the Songliao Basin, northeast China. The second borehole (SK-2) of the Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin (CCSD-SK) is the first one to drill through the Cretaceous continental strata in the frame of ICDP. It was designed not only to solve multiple scientific problems (including the Cretaceous paleoenvironment and paleoclimate, as well as deep resources exploration of the Songliao Basin), but also to expect to achieve new breakthroughs in oil and gas exploration. Based on the project, various geophysical log data (including gamma, sonic, resistivity, density etc.) and core samples have been collected from Borehole SK-2. We do research on organic-rich source rocks estimation using various geophysical log data. Firstly, we comprehensively analyzed organic-rich source rocks' geophysical log response characteristics. Then, source rock's identification methods were constructed to identify organic-rich source rocks with geophysical logs. The main identification methods include cross-plot, multiple overlap and Decision Tree method. Finally, the technique and the CARBOLOG method were applied to evaluate total organic carbon (TOC) content from geophysical logs which provide continuous vertical profile estimations (Passey, 1990; Carpentier et al., 1991). The results show that source rocks are widely distributed in Borehole SK-2, over a large depth strata (985 5700m), including Nenjiang, Qingshankou, Denglouku, Yingcheng, Shahezi Formations. The organic-rich source rocks with higher TOC content occur in the Qingshankou (1647 1650m), Denglouku (2534 2887m) and Shahezi (3367 5697m) Formations. The highest TOC content in these formations can reach 10.31%, 6.58%, 12.79% respectively. The bed thickness of organic-rich source rocks in the these formations are totally up to 7.88m, 74.34m, 276.60m respectively. These organic-rich rocks in the Qingshankou, Denglouku and Shahezi Formations can be considered as excellent source rocks in the Songliao Basin, which are beneficial for oil or gas accumulation. This work was supported by the CCSD-SK of China Geological Survey (No. 12120113017600) and the National Natural Science Foundation Project (grant No.41274185).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6815L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6815L"><span>Localized Smart-Interpretation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lundh Gulbrandsen, Mats; Mejer Hansen, Thomas; Bach, Torben; Pallesen, Tom</p> <p>2014-05-01</p> <p>The complex task of setting up a geological model consists not only of combining available geological information into a conceptual plausible model, but also requires consistency with availably data, e.g. geophysical data. However, in many cases the direct geological information, e.g borehole samples, are very sparse, so in order to create a geological model, the geologist needs to rely on the geophysical data. The problem is however, that the amount of geophysical data in many cases are so vast that it is practically impossible to integrate all of them in the manual interpretation process. This means that a lot of the information available from the geophysical surveys are unexploited, which is a problem, due to the fact that the resulting geological model does not fulfill its full potential and hence are less trustworthy. We suggest an approach to geological modeling that 1. allow all geophysical data to be considered when building the geological model 2. is fast 3. allow quantification of geological modeling. The method is constructed to build a statistical model, f(d,m), describing the relation between what the geologists interpret, d, and what the geologist knows, m. The para- meter m reflects any available information that can be quantified, such as geophysical data, the result of a geophysical inversion, elevation maps, etc... The parameter d reflects an actual interpretation, such as for example the depth to the base of a ground water reservoir. First we infer a statistical model f(d,m), by examining sets of actual interpretations made by a geological expert, [d1, d2, ...], and the information used to perform the interpretation; [m1, m2, ...]. This makes it possible to quantify how the geological expert performs interpolation through f(d,m). As the geological expert proceeds interpreting, the number of interpreted datapoints from which the statistical model is inferred increases, and therefore the accuracy of the statistical model increases. When a model f(d,m) successfully has been inferred, we are able to simulate how the geological expert would perform an interpretation given some external information m, through f(d|m). We will demonstrate this method applied on geological interpretation and densely sampled airborne electromagnetic data. In short, our goal is to build a statistical model describing how a geological expert performs geological interpretation given some geophysical data. We then wish to use this statistical model to perform semi automatic interpretation, everywhere where such geophysical data exist, in a manner consistent with the choices made by a geological expert. Benefits of such a statistical model are that 1. it provides a quantification of how a geological expert performs interpretation based on available diverse data 2. all available geophysical information can be used 3. it allows much faster interpretation of large data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...29a1001R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...29a1001R"><span>PREFACE: Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosandi, Y.; Urbassek, H. M.; Yamanaka, H.</p> <p>2016-01-01</p> <p>This issue of IOP Conference Series: Earth and Environmental Science contains selected papers presented at the Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI. The meeting was held from June 8 to 10, 2015, at the Bale-Sawala of Universitas Padjadjaran in Jatinangor, Indonesia. The PEDISGI is a symposium to accommodate communication between researchers, in particular geophysicists and related scientists, and to enable sharing of knowledge and research findings concerning local and global geophysical issues. The symposium was attended by 126 participants and 64 contributors from Indonesian universities and the neighbouring countries in four categories, viz. Theoretical and Computational Geophysics, Environmental Geophysics, Geophysical Explorations, and Geophysical Instrumentations and Methods. The symposium was accompanied by a dialog, discussing a chosen topic regarding environmental and geological problems of relevance for the Indonesian archipelago and the surrounding regions. For this first event the topic was ''The formation of Bandung-Basin between myths and facts: Exemplary cultural, geological and geophysical study on the evolution of the earth surface'', presented by invited speakers and local experts. This activity was aimed at extending our knowledge on this particular subject, which may have global impact. This topic was augmented by theoretical background lectures on the earth's surface formation, presented by the invited speakers of the symposium. The meeting would not have been successful without the assistance of the local organizing committee. We want to specially thank Irwan A. Dharmawan for managing the programme, Anggie Susilawati and Mia U. Hasanah for the conference administration, and Dini Fitriani for financial management. We also thank the National Geographic Indonesia for its support via the Business to Business Collaboration Program. The conference photograph can be viewed in the PDF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA204875','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA204875"><span>Multidisciplinary Geophysical Study of the Earth’s Upper Structure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-12-27</p> <p>structures normally detected by geophysical methods. This study was unique in several respects and it offers some original approaches to...that the Avalonian Superterrane within the region of the present study, at least, originally consisted, in part, of carbonate and quartzite...time. Thus large parts of the Avalonian composite tcrranc, especially the Esmond -Dedham Tcrrane that contains Pennsylvanian coal basins, may be</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6271234-facts-file-dictionary-geology-geophysics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6271234-facts-file-dictionary-geology-geophysics"><span>The facts on file. Dictionary of geology and geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lapidus, D.F.; Coates, D.R.</p> <p>1987-01-01</p> <p>This reference to the basic vocabulary of geology and geophysics has more than 3,000 clear and concise entries defining the entire range of geological phenomena. This book covers such areas as types of rocks and rock formations, deformation processes such as erosion and plate tectonics, volcanoes, glaciers and their effects on topography, geodesy and survey methods, earthquakes and seismology, fuels and mineral deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA525558','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA525558"><span>Construction of 3-D Earth Models for Station Specific Path Corrections by Dynamic Ray Tracing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2001-10-01</p> <p>the numerical eikonal solution method of Vidale (1988) being used by the MIT led consortium. The model construction described in this report relies...assembled. REFERENCES Barazangi, M., Fielding, E., Isacks, B. & Seber, D., (1996), Geophysical And Geological Databases And Ctbt...preprint download6). Fielding, E., Isacks, B.L., and Baragangi. M. (1992), A Network Accessible Geological and Geophysical Database for</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED51A0785Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED51A0785Z"><span>SIGKit: a New Data-based Software for Learning Introductory Geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Y.; Kruse, S.; George, O.; Esmaeili, S.; Papadimitrios, K. S.; Bank, C. G.; Cadmus, A.; Kenneally, N.; Patton, K.; Brusher, J.</p> <p>2016-12-01</p> <p>Students of diverse academic backgrounds take introductory geophysics courses to learn the theory of a variety of measurement and analysis methods with the expectation to be able to apply their basic knowledge to real data. Ideally, such data is collected in field courses and also used in lecture-based courses because they provide a critical context for better learning and understanding of geophysical methods. Each method requires a separate software package for the data processing steps, and the complexity and variety of professional software makes the path through data processing to data interpretation a strenuous learning process for students and a challenging teaching task for instructors. SIGKit (Student Investigation of Geophysics Toolkit) being developed as a collaboration between the University of South Florida, the University of Toronto, and MathWorks intends to address these shortcomings by showing the most essential processing steps and allowing students to visualize the underlying physics of the various methods. It is based on MATLAB software and offered as an easy-to-use graphical user interface and packaged so it can run as an executable in the classroom and the field even on computers without MATLAB licenses. An evaluation of the software based on student feedback from focus-group interviews and think-aloud observations helps drive its development and refinement. The toolkit provides a logical gateway into the more sophisticated and costly software students will encounter later in their training and careers by combining essential visualization, modeling, processing, and analysis steps for seismic, GPR, magnetics, gravity, resistivity, and electromagnetic data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10000E..0SP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10000E..0SP"><span>Overview of calibration and validation activities for the EUMETSAT polar system: second generation (EPS-SG) visible/infrared imager (METimage)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, P.; Bonsignori, R.; Schlüssel, P.; Schmülling, F.; Spezzi, L.; Watts, P.; Zerfowski, I.</p> <p>2016-10-01</p> <p>The EPS-SG Visible/Infrared Imaging (VII) mission is dedicated to supporting the optical imagery user needs for Numerical Weather Prediction (NWP), Nowcasting (NWC) and climate in the timeframe beyond 2020. The VII mission is fulfilled by the METimage instrument, developed by the German Space Agency (DLR) and funded by the German government and EUMETSAT. Following on from an important list of predecessors such as the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate resolution Imaging Spectro-radiometer (MODIS), METimage will fly in the mid-morning orbit of the Joint Polar System, whilst the early-afternoon orbits are served by the JPSS (U.S. Joint Polar Satellite System) Visible Infrared Imager Radiometer Suite (VIIRS). METimage itself is a cross-purpose medium resolution, multi-spectral optical imager, measuring the optical spectrum of radiation emitted and reflected by the Earth from a low-altitude sun synchronous orbit over a minimum swath width of 2700 km. The top of the atmosphere outgoing radiance will be sampled every 500 m (at nadir) with measurements made in 20 spectral channels ranging from 443 nm in the visible up to 13.345 μm in the thermal infrared. The three major objectives of the EPS-SG METimage calibration and validation activities are: • Verification of the instrument performances through continuous in-flight calibration and characterisation, including monitoring of long term stability. • Provision of validated level 1 and level 2 METimage products. • Revision of product processing facilities, i.e. algorithms and auxiliary data sets, to assure that products conform with user requirements, and then, if possible, exceed user expectations. This paper will describe the overall Calibration and Validation (Cal/Val) logic and the methods adopted to ensure that the METimage data products meet performance specifications for the lifetime of the mission. Such methods include inter-comparisons with other missions through simultaneous nadir overpasses and comparisons with ground based observations, analysis of algorithm internal diagnostics to confirm retrieval performance for geophysical products and vicarious calibration to assist with validation of the instrument on-board calibration. Any identified deficiencies in the products will lead to either an update any auxiliary data sets (e.g. calibration key data) that are used to configure the product processors or to a revision of algorithms themselves. The Cal/Val activities are mostly foreseen during commissioning but will inevitably extend to routine operations in order to take on board seasonal variations and ensure long term stability of the calibrated radiances and geophysical products. Pre-requisite to validation of products at scientific level is that the satellite and instrument itself have been verified against their respective specifications both pre-launch and during the satellite in-orbit verification phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ZNatA..68..405B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ZNatA..68..405B"><span>Numerical Approaches about the Morphological Description Parameters for the Manganese Deposits on the Magnesite Ore Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bayirli, Mehmet; Ozbey, Tuba</p> <p>2013-07-01</p> <p>Black deposits usually found at the surface of magnesite ore or limestone as well as red deposits in quartz veins are named as natural manganese dendrites. According to their geometrical structures, they may take variable fractal shapes. The characteristic origins of these morphologies have rarely been studied by means of numerical analyses. Hence, digital images of magnesite ore are taken from its surface with a scanner. These images are then converted to binary images in the form of 8 bits, bitmap format. As a next step, the morphological description parameters of manganese dendrites are computed by the way of scaling methods such as occupied fractions, fractal dimensions, divergent ratios, and critical exponents of scaling. The fractal dimension and the scaling range are made dependent on the fraction of the particles. Morphological description parameters can be determined according to the geometrical evaluation of the natural manganese dendrites which are formed independently from the process. The formation of manganese dendrites may also explain the stochastic selected process in the nature. These results therefore may be useful to understand the deposits in quartz vein parameters in geophysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813079S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813079S"><span>Non invasive sensing technologies for cultural heritage management and fruition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soldovieri, Francesco; Masini, Nicola</p> <p>2016-04-01</p> <p>The relevance of the information produced by science and technology for the knowledge of the cultural heritage depends on the quality of the feedback and, consequently, on the "cultural" distance between scientists and end-users. In particular, the solution to this problem mainly resides in the capability of end-users' capability to assess and transform the knowledge produced by diagnostics with regard to: information on both cultural objects and sites (decay patterns, vulnerability, presence of buried archaeological remains); decision making (management plan, conservation project, and excavation plan). From our experience in the field of the cultural heritage and namely the conservation, of monuments, there is a significant gap of information between technologists (geophysicists/physicists/engineers) and end-users (conservators/historians/architects). This cultural gap is due to the difficulty to interpret "indirect data" produced by non invasive diagnostics (i.e. radargrams/thermal images/seismic tomography etc..) in order to provide information useful to improve the historical knowledge (e.g. the chronology of the different phases of a building), to characterise the state of conservation (e.g. detection of cracks in the masonry) and to monitor in time cultural heritage artifacts and sites. The possible answer to this difficulty is in the set-up of a knowledge chain regarding the following steps: - Integrated application of novel and robust data processing methods; - Augmented reality as a tool for making easier the interpretation of non invasive - investigations for the analysis of decay pathologies of masonry and architectural surfaces; - The comparison between direct data (carrots, visual inspection) and results from non-invasive tests, including geophysics, aims to improve the interpretation and the rendering of the monuments and even of the archaeological landscapes; - The use of specimens or test beds for the detection of archaeological features and monitoring of monuments and sites. In this way, we will be able to improve the appreciation of diagnostics and remote sensing technologies by the end-users. At the conference, we will show and discuss several study cases depicting the deployment of this knowledge chain in realistic conditions regarding the CH management. References Leucci G., Masini N., Persico R., Soldovieri F. 2011. GPR and sonic tomography for structural restoration: the case of the cathedral of Tricarico, Journal of Geophysics and Engineering, 8 (3), 76-92, doi:10.1088/1742-2132/8/3/S08 Masini N., Soldovieri F. 2011. Editorial: Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage, Journal of Geophysics and Engineering, 8 (3), 1-2, doi:10.1088/1742-2132/8/3/E01 Masini N., Persico R., Rizzo E., Calia A., Giannotta M.T., Quarta G., Pagliuca A. 2010, Integrated Techniques for Analysis and Monitoring of Historical Monuments: the case of S.Giovanni al Sepolcro in Brindisi (Southern Italy), Near Surface Geophysics, 8(5), 423-432, doi:10.3997/1873-0604.2010012</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26927886','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26927886"><span>Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Lin; Gong, Huili; Chen, Yun; Li, Xiaojuan; Chang, Xiang; Cui, Yijiao</p> <p>2016-03-01</p> <p>Hydraulic conductivity is a major parameter affecting the output accuracy of groundwater flow and transport models. The most commonly used semi-empirical formula for estimating conductivity is Kozeny-Carman equation. However, this method alone does not work well with heterogeneous strata. Two important parameters, grain size and porosity, often show spatial variations at different scales. This study proposes a method for estimating conductivity distributions by combining a stochastic hydrofacies model with geophysical methods. The Markov chain model with transition probability matrix was adopted to re-construct structures of hydrofacies for deriving spatial deposit information. The geophysical and hydro-chemical data were used to estimate the porosity distribution through the Archie's law. Results show that the stochastic simulated hydrofacies model reflects the sedimentary features with an average model accuracy of 78% in comparison with borehole log data in the Chaobai alluvial fan. The estimated conductivity is reasonable and of the same order of magnitude of the outcomes of the pumping tests. The conductivity distribution is consistent with the sedimentary distributions. This study provides more reliable spatial distributions of the hydraulic parameters for further numerical modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NHESD...1.2281S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NHESD...1.2281S"><span>Airborne geophysical mapping as an innovative methodology for landslide investigation: evaluation of results from the Gschliefgraben landslide, Austria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Supper, R.; Baroň, I.; Ottowitz, D.; Motschka, K.; Gruber, S.; Winkler, E.; Jochum, B.; Römer, A.</p> <p>2013-05-01</p> <p>In September 2009, a complex airborne geophysical survey was performed in the large landslide affected area of the Gschliefgraben valley, Upper Austria, in order to evaluate the usability of this method for landslide detection and mapping. An evaluation of the results, including different remote sensing and ground based methods, proved that airborne geophysics, especially the airborne electromagnetic method, has a high potential for landslide investigation. This is due to its sensitivity to fluid and clay content and porosity, which are parameters showing characteristic values in landslide prone structures. Resistivity distributions in different depth levels as well as depth-slices along selected profiles are presented and compared with ground geoelectrical profiles for the test area of Gschliefgraben. Further interesting results can be derived from the radiometric survey, whereas the naturally occurring radioisotopes 40K and 232Th, as well as the man-made nuclide 137Cs have been considered. While the content of potassium and thorium in the shallow subsurface layer is expressively related to the lithological composition, the distribution of caesium is mainly determined by mass wasting processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NHESS..13.3313S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NHESS..13.3313S"><span>Airborne geophysical mapping as an innovative methodology for landslide investigation: evaluation of results from the Gschliefgraben landslide, Austria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Supper, R.; Baroň, I.; Ottowitz, D.; Motschka, K.; Gruber, S.; Winkler, E.; Jochum, B.; Römer, A.</p> <p>2013-12-01</p> <p>In September 2009, a complex airborne geophysical survey was performed in the large landslide affected area of the Gschliefgraben valley, Upper Austria, in order to evaluate the applicability of this method for landslide detection and mapping. An evaluation of the results, including different remote-sensing and ground-based methods, proved that airborne geophysics, especially the airborne electromagnetic method, has a high potential for landslide investigation. This is due to its sensitivity to fluid and clay content and porosity, which are parameters showing characteristic values in landslide prone structures. Resistivity distributions in different depth levels as well as depth slices along selected profiles are presented and compared with ground geoelectrical profiles for the test area of Gschliefgraben. Further interesting results can be derived from the radiometric survey, whereas the naturally occurring radioisotopes 40K and 232Th, as well as the man-made nuclide 137Cs have been considered. While the content of potassium and thorium in the shallow subsurface layer is expressively related to the lithological composition, the distribution of caesium is mainly determined by mass wasting processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.H52F..10C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.H52F..10C"><span>Geochemical Characterization Using Geophysical Data and Markov Chain Monte Carlo Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, J.; Hubbard, S.; Rubin, Y.; Murray, C.; Roden, E.; Majer, E.</p> <p>2002-12-01</p> <p>Although the spatial distribution of geochemical parameters is extremely important for many subsurface remediation approaches, traditional characterization of those parameters is invasive and laborious, and thus is rarely performed sufficiently to describe natural hydrogeological variability at the field-scale. This study is an effort to jointly use multiple sources of information, including noninvasive geophysical data, for geochemical characterization of the saturated and anaerobic portion of the DOE South Oyster Bacterial Transport Site in Virginia. Our data set includes hydrogeological and geochemical measurements from five boreholes and ground-penetrating radar (GPR) and seismic tomographic data along two profiles that traverse the boreholes. The primary geochemical parameters are the concentrations of extractable ferrous iron Fe(II) and ferric iron Fe(III). Since iron-reducing bacteria can reduce Fe(III) to Fe(II) under certain conditions, information about the spatial distributions of Fe(II) and Fe(III) may indicate both where microbial iron reduction has occurred and in which zone it is likely to occur in the future. In addition, as geochemical heterogeneity influences bacterial transport and activity, estimates of the geochemical parameters provide important input to numerical flow and contaminant transport models geared toward bioremediation. Motivated by our previous research, which demonstrated that crosshole geophysical data could be very useful for estimating hydrogeological parameters, we hypothesize in this study that geochemical and geophysical parameters may be linked through their mutual dependence on hydrogeological parameters such as lithofacies. We attempt to estimate geochemical parameters using both hydrogeological and geophysical measurements in a Bayesian framework. Within the two-dimensional study domain (12m x 6m vertical cross section divided into 0.25m x 0.25m pixels), geochemical and hydrogeological parameters were considered as data if they were available from direct measurements or as variables otherwise. To estimate the geochemical parameters, we first assigned a prior model for each variable and a likelihood model for each type of data, which together define posterior probability distributions for each variable on the domain. Since the posterior probability distribution may involve hundreds of variables, we used a Markov Chain Monte Carlo (MCMC) method to explore each variable by generating and subsequently evaluating hundreds of realizations. Results from this case study showed that although geophysical attributes are not necessarily directly related to geochemical parameters, geophysical data could be very useful for providing accurate and high-resolution information about geochemical parameter distribution through their joint and indirect connections with hydrogeological properties such as lithofacies. This case study also demonstrated that MCMC methods were particularly useful for geochemical parameter estimation using geophysical data because they allow incorporation into the procedure of spatial correlation information, measurement errors, and cross correlations among different types of parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15013367','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15013367"><span>A Laboratory Approach Relating Complex Resistivity Observations to Flow and Transport in Saturated and Unsaturated Hydrologic Regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martins, S A; Daily, W D; Ramirez, A L</p> <p>2002-01-31</p> <p>Subsurface imaging technology, such as electric resistance tomography (ERT), is rapidly improving as a means for characterizing some soil properties of the near-surface hydrologic regime. While this information can be potentially useful in developing hydrologic models of the subsurface that are required for contaminant transport investigations, an image alone of the subsurface soil regime gives little or no information about how the site will respond to groundwater flow or contaminant transport. In fact, there is some question that tomographic imaging of soils alone can even provide meaningful values of hydraulic properties, such as the permeability structure, which is critical tomore » estimates of contaminant transport at a site. The main objective of this feasibility study was to initiate research on electrical imaging not just as a way to characterize the soil structure by mapping different soil types at a site but as a means of obtaining quantitative information about how a site will respond hydrologically to an infiltration event. To this end, a scaled system of electrode arrays was constructed that simulates the subsurface electrode distribution used at the LLNL Vadose Zone Observatory (VZO) where subsurface imaging of infiltration events has been investigated for several years. The electrode system was immersed in a 10,000-gallon tank to evaluate the fundamental relationship between ERT images and targets of a given volume that approximate infiltration-induced conductivity anomalies. With LDRD funds we have explored what can be initially learned about porous flow and transport using two important electrical imaging methods--electric resistance tomography (ERT) and electric impedance tomography (EIT). These tomographic methods involve passing currents (DC or AC) between two electrodes within or between electrode arrays while measuring the electric potential at the remaining electrodes. With the aid of a computer-based numerical inversion scheme, the potentials are used to solve for the electrical conductivity distribution in the region bounded by the electrode arrays. Groundwater movement resulting from a leak or surface spill will produce measurable conductivity changes that have been imaged using ERT or EIT. The kind of laboratory scale experiments supported by this work will help us to better understand the connection between imaged conductivity anomalies and the groundwater or contaminant flow that causes them. This work will also help to demonstrate the feasibility or value of doing lab experiments in imaging that can be applied to interpreting field-scale experiments. A secondary objective of this study was to initiate a collaboration with researchers at the Rensselaer Polytechnic Institute (RPI; Troyl NY) who are also participants in the newly created NSF Center for Subsurface Imaging and Sensing Systems (CenSSIS) which is managed in part by RPI. During the course of this study C.R. Carrigan and W. Daily visited the electromagnetic imaging lab at RPI to initiate discussions on subsurface imaging technology with Professors David Isaacson, Jon Newell, Gary Salunier and their research graduate students. A major goal of CenSSIS is to promote collaborations among researchers with imaging backgrounds in different disciplines (geosciences, biomedical, civil engineering and biomedical) that will lead to new solutions of common subsurface imaging problems. The geophysical test section constructed for this study included electrode arrays that resemble biomedical array distributions. Comparing images of the same target produced with the 4-array geophysical approach and with the biomedical imaging approach will help us to better understand differences and advantages that are characteristic of the two imaging methods. Our initial interactions with the researchers at RPI concluded that this was a viable problem to consider. The support for this subsequent research will come from a 3-year Office of Basic Energy Sciences (BES) proposal that has just received funding. This feasibility study contributed positively to the successful review and ultimately to the award of this BES funding. A letter (Appendix) from Professor Michael Silevitch, Director of CenSSIS, to Dr. Rokaya Al-Ayat, Director of the LLNL Science & Technology Office, acknowledges the contribution of this LDRD study to obtaining the Basic Energy Science grant that will fund further work in this area.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2006/1396/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2006/1396/"><span>Geophysical Studies Based on Gravity and Seismic Data of Tule Desert, Meadow Valley Wash, and California Wash Basins, Southern Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scheirer, Daniel S.; Page, William R.; Miller, John J.</p> <p>2006-01-01</p> <p>Gravity and seismic data from Tule Desert, Meadow Valley Wash, and California Wash, Nevada, provide insight into the subsurface geometry of these three basins that lie adjacent to rapidly developing areas of Clark County, Nevada. Each of the basins is the product of Tertiary extension accommodated with the general form of north-south oriented, asymmetrically-faulted half-grabens. Geophysical inversion of gravity observations indicates that Tule Desert and Meadow Valley Wash basins are segmented into subbasins by shallow, buried basement highs. In this study, basement refers to pre-Cenozoic bedrock units that underlie basins filled with Cenozoic sedimentary and volcanic units. In Tule Desert, a small, buried basement high inferred from gravity data appears to be a horst whose placement is consistent with seismic reflection and magnetotelluric observations. Meadow Valley Wash consists of three subbasins separated by basement highs at structural zones that accommodated different styles of extension of the adjacent subbasins, an interpretation consistent with geologic mapping of fault traces oblique to the predominant north-south fault orientation of Tertiary extension in this area. California Wash is a single structural basin. The three seismic reflection lines analyzed in this study image the sedimentary basin fill, and they allow identification of faults that offset basin deposits and underlying basement. The degree of faulting and folding of the basin-fill deposits increases with depth. Pre-Cenozoic units are observed in some of the seismic reflection lines, but their reflections are generally of poor quality or are absent. Factors that degrade seismic reflector quality in this area are rough land topography due to erosion, deformed sedimentary units at the land surface, rock layers that dip out of the plane of the seismic profile, and the presence of volcanic units that obscure underlying reflectors. Geophysical methods illustrate that basin geometry is more complicated than would be inferred from extrapolation of surface topography and geology, and these methods aid in defining a three-dimensional framework to understand groundwater storage and flow in southern Nevada.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H51G1282B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H51G1282B"><span>Monitoring snowmelt and solute transport at Oslo airport by combining time-lapse electrical resistivity, soil water sampling and tensiometer measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bloem, E.; French, H. K.</p> <p>2013-12-01</p> <p>Monitoring contaminant transport at contaminated sites requires optimization of the configuration of a limited number of samplings points combined with heterogeneous flow and preferential flowpaths. Especially monitoring processes in the unsaturated zone is a major challenge due to the limited volume monitored by for example suction cups and their risk to clog in a highly active degradation zone. To make progress on soil contamination assessment and site characterization there is a strong need to integrate field-sale extensively instrumented tools, with non-invasive (geophysical) methods which provide spatially integrated measurements also in the unsaturated zone. Examples of sites that might require monitoring activities in the unsaturated zone are airports with winter frost where large quantities of de-icing chemicals are used each winter; salt and contaminant infiltration along roads; constructed infiltration systems for treatment of sewerage or landfill seepage. Electrical resistivity methods have proved to be useful as an indirect measurement of subsurface properties and processes at the field-scale. The non-uniqueness of the interpretation techniques can be reduced by constraining the inversion through the addition of independent geophysical measurements along the same profile. Or interpretation and understanding of geophysical images can be improved by the combination with classical measurements of soil physical properties, soil suction, contaminant concentration and temperatures. In our experiment, at the research field station at Gardermoen, Oslo airport, we applied a degradable de-icing chemical and an inactive tracer to the snow cover prior to snowmelt. To study the solute transport processes in the unsaturated zone time-lapse cross borehole electrical resistivity tomography (ERT) measurements were conducted at the same time as soil water samples were extracted at multiple depths with suction cups. Measurements of soil temperature, and soil tension were also carried out during the monitoring period. We present a selection of results from the snowmelt experiments and how the combination of measurement techniques can help interpret and understand the relative importance of the various contributions to the bulk electrical conductivity during snowmelt and solute transport.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930044996&hterms=gold+colorado&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgold%2Bcolorado','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930044996&hterms=gold+colorado&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgold%2Bcolorado"><span>Remote sensing of ferric iron minerals as guides for gold exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taranik, Dan L.; Kruse, Fred A.; Goetz, Alexander F. H.; Atkinson, William W.</p> <p>1991-01-01</p> <p>The relationship between the surficial iron mineralogy and economic mineralization is investigated, using data from an airborne imaging spectrometer (the 63-channel Geophysical and Environmental Research Imaging Spectrometer) to map the distribution of iron minerals in the Cripple Creek mining district in Colorado. The airborne image data were coregistered with the field map data for the distribution of iron oxides in the district, in a geographic information computer system, in order to compare their information content. It is shown that the remote imagery was able to uniquely identify the mineral hematite, a mixture of goethite/jarosite, and a mixture of hematite/goethite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RuPhJ..61..150B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RuPhJ..61..150B"><span>Influence of Magnetically Conjugate Fragments of Auroral Emission Images on the Accuracy of Determining E av of Precipitating Electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Banshchikova, M. A.; Chuvashov, I. N.; Kuzmin, A. K.; Kruchenitskii, G. M.</p> <p>2018-05-01</p> <p>Results of magnetic conjugation of image fragments of auroral emissions at different altitudes along the magnetic field lines and preliminary results of evaluation of their influence on the accuracy of remote mapping of energy characteristics of precipitating electrons are presented. The results are obtained using the code of tracing being an integral part of the software Vector M intended for calculation of accompanying, geophysical, and astronomical information for the center of mass of a space vehicle (SV) and remote observation of aurora by means of Aurovisor-VIS/MP imager onboard the SV Meteor-MP to be launched.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/dds/dds-24/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/dds/dds-24/"><span>Images of Kilauea East Rift Zone eruption, 1983-1993</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Takahashi, Taeko Jane; Abston, C.C.; Heliker, C.C.</p> <p>1995-01-01</p> <p>This CD-ROM disc contains 475 scanned photographs from the U.S. Geological Survey Hawaii Observatory Library. The collection represents a comprehensive range of the best photographic images of volcanic phenomena for Kilauea's East Rift eruption, which continues as of September 1995. Captions of the images present information on location, geologic feature or process, and date. Short documentations of work by the USGS Hawaiian Volcano Observatory in geology, seismology, ground deformation, geophysics, and geochemistry are also included, along with selected references. The CD-ROM was produced in accordance with the ISO 9660 standard; however, it is intended for use only on DOS-based computer systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810376C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810376C"><span>Near surface geophysical techniques on subsoil contamination: laboratory experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo</p> <p>2016-04-01</p> <p>Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of electrical properties of the subsoil at high depths and, in some cases, a detailed assessment of dynamic processes in the subsurface environment (Binley et al., 2002). Our study confirms the link between hydrocarbons contamination and geoelectrical signal and the capability of cross-hole electrical resistivity tomographies to realize a non-invasive characterization of LNAPL contamination of the media. Although, the electrical behaviour is much more complex and the relation with the contaminants depends also by time of investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoJI.195..276J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoJI.195..276J"><span>Demarcation of continental-oceanic transition zone using angular differences between gradients of geophysical fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jilinski, Pavel; Meju, Max A.; Fontes, Sergio L.</p> <p>2013-10-01</p> <p>The commonest technique for determination of the continental-oceanic crustal boundary or transition (COB) zone is based on locating and visually correlating bathymetric and potential field anomalies and constructing crustal models constrained by seismic data. In this paper, we present a simple method for spatial correlation of bathymetric and potential field geophysical anomalies. Angular differences between gradient directions are used to determine different types of correlation between gravity and bathymetric or magnetic data. It is found that the relationship between bathymetry and gravity anomalies can be correctly identified using this method. It is demonstrated, by comparison with previously published models for the southwest African margin, that this method enables the demarcation of the zone of transition from oceanic to continental crust assuming that this it is associated with geophysical anomalies, which can be correlated using gradient directions rather than magnitudes. We also applied this method, supported by 2-D gravity modelling, to the more complex Liberia and Cote d'Ivoire-Ghana sectors of the West African transform margin and obtained results that are in remarkable agreement with past predictions of the COB in that region. We suggest the use of this method for a first-pass interpretation as a prelude to rigorous modelling of the COB in frontier areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/environmental-geophysics/seismic-methods','PESTICIDES'); return false;" href="https://www.epa.gov/environmental-geophysics/seismic-methods"><span>Seismic Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Seismic methods are the most commonly conducted geophysical surveys for engineering investigations. Seismic refraction provides engineers and geologists with the most basic of geologic data via simple procedures with common equipment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNS32A..08I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNS32A..08I"><span>Surface NMR imaging with simultaneously energized transmission loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irons, T. P.; Kass, A.; Parsekian, A.</p> <p>2016-12-01</p> <p>Surface nuclear magnetic resonance (sNMR) is a unique geophysical technique which allows for the direct detection of liquid-phase water. In saturated media the sNMR response also provides estimates of hydrologic properties including porosity and permeability. The most common survey deployment consists of a single coincident loop performing both transmission and receiving. Because the sNMR method is relatively slow, tomography using coincident loops is time-intensive. Surveys using multiple receiver loops (but a single transmitter) provide additional sensitivity; however, they still require iterating transmission over the loops, and do not decrease survey acquisition time. In medical rotating frame imaging, arrays of transmitters are employed in order to decrease acquisition time, whilst optimizing image resolving power-a concept which we extend to earth's field imaging. Using simultaneously energized transmission loops decreases survey time linearly with the number of channels. To demonstrate the efficacy and benefits of multiple transmission loops, we deployed simultaneous sNMR transmission arrays using minimally coupled loops and a specially modified instrument at the Red Buttes Hydrogeophysics Experiment Site-a well-characterized location near Laramie, Wyoming. The proposed survey proved capable of acquiring multiple-channel imaging data with comparable noise levels to figure-eight configurations. Finally, the channels can be combined after acquisition or inverted simultaneously to provide composite datasets and images. This capability leverages the improved near surface resolving power of small loops but retains sensitivity to deep media through the use of synthetic aperature receivers. As such, simultaneously acquired loop arrays provide a great deal of flexibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.H43F0554W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.H43F0554W"><span>Evaluation of Geophysical and Thermal Methods for Detecting Submarine Groundwater Discharge (SGD) in the Suwannee River Estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weiss, M.; Kruse, S.; Burnett, W. C.; Chanton, J.; Greenwood, W.; Murray, M.; Peterson, R.; Swarzenski, P.</p> <p>2005-12-01</p> <p>In an effort to evaluate geophysical and thermal methods for detecting submarine groundwater discharge (SGD) on the Florida Gulf coast, a suite of water-borne surveys were run in conjunction with aerial thermal imagery over the lower Suwannee estuary in March 2005. Marine resistivity streaming data were collected alongside continuous radon and methane sampling from surface waters. Resistivity measurements were collected with dipole-dipole geometries. Readings were inverted for terrain resistivity assuming two-dimensional structure and constraining uppermost layers to conform to measured water depths and surface water conductivities. Thermal images were collected at the end of winter and at night to maximize temperatures between warmer discharging groundwater and colder surface waters. For the preliminary data analysis presented here, we assume high radon and methane concentrations coincide with zones of high SGD, and look at relationships between radon and methane concentrations and terrain resistivity and thermal imagery intensity values. For a limited set of coincident thermal intensity and radon readings, thermal intensities are higher at sites with the highest radon readings. These preliminary results suggest that in this environment, thermal imagery may be effective for identifying the "hottest" spots for SGD, but not for zones of diffuse discharge. The thermal imagery shows high intensity features at the heads of tidal streams, but shallow water depths precluded boat-based resistivity and sampling at these sites. Shallow terrain resistivities generally show a positive correlation with methane concentrations, as would be expected over zones of discharging groundwater that is fresher than Gulf surface water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS13B0016T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS13B0016T"><span>MoisturEC: an R application for geostatistical estimation of moisture content from electrical conductivity data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Terry, N.; Day-Lewis, F. D.; Werkema, D. D.; Lane, J. W., Jr.</p> <p>2017-12-01</p> <p>Soil moisture is a critical parameter for agriculture, water supply, and management of landfills. Whereas direct data (as from TDR or soil moisture probes) provide localized point scale information, it is often more desirable to produce 2D and/or 3D estimates of soil moisture from noninvasive measurements. To this end, geophysical methods for indirectly assessing soil moisture have great potential, yet are limited in terms of quantitative interpretation due to uncertainty in petrophysical transformations and inherent limitations in resolution. Simple tools to produce soil moisture estimates from geophysical data are lacking. We present a new standalone program, MoisturEC, for estimating moisture content distributions from electrical conductivity data. The program uses an indicator kriging method within a geostatistical framework to incorporate hard data (as from moisture probes) and soft data (as from electrical resistivity imaging or electromagnetic induction) to produce estimates of moisture content and uncertainty. The program features data visualization and output options as well as a module for calibrating electrical conductivity with moisture content to improve estimates. The user-friendly program is written in R - a widely used, cross-platform, open source programming language that lends itself to further development and customization. We demonstrate use of the program with a numerical experiment as well as a controlled field irrigation experiment. Results produced from the combined geostatistical framework of MoisturEC show improved estimates of moisture content compared to those generated from individual datasets. This application provides a convenient and efficient means for integrating various data types and has broad utility to soil moisture monitoring in landfills, agriculture, and other problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021644','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021644"><span>P wave crustal velocity structure in the greater Mount Rainier area from local earthquake tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moran, S.C.; Lees, J.M.; Malone, S.D.</p> <p>1999-01-01</p> <p>We present results from a local earthquake tomographic imaging experiment in the greater Mount Rainier area. We inverted P wave arrival times from local earthquakes recorded at permanent and temporary Pacific Northwest Seismograph Network seismographs between 1980 and 1996. We used a method similar to that described by Lees and Crosson [1989], modified to incorporate the parameter separation method for decoupling the hypocenter and velocity problems. In the upper 7 km of the resulting model there is good correlation between velocity anomalies and surface geology. Many focal mechanisms within the St. Helens seismic zone have nodal planes parallel to the epicentral trend as well as to a north-south trending low-velocity trough, leading us to speculate that the trough represents a zone of structural weakness in which a moderate (M 6.5-7.0) earthquake could occur. In contrast, the western Rainier seismic zone does not correlate in any simple way with anomaly patterns or focal mechanism fault planes, leading us to infer that it is less likely to experience a moderate earthquake. A ???10 km-wide low-velocity anomaly occurs 5 to 18 km beneath the summit of Mount Rainier, which we interpret to be a signal of a region composed of hot, fractured rock with possible small amounts of melt or fluid. No systematic velocity pattern is observed in association with the southern Washington Cascades conductor. A midcrustal anomaly parallels the Olympic-Wallowa lineament as well as several other geophysical trends, indicating that it may play an important role in regional tectonics. Copyright 1999 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EJPh...39b5201D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EJPh...39b5201D"><span>Kirchhoff and Ohm in action: solving electric currents in continuous extended media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dolinko, A. E.</p> <p>2018-03-01</p> <p>In this paper we show a simple and versatile computational simulation method for determining electric currents and electric potential in 2D and 3D media with arbitrary distribution of resistivity. One of the highlights of the proposed method is that the simulation space containing the distribution of resistivity and the points of external applied voltage are introduced by means of digital images or bitmaps, which easily allows simulating any phenomena involving distributions of resistivity. The simulation is based on the Kirchhoff’s laws of electric currents and it is solved by means of an iterative procedure. The method is also generalised to account for media with distributions of reactive impedance. At the end of this work, we show an example of application of the simulation, consisting in reproducing the response obtained with the geophysical method of electric resistivity tomography in presence of soil cracks. This paper is aimed at undergraduate or graduated students interested in computational physics and electricity and also researchers involved in the area of continuous electric media, which could find a simple and powerful tool for investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51C1281C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51C1281C"><span>Use of geophysical methods to characterize groundwater in karstic rocks near Puerto Morelos, Yucatan Peninsula, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>cerda Garcia, C. G.; Carpenter, P. J.; Leal-Bautista, R. M.</p> <p>2017-12-01</p> <p>Geophysical surveys were used to determine the depth of the freshwater/saltwater interface and groundwater preferential flow pathways along the Ruta de los Cenotes, near Puerto Morelos (northeast part of the Yucatán peninsula). The Yucatán Peninsula is a limestone platform that allows quick recharge of the aquifer, the main supply of water for this region. The water in the aquifer is divided into freshwater and saltwater zones. A Schlumberger resistivity sounding along the road near one cenote suggests the water table is 5 meters deep and the freshwater/saltwater interface is 38 meters deep. A time-domain electromagnetic (TEM) sounding suggests the freshwater/saltwater interface is 45 meters deep. The depth of the interface determines the volume of fresh water available. Preferential flow pathways in the vadose and saturated zones are karst conduits where groundwater percolates downward in the vadose zone. These were identified using resistivity profiling and spontaneous self-potential (SP) geophysical methods. Interpretation of SP profile Line SP1, located 3 m south of the cenote, suggests two fractures, which appear to extend south as far as SP profile Line SP2, 15 m south of the cenote; both lines are parallel to each other. SP anomalies suggest water flow along these fractures. The use of noninvasive geophysical methods, specifically SP, resistivity and TEM are useful for exploring the karst system in the Yucatán peninsula.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790025754','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790025754"><span>Geophysical approaches to inverse problems: A methodological comparison. Part 1: A Posteriori approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Seidman, T. I.; Munteanu, M. J.</p> <p>1979-01-01</p> <p>The relationships of a variety of general computational methods (and variances) for treating illposed problems such as geophysical inverse problems are considered. Differences in approach and interpretation based on varying assumptions as to, e.g., the nature of measurement uncertainties are discussed along with the factors to be considered in selecting an approach. The reliability of the results of such computation is addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA247553','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA247553"><span>Wave Propagation in Laterally Varying Media: A Model Expansion Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-05-01</p> <p>91125 .Mr. William 3. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical Sciences Vienna, VA 22180 P’inceton University Princeton... William Menke Prof. Charles G. Sammis Lamont-Doherty Geological Observatory Center for Earth Sciences of Columbia University University of Southern...Pineda Court c. 6 William Kikendall Prof. Amos Nur Teledyne Geotech Department of Geophysics 3401 Shiloh Road Stanford University Garland, TX 75041</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/721161-electromagnetic-geophysical-leaching-plume-detection-experiments-san-xavier-mine-facility-tucson-arizona','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/721161-electromagnetic-geophysical-leaching-plume-detection-experiments-san-xavier-mine-facility-tucson-arizona"><span>Electromagnetic geophysical leaching plume detection experiments - San Xavier Mine Facility, Tucson, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lee, D.O.; Wayland, J.R.</p> <p>1991-03-01</p> <p>The objective of this work was to investigate whether a subsurface plume may be detected and followed using crosshole and surface-to-borehole electromagnetic geophysical techniques. both of these techniques were experimentally demonstrated to be feasible. The presence of the injected plume was easily detected with these methods but additional work must be done to refine the techniques. 5 refs., 15 figs., 1 tab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5070/l/pdf/sir2010-5070l.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5070/l/pdf/sir2010-5070l.pdf"><span>Deposit model for heavy-mineral sands in coastal environments: Chapter L in Mineral deposit models for resource assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Van Gosen, Bradley S.; Fey, David L.; Shah, Anjana K.; Verplanck, Philip L.; Hoefen, Todd M.</p> <p>2014-01-01</p> <p>Regional exploration for deposits of heavy-mineral sands can utilize the analyses of stream sediment samples for Ti, Hf, the rare earth elements, Th, and U, and geophysical surveys, particularly radiometric (gamma-ray spectrometry for K, U, and Th) and magnetic methods. Geophysical anomalies may be small, and surveys are generally more successful when conducted close to sources of interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/environmental-geophysics/seismic-reflection-methods','PESTICIDES'); return false;" href="https://www.epa.gov/environmental-geophysics/seismic-reflection-methods"><span>Seismic Reflection Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Seismic methods are the most commonly conducted geophysical surveys for engineering investigations. Seismic refraction provides engineers and geologists with the most basic of geologic data via simple procedures with common equipment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24619658','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24619658"><span>Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cassiani, Giorgio; Binley, Andrew; Kemna, Andreas; Wehrer, Markus; Orozco, Adrian Flores; Deiana, Rita; Boaga, Jacopo; Rossi, Matteo; Dietrich, Peter; Werban, Ulrike; Zschornack, Ludwig; Godio, Alberto; JafarGandomi, Arash; Deidda, Gian Piero</p> <p>2014-01-01</p> <p>The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site's heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site's mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMNS11B0494C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMNS11B0494C"><span>Attenuated geophysical signatures associated with ongoing remediation efforts at Wurtsmith Air Force Base, Oscoda, Michigan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Che-Alota, V.; Atekwana, E. A.; Sauck, W. A.; Nolan, J. T.; Slater, L. D.</p> <p>2007-12-01</p> <p>Previous geophysical investigations (1996, 1997, 2003, and 2004) conducted at the decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) showed a clearly defined high conductivity anomaly associated with hydrocarbon contaminants in the vadose zone and ground water near the source area. The source of the geophysical anomalies was attributed to biogeochemical modifications of the contaminated zone resulting from intrinsic bioremediation. During these previous surveys, ground penetrating radar (GPR) data showed a zone of attenuated GPR reflections extending from the vadose zone to below the water table. Self potential data (SP) data defined a positive anomaly coincident with the hydrochemically defined plume, while electrical resistivity data showed anomalously high conductivity within the zone of impact. In 2007, another integrated geophysical study of the site was conducted. GPR, SP, electrical resistivity, and induced polarization surveys were conducted with expectations of achieving similar results as the past surveys. However, preliminary assessment of the data shows a marked decrease in electrical conductivity and SP response over the plume. GPR data still showed the attenuated signals, but the zone of attenuation was only observed below the water table. We attribute the attenuation of the observed geophysical anomalies to ongoing soil vapor extraction initiated in 2003. Significant removal of the contaminant mass by the vapor extraction system has altered the subsurface biogeochemical conditions and these changes were documented by the 2007 geophysical and geochemical data. The results of this study show that the attenuation of the contaminant plume is detectable with geophysical methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1257339-emergence-hydrogeophysics-improved-understanding-subsurface-processes-over-multiple-scales','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1257339-emergence-hydrogeophysics-improved-understanding-subsurface-processes-over-multiple-scales"><span>The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Binley, Andrew; Hubbard, Susan S.; Huisman, Johan A.; ...</p> <p>2015-06-15</p> <p>Geophysics provides a multidimensional suite of investigative methods that are transforming our ability to see into the very fabric of the subsurface environment, and monitor the dynamics of its fluids and the biogeochemical reactions that occur within it. Here we document how geophysical methods have emerged as valuable tools for investigating shallow subsurface processes over the past two decades and offer a vision for future developments relevant to hydrology and also ecosystem science. The field of “hydrogeophysics” arose in the late 1990s, prompted, in part, by the wealth of studies on stochastic subsurface hydrology that argued for better field-based investigativemore » techniques. These new hydrogeophysical approaches benefited from the emergence of practical and robust data inversion techniques, in many cases with a view to quantify shallow subsurface heterogeneity and the associated dynamics of subsurface fluids. Furthermore, the need for quantitative characterization stimulated a wealth of new investigations into petrophysical relationships that link hydrologically relevant properties to measurable geophysical parameters. Development of time-lapse approaches provided a new suite of tools for hydrological investigation, enhanced further with the realization that some geophysical properties may be sensitive to biogeochemical transformations in the subsurface environment, thus opening up the new field of “biogeophysics.” Early hydrogeophysical studies often concentrated on relatively small “plot-scale” experiments. More recently, however, the translation to larger-scale characterization has been the focus of a number of studies. In conclusion, geophysical technologies continue to develop, driven, in part, by the increasing need to understand and quantify key processes controlling sustainable water resources and ecosystem services.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>