Science.gov

Sample records for geophysical logging technology

  1. Geophysical logs in British stratigraphy

    SciTech Connect

    Whittaker, A.; Holliday, D.W.; Penn, I.E.

    1985-01-01

    This Special Report outlines the stratigraphic applications of the main geophysical logging tools. It characterises the British geological succession by means of the geophysical log signatures of its principle constituent formations. A large amount of previously unpublished data is provided on a geographical area long known for its importance in the development of the science of stratigraphy. The book in units modern developments of petroleum industry geophysical techniques with long-established stratigraphical discovery/research. Contents include: Introduction; Types of logs commonly used; Some geological uses of geophysical logs; Log signatures in British Stratigraphy; References.

  2. Sedimentological analysis using geophysical well logs

    SciTech Connect

    Izotova, T.S. )

    1993-09-01

    The application of geophysical well logs in sedimentology and stratigraphic prospecting holds great promise in solving a number of geological problems. A suite of logs provides data on a wide range of rock properties: vertical and lateral variation of resistivity, natural polarization, natural and induced radioactivity, shear strength, and acoustic properties. Each of these properties is controlled by the depositional environment of the sediments and their later diagenesis. The attention of geologists and geophysicists is drawn to new techniques in the interpretation of geophysical well logs for exploration, appraisal, and development of oil and gas fields. The relationship between geophysical logs and depositional environments is explored. Bulk composition, rock structure, and texture and facies variation can be quantified by electric log parameters. Also, the possibility of using logs to demonstrate long- and short-period sedimentary cycles is demonstrated. Methods of sedimentological analysis using geophysical well logs are demonstrated. The importance of a genetic approach in the interpretation of geological sequences and paleogeological reconstructions is emphasized using examples taken from oil and gas prospecting operations in the Ukraine.

  3. Automated lithology prediction from PGNAA and other geophysical logs.

    PubMed

    Borsaru, M; Zhou, B; Aizawa, T; Karashima, H; Hashimoto, T

    2006-02-01

    Different methods of lithology predictions from geophysical data have been developed in the last 15 years. The geophysical logs used for predicting lithology are the conventional logs: sonic, neutron-neutron, gamma (total natural-gamma) and density (backscattered gamma-gamma). The prompt gamma neutron activation analysis (PGNAA) is another established geophysical logging technique for in situ element analysis of rocks in boreholes. The work described in this paper was carried out to investigate the application of PGNAA to the lithology interpretation. The data interpretation was conducted using the automatic interpretation program LogTrans based on statistical analysis. Limited test suggests that PGNAA logging data can be used to predict the lithology. A success rate of 73% for lithology prediction was achieved from PGNAA logging data only. It can also be used in conjunction with the conventional geophysical logs to enhance the lithology prediction.

  4. Lithologic logs and geophysical logs from test drilling in Palm Beach County, Florida, since 1974

    USGS Publications Warehouse

    Swayze, Leo J.; McGovern, Michael C.; Fischer, John N.

    1980-01-01

    Test-hole data that may be used to determine the hydrogeology of the zone of high permeability in Palm Beach County, Fla., are presented. Lithologic logs from 46 test wells and geophysical logs from 40 test wells are contained in this report. (USGS)

  5. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Schimschal, Ulrich; Nelson, Philip H.; ,

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. We show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available.

  6. Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada

    SciTech Connect

    Nelson, P.H.; Schimschal, U.

    1993-05-01

    Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone).

  7. Blocking geophysical borehole log data using the continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Cooper, Gordon R. J.; Cowan, Duncan R.

    2009-06-01

    The interpretation of geophysical log data is frequently difficult due to the noisy downhole environment. Blocking algorithms attempt to smooth the log data while leaving the boundaries between different geological units sharp. This paper introduces a method for the determination of the boundaries based on the zero contour of the continuous wavelet transform (CWT) of the data. The amount of blocking can be controlled by the choice of the scale of the wavelet used. The method is compared with results from the median filter and with discrete wavelet transform (DWT) blocking methods, and is here applied to log data from Australia. The application of the new CWT method overcomes the rounding and shifting of boundaries inherent in median filtering, and provides greater flexibility by overcoming the power of two limitations in the DWT log blocking.

  8. Proposed geologic model based on geophysical well logs

    SciTech Connect

    Diaz C, S.; Puente C, I.; de la Pena L, A.

    1981-01-01

    An investigation of the subsurface based on a qualitative interpretation of well logs was carried out at Cerro Prieto to obtain information on the distribution of the different lithofacies that make up a deltaic depositional system. The sedimentological interpretation derived from the resistivity and spontaneous potential are shown in several cross-sections of the field. In addition to the sedimentological interpretation, a map of the structural geology of the region based on well logs and available geophysical information was prepared, including the results of gravity and seismic refraction surveys. The depth to the zone of hydrothermal alteration described by Elders (1980) was found by means of temperature, electrical, and radioactive logs. Two maps showing the configuration of the top of this anomaly show a clear correlation with the gravity anomalies found in the area.

  9. Selected borehole geophysical logs and drillers' logs, northern coastal plain of New Jersey

    USGS Publications Warehouse

    Murashige, J.E.; Birkelo, B.A.; Pucci, A.A.

    1989-01-01

    This report presents lithologic data compiled during the initial phase of a cooperative study by the U.S. Geological Survey and the New Jersey Department of Environmental Protection, Division of Water Resources to assess the hydrogeology of the Potomac-Raritan-Magothy aquifer system in the northern Coastal Plain of New Jersey. The report includes 109 geophysical logs and 328 drillers ' logs that were selected as representative of the Potomac-Raritan-Magothy aquifer system. A description of the Potomac-Raritan-Magothy aquifer system also is give. (USGS)

  10. Borehole Geophysical Logging Program: Incorporating New and Existing Techniques in Hydrologic Studies

    USGS Publications Warehouse

    Wacker, Michael A.; Cunningham, Kevin J.

    2008-01-01

    The borehole geophysical logging program at the U.S. Geological Survey (USGS)-Florida Integrated Science Center (FISC) provides subsurface information needed to resolve geologic, hydrologic, and environmental issues in Florida. The program includes the acquisition, processing, display, interpretation, and archiving of borehole geophysical logs. The borehole geophysical logging program is a critical component of many FISC investigations, including hydrogeologic framework studies, aquifer flow-zone characterization, and freshwater-saltwater interface delineation.

  11. An index of geophysical well logging in Virginia by the U.S. Geological Survey

    USGS Publications Warehouse

    Mulheren, M. Patrick; Larson, J.D.; Hopkins, Herbert T.

    1982-01-01

    Geophysical logs have been obtained in more than 170 wells in Virginia by the U.S. Geological Survey since 1968. These logs include natural gamma, electric, caliper, temperature, fluid conductivity, and fluid velocity. Most of the logs are for wells in the Coastal Plain Province of eastern Virginia. Geophysical logs aid in the interpretation of properties of earth materials, including the capacity to store and transmit water in the immediate vicinity of the well bore.

  12. Well construction, lithology, and geophysical logs for boreholes in Bear Creek Valley near Oak Ridge, Tennessee

    USGS Publications Warehouse

    Bailey, Z.C.; Hanchar, D.W.

    1988-01-01

    Twenty-four wells were constructed at nine sites at Bear Creek Valley to provide geologic and hydrologic information. Lithologic samples and suits of geophysical logs were obtained from the deepest boreholes at six of the sites. Two of these boreholes at the base of Chestnut Ridge were completed in the Maynardville Limestone and two were completed in the Nolichucky Shale. Two boreholes along Pine Ridge were completed in the Rome Formation. Zones of similar lithology within a borehole were delineated from rock cutting refined by examination of geophysical logs. The contact between the Maynardville Limestone and Nolichucky Shale was identified in two of the boreholes. Fractures and cavities were readily identifiable on the acoustic-televiewer and caliper logs. Distinct water-bearing intervals were also identified from the temperature, fluid resistance, and resistivity logs. Depths at which the drilling encounterd a thrust were identified in two boreholes in the Rome Formation from both rock cutting and geophysical logs. (USGS)

  13. A positioning and data logging system for surface geophysical surveys

    SciTech Connect

    Nyquist, J.E.; Blair, M.S.

    1988-01-01

    The Ultrasonic Ranging and Data System (USRADS) developed at ORNL is being adapted to work with two commercially available geophysical instruments: a magnetometer and an EM31 terrain conductivity meter. Geophysical surveys have proven an important preliminary step in investigating hazardous waste sites. Magnetometers and terrain conductivity meters are used to locate buried drums, trenches, conductive contaminant plumes and map regional changes in geology. About half the field time of a typical geophysical investigation is spent surveying the position of the grid points at which the measurements will be made. Additional time is lost and errors may be made recording instrument values in field notebooks and transcribing the data to a computer. Developed for gamma radiation surveys, the USRAD system keeps track of the surveyor's position automatically by triangulating on an ultrasonic transmitter carried in a backpack. The backpack also contains a radio transmitter that sends the instrument's reading coincident with the ultrasonic pulse. The surveyor's position and the instrument's reading are recorded by a portable computer which can plot the data to check the survey's progress. Electronic files are stored in a form compatible with AutoCAD to speed report writing. 7 refs., 3 figs.

  14. Geophysical Log Database for the Mississippi Embayment Regional Aquifer Study (MERAS)

    USGS Publications Warehouse

    Hart, Rheannon M.; Clark, Brian R.

    2008-01-01

    The Mississippi Embayment Regional Aquifer Study (MERAS) is an investigation of ground-water availability and sustainability within the Mississippi embayment as part of the U.S. Geological Survey Ground-Water Resources Program. The MERAS area consists of approximately 70,000 square miles and encompasses parts of eight states including Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. More than 2,600 geophysical logs of test holes and wells within the MERAS area were compiled into a database and were used to develop a digital hydrogeologic framework from land surface to the top of the Midway Group of upper Paleocene age. The purpose of this report is to document, present, and summarize the geophysical log database, as well as to preserve the geophysical logs in a digital image format for online access.

  15. Geophysical and lithologic logs of nine test holes drilled during 1978 in Harding County, South Dakota

    SciTech Connect

    Kistner, F.B.

    1980-01-01

    Between October 25 and November 1, 1978, nine coal test holes were drilled and geophysically logged near Ludlow, in Harding County, South Dakota. Drilling was conducted by personnel (and drilling equipment) of the US Geological Survey (USGS) as part of an ongoing USGS program to evaluate and classify mineral lands in the public domain. The purpose of the program is to gather data on the thickness, extent, correlation, quality, and recoverability of coal beds, and the thickness and lithologic characteristics of the associated rocks in the Tertiary Tongue River and Ludlow-Cannonball Members of the Fort Union Formation in the Williston Basin. This report presents geophysical logs and field lithologic descriptions lagged (or corrected in depth intervals) to match the geophysical logs.

  16. Geophysical logging at the Cristex Drum National Priorities List Superfund Site near Oxford, North Carolina

    USGS Publications Warehouse

    Antolino, Dominick J.

    2017-01-01

    The collection of borehole geophysical logs data was conducted by the U.S. Geological Survey South Atlantic Water Science Center in the vicinity of the Cristex Drum National Priorities List Superfund Site near Oxford, North Carolina, during January through March 2016. In an effort to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants, borehole geophysical log and image data collection, which included the delineation of more than 150 subsurface features (primarily fracture orientations) in 3 open borehole wells.

  17. Rapid estimation of aquifer salinity structure from oil and gas geophysical logs

    NASA Astrophysics Data System (ADS)

    Shimabukuro, D.; Stephens, M.; Ducart, A.; Skinner, S. M.

    2016-12-01

    We describe a workflow for creating aquifer salinity maps using Archie's equation for areas that have geophysical data from oil and gas wells. We apply this method in California, where geophysical logs are available in raster format from the Division of Oil, Gas, and Geothermal Resource (DOGGR) online archive. This method should be applicable to any region where geophysical logs are readily available. Much of the work is controlled by computer code, allowing salinity estimates for new areas to be rapidly generated. For a region of interest, the DOGGR online database is scraped for wells that were logged with multi-tool suites, such as the Platform Express or Triple Combination Logging Tools. Then, well construction metadata, such as measured depth, spud date, and well orientation, is attached. The resultant local database allows a weighted criteria selection of wells that are most likely to have the shallow resistivity, deep resistivity, and density porosity measurements necessary to calculate salinity over the longest depth interval. The algorithm can be adjusted for geophysical log availability for older well fields and density of sampling. Once priority wells are identified, a student researcher team uses Neuralog software to digitize the raster geophysical logs. Total dissolved solid (TDS) concentration is then calculated in clean, wet sand intervals using the resistivity-porosity method, a modified form of Archie's equation. These sand intervals are automatically selected using a combination of spontaneous potential and the difference in shallow resistivity and deep resistivity measurements. Gamma ray logs are not used because arkosic sands common in California make it difficult to distinguish sand and shale. Computer calculation allows easy adjustment of Archie's parameters. The result is a semi-continuous TDS profile for the wells of interest. These profiles are combined and contoured using standard 3-d visualization software to yield preliminary salinity

  18. Geophysical Logs of Selected Test Wells at the Diaz Chemical Superfund Site in Holley, New York

    USGS Publications Warehouse

    Eckhardt, David A.V.; Anderson, J. Alton

    2007-01-01

    In June and July 2006, geophysical logs were collected and analyzed along with rock-core samples to define the bedrock stratigraphy and flow zones penetrated by four test wells at the Diaz Chemical Superfund site at Holley in eastern Orleans County, New York. The work was completed as a preliminary part of the investigation of contamination by organic compounds in the shale, mudstone, and sandstone bedrock. The geophysical logs included natural-gamma, caliper, borehole image, fluid properties, and flowmeter data. The orientation of fractures in the boreholes was inferred from the log data and summarized in stereo and tadpole plots; the transmissivity and hydraulic head was also determined for fracture zones that were observed to be hydraulically active through the flowmeter logs. The data are intended in part for use in the remediation of the site.

  19. Use of natural gamma-ray geophysical logs for SWAT water table parameter estimation

    USDA-ARS?s Scientific Manuscript database

    Preliminary soil and sub-soil hydraulic parameter estimates needed for SWAT simulations to determine sub-surface water movement were collected using downhole geophysical measurements. Gamma-ray logs are useful for distingishing sandstone from shales by measuring natural-gamma radiation emitted from ...

  20. FY97 Geophysics Technology Area Plan.

    DTIC Science & Technology

    1997-03-01

    example, Seeker and Missile Simulations technology will be developed to make theater (DISAMS). This plan has been reviewed by all Air Force laboratory ...INDUSTRIAL RESEARCH AND Geophysics is a pervasive technology that directly DEVELOPMENT (IRAD): A comparison of the interacts with all of the other Air Force ...radiation belt models roadmaps that contain research programs underway has been halted. and planned by the Air Force and National Aeronau- 0 The design of

  1. Brief overview of geophysical probing technology

    SciTech Connect

    Ramirez, A.L.; Lytle, R.J.

    1982-02-01

    An evaluation of high-resolution geophysical techniques which can be used to characterize a nulcear waste disposal site is being conducted by the Lawrence Livermore National Laboratory (LLNL) at the request of the US Nuclear Regulatory Commisson (NRC). LLNL is involved in research work aimed at evaluating the current capabilities and limitations of geophysical methods used for site selection. This report provides a brief overview of the capabilities and limitations associated with this technology and explains how our work addresses some of the present limitations. We are examining both seismic and electromagnetic techniques to obtain high-resolution information. We are also assessing the usefulness of geotomography in mapping fracture zones remotely. Finally, we are collecting core samples from a site in an effort to assess the capability of correlating such geophysical data with parameters of interest such as fracture continuity, orientation, and fracture density.

  2. Evaluation of geophysical logs, phase I, for Crossley Farms Superfund Site, Berks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Twenty-one wells were drilled at Crossley Farms Superfund Site between December 15, 1987, and May 1, 1988, to define and monitor the horizontal and vertical distribution of ground-water contamination emanating from a suspected contaminant source area (Blackhead Hill). Eight well clusters were drilled on or near the Crossley Site and three well clusters were drilled at locations hydrologically down gradient from the site. Depths of wells range from 21 to 299 feet below land surface. These wells were installed in saprolite in shallow, intermediate, and deep water-producing zones of the fractured bedrock aquifer. Borehole-geophysical and video logging were conducted between April 24, 1997, and May 8, 1997, to determine the water-producing zones, water-receiving zones, zones of vertical flow, borehole depth, and casing integrity in each well. This data and interpretation will be used to determine the location of the well intake for the existing open-hole wells, which will be retrofitted to isolate and monitor water-producing zones and prevent further cross-contamination within each open borehole, and identify wells that may need rehabilitation or replacement. Caliper and video logs were used to locate fractures, inflections on fluid-temperature and fluidresistivity logs indicated possible fluid-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video logs, and driller?s notes, all wells will be constructed so that water-level fluctuations can be monitored and discrete water samples collected from shallow, intermediate, and deep water-bearing zones in each well. Geophysical logs were run on seven bedrock and two deep bedrock wells. Gamma logs were run on 10 bedrock wells. Twenty-two wells were inspected visually with the borehole video camera for casing integrity.

  3. Evaluation of geophysical logs, Phase I, at Willow Grove Naval Air Station, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Conger, R.W.

    1997-01-01

    Between April and June 1997, the U.S. Navy contracted Brown and Root Environmental, Inc., to drill 20 monitor wells at the Willow Grove Naval Air Station in Horsham Township, Montgomery County, Pa. The wells were installed to monitor water levels and allow collection of water samples from shallow, intermediate, and deep water-bearing zones. Analysis of the samples will determine the horizontal and vertical distribution of any contaminated ground water migrating from known contaminant sources. Eight wells were drilled near the Fire Training Area (Site 5), five wells near the 9th Street Landfill (Site 3), four wells at the Antenna Field Landfill (Site 2), and three wells near Privet Road Compound (Site 1). Depths range from 73 to 167 feet below land surface. The U.S. Geological Survey conducted borehole-geophysical and borehole-video logging to identify water-bearing zones so that appropriate intervals could be screened in each monitor well. Geophysical logs were run on the 20 monitor wells and 1 existing well. Video logs were run on 16 wells. Caliper and video logs were used to locate fractures, inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video logs, and driller's notes, all wells were screened such that water-level fluctuations could be monitored and discrete water samples collected from one or more shallow and intermediate water-bearing zones in each borehole.

  4. Geophysical well log analysis of fractured granitic rocks at Atikokan, Ontario, Canada

    USGS Publications Warehouse

    Paillet, Frederick L.; Hess, A.E.

    1987-01-01

    Two boreholes, drilled to approximate depths of 750 and 1,260 m in a granitic intrusion located near Atikokan, Ontario, were studied by obtaining a full suite of conventional borehole geophysical logs. In addition, selected intervals in these boreholes were logged with a borehole acoustic televiewer that produces a high-resolution image of the borehole wall, an acoustic waveform-logging system using 34-kiloHertz magnetostrictive and 5-kiloHertz sparker sources, and a highly sensitive heat-pulse flowmeter. Emphasis was on identifying and characterizing fracture zones that represent groundwater conduits in deeper portions of the granite, and on characterizing the properties of the largest intervals of unfractured granite. Major fracture zones were indicated by correlating geophysical log anomalies detected on the suite of conventional logs (unpublished data from Atomic Energy of Canada). However, several other anomalies, were identified as mafic intrusions of approximately the same thickness as major fracture zones. Geophysical log anomalies were compared for all major fracture zones that could serve as significant groundwater conduits, and fracture zone permeability is estimated on the basis of acoustic tube-wave attenuation in these intervals. Acoustic televiewer logs obtained at depths below 1,000 m in the deeper well indicate that most of the few fractures identified on core at these depths do not remain open enough under in situ conditions to produce detectable anomalies in acoustic refraction. Flowmeter data indicate that some groundwater circulation occurs in the upper portion of both boreholes. Water in the shallower of the two holes was observed to flow at 2.0 L/min; most of this flow entered the borehole at a depth < 25 m, and no flow occurred below a depth of 100 m. Downflow at rates < 0.5 L/min was determined to enter the deeper borehole within 20 m of the surface, and to exist at various fractures down to a depth of 250 m. (Author 's abstract)

  5. Detection of contaminant plumes by bore­ hole geophysical logging

    USGS Publications Warehouse

    Mack, Thomas J.

    1993-01-01

    Two borehole geophysical methods—electromagnetic induction and natural gamma radiation logs—were used to vertically delineate landfill leachate plumes in a glacial aquifer. Geophysical logs of monitoring wells near two land-fills in a glacial aquifer in west-central Vermont show that borehole geophysical methods can aid in interpretation of geologic logs and placement of monitoring well screens to sample landfill leachate plumes.Zones of high electrical conductance were delineated from the electromagnetic log in wells near two landfills. Some of these zones were found to correlate with silt and clay units on the basis of drilling and gamma logs. Monitoring wells were screened specifically in zones of high electrical conductivity that did not correlate to a silt or clay unit. Zones of high electrical conductivity that did not correlate to a silt or clay unit were caused by the presence of ground water with a high specific conductance, generally from 1000 to 2370 μS/cm (microsiemens per centimeter at 25 degrees Celsius). Ambient ground water in the study area has a specific conductance of approximately 200 to 400 μS/cm. Landfill leachate plumes were found to be approximately 5 to 20 feet thick and to be near the water table surface.

  6. Geophysical logs for selected wells in the Picher Field, northeast Oklahoma and southeast Kansas

    USGS Publications Warehouse

    Christenson, Scott C.; Thomas, Tom B.; Overton, Myles D.; Goemaat, Robert L.; Havens, John S.

    1991-01-01

    The Roubidoux aquifer in northeastern Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. The Roubidoux aquifer may be subject to contamination from abandoned lead and zinc mines of the Picher field. Water in flooded underground mines contains large concentrations of iron, zinc, cadmium, and lead. The contaminated water may migrate from the mines to the Roubidoux aquifer through abandoned water wells in the Picher field. In late 1984, the Oklahoma Water Resources Board began to locate abandoned wells that might be serving as conduits for the migration of contaminants from the abandoned mines. These wells were cleared of debris and plugged. A total of 66 wells had been located, cleared, and plugged by July 1985. In cooperation with the Oklahoma Water Resources Board, the U.S. Geological Survey took advantage of the opportunity to obtain geophysical data in the study area and provide the Oklahoma Water Resources Board with data that might be useful during the well-plugging operation. Geophysical logs obtained by the U.S. Geological Survey are presented in this report. The geophysical logs include hole diameter, normal, single-point resistance, fluid resistivity, natural-gamma, gamma-gamma, and neutron logs. Depths logged range from 145 to 1,344 feet.

  7. Evaluation of borehole geophysical logs at the Sharon Steel Farrell Works Superfund site, Mercer County, Pennsylvania

    USGS Publications Warehouse

    McAuley, Steven D.

    2004-01-01

    On April 14?15, 2003, geophysical logging was conducted in five open-borehole wells in and adjacent to the Sharon Steel Farrell Works Superfund Site, Mercer County, Pa. Geophysical-logging tools used included caliper, natural gamma, single-point resistance, fluid temperature, and heatpulse flowmeter. The logs were used to determine casing depth, locate subsurface fractures, identify water-bearing fractures, and identify and measure direction and rate of vertical flow within the borehole. The results of the geophysical logging were used to determine the placement of borehole screens, which allows monitoring of water levels and sampling of water-bearing zones so that the U.S. Environmental Protection Agency can conduct an investigation of contaminant movement in the fractured bedrock. Water-bearing zones were identified in three of five boreholes at depths ranging from 46 to 119 feet below land surface. Borehole MR-3310 (MW03D) showed upward vertical flow from 71 to 74 feet below land surface to a receiving zone at 63-68 feet below land surface, permitting potential movement of ground water, and possibly contaminants, from deep to shallow zones. No vertical flow was measured in the other four boreholes.

  8. Geophysical Technologies to Image Old Mine Works

    SciTech Connect

    Kanaan Hanna; Jim Pfeiffer

    2007-01-15

    ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned mines are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.

  9. Geophysical well-log analysis of fractured crystalline rocks at East Bull Lake, Ontario, Canada

    USGS Publications Warehouse

    Paillet, Frederick L.; Hess, A.E.

    1986-01-01

    Various conventional geophysical borehole measurements were made in conjunction with measurements using a recently designed, low-frequency, acoustic-waveform probe and slow velocity flowmeter for characterization of a fractured mafic intrusion in southern Ontario, Canada. Conventional geophysical measurements included temperature, caliper, gamma, acoustic, single-point resistance, and acoustic televiewer logs. Hole stability problems prevented the use of neutron and gamma-gamma logs, because these logs require that a radioactive source be lowered into the borehole. Measurements were made in three boreholes as much as 850 m deep and penetrating a few tens of meters into granitic basement. All rocks within the mafic intrusion were characterized by minimal gamma radiation and acoustic velocities of about 6.9 km/sec. The uniformity of the acoustic velocities and the character of acoustic-waveform logs made with a conventional high-frequency logging source correlated with the density of fractures evident on televiewer logs. Sample intervals of high-frequency waveform logs were transformed into interpretations of effective fracture opening using a recent model for acoustic attenuation in fractured rocks. The new low-frequency sparker source did not perform as expected at depths below 250 m because of previously unsuspected problems with source firing under large hydrostatic heads. A new heat-pulse, slow velocity flowmeter was used to delineate in detail the flow regime indicated in a general way by temperature logs. The flowmeter measurements indicated that water was entering 2 of the boreholes at numerous fractures above a depth of 200 m, with flow in at least 2 of the boreholes exiting through large isolated fractures below a depth of 400 m. (Author 's abstract)

  10. Application of advanced borehole geophysical logging to managed aquifer recharge investigations

    NASA Astrophysics Data System (ADS)

    Maliva, Robert G.; Clayton, Edward A.; Missimer, Thomas M.

    2009-09-01

    Communities and water utilities are increasingly being forced to implement more hydrogeologically complex alternative water supply and storage options to meet increasing freshwater demands. The performance of managed aquifer recharge projects, including aquifer storage and recovery, is controlled by the movement and mixing of stored freshwater and native groundwater, and fluid-rock interactions, which, in turn, are strongly influenced by aquifer heterogeneity. Advanced borehole geophysical logging techniques developed for the oil and gas industry such as neutron-gamma ray spectroscopy, microresistivity imaging, and nuclear magnetic resonance, can provide hitherto unavailable fine-scale data on porosity (total and effective), hydraulic conductivity, salinity, and the mineralogical composition of aquifers. Data on aquifer heterogeneity obtained from advanced borehole geophysics logs, combined with information on larger-scale aquifer hydraulics obtained from pumping tests, have the potential for improving aquifer characterization and modeling needed for feasibility assessments and the design and optimization of the operation of managed aquifer recharge systems.

  11. Continued geophysical logging near the GMH Electronics National Priorities List Superfund site near Roxboro, North Carolina

    USGS Publications Warehouse

    Antolino, Dominick J.; Chapman, Melinda J.

    2017-01-06

    The U.S. Geological Survey South Atlantic Water Science Center collected borehole geophysical logs and images and continuous water-level data near the GMH Electronics National Priorities List Superfund site near Roxboro, North Carolina, during December 2012 through July 2015. Previous work by the U.S. Geological Survey South Atlantic Water Science Center at the site involved the collection of borehole geophysical log data in 15 wells, in addition to surface geologic mapping and passive diffusion bag sampling. In a continued effort to assist the U.S. Environmental Protection Agency in developing a conceptual groundwater model to assess current contaminant distribution and future migration of contaminants, more than 900 subsurface features (primarily fracture orientations) in 10 open borehole wells were delineated and continuous water-level data information from 14 monitoring wells within close proximity of the initially drilled boreholes was collected to observe any induced water-level fluctuations during drilling operations

  12. Commercial geophysical well logs from the USW G-1 drill hole, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Muller, D.C.; Kibler, J.E.

    1983-01-01

    Drill hole USW G-1 was drilled at Yucca Mountain, Nevada Test Site, Nevada, as part of the ongoing exploration program for the Nevada Nuclear Waste Storage Investigations. Contract geophysical well logs run at USW G-1 show only limited stratigraphic correlations, but correlate reasonably well with the welding of the ash-flow and ash-fall tuffs. Rocks in the upper part of the section have highly variable physical properties, but are more uniform and predictably lower in the section.

  13. Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine; Melkumyan, Arman; Wyman, Derek; Hatherly, Peter

    2015-04-01

    The mining of stratiform ore deposits requires a means of determining the location of stratigraphic boundaries. A variety of geophysical logs may provide the required data but, in the case of banded iron formation hosted iron ore deposits in the Hamersley Ranges of Western Australia, only one geophysical log type (natural gamma) is collected for this purpose. The information from these logs is currently processed by slow manual interpretation. In this paper we present an alternative method of automatically identifying recurring stratigraphic markers in natural gamma logs from multiple drill holes. Our approach is demonstrated using natural gamma geophysical logs that contain features corresponding to the presence of stratigraphically important marker shales. The host stratigraphic sequence is highly consistent throughout the Hamersley and the marker shales can therefore be used to identify the stratigraphic location of the banded iron formation (BIF) or BIF hosted ore. The marker shales are identified using Gaussian Processes (GP) trained by either manual or active learning methods and the results are compared to the existing geological interpretation. The manual method involves the user selecting the signatures for improving the library, whereas the active learning method uses the measure of uncertainty provided by the GP to select specific examples for the user to consider for addition. The results demonstrate that both GP methods can identify a feature, but the active learning approach has several benefits over the manual method. These benefits include greater accuracy in the identified signatures, faster library building, and an objective approach for selecting signatures that includes the full range of signatures across a deposit in the library. When using the active learning method, it was found that the current manual interpretation could be replaced in 78.4% of the holes with an accuracy of 95.7%.

  14. Drilling, construction, geophysical log data, and lithologic log for boreholes USGS 142 and USGS 142A, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Hodges, Mary K.V.; Schusler, Kyle; Mudge, Christopher

    2017-07-27

    ranged in thickness from about 2 to 100 ft and varied from highly fractured to dense, and ranged from massive to diktytaxitic to scoriaceous, in texture.Geophysical logs were collected on completion of drilling at boreholes USGS 142 and USGS 142A. Geophysical logs were examined with available core material to describe basalt, sediment and sedimentary rock layers, and rhyolite. Natural gamma logs were used to confirm sediment layer thickness and location; neutron logs were used to examine basalt flow units and changes in hydrogen content; gamma-gamma density logs were used to describe general changes in rock properties; and temperature logs were used to understand hydraulic gradients for deeper sections of borehole USGS 142. Gyroscopic deviation was measured to record deviation from true vertical at all depths in boreholes USGS 142 and USGS 142A.

  15. Analysis of geophysical logs, at North Penn Area 6 Superfund Site, Lansdale, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1999-01-01

    The U.S. Geological Survey (USGS), as part of technical assistance to the U.S. Environmental Protection Agency (USEPA), collected borehole geophysical log data in 34 industrial, commercial, and public supply wells and 28 monitor wells at the North Penn Area 6 Superfund Site, in Lansdale, Pa., from August 22, 1995, through August 29, 1997. The wells range in depth from 50 to 1,027 feet below land surface and are drilled in Triassic-age shales and siltstones of the Brunswick Group and Lockatong Formation. The geophysical log data were collected to help describe the hydrogeologic framework in the area and to provide guidance in the reconstruction of the 28 monitor wells drilled during summer 1997. At the time of logging, all wells had open-hole construction. The geophysical logs, caliper, fluid-resistivity, and fluid-temperature, and borehole video logs were used to determine the vertical distribution of water-bearing fractures. Heatpulse-flowmeter measurements were used to determine vertical borehole flow under pumping and nonpumping conditions. The most productive fractures generally could be determined from heatpulse-flowmeter measurements under pumping conditions. Vertical borehole flow was measured under nonpumping conditions in most wells that had more than one water-bearing fracture. Upward flow was measured in 35 wells and probably is a result of natural head differences between fractures in the local ground-water-flow system. Downward flow was measured in 11 wells and commonly indicated differences in hydraulic heads of the fractures caused by nearby pumping. Both upward and downward flow was measured in three wells. No flow was detected in eight wells. Natural-gamma-ray logs were used to estimate the attitude of bedding. Thin shale marker beds, shown as spikes of elevated radioactivity in the natural-gamma logs of some wells throughout the area, enable the determination of bedding-plane orientation from three-point correlations. Generally, the marker beds in

  16. Capability of self-organizing map neural network in geophysical log data classification: Case study from the CCSD-MH

    NASA Astrophysics Data System (ADS)

    Konaté, Ahmed Amara; Pan, Heping; Fang, Sinan; Asim, Shazia; Ziggah, Yao Yevenyo; Deng, Chengxiang; Khan, Nasir

    2015-07-01

    Well log interpretation is one of the prime sources of information for deep lithology in drilling research. Because of the complex geological features of the crystalline metamorphic rocks, more complex nonlinear functional behaviors exist for well log interpretation purposes. Hence, establishing a prediction technology that can accurately interpret/classify well log data in terms of lithology is of major significance. This study, for the first time, explores the application of self-organizing map neural network (SOM) in the classification of metamorphic rocks from Chinese Continental Scientific Drilling Main Hole (CCSD-MH) log data. For this purpose, a total of 33,326 data points derived from resistivity, P-wave velocity, bulk density, photoelectric absorption capture cross section, gamma ray, potassium content and neutron logs were used as an input pattern to a SOM to classify lithology in five categories: orthogneiss, paragneiss, eclogite, amphibolite and ultramafic rocks. Comparison of SOM results to those of feed-forward neural network (FFNN) was also carried out. The cross-validation method was used to investigate the robustness of the two neural networks in terms of classification accuracy in the context of lithology clustering tasks by sampling rotation. Statistical tests such as student paired samples t-test was carried out to guide in classification decision of the CCSD-MH data. The results of this study have proven that SOM appears to be comparable to FFNN in classifying lithology using geophysical log data from crystalline rocks. This proposed SOM approach can serve as practical alternative technology to be used in drilling research.

  17. Geophysical - new technology, lower cost gearing search

    SciTech Connect

    Heitman, L.B.

    1985-12-01

    Seismic companies will remain competitive only if they reduce costs and at the same time increase the technological capabilities of their products. Overcapacity and lower prices plague geophysical films. Several key improvements in offshore seismic data collection were made during 1985, e.g., wide-tow seismic source arrays that improve the signal-to-noise ratio of the data by reducing various unwanted noise compounds have become standard and seismic source levels have also been increased by a wider variety of air and water gun offering. These improvement in data collection are discussed.

  18. Joint Inversion of Geochemical Data and Geophysical Logs for Lithology Identification in CCSD Main Hole

    NASA Astrophysics Data System (ADS)

    Deng, Chengxiang; Pan, Heping; Luo, Miao

    2017-08-01

    The Chinese Continental Scientific Drilling (CCSD) main hole is located in the Sulu ultrahigh-pressure metamorphic (UHPM) belt, providing significant opportunities for studying the metamorphic strata structure, kinetics process and tectonic evolution. Lithology identification is the primary and crucial stage for above geoscientific researches. To release the burden of log analyst and improve the efficiency of lithology interpretation, many algorithms have been developed to automate the process of lithology prediction. While traditional statistical techniques, such as discriminant analysis and K-nearest neighbors classifier, are incompetent in extracting nonlinear features of metamorphic rocks from complex geophysical log data; artificial intelligence algorithms are capable of solving nonlinear problems, but most of the algorithms suffer from tuning parameters to be global optimum to establish model rather than local optimum, and also encounter challenges in making the balance between training accuracy and generalization ability. Optimization methods have been applied extensively in the inversion of reservoir parameters of sedimentary formations using well logs. However, it is difficult to obtain accurate solution from the logging response equations of optimization method because of the strong overlapping of nonstationary log signals when applied in metamorphic formations. As oxide contents of each kinds of metamorphic rocks are relatively less overlapping, this study explores an approach, set in a metamorphic formation model and using the Broyden Fletcher Goldfarb Shanno (BFGS) optimization algorithm to identify lithology from oxide data. We first incorporate 11 geophysical logs and lab-collected geochemical data of 47 core samples to construct oxide profile of CCSD main hole by using backwards stepwise multiple regression method, which eliminates irrelevant input logs step by step for higher statistical significance and accuracy. Then we establish oxide response

  19. Data logging technology in ambulatory medical instrumentation.

    PubMed

    Anderson, R; Lyons, G M

    2001-05-01

    This paper reviews the advancements made in ambulatory data logging used in the study of human subjects since the inception of the analogue tape based data logger in the 1960s. Research into the area of ambulatory monitoring has been rejuvenated due to the development of novel storage technologies during the 1990s. Data logging systems that were previously impractical due to lack of processing power, practical size and cost are now available to the practitioner. An overview of the requirements of present day ambulatory data logging is presented and analogue tape, solid-state memory and disk drive storage recording systems that have been described in the literature are investigated in detail. It is proposed that digital based technology offers the best solution to the problems encountered during human based data logging. The appearance of novel digital storage media will continue the trend of increased recording durations, signal resolution and number of parameters thus allowing the momentum gained throughout the last several decades to continue.

  20. Evaluation of geophysical logs, Phase II, November 1998 to May 1999, at Crossley Farms Superfund Site, Berks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    2000-01-01

    Between November 1998 and May 1999, geophysical logging was conducted in 29 boreholes at the Crossley Farms Superfund Site, Hereford Township, Berks County, Pa., to determine the fluidproducing zones, fluid-receiving zones, zones of vertical borehole flow, and casing depth. The wells range in depth from 96 to 500 feet below land surface. Gamma logs only were collected in three bedrock wells. The geophysical logging determined the placement of well screens and packers, which allow monitoring and sampling of water-bearing zones in the fractured bedrock so that the horizontal and vertical distribution of contaminated ground water migrating from known sources could be determined. Geophysical logging included collection of caliper, video, fluid-temperature, fluid-resistivity, single-point-resistance, natural-gamma, fluid-flow, and acoustic-televiewer logs. Caliper and video logs were used to locate fractures, joints, and weathered zones. Inflections on fluidtemperature and fluid-resistivity logs indicated possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical, video logs, and drillers notes, 24 of the wells were reconstructed such that water levels can be monitored and water samples collected from discrete water-bearing fractures in each well.

  1. Hydrologic properties of coal beds in the Powder River Basin, Montana I. Geophysical log analysis

    USGS Publications Warehouse

    Morin, R.H.

    2005-01-01

    As part of a multidisciplinary investigation designed to assess the implications of coal-bed methane development on water resources for the Powder River Basin of southeastern Montana, six wells were drilled through Paleocene-age coal beds along a 31-km east-west transect within the Tongue River drainage basin. Analysis of geophysical logs obtained in these wells provides insight into the hydrostratigraphic characteristics of the coal and interbedded siliciclastic rocks and their possible interaction with the local stress field. Natural gamma and electrical resistivity logs were effective in distinguishing individual coal beds. Full-waveform sonic logs were used to determine elastic properties of the coal and an attendant estimate of aquifer storage is in reasonable agreement with that computed from a pumping test. Inspection of magnetically oriented images of the borehole walls generated from both acoustic and optical televiewers and comparison with coal cores infer a face cleat orientation of approximately N33??E, in close agreement with regional lineament patterns and the northeast trend of the nearby Tongue River. The local tectonic stress field in this physiographic province as inferred from a nearby 1984 earthquake denotes an oblique strike-slip faulting regime with dominant east-west compression and north-south extension. These stress directions are coincident with those of the primary fracture sets identified from the televiewer logs and also with the principle axes of the drawdown ellipse produced from a complementary aquifer test, but oblique to apparent cleat orientation. Consequently, examination of these geophysical logs within the context of local hydrologic characteristics indicates that transverse transmissivity anisotropy in these coals is predominantly controlled by bedding configuration and perhaps a mechanical response to the contemporary stress field rather than solely by cleat structure.

  2. Geophysical logging data from the Mills Gap Road area near Asheville, North Carolina

    USGS Publications Warehouse

    Chapman, Melinda J.; Huffman, Brad A.

    2011-01-01

    In September 2009, the U.S. Geological Survey (USGS) was requested to assist the Environmental Protection Agency (EPA) Region 4 Superfund Section in the development of a conceptual groundwater flow model in the area of the Mills Gap Road contaminant investigation near Asheville, North Carolina (Site ID A4P5) through an Interagency Grant and work authorization IAD DW number 14946085. The USGS approach included the application of established and state-of-the-science borehole geophysical tools and methods used to delineate and characterize fracture zones in the regolith-fractured bedrock groundwater system. Borehole geophysical logs were collected in eight wells in the Mills Gap Road project area from January through June 2010. These subsurface data were compared to local surface geologic mapping data collected by the North Carolina Geological Survey (NCGS) from January through May 2010.

  3. Borehole geophysical logs at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    USGS Publications Warehouse

    Braun, Christopher L.; Anaya, Roberto; Kuniansky, Eve L.

    2000-01-01

    A shallow alluvial aquifer at the Naval Weapons Industrial Reserve Plant near Dallas, Texas, has been contaminated by organic solvents used in the fabrication and assembly of aircraft and aircraft parts. Natural gamma-ray and electromagnetic-induction borehole geophysical logs were obtained from 162 poly vinyl-chloride-cased wells at the plant and were integrated with existing lithologic data to improve site characterization of the subsurface alluvium. Software was developed for filtering and classifying the log data and for processing, analyzing, and creating graphical output of the digital data. The alluvium consists of mostly fine-grained low-permeability sediments; however for this study, the alluvium was classified into low, intermediate, and high clay-content sediments on the basis of the gamma-ray logs. The low clay-content sediments were interpreted as being relatively permeable, whereas the high clay-content sediments were interpreted as being relatively impermeable. Simple statistics were used to identify zones of potentially contaminated sediments on the basis of the gamma-ray log classifications and the electromagnetic-induction log conductivity data.

  4. Log ASCII Standard (LAS) Files for Geophysical (Gamma Ray) Wireline Well Logs and Their Application to Geologic Cross Section C-C' Through the Central Appalachian Basin

    USGS Publications Warehouse

    Trippi, Michael H.; Crangle, Robert D.

    2009-01-01

    U.S. Geological Survey (USGS) regional geologic cross section C-C' (Ryder and others, 2008) displays key stratigraphic intervals in the central Appalachian basin. For this cross section, strata were correlated by using descriptions of well cuttings and gamma ray well log traces. This report summarizes the procedures used to convert gamma ray curves on paper well logs to the digital Log ASCII (American Standard Code for Information Interchange) Standard (LAS) format using the third-party software application Neuralog. The procedures could be used with other geophysical wireline logs also. The creation of digital LAS files from paper well logs by using Neuralog is very helpful, especially when dealing with older logs with limited or nonexistent digital data. The LAS files from the gamma ray logs of 11 wells used to construct cross section C-C' are included in this report. They may be downloaded from the index page as a single ZIP file.

  5. Evolution of neural networks for the prediction of hydraulic conductivity as a function of borehole geophysical logs: Shobasama site, Japan.

    SciTech Connect

    Reeves, Paul C.; McKenna, Sean Andrew

    2004-06-01

    This report describes the methodology and results of a project to develop a neural network for the prediction of the measured hydraulic conductivity or transmissivity in a series of boreholes at the Tono, Japan study site. Geophysical measurements were used as the input to EL feed-forward neural network. A simple genetic algorithm was used to evolve the architecture and parameters of the neural network in conjunction with an optimal subset of geophysical measurements for the prediction of hydraulic conductivity. The first attempt was focused on the estimation of the class of the hydraulic conductivity, high, medium or low, from the geophysical logs. This estimation was done while using the genetic algorithm to simultaneously determine which geophysical logs were the most important and optimizing the architecture of the neural network. Initial results showed that certain geophysical logs provided more information than others- most notably the 'short-normal', micro-resistivity, porosity and sonic logs provided the most information on hydraulic conductivity. The neural network produced excellent training results with accuracy of 90 percent or greater, but was unable to produce accurate predictions of the hydraulic conductivity class. The second attempt at prediction was done using a new methodology and a modified data set. The new methodology builds on the results of the first attempts at prediction by limiting the choices of geophysical logs to only those that provide significant information. Additionally, this second attempt uses a modified data set and predicts transmissivity instead of hydraulic conductivity. Results of these simulations indicate that the most informative geophysical measurements for the prediction of transmissivity are depth and sonic log. The long normal resistivity and self potential borehole logs are moderately informative. In addition, it was found that porosity and crack counts (clear, open, or hairline) do not inform predictions of

  6. Geophysical well-log measurements in three drill holes at Salt Valley, Utah

    SciTech Connect

    Daniels, J.J.; Hite, R.J.; Scott, J.H.

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material. The following geophysical well-log measurements were made in each of the three drill holes: (1) density, (2) neutron, (3) acoustic velocity, (4) normal resistivity, and (5) gamma ray. Widely spaced resistivity and conductivity well-log measurements were made in the deep drill hole. Each of these well-log measurements shows the division of the evaporite sequence into halite and interbed sections. At the present time the most useful well-logging measurements for determining the individual lithologies in an evaporite sequence are gamma ray, neutron, density, and acoustic velocity. The high resistivity contrast between the drilling fluid (0.5 ohm-m) and salt (10,000 ohm-m) makes it difficult to obtain quantitative measurements of electrical properties in an evaporite sequence. Tests of widely spaced electrode configurations show that the effects of the brine on the resistivity measurements can be reduced, and the depth of investigation increased, by increasing the source-receiver electrode spacing. Tests of a single-coil induction probe show good resolution of the contrasting electrical properties of the various interbed lithologies.

  7. Geophysical borehole logging in massive carbonates Whitmoyer Laboratories Superfund Site, Meyerstown, PA

    SciTech Connect

    Bour, B.; Clemmens, C.B.

    1997-10-01

    Correlation within massive carbonate sequences like those present in central Pennsylvania`s Lebanon Valley is often difficult because the units contain few distinct marker beds and the contacts between units are frequently gradational. This project demonstrated that correlations among boreholes can successfully be made using a combination of geophysical logs, particularly natural gamma, high resolution density and sonic. The technique involves positioning logs from several of the deepest holes on cross sections at the best estimated structural elevation (correcting for regional clip), comparing the general shape of the natural gamma curve and adjusting the logs positions for a best fit. Once a datum has been hypothesized, (all) the logs are examined for anomalies that might be traced through. The high resolution density proved capable of identifying small fractures which appeared to correlate along strata lines with the gamma. These hypothetical {open_quotes}marker beds{close_quotes} are projected onto as many logs as possible to verify the anomaly. Once an anomaly (bed) is identified on several logs over a sufficiently wide area, three point strike and clip calculations are performed to verify that the correlations fit the regional pattern. This technique is not particularly new, it has been used in subsurface investigations for decades. The application to massive units with only the most subtle marker beds, however, has not been particularly successful. It proved successful at this site because of the use of sensitive gamma and density sondes, and by a large number (62), of boreholes, a third of which penetrate over 400 feet of section. (Although only two wells intersected the Ontelaunee-Annville contact.) Only very slight density (lower) and velocity (faster) differences were noted between the dolomitic limestone (bioherm) of the Ontelaunee Formation and the limestones of the Annville and Epler Formations.

  8. Geophysical logging case history of the Raft River geothermal system, Idaho

    SciTech Connect

    Applegate, J.K.; Moens, T.A.

    1980-04-01

    Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation scheme from a minimum of data sets. The Raft River geothermal system occurs in the Raft River Valley, which is a portion of the Basin and Range geomorphic province located in south central Idaho, south of the Snake River Plain. The valley is a late Cenozoic structural downwarp bounded by faults on the west, south, and east. The downwarp is filled with Tertiary and Paleozoic sediments, metasediments, and volcanics that overlie Precambrian rocks. The variety of rock types, the presence of alteration products, and the variability of fracturing make reliable interpretations difficult. However, the cross plotting of various parameters has allowed a determination of rock types and an analysis of the degree of alteration and the density of fractures. Thus, one can determine the relevant data necessary to assess a geothermal reservoir in similar rock types and use cross plots to potentially define the producing zones.

  9. Continued Geophysical Logging in the vicinity of the GMH Electronics Superfund Site near Roxboro, North Carolina

    USGS Publications Warehouse

    Antolino, Dominick J.; Chapman, Melinda J.

    2016-01-01

    The collection of borehole geophysical logs and images and continuous water-level data was conducted by the U.S. Geological Survey South Atlantic Water Science Center in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina, during December 2012 through July 2015. The study purpose was part of a continued effort to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants. Previous work by the U.S. Geological Survey South Atlantic Water Science Center at the site involved similar data collection, in addition to surface geologic mapping and passive diffusion bag sampling within monitoring wells (Chapman and others, 2013). The continued data compilation efforts included the delineation of more than 900 subsurface features (primarily fracture orientations) in 10 open borehole wells. Geophysical logs, borehole imagery, pumping data, and heat-pulse flow measurements were collected and are presented within this data release.

  10. Project HOTSPOT: Borehole geophysics log interpretation from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Lee, M. D.; Schmitt, D. R.; Chen, X.; Shervais, J. W.; Liberty, L. M.; Potter, K. E.; Kessler, J. A.

    2013-12-01

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberely, and (3) Mountain Home. The most eastern drill hole is Kimama located along the central volcanic axis of the SRP and documents basaltic volcanism. The Kimberely drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama drill hole and is located near the margin of the plain. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. A suite of ground and borehole geophysical surveys were carried out within the SRP between 2010 and 2012. The borehole geophysics logs included gamma ray (spectral and natural), neutron hydrogen index, electrical resistivity, magnetic susceptibility, ultrasonic borehole televiewer imaging, full waveform sonic, and vertical seismic profile. The borehole geophysics logs were qualitatively assessed through visual interpretation of lithological horizons and quantitatively through physical property specialized software and digital signal processing automated filtering process to identify step functions and high frequency anomalies. Preliminary results were published by Schmitt et al. (2012), Potter et al. (2012), and Shervais et al. (2013). The results are continuously being enhanced as more information is qualitatively and quantitatively delineated from the borehole geophysics logs. Each drill hole encounters three principal units: massive basalt flows, rhyolite, and sediments. Basalt has a low to moderate porosity and is

  11. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  12. Preliminary report on geophysical well-logging activity on the Salton Sea Scientific Drilling Project, Imperial Valley, California

    USGS Publications Warehouse

    Paillet, Frederick L.; Morin, R.H.; Hodges, H.E.

    1986-01-01

    The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous

  13. Geophysical log analysis of selected test and residential wells at the Shenandoah Road National Superfund Site, East Fishkill, Dutchess County, New York

    USGS Publications Warehouse

    Reynolds, Richard J.; Anderson, J. Alton; Williams, John H.

    2015-01-01

    The geophysical logs and their analyses are available for display and download from the U.S. Geological Survey, New York Water Science Center, online geophysical log archive (http://ny.water.usgs.gov/maps/geologs/) in LAS (Log ASCII Standard), PDF, and WellCad formats.

  14. Hydrostatigraphic characterization of coastal aquifer by geophysical log analysis, Cape Cod National Seashore, Massachusetts

    USGS Publications Warehouse

    Morin, Roger H.; Urish, Daniel W.

    1995-01-01

    The Cape Cod National Seashore comprises part of Provincetown, Massachusetts, which lies at the northern tip of Cape Cod. The hydrologic regime in this area consists of unconsolidated sand-and-gravel deposits that constitute a highly permeable aquifer within which is a freshwater lens floating on denser sea water. A network of wells was installed into this aquifer to monitor a leachate plume emanating from the Provincetown landfill. Wells were located along orthogonal transects perpendicular to and parallel to the general groundwater flow path from the landfill to the seashore approximately 1,000 m to the southeast. Temperature, epithermal neutron, natural gamma. and electronmagnetic induction logs were obtained in five wells to depths ranging from 23 to 37 m. These logs identify the primary contamination and show that its movement is controlled by and confined within a dominant hydrostratigraphic unit about 2 to 5 m thick that exhibits low porosity, large representative grain size, and high relative permeability. A relation is also found between the temperaturegradient logs and water quality, with the gradient traces serving as effective delineators of the contaminant plume in wells nearest the landfill. Contamination is not detectable in the well nearest the seashore and farthest from the landfill, and the induction log from this well clearly identifies the freshwater/seawater transition zone at a depth of about 18 m. The geophysical logs provide fundamental information concerning the spatial distribution of aquifer properties near the landfill and lend valuable insight into how these properties influence the migration of the leachate plume to the sea.

  15. Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey

    USGS Publications Warehouse

    Morin, R.H.; Carleton, G.B.; Poirier, S.

    1997-01-01

    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure

  16. Geophysical well logs for eleven drill holes at the Colorado School of Mines Experimental Mine Site, Idaho Springs, Colorado

    USGS Publications Warehouse

    Daniels, J.J.; Scott, J.H.

    1984-01-01

    The following geophysical well log measurements were made in eleven drill holes above the Colorado School of Mines Experimental Mine at Idaho Springs, Colorado: (1) acoustic velocity (2) resistivity, (3) caliper, (4) gamma-gamma density, (5) neutron-thermal neutron, (6) gamma ray, (7) induced polarization (IP), (8) self potential (SP), and magnetic susceptibility. The density and acoustic velocity logs indicate extensive fracturing in each of the drill holes. Variations in the relative amount of felsic or mafic mineral components in the rocks can be inferred from the magnetic susceptibility and gamma ray well log responses. Zones containing metallic sulfide mineralization are interpreted from the IP well log response.

  17. Fractured-aquifer hydrogeology from geophysical logs: Brunswick group and Lockatong Formation, Pennsylvania

    USGS Publications Warehouse

    Morin, Roger H.; Senior, Lisa A.; Decker, Edward R.

    2000-01-01

    The Brunswick Group and the underlying Lockatong Formation are composed of lithified Mesozoic sediments that constitute part of the Newark Basin in southeastern Pennsylvania. These fractured rocks form an important regional aquifer that consists of gradational sequences of shale, siltstone, and sandstone, with fluid transport occurring primarily in fractures. An extensive suite of geophysical logs was obtained in seven wells located at the borough of Lansdale, Pennsylvania, in order to better characterize the areal hydrogeologic system and provide guidelines for the refinement of numerical ground water models. Six of the seven wells are approximately 120 m deep and the seventh extends to a depth of 335 m. Temperature, fluid conductivity, and flowmeter logs are used to locate zones of fluid exchange and to quantify transmissivities. Electrical resistivity and natural gamma logs together yield detailed stratigraphic information, and digital acoustic televiewer data provide magnetically oriented images of the borehole wall from which almost 900 fractures are identified.Analyses of the geophysical data indicate that the aquifer penetrated by the deep well can be separated into two distinct structural domains, which may, in turn, reflect different mechanical responses to basin extension by different sedimentary units:1. In the shallow zone (above 125 m), the dominant fracture population consists of gently dipping bedding plane partings that strike N46°E and dip to the northwest at about 11 degrees. Fluid flow is concentrated in the upper 80 m along these subhorizontal fractures, with transmissivities rapidly diminishing in magnitude with depth.2. The zone below 125 m marks the appearance of numerous high-angle fractures that are orthogonal to the bedding planes, striking parallel but dipping steeply southeast at 77 degrees.This secondary set of fractures is associated with a fairly thick (approximately 60 m) high-resistivity, low-transmissivity sandstone unit that is

  18. Evaluation of borehole geophysical and video logs, at Butz Landfill Superfund Site, Jackson Township, Monroe County, Pennsylvania

    USGS Publications Warehouse

    Low, D.J.; Conger, R.W.

    2001-01-01

    Between February 1996 and November 2000, geophysical logging was conducted in 27 open borehole wells in and adjacent to the Butz Landfill Superfund Site, Jackson Township, Monroe County, Pa., to determine casing depth and depths of water-producing zones, water-receiving zones, and zones of vertical borehole flow. The wells range in depth from 57 to 319 feet below land surface. The geophysical logging determined the placement of well screens and packers, which allow monitoring and sampling of water-bearing zones in the fractured bedrock so that the horizontal and vertical distribution of contaminated ground water migrating from known sources could be determined. Geophysical logging included collection of caliper, natural-gamma, single-point-resistance, fluid-resistivity, fluid-temperature, and video logs. Caliper and video logs were used to locate fractures, joints, and weathered zones. Inflections on single-point-resistance, fluid-temperature, and fluid-resistivity logs indicated possible water-bearing fractures, and heatpulse-flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy.

  19. The research on borehole stability in depleted reservoir and caprock: using the geophysics logging data.

    PubMed

    Yuan, Junliang; Deng, Jingen; Luo, Yong; Guo, Shisheng; Zhang, Haishan; Tan, Qiang; Zhao, Kai; Hu, Lianbo

    2013-01-01

    Long-term oil and gas exploitation in reservoir will lead to pore pressure depletion. The pore pressure depletion will result in changes of horizontal in-situ stresses both in reservoirs and caprock formations. Using the geophysics logging data, the magnitude and orientation changes of horizontal stresses in caprock and reservoir are studied. Furthermore, the borehole stability can be affected by in-situ stresses changes. To address this issue, the dehydration from caprock to reservoir and roof effect of caprock are performed. Based on that, the influence scope and magnitude of horizontal stresses reduction in caprock above the depleted reservoirs are estimated. The effects of development on borehole stability in both reservoir and caprock are studied step by step with the above geomechanical model.

  20. The Research on Borehole Stability in Depleted Reservoir and Caprock: Using the Geophysics Logging Data

    PubMed Central

    Deng, Jingen; Luo, Yong; Guo, Shisheng; Zhang, Haishan; Tan, Qiang; Zhao, Kai; Hu, Lianbo

    2013-01-01

    Long-term oil and gas exploitation in reservoir will lead to pore pressure depletion. The pore pressure depletion will result in changes of horizontal in-situ stresses both in reservoirs and caprock formations. Using the geophysics logging data, the magnitude and orientation changes of horizontal stresses in caprock and reservoir are studied. Furthermore, the borehole stability can be affected by in-situ stresses changes. To address this issue, the dehydration from caprock to reservoir and roof effect of caprock are performed. Based on that, the influence scope and magnitude of horizontal stresses reduction in caprock above the depleted reservoirs are estimated. The effects of development on borehole stability in both reservoir and caprock are studied step by step with the above geomechanical model. PMID:24228021

  1. Geophysical Logs of Selected Wells at the Diaz Chemical Superfund Site in the Village of Holley, New York, 2009

    USGS Publications Warehouse

    Eckhardt, David A.V.; Anderson, J. Alton

    2010-01-01

    Geophysical logs were collected and analyzed to define the bedrock fracture patterns and flow zones penetrated by three wells at the Diaz Chemical Superfund Site in the Village of Holley in Orleans County, New York. The work was conducted in December 2009 as part of the investigation of contamination by organic compounds in the shale, mudstone, and sandstone bedrock at the Site. The geophysical logs include natural-gamma, caliper, borehole image, fluid properties, and flowmeter data. The orientation of fractures in the boreholes was inferred from the log data and summarized in stereo and tadpole plots; when possible, the transmissivity and hydraulic head was also determined for fracture zones that were observed to be hydraulically active through the flowmeter logs. The data are intended, in part, for use in the remediation of the site.

  2. Drilling and geophysical logs of the tophole at an oil-and-gas well site, Central Venango County, Pennsylvania

    USGS Publications Warehouse

    Williams, John H.; Bird, Philip H.; Conger, Randall W.; Anderson, J. Alton

    2014-01-01

    Collection and integrated analysis of drilling and geophysical logs provided an efficient and effective means for characterizing the geohydrologic framework and conditions penetrated by the tophole at the selected oil-and-gas well site. The logging methods and lessons learned at this well site could be applied at other oil-and-gas drilling sites to better characterize the shallow subsurface with the overall goal of protecting freshwater aquifers during hydrocarbon development.

  3. Robust Library Building for Autonomous Classification of Downhole Geophysical Logs Using Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine L.; Melkumyan, Arman

    2017-03-01

    Machine learning techniques such as Gaussian Processes can be used to identify stratigraphically important features in geophysical logs. The marker shales in the banded iron formation hosted iron ore deposits of the Hamersley Ranges, Western Australia, form distinctive signatures in the natural gamma logs. The identification of these marker shales is important for stratigraphic identification of unit boundaries for the geological modelling of the deposit. Machine learning techniques each have different unique properties that will impact the results. For Gaussian Processes (GPs), the output values are inclined towards the mean value, particularly when there is not sufficient information in the library. The impact that these inclinations have on the classification can vary depending on the parameter values selected by the user. Therefore, when applying machine learning techniques, care must be taken to fit the technique to the problem correctly. This study focuses on optimising the settings and choices for training a GPs system to identify a specific marker shale. We show that the final results converge even when different, but equally valid starting libraries are used for the training. To analyse the impact on feature identification, GP models were trained so that the output was inclined towards a positive, neutral or negative output. For this type of classification, the best results were when the pull was towards a negative output. We also show that the GP output can be adjusted by using a standard deviation coefficient that changes the balance between certainty and accuracy in the results.

  4. Robust Library Building for Autonomous Classification of Downhole Geophysical Logs Using Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine L.; Melkumyan, Arman

    2016-12-01

    Machine learning techniques such as Gaussian Processes can be used to identify stratigraphically important features in geophysical logs. The marker shales in the banded iron formation hosted iron ore deposits of the Hamersley Ranges, Western Australia, form distinctive signatures in the natural gamma logs. The identification of these marker shales is important for stratigraphic identification of unit boundaries for the geological modelling of the deposit. Machine learning techniques each have different unique properties that will impact the results. For Gaussian Processes (GPs), the output values are inclined towards the mean value, particularly when there is not sufficient information in the library. The impact that these inclinations have on the classification can vary depending on the parameter values selected by the user. Therefore, when applying machine learning techniques, care must be taken to fit the technique to the problem correctly. This study focuses on optimising the settings and choices for training a GPs system to identify a specific marker shale. We show that the final results converge even when different, but equally valid starting libraries are used for the training. To analyse the impact on feature identification, GP models were trained so that the output was inclined towards a positive, neutral or negative output. For this type of classification, the best results were when the pull was towards a negative output. We also show that the GP output can be adjusted by using a standard deviation coefficient that changes the balance between certainty and accuracy in the results.

  5. A Generalized Approach for the Interpretation of Geophysical Well Logs in Ground-Water Studies - Theory and Application

    USGS Publications Warehouse

    Paillet, Frederick L.; Crowder, R.E.

    1996-01-01

    Quantitative analysis of geophysical logs in ground-water studies often involves at least as broad a range of applications and variation in lithology as is typically encountered in petroleum exploration, making such logs difficult to calibrate and complicating inversion problem formulation. At the same time, data inversion and analysis depend on inversion model formulation and refinement, so that log interpretation cannot be deferred to a geophysical log specialist unless active involvement with interpretation can be maintained by such an expert over the lifetime of the project. We propose a generalized log-interpretation procedure designed to guide hydrogeologists in the interpretation of geophysical logs, and in the integration of log data into ground-water models that may be systematically refined and improved in an iterative way. The procedure is designed to maximize the effective use of three primary contributions from geophysical logs: (1) The continuous depth scale of the measurements along the well bore; (2) The in situ measurement of lithologic properties and the correlation with hydraulic properties of the formations over a finite sample volume; and (3) Multiple independent measurements that can potentially be inverted for multiple physical or hydraulic properties of interest. The approach is formulated in the context of geophysical inversion theory, and is designed to be interfaced with surface geophysical soundings and conventional hydraulic testing. The step-by-step procedures given in our generalized interpretation and inversion technique are based on both qualitative analysis designed to assist formulation of the interpretation model, and quantitative analysis used to assign numerical values to model parameters. The approach bases a decision as to whether quantitative inversion is statistically warranted by formulating an over-determined inversion. If no such inversion is consistent with the inversion model, quantitative inversion is judged not

  6. Heterogeneity analysis of geophysical well-log data using Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Gairola, Gaurav S.; Chandrasekhar, E.

    2017-07-01

    Geophysical well-log data manifest nonlinear behaviour of their respective physical properties of the subsurface layers as a function of depth. Therefore, nonlinear data analysis techniques must be used to understand and characterize the nature of the subsurface lithologies, vis-à-vis their degree of heterogeneity. One such nonlinear technique is the fully data adaptive Hilbert-Huang Transform (HHT), which constitutes two independent techniques, namely, the empirical mode decomposition technique (EMDT) and the Hilbert spectral analysis (HSA). While EMDT facilitates to decompose the well-log data into oscillatory signals of different wavelengths called intrinsic mode functions (IMFs), which represent different frequency characteristics of the signal and which in turn helps to calculate the degree of heterogeneity in the subsurface, the HSA facilitates to determine the instantaneous amplitudes and frequencies of the IMFs, which can be used to characterize the heterogeneity in the signals. In this study, HHT has been applied to gamma-ray log of the thickest limestone reservoir zones of two different wells: Well B and Well C, located in the western offshore basin of India to determine the respective IMFs. The estimated instantaneous amplitudes and frequencies of the derived IMFs by HSA qualitatively suggested well C to be more heterogeneous than well B. By establishing a relationship between the IMF number (m) and its mean wavelength (Im), a heterogeneity index (ρ) associated with subsurface layers was determined using Im = kρm, where ' k' is a constant. ρ bears an inverse relation with the heterogeneity of the subsurface. The estimated ρ values confirm our observations from HSA. We attribute the higher degree of heterogeneity in Well C to high average shale volume in the limestone reservoir zone in Well C than in Well B. Interpretation of the results together with those of the heterogeneity analysis of the gas zone in limestone reservoir of Well C is made by

  7. Enabling Technologies for a Future Lunar and Planetary Geophysical Network

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Currie, D.; Grimm, R.; Kedar, S.; Nagihara, S.; Siegler, M.; Weber, R.; Zacny, K.

    2017-02-01

    A long-lived, multi-station, global lunar geophysical network will yield information about primary terrestrial differentiation, as well as potential hazards to long term human surface exploration. The technology can be applied to other planets.

  8. Geothermal characteristics of deep wells using geophysical logs in Pohang area, Korea

    NASA Astrophysics Data System (ADS)

    LIM, W.; Hamm, S. Y.; Lee, C.; Song, Y.; Kim, H.

    2016-12-01

    Pohang area displays a larger potential of geothermal energy with the highest heat flow of 83 mWm-2 in South Korea. A geothermal binary power plant with a generation capacity of 1.5MW using enhanced geothermal system (EGS) is under construction in Pohang area and will be completed until 2017. This study aims to reveal geothermal characteristics of four wells (BH-1 to BH-4 wells) of 2,383 m in depth in Pohang area, using geophysical logs. The geology of the study area is composed of tertiary mudstone of 200 - 359.1 m, tuff of 73 - 240 m, sandstone/mudstone of 46 - 907 m, rhyolite of 259 - 375 m, and andesitic volcanic breccia of 834 m in thicknesses from the surface, with granodiorite at bottom. By the result of the study, temperature and maximum electrical conductivity (EC) are 69.5°C at 1,502.6 m and 1,162 μS/cm at BH-2 well, 44.4°C at 912.3 m and 1,105 μS/cm at BH-3 well, and 82.5°C at 1,981.3 m and 3,412 μS/cm at BH-4 well. Thermal conductivity values at saturated state are 2.14 - 3.95 W/m-K (average 3.47 W/m-K) at BH-1 well and 2.36 - 3.61 W/m-K (average 2.85 W/m-K) at BH-4 well. ß (determining heat flow rate and up/down direction) values were estimated by using 1-D steady-state heat transfer equation and were determined as -0.77 - 0.99 with the geothermal gradients (Ks) of 42.5 - 46.3°C/km at BH-1 well, -3.15 - 3.05 with the Ks of 25.0 - 29.1°C/km at BH-2, -1.80 - 2.09 with the Ks of 20.0 - 23.0°C/km at BH-3 well, and -4.10 - 5.18 with the Ks of 30.2 - 39.0°C/km at BH-4 well. Most depths of all the wells showed upward heat transfer. Based on the geophysical logs, the main aquifer is located between 200 and 300 meters. KEY WORDS: Geothermal gradient, thermal conductivity, geophysical logs, ß value, heat transfer equation, Pohang area Acknowledgement This work was supported by grants from the Principal Research Fund of Korea Institute of the Geoscience and Mineral Resources (KIGAM 16-3411).

  9. Geophysical well logging operations and log analysis in Geothermal Well Desert Peak No. B-23-1

    SciTech Connect

    Sethi, D.K.; Fertl, W.H.

    1980-03-01

    Geothermal Well Desert Peak No. B-23-1 was logged by Dresser Atlas during April/May 1979 to a total depth of 2939 m (9642 ft). A temperature of 209/sup 0/C (408/sup 0/F) was observed on the maximum thermometer run with one of the logging tools. Borehole tools rated to a maximum temperature of 204.4/sup 0/C (400/sup 0/F) were utilized for logging except for the Densilog tool, which was from the other set of borehole instruments, rated to a still higher temperature, i.e., 260/sup 0/C (500/sup 0/F). The quality of the logs recorded and the environmental effects on the log response have been considered. The log response in the unusual lithologies of igneous and metamorphic formations encountered in this well could be correlated with the drill cutting data. An empirical, statistical log interpretation approach has made it possible to obtain meaningful information on the rocks penetrated. Various crossplots/histograms of the corrected log data have been generated on the computer. These are found to provide good resolution between the lithological units in the rock sequence. The crossplotting techniques and the statistical approach were combined with the drill cutting descriptions in order to arrive at the lithological characteristics. The results of log analysis and recommendations for logging of future wells have been included.

  10. Geophysical Log Analysis of Selected Test Holes and Wells in the High Plains Aquifer, Central Platte River Basin, Nebraska

    USGS Publications Warehouse

    Anderson, J. Alton; Morin, Roger H.; Cannia, James C.; Williams, John H.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Central Platte Natural Resources District is investigating the hydrostratigraphic framework of the High Plains aquifer in the Central Platte River basin. As part of this investigation, a comprehensive set of geophysical logs was collected from six test holes at three sites and analyzed to delineate the penetrated stratigraphic units and characterize their lithology and physical properties. Flow and fluid-property logs were collected from two wells at one of the sites and analyzed along with the other geophysical logs to determine the relative transmissivity of the High Plains aquifer units. The integrated log analysis indicated that the coarse-grained deposits of the alluvium and the upper part of the Ogallala Formation contributed more than 70 percent of the total transmissivity at this site. The lower part of the Ogallala with its moderately permeable sands and silts contributed some measureable transmissivity, as did the fine-grained sandstone of the underlying Arikaree Group, likely as a result of fractures and bedding-plane partings. Neither the lower nor the upper part of the siltstone- and claystone-dominated White River Group exhibited measurable transmissivity. The integrated analysis of the geophysical logs illustrated the utility of these methods in the detailed characterization of the hydrostratigraphy of the High Plains aquifer.

  11. Analysis of geophysical well logs obtained in the State 2-14 borehole, Salton Sea geothermal area, California

    USGS Publications Warehouse

    Paillet, Frederick L.; Morin, R.H.

    1988-01-01

    A complete suite of conventional geophysical well logs was obtained in the upper part of a 3220-m-deep borehole drilled into geothermally altered alluvial sediments on the southeastern edge of the Salton Sea. Geophysical logs obtained in the State 2-14 borehole indicate that neutron porosity, gamma-gamma, and deep-induction logs provide useful information on lithologic trends with depth. The natural gamma log contains almost continuous, high-frequency fluctuations that obscure lithologic trends and that may be related to recent radioisotope redistribution and departure from radiometric equilibrium. Acoustic transit time logs give unrealistically low in situ compressional velocities ranging from 1.8 to 3.0 km/s, whereas acoustic waveform logs indicate that sediment compressional velocities range from less than 3.0 km/s shallower than 1000 m in depth to almost 5.0 km/s at depths greater than 2000 m. Analyses indicate that most log values lie between two lithologic end points: an electrically conductive claystone with moderate neutron porosity, but no effective porosity, and an electrically nonconductive, fully cemented siltstone that has small but finite porosity. -from Authors

  12. Log ASCII Standard (LAS) Files for Geophysical Wireline Well Logs and Their Application to Geologic Cross Sections Through the Central Appalachian Basin

    USGS Publications Warehouse

    Crangle, Robert D.

    2007-01-01

    Introduction The U.S. Geological Survey (USGS) uses geophysical wireline well logs for a variety of purposes, including stratigraphic correlation (Hettinger, 2001, Ryder, 2002), petroleum reservoir analyses (Nelson and Bird, 2005), aquifer studies (Balch, 1988), and synthetic seismic profiles (Kulander and Ryder, 2005). Commonly, well logs are easier to visualize, manipulate, and interpret when available in a digital format. In recent geologic cross sections E-E' and D-D', constructed through the central Appalachian basin (Ryder, Swezey, and others, in press; Ryder, Crangle, and others, in press), gamma ray well log traces and lithologic logs were used to correlate key stratigraphic intervals (Fig. 1). The stratigraphy and structure of the cross sections are illustrated through the use of graphical software applications (e.g., Adobe Illustrator). The gamma ray traces were digitized in Neuralog (proprietary software) from paper well logs and converted to a Log ASCII Standard (LAS) format. Once converted, the LAS files were transformed to images through an LAS-reader application (e.g., GeoGraphix Prizm) and then overlain in positions adjacent to well locations, used for stratigraphic control, on each cross section. This report summarizes the procedures used to convert paper logs to a digital LAS format using a third-party software application, Neuralog. Included in this report are LAS files for sixteen wells used in geologic cross section E-E' (Table 1) and thirteen wells used in geologic cross section D-D' (Table 2).

  13. Geophysical log responses and their correlation with bed-to-bed stress contrasts in Paleozoic rocks, Appalachian Plateau, New York

    NASA Astrophysics Data System (ADS)

    Plumb, Richard A.; Evans, Keith F.; Engelder, Terry

    1991-08-01

    A 1-km profile of in situ stress and geophysical log data was acquired in the Wilkins well to study the relationship between rock properties and in situ stress contrasts. The Wilkins well penetrates Devonian clastic rocks on the Appalachian Plateau near the town of South Canisteo, New York. Open hole hydraulic fracture stress measurements were made in stratigraphic sequences where geophysical logs indicated significant bed-to-bed variations in elastic and lithologic properties. Analysis of stress magnitudes and interval-averaged geophysical data shows that principal horizontal stress magnitudes correlate directly with elastic stiffness and inversely with clay content. A similar relation is found for older Paleozoic strata penetrated by a well at Auburn, New York. Correlations between stress magnitude and geophysical properties observed in the Wilkins and Auburn wells provide strong evidence that bed to bed stress variations arise from a uniform ENE-WSW directed strain acting on beds of different Young's modulus rather than from variations in rock shear strength. Because of their high Young's modulus, sandstones, siltstones, and limestones in the northern Appalachian Basin are likely to be stronger barriers to hydraulic fracture propagation than shales. Porosity logs in the Wilkins well show that the large decrease in horizontal stress found at the base of the Rhine street Formation occurs where shales are less compacted. The correlation with undercompaction is consistent with a paleo-overpressure drainage mechanism as the cause for the stress decrease.

  14. Description of borehole geophysical and geologist logs, Berks Sand Pit Superfund Site, Longswamp Township, Berks County, Pennsylvania

    USGS Publications Warehouse

    Low, Dennis J.; Conger, Randall W.

    2003-01-01

    Between October 2002 and January 2003, geophysical logging was conducted in six boreholes at the Berks Sand Pit Superfund Site, Longswamp Township, Berks County, Pa., to determine (1) the waterproducing zones, water-receiving zones, zones of vertical borehole flow, orientation of fractures, and borehole and casing depth; and (2) the hydraulic interconnection between the six boreholes and the site extraction well. The boreholes range in depth from 61 to 270 feet. Geophysical logging included collection of caliper, natural-gamma, single-point-resistance, fluid-temperature, fluid-flow, and acoustic-televiewer logs. Caliper and acoustic-televiewer logs were used to locate fractures, joints, and weathered zones. Inflections on fluid-temperature and single-point-resistance logs indicated possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance, natural-gamma, and geologist logs provided information on stratigraphy. Flowmeter measurements were conducted while the site extraction well was pumping and when it was inactive to determine the hydraulic connections between the extraction well and the boreholes. Borehole geophysical logging and heatpulse flowmetering indicate active flow in the boreholes. Two of the boreholes are in ground-water discharge areas, two boreholes are in ground-water recharge areas, and one borehole is in an intermediate regime. Flow was not determined in one borehole. Heatpulse flowmetering, in conjunction with the geologist logs, indicates highly weathered zones in the granitic gneiss can be permeable and effective transmitters of water, confirming the presence of a two-tiered ground-water-flow system. The effort to determine a hydraulic connection between the site extraction well and six logged boreholes was not conclusive. Three boreholes showed decreases in depth to water after pumping of the site extraction well; in two boreholes, the depth to water increased. One borehole was cased its

  15. Testing the results of estimating lithological stratigraphy through cluster analysis on geophysical borehole logging data through Multi Sensor Core Logging data

    NASA Astrophysics Data System (ADS)

    Methe, Pascal; Goepel, Andreas; Kukowski, Nina

    2017-04-01

    To identify lithological stratigraphy of the deep subsurface usually requires probing through coring, as only core samples allow to determination a lithological profile with high precision and spatial resolution. However, since coring is expensive, geophysical borehole logs often are the only data available to obtain information on subsurface rocks. Different sedimentary rocks usually exert distinct specific physical properties, e.g. differ significantly with respect to properties as measured e.g. with gamma ray, density, sonic, or porosity logs. This offers to employ cluster analysis to derive information on lithology. To do so, we tested several cluster analysis algorithms (Ward hierarchical clustering, k-Means, Mean-Shift and DBSCAN) on geophysical borehole data. Our data set consists of borehole wireline logging data from the 1,179 m deep drill hole EF-FB 1/12, which was drilled in the framework of the INFLUINS (INtegrated FLUid dynamics IN Sedimentary basins) project in the center of the Thuringian Basin (Central Germany) and from which Triassic sedimentary rocks were recovered. To evaluate the outcome of our cluster analysis, we used independent data consisting of laboratory MSCL (Multi Sensor Core Logger) and rock physical measurements on altogether more than 500 m drill cores and individual core samples. The analysis of the borehole geophysical logging data along the entire borehole length allowed identification of lithology on the meter-scale, e.g. we could identify the Middle Dolomite (6 m thick) of the Middle Muschelkalk as well as embedded interlayers of anhydrite and mudstone (a few meters thick) in between the rock salt of the Salinarröt-formation in the Upper Buntsandstein. Further, we show that the density log and the sonic log are the most suitable ones for cluster analysis, as density and p-wave velocity show significant contrasts between different lithologies. The certainty of cluster analysis algorithms decreases in cases of gradual

  16. Geophysical, stratigraphic, and flow-zone logs of selected wells in Cayuga County, New York, 2001–2011

    USGS Publications Warehouse

    Eckhardt, David A.V.; Williams, John H.; Anderson, J. Alton

    2011-01-01

    Geophysical logs were collected and analyzed along with bedrock core samples and bedrock outcrops to define the bedrock stratigraphy and flow zones penetrated by 93 monitor and water-supply wells in Cayuga County, New York. The work was completed from 2001 through 2011 as part of an investigation of volatile-organic compound contamination in the carbonate-bedrock aquifer system between Auburn and Union Springs. The borehole logs included gamma, caliper, wellbore image, fluid property, and flow logs. The log information was used with bedrock core samples to define the regional stratigraphy, evaluate flow zones within the bedrock aquifers, and develop and implement a multilevel monitoring design for groundwater levels and water quality within the study area.

  17. Geophysical logging and thermal imaging at the Hemphill Road TCE NPL Superfund site near Gastonia, North Carolina

    USGS Publications Warehouse

    Antolino, Dominick J.; Chapman, Melinda J.

    2017-01-01

    The collection of borehole geophysical logs and thermal imaging data was conducted by the U.S. Geological Survey South Atlantic Water Science Center in the vicinity of the Hemphill Road TCE National Priorities List Superfund site near Gastonia, North Carolina, during August 2014 through February 2015. In an effort to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants, surface geological mapping and borehole geophysical log and image data collection, which included the delineation of more than 600 subsurface features (primarily fracture orientations) was conducted in 5 open borehole wells and 2 private supply bedrock wells. In addition, areas of potential groundwater discharge within a down-gradient, nearby creek were determined using thermal imagery to calculate temperature differences between the stream and bank seepage.

  18. Geophysical logging and thermal imaging near the Hemphill Road TCE National Priorities List Superfund site near Gastonia, North Carolina

    USGS Publications Warehouse

    Antolino, Dominick J.; Chapman, Melinda J.

    2017-03-27

    Borehole geophysical logs and thermal imaging data were collected by the U.S. Geological Survey near the Hemphill Road TCE (trichloroethylene) National Priorities List Superfund site near Gastonia, North Carolina, during August 2014 through February 2015. In an effort to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants, surface geological mapping and borehole geophysical log and thermal imaging data collection, which included the delineation of more than 600 subsurface features (primarily fracture orientations), was completed in five open borehole wells and two private supply bedrock wells. In addition, areas of possible groundwater discharge within a nearby creek downgradient of the study site were determined based on temperature differences between the stream and bank seepage using thermal imagery.

  19. Well Inventory and Geophysical Logging of Selected Wells in Troup County, Georgia, 2007-2008

    USGS Publications Warehouse

    Peck, Michael F.; Leeth, David C.; Hamrick, Michael D.

    2008-01-01

    The U.S. Geological Survey (USGS) - in cooperation with the Troup County Board of Commissioners - conducted a well inventory to provide information to help evaluate ground-water resources for Troup County, Georgia. In addition, borehole geophysical logs were collected in selected wells to provide a better understanding of the subsurface geologic and water-bearing characteristics in specific areas of interest. This investigation provides information to help guide future ground-water development and water-management decisions for Troup County while enhancing understanding of the hydrogeology of fractured rocks in the Piedmont physiographic province. This report presents well data compiled from USGS files and from site visits to wells during November and December 2007. Data were entered into the USGS National Water Information System (NWIS) and made available on the Web at http://waterdata.usgs.gov/ga/nwis/inventory. Previous studies of ground-water resources have been conducted in the vicinity, but did not include Troup County. The ground-water resources of Heard and Coweta Counties, located north and northeast, respectively, of Troup County were part of a larger study by Cressler and others (1983) that encompassed the Greater Atlanta Region. That study evaluated the quantity and quality of ground water in the Atlanta region and described the methods that could be used for locating high-yielding wells in the Piedmont Province. The geology underlying the Atlanta area is similar to that underlying Troup County. Clarke and Peck (1990) conducted a similar investigation that included Meriwether and Coweta Counties, located to the east and northeast of Troup County.

  20. Data from core analyses, aquifer testing, and geophysical logging of Denver Basin bedrock aquifers at Castle Pines, Colorado

    USGS Publications Warehouse

    Robson, S.G.; Banta, E.R.

    1993-01-01

    This report contains data pertaining to the geologic and hydrologic characteristics of the bedrock aquifers of the Denver basin at a site near Castle Pines, Colorado. Data consist of a lithologic- description of about 2,400 ft of drill core and laboratory determinations of mineralogy, grain size, bulk and grain density, porosity, specific yield, and specific retention for selected core samples. Water-level data, atmospheric-pressure measurements, aquifer-compression measurements, and borehole geophysical logs also are included.

  1. Geophysical, Stratigraphic, and Flow-Zone Logs of Selected Test, Monitor, and Water-Supply Wells in Cayuga County, New York

    USGS Publications Warehouse

    Anderson, J. Alton; Williams, John H.; Eckhardt, David A.V.; Miller, Todd S.

    2003-01-01

    Volatile-organic compounds have been detected in water sampled from more than 50 supply wells between the City of Auburn and Village of Union Springs in Cayuga County, New York, and the area was declared a Superfund site in 2002. In 2001-04, geophysical logs were collected from 37 test, monitor, and water-supply wells as a preliminary part of the investigation of volatile-organic compound contamination in the carbonate-bedrock aquifer system. The geophysical logs included gamma, induction, caliper, wellbore image, deviation, fluid resistivity and temperature, and flowmeter. The geophysical logs were analyzed along with core samples and outcrops of the bedrock to define the stratigraphic units and flow zones penetrated by the wells. This report describes the logging methods used in the study and presents the geophysical, stratigraphic, and flow-zone logs.

  2. Application of advanced geophysical logging methods in the characterization of a fractured-sedimentary bedrock aquifer, Ventura County, California

    USGS Publications Warehouse

    Williams, John H.; Lane, Jr., John W.; Singha, Kamini; Haeni, F. Peter

    2002-01-01

    An integrated suite of advanced geophysical logging methods was used to characterize the geology and hydrology of three boreholes completed in fractured-sedimentary bedrock in Ventura County, California. The geophysical methods included caliper, gamma, electromagnetic induction, borehole deviation, optical and acoustic televiewer, borehole radar, fluid resistivity, temperature, and electromagnetic flowmeter. The geophysical logging 1) provided insights useful for the overall geohydrologic characterization of the bedrock and 2) enhanced the value of information collected by other methods from the boreholes including core-sample analysis, multiple-level monitoring, and packer testing. The logged boreholes, which have open intervals of 100 to 200 feet, penetrate a sequence of interbedded sandstone and mudstone with bedding striking 220 to 250 degrees and dipping 15 to 40 degrees to the northwest. Fractures intersected by the boreholes include fractures parallel to bedding and fractures with variable strike that dip moderately to steeply. Two to three flow zones were detected in each borehole. The flow zones consist of bedding-parallel or steeply dipping fractures or a combination of bedding-parallel fractures and moderately to steeply dipping fractures. About 75 to more than 90 percent of the measured flow under pumped conditions was produced by only one of the flow zones in each borehole.

  3. Application of advanced geophysical logging methods in the characterization of a fractured-sedimentary bedrock aquifer, Ventura County, California

    USGS Publications Warehouse

    Williams, John H.; Lane, Jr., John W.; Singha, Kamini; Haeni, F. Peter

    2002-01-01

    An integrated suite of advanced geophysical logging methods was used to characterize the geology and hydrology of three boreholes completed in fractured-sedimentary bedrock in Ventura County, California. The geophysical methods included caliper, gamma, electromagnetic induction, borehole deviation, optical and acoustic televiewer, borehole radar, fluid resistivity, temperature, and electromagnetic flowmeter. The geophysical logging 1) provided insights useful for the overall geohydrologic characterization of the bedrock and 2) enhanced the value of information collected by other methods from the boreholes including core-sample analysis, multiple-level monitoring, and packer testing.The logged boreholes, which have open intervals of 100 to 200 feet, penetrate a sequence of interbedded sandstone and mudstone with bedding striking 220 to 250 degrees and dipping 15 to 40 degrees to the northwest. Fractures intersected by the boreholes include fractures parallel to bedding and fractures with variable strike that dip moderately to steeply. Two to three flow zones were detected in each borehole. The flow zones consist of bedding-parallel or steeply dipping fractures or a combination of bedding-parallel fractures and moderately to steeply dipping fractures. About 75 to more than 90 percent of the measured flow under pumped conditions was produced by only one of the flow zones in each borehole.

  4. Ubiquitous Learning Project Using Life-Logging Technology in Japan

    ERIC Educational Resources Information Center

    Ogata, Hiroaki; Hou, Bin; Li, Mengmeng; Uosaki, Noriko; Mouri, Kosuke; Liu, Songran

    2014-01-01

    A Ubiquitous Learning Log (ULL) is defined as a digital record of what a learner has learned in daily life using ubiquitous computing technologies. In this paper, a project which developed a system called SCROLL (System for Capturing and Reusing Of Learning Log) is presented. The aim of developing SCROLL is to help learners record, organize,…

  5. Ubiquitous Learning Project Using Life-Logging Technology in Japan

    ERIC Educational Resources Information Center

    Ogata, Hiroaki; Hou, Bin; Li, Mengmeng; Uosaki, Noriko; Mouri, Kosuke; Liu, Songran

    2014-01-01

    A Ubiquitous Learning Log (ULL) is defined as a digital record of what a learner has learned in daily life using ubiquitous computing technologies. In this paper, a project which developed a system called SCROLL (System for Capturing and Reusing Of Learning Log) is presented. The aim of developing SCROLL is to help learners record, organize,…

  6. Additional borehole geophysical logging at Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1994-07-01

    This technical memorandum describes the borehole geophysical logging performed at selected coreholes at Waste Area Grouping 1 between March and November 1991 in support of the remedial investigation. The primary objectives of the borehole geophysical logging program were to (1) identify fractured bedrock zones and identify those fractured bedrock zones participating in active groundwater flow, (2) correlate the fractured intervals with the regional stratigraphy described, and (3) further characterize local bedrock geology and hydrogeology and gain insight about the bedrock aquifer flow system. A secondary objective was to provide stratigraphic correlations with existing logs for coreholes CH001 through CH005. Fractured bedrock zones and active or open fractures were identified in all coreholes logged. The fracture identification and analysis process was intended to distinguish between open or active fractures participating in active groundwater flow and closed or inactive fractures that are partially or completely filled (such as with calcite mineralization) and do not support groundwater circulation. Most of the fractures identified are bedding plane. Fracture occurrence varies with the different units of the Chickamauga Group; the greatest density of fractures and active fractures occurs in the upper 150 ft of stratum cored. Fractures actively contributing to groundwater flow were also identified, and direction of fluid movement within fractures was identified for those coreholes with flowmeter data.

  7. Evaluation of geophysical logs, Phase II, at Willow Grove Naval Air Station Joint Reserve Base, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1999-01-01

    Between March and April 1998, the U.S. Navy contracted Tetra Tech NUS Inc., to drill two monitor wells in the Stockton Formation at the Willow Grove Naval Air Station Joint Reserve Base, Horsham Township, Montgomery County, Pa. The wells MG-1634 and MG-1635 were installed to monitor water levels and sample contaminants in the shallow, intermediate, and deep water-producing zones of the fractured bedrock. Chemical analyses of the samples will help determine the horizontal and vertical distribution of any contaminated ground water migrating from known contaminant sources. Wells were drilled near the Fire Training Area (Site 5). Depths of all boreholes range from 69 to 149 feet below land surface. The U.S. Geological Survey conducted borehole geophysical logging and video surveys to identify water-producing zones in newly drilled monitor wells MG-1634 and MG-1635 and in wells MG-1675 and MG-1676. The logging was conducted from March 5, 1998, to April 16, 1998. This work is a continuation of the Phase I work. Caliper logs and video surveys were used to locate fractures; inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-producing fractures. Heatpulse-flowmeter measurements were used to verify the locations of water-producing or water-receiving zones and to measure rates of flow between water-bearing fractures. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's notes, wells MG-1634 and MG-1635 were screened such that water-levels fluctuations could be monitored and discrete water samples collected from one or more water-producing zones in each borehole.

  8. Petrophysical analysis of geophysical logs of the National Drilling Company-U.S. Geological Survey ground-water research project for Abu Dhabi Emirate, United Arab Emirates

    USGS Publications Warehouse

    Jorgensen, Donald G.; Petricola, Mario

    1994-01-01

    A program of borehole-geophysical logging was implemented to supply geologic and geohydrologic information for a regional ground-water investigation of Abu Dhabi Emirate. Analysis of geophysical logs was essential to provide information on geohydrologic properties because drill cuttings were not always adequate to define lithologic boundaries. The standard suite of logs obtained at most project test holes consisted of caliper, spontaneous potential, gamma ray, dual induction, microresistivity, compensated neutron, compensated density, and compensated sonic. Ophiolitic detritus from the nearby Oman Mountains has unusual petrophysical properties that complicated the interpretation of geophysical logs. The density of coarse ophiolitic detritus is typically greater than 3.0 grams per cubic centimeter, porosity values are large, often exceeding 45 percent, and the clay fraction included unusual clays, such as lizardite. Neither the spontaneous-potential log nor the natural gamma-ray log were useable clay indicators. Because intrinsic permeability is a function of clay content, additional research in determining clay content was critical. A research program of geophysical logging was conducted to determine the petrophysical properties of the shallow subsurface formations. The logging included spectral-gamma and thermal-decay-time logs. These logs, along with the standard geophysical logs, were correlated to mineralogy and whole-rock chemistry as determined from sidewall cores. Thus, interpretation of lithology and fluids was accomplished. Permeability and specific yield were calculated from geophysical-log data and correlated to results from an aquifer test. On the basis of results from the research logging, a method of lithologic and water-resistivity interpretation was developed for the test holes at which the standard suite of logs were obtained. In addition, a computer program was developed to assist in the analysis of log data. Geohydrologic properties were

  9. Tools and data acquisition of borehole geophysical logging for the Florida Power and Light Company Turkey Point Power Plant in support of a groundwater, surface-water, and ecological monitoring plan, Miami-Dade County, Florida

    USGS Publications Warehouse

    Wacker, Michael A.

    2010-01-01

    Borehole geophysical logs were obtained from selected exploratory coreholes in the vicinity of the Florida Power and Light Company Turkey Point Power Plant. The geophysical logging tools used and logging sequences performed during this project are summarized herein to include borehole logging methods, descriptions of the properties measured, types of data obtained, and calibration information.

  10. Identification and Characterization of Hydrogeologic Units at the Nevada Test Site Using Geophysical Logs: Examples from the Underground Test Area Project

    SciTech Connect

    Lance Prothro; Drellack, Sigmund; Townsend, Margaret

    2009-03-25

    The diverse and complex geology of the Nevada Test Site region makes for a challenging environment for identifying and characterizing hydrogeologic units penetrated by wells drilled for the U.S. Department of Energy, National Nuclear Security Administration, Underground Test Area (UGTA) Environmental Restoration Sub-Project. Fortunately, UGTA geoscientists have access to large and robust sets of subsurface geologic data, as well as a large historical knowledge base of subsurface geological analyses acquired mainly during the underground nuclear weapons testing program. Of particular importance to the accurate identification and characterization of hydrogeologic units in UGTA boreholes are the data and interpretation principles associated with geophysical well logs. Although most UGTA participants and stakeholders are probably familiar with drill hole data such as drill core and cuttings, they may be less familiar with the use of geophysical logs; this document is meant to serve as a primer on the use of geophysical logs in the UGTA project. Standard geophysical logging tools used in the UGTA project to identify and characterize hydrogeologic units are described, and basic interpretation principles and techniques are explained. Numerous examples of geophysical log data from a variety of hydrogeologic units encountered in UGTA wells are presented to highlight the use and value of geophysical logs in the accurate hydrogeologic characterization of UGTA wells.

  11. Integrating geophysical and hydrochemical borehole-log measurements to characterize the Chalk aquifer, Berkshire, United Kingdom

    NASA Astrophysics Data System (ADS)

    Schürch, Marc; Buckley, David

    2002-09-01

    Geophysical and hydrochemical borehole-logging techniques were integrated to characterize hydraulic and hydrogeochemical properties of the Chalk aquifer at boreholes in Berkshire, UK. The down-hole measurements were made to locate fissures in the chalk, their spatial extent between boreholes, and to determine the groundwater chemical quality of the water-bearing layers. The geophysical borehole logging methods used were caliper, focused resistivity, induction resistivity, gamma ray, fluid temperature, fluid electrical conductivity, impeller and heat-pulse flowmeter, together with borehole wall optical-imaging. A multiparameter data transmitter was used to measure groundwater temperature, electrical conductivity, dissolved oxygen, pH, and redox potential of the borehole fluid down-hole. High permeability developed at the Chalk Rock by groundwater circulation provides the major flow horizon at the Banterwick Barn study site and represents a conduit system that serves as an effective local hydraulic connection between the boreholes. The Chalk Rock includes several lithified solution-ridden layers, hardgrounds, which imply a gap in sedimentation possibly representing an unconformity. Lower groundwater temperature, high dissolved-oxygen content, and flowmeter evidence of preferential groundwater flow in the Chalk Rock indicated rapid groundwater circulation along this horizon. By repeating the logging at different times of the year under changing hydraulic conditions, other water-inflow horizons within the Chalk aquifer were recognized. Résumé. Des techniques géophysiques et hydrochimiques de diagraphies en forage ont été mises en oeuvre pour caractériser les propriétés hydrauliques et hydrogéochimiques de l'aquifère de la craie dans des forages du Berkshire (Grande-Bretagne). Les mesures en descente ont été faites pour localiser les fissures dans la craie et leur développement spatial entre forages, et pour déterminer la qualité de l'eau souterraine des

  12. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs

    USGS Publications Warehouse

    Wu, H.-Y.; Ma, K.-F.; Zoback, M.; Boness, N.; Ito, H.; Hung, J.-H.; Hickman, S.

    2007-01-01

    The Taiwan Chelungpu-fault Drilling Project (TCDP) drilled a 2-km-deep research borehole to investigate the structure and mechanics of the Chelungpu Fault that ruptured in the 1999 Mw 7.6 Chi-Chi earthquake. Geophysical logs of the TCDP were carried out over depths of 500-1900 in, including Dipole Sonic Imager (DSI) logs and Formation Micro Imager (FMI) logs in order to identify bedding planes, fractures and shear zones. From the continuous core obtained from the borehole, a shear zone at a depth of 1110 meters is interpreted to be the Chelungpu fault, located within the Chinshui Shale, which extends from 1013 to 1300 meters depth. Stress-induced borehole breakouts were observed over nearly the entire length of the wellbore. These data show an overall stress direction (???N115??E) that is essentially parallel to the regional stress field and parallel to the convergence direction of the Philippine Sea plate with respect to the Eurasian plate. Variability in the average stress direction is seen at various depths. In particular there is a major stress orientation anomaly in the vicinity of the Chelungpu fault. Abrupt stress rotations at depths of 1000 in and 1310 in are close to the Chinshui Shale's upper and lower boundaries, suggesting the possibility that bedding plane slip occurred during the Chi-Chi earthquake. Copyright 2007 by the American Geophysical Union.

  13. Geophysical logs and hydrologic data for eight wells in the Coyote Spring Valley area, Clark and Lincoln counties, Nevada

    USGS Publications Warehouse

    Berger, D.L.; Kilroy, K.C.; Schaefer, D.H.

    1988-01-01

    Geophysical logs, drilling operations, pump-test data, and water quality determinations are presented for eight wells in the Coyote Spring Valley area of southeastern Nevada. The wells are in an area where thick units of Paleozoic carbonate rock are overlain by Tertiary semiconsolidated basin-fill deposits and Quaternary alluvial deposits. Data collected by the U.S. Geological Survey were augmented with data from previous investigations; however, complete sets of logs and other data are not available for all eight wells. Geophysical data presented included natural-gamma, neutron, gamma-gamma density, caliper, temperature, acoustic, single-point resistance, long- and short-natural resistivity, and spontaneous-potential logs. Drilling penetration rates, lithologic columns, and well construction are also summarized and presented. Measurements of drawdown and recovery during and after constant-discharge pumping periods are also included. Also presented are results of chemical and physical analyses for major-ion chemistry, trace constituents, stable and radioactive isotopes, temperature, pH, specific conductance, and dissolved oxygen. (USGS)

  14. Geophysical characterization of the Lollie Levee near Conway, Arkansas, using capacitively coupled resistivity, coring, and direct push logging

    USGS Publications Warehouse

    Gillip, Jonathan A.; Payne, Jason

    2011-01-01

    A geophysical characterization of Lollie Levee near Conway, Arkansas, was conducted in February 2011. A capacitively coupled resistivity survey (using Geometric's OhmMapper) was completed along the top and toe of the 6.7-mile levee. Two-dimensional inversions were conducted on the geophysical data. As a quality-control measure, cores and direct push logs were taken at approximately 1-mile intervals along the levee. The capacitively coupled resistivity survey, the coring, and the direct push logs were used to characterize the geologic materials. Comparison of the cores and the direct push log data, along with published resistivity values, indicates that resistivity values of 200 Ohm-meters or greater represent relatively clean sand, with decreasing resistivity values occurring with increasing silt and clay content. The cores indicated that the levee is composed of a heterogeneous mixture of sand, silt, and clay. The capacitively coupled resistivity sections confirm that the levee is composed of a heterogeneous mixture of high and low resistivity materials and show that the composition of the levee varies spatially. The geologic materials underlying the levee vary spatially as a result of the geologic processes that deposited them. In general, the naturally deposited geologic materials underlying the levee contain a greater amount of low resistivity materials in the southern extent of the levee.

  15. Geophysical logging studies in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory: Wells 44, 45, and 46

    SciTech Connect

    Morin, R.H.; Paillet, F.L.; Taylor, T.A.; Barrash, W.

    1993-05-01

    A geophysical logging program was undertaken to vertically profile changes in the hydrology and hydrochemistry of the Snake River Plain aquifer underlies the Idaho National Engineering Laboratory (INEL). Field investigations were concentrated within an area west of the Idaho Chemical Processing Plant (ICPP) in three wells that penetrated the upper 190 feet of the aquifer. The logs obtained in these wells consisted of temperature, caliper, nuclear (neutron porosity and gamma-gama density), natural gamma, borehole televiewer, gamma spectral, and thermal flowmeter (with and without pumping). The nuclear, caliper, and televiewer logs are used to delineate individual basalt flows or flow units and to recognize breaks between flows or flow units at interflow contact zones and sedimentary interbeds. The temperature logs and flowmeter measurements obtained under ambient hydraulic head conditions identified upward fluid-circulation patterns in the three wells. Gamma-spectral analyses performed at several depths in each well showed that the predominant source of gamma radiation in the formation at this site originates mainly from potassium ({sup 40}K). However, {sup 137}Cesium was detected at 32 feet below land surface in well 45. An empirical investigation of the effect of source-receiver spacing on the response of the neutron-porosity logging tool was attempted in an effort to understand the conditions under which this tool might be applied to large-diameter boreholes in-unsaturated formations.

  16. The Synthetic Convection Log - geophysical detection and identification of density-driven convection in monitoring wells and boreholes

    NASA Astrophysics Data System (ADS)

    Berthold, S.

    2009-12-01

    Detection and quantification of flow and transport is an important part of groundwater geophysics. A distinctive flow and transport problem occurs in boreholes and groundwater monitoring wells. They locally distort the natural flow field and open up an additional possibility of vertical heat and mass transfer between rock formations (e.g. aquifers), surrounding, and atmosphere. A variety of processes can cause a mass input or exchange through the fluid column. Density-driven convection (also called free convection or natural convection) plays an important role among them. Density-driven convective flows have adulterating effects on groundwater samples and in-situ measurements in monitoring wells and boreholes. Gases and other (dissolved) substances are possibly transported into new depths where varying chemical processes may arise. Consequently, knowing about the existence of vertical density-driven flows in fluid columns is crucial for hydrological investigations and for borehole geophysics. Moreover, temperatures in fluid columns and in the proximate formation may depart significantly from the ones in the surrounding rock when affected by vertical convection. Thus, understanding convective flow within the borehole is also important for subsurface water movement investigations and geothermics. The existence of significant vertical free convection was proven using pilot scale experiments and numerical modeling. However, so far, no particular logging device or interpretation algorithm was available that could detect free convection. Here an interpretation algorithm will be presented that approaches the problem. The so-called Synthetic Convection Log (SYNCO-Log) enables in-situ detection and even identification of free convective, including double-diffusive, flows using state-of-the-art geophysical borehole measurements like temperature and water conductivity/mud resistivity logs. In the sense of a "quick look" interpretation, the SYNCO-Log visually divides the fluid

  17. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  18. Determining the distribution of hydraulic conductivity in a fractured limestone aquifer by simultaneous injection and geophysical logging

    USGS Publications Warehouse

    Morin, R.H.; Hess, A.E.; Paillet, Frederick L.

    1988-01-01

    A field technique for assessing the vertical distribution of hydraulic conductivity in an aquifer was applied to a fractured carbonate formation in southeastern Nevada. The technique combines the simultaneous use of fluid injection and geophysical logging to measure in situ vertical distributions of fluid velocity and hydraulic head down the borehole; these data subsequently are analyzed to arrive at quantitative estimates of hydraulic conductivity across discrete intervals in the aquifer. The results of this analysis identified the contact margin between the Anchor and Dawn Members of the Monte Cristo Limestone as being the dominant transmissive unit. -from Authors

  19. Borehole Geophysical Logging of Water-Supply Wells in the Piedmont, Blue Ridge, and Valley and Ridge, Georgia

    USGS Publications Warehouse

    ,

    2007-01-01

    Crystalline and carbonate-rock aquifers in northern Georgia provide water to an ever-increasing number of private and public wells in the region. Understanding the depth and yield of water-bearing zones in such wells is crucial for the development and long-term sustainability of ground-water resources and for keeping wells in good operating condition. Portable geophysical logging units are now widely available and have greatly increased the ability of geoscientists to obtain subsurface information from water wells.

  20. Geophysics

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Cassen, P.

    1976-01-01

    Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.

  1. Use of geophysical logs to estimate water-quality trends in carbonate aquifers

    USGS Publications Warehouse

    MacCary, Lawrence Mead

    1980-01-01

    The water quality in carbonate aquifers can be determined by analysis of resistivity and porosity logs. When supporting data from water analyses are available, the value of the cementation exponent m can be determined more precisely. Data for this study were taken from logs of oil-test wells, Amstrat sample studies, drill-stem tests and water test wells in parts of Montana, North and South Dakota, and Wyoming. The preferred resistivity curves for apparent water resistivity (Rwa) analyses are the deeply focused laterolog and the induction log. The standard electric log can be used if the drilling mud is not saturated with salt. The preferred porosity logs are the sonic, sidewall neutron, compensated neutron, and the density logs. Older, uncalibrated neutron curves can be empirically calibrated in some instances, however, resulting porosities are frequently anomalous when compared to those determined from core or modern logs. When apparent water resistivity is determined for many wells, the data can be plotted and contoured to outline areas of recharge, direction of probable ground-water movement, and location and salinity of brine areas. (USGS)

  2. Computation of porosity and water content from geophysical logs, Yucca Mountain, Nevada

    SciTech Connect

    Nelson, P.H.

    1996-12-31

    Neutron and density logs acquired in boreholes at Yucca Mountain, Nevada are used to determine porosity and water content as a function of depth. Computation of porosity requires an estimate of grain density, which is provided by core data, mineralogical data, or is inferred from rock type where neither core nor mineralogy are available. The porosity estimate is merged with mineralogical data acquired by X-ray diffraction to compute the volumetric fractions of major mineral groups. The resulting depth-based portrayal of bulk rock composition is equivalent to a whole rock analysis of mineralogy and porosity. Water content is computed from epithermal and thermal neutron logs. In the unsaturated zone, the density log is required along with a neutron log. Water content can also be computed from dielectric logs, which were acquired in only a fraction of the boreholes, whereas neutron logs were acquired in all boreholes. Mineralogical data are used to compute a structural (or bound) water estimate, which is subtracted from the total water estimate from the neutron-density combination. Structural water can be subtracted only from intervals where mineralogical analyses are available; otherwise only total water can be reported. The algorithms and procedures are applied to logs acquired during 1979 to 1984 at Yucca Mountain. Examples illustrate the results. Comparison between computed porosity and core measurements shows systematic differences ranging from 0.005 to 0.04. These values are consistent with a sensitivity analysis using uncertainty parameters for good logging conditions. Water content from core measurements is available in only one borehole, yielding a difference between computed and core-based water content of 0.006.

  3. Chemical analysis of water samples and geophysical logs from cored test holes drilled in the central Oklahoma Aquifer, Oklahoma

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Funkhouser, Ron A.

    1991-01-01

    Chemical analyses of water from eight test holes and geophysical logs for nine test holes drilled in the Central Oklahoma aquifer are presented. The test holes were drilled to investigate local occurrences of potentially toxic, naturally occurring trace substances in ground water. These trace substances include arsenic, chromium, selenium, residual alpha-particle activities, and uranium. Eight of the nine test holes were drilled near wells known to contain large concentrations of one or more of the naturally occurring trace substances. One test hole was drilled in an area known to have only small concentrations of any of the naturally occurring trace substances. Water samples were collected from one to eight individual sandstone layers within each test hole. A total of 28 water samples, including four duplicate samples, were collected. The temperature, pH, specific conductance, alkalinity, and dissolved-oxygen concentrations were measured at the sample site. Laboratory determinations included major ions, nutrients, dissolved organic carbon, and trace elements (aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium, and zinc). Radionuclide activities and stable isotope d values also were determined, including: gross-alpha-particle activity, gross-beta-particle activity, radium-226, radium-228, radon-222, uranium-234, uranium-235, uranium-238, total uranium, carbon-13/carbon-12, deuterium/hydrogen-1, oxygen-18/oxygen-16, and sulfur-34/sulfur-32. Additional analyses of arsenic and selenium species are presented for selected samples as well as analyses of density and iodine for two samples, tritium for three samples, and carbon-14 for one sample. Geophysical logs for most test holes include caliper, neutron, gamma-gamma, natural-gamma logs, spontaneous potential, long- and short-normal resistivity, and single-point resistance

  4. Descriptive, geologic, and borehole geophysical logs for 23 test holes in south-central Nebraska

    USGS Publications Warehouse

    Hiergesell, R.A.

    1984-01-01

    This report presents logs for 23 test holes drilled in eight counties in south-central Nebraska as part of a study of the hydrogeology of the area. Five logs are presented for each of the test holes. The first is a written description summarizing the sediments penetrated during drilling; the second is a geological log providing a diagrammatic representation of the stratigraphic units; the remaining three show spontaneous potential, single-point resistance, and natural-gamma radiation measured in the test holes. The test holes penetrate silts, sands, and gravels of Quaternary age, and siltstones, sandstones , and silts of the Ogallala Formation of Tertiary age. Each test hole was drilled deep enough to penetrate about 20 feet of the underlying Cretaceous-age bedrock. (USGS)

  5. Evaluation of geophysical logs and aquifer-isolation tests, Phase III, August 2002 to March 2004, Crossley Farm superfund site, Hereford township, Berks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.; Low, Dennis J.

    2006-01-01

    Between August 2002 and March 2004, geophysical logging was conducted in 23 boreholes at the Crossley Farm Superfund Site, Hereford Township, Berks County, Pa., to determine the water-producing zones, water-receiving zones, zones of vertical-borehole flow, and fracture orientation where applicable. The boreholes ranged in depth from 71 to 503 ft(feet) below land surface. The geophysical logging determined the placement of well screens and packers, which allow monitoring and sampling of water-bearing zones in the fractured bedrock so the horizontal and vertical distribution of contaminated ground water migrating from known sources could be determined. Geophysical logging included collection of caliper (22 boreholes), fluid-temperature (17 boreholes),single-point-resistance (17 boreholes), natural-gamma (17 boreholes), fluid-flow (18 boreholes), and acoustic-televiewer (13 boreholes) logs. Caliper and acoustic-televiewer logs were used to locate fractures, joints, and weathered zones. Inflections on fluid-temperature and single-point-resistance logs indicated possible water-bearing zones, and flowmeter measurements verified these locations. Single-point-resistance, natural-gamma, and geologist logs provided information on stratigraphy; the geologist log also provided information on the location of possible water-producing zones. Borehole geophysical logging and heatpulse flowmetering indicated active flow in 10 boreholes. Seven of the boreholes are in ground-water discharge areas and three boreholes are in ground-water recharge areas. Heatpulse flowmetering, in conjunction with the geologist logs, indicates lithologic contacts (changes in lithology from a gneiss dominated by quartz-plagioclase-feldspar mineralogy to a gneiss dominated by hornblende mineralogy) are typically fractured, permeable, and effective transmitters of water. Single-well, aquifer-isolation (packer) tests were performed on two boreholes. Packers were set at depths ranging from 210 to 465 ft

  6. Interpretation of Borehole Geophysical Logs at Area C, Former Naval Air Warfare Center, Warminster Township, Bucks County, Pennsylvania, 2007

    USGS Publications Warehouse

    Sloto, Ronald A.

    2008-01-01

    This study was done by the U.S. Geological Survey in cooperation with the U.S. Navy at Area C of the former Naval Air Warfare Center in Warminster Township, Bucks County, Pa., in support of hydrogeological investigations conducted by the Navy to address ground-water contamination in the Stockton Formation. Borehole geophysical logs were collected, heatpulse-flowmeter measurements were made, and borehole television surveys were run in seven boreholes ranging from 31 to 75 feet deep. Caliper logs and borehole television surveys were used to identify fractures and the location of possible water-bearing zones. Heatpulse-flowmeter measurements were used to identify fractures that were water-bearing zones. Natural-gamma and single-point-resistance logs were used to correlate lithology across the area. Elevated concentrations of tetrachloroethylene (PCE) were measured in water samples from wells with water-bearing zones in the interval of the aquifer where monitor well HN-23A is screened. Water samples from wells with water-bearing zones above or below this interval had substantially lower concentrations of PCE. Wells screened in this interval yielded less than 0.5 gallon per minute, indicating that the interval has low permeability; this may account for the small areal extent and slow migration of PCE.

  7. Methane hydrate pore saturation evaluation from geophysical logging and pressure core analysis, at the first offshore production test site in the eastern Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Suzuki, K.; Takayama, T.; Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Nagao, J.

    2013-12-01

    On March 2013, the first offshore production test form methane hydrate (MH) concentrated zone (MHCZ) was conducted by the Research Consortium for Methane Hydrate Resource Development in Japan (MH21) at the AT1 site located in the north-western slope of Daini-Atsumi Knoll in the eastern Nankai Trough, Japan. Before the production test, extensive geophysical logging and pressure coring using Hybrid Pressure Coring System were conducted in 2012 at monitoring well (AT1-MC) and coring well (AT1-C), in order to obtain basic information for the MH reservoir characterization. MH pore saturation (Sh) is one of the important basic parameters not only for reservoir characterization, but also the resource assessment. However, precise evaluation of Sh from geophysical logging is still challenging technical issue. The MHCZ confirmed by the geophysical logging at AT1-MC has a turbidite assemblage (from several tens of centimeters to a few meters) with 60 m of gross thickness; it is composed of lobe/sheet type sequences in the upper part, and relatively thick channel sand sequences in the lower part. In this study, the Sh evaluated from geophysical logging data were compared with those evaluated from pressure core analysis. Resistivity logs and nuclear magnetic resonance (NMR) log were used for the Sh evaluation by geophysical logging. Standard Archie equation was applied for Sh evaluation from resistivity log, while density magnetic resonance (DMR) method was used for Sh evaluation from NMR log. The Sh from pressure core samples were evaluated using the amount of dissociated gas volume, together with core sample bulk volume, measured porosity, net sand intervals, and assumed methane solubility in pore water. In the upper part of the MHCZ, Sh estimated from resistivity log showed distinct difference in value between sand and mud layers, compared to Sh from NMR log. Resistivity log has higher vertical resolution than NMR log, so it is favorable for these kinds of thin bed

  8. Evaluation of geophysical logs and video surveys in boreholes adjacent to the Berkley Products Superfund Site, West Cocalico Township, Lancaster County, Pennsylvania

    USGS Publications Warehouse

    Low, Dennis J.; Conger, Randall W.

    1998-01-01

    Between February 1998 and April 1998, geophysical logs were collected in nine boreholes adjacent to the Berkley Products Superfund Site, West Cocalico Township, Lancaster County, Pa. Video surveys were conducted on four of the nine boreholes. The boreholes range in depth from 320 to 508 feet below land surface, are completed open holes, have ambient vertical flow of water, and penetrate a series of interbedded siltstone, sandstone, and conglomerate units. The purpose of collecting geophysical-log data was to help determine horizontal and vertical distribution of contaminated ground water migrating from known or suspected sources and to aid in the placement of permanent borehole packers. The primary contaminants were derived from paint waste that included pigment sludges and wash solvents. The chlorinated volatile organic compounds probably originated from the wash solvents. Caliper logs and video surveys were used to locate fractures; inflections on fluid-resistivity and fluid-temperature logs were used to locate possible water-bearing fractures. Heatpulse-flowmeter measurements were used to verify the locations of water-producing or water-receiving zones and to measure rates of flow between water-bearing fractures. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's logs, permanent multiple-packer systems were installed in each borehole to obtain depth specific water samples from one or more water-bearing fractures in each borehole.

  9. Identification of water-bearing fractures by the use of geophysical logs, May to July 1998, former Naval Air Warfare Center, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.; Bird, Philip H.

    1999-01-01

    Between May and July 1998, 10 monitor wells were drilled near the site of the former Naval Air Warfare Center (NAWC), Warminster, Bucks County, Pa., to monitor water levels and sample ground water in shallow and intermediate water-bearing fractures. The sampling will determine the horizontal and vertical distribution of contaminated ground water migrating from known or suspected sources. Three boreholes were drilled on the property at 960 Jacksonville Road, at the northwestern side of NAWC, along strike from Area A; seven boreholes were drilled in Area B in the southeastern corner of NAWC. Depths range from 40.5 to 150 feet below land surface. Borehole geophysical logging and video surveys were used to identify water-bearing fractures so that appropriate intervals could be screened in each monitor well. Geophysical logs were obtained at the 10 monitor wells. Video surveys were obtained at three monitor wells in the southeastern corner of the NAWC property. Caliper logs and video surveys were used to locate fractures. Inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-bearing fractures. Heatpulse-flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller?s logs, all wells were screened such that water-level fluctuations could be monitored and water samples collected from discrete water-bearing fractures in each monitor well.

  10. Identification of water-bearing fractures by the use of geophysical logs, May to July 1998, former Naval Air Warfare Center, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.; Bird, Philip H.

    1999-01-01

    Between May and July 1998, 10 monitor wells were drilled near the site of the former Naval Air Warfare Center (NAWC), Warminster, Bucks County, Pa., to monitor water levels and sample ground water in shallow and intermediate water-bearing fractures. The sampling will determine the horizontal and vertical distribution of contaminated ground water migrating from known or suspected sources. Three boreholes were drilled on the property at 960 Jacksonville Road, at the northwestern side of NAWC, along strike from Area A; seven boreholes were drilled in Area B in the southeastern corner of NAWC. Depths range from 40.5 to 150 feet below land surface. Borehole geophysical logging and video surveys were used to identify water-bearing fractures so that appropriate intervals could be screened in each monitor well. Geophysical logs were obtained at the 10 monitor wells. Video surveys were obtained at three monitor wells in the southeastern corner of the NAWC property. Caliper logs and video surveys were used to locate fractures. Inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-bearing fractures. Heatpulse-flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller?s logs, all wells were screened such that water-level fluctuations could be monitored and water samples collected from discrete water-bearing fractures in each monitor well.

  11. Geophysical logging and geologic mapping data in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina

    USGS Publications Warehouse

    Chapman, Melinda J.; Clark, Timothy W.; Williams, John H.

    2013-01-01

    Geologic mapping, the collection of borehole geophysical logs and images, and passive diffusion bag sampling were conducted by the U.S. Geological Survey North Carolina Water Science Center in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina, during March through October 2011. The study purpose was to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants. Data compilation efforts included geologic mapping of more than 250 features, including rock type and secondary joints, delineation of more than 1,300 subsurface features (primarily fracture orientations) in 15 open borehole wells, and the collection of passive diffusion-bag samples from 42 fracture zones at various depths in the 15 wells.

  12. Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013

    USGS Publications Warehouse

    Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland

    2014-01-01

    Maximum groundwater temperatures at the bottom of the logs ranged from 11.2 to 15.4 degrees Celsius. Geothermal gradients were generally higher than those typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 4 of the 10 wells studied but only obscured the part of the geothermal gradient signal where groundwater actually flowed into, out of, or through the well. Temperature gradients varied by mapped bedrock type but can also vary by localized differences in mineralogy or rock type within the wells.

  13. Use of geophysical logs to estimate the quality of ground water and the permeability of aquifers

    USGS Publications Warehouse

    Hudson, J.D.

    1996-01-01

    The relation of formation factor to resistivity of formation water and intergranular permeability has often been investigated, and the general consensus is that this relation is closest when established in a clean-sand aquifer in which water quality does not vary substantially. When these restrictions are applied, the following standard equation is a useful tool in estimating the resistance of the formation water: F = Ro/Rw, where F is the formation factor, which is a function of the effective porosity; Ro is the resistivity of a formation that is 100 percent saturated with interstitial water; and Rw is the resistivity of the water in the saturated zone. However, arenaceous aquifers can have electrical resistivities that are not directly related to resistivity of water or porosity. Surface conductivity and ion exchange are significant factors when the sediments are clay bearing. The solid constituents are a major component of the parameters needed to solve the equation for formation-water resistivity and estimates of aquifer permeability. A correction process needs to be applied to adjust the variables, Ro and F, to the equivalent of clean sand. This report presents an empirical method of using the neutron log and the electrical-resistivity values from long- and short-normal resistivity logs to correct for fine-grained material and the subsequent effects of low impedance to electrical flow that are not related to the resistance of formation water.

  14. Recognition of units in coarse, unconsolidated braided-stream deposits from geophysical log data with principal components analysis

    USGS Publications Warehouse

    Morin, R.H.

    1997-01-01

    Returns from drilling in unconsolidated cobble and sand aquifers commonly do not identify lithologic changes that may be meaningful for Hydrogeologic investigations. Vertical resolution of saturated, Quaternary, coarse braided-slream deposits is significantly improved by interpreting natural gamma (G), epithermal neutron (N), and electromagnetically induced resistivity (IR) logs obtained from wells at the Capital Station site in Boise, Idaho. Interpretation of these geophysical logs is simplified because these sediments are derived largely from high-gamma-producing source rocks (granitics of the Boise River drainage), contain few clays, and have undergone little diagenesis. Analysis of G, N, and IR data from these deposits with principal components analysis provides an objective means to determine if units can be recognized within the braided-stream deposits. In particular, performing principal components analysis on G, N, and IR data from eight wells at Capital Station (1) allows the variable system dimensionality to be reduced from three to two by selecting the two eigenvectors with the greatest variance as axes for principal component scatterplots, (2) generates principal components with interpretable physical meanings, (3) distinguishes sand from cobble-dominated units, and (4) provides a means to distinguish between cobble-dominated units.

  15. Slimhole Drilling, Logging, and Completion Technology - An Update

    SciTech Connect

    FINGER,JOHN T.; JACOBSON,RONALD D.

    1999-10-07

    Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

  16. Geophysical-log and hydraulic-test analyses of groundwater-production wells at the Hannahville Indian Community, Menominee County, Michigan

    USGS Publications Warehouse

    Bayless, E. Randall; Anderson, J. Alton; Lampe, David C.; Williams, John H.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Hannahville Indian Community, evaluated the geohydrology of the bedrock formations and hydraulic properties of groundwater-production wells at the Hannahville Indian Community in Menominee County, Michigan. Geophysical logs were collected from five wells at two sites during September 2012. The logs were analyzed to characterize the lithostratigraphy, bedding and fractures, and hydraulic properties of the geologic formations and aquifers beneath the Hannahville Indian Community. The geophysical logs collected included natural gamma radiation, electromagnetic conductivity, wellbore image, caliper, ambient and stressed flowmeter, fluid resistivity, temperature, and wellbore deviation. The geophysical logs were analyzed with results from short-term hydraulic tests to estimate the transmissivity and water-level altitudes of flow zones penetrated by the wells. The geophysical log analysis indicated the wells penetrated four distinct lithostratigraphic units—shale and carbonate rock, upper carbonate rock, carbonate rock and glauconitic sandstone, and lower carbonate rock. Most of the fractures penetrated by the wellbores appeared to be related bedding partings. The lower carbonate rock unit contained solution features. Analysis of the geophysical logs and hydraulic tests indicated that each of the five wells penetrated from one to four flow zones. The Casino 5 well penetrated a flow zone that was associated with solution features and had an estimated total transmissivity of 4,280 feet squared per day (ft2/d), the highest estimate for all the wells. The Casino 3 well penetrated four flow zones and had an estimated total transmissivity of 3,570 ft2/d. The flow zones penetrated in the lower carbonate rock unit by the Casino 3 and 5 wells were hydraulically connected. The Golf Shack well penetrated two flow zones and had an estimated total transmissivity of 40 ft2/d, the lowest estimate for all the wells. The Community 1

  17. Evaluation of Well Records and Geophysical Logs for Determining the Presence of Freshwater, Saltwater, and Gas Above the Marcellus Shale, South-Central New York

    EPA Pesticide Factsheets

    Records of water wells in NWIS and records and geophysical logs of gas wells in ESOGIS were evaluated to provide a preliminary determination of the presence of freshwater, saltwater, and gas above the Marcellus Shale in south-central New York.

  18. Geophysical log database for the Floridan aquifer system and southeastern Coastal Plain aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Raines, Jessica E.; Lanning, Amanda E.

    2013-04-04

    A database of borehole geophysical logs and other types of data files were compiled as part of ongoing studies of water availability and assessment of brackish- and saline-water resources. The database contains 4,883 logs from 1,248 wells in Florida, Georgia, Alabama, South Carolina, and from a limited number of offshore wells of the eastern Gulf of Mexico and the Atlantic Ocean. The logs can be accessed through a download directory organized by state and county for onshore wells and in a single directory for the offshore wells. A flat file database is provided that lists the wells, their coordinates, and the file listings.

  19. Analysis of geophysical logs from six boreholes at Lariat Gulch, former U.S. Air Force site PJKS, Jefferson County, Colorado

    USGS Publications Warehouse

    Paillet, Frederick L.; Hodges, Richard E.; Corland, Barbara S.

    2002-01-01

    This report presents and describes geophysical logs for six boreholes in Lariat Gulch, a topographic gulch at the former U.S. Air Force site PJKS in Jefferson County near Denver, Colorado. Geophysical logs include gamma, normal resistivity, fluid-column temperature and resistivity, caliper, televiewer, and heat-pulse flowmeter. These logs were run in two boreholes penetrating only the Fountain Formation of Pennsylvanian and Permian age (logged to depths of about 65 and 570 feet) and in four boreholes (logged to depths of about 342 to 742 feet) penetrating mostly the Fountain Formation and terminating in Precambrian crystalline rock, which underlies the Fountain Formation. Data from the logs were used to identify fractures and bedding planes and to locate the contact between the two formations. The logs indicated few fractures in the boreholes and gave no indication of higher transmissivity in the contact zone between the two formations. Transmissivities for all fractures in each borehole were estimated to be less than 2 feet squared per day.

  20. Use of geophysical logs in recognizing depositional environments in the Tongue River Member of the Fort Union Formation, Powder River area, Wyoming and Montana

    USGS Publications Warehouse

    Flores, R.M.; Toth, J.C.; Moore, T.A.

    1982-01-01

    The environmental conditions under which rocks in the Paleocene Tongue River Member of the Fort Union Formation were deposited in the Powder River area, Wyoming and Montana, can be determined using geophysical logs with some limitations. It is widely recognized that gamma ray and density logs are useful in identifying thickness and stratigraphic position of coal beds. In addition, gamma ray and electrical resistivity logs can be used to infer conditions of transportation and deposition of sandstones, siltstones, and other rock types. In particular, intensity responses of the gamma ray and resistance logs provide a clue to variations of grain size such as fining-upward and coarsening-upward characteristics of fluvial channel and crevasse splay deposits, respectively. These signatures in the geophysical logs are readily observed for some beds; for other beds however, the depositional conditions are difficult to determine because the beds do not produce clear-cut log-response patterns. Thus,. analysis of the environments of deposition of detrital rocks in drill holes can be made more accurate by a study of stratigraphically equivalent intervals in outcrops near drill-hole sites.

  1. Evaluation of geophysical logs and slug tests, phase II, at AIW Frank/Mid-County Mustang Superfund Site, Chester County, Pennsylvania

    USGS Publications Warehouse

    Conger, R.W.; Goode, D.J.; Sloto, R.A.

    2000-01-01

    Between September 1997 and October 1998, nine monitor wells were drilled at the AIW Frank/Mid-County Mustang Superfund Site in Chester County, Pa., to determine the horizontal and vertical distribution of contaminated ground water migrating from known contaminant sources. The U.S. Geological Survey conducted borehole geophysical logging and borehole television surveys in these boreholes to identify water-producing zones so that appropriate intervals could be screened in each borehole. Caliper logs and borehole television surveys were used to locate fractures; inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-bearing fractures, and heatpulseflowmeter measurements verified these locations. The borehole television surveys indicated that locally, the rocks of the Conestoga Limestone and Ledger Dolomite that underlie the site strike generally from northeast-southwest to east-west and dip steeply to the southeast and south approximately 63? to 76?. Slug tests were conducted at six boreholes to estimate transmissivity. Transmissivity from slug tests ranged from 21 feet squared per day in borehole CH-5669 to greater than 12,000 feet squared per day in boreholes CH-5665 and CH-5667. After interpretation of geophysical logs, borehole television surveys, and driller's logs, all boreholes were screened such that water-level fluctuations could be monitored and discrete water samples collected from one or more water-producing zones in each borehole.

  2. Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 126a, 126b, 127, 128, 129, 130, 131, 132, 133, and 134, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Hodges, Mary K.V.; Orr, Stephanie

    2008-01-01

    This report summarizes construction, geophysical, and lithologic data collected from ten U.S. Geological Survey (USGS) boreholes completed between 1999 nd 2006 at the Idaho National Laboratory (INL): USGS 126a, 126b, 127, 128, 129, 130, 131, 132, 133, and 134. Nine boreholes were continuously cored; USGS 126b had 5 ft of core. Completion depths range from 472 to 1,238 ft. Geophysical data were collected for each borehole, and those data are summarized in this report. Cores were photographed and digitally logged using commercially available software. Digital core logs are in appendixes A through J. Borehole descriptions summarize location, completion date, and amount and type of core recovered. This report was prepared by the USGS in cooperation with the U.S. Department of Energy (DOE).

  3. Magnetotelluric data collected near geophysically logged boreholes in the Espa?ola and Middle Rio Grande basins, New Mexico

    USGS Publications Warehouse

    Williams, Jackie M.; Rodriguez, Brian D.

    2006-01-01

    The Santa Fe region is growing rapidly. The Santa Fe Group aquifer in the Espa?ola Basin is the main source of municipal water for the region, and water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region's ground-water resources. An important issue in managing the ground-water resources is a better understanding of the hydrogeology of the Tertiary Santa Fe Group. The Santa Fe Group includes the sedimentary deposits that fill the Rio Grande rift and contain the principal ground-water aquifers. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the Espa?ola Basin in northern New Mexico. Detailed geologic mapping, high-resolution airborne magnetic surveys, electromagnetic surveys, and hydrologic, lithologic, and hydro-geochemical data are being used to better understand the aquifer systems. Magnetotelluric (MT) surveys were completed as part of these studies. The primary purpose of the MT surveys was to map changes in electrical resistivity with depth that are related to differences in various rock types that help control the properties of aquifers in the region. Resistivity modeling of the MT data can be used to investigate buried structures related to the basic geologic framework of the study area. The purpose of this report is to release MT sounding data collected near geophysically logged boreholes in the study area, including the nearby Middle Rio Grande Basin. This MT data can be used in subsequent resistivity modeling. No interpretation of the data is included in this report.

  4. Fossils, lithologies, and geophysical logs of the Mancos Shale from core hole USGS CL-1 in Montrose County, Colorado

    USGS Publications Warehouse

    Ball, Bridget A.; Cobban, W.A.; Merewether, E.A.; Grauch, R.I.; McKinney, K.C.; Livo, K.E.

    2009-01-01

    As part of a multidisciplinary investigation of Mancos Shale landscapes in the Gunnison Gorge National Conservation Area in Delta and Montrose Counties of western Colorado by the U.S. Geological Survey, Bureau of Land Management, and Bureau of Reclamation, a core of the Upper Cretaceous Mancos Shale was obtained from a borehole, USGS CL-1, in NE1/4 sec. 8, T. 50 N., R. 9 W. (approximately lat 38.61717 degree(s) N., long 107.90174 degree(s) W.), near the town of Olathe. Geophysical records of the borehole include resistivity, gamma ray, and density logs. The core extends between depths of 20 and 557 ft and is about 2.5 in. in diameter. It is composed of calcareous silty shale, as well as scattered beds of limestone and bentonite which were deposited mainly in offshore marine environments during the Cenomanian, Turonian, and Coniacian Stages of the Cretaceous Series. The strata were sampled and analyzed to obtain geochemical data and to identify constituent fossils. Stratigraphic units within the Mancos in the core include the following members, in ascending order: Bridge Creek Limestone (part), Fairport, Blue Hill, Juana Lopez, Montezuma Valley, and Niobrara (part). Strata herein assigned to the Bridge Creek Limestone are about 18 ft thick and consist of silty shale that contains ammonites, bivalves, and a coral of Late Cenomanian age. Strata assigned to the Fairport are about 22 ft thick and composed mainly of calcarenite-bearing, calcareous shale. Fossils in this member include ammonites and bivalves of early middle Turonian age. Overlying the Fairport is the Blue Hill Member, which is about 139 ft thick, and consists of glauconitic, shaley siltstone, and less silty shale. The Juana Lopez Member, overlying the Blue Hill, is about 138 ft thick and composed mainly of calcarenitic, silty shale. Beds in this member contain ammonites and bivalves of late middle and early late Turonian ages. Overlying the Juana Lopez is the Montezuma Valley Member, which is about 55 ft

  5. Evaluation of borehole geophysical logs and hydraulic tests, phase III, at AIW Frank/Mid-County Mustang Superfund Site, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2001-01-01

    Borehole geophysical logs, heatpulse-flowmeter measurements, and aquifer-isolation tests were used to characterize the ground-water-flow system at the AIW Frank/Mid-County Mustang Superfund Site. The site is underlain by fractured carbonate rocks. Caliper, natural- gamma, single-point-resistance, fluid-resistivity, and fluid-temperature logs were run in six wells, and an acoustic borehole televiewer and borehole deviation log was run in one well. The direction and rate of borehole- fluid movement was measured with a high-resolution heatpulse flowmeter for both nonpumping and pumping conditions in four wells. The heatpulse-flowmeter measurements showed flow within the borehole during nonpumping conditions in three of the four wells tested. Flow rates up to 1.4 gallons per minute were measured. Flow was upward in one well and both upward and downward in two wells. Aquifer-isolation (packer) tests were conducted in four wells to determine depth-discrete specific capacity values, to obtain depth-discrete water samples, and to determine the effect of pumping an individual fracture or fracture zone in one well on water levels in nearby wells. Water-level data collected during aquifer-isolation tests were consistent with and confirmed interpretations of borehole geophysical logs and heatpulse-flowmeter measurements. Seven of the 13 fractures identified as water-producing or water-receiving zones by borehole geophysical methods produced water at a rate equal to or greater than 7.5 gallons per minute when isolated and pumped. The specific capacities of isolated fractures range over three orders of magnitude, from 0.005 to 7.1 gallons per minute per foot. Vertical distribution of specific capacity between land surface and 298 feet below land surface is not related to depth. The four highest specific capacities, in descending order, are at depths of 174-198, 90-92, 118-119, and 34-37 feet below land surface.

  6. Demonstration of Advanced Geophysics and Classification Technologies on Munitions Response Sites, Pole Mountain Target and Maneuver Area, Wyoming

    DTIC Science & Technology

    2012-03-01

    FINAL REPORT Demonstration of Advanced Geophysics and Classification Technologies on Munitions Response Sites Pole Mountain Target and...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 27-03-2012 Final Report May 2011 - March 2012 Demonstration of Advanced Geophysics and...document serves as the Environmental Security Technology Certification Program (ESTCP) Demonstration Report for the Demonstration of Advanced Geophysics

  7. Geophysical logging to determine construction, contributing zones, and appropriate use of water levels measured in confined-aquifer network wells, San Luis Valley, Colorado, 1998-2000

    USGS Publications Warehouse

    Brendle, D.L.

    2002-01-01

    Geophysical logs were recorded in 32 wells in the confined-aquifer monitoring well network maintained by the Rio Grande Water Conservation District. Logging results were used to determine well construction, zones contributing water to the wells, and the purposes for which the ground-water levels measured in the wells can be used. The confined-aquifer well network consists of 42 flowing and nonflowing wells. This network consists of wells used to supply water for irrigation, household use, wildlife refuge supply, and stock use, and wells for water-level monitoring. Geophysical logs recorded in the wells included video, caliper, water specific conductance, water temperature, and water flow. Most wells in the confined-aquifer well network yield a composite water level representing water levels in multiple permeable zones in the confined-aquifer system of the San Luis Valley. A potentiometric-surface map constructed using November 2000 water levels indicates that water levels from most wells in the network are correlated with water levels from nearby network wells. Potentiometric-surface maps that are constructed from water levels measured in most of the wells in the network can be used to understand long-term local and regional changes in water levels in the confined-aquifer system. Water levels measured in 8 of the 42 wells in the confined-aquifer network are not representative of water levels in the confined-aquifer system.

  8. A comparison of binary and multiclass support vector machine models for volcanic lithology estimation using geophysical log data from Liaohe Basin, China

    NASA Astrophysics Data System (ADS)

    Mou, Dan; Wang, Zhu-Wen

    2016-05-01

    Lithology estimation of rocks, especially volcanic lithology, is one of the major goals of geophysical exploration. In this paper, we propose the use of binary and multiclass support vector machine models with geophysical log data to estimate the volcanic lithology of the Liaohe Basin, China. Using neutron (CNL), density (DEN), acoustic (AC), deep lateral resistivity (RLLD), and gamma-ray (GR) log data from 40 wells (a total of 1200 log data points) in the Liaohe Basin, China, we first construct the binary support vector machine model to classify volcanic rock and non-volcanic rock. Then, we expand the binary model to a multiclass model using the approach of directed acyclic graphs, and construct multiclass models to classify six types of volcanic rocks: basalt, non-compacted basalt, trachyte, non-compacted trachyte, gabbro and diabase. To assess the accuracy of these two models, we compare their predictions with core data from four wells (at 800 different depth points in total). Results indicate that the accuracy of the binary and multiclass models are 98.4% and 87%, respectively, demonstrating that binary and multiclass support vector machine models are effective methods for classifying volcanic lithology.

  9. Geophysical logs and water-quality data collected for boreholes Kimama-1A and -1B, and a Kimama water supply well near Kimama, southern Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.

    2011-01-01

    In September 2010, a research consortium led by scientists from Utah State University began drilling the first of three continuously cored boreholes on the Snake River Plain in southern Idaho. The goals of this effort, the Snake River Scientific Drilling Project, are to study the interaction between the Earth's crust and mantle, to identify potential geothermal energy sources, and to track the evolution of the Yellowstone hotspot on the Snake River Plain. The first borehole, located near Kimama, Idaho, is about 50 miles southwest of the U.S. Department of Energy's Idaho National Laboratory. Because geohydrologic data are scarce for that area of the central Snake River Plain, the Kimama borehole, completed in January 2011, provided a unique opportunity to collect geophysical and water-chemistry data from the eastern Snake River Plain aquifer system, downgradient of the laboratory. Therefore, in conjunction with the Snake River Scientific Drilling Project, scientists from the U.S. Geological Survey's Idaho National Laboratory Project Office conducted geophysical logging and collected water samples at the Kimama site. Wireline geophysical logs were collected for the diverging borehole, Kimama-1A and -1B, from land surface to 976 and 2,498 feet below land surface (BLS), respectively. Water samples were collected from Kimama-1A at depths near 460 and 830 feet BLS, and from the Kimama Water Supply (KWS) well located about 75 feet away. Geophysical log data included a composite of natural gamma, neutron, gamma-gamma dual density, and gyroscopic analysis for boreholes Kimama-1A and -1B. Geophysical logs depicted eight sediment layers (excluding surficial sediment) ranging from 4 to 60 feet in thickness. About 155 individual basalt flows were identified, ranging from less than 3 feet to more than 175 feet in thickness (averaging 15 feet) for borehole Kimama-1B (0 to 2,498 feet BLS). Sediment and basalt contacts were selected based on geophysical traces and were confirmed

  10. Investigation of groundwater in parts of Ndokwa District in Nigeria using geophysical logging and electrical resistivity methods: Implications for groundwater exploration

    NASA Astrophysics Data System (ADS)

    Anomohanran, Ochuko; Ofomola, Merrious Oviri; Okocha, Fredrick Ogochukwu

    2017-05-01

    Groundwater study involving the application of geophysical logging and vertical electrical sounding (VES) methods was carried out in parts of Ndokwa area of Delta State, Nigeria. The objective was to delineate the geological situation and the groundwater condition of the area. The geophysical logging of a drilled well and thirty VESs of the Schlumberger configuration were executed in this study using the Abem SAS 1000/4000 Terrameter. The result of the lithological study from the drilled well showed that the subsurface formation consist of lateritic topsoil, very fine sand, clayey fine sand, fine and medium grain sand, coarse sand, medium coarse sand and very coarse sand. The interpretation of the vertical electrical sounding data using a combination of curve matching and Win Resist computer iteration showed a close correlation with the well record. The result revealed the presence of four geoelectric layers with the aquifer identified to be in the fourth layer and having resistivity which ranged from 480 to 11,904 Ωm, while the depth ranged between 17.8 and 38.8 m. The analysis of the geophysical logging revealed that the average value of the electrical conductivity and the total dissolved solid of the groundwater in the aquifer were obtained as 229 μS/cm and 149 mg/cm3 respectively. These results indicate that the groundwater is within the permissible limit set by the Standard Organization of Nigeria for potable water which is 1000 μS/cm for electrical conductivity and 500 mg/cm3 for total dissolved solid. The fourth layer was therefore identified as the potential non conductive zone suitable for groundwater development in the study area.

  11. Lithologic properties of carbonate-rock aquifers at five test wells in the Coyote Spring Valley Area, southern Nevada, as determined from geophysical logs. Water resources investigation report

    SciTech Connect

    Berger, D.L.

    1992-01-01

    Regional ground-water flow systems in the carbonate-rock aquifers in southern Nevada were evaluated as potential sources for water supply as part of the Nevada Carbonate Aquifers Program. Geophysical log analyses indicated that the test wells penetrate carbonate rocks, which vary in composition from limestone to dolomite and include mixtures of both. Calcite was found to be the predominant matrix mineral and shales made up of only a small percentage of the overall rock. Bulk-density measurements averaged 2.65 grams per cubic centimeter and the matrix density estimates averaged 2.76 grams per cubic centimeter. Increased amounts of silica in the matrix mineralogy were associated with greater total porosity values. The log analyses indicated an average of 4.7 percent porosity for 43 zones in the test wells.

  12. Searching for graves using geophysical technology: field tests with ground penetrating radar, magnetometry, and electrical resistivity.

    PubMed

    Buck, Sabrina C

    2003-01-01

    Field experiments were conducted using three types of geophysical equipment in a variety of situations. The goal of the study was to ascertain the relative utility of this technology for non-geophysical expert forensic professionals searching for buried human remains. The study concludes that the equipment should be used with caution after a critical evaluation of specific field conditions, and more refinement of technical methods and skills should be developed.

  13. Establishing the base of underground sources of drinking water (10,000ppm) using geophysical logs and chemical reports in the southern San Joaquin Basin, CA

    NASA Astrophysics Data System (ADS)

    Kong, David; Gillespie, Janice

    2016-04-01

    Recent concerns about well stimulation and oilfield disposal practices has resulted in the desire to learn more about the distribution of usable groundwater that might be impacted by these practices. Waters that require protection are classified by the US EPA as USDW's (Underground Sources of Drinking Water). These waters have a concentration of 10,000 parts per million total dissolved solids and are not within an exempt aquifer. Direct sampling and chemical analyses of the water from oil and gas producing formations provide the most accurate values for the formation water salinities, but the data is scarce. The method in this analysis uses open-hole geophysical logs and Archie's equation to calculate the salinity. The two methods used in the analysis are the spontaneous potential method that uses the spontaneous potential log and the mud and formation resistivity values to calculate a salinity, and the resistivity-porosity method that uses the resistivity and porosity logs. Sonic, density, and neutron logs are available in the southern San Joaquin as well as porosity values from cores. Results shows that the resistivity porosity method has a smaller error than the spontaneous potential method, therefore, the resistivity-porosity method is chosen for the analysis of the 10,000 parts per million boundary. Due to the lack of porosity logs in wells with chemical analyses, porosity values recorded in DOGGR reports are used in the Humble equation to link the formation water resistivity to salinity. In this way, we can back calculate the deep resistivity vales that should correspond to the 10,000 salinity boundary to determine the depth at which the base of the USDW is found.

  14. Geophysical Log Data from Basalt Aquifers Near Waipahu on the Island of Oahu and Pahoa on the Island of Hawaii, Hawaii

    USGS Publications Warehouse

    Paillet, Frederick L.; Hess, Alfred E.

    1995-01-01

    Two relatively new geophysical logging techniques, the digitally enhanced borehole acoustic televiewer and the heat-pulse flowmeter, were tested from 1987 to 1991 at two sites in Hawaii: Waipahu on the island of Oahu, and Pahoa on the island of Hawaii. Although these data were obtained in an effort to test and improve these two logging techniques, the measurements are of interest to hydrologists studying the aquifers in Hawaii. This report presents a review of the measurements conducted during this effort and summarizes the data obtained in a form designed to make that data available to hydrologists studying the movement of ground water in Hawaiian aquifers. Caliper logs obtained at the Waipahu site indicate the distribution of openings in interbed clinker zones between relatively dense and impermeable basalt flows. The flowmeter data indicate the pattern of flow induced along seven observation boreholes that provide conduits between interbed zones in the vicinity of the Mahoe Pumping Station at the Waipahu site. The televiewer image logs obtained in some of the Waipahu Mahoe boreholes do not show any significant vertical or steeply dipping fractures that might allow communication across the dense interior of basalt flows. Acoustic televiewer logs obtained at the Pahoa site show that a number of steeply dipping fractures and dikes cut across basalt flows. Although flow under ambient hydraulic-head conditions in the Waipahu Mahoe Observation boreholes is attributed to hydraulic gradients associated with pumping from a nearby pumping station, flow in the Waipio Deep Observation borehole on Oahu and flow in the Scientific Observation borehole on Hawaii are attributed to the effects of natural recharge and downward decreasing hydraulic heads associated with that recharge.

  15. Use of borehole geophysical logs for improved site characterization at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    USGS Publications Warehouse

    Anaya, Roberto; Braun, Christopher L.; Kuniansky, Eve L.

    2000-01-01

    A shallow alluvial aquifer at the Naval Weapons Industrial Reserve Plant near Dallas, Texas, has been contaminated by organic solvents used in the fabrication and assembly of aircraft and aircraft parts. Natural gamma-ray and electromagnetic-induction log data collected during 1997 from 162 wells were integrated with existing lithologic and cone-penetrometer test log data to improve characterization of the subsurface alluvium at the site. The alluvium, consisting of mostly fine-grained, low-permeability sediments, was classified into low, intermediate, and high clay-content sediments on the basis of the gamma-ray logs. Low clay-content sediments were interpreted as being relatively permeable, whereas high clay-content sediments were interpreted as being relatively impermeable. Gamma-ray logs, cone-penetrometer test logs, and electromagnetic-induction logs were used to develop a series of intersecting sections to delineate the spatial distribution of low, intermediate, and high clay-content sediments and to delineate zones of potentially contaminated sediments. The sections indicate three major sedimentary units in the shallow alluvial aquifer at NWIRP. The lower unit consists of relatively permeable, low clay-content sediments and is absent over the southeastern and northwestern part of the site. Permeable zones in the complex, discontinuous middle unit are present mostly in the western part of the site. In the eastern and southeastern part of the site, the upper unit has been eroded away and replaced by fill material. Zones of potentially contaminated sediments are generally within the uppermost clay layer or fill material. In addition, the zones tend to be local occurrences.

  16. The interactive impact of forest site and stand attributes and logging technology on stand management

    Treesearch

    C.B. LeDoux; J.E. Baumgras

    1991-01-01

    The impact of selected site and stand attributes on stand management is demonstrated using actual forest model plot data and a complete systems simulation model called MANAGE. The influence of terrain on the type of logging technology required to log a stand and the resulting impact on stand management is also illustrated. The results can be used by managers and...

  17. Results of borehole geophysical logging and hydraulic tests conducted in Area D supply wells, former US Naval Air Warfare Center, Warminster, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Grazul, Kevin E.

    1998-01-01

    Borehole geophysical logging, aquifer tests, and aquifer-isolation (packer) tests were conducted in four supply wells at the former U.S. Naval Air Warfare Center (NAWC) in Warminster, PA to identify the depth and yield of water-bearing zones, occurrence of borehole flow, and effect of pumping on nearby wells. The study was conducted as part of an ongoing evaluation of ground-water contamination at the NAWC. Caliper, natural-gamma, single-point resistance, fluid resistivity, and fluid temperature logs and borehole television surveys were run in the supply wells, which range in depth from 242 to 560 ft (feet). Acoustic borehole televiewer and borehole deviation logs were run in two of the wells. The direction and rate of borehole-fluid movement under non-pumping conditions were measured with a high-resolution heatpulse flowmeter. The logs were used to locate water-bearing fractures, determine probable zones of vertical borehole-fluid movement, and determine the depth to set packers. An aquifer test was conducted in each well to determine open-hole specific capacity and the effect of pumping the open borehole on water levels in nearby wells. Specific capacities ranged from 0.21 to 1.7 (gal/min)/ft (gallons per minute per foot) of drawdown. Aquifer-isolation tests were conducted in each well to determine depth-discrete specific capacities and to determine the effect of pumping an individual fracture or fracture zone on water levels in nearby wells. Specific capacities of individual fractures and fracture zones ranged from 0 to 2.3 (gal/min)/ft. Most fractures identified as water-producing or water-receiving zones by borehole geophysical methods produced water when isolated and pumped. All hydrologically active fractures below 250 ft below land surface were identified as water-receiving zones and produced little water when isolated and pumped. In the two wells greater then 540 ft deep, downward borehole flow to the deep water-receiving fractures is caused by a large

  18. Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 103, 105, 108, 131, 135, NRF-15, and NRF-16, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Orr, Stephanie M.; Potter, Katherine E.; LeMaitre, Tynan

    2012-01-01

    This report, prepared in cooperation with the U.S. Department of Energy, summarizes construction, geophysical, and lithologic data collected from about 4,509 feet of core from seven boreholes deepened or drilled by the U.S. Geological Survey (USGS), Idaho National Laboratory (INL) Project Office, from 2006 to 2009 at the INL. USGS 103, 105, 108, and 131 were deepened and cored from 759 to 1,307 feet, 800 to 1,409 feet, 760 to 1,218 feet, and 808 to 1,239 feet, respectively. Boreholes USGS 135, NRF-15, and NRF-16 were drilled and continuously cored from land surface to 1,198, 759, and 425 feet, respectively. Cores were photographed and digitally logged by using commercially available software. Borehole descriptions summarize location, completion date, and amount and type of core recovered.

  19. Results of borehole geophysical logging and aquifer-isolation tests conducted in the John Wagner and Sons, Inc former production well, Ivyland, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    1997-01-01

    A suite of borehole geophysical logs and heat-pulse-flowmeter measurements run in the former production well at the John Wagner and Sons, Inc. plant indicate two zones of borehole flow. In the upper part of the well, water enters the borehole through a fracture at 90 ft (feet) below floor level, moves upward, and exits the borehole through a fracture at 72 ft below floor level. Water also enters the borehole through fractures at 205-213, 235, and 357 ft below floor level; moves downward; and exits the borehole through fractures at 450-459, 468-470, and 483-490 ft below floor level. Five zones were selected for aquifer-isolation (packer) tests on the basis of borehole geophysical logs. The zones were isolated using a straddle-packer assembly. The lowermost three zones (below 248, 223 to 248, and 198 to 223 ft below floor level) were hydraulically isolated from zones above and below. Specific capacities were 0.12, 0.034, and 0.15 gallons per minute per foot, respectively. The hydrograph from zone 2 (223 to 248 ft below floor level) showed interference from a nearby pumping well. For the upper two zones (81 to 106 and 57 to 81 ft below floor level), similar drawdowns in the isolated zone and the zones above and below the isolated zone indicate that these fractures are hydraulically connected outside the borehole in the unconfined part of the Stockton Formation. The specific capacity of zones 4 and 5 are similar--0.82 and 0.61, respectively.

  20. Yucatan Subsurface Stratigraphy from Geophysical Data, Well Logs and Core Analyses in the Chicxulub Impact Crater and Implications for Target Heterogeneities

    NASA Astrophysics Data System (ADS)

    Canales, I.; Fucugauchi, J. U.; Perez-Cruz, L. L.; Camargo, A. Z.; Perez-Cruz, G.

    2011-12-01

    Asymmetries in the geophysical signature of Chicxulub crater are being evaluated to investigate on effects of impact angle and trajectory and pre-existing target structural controls for final crater form. Early studies interpreted asymmetries in the gravity anomaly in the offshore sector to propose oblique either northwest- and northeast-directed trajectories. An oblique impact was correlated to the global ejecta distribution and enhanced environmental disturbance. In contrast, recent studies using marine seismic data and computer modeling have shown that crater asymmetries correlate with pre-existing undulations of the Cretaceous continental shelf, suggesting a structural control of target heterogeneities. Documentation of Yucatan subsurface stratigraphy has been limited by lack of outcrops of pre-Paleogene rocks. The extensive cover of platform carbonate rocks has not been affected by faulting or deformation and with no rivers cutting the carbonates, information comes mainly from the drilling programs and geophysical surveys. Here we revisit the subsurface stratigraphy in the crater area from the well log data and cores retrieved in the drilling projects and marine seismic reflection profiles. Other source of information being exploited comes from the impact breccias, which contain a sampling of disrupted target sequences, including crystalline basement and Mesozoic sediments. We analyze gravity and seismic data from the various exploration surveys, including multiple Pemex profiles in the platform and the Chicxulub experiments. Analyses of well log data and seismic profiles identify contacts for Lower Cretaceous, Cretaceous/Jurassic and K/Pg boundaries. Results show that the Cretaceous continental shelf was shallower on the south and southwest than on the east, with emerged areas in Quintana Roo and Belize. Mesozoic and upper Paleozoic sediments show variable thickness, possibly reflecting the crystalline basement regional structure. Paleozoic and Precambrian

  1. Demonstration of Advanced Geophysics and Classification Technologies on Munitions Response Sites Fort Rucker, Alabama

    DTIC Science & Technology

    2013-11-01

    DEMONSTRATION REPORT Demonstration of Advanced Geophysics and Classification Technologies on Munitions Response Sites Fort Rucker, Alabama ...Rucker, Alabama 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...public release, distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This document serves as the Environmental Security Technology

  2. Geophysical investigation at US Army Materials Technology Laboratory, Massachusetts. Final report

    SciTech Connect

    Llopis, J.L.; Simms, J.E.

    1993-11-01

    Results of a comprehensive, integrated geophysical investigation at 5 sites at the U.S. Army Materials Technology Laboratory (MTL) located in Watertown, MA, are presented. In 1960, the Army's first materials research reactor was completed at MTL, which was used actively in molecular and atomic structure research activities until 1970, when it was deactivated. In addition to the research reactor were facilities that stored and handled depleted uranium (DU). In 1989, the Commission on Base Realignment and Closure recommended that MTL be closed. The MTL closure program is being supervised by the U.S. Army Environmental Center. As part of the MTL closure program, any previously contaminated sites must be identified. Based on historical information, 5 sites were selected at MTL to be examined in further detail using geophysical methods. The geophysical investigation was designed to detect and delineate anomalous conditions indicative of buried waste, waste containers, fuel storage tanks, and unmapped drain or sewer lines having the potential of carrying wastes off the site. Electromagnetics, Geophysics, Magnetics, Geophysical surveys, Ground penetrating, Radar.

  3. Geophysical Logs, Specific Capacity, and Water Quality of Four Wells at Rogers Mechanical (former Tate Andale) Property, North Penn Area 6 Superfund Site, Lansdale, Pennsylvania, 2006-07

    USGS Publications Warehouse

    Senior, Lisa A.; Bird, Philip H.

    2010-01-01

    As part of technical assistance to the U.S. Environmental Protection Agency (USEPA) in the remediation of properties on the North Penn Area 6 Superfund Site in Lansdale, Pa., the U.S. Geological Survey (USGS) in 2006-07 collected data in four monitor wells at the Rogers Mechanical (former Tate Andale) property. During this period, USGS collected and analyzed borehole geophysical and video logs of three new monitor wells (Rogers 4, Rogers 5, and Rogers 6) ranging in depth from 80 to 180 feet, a borehole video log and additional heatpulse-flowmeter measurements (to quantify vertical borehole flow) in one existing 100-foot deep well (Rogers 3S), and water-level data during development of two wells (Rogers 5 and Rogers 6) to determine specific capacity. USGS also summarized results of passive-diffusion bag sampling for volatile organic compounds (VOCs) in the four wells. These data were intended to help understand the groundwater system and the distribution of VOC contaminants in groundwater at the property.

  4. Identification of water-bearing zones by the use of geophysical logs and borehole television surveys, collected February to September 1997, at the Former Naval Air Warfare Center, Warminster, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Between February 1997 and September 1997, 10 monitor wells were drilled near the site of the former Naval Air Warfare Center, Warminster, Bucks County, Pa., to monitor water levels and sample ground-water contaminants in the shallow, intermediate, and deep water-bearing zones. The sampling will determine the horizontal and vertical distribution of contaminated ground water migrating from known or suspected contaminant sources. Four wells were drilled north of the property adjacent to Area A, three wells along strike located on Lewis Drive, and three wells directly down dip on Ivyland Road. Well depths range from 69 feet to 300 feet below land surface. Borehole-geophysical logging and television surveys were used to identify water-bearing zones so that appropriate intervals could be screened in each monitor well. Geophysical logs were obtained at the 10 monitor wells. Borehole television surveys were obtained at the four monitor wells adjacent to Area A. Caliper and borehole television surveys were used to locate fractures, inflections on fluidtemperature and fluid-resistivity logs were used to locate possible water-bearing fractures, and heatpulse- flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, borehole television surveys, and driller?s logs, all wells were screened such that water-level fluctuations could be monitored and water samples collected from discrete water-bearing zones in each borehole.

  5. Geophysical Logs, Aquifer Tests, and Water Levels in Wells in and Near the North Penn Area 7 Superfund Site, Upper Gwynedd Township, Montgomery County, Pennsylvania, 2002-2006

    USGS Publications Warehouse

    Senior, Lisa A.; Conger, Randall W.; Bird, Philip H.

    2008-01-01

    Ground water in the vicinity of several industrial facilities in Upper Gwynedd Township and Lansdale Borough, Montgomery County, Pa., is contaminated with several volatile organic compounds (VOCs). The 2-square-mile area was placed on the National Priorities List as the North Penn Area 7 Superfund Site by the U.S. Environmental Protection Agency (USEPA) in 1989. The U.S. Geological Survey (USGS) conducted geophysical logging, aquifer testing, water-level monitoring, and streamflow measurements in the vicinity of North Penn Area 7 from October 2002 through December 2006. This followed work that began in 2000 to assist the USEPA in developing an understanding of the hydrogeologic framework in the area as part of the USEPA Remedial Investigation. The study area is underlain by Triassic- and Jurassic-age sandstones, siltstones, and shales of the Lockatong Formation and the Brunswick Group. Regionally, these rocks strike northeast and dip to the northwest. The sequence of rocks form fractured-rock aquifers that act as a set of confined to semi-confined layered aquifers of differing permeabilities. The aquifers are recharged by precipitation and discharge to streams and wells. The Wissahickon Creek headwaters are less than 1 mile northeast of the study area. This stream flows southwest approximately parallel to strike and bisects North Penn Area 7. Ground water is pumped in the vicinity of North Penn Area 7 for industrial use and public supply. The USGS collected geophysical logs for 42 wells that ranged in depth from 40 to 477 ft. Aquifer-interval-isolation testing was done in 17 of the 42 wells, for a total of 122 zones tested. A multiple-well aquifer test was conducted by monitoring the response of 14 wells to pumping and shutdown of a 600-ft deep production well in November-December 2004. In addition, water levels were monitored continuously in four wells in the area from October 2002 through September 2006, and streamflow was measured quarterly at two sites on

  6. Geophysical constraints on Rio Grande rift structure and stratigraphy from magnetotelluric models and borehole resistivity logs, northern New Mexico

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sawyer, David A.; Hudson, Mark R.; Grauch, V.J.S.

    2013-01-01

    Two- and three-dimensional electrical resistivity models derived from the magnetotelluric method were interpreted to provide more accurate hydrogeologic parameters for the Albuquerque and Española Basins. Analysis and interpretation of the resistivity models are aided by regional borehole resistivity data. Examination of the magnetotelluric response of hypothetical stratigraphic cases using resistivity characterizations from the borehole data elucidates two scenarios where the magnetotelluric method provides the strongest constraints. In the first scenario, the magnetotelluric method constrains the thickness of extensive volcanic cover, the underlying thickness of coarser-grained facies of buried Santa Fe Group sediments, and the depth to Precambrian basement or overlying Pennsylvanian limestones. In the second scenario, in the absence of volcanic cover, the magnetotelluric method constrains the thickness of coarser-grained facies of buried Santa Fe Group sediments and the depth to Precambrian basement or overlying Pennsylvanian limestones. Magnetotelluric surveys provide additional constraints on the relative positions of basement rocks and the thicknesses of Paleozoic, Mesozoic, and Tertiary sedimentary rocks in the region of the Albuquerque and Española Basins. The northern extent of a basement high beneath the Cerros del Rio volcanic field is delineated. Our results also reveal that the largest offset of the Hubbell Spring fault zone is located 5 km west of the exposed scarp. By correlating our resistivity models with surface geology and the deeper stratigraphic horizons using deep well log data, we are able to identify which of the resistivity variations in the upper 2 km belong to the upper Santa Fe Group sediment

  7. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  8. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  9. Contact zone permeability at intrusion boundaries: New results from hydraulic testing and geophysical logging in the Newark Rift Basin, New York, USA

    USGS Publications Warehouse

    Matter, J.M.; Goldberg, D.S.; Morin, R.H.; Stute, M.

    2006-01-01

    Hydraulic tests and geophysical logging performed in the Palisades sill and the underlying sedimentary rocks in the NE part of the Newark Rift Basin, New York, USA, confirm that the particular transmissive zones are localized within the dolerite-sedimentary rock contact zone and within a narrow interval below this contact zone that is characterized by the occurrence of small layers of chilled dolerite. Transmissivity values determined from fluid injection, aquifer testing, and flowmeter measurements generally fall in the range of 8.1E-08 to 9.95E-06 m2/s and correspond to various scales of investigation. The analysis of acoustic and optical BHTV images reveals two primary fracture sets within the dolerite and the sedimentary rocks - subhorizontal fractures, intersected by subvertical ones. Despite being highly fractured either with subhorizontal, subvertical or both fracture populations, the dolerite above and the sedimentary rocks below the contact zone and the zone with the layers of chilled dolerite are significantly less conductive. The distribution of the particular conductive intervals is not a function of the two dominant fracture populations or their density but rather of the intrusion path of the sill. The intrusion caused thermal fracturing and cracking of both formations, resulting in higher permeability along the contact zone. ?? Springer-Verlag 2005.

  10. Geophysical Exploration Technologies for the Deep Lithosphere Research: An Education Materials for High School Students

    NASA Astrophysics Data System (ADS)

    Xu, H.; Xu, C.; Luo, S.; Chen, H.; Qin, R.

    2012-12-01

    The science of Geophysics applies the principles of physics to study of the earth. Geophysical exploration technologies include the earthquake seismology, the seismic reflection and refraction methods, the gravity method, the magnetic method and the magnetotelluric method, which are used to measure the interior material distribution, their structure and the tectonics in the lithosphere of the earth. Part of the research project in SinoProbe-02-06 is to develop suitable education materials for carton movies targeting the high school students and public. The carton movies include five parts. The first part includes the structures of the earth's interior and variation in their physical properties that include density, p-wave, s-wave and so on, which are the fundamentals of the geophysical exploration technologies. The second part includes the seismology that uses the propagation of elastic waves through the earth to study the structure and the material distribution of the earth interior. It can be divided into earthquake seismology and artifice seismics commonly using reflection and refraction. The third part includes the magnetic method. Earth's magnetic field (also known as the geomagnetic field)extends from the Earth's inner core to where it meets the solar wind, a stream of energetic particles emanating from the Sun. The aim of magnetic survey is to investigate subsurface geology on the basis of anomalies in the Earth's magnetic field resulting from the magnetic properties of the underlying rocks. The magnetic method in the lithosphere attempts to use magnetic disturbance to analyse the regional geological structure and the magnetic boundaries of the crust. The fourth part includes the gravity method. A gravity anomaly results from the inhomogeneous distribution of density of the Earth. Usually gravity anomalies contain superposed anomalies from several sources. The long wave length anomalies due to deep density contrasts are called regional anomalies. They are

  11. Borehole geophysical logging and aquifer-isolation tests conducted in well MG-1693 at North Penn Area 5 Superfund Site near Colmar, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Bird, Philip H.

    2006-01-01

    Borehole geophysical logging and aquifer-isolation (packer) tests were conducted in well MG-1693 (NP-87) at the North Penn Area 5 Superfund Site near Colmar, Montgomery County, Pa. Objectives of the study were to identify the depth and yield of water-bearing zones, occurrence of vertical borehole flow, and effects of pumping on water levels in nearby wells. Caliper, natural-gamma, single-point-resistance, fluid-temperature, fluid-resistivity, heatpulse-flowmeter, and borehole-video logs were collected. Vertical borehole-fluid movement direction and rate were measured under nonpumping conditions. The suite of logs was used to locate water-bearing fractures, determine zones of vertical borehole-fluid movement, and select depths to set packers. Aquifer-isolation tests were conducted to sample discrete intervals and to determine specific capacities of water-bearing zones and effects of pumping individual zones on water levels in two nearby monitor wells. Specific capacities of isolated zones during aquifer-isolation tests ranged from 0.03 to 3.09 (gal/min)/ft (gallons per minute per foot). Fractures identified by borehole geophysical methods as water-producing or water-receiving zones produced water when isolated and pumped. Water enters the borehole primarily through high-angle fractures at 416 to 435 ft bls (feet below land surface) and 129 to 136 ft bls. Water exits the borehole through a high-angle fracture at 104 to 107 ft bls, a broken casing joint at 82 ft bls, and sometimes as artesian flow through the top of the well. Thirteen intervals were selected for aquifer-isolation testing, using a straddle-packer assembly. The specific capacity of interval 1 was 2.09 (gal/min)/ft. The specific capacities of intervals 2, 3, and 4 were similar: 0.27, 0.30, and 0.29 (gal/min)/ft,respectively. The specific capacities of intervals 5, 6, 7, 8, and 10 were similar: 0.03, 0.04, 0.09, 0.09, and 0.04 (gal/min)/ft,respectively. Intervals 9, 11, and 12 each showed a strong

  12. eMindLog: Self-Measurement of Anxiety and Depression Using Mobile Technology

    PubMed Central

    2017-01-01

    Background Quantifying anxiety and depressive experiences permits individuals to calibrate where they are and monitor intervention-associated changes. eMindLog is a novel self-report measure for anxiety and depression that is grounded in psychology with an organizing structure based on neuroscience. Objective Our aim was to explore the psychometric properties of eMindLog in a nonclinical sample of subjects. Methods In a cross-sectional study of eMindLog, a convenience sample of 198 adults provided informed consent and completed eMindLog and the Hospital Anxiety and Depression Scale (HADS) as a reference. Brain systems (eg, negative and positive valence systems, cognitive systems) and their functional states that drive behavior are measured daily as emotions, thoughts, and behaviors. Associated symptoms, quality of life, and functioning are assessed weekly. eMindLog offers ease of use and expediency, using mobile technology across multiple platforms, with dashboard reporting of scores. It enhances precision by providing distinct, nonoverlapping description of terms, and accuracy through guidance for scoring severity. Results eMindLog daily total score had a Cronbach alpha of .94. Pearson correlation coefficient for eMindLog indexes for anxiety and sadness/anhedonia were r=.66 (P<.001) and r=.62 (P<.001) contrasted with the HADS anxiety and depression subscales respectively. Of 195 subjects, 23 (11.8%) had cross-sectional symptoms above the threshold for Generalized Anxiety Disorder and 29 (29/195, 14.9%) for Major Depressive Disorder. Factor analysis supported the theoretically derived index derivatives for anxiety, anger, sadness, and anhedonia. Conclusions eMindLog is a novel self-measurement tool to measure anxiety and depression, demonstrating excellent reliability and strong validity in a nonclinical population. Further studies in clinical populations are necessary for fuller validation of its psychometric properties. Self-measurement of anxiety and depressive

  13. Survey of subsurface geophysical exploration technologies adaptable to an airborne platform

    SciTech Connect

    Taylor, K.A.

    1992-12-01

    This report has been prepared by the US Department of Energy (DOE) as part of a Research Development Demonstration Testing and Evaluation (RDDT&E) project by EG&G Energy Measurement`s (EG&G/EM) Remote Sensing Laboratory. It examines geophysical detection techniques which may be used in Environmental Restoration/Waste Management (ER/WM) surveys to locate buried waste, waste containers, potential waste migratory paths, and aquifer depths. Because of the Remote Sensing Laboratory`s unique survey capabilities, only those technologies which have been adapted or are capable of being adapted to an airborne platform were studied. This survey describes several of the available subsurface survey technologies and discusses the basic capabilities of each: the target detectability, required geologic conditions, and associated survey methods. Because the airborne capabilities of these survey techniques have not been fully developed, the chapters deal mostly with the ground-based capabilities of each of the technologies, with reference made to the airborne capabilities where applicable. The information about each survey technique came from various contractors whose companies employ these specific technologies. EG&G/EM cannot guarantee or verify the accuracy of the contractor information; however, the data given is an indication of the technologies that are available.

  14. Survey of subsurface geophysical exploration technologies adaptable to an airborne platform

    SciTech Connect

    Taylor, K.A.

    1992-12-01

    This report has been prepared by the US Department of Energy (DOE) as part of a Research Development Demonstration Testing and Evaluation (RDDT E) project by EG G Energy Measurement's (EG G/EM) Remote Sensing Laboratory. It examines geophysical detection techniques which may be used in Environmental Restoration/Waste Management (ER/WM) surveys to locate buried waste, waste containers, potential waste migratory paths, and aquifer depths. Because of the Remote Sensing Laboratory's unique survey capabilities, only those technologies which have been adapted or are capable of being adapted to an airborne platform were studied. This survey describes several of the available subsurface survey technologies and discusses the basic capabilities of each: the target detectability, required geologic conditions, and associated survey methods. Because the airborne capabilities of these survey techniques have not been fully developed, the chapters deal mostly with the ground-based capabilities of each of the technologies, with reference made to the airborne capabilities where applicable. The information about each survey technique came from various contractors whose companies employ these specific technologies. EG G/EM cannot guarantee or verify the accuracy of the contractor information; however, the data given is an indication of the technologies that are available.

  15. Sample descriptions and geophysical logs for cored well BP-3-USGS, Great Sand Dunes National Park and Preserve, Alamosa County, Colorado

    USGS Publications Warehouse

    Grauch, V.J.S.; Skipp, Gary L.; Thomas, Jonathan V.; Davis, Joshua K.; Benson, Mary Ellen

    2015-01-01

    BP-3-USGS was sited to test hypotheses developed from geophysical studies and to answer questions about the history and evolution of Pliocene and Pleistocene Lake Alamosa, which is represented by lacustrine deposits sampled by the well. The findings reported here represent a basis from which future studies can answer these questions and address other important scientific questions in the San Luis Valley regarding geologic history and climate change, groundwater hydrology, and geophysical interpretation.

  16. Evaluation of borehole geophysical logging, aquifer-isolation tests, distribution of contaminants, and water-level measurements at the North Penn Area 5 Superfund Site, Bucks and Montgomery counties, Pennsylvania

    USGS Publications Warehouse

    Bird, Philip H.; Conger, Randall W.

    2002-01-01

    Borehole geophysical logging and aquiferisolation (packer) tests were conducted at the North Penn Area 5 Superfund site in Bucks and Montgomery Counties, Pa. Caliper, naturalgamma, single-point-resistance, fluid-temperature, fluid-resistivity, heatpulse-flowmeter, and digital acoustic-televiewer logs and borehole television surveys were collected in 32 new and previously drilled wells that ranged in depth from 68 to 302 feet. Vertical borehole-fluid movement direction and rate were measured with a high-resolution heatpulse flowmeter under nonpumping conditions. The suite of logs was used to locate water-bearing fractures, determine zones of vertical borehole- fluid movement, select depths to set packers, and locate appropriate screen intervals for reconstructing new wells as monitoring wells. Aquifer-isolation tests were conducted in four wells to sample discrete intervals and to determine specific capacities of discrete water-bearing zones. Specific capacities of isolated zones during packer testing ranged from 0.12 to 15.30 gallons per minute per foot. Most fractures identified by borehole geophysical methods as water-producing or water-receiving zones produced water when isolated and pumped. The acoustic-televiewer logs define two basic fracture sets, bedding-plane partings with a mean strike of N. 62? E. and a mean dip of 27? NW., and high-angle fractures with a mean strike of N. 58? E. and a mean dip of 72? SE. Correlation of heatpulse-flowmeter data and acoustic-televiewer logs showed 83 percent of identified water-bearing fractures were high-angle fractures.

  17. Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation

    SciTech Connect

    Bond, Leonard J.; Denslow, Kayte M.; Griffin, Jeffrey W.; Dale, Gregory E.; Harris, Robert V.; Moran, Traci L.; Sheen, David M.; Schenkel, Thomas

    2010-11-01

    This report presents an initial review of the state-of-the-art nuclear and non-nuclear well logging methods and seeks to understand the technical and economic issues if AmBe, and potentially other isotope sources, are reduced or even eliminated in the oil-field services industry. Prior to considering alternative logging technologies, there is a definite need to open up discussions with industry regarding the feasibility and acceptability of source replacement. Industry views appear to range from those who see AmBe as vital and irreplaceable to those who believe that, with research and investment, it may be possible to transition to electronic neutron sources and employ combinations of non-nuclear technologies to acquire the desired petro-physical parameters. In one sense, the simple answer to the question as to whether petro-physical parameters can be sensed with technologies other than AmBe is probably "Yes". The challenges come when attention turns to record interpretation. The many decades of existing records form a very valuable proprietary resource, and the interpretation of subtle features contained in these records are of significant value to the oil-gas exploration community to correctly characterize a well. The demonstration of equivalence and correspondence/correlation between established and any new sensing modality, and correlations with historic records is critical to ensuring accurate data interpretation. Establishing the technical basis for such a demonstration represents a significant effort.

  18. A Virtual Geophysical Network: Using Industry Standard Technology to Link Geographically Distributed Sensors and Data Centers

    NASA Astrophysics Data System (ADS)

    Ahern, T. K.; Benson, R. B.; Crotwell, H. P.

    2003-12-01

    The IRIS Data Management System has long supported distributed data centers as a method of providing scientific researchers access to data from seismological networks around the world. For nearly a decade, the NetDC system used email as the method through which users could access data centers located around the globe in a seamless fashion. More recently the IRIS DMC has partnered with the University of South Carolina to develop a new method through which a virtual data center can be created. The Common Object Request Broker Architecture (CORBA) technology is an industry standard distributed computing architecture. Traditionally used by major corporations, IRIS has developed a Data Handling Interface (DHI) system that is capable of connecting services at participating data centers (servers) to applications running on end-users computing platforms (clients). For seismology we have identified three services. 1) A network service that provides information about geophysical observatories around the world such as where the sensors exist, what types of information are recorded on the sensors, and calibration information that allows proper use of the data, 2) an event service that allows applications to access information about earthquakes and seismological events and 3) waveform services that allow users to gain access to seismograms or time series data from other geophysical sensors. Seismological Data Centers operate the servers thereby allowing a variety of client applications to directly access the information at these data centers. Currently IRIS, the U. of South Carolina, UC Berkeley, and a European Data Center (ORFEUS) have been involved in the DHI project. This talk will highlight some of the DHI enabled clients that allow geophysical information to be directly transferred to the clients. Since the data center servers appear with the same interface specification (Interface Definition Language) a client that can talk to one DHI server can talk to any DHI enabled

  19. Technology diffusion in hospitals: a log odds random effects regression model.

    PubMed

    Blank, Jos L T; Valdmanis, Vivian G

    2015-01-01

    This study identifies the factors that affect the diffusion of hospital innovations. We apply a log odds random effects regression model on hospital micro data. We introduce the concept of clustering innovations and the application of a log odds random effects regression model to describe the diffusion of technologies. We distinguish a number of determinants, such as service, physician, and environmental, financial and organizational characteristics of the 60 Dutch hospitals in our sample. On the basis of this data set on Dutch general hospitals over the period 1995-2002, we conclude that there is a relation between a number of determinants and the diffusion of innovations underlining conclusions from earlier research. Positive effects were found on the basis of the size of the hospitals, competition and a hospital's commitment to innovation. It appears that if a policy is developed to further diffuse innovations, the external effects of demand and market competition need to be examined, which would de facto lead to an efficient use of technology. For the individual hospital, instituting an innovations office appears to be the most prudent course of action. © 2013 The Authors. International Journal of Health Planning and Management published by John Wiley & Sons, Ltd.

  20. The new idea of transporting tailings-logs in tailings slurry pipeline and the innovation of technology of mining waste-fill method

    SciTech Connect

    Lin Yu; Wang Fuji; Tao Yan

    2000-07-01

    This paper introduced a new idea of transporting mine tailings-logs in mine tailings-slurry pipeline and a new technology of mine cemented filing of tailings-logs with tailings-slurry. The hydraulic principles, the compaction of tailings-logs and the mechanic function of fillbody of tailings-logs cemented by tailings-slurry have been discussed.

  1. Description of the US Geological Survey`s slug-test and borehole geophysical-logging work at the Hallam Nuclear Facility. July to November 1994

    SciTech Connect

    1994-12-01

    Four aquifer slug-tests were performed in two observation wells 1B and 4C at Hallam Nuclear Facility, Nebraska. Well 1B responded more rapidly than 4C. Borehole geophysics data were collected in observation wells 1B, 4C, B-4, B-8, and B-10 on November 3.

  2. Applied Geophysics

    NASA Astrophysics Data System (ADS)

    Telford, W. M.; Geldart, L. P.; Sheriff, R. E.

    1990-10-01

    Completely revised and updated, this new edition of the popular and highly regarded textbook, Applied Geophysics, describes the physical methods involved in exploration for hydrocarbons and minerals. These tools include gravity, magnetic, seismic, electrical, electromagnetic, and radioactivity studies. All aspects of these methods are described, including theoretical considerations, data acquisition, and data processing and interpretation, with the objective of locating concentrations of natural resources and defining their extent. In the past fourteen years or so since the writing of Applied Geophysics, there have been many changes in the field of exploration geophysics. The authors give full treatment to changes in this field, which include improved techniques for calculating gravity fields, the use of proton-precession and optically-pumped magnetometers, improved quality of seismic data, magnetotelluric as a practical exploration method, new electromagnetic exploration methods, the use of gamma-ray spectrometers in radioactive exploration, and improved well-logging techniques. The intent is to be practical, and thus many actual examples and problems are given. Moreover, wherever possible in this edition the authors adopt the use of Système Internationale (SI) units, which were not in standared use at the time of the first edition. The reader needs only a general background knowledge of geology, physics, and mathematics. Most of the math can be skipped by those interested only in the results. Advanced mathematical concepts are explained in the appendix.

  3. Environmental Geophysics

    EPA Pesticide Factsheets

    The Environmental Geophysics website features geophysical methods, terms and references; forward and inverse geophysical models for download; and a decision support tool to guide geophysical method selection for a variety of environmental applications.

  4. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites.

    PubMed

    Day-Lewis, Frederick D; Slater, Lee D; Robinson, Judy; Johnson, Carole D; Terry, Neil; Werkema, Dale

    2017-04-20

    Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effectively infer fracture and fracture-zone locations, orientations and properties, and to develop conceptual site models for flow and transport. Despite the potential of geophysical methods to "see" between boreholes, two issues have impeded the adoption of geophysical methods by remediation professionals. First, geophysical results are commonly only indirectly related to the properties of interest (e.g., permeability) to remediation professionals, and qualitative or quantitative interpretation is required to convert geophysical results to hydrogeologic information. Additional demonstration/evaluation projects are needed in the site remediation literature to fully transfer geophysical methods from research to practice. Second, geophysical methods are commonly viewed as inherently risky by remediation professionals. Although it is widely understood that a given method may or may not work at a particular site, the reasons are not always clear to end users of geophysical products. Synthetic modeling tools are used in research to assess the potential of a particular method to successfully image a target, but these tools are not widely used in industry. Here, we seek to advance the application of geophysical methods to solve problems facing remediation professionals with respect to fractured-rock aquifers. To this end, we (1) provide an overview of geophysical methods applied to characterization and monitoring of fractured-rock aquifers; (2) review case studies showcasing different geophysical methods; and (3) discuss best practices for method selection and rejection based on synthetic modeling and decision support tools. Published by Elsevier Ltd.

  5. Borehole logging at the COSC-1 drill hole: a new dataset of in-situ geophysical properties through the lower Seve Nappe Complex

    NASA Astrophysics Data System (ADS)

    Berthet, Théo; Alm, Per-Gunnar; Wenning, Quinn; Almqvist, Bjarne; Kück, Jochem; Hedin, Peter

    2015-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) drilling project supported by the International Continental Drilling Program was designed to study mountain building processes in a deeply eroded Paleozoic orogen. The first half of this project, COSC-1, targeted the lower part of the high grade Seve Nappe Complex and its basal thrust zone near Åre in the Jämtland county, Sweden. From May to August 2014, the COSC drilling crew drilled to a depth of 2496 m from the surface with an almost fully recovered core sample. During this drilling period, four borehole-logging runs have been conducted by Lund University with a low impact on drilling schedule and two supplementary ones once the drilling was completed. Three-Arm Caliper, Electrical Logging, Sidewall Density, Flowing Fluid Electric Conductivity, High Resolution Acoustic Televiewer and Full Waveform Sonic sondes have been used to investigate in-situ physical properties of the borehole. In addition, the ICDP operational support group has conducted two continuous borehole-logging runs from the surface to the bottom of the COSC-1 borehole in September and October. Due to technical problems, some of the planned logging have not been completed, however natural gamma, rock resistivity, magnetic susceptibility, K/Th/U concentration, temperature and fluid conductivity have been measured all along the borehole. We used the continuous natural gamma log from the ICDP logging group as the depth reference to depth-match and stack the composite borehole logging done during the drilling. These borehole logging operations result in reliable continuous data of resistivity, density, velocity, magnetic susceptibility, K/Th/U concentration, temperature, fluid conductivity, pressure, diameter as well as an image (amplitude and travel time of reflected ultrasounds) of the borehole till its bottom. Only the density, velocity and image datasets stop at 1600 m depth due to instrumentation limits. Preliminary conclusions from

  6. Determination of depth, permeability, and fluid pressure of hydraulically active fractures in the COSC-1 borehole and their correlation with chemical and geophysical logging data

    NASA Astrophysics Data System (ADS)

    Tsang, Chin-Fu; Doughty, Christine; Rosberg, Jan-Erik; Berthet, Theo; Juhlin, Christopher; Niemi, Auli

    2016-04-01

    The Flowing Fluid Electricity Conductivity (FFEC) logging method has been applied to the 2.5-km fully-cored COSC-1 borehole in Sweden, both during and after the drilling period. The method is based on the fact that the drilling fluid has a lower electric conductivity (EC) value (about 200 μS/cm) compared to the formation water. Thus, by scanning several times along the borehole while it is being pumped at a low rate, Q, the locations of inflow zones can be identified as EC peaks at these depths. An analysis of the shape of the EC peaks will yield the local inflow rates and the formation water EC at each of the inflow zones. Further, by conducting the logging more than once with two values of Q, the initial or inherent fluid pressure at each inflow zone can be calculated. In the case of the COSC-1 borehole, the method has identified nine discrete inflow zones between 250 m depth and the borehole bottom of 2500 m depth. The permeability values are small and spread over more than one order of magnitude. The fluid pressures in the inflow zones show two groups of similar values with the shallow inflow zones having a higher pressure than those in the deeper part of the borehole. Correlation of the FFEC logging results with other information and data from the COSC-1 borehole are underway. First, rock cores were carefully examined at the depths of the inflow zones identified by FFEC logging. We were able to identify the fractures which may be responsible for the flow. It appears that each inflow zone can be correlated with one single fracture. The cores with these hydraulically active fractures have been transferred to the laboratory for detailed study. Second, COSC-1 fracture logs were reviewed. The majority of the fractures in the borehole are not hydraulically active and the active ones represent only about 1-2 % of the total number of fractures, consistent with previous statistical studies of fractures in crystalline rocks. Breakout logs were also studied and it

  7. Recent advances in bio-logging science: Technologies and methods for understanding animal behaviour and physiology and their environments

    NASA Astrophysics Data System (ADS)

    Evans, K.; Lea, M.-A.; Patterson, T. A.

    2013-04-01

    The deployment of an ever-evolving array of animal-borne telemetry and data logging devices is rapidly increasing our understanding of the movement, behaviour and physiology of a variety species and the complex, and often highly dynamic, environments they use and respond to. The rapid rate at which new technologies, improvements to current technologies and new analytical techniques are being developed has meant that movements, behaviour and physiological processes are being quantified at finer spatial and temporal scales than ever before. The Fourth International Symposium on Bio-logging Science, held on 14-18 March in Hobart, Australia, brought together scientists across multiple disciplines to discuss the latest innovations in technology, applications and analytical techniques in bio-logging science, building on research presented at three previous conferences. Here we present an update on the state of bio-logging research and provide some views on the future of this field of research. Papers were grouped into five theme areas: (i) Southern Ocean ecosystems; (ii) fishery and biodiversity management applications; (iii) from individuals to populations—inferences of population dynamics from individuals; (iv) conservation biology and (v) habitat modelling. Papers reflected wider uptake of newer technologies, with a greater proportion of studies utilising accelerometry and incorporating advances in statistical modelling of behaviour and habitats, especially via state space modelling methods. Environmental data collected by tags at increasing accuracies are now having wider application beyond the bio-logging community, providing important oceanographic data from regions difficult to sample using traditional methodologies. Partnerships between multiple organisations are also now enabling regional assessments of species movements, behaviour and physiology at population scales and will continue to be important for applying bio-logging technologies to species

  8. Environmental and Engineering Geophysics

    NASA Astrophysics Data System (ADS)

    Sharma, Prem V.

    1997-12-01

    Geophysical imaging methods provide solutions to a wide variety of environmental and engineering problems: protection of soil and groundwater from contamination; disposal of chemical and nuclear waste; geotechnical site testing; landslide and ground subsidence hazard detection; location of archaeological artifacts. This book comprehensively describes the theory, data acquisition and interpretation of all of the principal techniques of geophysical surveying: gravity, magnetic, seismic, self-potential, resistivity, induced polarization, electromagnetic, ground-probing radar, radioactivity, geothermal, and geophysical borehole logging. Each chapter is supported by a large number of richly illustrated case histories. This book will prove to be a valuable textbook for senior undergraduates and postgraduates in environmental and applied geophysics, a supplementary course book for students of geology, engineering geophysics, civil and mining engineering, and a reference work for professional earth scientists, engineers and town planners.

  9. Estimating the Amount of Eroded Section in a Partially Exhumed Basin from Geophysical Well Logs: An Example from the North Slope

    USGS Publications Warehouse

    Burns, W. Matthew; Hayba, Daniel O.; Rowan, Elisabeth L.; Houseknecht, David W.

    2007-01-01

    The reconstruction of burial and thermal histories of partially exhumed basins requires an estimation of the amount of erosion that has occurred since the time of maximum burial. We have developed a method for estimating eroded thickness by using porosity-depth trends derived from borehole sonic logs of wells in the Colville Basin of northern Alaska. Porosity-depth functions defined from sonic-porosity logs in wells drilled in minimally eroded parts of the basin provide a baseline for comparison with the porosity-depth trends observed in other wells across the basin. Calculated porosities, based on porosity-depth functions, were fitted to the observed data in each well by varying the amount of section assumed to have been eroded from the top of the sedimentary column. The result is an estimate of denudation at the wellsite since the time of maximum sediment accumulation. Alternative methods of estimating exhumation include fission-track analysis and projection of trendlines through vitrinite-reflectance profiles. In the Colville Basin, the methodology described here provides results generally similar to those from fission-track analysis and vitrinite-reflectance profiles, but with greatly improved spatial resolution relative to the published fission-track data and with improved reliability relative to the vitrinite-reflectance data. In addition, the exhumation estimates derived from sonic-porosity logs are independent of the thermal evolution of the basin, allowing these estimates to be used as independent variables in thermal-history modeling.

  10. Integrating High-Resolution Geophysical Technologies with a GIS-Based Decision Support System into Evaluation and Management of Wetlands

    NASA Astrophysics Data System (ADS)

    Mansoor, N. M.

    2004-05-01

    Wetlands perform many ecological functions and provide numerous societal benefits such as providing unique wildlife habitats, natural mechanisms for water purification, flood storage, recreational opportunities and natural resources. Geophysical technologies are increasingly used on land for environmental assessment. However, geophysical evaluation of wetlands has received minimal attention. The problems associated with conventional direct sampling of subsurface properties are exasperated in shallow water wetlands due to the logistical constraints imposed by these environments. Growing interest in wetlands highlights a need for high-resolution, non-invasive methods for evaluating and managing wetland water resources. We have developed an integrated geophysical-GIS approach to investigating shallow water wetlands. Rapid geophysical data acquisition in shallow water (less than 2 ft) is achieved using a plastic paddleboat modified as a "research vessel" for conducting high-resolution geophysical surveys. The vessel is designed for reconnaissance electromagnetic terrain conductivity (TC), reconnaissance gradiometer and 2D/3D continuous electrical resistivity imaging. A buoyant 12-electrode array, using non-polarizing Pb-PbCl2 junctions, is pulled behind the boat with simultaneous measurement of 10 resistances at two-second intervals using a SYSCAL PRO acquisition system. All instrumentation was tested and modified to ensure removal of artifacts caused by the metal steering mechanism. A multi-purpose surface water quality probe simultaneously records water depth, surface water conductivity, salinity, temperature, pH, turbidity, and dissolved oxygen content. All instruments are set to take a multi parameter measurement every two seconds while paddling. Decimeter scale location of all measurements is obtained at the instant of acquisition using precision differential GPS unit. We are typically able to survey an average of 8 km in one day, producing over 6,000 measurements

  11. Lithologic and geophysical logs of drill holes Felderhoff Federal 5-1 and 25-1, Amargosa Desert, Nye County, Nevada

    SciTech Connect

    Carr, W.J.; Grow, J.A.; Keller, S.M.

    1995-10-01

    Two wildcat oil and gas exploration holes drilled in 1991 on the northern edge of the Amargosa Desert penetrated Tertiary and Quaternary sedimentary rocks, alluvium, and basalt, possible Tertiary volcanic or volcaniclastic rocks, and Tertiary (?) and Paleozoic carbonate rocks. The easternmost of the two holes, Felderhoff-Federal 5-1, encountered about 200 feet of alluvium, underlain by 305 feet of basalt breccia and basalt, about 345 feet of probable Tertiary tuffaceous sedimentary rocks, and 616 feet of dense limestone and dolomite of uncertain age. Drill hole 25-1 penetrated 240 feet of alluvium and marl (?), and 250 feet of basalt breccia (?) and basalt, 270 feet of tuff (?) and/or tuffaceous sedimentary rocks, 360 feet of slide blocks (?) and large boulders of Paleozoic carbonate rocks, and 2,800 feet of Paleozoic limestone and dolomite. The two drill holes are located within a northerly trending fault zone defined largely by geophysical data; this fault zone lies along the east side of a major rift containing many small basalt eruptive centers and, farther north, several caldera complexes. Drill hole 25-1 penetrated an inverted paleozoic rock sequence; drill hole 5-1 encountered two large cavities 24-inches wide or more in dense carbonate rock of uncertain, but probable Paleozoic age. These openings may be tectonic and controlled by a regional system of northeast-striking faults.

  12. Interpretation of geophysical logs, aquifer tests, and water levels in wells in and near the North Penn Area 7 Superfund site, Upper Gwynedd Township, Montgomery County, Pennsylvania, 2000-02

    USGS Publications Warehouse

    Senior, Lisa A.; Cinotto, Peter J.; Conger, Randall W.; Bird, Philip H.; Pracht, Karl A.

    2005-01-01

    Ground water in the vicinity of various industrial facilities in Upper Gwynedd Township and Lansdale Borough, Montgomery County, Pa., is contaminated with various volatile organic compounds (VOCs). The 2-square-mile area was placed on the National Priorities List as the North Penn Area 7 Superfund site by the U.S. Environmental Protection Agency (USEPA) in 1989. The U.S. Geological Survey (USGS) conducted geophysical logging, aquifer testing, water-level monitoring, and streamflow measurements in the vicinity of North Penn Area 7 beginning autumn 2000 to assist the USEPA in developing an understanding of the hydrogeologic framework in the area as part of the USEPA Remedial Investigation. The study area is underlain by Triassic and Jurassic-age sandstones, siltstones, and shales of the Lockatong Formation and the Brunswick Group. Regionally, these rocks strike northeast and dip to the northwest. The sequence of rocks form a fractured-sedimentary-rock aquifer that acts as a set of confined to partially confined layered aquifers of differing permeabilities. The aquifers are recharged by precipitation and discharge to streams and wells. The Wissahickon Creek headwaters are less than 1 mile northeast of the study area, and this stream flows southwest to bisect North Penn Area 7. Ground water is pumped in the vicinity of North Penn Area 7 for industrial use and public supply. The USGS collected geophysical logs for 16 wells that ranged in depth from 50 to 623 feet. Aquifer-interval-isolation testing was done in 9 of the 16 wells, for a total of 30 zones tested. A multiple-well aquifer test was conducted by monitoring the response of 14 wells to pumping a 600-ft deep production well in February and March 2002. In addition, water levels were monitored continuously in three wells in the area and streamflow was measured quarterly at two sites on Wissahickon Creek from December 2000 through September 2002. Geophysical logging identified water-bearing zones associated with

  13. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    SciTech Connect

    Bennecke, William M.

    1996-10-01

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well.

  14. ICS logging solution for network-based attacks using Gumistix technology

    NASA Astrophysics Data System (ADS)

    Otis, Jeremy R.; Berman, Dustin; Butts, Jonathan; Lopez, Juan

    2013-05-01

    Industrial Control Systems (ICS) monitor and control operations associated with the national critical infrastructure (e.g., electric power grid, oil and gas pipelines and water treatment facilities). These systems rely on technologies and architectures that were designed for system reliability and availability. Security associated with ICS was never an inherent concern, primarily due to the protections afforded by network isolation. However, a trend in ICS operations is to migrate to commercial networks via TCP/IP in order to leverage commodity benefits and cost savings. As a result, system vulnerabilities are now exposed to the online community. Indeed, recent research has demonstrated that many exposed ICS devices are being discovered using readily available applications (e.g., ShodanHQ search engine and Google-esque queries). Due to the lack of security and logging capabilities for ICS, most knowledge about attacks are derived from real world incidents after an attack has already been carried out and the damage has been done. This research provides a method for introducing sensors into the ICS environment that collect information about network-based attacks. The sensors are developed using an inexpensive Gumstix platform that can be deployed and incorporated with production systems. Data obtained from the sensors provide insight into attack tactics (e.g., port scans, Nessus scans, Metasploit modules, and zero-day exploits) and characteristics (e.g., attack origin, frequency, and level of persistence). Findings enable security professionals to draw an accurate, real-time awareness of the threats against ICS devices and help shift the security posture from reactionary to preventative.

  15. Basic exploration geophysics

    SciTech Connect

    Robinson, E.S.

    1988-01-01

    An introduction to geophysical methods used to explore for natural resources and to survey earth's geology is presented in this volume. It is suitable for second-and third-year undergraduate students majoring in geology or engineering and for professional engineering and for professional engineers and earth scientists without formal instruction in geophysics. The author assumes the reader is familiar with geometry, algebra, and trigonometry. Geophysical exploration includes seismic refraction and reflection surveying, electrical resistivity and electromagnetic field surveying, and geophysical well logging. Surveying operations are described in step-by-step procedures and are illustrated by practical examples. Computer-based methods of processing and interpreting data as well as geographical methods are introduced.

  16. Interpretation of borehole geophysical logs, aquifer-isolation tests, and water quality, supply wells 1 and 2, Willow Grove Naval Air Station/Joint Reserve Base, Horsham Township, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Goode, Daniel J.; Frasch, Steven M.

    2002-01-01

    Ground water pumped from supply wells 1 and 2 on the Willow Grove Naval Air Station/Joint Reserve Base (NAS/JRB) provides water for use at the base, including potable water for drinking. The supply wells have been contaminated by volatile organic compounds (VOC?s), particularly trichloroethylene (TCE) and tetrachloroethylene (PCE), and the water is treated to remove the VOC?s. The Willow Grove NAS/JRB and surrounding area are underlain by sedimentary rocks of the Triassic-age Stockton Formation, which form a complex, heterogeneous aquifer. The ground-water-flow system for the supply wells was characterized by use of borehole geophysical logs and heatpulse-flowmeter measurements. The heatpulse-flowmeter measurements showed upward and downward borehole flow under nonpumping conditions in both wells. The hydraulic and chemical properties of discrete water-bearing fractures in the supply wells were characterized by isolating each water-bearing fracture with straddle packers. Eight fractures in supply well 1 and five fractures in supply well 2 were selected for testing on the basis of the borehole geophysical logs and borehole television surveys. Water samples were collected from each isolated fracture and analyzed for VOC?s and inorganic constituents. Fractures at 50?59, 79?80, 196, 124?152, 182, 241, 256, and 350?354 ft btoc (feet below top of casing) were isolated in supply well 1. Specific capacities ranged from 0.26 to 5.7 (gal/min)/ft (gallons per minute per foot) of drawdown. The highest specific capacity was for the fracture isolated at 179.8?188 ft btoc. Specific capacity and depth of fracture were not related in either supply well. The highest concentrations of PCE were in water samples collected from fractures isolated at 236.8?245 and 249.8?258 ft btoc, which are hydraulically connected. The concentration of PCE generally increased with depth to a maximum of 39 mg/L (micrograms per liter) at a depth of 249.8? 258 ft btoc and then decreased to 21 mg/L at a

  17. Water-level, borehole geophysical log, and water-quality data from wells transecting the freshwater/saline-water interface of the San Antonio segment of the Edwards Aquifer, South-Central Texas, 1999-2007

    USGS Publications Warehouse

    Lambert, Rebecca B.; Hunt, Andrew G.; Stanton, Gregory P.; Nyman, Michael B.

    2009-01-01

    As a part of a 9-year (1999-2007) study done by the U.S. Geological Survey in cooperation with the San Antonio Water System to improve understanding of the San Antonio segment of the Edwards aquifer, south-central Texas, in and near the freshwater/saline-water transition zone of the aquifer, the U.S. Geological Survey collected water-level, borehole geophysical, and water-quality data during 1999-2007 from 37 wells arranged in nine transects (except for two wells) across the freshwater/saline-water interface of the aquifer. This report presents the data collected and also describes the data-collection, analytical, and quality-assurance methods used. The wells, constructed with casing from land surface into the upper part of the aquifer and completed as open hole in the aquifer, are in Uvalde County (East Uvalde transect), in Medina County (South Medina and Devine wells), in Bexar County (Pitluk, Mission, and San Antonio transects), in Comal and Guadalupe Counties (Tri-County transect), in Comal County (New Braunfels transect), and in Hays County (Fish Hatchery, San Marcos, and Kyle transects). Data collected included continuous water level at 18 wells; fluid electrical conductivity and temperature with depth (fluid profiles) obtained by borehole geophysical logging of 15 wells; discrete (periodic) samples for major ions and trace elements at 36 wells; stable isotopes or stable isotopes and tritium at 27 wells; dissolved gases obtained by pumping (or collecting flow) of 19 wells; and continuous specific conductance and temperature at three of the wells equipped with continuous water-level sensors.

  18. Examining the Role of Topological Factors in Controlling the Hydraulic Conductivity of Granular Deposits Through the Analysis of Geophysical Well Logs: Results From the USGS Toxic Substances Hydrology Site

    NASA Astrophysics Data System (ADS)

    Morin, R. H.; Leblanc, D. R.

    2008-12-01

    Long-term spatial and temporal monitoring of a treated-wastewater plume moving through a sand-and-gravel aquifer has been ongoing at the USGS Toxic Substances Hydrology research site on Cape Cod, Massachusetts, for three decades. The site offers access to numerous wells that penetrate the glacial outwash-plain deposits, and a variety of field experiments has been designed and implemented to investigate aquifer heterogeneity and transport processes. As part of this effort, geophysical logging programs have delineated the spatial variability of hydraulic conductivity, K, by means of a comprehensive series of flowmeter/pumping tests, and correlations among K and other log-derived properties such as porosity, electrical conductivity, and natural gamma activity have been examined statistically to extract information regarding the nature of fluid flow through these materials. Results revealed only a weak or inconclusive dependence of K on porosity from which was inferred that hydraulic conductivity may be influenced more by the topology, or geometric configuration, of the granular mixtures than by the volume of the fluid phase. To investigate the role of pore geometry further, a field experiment was recently conducted in which a sequence of electromagnetic induction logs was recorded in a well to monitor changes in the electrical properties of the surrounding sediments during injection of a saline tracer. The changes resulted from marked contrasts in the specific conductance between the ambient and injected fluids. Analytical mixing models, as well as empirical relations such as Archie's law, have been developed to characterize the electrical properties of saturated rocks and sediments. By applying these relations to the electrical conductivity data combined with the porosity log, topological measures of phase connectivity and surface area along grain boundaries can be derived from downhole measurements. Petrophysical parameters such as formation factor, F, and

  19. Interpretation of Borehole Geophysical Logs, Aquifer-Isolation Tests, and Water-Quality Data for Sites 1, 3, and 5 at the Willow Grove Naval Air Station/Joint Reserve Base, Horsham Township, Montgomery County, Pennsylvania: 2005

    USGS Publications Warehouse

    Sloto, Ronald A.

    2007-01-01

    Borehole geophysical logging, heatpulse-flowmeter measurements, borehole television surveys, and aquifer-isolation tests were conducted in 2005 at the Willow Grove Naval Air Station/Joint Reserve Base (NAS/JRB) in Horsham Township, Montgomery County, Pa. This study was done by the U.S. Geological Survey (USGS) in cooperation with the U.S. Navy in support of hydrogeological investigations to address ground-water contamination. Data collected for this study are valuable for understanding ground-water flow in the Stockton Formation at the local and regional scale. The Willow Grove NAS/JRB is underlain by the Stockton Formation, which consists of sedimentary rocks of Triassic age. The rocks of the Stockton Formation form a complex, heterogeneous aquifer with partially connected zones of high permeability. Borehole geophysical logs, heatpulse-flowmeter measurements, and borehole television surveys made in seven boreholes ranging from 70 to 350 ft deep were used to identify potential water-producing fractures and fracture zones and to select intervals for aquifer-isolation tests. An upward vertical hydraulic gradient was measured in one borehole, a downward vertical hydraulic gradient was measured in four boreholes, both an upward and a downward vertical hydraulic gradient were measured in one borehole, and no flow was measurable in one borehole. The aquifer-isolation tests isolated 30 discrete fractures in the seven boreholes for collection of depth-discrete hydraulic and water-quality data. Of the 30 fractures identified as potentially water producing, 26 fractures (87 percent) produced more than 1 gallon per minute of water. The specific capacity of the isolated intervals producing more than 1 gallon per minute ranged from 0.02 to 5.2 gallons per minute per foot. There was no relation between specific capacity and depth of the fracture. Samples for analysis for volatile organic compounds were collected from each isolated zone. Tetrachloroethylene (PCE) was the most

  20. A Research of the Application Geophysical Methods to the Polluted Site and the river bottom mud in Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Liu, H. C.

    2013-12-01

    Many site investigations have found that DNAPL is able to penetrate the low permeable layer such as clay or silt-caly layer in subsurface environment. The cumulated DNAPL within the low permeable Layer will gradually diffuse to the high permeable layer to affect he accuracy of investigation and remedial design. As to the deeper zone affected by the penetration of DNAPL, the conventional sampling design investigating only the first unconfined aquifer is no longer suitable for DNAPL investigation. Precisely define the boundary and the distribution of high and low permeable layer is the key to conduct a successful DNAPL investigation. Point information derived from the conventional bore-hole sampling is difficult to be used for locating the DNAPL pollution due to the uncertainty of DNAPL migration and the soluble-phase distribution of the DNAPL partitioned into ground water between the low and high permeable layer. Recently, non-invaded technologies such as geophysical technology have been introduced to provide the plane and space information of pollution in subsurface by integrating few bore-hole dates. The most common used geophysical technologies are ground-penetrating radar method (GPR) and electrical resistivity tomography (ERT). Both methods have their limitations on the pollution investigation when there are interferences exist such as building structure or heavy pavement. A new geophysical technology, geophysical well logging has been developed to overcome above limitations. The information of multi-wells logging could be used to interpret the permeability of subsurface, the dominate flow path and the hot-spot for evaluating the distribution of pollution and the efficiency of remediation in different time sequences. This study would first discuss how DNAPL and its soluble-phase components invade into the low permeable layer based on the field observation. Then, the importance of geophysical technology is introduced with comparing to the limitations of bore

  1. Geophysical methods

    USDA-ARS?s Scientific Manuscript database

    Near-surface geophysical methods have become have become important tools for agriculture. Geophysics employed for agriculture tends to be heavily focused on a 2 m zone directly beneath the ground surface, which includes the crop root zone and all, or at least most, of the soil profile. Resistivity...

  2. Geophysics and Texas History: Teachers Utilize GPS and GPR Technology to Help Restore an Abandoned Cemetery

    NASA Astrophysics Data System (ADS)

    Henning, A. T.; Sawyer, D. S.; Wallace, D.; Kahera, A.

    2009-12-01

    In July 2009, a group of twenty-six K-12 teachers investigated an abandoned cemetery in Prairie View, Texas, utilizing ground-penetrating radar (GPR) to image the subsurface and handheld global positioning system (GPS) units and a total station to record surface positions. The teachers were participants in a summer course at Rice University, ESCI 515: Geophysical Field Work for Educators. The course met for 8 full days over a two week period. During this time, the group acquired and interpreted 53 GPR profiles and over 700 GPS positions. The results of the study were presented to the Prairie View community at the end of the two weeks, and our data will be used in their effort to obtain a historical site designation for the cemetery. Wyatt Chapel Cemetery is located adjacent to the campus of Prairie View A&M University in Prairie View, TX, and is thought to have originated as a slave burial ground in the 1850’s. There are very few markers remaining, but a previous ESCI 515 course (in summer 2007) discovered multiple unmarked burials using GPR, which were confirmed by subsequent excavations. This past summer, ESCI 515 participants acquired GPR profiles in previously unexplored areas, used a total station to accurately record the positions of surface features such as headstones, and used handheld GPS units to map the location of a nearby stream bed. Participants were in-service K-12 teachers from urban Houston school districts where the majority of students are members of historically underrepresented minority groups. Recruitment efforts targeted educators who are currently teaching science without a science degree. Participants included elementary, middle and high school teachers. This summer experience is followed by a content-intensive academic year course in Physical Geology. Participants experienced the process of science first-hand and used science for community service (i.e. restoring an abandoned cemetery). Through background research, they derived a rich

  3. Study on the Horizontal-well Injection Profile Logging Interpretation Technology

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Yao, Xugang; He, Xiaolu; Shen, Linshu; Xu, Qingying; Liu, Dongming; Liu, Hongsheng

    2007-06-01

    In order to get higher injection capacity and raise the coefficient of water driving waves and accelerate the speed of oil extraction. Changqing field carries on the development of horizontal-well infusion exploitation in the XXQ sandstone layer oil pool district. In compare with the traditional vertical-well affusion, the effect of comprehensive result of horizontal-well infusion exploitation will enhance as five times more as the current value. Because the flow of horizontal-well varies more in compare with the level-well, many horizontal-well logging data is hard to explain from the normal regulations, because the influence of the dynamic state of well hole and the size of it. Basing on the flow state of horizontal-well and the analysis of the layer of the low degree state and the annular flow and the turbulent flow, in order to get the parameters. To make attempt research to the quantitative interpretation of the horizontal-well.

  4. Geophysical methods

    SciTech Connect

    Robert, E.S.

    1989-01-01

    Geophysical measurements involve no magic or mystery but straightforward applications of physical principles. This book is both a geophysical survey and a reference guide. It explains the physical principles involved in geophysical methods. Over one-third of the text is devoted to seismic methods. Comprehensive topics in the volume include: the measurement of different physical properties and their geological significance; how different kinds of measurements are combined to draw geological conclusions; surface, borehole, airborne, and satellite measurements; computer processing and interactive methods; geodetic, gravity, magnetic, radioactive, heat flow, and electrical methods; interpretation of natural processes such as earthquakes and heat flow; and a summation of present knowledge of the earth.

  5. Agricultural Geophysics

    USDA-ARS?s Scientific Manuscript database

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  6. Exploration Geophysics

    ERIC Educational Resources Information Center

    Espey, H. R.

    1977-01-01

    Describes geophysical techniques such as seismic, gravity, and magnetic surveys of offshare acreage, and land-data gathering from a three-dimensional representation made from closely spaced seismic lines. (MLH)

  7. Exploration Geophysics

    ERIC Educational Resources Information Center

    Espey, H. R.

    1977-01-01

    Describes geophysical techniques such as seismic, gravity, and magnetic surveys of offshare acreage, and land-data gathering from a three-dimensional representation made from closely spaced seismic lines. (MLH)

  8. Preparing culturally responsive teachers of science, technology, engineering, and math using the Geophysical Institute Framework for Professional Development in Alaska

    NASA Astrophysics Data System (ADS)

    Berry Bertram, Kathryn

    2011-12-01

    The Geophysical Institute (GI) Framework for Professional Development was designed to prepare culturally responsive teachers of science, technology, engineering, and math (STEM). Professional development programs based on the framework are created for rural Alaskan teachers who instruct diverse classrooms that include indigenous students. This dissertation was written in response to the question, "Under what circumstances is the GI Framework for Professional Development effective in preparing culturally responsive teachers of science, technology, engineering, and math?" Research was conducted on two professional development programs based on the GI Framework: the Arctic Climate Modeling Program (ACMP) and the Science Teacher Education Program (STEP). Both programs were created by backward design to student learning goals aligned with Alaska standards and rooted in principles of indigenous ideology. Both were created with input from Alaska Native cultural knowledge bearers, Arctic scientists, education researchers, school administrators, and master teachers with extensive instructional experience. Both provide integrated instruction reflective of authentic Arctic research practices, and training in diverse methods shown to increase indigenous student STEM engagement. While based on the same framework, these programs were chosen for research because they offer distinctly different training venues for K-12 teachers. STEP offered two-week summer institutes on the UAF campus for more than 175 teachers from 33 Alaska school districts. By contrast, ACMP served 165 teachers from one rural Alaska school district along the Bering Strait. Due to challenges in making professional development opportunities accessible to all teachers in this geographically isolated district, ACMP offered a year-round mix of in-person, long-distance, online, and local training. Discussion centers on a comparison of the strategies used by each program to address GI Framework cornerstones, on

  9. As the egg turns: monitoring egg attendance behavior in wild birds using novel data logging technology.

    PubMed

    Shaffer, Scott A; Clatterbuck, Corey A; Kelsey, Emma C; Naiman, Alex D; Young, Lindsay C; VanderWerf, Eric A; Warzybok, Pete; Bradley, Russell; Jahncke, Jaime; Bower, Geoff C

    2014-01-01

    Egg turning is unique to birds and critical for embryonic development in most avian species. Technology that can measure changes in egg orientation and temperature at fine temporal scales (1 Hz) was neither readily available nor small enough to fit into artificial eggs until recently. Here we show the utility of novel miniature data loggers equipped with 3-axis (i.e., triaxial) accelerometers, magnetometers, and a temperature thermistor to study egg turning behavior in free-ranging birds. Artificial eggs containing egg loggers were deployed in the nests of three seabird species for 1-7 days of continuous monitoring. These species (1) turned their eggs more frequently (up to 6.5 turns h(-1)) than previously reported for other species, but angular changes were often small (1-10° most common), (2) displayed similar mean turning rates (ca. 2 turns h(-1)) despite major differences in reproductive ecology, and (3) demonstrated distinct diurnal cycling in egg temperatures that varied between 1.4 and 2.4 °C. These novel egg loggers revealed high-resolution, three-dimensional egg turning behavior heretofore never measured in wild birds. This new form of biotechnology has broad applicability for addressing fundamental questions in avian breeding ecology, life history, and development, and can be used as a tool to monitor birds that are sensitive to disturbance while breeding.

  10. As the Egg Turns: Monitoring Egg Attendance Behavior in Wild Birds Using Novel Data Logging Technology

    PubMed Central

    Shaffer, Scott A.; Clatterbuck, Corey A.; Kelsey, Emma C.; Naiman, Alex D.; Young, Lindsay C.; VanderWerf, Eric A.; Warzybok, Pete; Bradley, Russell; Jahncke, Jaime; Bower, Geoff C.

    2014-01-01

    Egg turning is unique to birds and critical for embryonic development in most avian species. Technology that can measure changes in egg orientation and temperature at fine temporal scales (1 Hz) was neither readily available nor small enough to fit into artificial eggs until recently. Here we show the utility of novel miniature data loggers equipped with 3-axis (i.e., triaxial) accelerometers, magnetometers, and a temperature thermistor to study egg turning behavior in free-ranging birds. Artificial eggs containing egg loggers were deployed in the nests of three seabird species for 1–7 days of continuous monitoring. These species (1) turned their eggs more frequently (up to 6.5 turns h−1) than previously reported for other species, but angular changes were often small (1–10° most common), (2) displayed similar mean turning rates (ca. 2 turns h−1) despite major differences in reproductive ecology, and (3) demonstrated distinct diurnal cycling in egg temperatures that varied between 1.4 and 2.4°C. These novel egg loggers revealed high-resolution, three-dimensional egg turning behavior heretofore never measured in wild birds. This new form of biotechnology has broad applicability for addressing fundamental questions in avian breeding ecology, life history, and development, and can be used as a tool to monitor birds that are sensitive to disturbance while breeding. PMID:24887441

  11. Geophysics adds a dimension

    SciTech Connect

    Savage, D.

    1984-03-01

    Geophysics is adding technology which can pinpoint drill sites, quicken drilling schedules and enhance success ratios. The use of 3-D seismic surveys can help determine the exact extent and shape of an oil or gas field. Vertical seismic profiling (VSP) also is proving to be extremely useful among companies that recognize its potential. A land air gun has started to refine the seismic surveys since it can be refired on 6 to 8 second intervals. A combination of these geophysical techniques may become a cheaper and more effective way of correlating strata.

  12. Particle Geophysics

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki K. M.

    2014-05-01

    Geophysics research has long been dominated by classical mechanics, largely disregarding the potential of particle physics to augment existing techniques. The purpose of this article is to review recent progress in probing Earth's interior with muons and neutrinos. Existing results for various volcanological targets are reviewed. Geoneutrinos are also highlighted as examples in which the neutrino probes elucidate the composition of Earth's deep interior. Particle geophysics has the potential to serve as a useful paradigm to transform our understanding of Earth as dramatically as the X-ray transformed our understanding of medicine and the body.

  13. Geophysical Methods: an Overview

    NASA Technical Reports Server (NTRS)

    Becker, A.; Goldstein, N. E.; Lee, K. H.; Majer, E. L.; Morrison, H. F.; Myer, L.

    1992-01-01

    Geophysics is expected to have a major role in lunar resource assessment when manned systems return to the Moon. Geophysical measurements made from a lunar rover will contribute to a number of key studies: estimating regolith thickness, detection of possible large-diameter lava tubes within maria basalts, detection of possible subsurface ice in polar regions, detection of conductive minerals that formed directly from a melt (orthomagmatic sulfides of Cu, Ni, Co), and mapping lunar geology beneath the regolith. The techniques that can be used are dictated both by objectives and by our abilities to adapt current technology to lunar conditions. Instrument size, weight, power requirements, and freedom from orientation errors are factors we have considered. Among the geophysical methods we believe to be appropriate for a lunar resource assessment are magnetics, including gradiometry, time-domain magnetic induction, ground-penetrating radar, seismic reflection, and gravimetry.

  14. Geophysical methods: an overview

    NASA Astrophysics Data System (ADS)

    Becker, A.; Goldstein, N. E.; Lee, K. H.; Majer, E. L.; Morrison, H. F.; Myer, L.

    Geophysics is expected to have a major role in lunar resource assessment when manned systems return to the Moon. Geophysical measurements made from a lunar rover will contribute to a number of key studies: estimating regolith thickness, detection of possible large-diameter lava tubes within maria basalts, detection of possible subsurface ice in polar regions, detection of conductive minerals that formed directly from a melt (orthomagmatic sulfides of Cu, Ni, Co), and mapping lunar geology beneath the regolith. The techniques that can be used are dictated both by objectives and by our abilities to adapt current technology to lunar conditions. Instrument size, weight, power requirements, and freedom from orientation errors are factors we have considered. Among the geophysical methods we believe to be appropriate for a lunar resource assessment are magnetics, including gradiometry, time-domain magnetic induction, ground-penetrating radar, seismic reflection, and gravimetry.

  15. Niche logging

    Treesearch

    Robert B. Rummer

    1997-01-01

    Logging is facing a world of change. A logger?s niche can be defined by terrain, climate, location, timber and product, local government, Federal government, landowners, and mills. The author offers strategies for survival and successful competition.

  16. Well Logging and Logging Analysis of UHP metamorphic Rocks in CCSD Main Hole (0-2000m)

    NASA Astrophysics Data System (ADS)

    Pan, H.; Niu, Y.; Wang, W.; Zhu, L.; Xu, D.; Wu, H.; Li, S.; Luo, M.

    2004-12-01

    CCSD logging engineering gather many modern high technologies and employs various advanced logging tools to survey the sidewall continuously. This can obtain various physical, chemical, geometrical, etc in-situ information of the borehole's profile. So well logging is one of the most important parts and pivotal technologies in the project of CCSD. The main logging methods in CCSD-MH(0-2000m) are laterolog (Rd,Rs), gamma ray(GR), nature gamma spectrometry(U, TH, K), density(DEN), photo electric section exponent (Pe), compensated neutron(CNL), multipole array acoustic (Vp, Vs, Vst), Simultaneous Acoustic-Resistivity-image(Star-II), temperature(T),magnetic susceptibility(MS), three component borehole magnetic and redox potential log,etc. The various metamorphic rocks can be classified by logging curves,and their physical parameters can be acquired by analyzing the response characters of various metamorphic rocks and by statistics. According to the logging cross plot, We can research the clustering of metamorphite's physical property. Five lithologic segments can be obtainend by logging curves. The GR, Th, U, K logging values of segment 1 is lower than the third, fourth and fiveth segment, higher than segment 2; The DEN, Pe values of segment 1 higher than the third, fourth and fiveth segments. The main rocks in segment 1,2,3,4,5 are eclogites, serpentinites, paragneiss, orthogneiss, and eclogites(containing silicon and muscovite ) respectively. Generally, eclogite contain rutile, silicon, muscovite, etc. minerals. These minerals have response obviously on log curves.There are rutile,ilmenite, pyrite mineralized, etc. Making use of DEN, Pe, susceptibility log values, these mineralized layers can be goodly demarcation. For example, on the rutile mineralzed layer, the logging curve response characters are of high density and Pe obviously. The key data of the synthetical seismic record is wave impedance. In this paper, Utilize the data of AC, DEN curves to calculate the

  17. Monitoring Vadose Zone Desiccation with Geophysical Methods

    SciTech Connect

    Truex, Michael J.; Johnson, Timothy C.; Strickland, Christopher E.; Peterson, John E.; Hubbard, Susan S.

    2013-05-01

    Soil desiccation was recently field tested as a potential vadose zone remediation technology. Desiccation removes water from the vadose zone and significantly decreases the aqueous-phase permeability of the desiccated zone, thereby decreasing movement of moisture and contaminants. The 2-D and 3-D distribution of moisture content reduction over time provides valuable information for desiccation operations and for determining when treatment goals have been reached. This type of information can be obtained through use of geophysical methods. Neutron moisture logging, cross-hole electrical resistivity tomography, and cross-hole ground penetrating radar approaches were evaluated with respect to their ability to provide effective spatial and temporal monitoring of desiccation during a treatability study conducted in the vadose zone of the DOE Hanford Site in WA.

  18. Logging damage

    Treesearch

    Ralph D. Nyland

    1989-01-01

    The best commercial logging will damage at least some residual trees during all forms of partial cutting, no matter how carefully done. Yet recommendations at the end of this Note show there is much that you can do to limit damage by proper road and trail layout, proper training and supervision of crews, appropriate equipment, and diligence.

  19. Lithologic and physicochemical properties and hydraulics of flow in and near the freshwater/saline-water transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, based on water-level and borehole geophysical log data, 1999-2007

    USGS Publications Warehouse

    Lambert, Rebecca B.; Hunt, Andrew G.; Stanton, Gregory P.; Nyman, Michael B.

    2010-01-01

    The freshwater zone of the San Antonio segment of the Edwards aquifer in south-central Texas (hereinafter, the Edwards aquifer) is bounded to the south and southeast by a zone of transition from freshwater to saline water (hereinafter, the transition zone). The boundary between the two zones is the freshwater/saline-water interface (hereinafter, the interface), defined as the 1,000-milligrams per liter dissolved solids concentration threshold. This report presents the findings of a study, done by the U.S. Geological Survey in cooperation with the San Antonio Water System, to obtain lithologic properties (rock properties associated with known stratigraphic units) and physicochemical properties (fluid conductivity and temperature) and to analyze the hydraulics of flow in and near the transition zone of the Edwards aquifer on the basis of water-level and borehole geophysical log data collected from 15 monitoring wells in four transects during 1999-2007. No identifiable relation between conductivity values from geophysical logs in monitoring wells in all transects and equivalent freshwater heads in the wells at the times the logs were run is evident; and no identifiable relation between conductivity values and vertical flow in the boreholes concurrent with the times the logs were run is evident. The direction of the lateral equivalent freshwater head gradient and thus the potential lateral flow at the interface in the vicinity of the East Uvalde transect fluctuates between into and out of the freshwater zone, depending on recharge and withdrawals. Whether the prevailing direction on average is into or out of the freshwater zone is not clearly indicated. Equivalent freshwater head data do not indicate a prevailing direction of the lateral gradient at the interface in the vicinity of the Tri-County transect. The prevailing direction on average of the lateral gradient and thus potential lateral flow at the interface in the vicinity of the Kyle transect likely is from the

  20. Interlake production established using quantitative hydrocarbon well-log analysis

    SciTech Connect

    Lancaster, J.; Atkinson, A.

    1988-07-01

    Production was established in a new pay zone of the basal Interlake Formation adjacent to production in Midway field in Williams County, North Dakota. Hydrocarbon saturation, which was computed using hydrocarbon well-log (mud-log) data, and computed permeability encouraged the operator to run casing and test this zone. By use of drilling rig parameters, drilling mud properties, hydrocarbon-show data from the mud log, drilled rock and porosity descriptions, and wireline log porosity, this new technique computes oil saturation (percent of porosity) and permeability to the invading filtrate, using the Darcy equation. The Leonardo Fee well was drilled to test the Devonian Duperow, the Silurian upper Interlake, and the Ordovician Red River. The upper two objectives were penetrated downdip from Midway production and there were no hydrocarbon shows. It was determined that the Red River was tight, based on sample examination by well site personnel. The basal Interlake, however, liberated hydrocarbon shows that were analyzed by this new technology. The results of this evaluation accurately predicted this well would be a commercial success when placed in production. Where geophysical log analysis might be questionable, this new evaluation technique may provide answers to anticipated oil saturation and producibility. The encouraging results of hydrocarbon saturation and permeability, produced by this technique, may be largely responsible for the well being in production today.

  1. Geological & Geophysical findings from seismic, well log and core data for marine gas hydrate deposits at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, offshore Japan: An overview

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Noguchi, S.; Takayama, T.; Suzuki, K.; Yamamoto, K.

    2012-12-01

    In order to evaluate productivity of gas from marine gas hydrate by the depressurization method, Japan Oil, Gas and Metals National Corporation is planning to conduct a full-scale production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough, Japan. The test location was determined using the combination of detailed 3D seismic reflection pattern analysis, high-density velocity analysis, and P-impedance inversion analysis, which were calibrated using well log data obtained in 2004. At the AT1 site, one production well (AT1-P) and two monitoring wells (AT1-MC and MT1) were drilled from February to March 2012, followed by 1 coring well (AT1-C) from June to July 2012. An extensive logging program with logging while drilling (LWD) and wireline-logging tools, such as GeoVISION (resistivity image), EcoScope (neutron/density porosity, mineral spectroscopy etc.), SonicScanner (Advanced Sonic tool), CMR/ProVISION (Nuclear Magnetic Resonance Tools), XPT (formation pressure, fluid mobility), and IsolationScanner (ultrasonic cement evaluation tools) was conducted at AT1-MC well to evaluate physical reservoir properties of gas hydrate-bearing sediments, to determine production test interval in 2013, and to evaluate cement bonding. Methane hydrate concentrated zone (MHCZ) confirmed by the well logging at AT1-MC was thin turbidites (tens of centimeters to few meters) with 60 m of gross thickness, which is composed of lobe type sequences in the upper part of it and channel sand sequences in the lower part. The gross thickness of MHCZ in the well is thicker than previous wells in 2004 (A1, 45 m) located around 150 m northeast, indicating that the prediction given by seismic inversion analysis was reasonable. Well-to-well correlation between AT1-MC and MT1 wells within 40 m distance exhibited that lateral continuity of these sand layers (upper part of reservoir) are fairly good, which representing ideal reservoir for the production

  2. An overview on integrated data system for archiving and sharing marine geology and geophysical data in Korea Institute of Ocean Science & Technology (KIOST)

    NASA Astrophysics Data System (ADS)

    Choi, Sang-Hwa; Kim, Sung Dae; Park, Hyuk Min; Lee, SeungHa

    2016-04-01

    We established and have operated an integrated data system for managing, archiving and sharing marine geology and geophysical data around Korea produced from various research projects and programs in Korea Institute of Ocean Science & Technology (KIOST). First of all, to keep the consistency of data system with continuous data updates, we set up standard operating procedures (SOPs) for data archiving, data processing and converting, data quality controls, and data uploading, DB maintenance, etc. Database of this system comprises two databases, ARCHIVE DB and GIS DB for the purpose of this data system. ARCHIVE DB stores archived data as an original forms and formats from data providers for data archive and GIS DB manages all other compilation, processed and reproduction data and information for data services and GIS application services. Relational data management system, Oracle 11g, adopted for DBMS and open source GIS techniques applied for GIS services such as OpenLayers for user interface, GeoServer for application server, PostGIS and PostgreSQL for GIS database. For the sake of convenient use of geophysical data in a SEG Y format, a viewer program was developed and embedded in this system. Users can search data through GIS user interface and save the results as a report.

  3. Geophysics benefits

    NASA Astrophysics Data System (ADS)

    An agreement signed May 6 between the U.S. and the U.S.S.R. creates new opportunities for joint geophysical research programs. Dallas Peck, director of the U.S. Geological Survey, and Erich Bloch, director of the National Science Foundation signed two agreements for basic scientific research with the Soviets to establish links between between the U.S. Geological Survey and the Soviet Ministry of Geology and between the National Science Foundation and the Soviet Academy of Sciences. The USGS agreement also establishes a connection with the Soviet Academy of Sciences.The Memoranda of Understanding are the first to be developed under the Agreement on Cooperation in the Field of Basic Scientific Research signed in January, by then Secretary of State George Shultz and Soviet Foreign Minister Eduard Shevardnadze. The agreements address cooperation in basic rather than applied science and establish a formal mechanism for access to research facilities and support involving NSF, universities, the Soviet Academy of Sciences, USGS, and the Soviet Ministry of Geology.

  4. NMR logging apparatus

    SciTech Connect

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  5. Log On or Lose Out: Technology in 21st Century Teacher Education. AACTE Conference Proceedings (Cupertino, California, November 1999).

    ERIC Educational Resources Information Center

    American Association of Colleges for Teacher Education, Washington, DC.

    These conference papers highlight technology within 21st century teacher education. Part 1, "The Power, Ethical, and Social Issues Related to Technology in Education," includes topics like developing learning communities and ensuring equal access for all students. Part 2, "The Impact of Technology in Changing Our Perceptions of What…

  6. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    SciTech Connect

    Haase, C.S.; King, H.L.

    1986-01-01

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

  7. Geophysical Sounding

    NASA Astrophysics Data System (ADS)

    Blake, E.

    1998-01-01

    Of the many geophysical remote-sensing techniques available today, a few are suitable for the water ice-rich, layered material expected at the north martian ice cap. Radio echo sounding has been used for several decades to determine ice thickness and internal structure. Selection of operating frequency is a tradeoff between signal attenuation (which typically increases with frequency and ice temperature) and resolution (which is proportional to wavelength). Antenna configuration and size will be additional considerations for a mission to Mars. Several configurations for ice-penetrating radar systems are discussed: these include orbiter-borne sounders, sounding antennas trailed by balloons and penetrators, and lander-borne systems. Lander-borne systems could include short-wave systems capable of resolving fine structure and layering in the upper meters beneath the lander. Spread-spectrum and deconvolution techniques can be used to increase the depth capability of a radar system. If soundings over several locations are available (e.g., with balloons, rovers, or panning short-wave systems), then it will be easier to resolve internal layering, variations in basal reflection coefficient (from which material properties may be inferred), and the geometry of nonhorizontal features. Sonic sounding has a long history in oil and gas exploration. It is, however, unlikely that large explosive charges, or even swept-frequency techniques such as Vibroseis, would be suitable for a Polar lander -- these systems are capable of penetrating several kilometers of material at frequencies of 10-200 Hz, but the energy required to generate the sound waves is large and potentially destructive. The use of audio-frequency and ultrasonic sound generated by piezoelectric crystals is discussed as a possible method to explore layering and fine features in the upper meters of the ice cap. Appropriate choice of transducer(s) will permit operation over a range of fixed or modulated frequencies

  8. Geophysics in petroleum exploration

    SciTech Connect

    Not Available

    1984-01-01

    There were 40,000 professionals involved in geophysical exploration for oil and gas during 1982, and they spent nearly $3 billion, mostly on seismic surveys. This brochure explains petroleum geology in terms of earth dynamics and petroleum deposits. It explains gravity, magnetic, and seismic surveys and the use of computers to search for oil and gas. The information covers both onshore and offshore surveying, the technology involved, the processing of seismic data, and the development of maps and models. The temporary nature of petroleum exploration introduces the need for environmental protection which is site specific. The technology is available for continued exploration, but impediments to exploration on public lands and at offshore sites need to be removed for both economic and national security reasons. 3 references, 30 figures.

  9. Sustainable urban development and geophysics

    NASA Astrophysics Data System (ADS)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    -hazards. The three papers by B Zhao et al and Z Zhao et al address the problem of earthquake strong ground motion in urban regions using case studies from Osaka, Japan and the city of Yinchuan, China. The other two papers study the geological hazard of surface subsidence using geophysical tools: G Leucci reported a comprehensive study in Nardo, Italy, while Kim et al reported a similar case study for a small city in South Korea. One striking feature of all the papers in this special issue is that multiple authors with at least 3 co-authors wrote the majority of the papers, which is an indication of strong team work and interdisciplinary collaboration. This is essential for the successful application of geophysical science and technology in tackling a variety of engineering and environmental problems for the urban setting. The only sole author, Dr Leucci, expressed deep gratitude in his acknowledgements to his team members who carried out substantial parts of the data acquisition. We are pleased to present this special issue to the engineering and environmental geophysics community and hope that it can serve as a snapshot of the current state-of-the-art studies in urban geophysics. References [1] United Nations 1990 World Demographic Estimates and Projections (1950-2025) (New York: Press of United Nations) [2] Chen Y, L-S Chan and S Yu 2003 J. Geodesy & Geodynamics 23 1-4 (in Chinese) [3] American Geophysics Union 2006 Eos Trans. AGU 87 (36)

  10. Web Logs in the English Classroom: More Than Just Chat.

    ERIC Educational Resources Information Center

    Richardson, Will

    2003-01-01

    Details the use and appeal of Web logs to enhance classroom discussion and allow for outside involvement in the classroom. Defines a Web log, addresses discussing literature in a Web log, and describes the author's first attempts at using Web-log technology. Presents considerations for using Web logs as part of classroom instruction. (SG)

  11. Handbook of Agricultural Geophysics

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  12. Application of borehole geophysics to water-resources investigations

    USGS Publications Warehouse

    Keys, W.S.; MacCary, L.M.

    1971-01-01

    This manual is intended to be a guide for hydrologists using borehole geophysics in ground-water studies. The emphasis is on the application and interpretation of geophysical well logs, and not on the operation of a logger. It describes in detail those logging techniques that have been utilized within the Water Resources Division of the U.S. Geological Survey, and those used in petroleum investigations that have potential application to hydrologic problems. Most of the logs described can be made by commercial logging service companies, and many can be made with small water-well loggers. The general principles of each technique and the rules of log interpretation are the same, regardless of differences in instrumentation. Geophysical well logs can be interpreted to determine the lithology, geometry, resistivity, formation factor, bulk density, porosity, permeability, moisture content, and specific yield of water-bearing rocks, and to define the source, movement, and chemical and physical characteristics of ground water. Numerous examples of logs are used to illustrate applications and interpretation in various ground-water environments. The interrelations between various types of logs are emphasized, and the following aspects are described for each of the important logging techniques: Principles and applications, instrumentation, calibration and standardization, radius of investigation, and extraneous effects.

  13. Satellite-Based Technologies in Use for Extreme Nocturnal Mountain Rescue Operations: a Synergetic Approach Applying Geophysical Principles

    NASA Astrophysics Data System (ADS)

    Buchroithner, Manfred F.; Ehlert, Guido; Hetze, Bernd; Kohlschmidt, Horst; Prechtel, Nikolas

    2014-06-01

    Mountain-rescue operations require rapid response whilst also ensuring the security of the rescue teams. Rescuing people in a big rock-face is even more difficult if night or fog prevent sight. The paper presents a technical solution to optimally support, under these aggravated conditions, the location of the casualties and the navigation of the rescue team(s) in a rock-face from a coordination station. In doing so, standard components like a smartphones with GPS functionality, a data communication on a client-server basis and VR visualisation software have been adapted to the specific requirements. Remote support of the navigation in steep rocky terrain requires a highly accurate wall model which permits the local experts of the coordination station to dependably estimate geometry and structure of the rock along the rescue route and to convey necessary directives to the retrieval team. Based on terrestrial laser-scans from different locations, such a model has been generated for the mighty Dachstein South Face (Austria) and texturised with digital photographs. Over a twelve-month period, a transdisciplinary team of the Dresden University of Technology (Informatics, Electrical Engineering, Cartography) developed and integrated the various technical modules of the mountain-rescue support-system (digital rock-face model, optimised GPS data transmission between mobile device, server and client, data filtering, and dynamic visualisation component). In summer 2011 the proper functioning of the prototype was demonstrated in a rescue exercise under foggy dusk conditions.

  14. Non-Seismic Geophysical Approaches to Monitoring

    SciTech Connect

    Hoversten, G.M.; Gasperikova, Erika

    2004-09-01

    This chapter considers the application of a number of different geophysical techniques for monitoring geologic sequestration of CO2. The relative merits of the seismic, gravity, electromagnetic (EM) and streaming potential (SP) geophysical techniques as monitoring tools are examined. An example of tilt measurements illustrates another potential monitoring technique, although it has not been studied to the extent of other techniques in this chapter. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO2 enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. The second scenario is of a pilot DOE CO2 sequestration experiment scheduled for summer 2004 in the Frio Brine Formation in South Texas, USA. Numerical flow simulations of the CO2 injection process for each case were converted to geophysical models using petrophysical models developed from well log data. These coupled flow simulation geophysical models allow comparrison of the performance of monitoring techniques over time on realistic 3D models by generating simulated responses at different times during the CO2 injection process. These time-lapse measurements are used to produce time-lapse changes in geophysical measurements that can be related to the movement of CO2 within the injection interval.

  15. Geophysics Characteristic on Gas Hydrates Zone in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Sha, Zhibin

    2015-04-01

    Gas hydrates are very important because of their vast resources potential, their roles as submarine geohazard, and their effects on global climate in the word. In China, the research of gas hydrates was initiated further later ,but the South China Sea has found a number of geophysical anomalies of gas hydrate by researching of almost 10 years. In order to determine the nature and distribution of marine gas hydrate, a series of geophysical techniques are used. By using the traditional seismic data processing, purpose seismic data processing, wave impedance inversion techniques and geophysical well logging data processing based on Self-organizing feature map neural network, a great deal of useful information are abstracted to determine the gas hydrate zone beneath the seabed. The results show (1) Conventional multi-channel seismic reflection processing data from the SCS reveal various seismic indicators of gas hydrate and associated gas, such as the BSR, enhanced reflections below the BSR, Weak reflection or blanking zone above the BSRs.;(2) special processing techniques, such as attribute extraction and wave impedance inversion, is necessary so as to mine more effective data, they could compensate the shortage of conventional seismic data processing techniques used for distinguishing gas-bearing reservoirs;(3) as a kind of intelligent information processing technology, SOFM neural network is feasible for lithologic identification by logging data and has a high rate of identification of gas hydrate. In the end, the author hopes it may provide some useful clues to the exploration of gas hydrate.

  16. Spatial scale analysis in geophysics - Integrating surface and borehole geophysics in groundwater studies

    USGS Publications Warehouse

    Paillet, Frederick L.; Singhroy V.H.Hansen D.T.Pierce R, R

    2002-01-01

    Integration of geophysical data obtained at various scales can bridge the gap between localized data from boreholes and site-wide data from regional survey profiles. Specific approaches to such analysis include: 1) comparing geophysical measurements in boreholes with the same measurement made from the surface; 2) regressing geophysical data obtained in boreholes with water-sample data from screened intervals; 3) using multiple, physically independent measurements in boreholes to develop multivariate response models for surface geophysical surveys; 4) defining subsurface cell geometry for most effective survey inversion methods; and 5) making geophysical measurements in boreholes to serve as independent verification of geophysical interpretations. Integrated analysis of surface electromagnetic surveys and borehole geophysical logs at a study site in south Florida indicates that salinity of water in the surficial aquifers is controlled by a simple wedge of seawater intrusion along the coast and by a complex pattern of upward brine seepage from deeper aquifers throughout the study area. This interpretation was verified by drilling three additional test boreholes in carefully selected locations.

  17. EDITORIAL: The interface between geophysics and engineering

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Journal of Geophysics and Engineering (JGE) aims to publicize and promote research and developments in geophysics and in related areas of engineering. As stated in the journal scope, JGE is positioned to bridge the gap between earth physics and geo-engineering, where it reflects a growing trend in both industry and academia. JGE covers those aspects of engineering that bear closely on geophysics or on the targets and problems that geophysics addresses. Typically this will be engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design. There is a trend, visible throughout academia, for rapid expansion in cross-disciplinary, multi-disciplinary and inter-disciplinary working. Many of the most important and exciting problems and advances are being made at the boundaries between traditional subject areas and, increasingly, techniques from one discipline are finding applications in others. There is a corresponding increasing requirement for researchers to be aware of developments in adjacent areas and for papers published in one area to be readily accessible, both in terms of location and language, to those in others. One such area that is expanding rapidly is that at the interface between geophysics and engineering. There are three principal developments. Geophysics, and especially applied geophysics, is increasingly constrained by the limits of technology, particularly computing technology. Consequently, major advances in geophysics are often predicated upon major developments in engineering and many research geophysicists are working in multi-disciplinary teams with engineers. Engineering problems relevant to the sub-surface are increasingly looking to advances in geophysics to provide part of the solution. Engineering systems, for example, for tunnel boring or petroleum reservoir management, are using high-resolution geophysical

  18. Preliminary geologic and geophysical data of the UE25a-3 exploratory drill hole, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Maldonado, Florian; Muller, D.C.; Morrison, J.N.

    1979-01-01

    Borehole geophysical logs were run by the Birdwell Division of Seismograph Service Corporation for geologic correlations and lithologic characterizations. The logs include: caliper, density, resistivity, spontaneous potential, Vibroseis, 3-D velocity, neutron, and gamma-ray logs. Lithologic boundaries and structures correlate to responses in the logs.

  19. Serious games for Geophysics

    NASA Astrophysics Data System (ADS)

    Lombardo, Valerio; Rubbia, Giuliana

    2015-04-01

    Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes

  20. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  1. Borehole geophysics applied to ground-water investigations

    USGS Publications Warehouse

    Keys, W.S.

    1990-01-01

    The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary background in hydrogeology with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, as well as on changes in the character of these factors over time. The response of well logs is caused by petrophysical factors, by the quality, temperature, and pressure of interstitial fluids, and by ground-water flow. Qualitative and quantitative analysis of analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs. The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids, and wells, as well as the principles of measurement, must be understood if geophysical logs are to be interpreted correctly. Plating a logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology is needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and the log analyst and requires both calibration and well-site standardization of equipment. Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization

  2. A ``model`` geophysics program

    SciTech Connect

    Nyquist, J.E.

    1994-03-01

    In 1993, I tested a radio-controlled airplane designed by Jim Walker of Brigham Young University for low-elevation aerial photography. Model-air photography retains most of the advantages of standard aerial photography --- the photographs can be used to detect lineaments, to map roads and buildings, and to construct stereo pairs to measure topography --- and it is far less expensive. Proven applications on the Oak Ridge Reservation include: updating older aerial records to document new construction; using repeated overflights of the same area to capture seasonal changes in vegetation and the effects of major storms; and detecting waste trench boundaries from the color and character of the overlying grass. Aerial photography is only one of many possible applications of radio-controlled aircraft. Currently, I am funded by the Department of Energy`s Office of Technology Development to review the state of the art in microavionics, both military and civilian, to determine ways this emerging technology can be used for environmental site characterization. Being particularly interested in geophysical applications, I am also collaborating with electrical engineers at Oak Ridge National Laboratory to design a model plane that will carry a 3-component flux-gate magnetometer and a global positioning system, which I hope to test in the spring of 1994.

  3. Preparation of specific-yield logs for clastic bedrock aquifers

    USGS Publications Warehouse

    Robson, S.G.

    1995-01-01

    Specific yield is the principal aquifer characteristic needed to estimate the volume of recoverable ground water in storage in an aquifer. Determination of specific yield can be difficult and costly, particularly in deep, confined aquifers where core drilling and core analyses may be needed to define specific yield. A method has been developed for preparation of specific-yield geophysical logs that could greatly ease the determination of specific yields in such aquifers. Three geophysical logs that were investigated as potential indicators of specific yield were the free fluid index log, the effective-porosity log, and the apparent grain-density log. The free fluid index log did not accurately represent conditions at the test site in central Colorado and may not be suitable for application in other shallow and permeable aquifers. The effective-porosity and apparent grain-density logs were each used in least-squares linear regressions to correlate log response to specific yield measured in core samples. The resulting regression equations have coefficients of correlation (R) of 0.84 and 0.90, and were used to successfully prepare specific-yield logs from the effective-porosity and apparent grain-density logs.

  4. Continued development of hybrid directional boring technology and New horizontal logging development for characterization, monitoring and instrument emplacement at environmental sites

    SciTech Connect

    Wemple, R.P.; Meyer, R.D.; Jacobson, R.D. ); Layne, R.R. )

    1991-01-01

    This work in partnership with industry is a continuation of cost- effective innovative, directional boring development begun in FY90 and planed to extend into FY94. Several demonstrations of the strategy of building hybrid hardware from utilities installation, geothermal, and soil mechanics technologies have been performed at Sandia National Laboratories (SNL) and at Charles Machine works (CMW) test sites as well as at a commercial refinery site. Additional tests at the SNL Directional Boring Test Range (DBTR) and a lagoon site are planned in calendar 1991. A new companion project to develop and demonstrate a hybrid capability for horizontal logging with penetrometers, specialty instruments and samplers has been taken from concept to early prototype hardware. The project goal of extending the tracking/locating capability of the shallow boring equipment to 80in. is being pursued with encouraging results at 40in. depths. Boring costs, not including tailored well completions dictated by individual site parameters, are estimated at $20 to $50 per foot. Applications continue to emerge for this work and interest continues to be expressed by DoD and EPA researchers and environmental site engineers. 12 figs.

  5. Electromagnetic geophysical observation with controlled source

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg

    2016-04-01

    In the paper the new theoretical and methodical approaches are examined for detailed investigations of the structure and state of the geological medium, and its behavior as a dynamic system in reaction to external man-made influences. To solve this problem it is necessary to use geophysical methods that have sufficient resolution and that are built on more complicated models than layered or layered-block models. One of these methods is the electromagnetic induction frequency-geometrical method with controlled sources. Here we consider new approaches using this method for monitoring rock shock media by means of natural experiments and interpretation of the practical results. That method can be used by oil production in mines, where the same events of non stability can occur. The key ideas of twenty first century geophysics from the point of view of geologist academician A.N. Dmitrievskiy [Dmitrievskiy, 2009] are as follows. "The geophysics of the twenty first century is an understanding that the Earth is a self-developing, self-supporting geo-cybernetic system, in which the role of the driving mechanism is played by the field gradients; the evolution of geological processes is a continuous chain of transformations and the interaction of geophysical fields in the litho- hydro- and atmosphere. The use of geophysical principles of a hierarchical quantum of geophysical space, non-linear effects, and the effects of reradiating geophysical fields will allow the creation of a new geophysics. The research, in which earlier only pure geophysical processes and technologies were considered, nowadays tends to include into consideration geophysical-chemical processes and technologies. This transformation will allow us to solve the problems of forecasting geo-objects and geo-processes in previously unavailable geological-technological conditions." The results obtained allow us to make the following conclusions, according to the key ideas of academician A.N. Dmitrievskiy: the rock

  6. Log-Tool

    SciTech Connect

    Goodall, John

    2012-05-21

    Log files are typically semi- or un-structured. To be useable for visualization and machine learning, they need to be parsed into a standard, structured format. Log-tool is a tool for facilitating the parsing, structuring, and routing of log files (e.g. intrusion detection long, web server logs, system logs). It consists of three main components: (1) Input – it will input data from files, standard input, and syslog, (2) Parser – it will parse the log file based on regular expressions into structured data (JSNO format), (3) Output – it will output structured data into commonly used formats, including Redis (a database), standard output, and syslog.

  7. Geophysics in INSPIRE

    NASA Astrophysics Data System (ADS)

    Sőrés, László

    2013-04-01

    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  8. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  9. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  10. Montana Logging Utilization, 2002

    Treesearch

    Todd A. Morgan; Timothy P. Spoelma; Charles E. Keegan; Alfred L. Chase; Michael T. Thompson

    2005-01-01

    A study of logging utilization in Montana during 2002 provided logging and product utilization data for sawlog and veneer log harvests in Montana. Results of the study indicate a shift toward greater utilization of smaller diameter material, as 78 percent of the harvested volume in Montana during 2002 came from trees less than 17 inches diameter at breast height. The...

  11. Log N-log S in inconclusive

    NASA Technical Reports Server (NTRS)

    Klebesadel, R. W.; Fenimore, E. E.; Laros, J.

    1983-01-01

    The log N-log S data acquired by the Pioneer Venus Orbiter Gamma Burst Detector (PVO) are presented and compared to similar data from the Soviet KONUS experiment. Although the PVO data are consistent with and suggestive of a -3/2 power law distribution, the results are not adequate at this state of observations to differentiate between a -3/2 and a -1 power law slope.

  12. Log Truck-Weighing System

    NASA Technical Reports Server (NTRS)

    1977-01-01

    ELDEC Corp., Lynwood, Wash., built a weight-recording system for logging trucks based on electronic technology the company acquired as a subcontractor on space programs such as Apollo and the Saturn launch vehicle. ELDEC employed its space-derived expertise to develop a computerized weight-and-balance system for Lockheed's TriStar jetliner. ELDEC then adapted the airliner system to a similar product for logging trucks. Electronic equipment computes tractor weight, trailer weight and overall gross weight, and this information is presented to the driver by an instrument in the cab. The system costs $2,000 but it pays for itself in a single year. It allows operators to use a truck's hauling capacity more efficiently since the load can be maximized without exceeding legal weight limits for highway travel. Approximately 2,000 logging trucks now use the system.

  13. Flow path delineation using Alterant Geophysical Tomography

    SciTech Connect

    Ramirez, A.L.; Lytle, R.J.

    1984-03-01

    We describe and evaluate a cross-hole geophysical technique used to map flowpaths in fractured rock: Alterant Geophysical Tomography (AGT). The method involves the use of tracers to change the electrical properties of permeable fractures. Measurements of the electromagnetic attenuation factor of a region are performed at various times (before, during, and after the introduction of the tracer). Changes in the medium due to the tracer are determined by subtracting an inversion representative of baseline conditions from an inversion of data obtained after the tracer has caused changes in the rockmass. This method has been used in a granitic rock mass in an attempt to delineate the flow paths followed by the tracers. Comparisons of the alterant geophysical tomography images with fracture information obtained from acoustic televiewer logs have been made. These comparisons suggest that several of the AGT image anomalies appear to be associated with fractures observed in the acoustic televiewer logs. The AGT method appears to provide several advantages including: increased contrast between the fractures and surrounding rock, sensitivity to only those fractures filled by the tracer and possible improvements in the accuracy of the electromagnetic measurements. 8 references, 2 figures.

  14. Synthetic rope applications in Appalachian logging

    Treesearch

    Ben D. Spong; Jingxin Wang

    2008-01-01

    New ultra-high molecular weight polyethylene rope has shown good results as a replacement for wire rope in logging applications in the western United States. A single case study trial was performed in Appalachian forest conditions to assess the appropriateness of this technology for hardwood logging applications. The study focused on use of the rope in West Virginia...

  15. Log processing systems

    SciTech Connect

    Bowlin, W.P.; Kneer, M.P.; Ballance, J.D.

    1989-11-07

    This patent describes an improvement in a computer controlled processing system for lumber production. It comprises: a computer, a sequence of processing stations for processing a log segment including; an excess material removing station for generating opposed flat side surfaces on the log segment. The flat side surfaces determined by the computer to become sides of boards to be severed from the log segments; a profiling station for forming profiled edges above and below the flat side surfaces to become the side edges of the boards to be severed from the log segment, and a severing station for severing the boards from the log segments, a conveyance means establishing a path of conveyance and having continuous control of the log segment on conveying the log segment along the path and through the above defined sequence of processing stations.

  16. LogScope

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Smith, Margaret H.; Barringer, Howard; Groce, Alex

    2012-01-01

    LogScope is a software package for analyzing log files. The intended use is for offline post-processing of such logs, after the execution of the system under test. LogScope can, however, in principle, also be used to monitor systems online during their execution. Logs are checked against requirements formulated as monitors expressed in a rule-based specification language. This language has similarities to a state machine language, but is more expressive, for example, in its handling of data parameters. The specification language is user friendly, simple, and yet expressive enough for many practical scenarios. The LogScope software was initially developed to specifically assist in testing JPL s Mars Science Laboratory (MSL) flight software, but it is very generic in nature and can be applied to any application that produces some form of logging information (which almost any software does).

  17. Phillips Laboratory Geophysics Scholar Program

    DTIC Science & Technology

    1993-09-30

    research at Phillips Laboratory . Research sponsored by Air Force Geophysics Laboratory ...Geophysics Laboratory (now the Phillips Laboratory , Geophysics Directorate), United States Air Force for its sponsorship of this research through the Air ...September 1993 Approved for public release; distribution unlimited PHILLIPS LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND

  18. Geophysical Institute biennial report 1995--1996

    SciTech Connect

    1998-06-01

    The mission of the Geophysical Institute is to understand the basic physical processes governing Earth, especially as they occur in, or are relevant to the Arctic; to train graduate and undergraduate students to play leading roles in tomorrow`s society; to solve applied geophysical problems and develop resource-oriented technology of importance to the state and the nation; and to satisfy the intellectual and technological needs of fellow Alaskans through public service. The variety of subjects studied by the faculty, research staff members, and graduate students at the Geophysical Institute include auroral physics and chemistry, arctic haze, ice fog, atmospheric dynamics, ozone, Alaska weather patterns, regional meteorology and climatology, global climate change, cloud physics and radiation, permafrost, glaciers, sea ice, remote sensing, geothermal energy, tectonics, volcanoes and earthquakes. Summaries are presented of the projects undertaken by the Institute in these fields.

  19. Oil & Natural Gas Technology A new approach to understanding the occurrence and volume of natural gas hydrate in the northern Gulf of Mexico using petroleum industry well logs

    SciTech Connect

    Cook, Ann; Majumdar, Urmi

    2016-03-31

    The northern Gulf of Mexico has been the target for the petroleum industry for exploration of conventional energy resource for decades. We have used the rich existing petroleum industry well logs to find the occurrences of natural gas hydrate in the northern Gulf of Mexico. We have identified 798 wells with well log data within the gas hydrate stability zone. Out of those 798 wells, we have found evidence of gas hydrate in well logs in 124 wells (15% of wells). We have built a dataset of gas hydrate providing information such as location, interval of hydrate occurrence (if any) and the overall quality of probable gas hydrate. Our dataset provides a wide, new perspective on the overall distribution of gas hydrate in the northern Gulf of Mexico and will be the key to future gas hydrate research and prospecting in the area.

  20. World War II, the IGY, and Their Legacy for Geophysics

    NASA Astrophysics Data System (ADS)

    Smith, P. M.

    2002-05-01

    Large-scale geophysical research programs, now a dominant pattern in many areas of geophysics, benefited from the experience American scientists and engineers gained in World War II research and development. The first great peacetime application of the war experience was the planning and execution of the International Geophysical Year (IGY), 1957-1958. The IGY set the stage for many larger-scale geophysical programs. The address will recount these legacies and will draw on the speaker's experience in shaping U.S. federal science and technology policy from the IGY to the present.

  1. Soil permeability profiling using multiple geophysical data

    NASA Astrophysics Data System (ADS)

    Takahashi, Toru

    2014-05-01

    We propose a new method to estimate permeability of soils with multiple geophysical data based on rock physics. The method uses the unconsolidated sand model in rock physics to identify the soil type with seismic velocity and resistivity. The grain size representing each soil type thus derived and porosity estimated from resistivity by the modified Archie's law are input to the Kozeny-Carman equation for estimating permeability of the soil. The proposed method is applied to S-wave velocity and resistivity profiles obtained in well logging in saturated diluvial soils and acquired on an earthen levee to estimate soil permeability profiles. Comparison of estimated permeability with actual measurements by the in-situ permeability tests and laboratory tests shows that permeability can be estimated in accuracy less than one order of magnitude. This result indicates that the proposed method is promising for permeability profiling of soils using geophysical data.

  2. Introduction to the JEEG Agricultural Geophysics special issue

    USDA-ARS?s Scientific Manuscript database

    Recent advancements such as the availability of personal computers, technologies to store/process large amounts of data, the GPS, and GIS have now made geophysical methods practical for agricultural use. Consequently, there has been a rapid expansion of agricultural geophysics research just over the...

  3. A fractured rock geophysical toolbox method selection tool

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  4. Fluid-temperature logs for selected wells in eastern Washington

    SciTech Connect

    Stoffel, K.L.; Widness, S.

    1983-12-01

    This Open-File Report consists of fluid temperature logs compiled during studies of the geohydrology and low temperature geothermal resources of eastern Washington. The fluid temperature logs are divided into two groups. Part A consists of wells which are concentrated in the Moses Lake-Ritzville-Connell area. Full geophysical log suites for many of these wells are presented in Stoffel and Widness (1983) and discussed in Widness (1983, 1984). Part B consists of wells outside of the Moses Lake-Ritzville-Connell study area.

  5. Overruns - Southern Pine Logs

    Treesearch

    Robert A. Campbell

    1962-01-01

    Overrun and underrun data were collected for the four major southern pine species during a series of grade yield studies in the late 1950's in Arkansas, Florida, Georgia, Mississippi, and South Carolina. Each of the 1,491 logs was carefully scaled by the Doyle, Scribner Decimal C, and International ¼-inch log rule. All logs were sawed on. circle mills and the...

  6. Well Log ETL tool

    SciTech Connect

    Good, Jessica

    2013-08-01

    This is an executable python script which offers two different conversions for well log data: 1) Conversion from a BoreholeLASLogData.xls model to a LAS version 2.0 formatted XML file. 2) Conversion from a LAS 2.0 formatted XML file to an entry in the WellLog Content Model. Example templates for BoreholeLASLogData.xls and WellLogsTemplate.xls can be found in the package after download.

  7. Well Log ETL tool

    SciTech Connect

    Good, Jessica

    2013-08-01

    This is an executable python script which offers two different conversions for well log data: 1) Conversion from a BoreholeLASLogData.xls model to a LAS version 2.0 formatted XML file. 2) Conversion from a LAS 2.0 formatted XML file to an entry in the WellLog Content Model. Example templates for BoreholeLASLogData.xls and WellLogsTemplate.xls can be found in the package after download.

  8. Multiple log potash assay

    NASA Astrophysics Data System (ADS)

    Hill, D. G.

    1993-10-01

    A five-mineral multiple-log potash assay technique has been successfully applied to evaluate potash-rich intervals in evaporite sequences. The technique is able to distinguish economic potash minerals from non-economic potash minerals and from other non-potash radioactive minerals. It can be applied on location, using a programmable calculator or microcomputer, providing near real-time logs of potash mineral concentrations. Log assay values show good agreement with core wet chemistry analyses.

  9. Geophysical data from boreholes DM1, DM2, DM3, and DM3a, New Hydraulic Fracturing Facility, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Haase, C S

    1987-03-01

    A comprehensive suite of geophysical logs was obtained from four deep monitoring boreholes at the New Hydrofracture Facility. The logging was an attempt to obtain stratigraphic, structural, and hydrologic information on the subsurface environment surrounding the hydrofracture facility. Logs obtained include caliper, gamma, neutron, density, single-point resistance, long- and short-normal resistivity, spontaneous potential, temperature, acoustic velocity, variable density, and borehole televiewer. Analysis and interpretation of the geophysical logs allowed the stratigraphic section at the facility to be determined and, by comparison with calibrated geophysical logs from borehole ORNL-Joy No. 2, allowed detailed inferences to be drawn about rock types and properties at the hydrofracture facility. Porosity values measured from the logs for Conasauga Group strata, as well as permeability values inferred from the logs, are low. Several intervals of apparently greater permeability, associated primarily with limestone-rich portions of the Maryville Limestone and sandstone-rich portions of the Rome Formation, were noted. Numerous fractures were identified by using several logs in combination. No one geophysical log was reliable for fracture identification although the acoustic-televiewer log appeared to have the greatest success. In addition to their characterization of subsurface conditions in the vicinity of the hydrofracture facility, the geophysical logs provided data on the extent of hydraulic fractures. Anomalies on single-point resistance logs that corresponded to prominent fractures identified on televiewer logs indicate intervals affected by hydraulic fractures associated with waste injection at the New Hydrofracture Facility. 14 refs.

  10. Fast-Turnoff Transient Electro-Magnetic (TEM) geophysical survey in the Peña de Hierro ("Berg of Iron") field area of the Mars Analog Research and Technology Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Jernsletten, J. A.

    2004-12-01

    This report describes the outcome of a Fast-Turnoff Transient Electro-Magnetic (TEM) geophysical survey carried out in the Peña de Hierro ("Berg of Iron") field area of the Mars Analog Research and Technology Experiment (MARTE), during May and June of 2003. The MARTE Peña de Hierro field area is located between the towns of Rio Tinto and Nerva in the Andalucia region of Spain. It is about one hour drive West of the city of Sevilla, and also about one hour drive North of Huelva. The high concentration of dissolved iron (and smaller amounts of other metals) in the very acidic water in the Rio Tinto area gives the water its characteristic wine red color, and also means that the water is highly conductive, and such an acidic and conductive fluid is highly suited for exploration by electromagnetic methods. This naturally acidic environment is maintained by bacteria in the groundwater and it is these bacteria that are the main focus of the MARTE project overall, and of this supporting geophysical work. It is the goal of this study to be able to map the subsurface extent of the high conductivity (low resistivity) levels, and thus by proxy the subsurface extent of the acidic groundwater and the bacteria populations. In so doing, the viability of using electromagnetic methods for mapping these subsurface metal-rich water bodies is also examined and demonstrated, and the geophysical data will serve to support drilling efforts. The purpose of this field survey was an initial effort to map certain conductive features in the field area, in support of the drilling operations that are central to the MARTE project. These conductive features include the primary target of exploration for MARTE, the very conductive acidic groundwater in the area (which is extremely rich in metals). Other conductive features include the pyretic ore bodies in the area, as well as extensive mine tailings piles.

  11. Quantitative Geophysics and Geology

    NASA Astrophysics Data System (ADS)

    Wilson, Clark R.

    Most college instructors of geophysics are on the lookout for new textbooks. This is especially the case for instructors of survey courses at the upper division or graduate level, where choices are limited and opinions differ as to what ought be included and the level of detail. As one of those instructors, I was eager to review Quantitative Geophysics and Geology. Its title seemed to fit several courses taught at my institution. But upon reading the book, I found it was not useful for most of our courses.The variety of geophysical topics is so vast that an orderly exposition simply is not possible for all. The book's strong point is that a number of chapters provide succinct and readable reviews of traditional topics, which makes it well suited for an introduction or review at the graduate level.

  12. Alterant geophysical tomography

    SciTech Connect

    Ramirez, A.L.; Lytle, R.J.

    1983-05-01

    We describe and evaluate a new geophysical technique used to remotely map fractures between boreholes: alterant geophysical tomography (AGT). The method requires that the attenuation properties of rock fractures be altered by forcing into the rock a fluid with different electrical properties than those of the native fluids in the rock. Measurements of electromagnetic attenuation factor are performed before and after the tracer is used. Measuring changes in attenuation properties offers significant advantages over measuring absolute attentuation properties. Results of an experiment in which this technique was employed are discussed. 4 references, 4 figures.

  13. Teaching oriented geophysical software

    NASA Astrophysics Data System (ADS)

    Pinto, Victor; Rivero, Lluis; Casas, Albert

    2000-08-01

    Interactive teaching techniques encourage students to adopt an active role in their education and should therefore be used at different levels of the teaching sequence. In order to mitigate the lack of educational software for Applied Geophysics, a fully interactive graphic software has been developed. The program is written in Visual Basic with some subroutines in FORTRAN and is designed for IBM-PC microcomputers using a Windows environment. The program offers the majority of the processes involved in geophysical data handling, modelling, tutorials, and instrument simulators.

  14. Geophysical Fiber Interferometer Gyroscope.

    DTIC Science & Technology

    1979-12-31

    gravitational antenna. Basically, their device was a Twyman -Green laser interferometer that was allegedly well-isolated from its thermal and...r ~AD-AO92 913 UTAH UNIV RESEARCH INST SALT LAKE CITY GEOSPACE SCIE-EYC F/B 20/6 GEOPHYSICAL FIBER INTERFEROMETER GYROSCOPE(U) .S DEC 79 L 0 WEAVER...ACCESSION no: S, 111CIPIENT’S CATALOG NUMBER AF6ii M_ __ _ __I_ _ 4. TItLIL (eovm4jk"IU .TYEo nPaTawn.ocoet GEOPHYSICAL FIBER INTERFEROMETER GYROSCOPE. / 9

  15. Downhole memory-logging tools

    SciTech Connect

    Lysne, P.

    1992-01-01

    Logging technologies developed hydrocarbon resource evaluation have not migrated into geothermal applications even though data so obtained would strengthen reservoir characterization efforts. Two causative issues have impeded progress: (i) there is a general lack of vetted, high-temperature instrumentation, and (ii) the interpretation of log data generated in a geothermal formation is in its infancy. Memory-logging tools provide a path around the first obstacle by providing quality data at a low cost. These tools feature on-board computers that process and store data, and newer systems may be programmed to make decisions.'' Since memory tools are completely self-contained, they are readily deployed using the slick line found on most drilling locations. They have proven to be rugged, and a minimum training program is required for operator personnel. Present tools measure properties such as temperature and pressure, and the development of noise, deviation, and fluid conductivity logs based on existing hardware is relatively easy. A more complex geochemical tool aimed at a quantitative analysis of potassium, uranium and thorium will be available in about on year, and it is expandable into all nuclear measurements common in the hydrocarbon industry. A second tool designed to sample fluids at conditions exceeding 400{degrees}C is in the proposal stage. Partnerships are being formed between the geothermal industry, scientific drilling programs, and the national laboratories to define and develop inversion algorithms relating raw tool data to more pertinent information. 8 refs.

  16. Downhole Memory-Logging Tools

    SciTech Connect

    Lysne, Peter

    1992-03-24

    Logging technologies developed for hydrocarbon resource evaluation have not migrated into geothermal applications even though data so obtained would strengthen reservoir characterization efforts. Two causative issues have impeded progress: (1) there is a general lack of vetted, high-temperature instrumentation, and (2) the interpretation of log data generated in a geothermal formation is in its infancy. Memory-logging tools provide a path around the first obstacle by providing quality data at a low cost. These tools feature onboard computers that process and store data, and newer systems may be programmed to make ''decisions''. Since memory tools are completely self-contained, they are readily deployed using the slick line found on most drilling locations. They have proven to be rugged, and a minimum training program is required for operator personnel. Present tools measure properties such as temperature and pressure, and the development of noise, deviation, and fluid conductivity logs based on existing hardware is relatively easy. A more complex geochemical tool aimed at a quantitative analysis of potassium, uranium and thorium will be available in about one year, and it is expandable into all nuclear measurements common in the hydrocarbon industry. A second tool designed to sample fluids at conditions exceeding 400 C (752 F) is in the proposal stage. Partnerships are being formed between the geothermal industry, scientific drilling programs, and the national laboratories to define and develop inversion algorithms relating raw tool data to more pertinent information.

  17. 1962 Washington log production.

    Treesearch

    Richard L. Nielsen

    1963-01-01

    Washington's 1962 log production reached 5.05 billion board feet. This is an increase of 14 percent, or 616 million board feet, over 1961 and the highest total log production since the 1941 figure of 5.14 billion board feet.

  18. Midsouth veneer log production

    Treesearch

    Herbert S. Sternitzke

    1971-01-01

    Veneer manufacturing is an important segment of the forest industries and 1s increasing in importance every year. Veneer logs are high-valued in comparison with other kinds of logs and bolts, and considerable employment is generated and much value added in their manufacture.

  19. Ulysses log 1992

    NASA Technical Reports Server (NTRS)

    Perez, Raul Garcia

    1993-01-01

    The Ulysses Log tells the story of some intriguing problems that we (=The Spacecraft Team) have encountered. Ulysses was launched on 6 Oct. 1990, and it made the fastest trip to Jupiter (8 Feb. 1992). It is presently going out of the ecliptic. This paper presents log entries from the following areas: (1) ingenious maneuvers; (2) telecommunication problems; and (3) surprises.

  20. Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures.

    PubMed

    Sherub, Sherub; Fiedler, Wolfgang; Duriez, Olivier; Wikelski, Martin

    2017-07-01

    Bio-logging, the on-animal deployment of miniaturised electronic data recorders, allows for the study of location, body position, and physiology of individuals throughout their ontogeny. For terrestrial animals, 1 Hz GPS-position, 3D-body acceleration, and ambient temperature provide standard data to link to the physiology of life histories. Environmental context is added at ever finer scales using remote sensing earth observation data. Here we showcase the use of such bio-logging approaches in a conservation physiology study on endangered Himalayan vultures (Gyps himalayensis). We determine environmental, behavioural, and physiological causes of survival in immature birds that roam from wintering sites in India, Bhutan, and Nepal towards summer areas in Tibet and Mongolia. Five of 18 immature griffons died during one year. Individuals that died had failed to migrate sufficiently far northward (>1500 km) in spring. Individuals likely died if they flew against headwinds from the north or were less able to find thermal updrafts. Surviving individuals migrated to cold and dry areas with low population density. We highlight flight experience, long distance movements, and remote places with low human population as factors critical for the survival of Himalayan vultures. High-resolution bio-logging studies can advance conservation management by pinpointing where and why migratory animals have problems and die.

  1. Innovations In Site Characterization: Geophysical Investigation at Hazardous Waste Sites

    EPA Pesticide Factsheets

    This compendium describes a number of geophysical technologies and methods that were used at 11 sites with significantly different geological settings and types of subsurface contamination, ranging from relatively homogeneous stratigraphy to the highly ...

  2. Geophysics News 1990

    NASA Astrophysics Data System (ADS)

    Cole, Stephen

    The last two years have witnessed many major geophysical events such as the Loma Prieta earthquake, new insights into plate motions, new seismic and mid-ocean ridge observational programs, and new views of a distant planet. AGU's Public Information Committee, chaired by Debra Knopman of the U.S. Geological Survey, was asked by the American Institute of Physics to prepare a series of articles on the major topics in geophysics for publication in Physics News in 1990. Several of those papers did appear in the AIP publication. In the absence of a comparable publication devoted solely to a summary of news in geophysics, AGU is publishing the 20 articles solicited by the Public Information Committee as a booklet, Geophysics News 1990, that is being distributed to the media. The articles are also being published in Eos starting with this issue and continuing for the next several weeks. The topics covered in these articles range from the world's deepest rocks to the powerful blast waves from major solar flares.

  3. Geophysical Signal Recognition,

    DTIC Science & Technology

    1981-01-01

    quite helpful in the magnetosphere. Detecting a particular in earthquake prediction . However pattern recog- micropulsation event can provide a diagnosis...bio- In su..a.iry, application of pattern recognition to medical signals, progress in geophysical signal earthquake prediction is in its infancy

  4. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  5. Resources for Computational Geophysics Courses

    NASA Astrophysics Data System (ADS)

    Keers, Henk; Rondenay, Stéphane; Harlap, Yaël.; Nordmo, Ivar

    2014-09-01

    An important skill that students in solid Earth physics need to acquire is the ability to write computer programs that can be used for the processing, analysis, and modeling of geophysical data and phenomena. Therefore, this skill (which we call "computational geophysics") is a core part of any undergraduate geophysics curriculum. In this Forum, we share our personal experience in teaching such a course.

  6. New Mexico Play Fairway Analysis: Gamma Ray Logs and Heat Generation Calculations for SW New Mexico

    SciTech Connect

    Shari Kelley

    2015-10-23

    For the New Mexico Play fairway Analysis project, gamma ray geophysical well logs from oil wells penetrating the Proterozoic basement in southwestern New Mexico were digitized. Only the portion of the log in the basement was digitized. The gamma ray logs are converted to heat production using the equation (Bucker and Rybach, 1996) : A[µW/m3] = 0.0158 (Gamma Ray [API] – 0.8).

  7. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  8. Idaho-Montana Logging

    NASA Image and Video Library

    2013-12-16

    Logging operations have left a striking checkerboard pattern in the landscape along the Idaho-Montana border, sandwiched between Clearwater and Bitterroot National Forests as seen in this image acquired by NASA Terra spacecraft.

  9. Acoustic borehole logging

    SciTech Connect

    Medlin, W.L.; Manzi, S.J.

    1990-10-09

    This patent describes an acoustic borehole logging method. It comprises traversing a borehole with a borehole logging tool containing a transmitter of acoustic energy having a free-field frequency spectrum with at least one characteristic resonant frequency of vibration and spaced-apart receiver, repeatedly exciting the transmitter with a swept frequency tone burst of a duration sufficiently greater than the travel time of acoustic energy between the transmitter and the receiver to allow borehole cavity resonances to be established within the borehole cavity formed between the borehole logging tool and the borehole wall, detecting acoustic energy amplitude modulated by the borehole cavity resonances with the spaced-apart receiver, and recording an amplitude verses frequency output of the receiver in correlation with depth as a log of the borehole frequency spectrum representative of the subsurface formation comprising the borehole wall.

  10. 1964 Oregon log production.

    Treesearch

    Brian R. Wall

    1965-01-01

    The production of logs in Oregon in 1964 was 9.4 billion board feet, or nearly 9 percent above 1963. This year, 1964, had the third highest level of log production in history, exceeded only in 1955 and in 1952. The proportion of total cut from private lands fell to 43 percent, even though the total private cut increased 6 percent over that in 1963. Forest industry,...

  11. 6. Log calving barn. Interior view showing log postandbeam support ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Log calving barn. Interior view showing log post-and-beam support system and animal stalls. - William & Lucina Bowe Ranch, Log Calving Barn, 230 feet south-southwest of House, Melrose, Silver Bow County, MT

  12. EE-3A Logging Report

    SciTech Connect

    Anderson, David W.

    1993-12-15

    Two logs of EE-3A were performed during the last couple of weeks. The first of which, was a Temperature/Casing-Collar Locator (CCL) log, which took place on Friday, December 10th., 1993. The second log was a Caliper log which was done in cooperation with the Dia-Log Company, of Odessa, TX. on Monday, December, 13th., 1993.

  13. Geophysical investigations in Jordan

    USGS Publications Warehouse

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  14. Using Geophysical Data in the Texas High School Course, Geology, Meteorology, and Oceanography

    NASA Astrophysics Data System (ADS)

    Ellins, K.; Olson, H.; Pulliam, J.; Schott, M. J.

    2002-12-01

    Science educators working directly with scientists to develop inquiry-based instructional materials in Earth science yield some of the best results. The TEXTEAMS (Texas Teachers Empowered for Achievement in Mathematics and Science) Leadership Training for the Texas high school science course, Geology, Meteorology and Oceanography (GMO) is one example of a successful program that provides high-quality training to master teachers using geophysical data collected by scientists at The University of Texas Institute for Geophysics (UTIG). TEXTEAMS is a certification program of professional development and leadership training sponsored by the National Science Foundation that is part of the Texas Statewide Systemic Initiative. UTIG scientists teamed with science educators at the Charles A. Dana Center for Mathematics and Science Education at UT and the Texas Education Agency to develop inquiry-based instructional materials for eight GMO modules. Our learning activities help students and teachers understand how Earth scientists interpret the natural world and test their hypotheses, and provide opportunities for the use of technology in classroom science learning; they are aligned with national and state teaching standards. Examples of TEXTEAMS GMO learning activities that use geophysical data. 1. Neotectonics: radiocarbon dates and elevation above current sea level of raised coral reefs in the New Georgia Islands are used to calculate rates of tectonic uplift and as a basis for the development of a conceptual model to explain the pattern of uplift that emerges from the data. 2. Large Igneous Provinces:geophysical logging data collected on ODP Leg 183 (Kerguelen Plateau) are analyzed to identify the transition from sediment to basement rock. 3. The Search for Black Gold: petroleum exploration requires the integration of geology, geophysics, petrophysics and geochemistry. Knowledge gained in previous GMO modules is combined with fundamental knowledge about economics to

  15. Integrated Approaches On Archaeo-Geophysical Data

    NASA Astrophysics Data System (ADS)

    Kucukdemirci, M.; Piro, S.; Zamuner, D.; Ozer, E.

    2015-12-01

    Key words: Ground Penetrating Radar (GPR), Magnetometry, Geophysical Data Integration, Principal Component Analyse (PCA), Aizanoi Archaeological Site An application of geophysical integration methods which often appealed are divided into two classes as qualitative and quantitative approaches. This work focused on the application of quantitative integration approaches, which involve the mathematical and statistical integration techniques, on the archaeo-geophysical data obtained in Aizanoi Archaeological Site,Turkey. Two geophysical methods were applied as Ground Penetrating Radar (GPR) and Magnetometry for archaeological prospection on the selected archaeological site. After basic data processing of each geophysical method, the mathematical approaches of Sums and Products and the statistical approach of Principal Component Analysis (PCA) have been applied for the integration. These integration approches were first tested on synthetic digital images before application to field data. Then the same approaches were applied to 2D magnetic maps and 2D GPR time slices which were obtained on the same unit grids in the archaeological site. Initially, the geophysical data were examined individually by referencing with archeological maps and informations obtained from archaeologists and some important structures as possible walls, roads and relics were determined. The results of all integration approaches provided very important and different details about the anomalies related to archaeological features. By using all those applications, integrated images can provide complementary informations as well about the archaeological relics under the ground. Acknowledgements The authors would like to thanks to Scientific and Technological Research Council of Turkey (TUBITAK), Fellowship for Visiting Scientists Programme for their support, Istanbul University Scientific Research Project Fund, (Project.No:12302) and archaeologist team of Aizanoi Archaeological site for their support

  16. Improved grading system for structural logs for log homes

    Treesearch

    D.W. Green; T.M. Gorman; J.W. Evans; J.F. Murphy

    2004-01-01

    Current grading standards for logs used in log home construction use visual criteria to sort logs into either “wall logs” or structural logs (round and sawn round timbers). The conservative nature of this grading system, and the grouping of stronger and weaker species for marketing purposes, probably results in the specification of logs with larger diameter than would...

  17. Asteroid Surface Geophysics

    NASA Astrophysics Data System (ADS)

    Murdoch, N.; Sánchez, P.; Schwartz, S. R.; Miyamoto, H.

    The regolith-covered surfaces of asteroids preserve records of geophysical processes that have occurred both at their surfaces and sometimes also in their interiors. As a result of the unique microgravity environment that these bodies possess, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesized through detailed spacecraft observations and have been further studied using theoretical, numerical, and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging toward a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that are currently being used to investigate regolith processes occurring on small-body surfaces and that are contributing to the interpretation of observations and the design of future space missions.

  18. Evaluating petrophysical relationships in fractured rock using geophysical measurements

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Slater, L. D.; Keating, K.; Parker, B. L.; Rose, C.; Meyer, J. R.; Johnson, C. D.; Robinson, T.; Pehme, P.; Chapman, S.; Day-Lewis, F. D.

    2015-12-01

    Quantification of the pore geometric properties controlling mass transfer rates in fractured rock aquifers is a challenging characterization problem, especially given the scales of heterogeneity. The efficiency of in-situ remediation efforts that target hydraulically connected and dead-end fracture zones is limited, in part, due to the diffusion of aqueous phase contaminants into and out of the less-mobile pore spaces in the matrix surrounding fractures. Two geophysical technologies, complex resistivity (CR) and nuclear magnetic resonance (NMR) are sensitive to pore geometry and may provide key information on transport parameters where diffusion can be a limiting factor in and around boreholes. We present laboratory CR and NMR data from cores collected from field sites with variable lithologies and examine the sensitivity of these measurements to less-mobile versus mobile porosity. Supporting data include surface area measurements using the Brunauer-Emmett-Teller (BET) method, pore size distributions from mercury porosimetry, gravimetric measurements of matrix total porosity and gas permeability. We examine the predictive capability of CR and NMR to determine these pore scale properties as a function of geological setting. The petrophysical relationships illustrate the potential for use of new borehole logging tools to determine the spatial variability of physical properties controlling mass transfer close to fractures. The correlations of measurements to rock-type specific relations indicate that minimal core measurements might be needed to calibrate the results to a specific site.

  19. A proven record in changing attitudes about MWD logs

    SciTech Connect

    Cantrell, L.; Paxson, K.B.; Keyser, W.L.; Ball, S.

    1993-07-01

    Measurement while drilling (MWD) logs for quantitative reservoir characterization were evaluated during drilling of Gulf of Mexico flexure trend projects, Kilauea (Green Canyon Blocks 6 and 50) and Tick (Garden Banks Block 189). Comparisons confirmed that MWD can be used as an accurate replacement for wireline logging when borehole size is not a limiting factor. Texaco MWD experience evolved from last resort' to primary formation evaluation logging, which resulted in rigtime and associated cost savings. Difficult wells are now drilled and evaluated with confidence, geopressure is safely monitored, conventional core interval tops are selected, and geologic interpretations and operational decisions are made before wells TD. This paper reviews the performance, accuracy, and limitations of the MWD systems and compares the results to standard geophysical well logging techniques. Four case histories are presented.

  20. Geophysical monitoring of a field-scale biostimulation pilot project

    USGS Publications Warehouse

    Lane, J.W.; Day-Lewis, F. D.; Casey, C.C.

    2006-01-01

    The USGS conducted a geophysical investigation in support of a U.S. Naval Facilities Engineering Command, Southern Division field-scale biostimulation pilot project at Anoka County Riverfront Park (ACP), downgradient of the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota. The goal of the pilot project is to evaluate subsurface injection of vegetable oil emulsion (VOE) to stimulate microbial degradation of chlorinated hydrocarbons. To monitor the emplacement and movement of the VOE and changes in water chemistry resulting from VOE dissolution and/or enhanced biological activity, the USGS acquired cross-hole radar zero-offset profiles, traveltime tomograms, and borehole geophysical logs during five site visits over 1.5 years. Analysis of pre- and postinjection data sets using petrophysical models developed to estimate VOE saturation and changes in total dissolved solids provides insights into the spatial and temporal distribution of VOE and ground water with altered chemistry. Radar slowness-difference tomograms and zero-offset slowness profiles indicate that the VOE remained close to the injection wells, whereas radar attenuation profiles and electromagnetic induction logs indicate that bulk electrical conductivity increased downgradient of the injection zone, diagnostic of changing water chemistry. Geophysical logs indicate that some screened intervals were located above or below zones of elevated dissolved solids; hence, the geophysical data provide a broader context for interpretation of water samples and evaluation of the biostimulation effort. Our results include (1) demonstration of field and data analysis methods for geophysical monitoring of VOE biostimulation and (2) site-specific insights into the spatial and temporal distributions of VOE at the ACP. ?? 2006 National Ground Water Association.

  1. Geophysical monitoring of a field-scale biostimulation pilot project.

    PubMed

    Lane, John W; Day-Lewis, Frederick D; Casey, Clifton C

    2006-01-01

    The USGS conducted a geophysical investigation in support of a U.S. Naval Facilities Engineering Command, Southern Division field-scale biostimulation pilot project at Anoka County Riverfront Park (ACP), down-gradient of the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota. The goal of the pilot project is to evaluate subsurface injection of vegetable oil emulsion (VOE) to stimulate microbial degradation of chlorinated hydrocarbons. To monitor the emplacement and movement of the VOE and changes in water chemistry resulting from VOE dissolution and/or enhanced biological activity, the USGS acquired cross-hole radar zero-offset profiles, travel-time tomograms, and borehole geophysical logs during five site visits over 1.5 years. Analysis of pre- and postinjection data sets using petrophysical models developed to estimate VOE saturation and changes in total dissolved solids provides insights into the spatial and temporal distribution of VOE and ground water with altered chemistry. Radar slowness-difference tomograms and zero-offset slowness profiles indicate that the VOE remained close to the injection wells, whereas radar attenuation profiles and electromagnetic induction logs indicate that bulk electrical conductivity increased down-gradient of the injection zone, diagnostic of changing water chemistry. Geophysical logs indicate that some screened intervals were located above or below zones of elevated dissolved solids; hence, the geophysical data provide a broader context for interpretation of water samples and evaluation of the biostimulation effort. Our results include (1) demonstration of field and data analysis methods for geophysical monitoring of VOE biostimulation and (2) site-specific insights into the spatial and temporal distributions of VOE at the ACP.

  2. Geophysical subsurface imaging for ecological applications.

    PubMed

    Jayawickreme, Dushmantha H; Jobbágy, Esteban G; Jackson, Robert B

    2014-03-01

    Ecologists, ecohydrologists, and biogeochemists need detailed insights into belowground properties and processes, including changes in water, salts, and other elements that can influence ecosystem productivity and functioning. Relying on traditional sampling and observation techniques for such insights can be costly, time consuming, and infeasible, especially if the spatial scales involved are large. Geophysical imaging provides an alternative or complement to traditional methods to gather subsurface variables across time and space. In this paper, we review aspects of geophysical imaging, particularly electrical and electromagnetic imaging, that may benefit ecologists seeking clearer understanding of the shallow subsurface. Using electrical resistivity imaging, for example, we have been able to successfully show the effect of land-use conversions to agriculture on salt mobilization and leaching across kilometer-long transects and to depths of tens of meters. Recent advances in ground-penetrating radar and other geophysical imaging methods currently provide opportunities for subsurface imaging with sufficient detail to locate small (≥5 cm diameter) animal burrows and plant roots, observe soil-water and vegetation spatial correlations in small watersheds, estuaries, and marshes, and quantify changes in groundwater storage at local to regional scales using geophysical data from ground- and space-based platforms. Ecologists should benefit from adopting these minimally invasive, scalable imaging technologies to explore the subsurface and advance our collective research.

  3. 4. Log chicken house (far left foreground), log bunkhouse (far ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Log chicken house (far left foreground), log bunkhouse (far left background), one-room log cabin (left of center background), log root cellar (center), post-and-beam center in foreground, and blacksmith shop (far right foreground). View to southeast. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  4. Primary detection of hardwood log defects using laser surface scanning

    Treesearch

    Ed Thomas; Liya Thomas; Lamine Mili; Roger Ehrich; A. Lynn Abbott; Clifford Shaffer; Clifford Shaffer

    2003-01-01

    The use of laser technology to scan hardwood log surfaces for defects holds great promise for improving processing efficiency and the value and volume of lumber produced. External and internal defect detection to optimize hardwood log and lumber processing is one of the top four technological needs in the nation's hardwood industry. The location, type, and...

  5. Modes of log gravity

    SciTech Connect

    Bergshoeff, Eric A.; Rosseel, Jan; Hohm, Olaf; Townsend, Paul K.

    2011-05-15

    The physical modes of a recently proposed D-dimensional 'critical gravity', linearized about its anti-de Sitter vacuum, are investigated. All 'log mode' solutions, which we categorize as 'spin-2' or 'Proca', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Einstein tensor of a spin-2 log mode is itself a 'nongauge' solution of the linearized Einstein equations whereas the linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate transformation. Our results suggest the existence of a holographically dual logarithmic conformal field theory.

  6. Geophysics publications honored

    NASA Astrophysics Data System (ADS)

    Geophysics and geology publications by the U.S. Geological Survey were awarded one first- and two third-place prizes at the ‘Blue Pencil’ ceremony last month, sponsored by the National Association of Government Communicators.First place in the news release category went to Frank Forrester, an AGU member and recently retired USGS information officer. Editors and artists of the bimonthly USGS Earthquake Information Bulletin were awarded third place in the category for technical magazines using at least two colors.

  7. Hydrogeological-Geophysical Methods for Subsurface Site Characterization - Final Report

    SciTech Connect

    Rubin, Yoram

    2001-01-01

    The goal of this research project is to increase water savings and show better ecological control of natural vegetation by developing hydrogeological-geophysical methods for characterizing the permeability and content of water in soil. The ground penetrating radar (GPR) tool was developed and used as the surface geophysical method for monitoring water content. Initial results using the tool suggest that surface GPR is a viable technique for obtaining precision volumetric water content profile estimates, and that laboratory-derived petrophysical relationships could be applied to field-scale GPR data. A field-scale bacterial transport study was conducted within an uncontaminated sandy Pleistocene aquifer to evaluate the importance of heterogeneity in controlling the transport of bacteria. Geochemical, hydrological, geological, and geophysical data were collected to characterize the site prior to and after chemical and bacterial injection experiments. Study results shows that, even within the fairly uniform shallow marine deposits of the narrow channel focus area, heterogeneity existed that influenced the chemical tracer transport over lateral distances of a few meters and vertical distances of less than a half meter. The interpretation of data suggest that the incorporation of geophysical data with limited hydrological data may provide valuable information about the stratigraphy, log conductivity values, and the spatial correlation structure of log conductivity, which have traditionally been obtainable only by performing extensive and intrusive hydrological sampling.

  8. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  9. Logging slash flammability

    Treesearch

    George R. Fahnestock

    1960-01-01

    Some of the most disastrous forest fires in North American history burned in slash left from logging and land clearing. In the era before organized fire control, the names Miramichi, Peshtigo, Hinckley, and Cloquet stand for millions of acres blackened and thousands of lives snuffed out. More recently the Half Moon Fire in Montana, the Tillamook Fire in Oregon, the...

  10. Log of Apollo 11.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The major events of the first manned moon landing mission, Apollo 11, are presented in chronological order from launch time until arrival of the astronauts aboard the U.S.S. Hornet. The log is descriptive, non-technical, and includes numerous color photographs of the astronauts on the moon. (PR)

  11. Interactive Reflective Logs

    ERIC Educational Resources Information Center

    Deaton, Cynthia Minchew; Deaton, Benjamin E.; Leland, Katina

    2010-01-01

    The authors created an interactive reflective log (IRL) to provide teachers with an opportunity to use a journal approach to record, evaluate, and communicate student understanding of science concepts. Unlike a traditional journal, the IRL incorporates prompts to encourage students to discuss their understanding of science content and science…

  12. Logs Perl Module

    SciTech Connect

    Owen, R. K.

    2007-04-04

    A perl module designed to read and parse the voluminous set of event or accounting log files produced by a Portable Batch System (PBS) server. This module can filter on date-time and/or record type. The data can be returned in a variety of formats.

  13. Alaska's Logging Camp School.

    ERIC Educational Resources Information Center

    Millward, Robert E.

    1999-01-01

    A visit to Ketchikan, Alaska, reveals a floating, one-teacher logging-camp school that uses multiage grouping and interdisciplinary teaching. There are 10 students. The school gym and playground, bunkhouse, fuel tanks, mess hall, and students' homes bob up and down and are often moved to other sites. (MLH)

  14. Interactive Reflective Logs

    ERIC Educational Resources Information Center

    Deaton, Cynthia Minchew; Deaton, Benjamin E.; Leland, Katina

    2010-01-01

    The authors created an interactive reflective log (IRL) to provide teachers with an opportunity to use a journal approach to record, evaluate, and communicate student understanding of science concepts. Unlike a traditional journal, the IRL incorporates prompts to encourage students to discuss their understanding of science content and science…

  15. Logging on to Learn

    ERIC Educational Resources Information Center

    Butler, Kevin

    2010-01-01

    A classroom lecture at Capistrano Connections Academy in Southern California involves booting up the home computer, logging on to a Web site, and observing a teacher conducting a PowerPoint presentation of that day's lesson entirely online. Through microphone headsets, students can watch on their home computers, respond to the teacher's questions,…

  16. Petrographic image logging system

    SciTech Connect

    Payne, C.J.; Ulrich, M.R.; Maxwell, G.B. ); Adams, J.P. )

    1991-03-01

    The Petrographic Image Logging System (PILS) is a logging system data base for Macintosh computers that allows the merging of traditional wire-line, core, and mud log data with petrographic images. The system is flexible; it allows the user to record, manipulate, and display almost any type of character, graphic, and image information. Character and graphic data are linked and entry in either mode automatically generates the alternate mode. Character/graphic data may include such items as ROP, wire-line log data, interpreted lithologies, ditch cutting lith-percentages, porosity grade and type, grain size, core/DST information, and sample descriptions. Image data may include petrographic and SEM images of cuttings, core, and thin sections. All data are tied to depth. Data are entered quickly and easily in an interactive manner with a mouse, keyboard, and digitizing tablet or may be imported and immediately autoplotted from a variety of environments via modem, network, or removable disk. Color log displays, including petrographic images, are easily available on CRT or as hardcopy. The system consists of a petrographic microscope, video camera, Macintosh computer, video framegrabber and digitizing tablet. Hardcopy is scaleable and can be generated by a variety of color printing devices. The software is written in Supertalk, a color superset of the standard Apple Hypercard programming language, hypertalk. This system is being tested by Mobil in the lab and at the well site. Implementation has provided near 'real-time' core and cuttings images from drilling wells to the geologist back at the office.

  17. Integrated geophysical surveys for the safety evaluation of a ground subsidence zone in a small city

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Ho; Yi, Myeong-Jong; Hwang, Se-Ho; Song, Yoonho; Cho, Seong-Jun; Synn, Joong-Ho

    2007-09-01

    Ground subsidence occurred in the centre of a small city in South Korea. In order to investigate the cause of the geological hazards and to estimate the ground safety, we carried out integrated geophysical surveys comprising two-dimensional (2D) resistivity, controlled source magnetotelluric (CSMT), magnetic, ground penetrating radar, geophysical well logging and crosshole electrical resistivity tomography (ERT) surveys. Since the target area is located in the downtown area, surface geophysical methods could not be applied systematically. To understand regional geology and to facilitate the interpretation of detailed geophysical surveys in the target area, 2D resistivity, CSMT and magnetic surveys were conducted outside the downtown area. From these results, we could define the regional structure and successively infer the geologic condition in the city centre as well. Among the geophysical techniques applied for the detailed investigation in the main target area, crosshole ERT and geophysical well logging played the most important role. For the efficient ERT field work in the busiest quarter of the city, we devised a new electrode array, modified pole-dipole array, and proved that the proposed array is efficient particularly in the area where installing a remote electrode is nearly impossible. The distribution of cavities and weak zones was interpreted by careful examination of the resistivity tomograms and geophysical logging results. Based on the distribution of cavities interpreted in a 3D manner, numerical analyses of rock engineering were further carried out and geologic hazard maps were presented. Through this comprehensive approach comprising geophysics and rock engineering, shallow limestone cavities were found to be the main cause of the ground subsidence and the excessive pumping of groundwater might trigger or accelerate the geological hazard. Reinforcement works have been carried out based on the results of these geophysical and rock engineering

  18. Future Chances and Challenges for Near Surface Geophysics

    NASA Astrophysics Data System (ADS)

    Noell, U.; Meyer, U.

    2011-12-01

    Near surface geophysics provides information from global to local scale: a) Standardized geophysical observations are utilized e.g. in risk management frameworks beyond the national level a) Specific tasks in local or regional frameworks as mine flooding or ground water recharge monitoring are required. Either way, near surface geophysics is connected more than ever to technical problems and thus is vastly adopted by engineering. This is a chance and challenge at the same time. The chance is to make near surface geophysics more useful in applied and practical issues, the challenge is to develop new profiles and research directions. Recent satellite earth observation missions have much enhanced capabilities to observe near surface features and changes but generally very limited penetration. Near surface geophysics can bridge the gap between surface characterization and subsurface structures. Subsurface structures as aquifer systems, layering, deposits and mineralization can be determined by non-invasive near surface geophysics. A special challenge here is the enhanced interpretation of the physical data combined with an improved understanding of complex subsurface processes. Moreover, the limits of the interpretation and the measurements need to be quantified. Another future challenge is to gain a better and reliable understanding of soil - water cycles and gaseous flows via near surface geophysics. New methods and techniques that did not seem feasible in the past must reviewed whilst technology developed. This includes squids for magnetics and electromagnetics applications, nuclear magnetic resonance methods etc.

  19. Log-Concavity and Strong Log-Concavity: a review

    PubMed Central

    Saumard, Adrien; Wellner, Jon A.

    2016-01-01

    We review and formulate results concerning log-concavity and strong-log-concavity in both discrete and continuous settings. We show how preservation of log-concavity and strongly log-concavity on ℝ under convolution follows from a fundamental monotonicity result of Efron (1969). We provide a new proof of Efron's theorem using the recent asymmetric Brascamp-Lieb inequality due to Otto and Menz (2013). Along the way we review connections between log-concavity and other areas of mathematics and statistics, including concentration of measure, log-Sobolev inequalities, convex geometry, MCMC algorithms, Laplace approximations, and machine learning. PMID:27134693

  20. Log-Concavity and Strong Log-Concavity: a review.

    PubMed

    Saumard, Adrien; Wellner, Jon A

    We review and formulate results concerning log-concavity and strong-log-concavity in both discrete and continuous settings. We show how preservation of log-concavity and strongly log-concavity on ℝ under convolution follows from a fundamental monotonicity result of Efron (1969). We provide a new proof of Efron's theorem using the recent asymmetric Brascamp-Lieb inequality due to Otto and Menz (2013). Along the way we review connections between log-concavity and other areas of mathematics and statistics, including concentration of measure, log-Sobolev inequalities, convex geometry, MCMC algorithms, Laplace approximations, and machine learning.

  1. Sampling functions for geophysics

    NASA Technical Reports Server (NTRS)

    Giacaglia, G. E. O.; Lunquist, C. A.

    1972-01-01

    A set of spherical sampling functions is defined such that they are related to spherical-harmonic functions in the same way that the sampling functions of information theory are related to sine and cosine functions. An orderly distribution of (N + 1) squared sampling points on a sphere is given, for which the (N + 1) squared spherical sampling functions span the same linear manifold as do the spherical-harmonic functions through degree N. The transformations between the spherical sampling functions and the spherical-harmonic functions are given by recurrence relations. The spherical sampling functions of two arguments are extended to three arguments and to nonspherical reference surfaces. Typical applications of this formalism to geophysical topics are sketched.

  2. Geophysics of Mars

    NASA Technical Reports Server (NTRS)

    Wells, R. A.

    1979-01-01

    A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.

  3. Geophysics of Mars

    NASA Technical Reports Server (NTRS)

    Wells, R. A.

    1979-01-01

    A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.

  4. Geophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Busse, F. H.

    In the past 8 years, since Pedlosky's book was first published, it has found a well established place in the literature of dynamical meteorology and physical oceanography. Geophysicists less familiar with these fields may need to be reminded that the subject of geophysical fluid dynamics, in the narrow definition used in the title of the book, refers to the theory of the large-scale motions of the atmosphere and the oceans. Topics such as thermal convection in the atmosphere or in Earth's mantle and core are not treated in this book, and the reader will search in vain for a discussion of atmospheric or oceanic tides. The theory of quasi-geostrophic flow is described comprehensively, however, and its major applications to problems of atmospheric and oceanic circulations are considered in detail.

  5. Aspen for cabin logs

    Treesearch

    A.W. Sump

    1947-01-01

    A plentiful supply of pine and cedar logs provided the early settlers of this country with a cheap and durable material for the construction of their homes and farm buildings. Only the axe and the ingenuity of the pioneer were needed to erect a shelter against the elements of nature. Early in the 19th century, the circular saw came into use resulting in a change in...

  6. Demonstrations in Introductory Geophysics

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Stein, S.; van der Lee, S.; Swafford, L.; Klosko, E.; Delaughter, J.; Wysession, M.

    2005-12-01

    Geophysical concepts are challenging to teach at introductory levels, because students need to understand both the underlying physics and its geological application. To address this, our introductory courses include class demonstrations and experiments to demonstrate underlying physical principles and their geological applications. Demonstrations and experiments have several advantages over computer simulations. First, computer simulations "work" even if the basic principle is wrong. In contrast, simple demonstrations show that a principle is physically correct, rather than a product of computer graphics. Second, many students are unfamiliar with once-standard experiments demonstrating ideas of classical physics used in geophysics. Demonstrations are chosen that we consider stimulating, relevant, inexpensive, and easy to conduct in a non-lab classroom. These come in several groups. Many deal with aspects of seismic waves, using springs, light beams, and other methods such as talking from outside the room to illustrate the frequency dependence of diffraction (hearing but not seeing around a corner). Others deal with heat and mass transfer, such as illustrating fractional crystallization with apple juice and the surface/volume effect in planetary evolution with ice. Plate motions are illustrated with paper cutouts showing effects like motion on transform faults and how the Euler vector geometry changes a plate boundary from spreading, to strike-slip, to convergence along the Pacific-North America boundary from the Gulf of California to Alaska. Radioactive decay is simulated by having the class rise and sit down as a result of coin flips (one tail versus two gives different decay rates and hence half lives). This sessions' goal of exchanging information about demonstrations is an excellent idea: some of ours are described on http://www.earth.nwu.edu/people/seth/202.

  7. Keystroke Logging in Writing Research: Using Inputlog to Analyze and Visualize Writing Processes

    ERIC Educational Resources Information Center

    Leijten, Marielle; Van Waes, Luuk

    2013-01-01

    Keystroke logging has become instrumental in identifying writing strategies and understanding cognitive processes. Recent technological advances have refined logging efficiency and analytical outputs. While keystroke logging allows for ecological data collection, it is often difficult to connect the fine grain of logging data to the underlying…

  8. Lumber value differences from reduced CT spatial resolution and simulated log sawing

    Treesearch

    Suraphan Thawornwong; Luis G. Occena; Daniel L. Schmoldt

    2003-01-01

    In the past few years, computed tomography (CT) scanning technology has been applied to the detection of internal defects in hardwood logs for the purpose of obtaining a priori information that can be used to arrive at better log sawing decisions. Because sawyers currently cannot even see the inside of a log until the log faces are revealed by sawing, there is little...

  9. Keystroke Logging in Writing Research: Using Inputlog to Analyze and Visualize Writing Processes

    ERIC Educational Resources Information Center

    Leijten, Marielle; Van Waes, Luuk

    2013-01-01

    Keystroke logging has become instrumental in identifying writing strategies and understanding cognitive processes. Recent technological advances have refined logging efficiency and analytical outputs. While keystroke logging allows for ecological data collection, it is often difficult to connect the fine grain of logging data to the underlying…

  10. Continuous monitoring of the lunar or Martian subsurface using on-board pattern recognition and neural processing of Rover geophysical data

    NASA Technical Reports Server (NTRS)

    Glass, Charles E.; Boyd, Richard V.; Sternberg, Ben K.

    1991-01-01

    The overall aim is to provide base technology for an automated vision system for on-board interpretation of geophysical data. During the first year's work, it was demonstrated that geophysical data can be treated as patterns and interpreted using single neural networks. Current research is developing an integrated vision system comprising neural networks, algorithmic preprocessing, and expert knowledge. This system is to be tested incrementally using synthetic geophysical patterns, laboratory generated geophysical patterns, and field geophysical patterns.

  11. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    SciTech Connect

    Koppenjan, S,; Martinez, M.

    1994-06-01

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE`s Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ``chirped`` FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site.

  12. 2. Onroom log cabin (right), log root cellar (center), tworoom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. On-room log cabin (right), log root cellar (center), two-room log cabin (left), and post-and-beam garage (background). View to southwest. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  13. 12. Upstream view showing thelower log pond log chute in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Upstream view showing thelower log pond log chute in the main channel of the Hudson River. The log chute in the dam can be seen in the background. Facing southwest. - Glens Falls Dam, 100' to 450' West of U.S. Route 9 Bridge Spanning Hudson River, Glens Falls, Warren County, NY

  14. Applied Geophysics in the world of tomorrow - Microfabrication arrives

    NASA Astrophysics Data System (ADS)

    Johnson, R. M.

    2012-12-01

    sensors must be deployed in more venues, on new platforms, for more and different applications to pay for the engineering costs of developing nanotechnology. What might those applications be? They may be in medical or defense or security. But one application that is sure to be employed is installing multiple magnetic sensors on robotic platforms, whether they are deployed on airborne, marine or land. UAV, AUV, UUV and even ROV's will be the platforms of the future, enabling robots to gather data and be able to make mid-survey decisions about increased coverage over areas of interest. What should you be studying or teaching to take advantage of these paradigm shifts? The disciplines of this new era of geophysical exploration will be real-time automated potential field data analysis, embedded platform computers for data logging, steering and magnetic compensation. There will be context driven navigation planning required (including altitude) based on target size and distribution. There will be high speed communications over local and distributed networks. In short many of the technologies used today in Wi-Fi, GPS, Wii controllers and Smartphones will be part of the mix.

  15. Applications of geophysical methods to volcano monitoring

    USGS Publications Warehouse

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  16. Electromagnetic wave logging dipmeter

    SciTech Connect

    Meador, R.A.

    1983-12-20

    An improvement to dipmeter logs has very closely spaced radio frequency sensor coils mounted in pairs in each of the formation contacting pads. A transmitter mounted in a sonde emits the radio frequency energy, such as in the range of from two to one hundred megahertz. The phase difference in radio frequency signals between receiver coil pairs in each pad is measured, providing improved data resolution for computing formation dip, and making possible dip measurements in wells drilled with oil base mud or air (invert type muds).

  17. Application of BI (Bioturbation Index) Log in Interpreting Sedimentary Record

    NASA Astrophysics Data System (ADS)

    Gani, M. R.

    2006-12-01

    Various BI (bioturbation index) schemes have been developed since early 60's to semi-quantitatively measure the degree of bioturbation in sediments. Although BI scheme has been used as a paleo-oxygen proxy in fine- grained basinal strata, its wider application remained under-explored. Like geophysical wireline logs, a continuous line curve of BI can be plotted against the thickness of a sedimentary succession. This `BI log' characterizing the variation of bioturbation intensity down to the bed/lamina-scale can be generated in outcrops, and from cores and FMI (formation micro-imager) logs. The application of BI log in interpreting sedimentary record is diverse. Five basic trends of BI log (uniform and low, uniform and high, non-uniform, upward-decreasing, and upward-increasing) can be recognized, each indicating a distinct paleo-environmental condition, either persistent or changing, for trace makers. These trends can be used as proxies for sedimentation rate, dominant energy (wave, tide, and river), and/or paleoclimate (oxygen, salinity, temperature, and organic carbon). For example, BI logs of shallow marine and transitional strata show distinct trends depending on the relative influence of rivers, waves, storms, and tides. Characteristic deflections of BI log across lithostratigraphic boundaries, key sequence stratigraphic surfaces, and across depositional systems are observed. BI log can also be used relatively as an indicator of reservoir property (porosity and permeability), particularly for `tight' reservoirs. When co-interpreted with other ichnological, sedimentological and geochemical data, BI log can be a powerful tool in various disciplines, such as sedimentology, paleoclimatology, stratigraphy, and petroleum geology.

  18. A collection of log rules

    Treesearch

    Frank Freese

    1973-01-01

    A log rule may be defined as a table or formula showing the estimated net yield for logs of a given diameter and length. Ordinarily the yield is expressed in terms of board feet of finished lumber, though a few rules give the cubic volume of the log or some fraction of it. Built into each log rule are allowances for losses due to such things as slabs, saw kerf, edgings...

  19. Twenty-three Years of Evolving "State-of-the-Art" CORK Borehole Geophysical Monitoring: A Review of Technologies and Case Studies

    NASA Astrophysics Data System (ADS)

    Davis, E. E.; Becker, K.; Meldrum, R.; Heesemann, M.; Villinger, H. W.; Kinoshita, M.; Paros, J. M.; Inderbitzen, K. E.

    2014-12-01

    The first successful attempt to instrument an Ocean Drilling Program borehole for formation pressure and temperature monitoring and fluid sampling was accomplished in 1991 in Hole 857D, and the system there has been in nearly continuous operation since that time. This hole and others that followed have provided many new insights into ocean crustal and subduction zone hydrogeology and geodynamics, while at the same time being the "proving ground" for a number of technological advances in ocean borehole monitoring, including 1) the CORK scheme itself for sealing holes for hydrologic recovery to natural-state conditions after drilling; 2) the use of absolute pressure sensors for monitoring both relative formation pressures and changes in seafloor depth; 3) multi-level completions for pressure monitoring that leave cased borehole interiors open for other instrumentation; 4) the development of ultra-high-precision, low-power digital recording systems for examining the effects on the formation of seismic and microseismic loading; and 5) the proof-of-concept of an optical communications system that eliminates dependence on submersibles or ROVs for data download operations (see Tivey et al., this session). Relatively low-sample-rate data spanning the first part of the more than two decades of operations have shown how large anomalous pressures generated thermally and by deformation can be; how seafloor tidal loading influences formation pressure and can drive an "a.c." component of flow; and how seismogenic and slow strain can be observed by way of formation-fluid pressure transients. More recent instrumentation has allowed much higher fidelity observations (1 Hz sampling at a resolution of 10-8 of full-scale), and thus is permitting complementary studies of hydrologic, oceanographic, seismic, and microseismic phenomena. Plans for the future include connections to shore via observatory cable systems, such as those of NEPTUNE Canada and DONET, for unlimited power supply and

  20. My Journey with Learning Logs

    ERIC Educational Resources Information Center

    Hurst, Beth

    2005-01-01

    Learning logs, or reading response logs, have long been established as an effective reading strategy that helps students learn from text (Atwell, 1987; Blough & Berman, 1991; Calkins, 1986; Commander & Smith, 1996; Kuhrt & Farris, 1990; Reed, 1988; Sanders, 1985). In this paper, the author describes her experiences using learning logs as a…

  1. Grid Logging: Best Practices Guide

    SciTech Connect

    Tierney, Brian L; Tierney, Brian L; Gunter, Dan

    2008-04-01

    The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

  2. Configuration of Appalachian logging roads

    Treesearch

    John E. Baumgras; John E. Baumgras

    1971-01-01

    The configuration - the curvature and grade - of logging roads in southern Appalachia is seldom severe, according to a recent Forest Service study. To improve the efficiency of logging roads, we must first define the characteristics of these roads; and in this report we provide a quantitative description of the configuration of over 200 miles of logging roads.

  3. Jesuit Geophysical Observatories

    NASA Astrophysics Data System (ADS)

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  4. Electrofacies analysis for coal lithotype profiling based on high-resolution wireline log data

    NASA Astrophysics Data System (ADS)

    Roslin, A.; Esterle, J. S.

    2016-06-01

    The traditional approach to coal lithotype analysis is based on a visual characterisation of coal in core, mine or outcrop exposures. As not all wells are fully cored, the petroleum and coal mining industries increasingly use geophysical wireline logs for lithology interpretation.This study demonstrates a method for interpreting coal lithotypes from geophysical wireline logs, and in particular discriminating between bright or banded, and dull coal at similar densities to a decimetre level. The study explores the optimum combination of geophysical log suites for training the coal electrofacies interpretation, using neural network conception, and then propagating the results to wells with fewer wireline data. This approach is objective and has a recordable reproducibility and rule set.In addition to conventional gamma ray and density logs, laterolog resistivity, microresistivity and PEF data were used in the study. Array resistivity data from a compact micro imager (CMI tool) were processed into a single microresistivity curve and integrated with the conventional resistivity data in the cluster analysis. Microresistivity data were tested in the analysis to test the hypothesis that the improved vertical resolution of microresistivity curve can enhance the accuracy of the clustering analysis. The addition of PEF log allowed discrimination between low density bright to banded coal electrofacies and low density inertinite-rich dull electrofacies.The results of clustering analysis were validated statistically and the results of the electrofacies results were compared to manually derived coal lithotype logs.

  5. Inversion Algorithms for Geophysical Problems

    DTIC Science & Technology

    1987-12-16

    ktdud* Sccumy Oass/Kjoon) Inversion Algorithms for Geophysical Problems (U) 12. PERSONAL AUTHOR(S) Lanzano, Paolo 13 «. TYPE OF REPORT Final 13b...spectral density. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 13 UNCLASSIFIED/UNLIMITED D SAME AS RPT n OTIC USERS 22a. NAME OF RESPONSIBLE...Research Laboratory ’^^ SSZ ’.Washington. DC 20375-5000 NRLrMemorandum Report-6138 Inversion Algorithms for Geophysical Problems p. LANZANO Space

  6. Geophysical fluid flow cell experiment

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1982-01-01

    The primary purpose of the geophysical flow experiments is to simulate large-scale baroclinic (density-stratified) flows which occur naturally in the atmospheres of rotating planets and stars and to gain insights and obtain answers to crucial questions concerning the large-scale nonlinear mechanics of the global geophysical flows. Those external conditions related to fluid viscosity, rotation, gravity are identified, which allow qualitatively different modes of instability or waves in the model.

  7. Large natural geophysical events: planetary planning

    SciTech Connect

    Knox, J.B.; Smith, J.V.

    1984-09-01

    Geological and geophysical data suggest that during the evolution of the earth and its species, that there have been many mass extinctions due to large impacts from comets and large asteroids, and major volcanic events. Today, technology has developed to the stage where we can begin to consider protective measures for the planet. Evidence of the ecological disruption and frequency of these major events is presented. Surveillance and warning systems are most critical to develop wherein sufficient lead times for warnings exist so that appropriate interventions could be designed. The long term research undergirding these warning systems, implementation, and proof testing is rich in opportunities for collaboration for peace.

  8. Surface exploration geophysics applied to the moon

    SciTech Connect

    Ander, M.E.

    1984-01-01

    With the advent of a permanent lunar base, the desire to explore the lunar near-surface for both scientific and economic purposes will arise. Applications of exploration geophysical methods to the earth's subsurface are highly developed. This paper briefly addresses some aspects of applying this technology to near surface lunar exploration. It is noted that both the manner of application of some techniques, as well as their traditional hierarchy as assigned on earth, should be altered for lunar exploration. In particular, electromagnetic techniques may replace seismic techniques as the primary tool for evaluating near-surface structure.

  9. On coincident loop transient electromagnetic induction logging

    DOE PAGES

    Swidinsky, Andrei; Weiss, Chester J.

    2017-05-31

    Coincident loop transient induction wireline logging is examined as the borehole analog of the well-known land and airborne time-domain electromagnetic (EM) method. The concept of whole-space late-time apparent resistivity is modified from the half-space version commonly used in land and airborne geophysics and applied to the coincident loop voltages produced from various formation, borehole, and invasion models. Given typical tool diameters, off-time measurements with such an instrument must be made on the order of nanoseconds to microseconds — much more rapidly than for surface methods. Departure curves of the apparent resistivity for thin beds, calculated using an algorithm developed tomore » model the transient response of a loop in a multilayered earth, indicate that the depth of investigation scales with the bed thickness. Modeled resistivity logs are comparable in accuracy and resolution with standard frequency-domain focused induction logs. However, if measurement times are longer than a few microseconds, the thicknesses of conductors can be overestimated, whereas resistors are underestimated. Thin-bed resolution characteristics are explained by visualizing snapshots of the EM fields in the formation, where a conductor traps the electric field while two current maxima are produced in the shoulder beds surrounding a resistor. Radial profiling is studied using a concentric cylinder earth model. Results found that true formation resistivity can be determined in the presence of either oil- or water-based mud, although in the latter case, measurements must be taken several orders of magnitude later in time. Lastly, the ability to determine true formation resistivity is governed by the degree that the EM field heals after being distorted by borehole fluid and invasion, a process visualized and particularly evident in the case of conductive water-based mud.« less

  10. Planetary Geophysics and Tectonics

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  11. Optimization and geophysical inverse problems

    SciTech Connect

    Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.

    2000-10-01

    A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness

  12. USING 3D COMPUTER MODELING, BOREHOLE GEOPHYSICS, AND HIGH CAPACITY PUMPS TO RESTORE PRODUCTION TO MARGINAL WELLS IN THE EAST TEXAS FIELD

    SciTech Connect

    R.L. Bassett

    2003-06-09

    Methods for extending the productive life of marginal wells in the East Texas Field were investigated using advanced computer imaging technology, geophysical tools, and selective perforation of existing wells. Funding was provided by the Department of Energy, TENECO Energy and Schlumberger Wireline and Testing. Drillers' logs for more than 100 wells in proximity to the project lease were acquired, converted to digital format using a numerical scheme, and the data were used to create a 3 Dimensional geological image of the project site. Using the descriptive drillers' logs in numerical format yielded useful cross sections identifying the Woodbine Austin Chalk contact and continuity of sand zones between wells. The geological data provided information about reservoir continuity, but not the amount of remaining oil, this was obtained using selective modern logs. Schlumberger logged the wells through 2 3/8 inch tubing with a new slimhole Reservoir Saturation Tool (RST) which can measure the oil and water content of the existing porosity, using neutron scattering and a gamma ray spectrometer (GST). The tool provided direct measurements of elemental content yielding interpretations of porosity, lithology, and oil and water content, confirming that significant oil saturation still exists, up to 50% in the upper Woodbine sand. Well testing was then begun and at the end of the project new oil was being produced from zones abandoned or bypassed more than 25 years ago.

  13. Primary detection of hardwood log defects using laser surface scanning

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Thomas, Liya; Mili, Lamine; Ehrich, Roger W.; Abbott, A. Lynn; Shaffer, Clifford

    2003-05-01

    The use of laser technology to scan hardwood log surfaces for defects holds great promise for improving processing efficiency and the value and volume of lumber produced. External and internal defect detection to optimize hardwood log and lumber processing is one of the top four technological needs in the nation"s hardwood industry. The location, type, and severity of defects on hardwood logs are the key indicators of log quality and value. These visual cues provide information about internal log characteristics and products for which the log is suitable. We scanned 162 logs with a high-resolution industrial four-head laser surface scanner. The resulting data sets contain hundreds of thousands of three-dimensional coordinate points. The size of the data and noise presented special problems during processing. Robust regression models were used to fit geometric shapes to the data. The estimated orthogonal distances between the fitted model and the log surface are converted to a two-dimensional image to facilitate defect detection. Using robust regression methods and standard image processing tools we have demonstrated that severe surface defects on hardwood logs can be detected using height and contour analyses of three-dimensional laser scan data.

  14. Analysis of well logging methods in volcanic and volcano sedimentary rocks from Pina petroleum field

    SciTech Connect

    Rodriquez, N.

    1996-09-01

    Petrophysical, petrological and geophysical methods have been applied to prospecting and well logging for several petroleum fields in Cuba. The most common reservoir in these fields are carbonate rocks. However, the Pina field, in the Central region of the island, distinguishes itself by the good quality of the oil and the volcano sedimentary and volcanic character of the reservoirs. These rocks have peculiar geophysical responses, which is why the study of these methods and the development of the interpretation methods is very important. Integrated geological and geophysical information was necessary during the drilling of wells in the Pina field in order to evaluate the hydrocarbon potential. GEONUC code permits us to use different ways to solve questions about interpretation of well logging in the volcanic sedimentary rocks. This code gives us the opportunity to analyze complex methods.

  15. Foundations of Nuclear Geophysics

    NASA Astrophysics Data System (ADS)

    Herndon, J. M.; Hollenbach, D. F.

    2002-05-01

    Herndon suggested that the inner core of the Earth consists, not of partially crystallized iron metal, but of nickel silicide. He has shown by fundamental mass ratios that i) the Earth as a whole, especially the inner 82%, has a state of oxidation like primitive enstatite chondrites, and ii) the lower mantle and core are similar in composition to the Abee enstatite chondrite. By analogy with Abee data, CaS and MgS precipitates from the core are expected to collect at the core-mantle boundary and, significantly, a major fraction of the actinides are expected to precipitate from the core and to collect at the center of the Earth. Herndon demonstrated the feasibility of a nuclear fission reactor at the center of the Earth as the energy source for the geomagnetic field and described a natural mechanism that would lead to variations in energy production and thus variations in the geomagnetic field. Hollenbach and Herndon produced numerical simulations of the operation of the geo-reactor over the lifetime of the Earth using the state-of-the-art, validated, industry standard SCALE code package developed at Oak Ridge National Laboratory. The results clearly demonstrate that such a geo-reactor would i) function as a fast-neutron breeder reactor; ii) under appropriate conditions, operate over the entire period of geologic time; iii) function in such a manner as to yield variable and/or intermittent output; iv) generate energy at levels in the range generally accepted by the geophysics community; and, v) produce He-3 and He-4 in ratios that are in the range observed from deep-mantle sources. Deep-source He-3, the authors submit, is evidence of in-core sustained nuclear fission, rather than the out-gassing of primordial He-3; which in turn is evidence of large amounts of uranium residing in the Earth's core; which in turn is evidence that the core has a state of oxidation like the corresponding matter in primitive enstatite chondrites. The factors affecting He-3/He-4 ratios

  16. Expedited Site Characterization geophysics: Geophysical methods and tools for site characterization

    SciTech Connect

    Goldstein, N.E.

    1994-03-01

    This report covers five classes of geophysical technologies: Magnetics; Electrical/electromagnetic; Seismic reflection; Gamma-ray spectrometry; and Metal-specific spectrometry. Except for radiometry, no other classes of geophysical tedmologies are specific for direct detection of the types of contaminants present at the selected sites. For each of the five classes covered, the report gives a general description of the methodology, its field use, and its general applicability to the ESC Project. In addition, the report gives a sample of the most promising instruments available for each class, including the following information: Hardware/software attributes; Purchase and rental costs; Survey rate and operating costs; and Other applicable information based on case history and field evaluations.

  17. Geophysical Characterization and Monitoring for the Frio Pilot Test

    NASA Astrophysics Data System (ADS)

    Myer, L. R.; Hovorka, S.; Hoversten, G.; Fouad, K.; Holtz, M.

    2003-12-01

    The Frio Pilot test involves injection of approximately 3000 tons of CO2 into the brine-saturated Frio formation at a depth of approximately 1500 m at a test site located northeast of Houston. The CO2 is injected from a new well drilled for the test while an existing well provides subsurface access for monitoring. Geophysical data for characterization included 3-D surface seismic and well logs, which were available because of the extensive oil and gas exploration and production in the area. Seismic interpretation coupled with petrophysical analyses and other geologic data showed that the test site is located in a small fault block off the flank of a salt dome. The injection interval consists of alternating layers of sand and shale, with sand layer thickness on the order of 10 m, overlain by the 75 m thick Anahuac shale. Well logs in the new well provide data to confirm test site stratigraphy as well as data needed for interpretation of geophysical monitoring measurements. Geophysical monitoring involves time-lapse measurements, incorporating both surface and borehole techniques. Selection of techniques was aided by modeling in which reservoir simulation predicted fluid distributions, which were then input to geophysical models to predict performance of candidate techniques. Interpretation of crosswell seismic with appropriate rock physics models can potentially provide quantitative information on CO2 saturation between boreholes. Vertical seismic profiling will be used to map the areal distribution of the plume. Low resolution but inexpensive streaming potential measurements will also be carried out to sense the advancing CO2 front.

  18. Geophysical methods application in groundwater natural protection against pollution

    NASA Astrophysics Data System (ADS)

    Komatina, S. M.

    1994-02-01

    Natural protection against groundwater pollution mostly depends on water-bearing bed coverage with permeable rocks presenting a good or bad pollution intrusion barrier between the surface and subterranean water. Additional positive effects of polluted groundwater self-purification in these zones are visible. Natural protection from surface pollutants primarily depends on natural (geological) factors: (1) presence of poorly permeable rocks; (2) depth, lithology (grain-size distribution), and filtration features of rocks covering groundwater reservoirs; and (3) aquifer depth. In contrast to artesian aquifers, quantitative and qualitative evaluation for natural protection of intergranular aquifers with a free water surface is significantly complicated. In this case, the estimation is possible with the help of a specially developed statistical method, which requires the following elements referring to the zone of aeration: (1) poorly permeable strata depth; (2) filtration features; (3) groundwater level depth; and (4) lithology. For quantitative evaluation, it is necessary to know the time interval for pollution propagating from surface of the terrain to the free water surface. Describe access is particularly useful in the domain of zones of sanitary protection defined around the source of groundwater. This exploration method could be considerably rationalized by geophysical methods application. Various methods are useful, namely: electric mapping and sounding, self-potential method, seismic reflection and refraction methods, gravity and geomagnetic methods, the “turam” method, and different well-logging measurements (gamma ray, gammagamma, radioactivity log, and thermal log). In the paper, geophysical methods applictations in natural protection against groundwater pollution and appropriate critical analysis are presented. The results of this paper are based on the experience and application of geophysical methods to groundwater studies in Yugoslavia by the author.

  19. SAGE celebrates 25 years of learning geophysics by doing geophysics

    USGS Publications Warehouse

    Jiracek, G.R.; Baldridge, W.S.; Sussman, A.J.; Biehler, S.; Braile, L.W.; Ferguson, J.F.; Gilpin, B.E.; McPhee, D.K.; Pellerin, L.

    2008-01-01

    The increasing world demand and record-high costs for energy and mineral resources, along with the attendant environmental and climate concerns, have escalated the need for trained geophysicists to unprecedented levels. This is not only a national need; it's a critical global need. As Earth scientists and educators we must seriously ask if our geophysics pipeline can adequately address this crisis. One program that has helped to answer this question in the affirmative for 25 years is SAGE (Summer of Applied Geophysical Experience). SAGE continues to develop with new faculty, new collaborations, and additional ways to support student participation during and after SAGE. ?? 2008 Society of Exploration Geophysicists.

  20. Oracle Log Buffer Queueing

    SciTech Connect

    Rivenes, A S

    2004-12-08

    The purpose of this document is to investigate Oracle database log buffer queuing and its affect on the ability to load data using a specialized data loading system. Experiments were carried out on a Linux system using an Oracle 9.2 database. Previous experiments on a Sun 4800 running Solaris had shown that 100,000 entities per minute was an achievable rate. The question was then asked, can we do this on Linux, and where are the bottlenecks? A secondary question was also lurking, how can the loading be further scaled to handle even higher throughput requirements? Testing was conducted using a Dell PowerEdge 6650 server with four CPUs and a Dell PowerVault 220s RAID array with 14 36GB drives and 128 MB of cache. Oracle Enterprise Edition 9.2.0.4 was used for the database and Red Hat Linux Advanced Server 2.1 was used for the operating system. This document will detail the maximum observed throughputs using the same test suite that was used for the Sun tests. A detailed description of the testing performed along with an analysis of bottlenecks encountered will be made. Issues related to Oracle and Linux will also be detailed and some recommendations based on the findings.

  1. Acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  2. Requirements-Driven Log Analysis Extended Abstract

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2012-01-01

    Imagine that you are tasked to help a project improve their testing effort. In a realistic scenario it will quickly become clear, that having an impact is diffcult. First of all, it will likely be a challenge to suggest an alternative approach which is significantly more automated and/or more effective than current practice. The reality is that an average software system has a complex input/output behavior. An automated testing approach will have to auto-generate test cases, each being a pair (i; o) consisting of a test input i and an oracle o. The test input i has to be somewhat meaningful, and the oracle o can be very complicated to compute. Second, even in case where some testing technology has been developed that might improve current practice, it is then likely difficult to completely change the current behavior of the testing team unless the technique is obviously superior and does everything already done by existing technology. So is there an easier way to incorporate formal methods-based approaches than the full edged test revolution? Fortunately the answer is affirmative. A relatively simple approach is to benefit from possibly already existing logging infrastructure, which after all is part of most systems put in production. A log is a sequence of events, generated by special log recording statements, most often manually inserted in the code by the programmers. An event can be considered as a data record: a mapping from field names to values. We can analyze such a log using formal methods, for example checking it against a formal specification. This separates running the system for analyzing its behavior. It is not meant as an alternative to testing since it does not address the important in- put generation problem. However, it offers a solution which testing teams might accept since it has low impact on the existing process. A single person might be assigned to perform such log analysis, compared to the entire testing team changing behavior.

  3. Requirements-Driven Log Analysis Extended Abstract

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2012-01-01

    Imagine that you are tasked to help a project improve their testing effort. In a realistic scenario it will quickly become clear, that having an impact is diffcult. First of all, it will likely be a challenge to suggest an alternative approach which is significantly more automated and/or more effective than current practice. The reality is that an average software system has a complex input/output behavior. An automated testing approach will have to auto-generate test cases, each being a pair (i; o) consisting of a test input i and an oracle o. The test input i has to be somewhat meaningful, and the oracle o can be very complicated to compute. Second, even in case where some testing technology has been developed that might improve current practice, it is then likely difficult to completely change the current behavior of the testing team unless the technique is obviously superior and does everything already done by existing technology. So is there an easier way to incorporate formal methods-based approaches than the full edged test revolution? Fortunately the answer is affirmative. A relatively simple approach is to benefit from possibly already existing logging infrastructure, which after all is part of most systems put in production. A log is a sequence of events, generated by special log recording statements, most often manually inserted in the code by the programmers. An event can be considered as a data record: a mapping from field names to values. We can analyze such a log using formal methods, for example checking it against a formal specification. This separates running the system for analyzing its behavior. It is not meant as an alternative to testing since it does not address the important in- put generation problem. However, it offers a solution which testing teams might accept since it has low impact on the existing process. A single person might be assigned to perform such log analysis, compared to the entire testing team changing behavior.

  4. 3. Log bunkhouse (far left), log chicken house (left of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Log bunkhouse (far left), log chicken house (left of center), equipment shed (center), and workshop (far right). View to northwest. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  5. Geophysical tomography. January 1976-July 1988 (Citations from the NTIS data base). Report for January 1976-July 1988

    SciTech Connect

    Not Available

    1988-07-01

    This bibliography contains citations concerning image reconstruction of geologic properties, internal geometry of rock masses, and mapping of fractures using geophysical tomography. Applications include site characterization, ground-water movement, structural geology, well logging, oil-field recovery processes, underground waste disposal, and geophysical surveys. The citations on techniques include algorithms and software to perform tomographic image reconstruction. (Contains 74 citations fully indexed and including a title list.)

  6. Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.; Sky, Melissa A. Blue; Pine, Justin

    2014-01-01

    The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US–Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3% of all concessions supervised by authorities were suspected of major violations. Of the 609 total concessions, nearly 30% have been cancelled for violations and we expect this percentage to increase as investigations continue. Moreover, the nature of the violations indicate that the permits associated with legal concessions are used to harvest trees in unauthorized areas, thus threatening all forested areas. Many of the violations pertain to the illegal extraction of CITES-listed timber species outside authorized areas. These findings highlight the need for additional reforms. PMID:24743552

  7. Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Finer, Matt; Jenkins, Clinton N.; Sky, Melissa A. Blue; Pine, Justin

    2014-04-01

    The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US-Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3% of all concessions supervised by authorities were suspected of major violations. Of the 609 total concessions, nearly 30% have been cancelled for violations and we expect this percentage to increase as investigations continue. Moreover, the nature of the violations indicate that the permits associated with legal concessions are used to harvest trees in unauthorized areas, thus threatening all forested areas. Many of the violations pertain to the illegal extraction of CITES-listed timber species outside authorized areas. These findings highlight the need for additional reforms.

  8. Continental crust: a geophysical approach

    SciTech Connect

    Meissner, R.

    1986-01-01

    This book develops an integrated and balanced picture of present knowledge of the continental crust. Crust and lithosphere are first defined, and the formation of crusts as a general planetary phenomenon is described. The background and methods of geophysical studies of the earth's crust and the collection of related geophysical parameters are examined. Creep and friction experiments and the various methods of radiometric age dating are addressed, and geophysical and geological investigations of the crustal structure in various age provinces of the continents are studied. Specific tectonic structures such as rifts, continental margins, and geothermal areas are discussed. Finally, an attempt is made to give a comprehensive view of the evolution of the continental crust and to collect and develop arguments for crustal accretion and recycling. 647 references.

  9. Object Storage for Geophysical Data

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Readey, J.

    2015-12-01

    Object storage systems (such as Amazon S3 or Ceph) have been shown to be cost-effective and highly scalable for data repositories in the Petabyte range and larger. However traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In this session we'll discuss the advantages and challenges of moving to an object store-based model for geophysical data. We'll review a proposed model for a geophysical data service that provides an API-compatible library for traditional NetCDF and HDF5 applications while providing high scalability and performance. One further advantage of this approach is that any dataset or dataset selection can be referenced as a URI. By using versioning, the data the URI references can be guaranteed to be unmodified, thus enabling reproducibility of referenced data.

  10. Integrating Geophysical Data for the Investigation of the Chingshui Geothermal Field in Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, P.; Song, S.; Yeh, E.; Chen, C.

    2010-12-01

    We have reviewed various surface geophysical survey results and the borehole logging data in order to better delineate the geothermal reservoir and its relative geological structures in the Chingshui area. The Chingshui geothermal field has been acknowledged to have a great potential for geothermal production in Northeast Taiwan. A pilot geothermal power plant with 3MW capacity had been built since 1981 in the area and the plant was seized to function in 1992 due to scaling problems and depletion of the steam production. Though a lot of explorations have been done in the past, there are few reservoir models established because (1) geophysical surveys were conducted in different resolutions and scales and difficult to be integrated in the same model, (2) 1-D or 2-D geophysical measurements were not integrated and re-examined in a 3-D framework for delineating the structure relationships in a 3D sense, and (3) relationships between the formation properties, such as porosities and the water saturation, and the geophysical measurements were not yet established due to lack of core samples or detailed well logging data. In this study, we utilized data from magnetotelluric and electrical resistivity surveys, as well as borehole logging measurements for constructing a general reservoir model, and tried to verify it with the borehole geophysical logging data that are collected from an open section in the geothermal test well drilled recently. Currently we have integrated different geophysical data onto the same 3D framework and tried to apply geostatistical analysis for constructing the 3D geophysical picture. Our preliminary results have revealed two low resistivity regions representing the fracture reservoir filled with hot fluids within 2000m from the surface. These regions were limited in a 2-km2 narrow area along the Chingshui river valley. The shallower low-resistivity region, Zone I, is near the surface and its bottom is at about 600-m to 800-m in depth, and it is

  11. Geophysical Methodologies for the Characterisation of Gas Hydrate Sediments

    NASA Astrophysics Data System (ADS)

    Lovell, M.; Jackson, P.; Gunn, D.; Rochelle, C.; Bateman, K.; Nelder, V.; Culshaw, M.; Rees, J.; Francis, T.; Roberts, J.; Schultheiss, P.

    2001-12-01

    The study of natural gas hydrate cores in the laboratory is currently limited by their instability at ambient conditions. Proposals to sample hydrates using pressure coring techniques and sample transfer chambers on-board ship are, however, in place and technical developments to enable these are well advanced (c.f. the HYACINTH project and ODP Leg 204). There is, however, a need to try to characterise the nature and extent of any gas hydrate within the pressurised sample prior to depressurising, opening and subsampling. The ability to geophysically characterise gas hydrates remotely while still in the pressurised core barrel may provide a route to detailing their physical extent and nature. With this objective, experiments to manufacture a range of synthetic gas hydrate morphologies in a range of sediments in the laboratory are in progress. To date we have succeeded in manufacturing a range of both pure and sediment-hosted CO2 hydrates. Continuing experiments are developing a range of geometrical and internal structures and fabrics (from massive to disseminated) using different sediment-hosts. These generic hydrate groups will provide a basis for non-invasive geophysical characterisation of hydrate morphologies. From these results protocols will be established to guide the geophysical logging of natural sediment-hydrate core maintained under pressure in lab transfer chambers on board the drillship, using the hyperbaric Geotek Core Logger. This will enable the characterisation and classification of hydrates sampled during ODP Leg 204 (and during subsequent hydrate sampling operations not restricted to ODP). While new insight will be gained into geophysical modelling of hydrate behaviour, it will also guide the development of sampling programs, prior to depressurising and initiating dissociation. This will allow detailed planning of shipboard scientific work utilising these rare and precious samples. This new knowledge will enhance geophysical survey data, better

  12. Effects of log defects on lumber recovery.

    Treesearch

    James M. Cahill; Vincent S. Cegelka

    1989-01-01

    The impact of log defects on lumber recovery and the accuracy of cubic log scale deductions were evaluated from log scale and product recovery data for more than 3,000 logs. Lumber tally loss was estimated by comparing the lumber yield of sound logs to that of logs containing defects. The data were collected at several product recovery studies; they represent most of...

  13. Teaching an Old Log New Tricks with Machine Learning.

    PubMed

    Schnell, Krista; Puri, Colin; Mahler, Paul; Dukatz, Carl

    2014-03-01

    To most people, the log file would not be considered an exciting area in technology today. However, these relatively benign, slowly growing data sources can drive large business transformations when combined with modern-day analytics. Accenture Technology Labs has built a new framework that helps to expand existing vendor solutions to create new methods of gaining insights from these benevolent information springs. This framework provides a systematic and effective machine-learning mechanism to understand, analyze, and visualize heterogeneous log files. These techniques enable an automated approach to analyzing log content in real time, learning relevant behaviors, and creating actionable insights applicable in traditionally reactive situations. Using this approach, companies can now tap into a wealth of knowledge residing in log file data that is currently being collected but underutilized because of its overwhelming variety and volume. By using log files as an important data input into the larger enterprise data supply chain, businesses have the opportunity to enhance their current operational log management solution and generate entirely new business insights-no longer limited to the realm of reactive IT management, but extending from proactive product improvement to defense from attacks. As we will discuss, this solution has immediate relevance in the telecommunications and security industries. However, the most forward-looking companies can take it even further. How? By thinking beyond the log file and applying the same machine-learning framework to other log file use cases (including logistics, social media, and consumer behavior) and any other transactional data source.

  14. Integrating surface and borehole geophysics in ground water studies - an example using electromagnetic soundings in south Florida

    USGS Publications Warehouse

    Paillet, Frederick; Hite, Laura; Carlson, Matthew

    1999-01-01

    Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.

  15. Lithostratigraphy from downhole logs in Hole AND-1B, Antarctica

    USGS Publications Warehouse

    Williams, Trevor; Morin, Roger H.; Jarrard, Richard D.; Jackolski, Chris L.; Henrys, Stuart A.; Niessen, Frank; Magens, Diana; Kuhn, Gerhard; Monien, Donata; Powell, Ross D.

    2012-01-01

    The ANDRILL (Antarctic Drilling Project) McMurdo Ice Shelf (MIS) project drilled 1285 m of sediment in Hole AND–1B, representing the past 12 m.y. of glacial history. Downhole geophysical logs were acquired to a depth of 1018 mbsf (meters below seafloor), and are complementary to data acquired from the core. The natural gamma radiation (NGR) and magnetic susceptibility logs are particularly useful for understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND–1B. NGR logs cover the entire interval from the seafloor to 1018 mbsf, and magnetic susceptibility and other logs covered the open hole intervals between 692 and 1018 and 237–342 mbsf. In the upper part of AND–1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamictite (containing K-bearing clays, K-feldspar, mica, and heavy minerals). In the lower open hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamictites (relatively high in magnetite). Sandstones can be distinguished by their high resistivity values in AND–1B. On the basis of these three downhole logs, diamictite, claystones, and sandstones can be predicted correctly for 74% of the 692–1018 mbsf interval. The logs were then used to predict facies for the 6% of this interval that was unrecovered by coring. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties and help refine parts of the lithostratigraphy, for example, the varying terrigenous content of diatomites and the transitions from subice diamictite to open-water diatomite.

  16. Comprehensive study of LASL Well C/T-2 Roosevelt Hot Springs KGRA, Utah, and applications to geothermal well logging

    SciTech Connect

    Glenn, W.E.; Hulen, J.B.; Nielson, D.L.

    1981-02-01

    Utah State Geothermal Well 9-1 in the Roosevelt Hot Springs KGRA, Beaver County, Utah, has been donated by Phillips Petroleum Company for calibration and testing of well-logging equipment in the hot, corrosive, geothermal environment. It is the second Calibration/Test Well (C/T-2) in the Geothermal Log Interpretation Program. A study of cuttings and well logs from Well C/T-2 was completed. This synthesis and data presentation contains most of the subsurface geologic information needed to effect the total evaluation of geophysical logs acquired in this geothermal calibration/test well, C/T-2.

  17. Well Logging with Californium-252

    SciTech Connect

    Boulogne, A.R.

    2003-01-06

    Californium-252 is an intense neutron emitter that has only recently become available for experimental well logging. The purpose of this research is to investigate the application of well logging to groundwater hydrology; however, most of the techniques and purposes are quite similar to applications in the petroleum industry.

  18. Logging slash and forest protection.

    Treesearch

    Raphael Zon; Russell N. Cunningham

    1931-01-01

    What to do with the brush after logging? This question has been debated in Wisconsin throughout the entire history of lumbering. In the popular mind, the occurrence of severe forest conflagrations has invariably been associated with the presence of logging slash on the ground. The occurrence of vast forest fires was noted by explorers and fur traders long before...

  19. Sawing SHOLO logs: three methods

    Treesearch

    Ronald E. Coleman; Hugh W. Reynolds

    1973-01-01

    Three different methods of sawing the SHOLO log were compared on a board-foot yield basis. Using sawmill simulation, all three methods of sawing were performed on the same sample of logs, eliminating differences due to sapling. A statistical test was made to determine whether or not there were any real differences between the board-foot yields. Two of the sawing...

  20. Protecting log cabins from decay

    Treesearch

    R. M. Rowell; J. M. Black; L. R. Gjovik; W. C. Feist

    1977-01-01

    This report answers the questions most often asked of the Forest Service on the protection of log cabins from decay, and on practices for the exterior finishing and maintenance of existing cabins. Causes of stain and decay are discussed, as are some basic techniques for building a cabin that will minimize decay. Selection and handling of logs, their preservative...

  1. Review of log sort yards

    Treesearch

    John Rusty Dramm; Gerry L. Jackson; Jenny Wong

    2002-01-01

    This report provides a general overview of current log sort yard operations in the United States, including an extensive literature review and information collected during on-site visits to several operations throughout the nation. Log sort yards provide many services in marketing wood and fiber by concentrating, merchandising, processing, sorting, and adding value to...

  2. Sonic log prediction in carbonates

    NASA Astrophysics Data System (ADS)

    Islam, Nayyer

    This work is conducted to study the complications associated with the sonic log prediction in carbonate logs and to investigate the possible solutions to accurately predict the sonic logs in Traverse Limestone. Well logs from fifty different wells were analyzed to define the mineralogy of the Traverse Limestone by using conventional 4-mineral and 3-mineral identification approaches. We modified the conventional 3-mineral identification approach (that completely neglects the gamma ray response) to correct the shale effects on the basis of gamma ray log before employing the 3-mineral identification. This modification helped to get the meaningful insight of the data when a plot was made between DGA (dry grain density) and UMA (Photoelectric Volumetric Cross-section) with the characteristic ternary diagram of the quartz, calcite and dolomite. The results were then compared with the 4-mineral identification approach. Contour maps of the average mineral fractions present in the Traverse Limestone were prepared to see the basin wide mineralogy of Traverse Limestone. In the second part, sonic response of Traverse Limestone was predicted in fifty randomly distributed wells. We used the modified time average equation that accounts for the shale effects on the basis of gamma ray log, and used it to predict the sonic behavior from density porosity and average porosity. To account for the secondary porosity of dolomite, we subtracted the dolomitic fraction of clean porosity from the total porosity. The pseudo-sonic logs were then compared with the measured sonic logs on the root mean square (RMS) basis. Addition of dolomite correction in modified time average equation improved the results of sonic prediction from neutron porosity and average porosity. The results demonstrated that sonic logs could be predicted in carbonate rocks with a root mean square error of about 4isec/ft. We also attempted the use of individual mineral components for sonic log prediction but the

  3. Karst characterization in a semi-arid region using gravity, seismic, and resistivity geophysical techniques.

    SciTech Connect

    Barnhart, Kevin Scott

    2013-10-01

    We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless \

  4. Triad Issue Paper: Using Geophysical Tools to Develop the Conceptual Site Model

    EPA Pesticide Factsheets

    This technology bulletin explains how hazardous-waste site professionals can use geophysical tools to provide information about subsurface conditions to create a more representative conceptual site model (CSM).

  5. Geophysical applications of satellite altimetry

    SciTech Connect

    Sandwell, D.T. )

    1991-01-01

    Publications related to geophysical applications of Seasat and Geosat altimetry are reviewed for the period 1987-1990. Problems discussed include geoid and gravity errors, regional geoid heights and gravity anomalies, local gravity field/flexure, plate tectonics, and gridded geoid heights/gravity anomalies. 99 refs.

  6. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    USGS Publications Warehouse

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  7. Interpretation of well logs in a carbonate aquifer

    USGS Publications Warehouse

    MacCary, L.M.

    1978-01-01

    This report describes the log analysis of the Randolph and Sabial core holes in the Edwards aquifer in Texas, with particular attention to the principles that can be applied generally to any carbonate system. The geologic and hydrologic data were obtained during the drilling of the two holes, from extensive laboratory analysis of the cores, and from numerous geophysical logs run in the two holes. Some logging methods are inherently superiors to others for the analysis of limestone and dolomite aquifers. Three such systems are the dentistry, neutron, and acoustic-velocity (sonic) logs. Most of the log analysis described here is based on the interpretation of suites of logs from these three systems. In certain instances, deeply focused resistivity logs can be used to good advantage in carbonate rock studies; this technique is used to computer the water resistivity in the Randolph core hole. The rocks penetrated by the Randolph core hole are typical of those carbonates that have undergone very little solution by recent ground-water circulation. There are few large solutional openings; the water is saline; and the rocks are dark, dolomitic, have pore space that is interparticle or intercrystalline, and contain unoxidized organic material. The total porosity of rocks in the saline zone is higher than that of rocks in the fresh-water aquifer; however, the intrinsic permeability is much less in the saline zone because there are fewer large solutional openings. The Sabinal core hole penetrates a carbonate environment that has experienced much solution by ground water during recent geologic time. The rocks have high secondary porosities controlled by sedimentary structures within the rock; the water is fresh; and the dominant rock composition is limestone. The relative percentages of limestone and dolomite, the average matrix (grain) densities of the rock mixtures , and the porosity of the rock mass can be calculated from density, neutron, and acoustic logs. With supporting

  8. Predicting internal yellow-poplar log defect features using surface indicators

    Treesearch

    R. Edward Thomas

    2008-01-01

    Determining the defects that are located within the log is crucial to understanding the tree/log resource for efficient processing. However, existing means of doing this non-destructively requires the use of expensive X-ray/CT, MRI, or microwave technology. These methods do not lend themselves to fast, efficient, and cost-effective analysis of logs and tree stems in...

  9. Review of the logging residue problem and its reduction through marketing practices.

    Treesearch

    Thomas C. Adams; Richard C. Smith

    1976-01-01

    This study notes the increasing concern over logging residue in forest land management and describes the various administrative and technological means for accomplishing reductions of logging residue. Alternative sales arrangements can include such things as reduction of stumpage charges for low quality logs or required yarding of unutilized material to the landing or...

  10. Hydraulic conductivity explored by factor analysis of borehole geophysical data

    NASA Astrophysics Data System (ADS)

    Szabó, Norbert Péter

    2015-08-01

    A multivariate statistical method is presented for providing hydrogeological information on groundwater formations. Factor analysis is applied to borehole logs in Hungary and the USA to estimate the vertical distribution of hydraulic conductivity of rocks intersected by the borehole. Earlier studies showed a strong correlation between a statistical variable extracted by factor analysis and shale volume in primary porosity rocks. Hydraulic conductivity as a related quantity can be derived directly by factor analysis. In the first step, electric and nuclear logs are transformed into factor logs, which are then correlated to hydraulic properties of aquifers. It is shown that a factor explaining the major part of variance of the measured variables is inversely proportional to hydraulic conductivity. By revealing the regression relation between the above quantities, an estimate for hydraulic conductivity can be given along the entire length of the borehole. Synthetic modeling experiments and field cases demonstrate the feasibility of the method, which can be applied both in primary and secondary porosity aquifers. The results of factor analysis show consistence with those of the Kozeny-Carman method and hydraulic aquifer tests. The application of the statistical analysis of well logs together with independent ground geophysical and hydrogeological methods serves a more efficient exploration of groundwater resources.

  11. Geophysical Institute. Biennial report, 1993-1994

    SciTech Connect

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  12. Structure-, stratigraphy- and fault-guided regularization in geophysical inversion

    NASA Astrophysics Data System (ADS)

    Wu, Xinming

    2017-07-01

    Geophysical inversion is often ill-posed because of inaccurate and insufficient data. Regularization is often applied to the inversion problem to obtain a stable solution by imposing additional constraints on the model. Common regularization schemes impose isotropic smoothness on solutions and may have difficulties in obtaining geologically reasonable models that are often supposed to be anisotropic and conform to subsurface structural and stratigraphic features. I introduce a general method to incorporate constraints of seismic structural and stratigraphic orientations and fault slips into geophysical inversion problems. I first use a migrated seismic image to estimate structural and stratigraphic orientations and fault slip vectors that correlate fault blocks on opposite sides of a fault. I then use the estimated orientations and fault slips to construct simple and convenient anisotropic regularization operators in inversion problems to spread information along structural and stratigraphic orientations and across faults. In this way, we are able to compute inverted models that conform to seismic reflectors, faults and stratigraphic features such as channels. The regularization is also helpful to integrate well-log properties into the inversion by spreading the measured rock properties away from the well-log positions into the whole inverted model across faults and along structural and stratigraphic orientations. I use a 3-D synthetic example of impedance inversion to illustrate the structure-, stratigraphy- and fault-guided regularization method. I further applied the method to estimate seismic interval velocity and to compute structure- and stratigraphy-oriented semblance.

  13. Determining Aquifer Storage Properties Using Borehole Geophysical Data

    NASA Astrophysics Data System (ADS)

    Wempe, W.; Clayton, N.; Coulibaly, K.

    2006-12-01

    Specific yield and specific storage are essential parameters for groundwater management planning. These storage properties can be determined using a number of methods, however they are typically interpreted from multi-well aquifer pump tests. The interpretation of storage properties using pump tests can be strongly influenced and biased by small-scale hydrostratigraphic heterogeneities and boundary effects. We investigate using high resolution geophysical data collected in boreholes to provide depth-continuous logs of storage properties within heterogeneous aquifers. The advantage of using borehole geophysical data to interpret storage properties is that the estimates are unaffected by boundary conditions and that small-scale heterogeneities around the borehole can be resolved and then incorporated in more advanced interpretations of pump tests, which sample away from the borehole wall. This improved interpretation of storage properties ultimately leads to improved groundwater management planning and optimal well design, thus reducing economic risks associated with high cost production or aquifer storage and recovery wells. Our interpretations of specific yield are based on measurements of effective porosity that are made using borehole nuclear magnetic resonance tools and our interpretations of specific storage are based on measurements of aquifer compressibility that are made using borehole dipole shear sonic tools. With several case studies, we demonstrate how to interpret storage properties from these types of borehole geophysical data and show the benefits of incorporating the heterogeneity of storage properties in groundwater management planning.

  14. New materials for fireplace logs

    NASA Technical Reports Server (NTRS)

    Kieselback, D. J.; Smock, A. W.

    1971-01-01

    Fibrous insulation and refractory concrete are used for logs as well as fireproof walls, incinerator bricks, planters, and roof shingles. Insulation is lighter and more shock resistant than fireclay. Lightweight slag bonded with refractory concrete serves as aggregrate.

  15. Acoustic measurements on trees and logs: a review and analysis

    Treesearch

    Xiping Wang

    2013-01-01

    Acoustic technologies have been well established as material evaluation tools in the past several decades, and their use has become widely accepted in the forest products industry for online quality control and products grading. Recent research developments on acoustic sensing technology offer further opportunities to evaluate standing trees and logs for general wood...

  16. Acoustic sorting models for improved log segregation

    Treesearch

    Xiping Wang; Steve Verrill; Eini Lowell; Robert J. Ross; Vicki L. Herian

    2013-01-01

    In this study, we examined three individual log measures (acoustic velocity, log diameter, and log vertical position in a tree) for their ability to predict average modulus of elasticity (MOE) and grade yield of structural lumber obtained from Douglas-fir (Pseudotsuga menziesii [Mirb. Franco]) logs. We found that log acoustic velocity only had a...

  17. Problems of data bases in geophysics

    NASA Astrophysics Data System (ADS)

    Hartmann, G. K.

    Ten problems areas in the design and implementation of geophysical data bases are listed and briefly characterized. The emphasis is on software aspects, which are seen as critical given the current state of hardware technology. Topics examined include data sources and users; the difference between information-ordering schemes for the humanities and for the natural sciences; economic limitations on acquisition, evaluation, and storage of data; private versus public data; centralized, decentralized, and distributed computer systems; and the need for structured, transportable, and adequately documented software. A glossary of data terminology, extensive tables and block diagrams listing types of data and applications and illustrating ordering schemes, estimates of the data-processing and storage requirements of typical missions, and a summary of the CODMAC 1982 recommendations are provided.

  18. Smith heads Reviews of Geophysics

    NASA Astrophysics Data System (ADS)

    On January 1, Jim Smith began his term as editor-in-chief of Reviews of Geophysics. As editor-in-chief, he leads the board of editors in enhancing the journal's role as an integrating force in the geophysical sciences by providing timely overviews of current research and its trends. Smith is already beginning to fulfill the journal's role of providing review papers on topics of broad interest to Union members as well as the occasional definitive review paper on selected topics of narrower focus. Smith will lead the editorial board until December 31, 2000. Michael Coffey, Tommy Dickey, James Horwitz, Roelof Snieder, and Thomas Torgersen have been appointed as editors to serve with Smith. At least one more editor will be named to round out the disciplinary expertise on the board.

  19. New Geophysical Observatory in Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  20. Geophysical fields of a megalopolis

    NASA Astrophysics Data System (ADS)

    Spivak, A. A.; Loktev, D. N.; Rybnov, Yu. S.; Soloviev, S. P.; Kharlamov, V. A.

    2016-12-01

    A description of the Center of Geophysical Monitoring for Systematic Investigation of Negative Consequences for the Human Environment and Infrastructure of the City of Moscow Resulting from Natural and Technogenic Factors, which is part of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (IGD RAS), is presented. The results of synchronous observations of the seismic vibrations, electric and acoustic fields, and atmospheric meteoparameters performed at the Center and in the Mikhnevo Geophysical observatory of IGD RAS situated outside of the zone of the Moscow influence are examined. It is shown that the megalopolis influence consists of an increase in the amplitudes of the physical fields, a change in their spectral composition, and the violation of natural periodicities. A technogenic component that has a considerable impact on the natural physical processes in the surface atmosphere is an important factor that characterizes a megalopolis.

  1. Research e-infrastructure for "Geophysics" mission.

    NASA Astrophysics Data System (ADS)

    Nazarov, V.; Mogilevsky, M.; Nazirov, R.; Eismont, N.; Melnik, A.

    2009-04-01

    Space mission "Geophysics" intended for monitoring of ionospheric plasma parameters, electromagnetic emission and solar activity. In the frame of the project will be launched five small satellites on solar-synchronous orbits: two satellites on circular orbit, altitude ~700 km, orbit plane - morning-evening, another two satellites at the same altitude but orbit plane - day-night and the last satellite - on elliptic orbit with ~1200 km apogee and ~400 km perigee. Such choice of spacecraft constellation configuration is so some extent similar to the configuration usually used for the Earth remote sensing tasks. It gives advantages for the project because it allows to apply technologies of remote sensing satellites practically off shelved. From the other side it gives new possibilities for geophysics experiments followed from the fact that the measurements may be considered as the ones done by the instruments having the size of the Earth scale. However it brings more strict requirements for information support of the mission in general and for ground segment particularly. In needs not only on-line processing but on-line interpretation too, operative feedback link between interpretation and operation subsystems etc. Satisfaction of such strict requirements from one side and necessity for using of existing ground resources (taking in account budget limitations) implied creating of unified ground information infrastructure for target payload of the mission. This e-infrastructure will cover traditional ground systems which are treated as systems based on Resource-Oriented Architecture (ROA) and will produce unified integration platform based on Service-Oriented Architecture (SOA) which will collects all needed services and provides access to them in frame of unified cyber-infrastructure. The article describes technology and methodology aspects of design of this system.

  2. A New Social Contract for Geophysics

    NASA Astrophysics Data System (ADS)

    Malone, T. F.

    2002-12-01

    The Golden Age for geophysical research that followed the IGY set the stage for a new era of interaction among science, technology, and society. World population and the average economic productivity of individuals have both continued to grow exponentially during the past 50 years with the result that by the 1980s the demands of the human economy on the finite renewable resources of planet Earth were approximately equal to the natural regenerative capacities of planetary ecosystems. These demands are now "overshooting" those regenerative powers by about 20 per cent (1). The result could be a collapse in the life-supporting capacity of global ecosystems during coming decades, with tragic implications for civilized society. Novel modes of collaboration among all disciplines and all sectors of society are urgently needed to transform a potential catastrophe into the attractive vision that is now within reach as a result of rapidly expanding human knowledge, emerging technologies for sharing that knowledge (2), and the set of ethical principles for sustainable development contained in the Earth Charter (3). This prospect challenges geophysicists and scholars in all disciplines to forge a new and broadly based contract with society (4). 1. Wackernagel M. et al. 2002. "Tracking the ecological overshoot of the human economy." Proc. Natl. Acad. Sci. USA, Vol. 99, Issue 14, 9266-9271, July 9. 2. Malone T. and Yohe G. 2002. "Knowledge partnerships for a sustainable, equitable, and stable society." J. of Knowledge Management, Vol. 6, No. 4, October (in press). 3. www.earthcharter.org 4. Malone T. 1997. "Building on the legacies of the Intenational Geophysical Year." Transactions, AGU, Vol.78, No. 15, pp. 185-191.

  3. Terrestrial hydrological Research and Geophysics: Quo Vadis?

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Huisman, J. A.; van der Kruk, J.; Bogena, H.; Pohlmeier, A.; Koestel, J.; Lambot, S.; Vanderborght, J.

    2009-04-01

    Geophysical methods may play an important role in managing our terrestrial environment and in maintaining ecosystem functioning and services. Especially, the application and further development of hydrogeophysical methods seem very promising to maintain and protect soil and groundwater quality. Hydrogeophysical methods may help to improve our control on storage, filter and buffer functions of soils and groundwater systems. Moreover, methods are needed that will help us to bridge the gap between the scale of measurements and observations and the scale at which management of terrestrial systems takes place. In this presentation several examples will be presented showing how hydrogeophysical research can contribute in meeting these challenges. Recent progress in the field of magnetic resonance imaging, electrical resistivity tomography and spectral induced polarisation to investigate flow and transport processes in soils will be presented. In the field of high frequency hydrogeophysics, advanced full-waveform forward and inverse modelling procedures have been developed for ground penetrating radar technology, which are now routinely used for high-resolution, real-time mapping of surface soil moisture at the field scale. Integrated inversion and data fusion strategies, where both geophysical and hydrological models are coupled, further extend information retrieval capabilities also in real-time, and permits advanced interpretation of time-lapse data for hydrological process identification, water dynamics monitoring and soil hydraulic properties determination. Advances in wireless and sensor technologies are increasing the feasibility of using distributed sensor networks for observing soil water and hydrological processes at the intermediate scale, bridging the gap between ground-based sensors and remote sensing platforms.

  4. Geophysical Fluid Flow Cell Simulation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center

  5. Geophysical Plasmas and Atmospheric Modeling.

    DTIC Science & Technology

    1982-01-01

    0-AIII 639 SCIENCE APLICATIONS INC MCLEAN VA pis 4/1 GEOPHYSICAL. PLASMAS AND ATMOSPHERIC NOOCLIMG. (UI JAN 82 1 HMNh, J1 APIUZESE, S SNECH?. V CHAO...implied by delta functions. The eigenfunc- R 1_c 2 tion is continuous at each boundary and vanishes both at * web 2y V 4 -R1,)1r r<R4 , r -0 and r-R

  6. GEOPHYSICS: Atmosphere Drives Earth's Tipsiness.

    PubMed

    Kerr, R A

    2000-08-04

    For more than a century, geophysicists who track Earth's rotation have sensed a rhythmic unsteadiness about the planet, an ever-so-slight wobbling whose source remained frustratingly mysterious. But researchers have been homing in on the roots of the so-called Chandler wobble, and now a report in the 1 August issue of Geophysical Research Letters fingers the shifting pressures of the deep sea and ultimately the fickle winds of the atmosphere.

  7. Air-depolyable geophysics package

    SciTech Connect

    Hunter, S.L.; Harben, P.E.

    1993-11-01

    We are using Lawrence Livermore National Laboratory`s (LLNL`s) diverse expertise to develop a geophysical monitoring system that can survive being dropped into place by a helicopter or airplane. Such an air-deployable system could significantly decrease the time and effort needed to set up such instruments in remote locations following a major earthquake or volcanic eruption. Most currently available geophysical monitoring and survey systems, such as seismic monitoring stations, use sensitive, fragile instrumentation that requires personnel trained and experienced in data acquisition and field setup. Rapid deployment of such equipment can be difficult or impossible. Recent developments in low-power electronics, new materials, and sensors that are resistant to severe impacts have made it possible to develop low-cost geophysical monitoring packages for rapid deployment missions. Our strategy was to focus on low-cost battery-powered systems that would have a relatively long (several months) operational lifetime. We concentrated on the conceptual design and engineering of a single-component seismic system that could survive an air-deployment into an earth material, such as alluvium. Actual implementation of such a system is a goal of future work on this concept. For this project, we drew on LLNL`s Earth Sciences Department, Radio Shop, Plastics Shop, and Weapons Program. The military has had several programs to develop air-deployed and cannon-deployed seismometers. Recently, a sonobuoy manufacturer has offered an air-deployable geophone designed to make relatively soft landings.

  8. Rapid Geophysical Surveyor. Final report

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2{1/2} in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques.

  9. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    NASA Astrophysics Data System (ADS)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including

  10. Downhole well log and core montages from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Collett, T.S.; Lewis, R.E.; Winters, W.J.; Lee, M.W.; Rose, K.K.; Boswell, R.M.

    2011-01-01

    The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was an integral part of an ongoing project to determine the future energy resource potential of gas hydrates on the Alaska North Slope. As part of this effort, the Mount Elbert well included an advanced downhole geophysical logging program. Because gas hydrate is unstable at ground surface pressure and temperature conditions, a major emphasis was placed on the downhole-logging program to determine the occurrence of gas hydrates and the in-situ physical properties of the sediments. In support of this effort, well-log and core data montages have been compiled which include downhole log and core-data obtained from the gas-hydrate-bearing sedimentary section in the Mount Elbert well. Also shown are numerous reservoir parameters, including gas-hydrate saturation and sediment porosity log traces calculated from available downhole well log and core data. ?? 2010.

  11. A Guide to Hardwood Log Grading

    Treesearch

    Everette D. Rast; David L. Sonderman; Glenn L. Gammon

    1973-01-01

    A guide to hardwood log grading (revised) was developed as a teaching aid and field reference in grading hardwood logs. Outlines basic principles and gives detailed practical applications, with illustrations, in grading hardwood logs. Includes standards for various use classes.

  12. Geophysical Model Research and Results

    SciTech Connect

    Pasyanos, M; Walter, W; Tkalcic, H; Franz, G; Flanagan, M

    2004-07-07

    Geophysical models constitute an important component of calibration for nuclear explosion monitoring. We will focus on four major topics: (1) a priori geophysical models, (2) surface wave models, (3) receiver function derived profiles, and (4) stochastic geophysical models. The first, a priori models, can be used to predict a host of geophysical measurements, such as body wave travel times, and can be derived from direct regional studies or even by geophysical analogy. Use of these models is particularly important in aseismic regions or regions without seismic stations, where data of direct measurements might not exist. Lawrence Livermore National Laboratory (LLNL) has developed the Western Eurasia and North Africa (WENA) model which has been evaluated using a number of data sets, including travel times, surface waves, receiver functions, and waveform analysis (Pasyanos et al., 2004). We have joined this model with our Yellow Sea - Korean Peninsula (YSKP) model and the Los Alamos National Laboratory (LANL) East Asia model to construct a model for all of Eurasia and North Africa. Secondly, we continue to improve upon our surface wave model by adding more paths. This has allowed us to expand the region to all of Eurasia and into Africa, increase the resolution of our model, and extend results to even shorter periods (7 sec). High-resolution models exist for the Middle East and the YSKP region. The surface wave results can be inverted either alone, or in conjunction with other data, to derive models of the crust and upper mantle structure. We are also using receiver functions, in joint inversions with the surface waves, to produce profiles directly under seismic stations throughout the region. In a collaborative project with Ammon, et al., they have been focusing on stations throughout western Eurasia and North Africa, while we have been focusing on LLNL deployments in the Middle East, including Kuwait, Jordan, and the United Arab Emirates. Finally, we have been

  13. Progress in geophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Robinson, Allan R.

    Geophysical fluid dynamics deals with the motions and physics of the atmosphere, oceans and interior of the earth and other planets: the winds, the swirls, the currents that occur on myriads of scales from millimeter to climatological. Explanations of natural phenomena, basic processes and abstractions are sought. The rotation of the earth, the buoyancy of its fluids and the tendency towards large-scale turbulence characterize these flows. But geophysical fluid dynamics is importantly a part of modern fluid dynamics which is contributing to the development of nonlinear mechanics generally. Some general insights are emerging for nonlinear systems which must be regarded as partly deterministic and partly random or which are complex and aperiodic. Contributions from geophysical fluid dynamics come from its methodology, from the experience of examples, and from the perspective provided by its unique scale. Contributions have been made to turbulent, chaotic and coherently structured nonlinear process research. Turbulent vortices larger than man himself naturally invite detailed investigation and deterministic physical studies. Examples are storms in the atmosphere and large ring vortices spun off by the Gulf Stream current in mid-ocean. The statistics of these events determine critical aspects of the general circulations. Fluid dynamicists generally now know that it is often relevant or necessary to study local dynamical processes of typical eddies even though only the average properties of the flow are of interest; progress in understanding the turbulent boundary layer in pipes involves the study of millimeter-scale vortices. Weather-related studies were seminal to the construction of the new scientific field of chaos. Coherent vortices abound of which the Great Red Spot of Jupiter is a spectacular example. Geophysical fluid dynamicists have been among forefront researchers in exploiting the steadily increasing speed and capacity of modern computers. Supercomputers

  14. Integrating borehole logs and aquifer tests in aquifer characterization

    USGS Publications Warehouse

    Paillet, Frederick L.; Reese, R.S.

    2000-01-01

    Integration of lithologic logs, geophysical logs, and hydraulic tests is critical in characterizing heterogeneous aquifers. Typically only a limited number of aquifer tests can be performed, and these need to be designed to provide hydraulic properties for the principle aquifers in the system. This study describes the integration of logs and aquifer tests in the development of a hydrostratigraphic model for the surficial aquifer system in and around Big Cypress National Preserve in eastern Collier County, Florida. Borehole flowmeter tests provide qualitative permeability profiles in most of 26 boreholes drilled in the Study area. Flow logs indicate the depth of transmissive units, which are correlated across the study area. Comparison to published studies in adjacent areas indicates that the main limestone aquifer of the 000000Tamiami Formation in the study area corresponds with the gray limestone aquifer in western Dade County and the water table and lower Tamiami Aquifer in western Collier County. Four strategically located, multiwell aquifer tests are used to quantify the qualitative permeability profiles provided by the flowmeter log analysis. The hydrostratigraphic model based on these results defines the main aquifer in the central part of the study area as unconfined to semiconfined with a transmissivity as high as 30,000 m2/day. The aquifer decreases in transmissivity to less than 10,000 m2/day in some parts of western Collier County, and becomes confined to the east and northeast of the study area, where transmissivity decreases to below 5000 m2/day.Integration of lithologic logs, geophysical logs, and hydraulic tests is critical in characterizing heterogeneous aquifers. Typically only a limited number of aquifer tests can be performed, and these need to be designed to provide hydraulic properties for the principle aquifers in the system. This study describes the integration of logs and aquifer tests in the development of a hydrostratigraphic model for the

  15. In-situ coal seam and overburden permeability characterization combining downhole flow meter and temperature logs.

    NASA Astrophysics Data System (ADS)

    Busse, Julia; Scheuermann, Alexander; Bringemeier, Detlef; Hossack, Alex; Li, Ling

    2016-06-01

    The planning and design of any coal mine development requires among others a thorough investigation of the geological, geotechnical and hydrogeological subsurface conditions. As part of a coal mine exploration program we conducted heat pulse vertical flow meter testing. The flow data were combined with absolute and differential temperature logging data to gain information about the hydraulic characteristics of two different coal seams and their over- and interburden. For the strata that were localised based on geophysical logging data including density, gamma ray and resistivity hydraulic properties were quantified. We demonstrate that the temperature log response complements the flow meter log response. A coupling of both methods is therefore recommended to get an insight into the hydraulic conditions in a coal seam and its overburden.

  16. Lithology and hydrothermal alteration determination from well logs for the Cerro Prieto Wells, Mexico

    SciTech Connect

    Ershaghi, I.; Ghaemian, S.; Abdassah, D.

    1981-10-01

    The purpose of this study is to examine the characteristics of geophysical well logs against the sand-shale series of the sedimentary column of the Cerro Prieto Geothermal Field, Mexico. The study shows that the changes in mineralogy of the rocks because of hydrothermal alteration are not easily detectable on the existing logs. However, if the behavior of clay minerals alone is monitored, the onset of the hydrothermally altered zones may be estimated from the well logs. The effective concentration of clay-exchange cations, Q/sub v/, is computed using the data available from conventional well logs. Zones indicating the disappearance of low-temperature clays are considered hydrothermally altered formations with moderate to high-permeability and temperature, and suitable for completion purposes.

  17. Hardwood log grades and lumber grade yields for factory lumber logs

    Treesearch

    Leland F. Hanks; Glenn L. Gammon; Robert L. Brisbin; Everette D. Rast

    1980-01-01

    The USDA Forest Service Standard Grades for Hardwood Factory Lumber Logs are described, and lumber grade yields for 16 species and 2 species groups are presented by log grade and log diameter. The grades enable foresters, log buyers, and log sellers to select and grade those log suitable for conversion into standard factory grade lumber. By using the apropriate lumber...

  18. Mail LOG: Program operating instructions

    NASA Technical Reports Server (NTRS)

    Harris, D. K.

    1979-01-01

    The operating instructions for the software package, MAIL LOG, developed for the Scout Project Automatic Data System, SPADS, are provided. The program is written in FORTRAN for the PRIME 300 computer system. The MAIL LOG program has the following four modes of operation: (1) INPUT - putting new records into the data base (2) REVISE - changing or modifying existing records in the data base (3) SEARCH - finding special records existing in the data base (4) ARCHIVE - store or put away existing records in the data base. The output includes special printouts of records in the data base and results from the INPUT and SEARCH modes. The MAIL LOG data base consists of three main subfiles: Incoming and outgoing mail correspondence; Design Information Releases and Releases and Reports; and Drawings and Engineering orders.

  19. Hydro-biogeochemical Controls on Geophysical Signatures (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2013-12-01

    Geophysical techniques such as seismic, magnetic and electrical techniques have historically played a major role in oil exploration. Their main use has been for delineation basin geometry, structures and hydrocarbon traps and for understanding the subsurface stratigraphy. Their use for investigating microbial processes has only recently been recognized over the last decade resulting in the development of biogeophysics as a frontier research area which bridges the fields of environmental microbiology, biogeochemistry, geomicrobiology. Recent biogeophysical studies have demonstrated the potential of geophysical technologies to (1) probe the presence of microbial cells and biofilms in subsurface geologic media, (2) investigate the interactions between microorganisms and subsurface geologic media, (3) assess biogeochemical transformations, biomineralization, and biogeochemical reaction rates, and (4) investigate the alteration of physical properties of subsurface geologic media induced by microorganisms. The unique properties of geophysical datasets (e.g. non-invasive data acquisition, spatially continuous properties retrieved) make them attractive for probing microbial processes affecting fate and transport of contaminants. This presentation will provide an updated understanding of major controls on geophysical signatures by highlighting some of the important advancements in biogeophysical studies at hydrocarbon contaminated environments. Important challenges that provide an opportunity for further research in this new field will also be examined.

  20. Geophysical data fusion for subsurface imaging. Phase 1

    SciTech Connect

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ``data fusion,`` was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site.

  1. Method for induced polarization logging

    SciTech Connect

    Vinegar, H.J.; Waxman, M.H.

    1987-04-14

    A method is described for generating a log of the formation phase shift, resistivity and spontaneous potential of an earth formation from data obtained from the earth formation with a multi-electrode induced polarization logging tool. The method comprises obtaining data samples from the formation at measurement points equally spaced in time of the magnitude and phase of the induced voltage and the magnitude and phase of the current supplied by a circuit through a reference resistance R/sub 0/ to a survey current electrode associated with the tool.

  2. Advances in borehole geophysics for hydrology

    SciTech Connect

    Nelson, P.H.

    1982-01-01

    Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems the most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.

  3. Logging while fishing technique results in substantial savings

    SciTech Connect

    Tollefsen, E.; Everett, M.

    1996-12-01

    During wireline logging operations, tools occasionally become stuck in the borehole and require fishing. A typical fishing job can take anywhere from 1{1/2}--4 days. In the Gulf of Mexico, a fishing job can easily cost between $100,000 and $500,000. These costs result from nonproductive time during the fishing trip, associated wiper trip and relogging the well. Logging while fishing (LWF) technology is a patented system capable of retrieving a stuck fish and completing the logging run during the same pipe descent. Completing logging operations using LWF method saves time and money. The technique also provides well information where data may not otherwise have been obtained. Other benefits include reduced fishing time and an increased level of safety.

  4. A mineralized breccia pipe in Mohawk Canyon, Arizona; lithologic and geophysical logs

    SciTech Connect

    Wenrich, K.J.; Van Gosen, B.S.; Balcer, R.A.; Scott, J.H.; Mascarenas, J.F.; Bedinger, G.M.; Burmaster, B.

    1988-01-01

    Hundreds of solution-collapse breccia pipes crop out in northern Arizona. High-grade U ore, and potentially economic concentrations of Ag, Co, Cu, Ni, Pb, and Zn in some pipes, has stimulated mining activity there. More than 900 confirmed and suspected breccia pipes have been mapped by this study. One pipe was chosen for exploration drilling 1984 because it exhibited all preestablished exploration criteria. Five rotary and core holes were drilled into this pipe; they contained mineralized breccia and zones of U-, Cu-, and Ni-mineralized rock.

  5. Dewarless Logging Tool - 1st Generation

    SciTech Connect

    HENFLING,JOSEPH A.; NORMANN,RANDY A.

    2000-08-01

    This report focuses on Sandia National Laboratories' effort to create high-temperature logging tools for geothermal applications without the need for heat shielding. One of the mechanisms for failure in conventional downhole tools is temperature. They can only survive a limited number of hours in high temperature environments. For the first time since the evolution of integrated circuits, components are now commercially available that are qualified to 225 C with many continuing to work up to 300 C. These components are primarily based on Silicon-On-Insulator (SOI) technology. Sandia has developed and tested a simple data logger based on this technology that operates up to 300 C with a few limiting components operating to only 250 C without thermal protection. An actual well log to 240 C without shielding is discussed. The first prototype high-temperature tool measures pressure and temperature using a wire-line for power and communication. The tool is based around the HT83C51 microcontroller. A brief discussion of the background and status of the High Temperature Instrumentation program at Sandia, objectives, data logger development, and future project plans are given.

  6. Geophysical Model Applications for Monitoring

    SciTech Connect

    Pasyanos, M; Walter, W; Tkalcic, H; Franz, G; Gok, R; Rodgers, A

    2005-07-11

    Geophysical models constitute an important component of calibration for nuclear explosion monitoring. We will focus on four major topics and their applications: (1) surface wave models, (2) receiver function profiles, (3) regional tomography models, and (4) stochastic geophysical models. First, we continue to improve upon our surface wave model by adding more paths. This has allowed us to expand the region to all of Eurasia and into Africa, increase the resolution of our model, and extend results to even shorter periods (7 sec). High-resolution models exist for the Middle East and the YSKP region. The surface wave results can be inverted either alone, or in conjunction with other data, to derive models of the crust and upper mantle structure. One application of the group velocities is to construct phase-matched filters in combination with regional surface-wave magnitude formulas to improve the mb:Ms discriminant and extend it to smaller magnitude events. Next, we are using receiver functions, in joint inversions with the surface waves, to produce profiles directly under seismic stations throughout the region. In the past year, we have been focusing on deployments throughout the Middle East, including the Arabian Peninsula and Turkey. By assembling the results from many stations, we can see how regional seismic phases are affected by complicated upper mantle structure, including lithospheric thickness and anisotropy. The next geophysical model item, regional tomography models, can be used to predict regional travel times such as Pn and Sn. The times derived by the models can be used as a background model for empirical measurements or, where these don't exist, simply used as is. Finally, we have been exploring methodologies such as Markov Chain Monte Carlo (MCMC) to generate data-driven stochastic models. We have applied this technique to the YSKP region using surface wave dispersion data, body wave travel time data, receiver functions, and gravity data. The models

  7. Studies in geophysics: Active tectonics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  8. Review of Geophysical Techniques to Define the Spatial Distribution of Subsurface Properties or Contaminants

    SciTech Connect

    Murray, Christopher J.; Last, George V.; Truex, Michael J.

    2005-08-22

    This is a letter report to Fluor Hanford, Inc. The purpose of this report is to summarize state-of-the-art, minimally intrusive geophysical techniques that can be used to clarify subsurface geology, structure, moisture, and chemical composition. The technology review focused on geophysical characterization techniques that provide two- or three-dimensional information about the spatial distribution of subsurface properties and/or contaminants.

  9. Fluid flow model of the Cerro Prieto Geothermal Field based on well log interpretation

    SciTech Connect

    Halfman, S.E.; Lippmann, M.J.; Zelwe, R.; Howard, J.H.

    1982-08-10

    The subsurface geology of the Cerro Prieto geothermal field was analyzed using geophysical and lithologic logs. The distribution of permeable and relatively impermeable units and the location of faults are shown in a geologic model of the system. By incorporating well completion data and downhole temperature profiles into the geologic model, it was possible to determine the direction of geothermal fluid flow and the role of subsurface geologic features that control this movement.

  10. Fluid flow model of the Cerro Prieto geothermal field based on well log interpretation

    SciTech Connect

    Halfman, S.E.; Lippmann, M.J.; Zelwer, R.; Howard, J.H.

    1982-10-01

    The subsurface geology of the Cerro Prieto geothermal field was analyzed using geophysical and lithologic logs. The distribution of permeable and relatively impermeable units and the location of faults are shown in a geologic model of the system. By incorporating well completion data and downhole temperature profiles into the geologic model, it was possible to determine he direction of geothermal fluid flow and the role of subsurface geologic features that control this movement.

  11. Log exports by port, 1987.

    Treesearch

    Debra D. Warren

    1989-01-01

    Volumes and average values of log exports by port have been compiled by quarter for 1987. The tables show the four Northwest customs districts by ports, species, and destinations. These data were received from the U.S. Department of Commerce too late to be published in the 1987 quarterly reports, "Production, Prices, Employment, and Trade in Northwest Forest...

  12. CRYPTOSPORIDIUM LOG INACTIVATION CALCULATION METHODS

    EPA Science Inventory

    Appendix O of the Surface Water Treatment Rule (SWTR) Guidance Manual introduces the CeffT10 (i.e., reaction zone outlet C value and T10 time) method for calculating ozone CT value and Giardia and virus log inactivation. The LT2ESWTR Pre-proposal Draft Regulatory Language for St...

  13. Outdoor Education Student Log Book.

    ERIC Educational Resources Information Center

    Garbutt, Barbara; And Others.

    A student log book for outdoor education was developed to aid Oakland County (Michigan) teachers and supervisors of outdoor education in preparing student campers for their role and responsibilities in the total program. A sample letter to sixth graders explains the purpose of the booklet. General camp rules (10) are presented, followed by 6 woods…

  14. Statistical log analysis made practical

    SciTech Connect

    Mitchell, W.K.; Nelson, R.J. )

    1991-06-01

    This paper discusses the advantages of a statistical approach to log analysis. Statistical techniques use inverse methods to calculate formation parameters. The use of statistical techniques has been limited, however, by the complexity of the mathematics and lengthy computer time required to minimize traditionally used nonlinear equations.

  15. CRYPTOSPORIDIUM LOG INACTIVATION CALCULATION METHODS

    EPA Science Inventory

    Appendix O of the Surface Water Treatment Rule (SWTR) Guidance Manual introduces the CeffT10 (i.e., reaction zone outlet C value and T10 time) method for calculating ozone CT value and Giardia and virus log inactivation. The LT2ESWTR Pre-proposal Draft Regulatory Language for St...

  16. Logging Work Injuries in Appalachia

    Treesearch

    Charles H. Wolf; Gilbert P. Dempsey

    1978-01-01

    Logging accidents are costly. They may bring pain to injured workers, hardship to their families, and higher insurance premiums and lower productivity to their employers. Our analysis of 1,172 injuries in central Appalachia reveals that nearly half of all time lost-and almost all fatalities-resulted from accidents during felling and unloading. The largest proportion of...

  17. Soil Wetness Influences Log Skidding

    Treesearch

    William N. Darwin

    1960-01-01

    One of the least explored variables in timber harvesting is the effect of ground conditions on log production . The Southern Hardwoods Laboratory is studying this variable and its influence on performance of skidding vehicles in Southern bottom lands. The test reported here was designed to evaluate the effects of bark features on skidding coefficients, but it also...

  18. Postfire logging in riparian areas.

    Treesearch

    Gordon H. Reeves; Peter A. Bisson; Bruce E. Rieman; Lee E. Benda

    2006-01-01

    We reviewed the behavior of wildfire in riparian zones, primarily in the western United States, and the potential ecological consequences of postfire logging. Fire behavior in riparian zones is complex, but many aquatic and riparian organisms exhibit a suite of adaptations that allow relatively rapid recovery after fire. Unless constrained by other factors, fish tend...

  19. The formula Scribner log rule.

    Treesearch

    George R. Staebler

    1952-01-01

    The Scribner Decimal C is the accepted log rule in the Pacific Northwest. Usually volume, growth and yield tables are expressed by this rule to give them practical meaning. Yet in the research required for such studies, the rule is unsatisfactory because of rounded values and irregular jumps in volume from diameter to diameter and length to length.

  20. A New Approach to Logging.

    ERIC Educational Resources Information Center

    Miles, Donna

    2001-01-01

    In response to high numbers of preventable fatal accidents in the logging industry, the Occupational Safety and Health Administration (OSHA) developed a week-long logger safety training program that includes hands-on learning of safety techniques in the woods. Reaching small operators has been challenging; outreach initiatives in Maine, North…

  1. Hardwood log supply: a broader perspective

    Treesearch

    Iris Montague; Adri Andersch; Jan Wiedenbeck; Urs. Buehlmann

    2015-01-01

    At regional and state meetings we talk with others in our business about the problems we face: log exports, log quality, log markets, logger shortages, cash flow problems, the weather. These are familiar talking points and real and persistent problems. But what is the relative importance of these problems for log procurement in different regions of...

  2. When is hardwood cable logging economical?

    Treesearch

    Chris B. LeDoux

    1985-01-01

    Using cable logging to harvest eastern hardwood logs on steep terrain can result in low production rates and high costs per unit of wood produced. Logging managers can improve productivity and profitability by knowing how the interaction of site-specific variables and cable logging equipment affect costs and revenues. Data from selected field studies and forest model...

  3. A method of estimating log weights.

    Treesearch

    Charles N. Mann; Hilton H. Lysons

    1972-01-01

    This paper presents a practical method of estimating the weights of logs before they are yarded. Knowledge of log weights is required to achieve optimum loading of modern yarding equipment. Truckloads of logs are weighed and measured to obtain a local density index (pounds per cubic foot) for a species of logs. The density index is then used to estimate the weights of...

  4. Nondestructive evaluation for sorting red maple logs

    Treesearch

    Xiping Wang; Robert J. Ross; David W. Green; Karl Englund; Michael Wolcott

    2000-01-01

    Existing log grading procedures in the United States make only visual assessments of log quality. These procedures do not incorporate estimates of the modulus of elasticity (MOE) of logs. It is questionable whether the visual grading procedures currently used for logs adequately assess the potential quality of structural products manufactured from them, especially...

  5. 47 CFR 73.781 - Logs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Logs. 73.781 Section 73.781 Telecommunication... International Broadcast Stations § 73.781 Logs. The licensee or permittee of each international broadcast station must maintain the station log in the following manner: (a) In the program log: (1) An entry of...

  6. 47 CFR 73.781 - Logs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Logs. 73.781 Section 73.781 Telecommunication... International Broadcast Stations § 73.781 Logs. The licensee or permittee of each international broadcast station must maintain the station log in the following manner: (a) In the program log: (1) An entry of...

  7. 47 CFR 73.781 - Logs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Logs. 73.781 Section 73.781 Telecommunication... International Broadcast Stations § 73.781 Logs. The licensee or permittee of each international broadcast station must maintain the station log in the following manner: (a) In the program log: (1) An entry of...

  8. 29 CFR 1918.88 - Log operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Log operations. 1918.88 Section 1918.88 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.88 Log operations. (a) Working in holds. When loading logs into the holds of vessels and using dumper devices to roll logs into the...

  9. 29 CFR 1918.88 - Log operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Log operations. 1918.88 Section 1918.88 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.88 Log operations. (a) Working in holds. When loading logs into the holds of vessels and using dumper devices to roll logs into the...

  10. 29 CFR 1918.88 - Log operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Log operations. 1918.88 Section 1918.88 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.88 Log operations. (a) Working in holds. When loading logs into the holds of vessels and using dumper devices to roll logs into the...

  11. 29 CFR 1918.88 - Log operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Log operations. 1918.88 Section 1918.88 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.88 Log operations. (a) Working in holds. When loading logs into the holds of vessels and using dumper devices to roll logs into the...

  12. 47 CFR 73.781 - Logs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Logs. 73.781 Section 73.781 Telecommunication... International Broadcast Stations § 73.781 Logs. The licensee or permittee of each international broadcast station must maintain the station log in the following manner: (a) In the program log: (1) An entry of...

  13. 29 CFR 1918.88 - Log operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Log operations. 1918.88 Section 1918.88 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.88 Log operations. (a) Working in holds. When loading logs into the holds of vessels and using dumper devices to roll logs into the...

  14. 47 CFR 73.781 - Logs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Logs. 73.781 Section 73.781 Telecommunication... International Broadcast Stations § 73.781 Logs. The licensee or permittee of each international broadcast station must maintain the station log in the following manner: (a) In the program log: (1) An entry of...

  15. Environmental and Engineering Geophysical University at SAGEEP 2008: Geophysical Instruction for Non-Geophysicists

    SciTech Connect

    Jeffrey G. Paine

    2009-03-13

    The Environmental and Engineering Geophysical Society (EEGS), a nonprofit professional organization, conducted an educational series of seminars at the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP) in Philadelphia in April 2008. The purpose of these seminars, conducted under the name Environmental and Engineering Geophysical University (EEGU) over three days in parallel with the regular SAGEEP technical sessions, was to introduce nontraditional geophysical conference attendees to the appropriate use of geophysics in environmental and engineering projects. Five half-day, classroom-style sessions were led by recognized experts in the application of seismic, electrical, gravity, magnetics, and ground-penetrating radar methods. Classroom sessions were intended to educate regulators, environmental program managers, consultants, and students who are new to near-surface geophysics or are interested in learning how to incorporate appropriate geophysical approaches into characterization or remediation programs or evaluate the suitability of geophysical methods for general classes of environmental or engineering problems.

  16. Seismic velocity estimation from well log data with genetic algorithms in comparison to neural networks and multilinear approaches

    NASA Astrophysics Data System (ADS)

    Aleardi, Mattia

    2015-06-01

    Predicting missing log data is a useful capability for geophysicists. Geophysical measurements in boreholes are frequently affected by gaps in the recording of one or more logs. In particular, sonic and shear sonic logs are often recorded over limited intervals along the well path, but the information these logs contain is crucial for many geophysical applications. Estimating missing log intervals from a set of recorded logs is therefore of great interest. In this work, I propose to estimate the data in missing parts of velocity logs using a genetic algorithm (GA) optimisation and I demonstrate that this method is capable of extracting linear or exponential relations that link the velocity to other available logs. The technique was tested on different sets of logs (gamma ray, resistivity, density, neutron, sonic and shear sonic) from three wells drilled in different geological settings and through different lithologies (sedimentary and intrusive rocks). The effectiveness of this methodology is demonstrated by a series of blind tests and by evaluating the correlation coefficients between the true versus predicted velocity values. The combination of GA optimisation with a Gibbs sampler (GS) and subsequent Monte Carlo simulations allows the uncertainties in the final predicted velocities to be reliably quantified. The GA method is also compared with the neural networks (NN) approach and classical multilinear regression. The comparisons show that the GA, NN and multilinear methods provide velocity estimates with the same predictive capability when the relation between the input logs and the seismic velocity is approximately linear. The GA and NN approaches are more robust when the relations are non-linear. However, in all cases, the main advantages of the GA optimisation procedure over the NN approach is that it directly provides an interpretable and simple equation that relates the input and predicted logs. Moreover, the GA method is not affected by the disadvantages

  17. SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT

    SciTech Connect

    RUCKER DF; MYERS DA

    2011-10-04

    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  18. Current Legislative Initiatives and Geophysics

    NASA Astrophysics Data System (ADS)

    Stephan, S. G.

    2002-05-01

    Geophysical research will be most effective in the fight against terrorism if it is done in cooperation with the expectations of local, state and federal policy makers. New tools to prevent, prepare for, and respond to acts of terrorism are coming from all fields, including geoscience. Globally, monitoring the land, oceans, atmosphere, and space for unusual and suspicious activities can help prevent terrorist acts. Closer to home, geoscience research is used to plan emergency transportation routes and identify infrastructure vulnerabilities. As important as it is for Congress and other policy makers to appreciate the promises and limitations of geophysical research, scientists need to be aware of legislative priorities and expectations. What does Congress expect from the geoscience community in the fight against terrorism and how well does reality meet these expectations? What tools do the 44 different federal agencies with stated Homeland Security missions need from geoscientists? I will address these questions with an overview of current legislative antiterrorism initiatives and policies that relate to the geoscience community.

  19. Open Access to Geophysical Data

    NASA Astrophysics Data System (ADS)

    Sergeyeva, Nataliya A.; Zabarinskaya, Ludmila P.

    2017-04-01

    Russian World Data Centers for Solar-Terrestrial Physics & Solid Earth Physics hosted by the Geophysical Center of the Russian Academy of Sciences are the Regular Members of the ICSU-World Data System. Guided by the principles of the WDS Constitution and WDS Data Sharing Principles, the WDCs provide full and open access to data, long-term data stewardship, compliance with agreed-upon data standards and conventions, and mechanisms to facilitate and improve access to data. Historical and current geophysical data on different media, in the form of digital data sets, analog records, collections of maps, descriptions are stored and collected in the Centers. The WDCs regularly fill up repositories and database with new data, support them up to date. Now the WDCs focus on four new projects, aimed at increase of data available in network by retrospective data collection and digital preservation of data; creation of a modern system of registration and publication of data with digital object identifier (DOI) assignment, and promotion of data citation culture; creation of databases instead of file system for more convenient access to data; participation in the WDS Metadata Catalogue and Data Portal by creating of metadata for information resources of WDCs.

  20. Well logging methods in groundwater surveys of complicated aquifer systems: Bohemian Cretaceous Basin

    NASA Astrophysics Data System (ADS)

    Datel, Josef V.; Kobr, Miroslav; Prochazka, Martin

    2009-05-01

    Geophysical well logging methods (including borehole flow logging) can significantly contribute to a detailed understanding of hydrogeological conditions in basins with complicated sedimentary structure in studies undertaken to make optimal use of water sources, or to protect those resources from contamination. It is a common practice to delineate geological and hydrogeologic conditions at the scale used in geological maps and surface surveys. However, there is a need for more detailed descriptions of basin structure for many tasks related to water resources management and hydrologic research. This paper presents four specific examples of boreholes in complex hydrogeologic settings where useful information was provided by geophysical logging: (1) identification of large-scale upward cross-flow between aquifer horizons in an open borehole; (2) confirmation of continuous permeability throughout a long borehole interval; (3) identification of leakage into a test well via a defective casing joint; (4) evidence for downward flow in open boreholes; and (5) identification of permeable beds associated with water inflows during aquifer tests. These borehole geophysical measurements provide important information about the detailed lithological profiles of aquifers (especially in the absence of core), enabling the optimization of groundwater monitoring, resource use, and wellhead protection activities.

  1. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  2. Software complex for geophysical data visualization

    NASA Astrophysics Data System (ADS)

    Kryukov, Ilya A.; Tyugin, Dmitry Y.; Kurkin, Andrey A.; Kurkina, Oxana E.

    2013-04-01

    The effectiveness of current research in geophysics is largely determined by the degree of implementation of the procedure of data processing and visualization with the use of modern information technology. Realistic and informative visualization of the results of three-dimensional modeling of geophysical processes contributes significantly into the naturalness of physical modeling and detailed view of the phenomena. The main difficulty in this case is to interpret the results of the calculations: it is necessary to be able to observe the various parameters of the three-dimensional models, build sections on different planes to evaluate certain characteristics and make a rapid assessment. Programs for interpretation and visualization of simulations are spread all over the world, for example, software systems such as ParaView, Golden Software Surfer, Voxler, Flow Vision and others. However, it is not always possible to solve the problem of visualization with the help of a single software package. Preprocessing, data transfer between the packages and setting up a uniform visualization style can turn into a long and routine work. In addition to this, sometimes special display modes for specific data are required and existing products tend to have more common features and are not always fully applicable to certain special cases. Rendering of dynamic data may require scripting languages that does not relieve the user from writing code. Therefore, the task was to develop a new and original software complex for the visualization of simulation results. Let us briefly list of the primary features that are developed. Software complex is a graphical application with a convenient and simple user interface that displays the results of the simulation. Complex is also able to interactively manage the image, resize the image without loss of quality, apply a two-dimensional and three-dimensional regular grid, set the coordinate axes with data labels and perform slice of data. The

  3. Bio-logging of physiological parameters in higher marine vertebrates

    NASA Astrophysics Data System (ADS)

    Ponganis, Paul J.

    2007-02-01

    Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.

  4. AfricaArray International Geophysics Field School: Applications of Near Surface Geophysics to challenges encountered in mine planning

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.

    2012-12-01

    students are the geophysics Honours students (~4th year undergraduates). In addition, up to 8 students from all over Africa are included in the program to help address practical training in Africa. The final cohort are minority students from the USA. Participants spend a week planning and costing out surveys, a week in the field collecting data using different methods including: gravity, DGPS, magnetics, resistivity, refraction seismic, EM methods, core logging and physical property measurements. The final week is spent interpreting and integrating their results. Graduate students are given the opportunity to instruct on the field school and manage the logistics for a particular method. The field school is unique in Africa and satisfies a need for practical training with limited resources, with a rare blend of cultural interactions!

  5. Inequality constraint in least-square inversion of geophysical data

    SciTech Connect

    Kim, Hee Joon; Song, Yoonho; Lee, Ki Ha

    1998-06-01

    This paper presents a simple, generalized parameter constraint using a priori information to obtain a stable inverse of geophysical data. In the constraint the a priori information can be expressed by two limits: lower and upper bounds. This is a kind of inequality constraint, which is usually employed in linear programming. In this paper, we have derived this parameter constraint as a generalized version of positiveness constraint of parameter, which is routinely used in the inversion of electrical and EM data. However, the two bounds are not restricted to positive values. The width of two bounds reflects the reliability of ground information, which is obtained through well logging and surface geology survey. The effectiveness and convenience of this inequality constraint is demonstrated through the smoothness-constrained inversion of synthetic magnetotelluric data.

  6. Accurately determining log and bark volumes of saw logs using high-resolution laser scan data

    Treesearch

    R. Edward Thomas; Neal D. Bennett

    2014-01-01

    Accurately determining the volume of logs and bark is crucial to estimating the total expected value recovery from a log. Knowing the correct size and volume of a log helps to determine which processing method, if any, should be used on a given log. However, applying volume estimation methods consistently can be difficult. Errors in log measurement and oddly shaped...

  7. House log drying rates in southeast Alaska for covered and uncovered softwood logs

    Treesearch

    David Nicholls; Allen Brackley

    2009-01-01

    Log moisture content has an important impact on many aspects of log home construction, including log processing, transportation costs, and dimensional stability in use. Air-drying times for house logs from freshly harvested trees can depend on numerous factors including initial moisture content, log diameter, bark condition, and environmental conditions during drying....

  8. Remote sensing-a geophysical perspective.

    USGS Publications Warehouse

    Watson, K.

    1985-01-01

    In this review of developments in the field of remote sensing from a geophysical perspective, the subject is limited to the electromagnetic spectrum from 0.4 mu m to 25cm. Three broad energy categories are covered: solar reflected, thermal infrared, and microwave.-from Authorremote sensing electromagnetic spectrum solar reflected thermal infrared microwave geophysics

  9. Agricultural Geophysics: Past, present, and future

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...

  10. Successful educational geophysics field program expands

    NASA Astrophysics Data System (ADS)

    The Summer of Applied Geophysical Experience (SAGE), a program that gives students an opportunity to apply a variety of modern geophysical methods in a challenging geologic environment, has expanded.A 2-year grant awarded in 1993 by the National Science Foundation's Research Experiences for Undergraduate's (REU) initiative allowed the program to include fourteen U.S. undergraduate students last summer.

  11. Test plan for the Rapid Geophysical Surveyor

    SciTech Connect

    Roybal, L.G.

    1993-06-01

    This document describes the test plant for demonstrating and testing a set of optically pumped cesium-based total field magnetometers using the Rapid Geophysical Surveyor platform. The proposed testing will be used to assess the function of these magnetometers as deployed on the Rapid Geophysical Surveyor and evaluate the practical utility of high resolution magnetic data for supporting waste retrieval efforts.

  12. Probing the Hanford radioactive waste tanks with geophysical techniques

    SciTech Connect

    Lanza, R.C. )

    1991-11-01

    The Hanford Reservation has been the site for plutonium production for the US Department of Energy and its predecessors for the last 45 years. During the 1960s, large quantities of radioactive waste from the plutonium separation process were stored in a succession of large, steel-lined concrete tanks. Typical tanks may be {approximately}23 m in diameter and 12 m deep. It is now know that some of the tanks are leaking and that others are actively producing large quantities of hydrogen. In addition to the problems of radioactivity, the tanks contain mixtures of many corrosive chemicals, some of which are also potentially explosive. The contents of the tanks generally consist of a solid bottom sludge layer, a liquid region, and often a thick crust at the top. To deal with the environmental problem presented by these tanks and their contents, it will be necessary to characterize the material within the tank. The following preliminary characteristics need to be measured: (1) liquid depth, particularly where the liquid surface is inside the crust; (2) moisture content of the crust; (3) elemental concentration; and (4) variations in contents as a function of position and depth. Many of the required measured would be similar to those carried out in the well-logging industry using a variety of geophysical probes. Determination of moisture content and of liquid level may be made using neutron probes. Elemental analysis has been carried out in the logging industry using pulsed neutron sources and subsequent measurement of the prompt activation gammas. Seismic borehole-to-borehole tomography has been used as a method for imaging in geophysical measurements. Other possibilities would include the use of radio-frequency energy as another tomographic probing technique.

  13. Chemical logging of geothermal wells

    DOEpatents

    Allen, Charles A.; McAtee, Richard E.

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  14. Chemical logging of geothermal wells

    DOEpatents

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  15. Audit Log for Forensic Photography

    NASA Astrophysics Data System (ADS)

    Neville, Timothy; Sorell, Matthew

    We propose an architecture for an audit log system for forensic photography, which ensures that the chain of evidence of a photograph taken by a photographer at a crime scene is maintained from the point of image capture to its end application at trial. The requirements for such a system are specified and the results of experiments are presented which demonstrate the feasibility of the proposed approach.

  16. Validation of an internal hardwood log defect prediction model

    Treesearch

    R. Edward. Thomas

    2011-01-01

    The type, size, and location of internal defects dictate the grade and value of lumber sawn from hardwood logs. However, acquiring internal defect knowledge with x-ray/computed-tomography or magnetic-resonance imaging technology can be expensive both in time and cost. An alternative approach uses prediction models based on correlations among external defect indicators...

  17. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  18. Satellite Relaying of Geophysical Data

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.

    1977-01-01

    Data Collection Platforms (DCPs) for transmitting surface data to an orbiting satellite for relaying to a central data distribution center are being used in a number of geophysical applications. "Off-the-shelf" DCP's, transmitting through Landsat or GOES satellites, are fully capable of relaying data from low-data-rate instruments, such as tiltmeters or tide gauges. In cooperation with the Lamont-Doherty Geological Observatory, Goddard has successfully installed DCP systems on a tide gauge and tiltmeter array on Anegada, British Virgin Islands. Because of the high-data-rate requirements, a practical relay system capable of handling seismic information is not yet available. Such a system could become the basis of an operational hazard prediction system for reducing losses due to major natural catastrophies such as earthquakes, volcanic eruptions, landslides or tsunamis.

  19. Symmetries in geology and geophysics.

    PubMed

    Turcotte, D L; Newman, W I

    1996-12-10

    Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth's topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters.

  20. Strainmeters and tiltmeters in geophysics

    NASA Technical Reports Server (NTRS)

    Goulty, N. R.

    1976-01-01

    Several types of sensitive strainmeters and tiltmeters have been developed, and it is now becoming clear which geophysical applications are most suitable for these instruments. In general, strainmeters and tiltmeters are used for observing ground deformation at periods of minutes to days. Small-scale lateral inhomogeneities at the instrument sites distort signals by a few percent, although the effects of large structures can be calculated. In earth tide work these lateral inhomogeneities and unknown ocean loading signals prevent accurate values of the regional tide from being obtained. This limits tidal investigations to looking for temporal variations, possibly associated with pre-earthquake dilatancy, and spatial variations caused by gross elasticity contrasts in the local geological structure. Strainmeters and tiltmeters are well suited for observing long-period seismic waves, seismic slip events on faults and volcano tumescence, where small site-induced distortions in the measured signals are seldom important.

  1. Fractals in geology and geophysics

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1989-01-01

    The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.

  2. Fractals in geology and geophysics

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1989-01-01

    The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.

  3. Celebrating the physics in geophysics

    NASA Astrophysics Data System (ADS)

    Davis, Anthony B.; Sornette, Didier

    The United Nations' Educational, Scientific and Cultural Organization (UNESCO) declared 2005 the “World Year of Physics” in celebration of the centennial of Einstein's annus mirabilis when, as junior clerk at the Swiss Patent Office in Berne, he published three papers that changed physics forever by (1) introducing Special Relativity and demonstrating the equivalence of mass and energy (E = mc2), (2) explaining the photoelectric effect with Planck's then-still-new-and-controversial concept of light quanta (E = hv), and (3) investigating the macroscopic phenomenon of Brownian motion using Boltzmann's molecular dynamics (E = kT), still far from fully accepted at the time.The celebration of Einstein's work in physics inspires the reflection on the status of geophysics and its relationship with physics, in particular with respect to great discoveries.

  4. Online Polar Oceans Geophysical Databases

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; O'Hara, S.; Arko, R. A.; Carbotte, S. M.

    2006-12-01

    With funding from the Office of Polar Programs of the U.S. National Science Foundation, the Antarctic Multibeam Bathymetry Synthesis (AMBS, http://www.marine-geo.org/antarctic/) is an integrated web-accessible bathymetry and geophysical database for the Southern Ocean and Antarctica, serving data from the US research vessels Nathaniel B. Palmer and Laurence M. Gould, amongst others. Interdisciplinary polar data can be downloaded for free through Data Link (http://www.marine-geo.org/link/index.php) which enables keyword searches by data and instrument type, geographical bounds, scientist, expedition name and dates. The data visualisation tool GeoMapApp (http://www.marine-geo.org/geomapapp/) supports dynamic exploration of a multi-resolutional digital elevation model (DEM) of the global oceans, including the polar regions, allowing users to generate custom grids and maps and import their own data sets and grids. A specialised polar stereographic map projection incorporating multibeam swath bathymetry and the BEDMAP under-ice seaflooor topography is available for the Southern Ocean. To promote inter-operability, we are working with research partners including the Marine Metadata Interoperability (MMI) project and the National Geophysical Data Center to develop standardised metadata and best practices that comply with existing FGDC and ISO standards. For example, the global DEM is served freely as an OGC-compliant Web Map Service map layer and is available for viewing with Google Earth. We are working towards full indexing of the AMBS database holdings at the Antarctic Master Directory. geo.org/antarctic/

  5. Geophysical characterization of fractured bedrock at Site 8, former Pease Air Force Base, Newington, New Hampshire

    USGS Publications Warehouse

    Mack, Thomas J.; Degnan, James R.

    2003-01-01

    Borehole-geophysical logs collected from eight wells and direct-current resistivity data from three survey lines were analyzed to characterize the fractured bedrock and identify transmissive fractures beneath the former Pease Air Force Base, Newington, N.H. The following logs were used: caliper, fluid temperature and conductivity, natural gamma radiation, electromagnetic conductivity, optical and acoustic televiewer, and heat-pulse flowmeter. The logs indicate several foliation and fracture trends in the bedrock. Two fracture-correlated lineaments trending 28? and 29?, identified with low-altitude aerial photography, are coincident with the dominant structural trend. The eight boreholes logged at Site 8 generally have few fractures and have yields ranging from 0 to 40 gallons per minute. The fractures that probably resulted in high well yields (20?40 gallons per minute) strike northeast-southwest or by the right hand rule, have an orientation of 215?, 47?, and 51?. Two-dimensional direct-current resistivity methods were used to collect detailed subsurface information about the overburden, bedrock-fracture zone depths, and apparent-dip directions. Analysis of data inversions from data collected with dipole-dipole and Schlumberger arrays indicated electrically conductive zones in the bedrock that are probably caused by fractured rock. These zones are coincident with extensions of fracture-correlated lineaments. The fracture-correlated lineaments and geophysical-survey results indicate a possible northeast-southwest anisotropy to the fractured rock.

  6. Agricultural geophysics: Past/present accomplishments and future advancements

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods have become an increasingly valuable tool for application within a variety of agroecosystems. Agricultural geophysics measurements are obtained at a wide range of scales and often exhibit significant variability both temporally and spatially. The three geophysical methods predomi...

  7. Identification of potential water-bearing zones by the use of borehole geophysics in the vicinity of Keystone Sanitation Superfund Site, Adams County, Pennsylvania and Carroll County, Maryland

    USGS Publications Warehouse

    Conger, Randall W.

    1997-01-01

    Between April 23, 1996, and June 21, 1996, the U.S. Environmental Protection Agency contracted Haliburton-NUS, Inc., to drill four clusters of three monitoring wells near the Keystone Sanitation Superfund Site. The purpose of the wells is to allow monitoring and sampling of shallow, intermediate, and deep waterbearing zones for the purpose of determining the horizontal and vertical distribution of any contaminated ground water migrating from the Keystone Site. Twelve monitoring wells, ranging in depth from 50 to 397.9 feet below land surface, were drilled in the vicinity of the Keystone Site. The U.S. Geological Survey conducted borehole-geophysical logging and determined, with geophysical logs and other available data, the ideal intervals to be screened in each well. Geophysical logs were run on four intermediate and four deep wells, and a caliper log only was run on shallow well CL-AD-173 (HN-1S). Interpretation of geophysical logs and existing data determined the placement of screens within each borehole.

  8. Introduction To Ere5 Special Session "challenges And Outreach In Geophysics For Young Geoscientists"

    NASA Astrophysics Data System (ADS)

    Foing, B. H.

    The ERE5 special session "Challenges and Outreach in Geophysics" will start with re- view lectures, complemented by short poster presentations, on the different topics: 0- Introduction on "Challenges and Outreach in Geophysics" 1- Challenges in Prospec- tion of subsurface Mineral and Energy resources 2- Challenges in Hydrology studies and water management 3- Challenges in Climate studies and Global change 4- Chal- lenges in prediction of and prevention from geophysical hazards 5- Challenges in Geo- physical technologies and instrumentation 6- Challenges in Solar system exploration It will continue with an open discussion forum including: 7- a brainstorming session led by young participants on these topical challenges, with special emphasis on "So- cial benefits, Outreach and Education in Geophysics" 8- the formulation of a series of recommendations by young geo scientists (YGS) 9- presentation and selection by session participants of the recommendations to be carried to other EGS sessions 10- the discussion and preparation of an EGS2002 Young Geo-Scientists declaration

  9. Geophysical Characterization and Reactive Transport Modeling to Quantify Plume Behavior

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Wainwright, H.; Bea, S. A.; Spycher, N.; Li, L.; Sassen, D.; Chen, J.

    2012-12-01

    Predictions of subsurface contaminant plume mobility and remediation often fail due to the inability to tractably characterize heterogeneous flow-and-transport properties and monitor critical geochemical transitions over plume-relevant scales. This study presents two recently developed strategies to quantify and predict states and processes across scales that govern plume behavior. Development of both strategies takes advantage of multi-scale and disparate datasets and has involved the use of reactive transport models, geophysical methods, and stochastic integration approaches. The first approach, called reactive facies, exploits coupled physiochemical heterogeneity to characterize subsurface flow and transport properties that impact plume sorption and thus mobility. We develop and test the reactive facies concept within uranium contaminated Atlantic Coastal Plain sediments that underlie the U.S. Department of Energy Savannah River Site, F-Area, South Carolina. Through analysis of field data (core samples, geophysical well logs, and cross-hole ground penetrating radar and seismic datasets) coupled with laboratory sorption studies, we have identified two reactive facies that have unique distributions of mineralogy, texture, porosity, hydraulic conductivity and geophysical attributes. We develop and use facies-based relationships with geophysical data in a Bayesian framework to spatially distribute reactive facies and their associated transport properties and uncertainties along local and plume-scale geophysical transects. To illustrate the value of reactive facies, we used the geophysically-obtained reactive facies properties to parameterize reactive transport models and simulate the migration of an acidic-U(VI) plume through the 2D domains. Modeling results suggest that each identified reactive facies exerts control on plume evolution, highlighting the usefulness of the reactive facies concept and approach for spatially distributing properties that control flow and

  10. Application of borehole geophysics in defining the wellhead protection area for a fractured crystalline bedrock aquifer

    USGS Publications Warehouse

    Vernon, J.H.; Paillet, F.L.; Pedler, W.H.; Griswold, W.J.

    1993-01-01

    Wellbore geophysical techniques were used to characterize fractures and flow in a bedrock aquifer at a site near Blackwater Brook in Dover, New Hampshire. The primary focus ofthis study was the development of a model to assist in evaluating the area surrounding a planned water supply well where contaminants introduced at the land surface might be induced to flow towards a pumping well. Well logs and geophysical surveys used in this study included lithologic logs based on examination of cuttings obtained during drilling; conventional caliper and natural gamma logs; video camera and acoustic televiewer surveys; highresolution vertical flow measurements under ambient conditions and during pumping; and borehole fluid conductivity logs obtained after the borehole fluid was replaced with deionized water. These surveys were used for several applications: 1) to define a conceptual model of aquifer structure to be used in groundwater exploration; 2) to estimate optimum locations for test and observation wells; and 3) to delineate a wellhead protection area (WHPA) for a planned water supply well. Integration of borehole data with surface geophysical and geological mapping data indicated that the study site lies along a northeast-trending intensely fractured contact zone between surface exposures of quartz monzonite and metasedimentary rocks. Four of five bedrock boreholes at the site were estimated to produce more than 150 gallons per minute (gpm) (568 L/min) of water during drilling. Aquifer testing and other investigations indicated that water flowed to the test well along fractures parallel to the northeast-trending contact zone and along other northeast and north-northwest-trending fractures. Statistical plots of fracture strikes showed frequency maxima in the same northeast and north-northwest directions, although additional maxima occurred in other directions. Flowmeter surveys and borehole fluid conductivity logging after fluid replacement were used to identify water

  11. Effect of clay distribution in synthetic sand-clay mixtures on hydraulic and geophysical parameters

    NASA Astrophysics Data System (ADS)

    Osterman, G. K.; Keating, K.; Slater, L. D.; Sugand, M.; Binley, A. M.

    2016-12-01

    The hydraulic conductivity of porous geological media is known to be controlled by clay content as well as the distribution of clay. Although numerous studies have explored the effect of clay content on geophysical measurements, most studies of synthetic sediment packs focus on a homogenous distribution of clay particles. In this laboratory experiment, we explore how both clay content and clay distribution impact hydraulic and geophysical parameters. Using two clays—kaolinite and montmorillonite—we prepared homogeneous and heterogeneous sand-clay mixtures containing 0 to 10% clay by mass. To create the heterogeneous mixtures, small (<1 cm diameter) aggregates of the clays were prepared before mixing with sand. The measured geophysical parameters consisted of the spectral induced polarization (SIP) quadrature conductivity and the nuclear magnetic resonance (NMR) mean-log T2 relaxation time, parameters known to be sensitive to changes in pore geometry. Our results show that for the homogenous clay samples, the hydraulic conductivity decreases with increasing clay content, as expected, and both SIP and NMR parameters correlate with the changing hydraulic conductivity. For the aggregated clay samples, there is no correlation between hydraulic conductivity and clay content; however, increasing clay content still impacts the geophysical data. The SIP data are less sensitive to increasing aggregated clay content than the NMR data, which display a similar degree of variability with clay content in mean-log T­2 relaxation time for both homogenous and aggregated clay samples. The results suggest that in heterogeneous clay-bearing sediments, NMR measured parameters are less sensitive to the specific pore geometries controlling fluid flow than the SIP parameters. This research represents a first step towards understanding how the distributions of clay in porous media impacts relationships between geophysical measurements and hydraulic conductivity.

  12. Virtual Geophysics Laboratory: Exploiting the Cloud and Empowering Geophysicsts

    NASA Astrophysics Data System (ADS)

    Fraser, Ryan; Vote, Josh; Goh, Richard; Cox, Simon

    2013-04-01

    Over the last five decades geoscientists from Australian state and federal agencies have collected and assembled around 3 Petabytes of geoscience data sets under public funding. As a consequence of technological progress, data is now being acquired at exponential rates and in higher resolution than ever before. Effective use of these big data sets challenges the storage and computational infrastructure of most organizations. The Virtual Geophysics Laboratory (VGL) is a scientific workflow portal addresses some of the resulting issues by providing Australian geophysicists with access to a Web 2.0 or Rich Internet Application (RIA) based integrated environment that exploits eResearch tools and Cloud computing technology, and promotes collaboration between the user community. VGL simplifies and automates large portions of what were previously manually intensive scientific workflow processes, allowing scientists to focus on the natural science problems, rather than computer science and IT. A number of geophysical processing codes are incorporated to support multiple workflows. For example a gravity inversion can be performed by combining the Escript/Finley codes (from the University of Queensland) with the gravity data registered in VGL. Likewise, tectonic processes can also be modeled by combining the Underworld code (from Monash University) with one of the various 3D models available to VGL. Cloud services provide scalable and cost effective compute resources. VGL is built on top of mature standards-compliant information services, many deployed using the Spatial Information Services Stack (SISS), which provides direct access to geophysical data. A large number of data sets from Geoscience Australia assist users in data discovery. GeoNetwork provides a metadata catalog to store workflow results for future use, discovery and provenance tracking. VGL has been developed in collaboration with the research community using incremental software development practices and open

  13. Self-affine and ARX-models zonation of well logging data

    NASA Astrophysics Data System (ADS)

    Shiri, Yousef; Tokhmechi, Behzad; Zarei, Zeinab; Koneshloo, Mohammad

    2012-11-01

    Zonation of time series into models which their parameters are piecewise constant are important and well-studied problems. Geophysical well logging data often show a complex pattern due to their multifractal nature. In a multifractal system, any pieces of it are established by a distinct exponent that can characterize them. This feature has the capability to cluster them. Self-affine zonation by Auto Regressive model with exogenous inputs (ARX) is a new approach which places well logging segments in the clusters which are more self-affine against the other clusters. This approach was performed and compared with a conventional ARX zonation in the well logging data of three different oilfields in southern parts of Iran. The results showed a good accuracy for detecting homogeneous lithological segments and led to a precise interpretation process to update the reservoir architecture.

  14. Integrated analysis of well logs and seismic data to estimate gas hydrate concentrations at Keathley Canyon, Gulf of Mexico

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2008-01-01

    Accurately detecting and quantifying gas hydrate or free gas in sediments from seismic data require downhole well-log data to calibrate the physical properties of the gas hydrate-/free gas-bearing sediments. As part of the Gulf of Mexico Joint Industry Program, a series of wells were either cored or drilled in the Gulf of Mexico to characterize the physical properties of gas hydrate-bearing sediments, to calibrate geophysical estimates, and to evaluate source and transport mechanisms for gas within the gas hydrates. Downhole acoustic logs were used sparingly in this study because of degraded log quality due to adverse wellbore conditions. However, reliable logging while drilling (LWD) electrical resistivity and porosity logs were obtained. To tie the well-log information to the available 3-D seismic data in this area, a velocity log was calculated from the available resistivity log at the Keathley Canyon 151-2 well, because the acoustic log or vertical seismic data acquired at the nearby Keathley Canyon 151-3 well were either of poor quality or had limited depth coverage. Based on the gas hydrate saturations estimated from the LWD resistivity log, the modified Biot-Gassmann theory was used to generate synthetic acoustic log and a synthetic seismogram was generated with a fairly good agreement with a seismic profile crossing the well site. Based on the well-log information, a faintly defined bottom-simulating reflection (BSR) in this area is interpreted as a reflection representing gas hydrate-bearing sediments with about 15% saturation overlying partially gas-saturated sediments with 3% saturation. Gas hydrate saturations over 30-40% are estimated from the resistivity log in two distinct intervals at 220-230 and 264-300 m below the sea floor, but gas hydrate was not physically recovered in cores. It is speculated that the poor recovery of cores and gas hydrate morphology are responsible for the lack of physical gas hydrate recovery.

  15. Avian responses to selective logging shaped by species traits and logging practices.

    PubMed

    Burivalova, Zuzana; Lee, Tien Ming; Giam, Xingli; Şekercioğlu, Çağan Hakkı; Wilcove, David S; Koh, Lian Pin

    2015-06-07

    Selective logging is one of the most common forms of forest use in the tropics. Although the effects of selective logging on biodiversity have been widely studied, there is little agreement on the relationship between life-history traits and tolerance to logging. In this study, we assessed how species traits and logging practices combine to determine species responses to selective logging, based on over 4000 observations of the responses of nearly 1000 bird species to selective logging across the tropics. Our analysis shows that species traits, such as feeding group and body mass, and logging practices, such as time since logging and logging intensity, interact to influence a species' response to logging. Frugivores and insectivores were most adversely affected by logging and declined further with increasing logging intensity. Nectarivores and granivores responded positively to selective logging for the first two decades, after which their abundances decrease below pre-logging levels. Larger species of omnivores and granivores responded more positively to selective logging than smaller species from either feeding group, whereas this effect of body size was reversed for carnivores, herbivores, frugivores and insectivores. Most importantly, species most negatively impacted by selective logging had not recovered approximately 40 years after logging cessation. We conclude that selective timber harvest has the potential to cause large and long-lasting changes in avian biodiversity. However, our results suggest that the impacts can be mitigated to a certain extent through specific forest management strategies such as lengthening the rotation cycle and implementing reduced impact logging.

  16. Avian responses to selective logging shaped by species traits and logging practices

    PubMed Central

    Burivalova, Zuzana; Lee, Tien Ming; Giam, Xingli; Şekercioğlu, Çağan Hakkı; Wilcove, David S.; Koh, Lian Pin

    2015-01-01

    Selective logging is one of the most common forms of forest use in the tropics. Although the effects of selective logging on biodiversity have been widely studied, there is little agreement on the relationship between life-history traits and tolerance to logging. In this study, we assessed how species traits and logging practices combine to determine species responses to selective logging, based on over 4000 observations of the responses of nearly 1000 bird species to selective logging across the tropics. Our analysis shows that species traits, such as feeding group and body mass, and logging practices, such as time since logging and logging intensity, interact to influence a species' response to logging. Frugivores and insectivores were most adversely affected by logging and declined further with increasing logging intensity. Nectarivores and granivores responded positively to selective logging for the first two decades, after which their abundances decrease below pre-logging levels. Larger species of omnivores and granivores responded more positively to selective logging than smaller species from either feeding group, whereas this effect of body size was reversed for carnivores, herbivores, frugivores and insectivores. Most importantly, species most negatively impacted by selective logging had not recovered approximately 40 years after logging cessation. We conclude that selective timber harvest has the potential to cause large and long-lasting changes in avian biodiversity. However, our results suggest that the impacts can be mitigated to a certain extent through specific forest management strategies such as lengthening the rotation cycle and implementing reduced impact logging. PMID:25994673

  17. Tucker Wireline Open Hole Wireline Logging

    SciTech Connect

    Milliken, M.

    2002-05-23

    The Tucker Wireline unit ran a suite of open hole logs right behind the RMOTC logging contractor for comparison purposes. The tools included Dual Laterolog, Phased Induction, BHC Sonic, and Density-Porosity.

  18. 29 CFR 1910.266 - Logging operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Buck. To cut a felled tree into logs. Butt. The bottom of the felled part of a tree. Cable yarding. The... to prevent the root wad, butt or logs from striking an employee. These precautions include, but are...

  19. Geological well log analysis. Third ed

    SciTech Connect

    Pirson, S.J.

    1983-01-01

    Until recently, well logs have mainly been used for correlation, structural mapping, and quantitive evaluation of hydrocarbon bearing formations. This third edition of Geologic Well Log Analysis, however, describes how well logs can be used for geological studies and mineral exploration. This is done by analyzing well logs for numerous parameters and indices of significant mineral accumulation, primarily in sediments. Contents are: SP and Eh curves as redoxomorphic logs; sedimentalogical studies by log curve shapes; exploration for stratigraphic traps; continuous dipmeter as a structural tool; continuous dipmeter as a sedimentation tool; Paleo-facies logging and mapping; hydrogeology 1--hydrodynamics of compaction; hydrogeology 2--geostatic equilibrium; and hydrogeology 3--hydrodynamics of infiltration. Appendixes cover: Computer program for calculating the dip magnitude, azimuth, and the degree and orientation of the resistivity anisotrophy; a lithology computer program for calculating the curvature of a structure; and basic log analysis package for HP-41CV programmable calculator.

  20. Europa Geophysical Explorer Mission Concept Studies

    NASA Astrophysics Data System (ADS)

    Green, J. R.; Abelson, R. D.; Smythe, W.; Spilker, T. R.; Shirley, J. H.

    2005-12-01

    The Strategic Road Map for Solar System Exploration recommended in May 2005 that NASA implement the Europa Geophysical Explorer (EGE) as a Flagship mission early in the next decade. This supported the recommendations of the National Research Council's Solar System Decadal Survey and the priorities of the Outer Planets Assessment Group (OPAG). The Europa Geophysical Explorer would: (1) Characterize tidal deformations of the surface of Europa and surface geology, to confirm the presence of a subsurface ocean; (2) Measure the three-dimensional structure and distribution of subsurface water; and (3) Determine surface composition from orbit, and potentially, prebiotic chemistry, in situ. As the next step in Europa exploration, EGE would build on previous Europa Orbiter concepts, for example, the original Europa Orbiter and the Jupiter Icy Moons Orbiter (JIMO). As well, a new set of draft Level One Requirements, provided by NASA sponsors, guided the concept development. These requirements included: (1) Earliest Launch: 2012; (2) Launch Vehicle: Delta IV Heavy or Atlas V; (3) Primary Propulsion: Chemical; (4) Power: Radioisotope Power System (RPS); (4) Orbital Mission: 30 days minimum to meet orbital science objectives; and (5) Earth Gravity Assists: Allowed. The previous studies and the new requirements contributed to the development of several scientifically capable and relatively mass-rich mission options. In particular, Earth-gravity assists (EGA) were allowed, resulting in an increased delivered mass. As well, there have been advances in radiation-hardened components and subsystems, due to the investments from the X-2000 technology program and JIMO. Finally, developments in radioisotope power systems (RPS) have added to the capability and reliability of the mission. Several potential mission options were explored using a variety of trade study methods, ranging from the work of the JPL EGE Team of scientists and engineers in partnership with the OPAG Europa Sub

  1. Data Mining of Network Logs

    NASA Technical Reports Server (NTRS)

    Collazo, Carlimar

    2011-01-01

    The statement of purpose is to analyze network monitoring logs to support the computer incident response team. Specifically, gain a clear understanding of the Uniform Resource Locator (URL) and its structure, and provide a way to breakdown a URL based on protocol, host name domain name, path, and other attributes. Finally, provide a method to perform data reduction by identifying the different types of advertisements shown on a webpage for incident data analysis. The procedures used for analysis and data reduction will be a computer program which would analyze the URL and identify and advertisement links from the actual content links.

  2. Enhancing subsurface information from the fusion of multiple geophysical methods

    NASA Astrophysics Data System (ADS)

    Jafargandomi, A.; Binley, A.

    2011-12-01

    Characterization of hydrologic systems is a key element in understanding and predicting their behaviour. Geophysical methods especially electrical methods (e.g., electrical resistivity tomography (ERT), induced polarization (IP) and electromagnetic (EM)) are becoming popular for such purpose due to their non-invasive nature, high sensitivity to hydrological parameters and the speed of measurements. However, interrogation of each geophysical method provides only limited information about some of the subsurface parameters. Therefore, in order to achieve a comprehensive picture from the hydrologic system, fusion of multiple geophysical data sets can be beneficial. Although a number of fusion approaches have been proposed in the literature, an aspect that has been generally overlooked is the assessment of information content from each measurement approach. Such an assessment provides useful insight for the design of future surveys. We develop a fusion strategy based on the capability of multiple geophysical methods to provide enough resolution to identify subsurface material parameters and structure. We apply a Bayesian framework to analyse the information in multiple geophysical data sets. In this approach multiple geophysical data sets are fed into a Markov chain Monte Carlo (McMC) inversion algorithm and the information content of the post-inversion result (posterior probability distribution) is quantified. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical data sets. In this strategy, information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. We apply the fusion tool to one of the target sites of the EU FP7 project ModelProbe which aims to develop technologies and tools for soil contamination assessment and site characterization. The target site is located close to Trecate (Novara - NW Italy). At this

  3. Faculty receives Excellence in Geophysical Education Award

    NASA Astrophysics Data System (ADS)

    Kruse, Sarah; Baldridge, W. Scott; Biehler, Shawn; Braile, Lawrence W.; Ferguson, John F.; Gilpin, Bernard E.; Jiracek, George R.

    “The second AGU Excellence in Geophysical Education Award was presented to the faculty of the Summer of Applied Geophysical Experience (SAGE): Scott Baldridge, Shawn Biehler, Larry Braile, John Ferguson, Bernard Gilpin, and George Jiracek. The persistence and commitment of this group has provided the geophysical community with a superb educational program for over 16 years, reaching nearly 400 students, including undergraduates, graduates, and professionals. The award was presented at the AGU Fall Meeting Honors Ceremony, which was held on December 8, 1998, in San Francisco, California.

  4. Centennial of a Pioneer in Meteorology, Geophysics

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2004-06-01

    In 2004 we celebrate the 100th birthday of a great scientist and a leading proponent of our geophysical disciplines, Hans Ertel, who was formerly professor of geophysics and theoretical mechanics at Humboldt University in Berlin. He was also director of the (German) Institute of Metorology and Geophysics, and vice-president of the German Academy of Sciences; also in Berlin. Ertel was the founder of the Alexander von Humboldt Commission. Under his leadership, and in cooperation with other German academies, a comprehensive collection of letters from and to von Humboldt has been assembled and edited.

  5. Selective logging and its relation to deforestation

    Treesearch

    Gregory P. Asner; Michael Keller; Marco Lentini; Frank Merry; Souza Jr. Carlos

    2009-01-01

    Selective logging is a major contributor to the social, economic, and ecological dynamics of Brazilian Amazonia. Logging activities have expanded from low-volume floodplain harvests in past centuries to high-volume operations today that take about 25 million m3 of wood from the forest each year. The most common high-impact conventional and often illegal logging...

  6. Selective logging in the Brazilian Amazon.

    Treesearch

    G. P. Asner; D. E. Knapp; E. N. Broadbent; P. J. C. Oliveira; M Keller; J. N. Silva

    2005-01-01

    Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square...

  7. Pacific Rim log trade: determinants and trends.

    Treesearch

    Donald F. Flora; Andrea L. Anderson; Wendy J. McGinnls

    1991-01-01

    Pacific Rim trade in softwood logs amounts to about $3 billion annually, of which the U.S. share is about $2 billion. Log exporting is a significant part of the forest economy in the Pacific Northwest. The 10 major Pacific Rim log-trading client and competitor countries differ widely in their roles in trade and in their policies affecting the industry.

  8. How much scarification from summer logging?

    Treesearch

    David A. Marquis; John C. Bjorkbom

    1960-01-01

    Scarification of the soil creates seedbeds that are favorable for the establishment of both paper birch and yellow birch. Logging in the summer often has been recommended as a method of obtaining these seedbeds. However, our observations on experimental logging jobs have shown that logging alone does not provide scarification over enough of the area to assure...

  9. Hardwood log grading scale stick improved

    Treesearch

    M. D. Ostrander; G. H. Englerth

    1953-01-01

    In February 1952 the Northeastern Forest Experiment Station described ( Research Note 13) a new log-grading scale stick developed by the Station for use as a visual aid in grading hardwood factory logs. It was based on the U. S. Forest Products Laboratory's log-grade specifications.

  10. Linking log quality with product performance

    Treesearch

    D. W. Green; Robert Ross

    1997-01-01

    In the United States, log grading procedures use visual assessment of defects, in relation to the log scaling diameter, to estimate the yield of lumber that maybe expected from the log. This procedure was satisfactory when structural grades were based only on defect size and location. In recent years, however, structural products have increasingly been graded using a...

  11. Challenges in converting among log scaling methods.

    Treesearch

    Henry. Spelter

    2003-01-01

    The traditional method of measuring log volume in North America is the board foot log scale, which uses simple assumptions about how much of a log's volume is recoverable. This underestimates the true recovery potential and leads to difficulties in comparing volumes measured with the traditional board foot system and those measured with the cubic scaling systems...

  12. 10 CFR 34.71 - Utilization logs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Utilization logs. 34.71 Section 34.71 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 Utilization logs. (a) Each licensee shall maintain utilization logs showing for each sealed source the following information: (1) A description, including...

  13. 10 CFR 34.71 - Utilization logs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Utilization logs. 34.71 Section 34.71 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 Utilization logs. (a) Each licensee shall maintain utilization logs showing for each sealed source the following information: (1) A description, including...

  14. 29 CFR 1917.18 - Log handling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Log handling. 1917.18 Section 1917.18 Labor Regulations...) MARINE TERMINALS Marine Terminal Operations § 1917.18 Log handling. (a) The employer shall ensure that structures (bunks) used to contain logs have rounded corners and rounded structural parts to avoid...

  15. 10 CFR 34.71 - Utilization logs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Utilization logs. 34.71 Section 34.71 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 Utilization logs. (a) Each licensee shall maintain utilization logs showing for each sealed source the following information: (1) A description, including...

  16. 10 CFR 34.71 - Utilization logs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Utilization logs. 34.71 Section 34.71 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 Utilization logs. (a) Each licensee shall maintain utilization logs showing for each sealed source the following information: (1) A description, including...

  17. 29 CFR 1917.18 - Log handling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Log handling. 1917.18 Section 1917.18 Labor Regulations...) MARINE TERMINALS Marine Terminal Operations § 1917.18 Log handling. (a) The employer shall ensure that structures (bunks) used to contain logs have rounded corners and rounded structural parts to avoid...

  18. 47 CFR 73.1820 - Station log.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station log. 73.1820 Section 73.1820... Rules Applicable to All Broadcast Stations § 73.1820 Station log. (a) Entries must be made in the station log either manually by a person designated by the licensee who is in actual charge of...

  19. 47 CFR 87.109 - Station logs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station logs. 87.109 Section 87.109... Operating Requirements and Procedures Operating Procedures § 87.109 Station logs. (a) A station at a fixed location in the international aeronautical mobile service must maintain a log in accordance with Annex...

  20. 10 CFR 34.71 - Utilization logs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Utilization logs. 34.71 Section 34.71 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 Utilization logs. (a) Each licensee shall maintain utilization logs showing for each sealed source the following information: (1) A description, including...